

Academic example on a concurrency class						
var N: Integer := 0;		Proc.	Instr.	Reg.	Reg.	N
process P1; var I: Integer; begin for I := 1 to 10 do N := N + 1 end;	process P2; var I: Integer; begin for I := 1 to 10 do N := N + 1 end;	P1	Load N	0	0	0
		P2	Load N	0	0	0
		P1	Increm	0	0	0
		P2	Increm	1	0	0
		P1	Store N	1	1	0
"perfect" interleaving →		P2	Store N	1	1	1
				1	1	1
From: The Concorde Doesn't Fly Anymore; Moti Ben-Ari Keynote Talk, SIGCSE 2005, St. Louis, MO						

- Among those eligible formalisms, it is worth to mention state diagrams, hierarchical and concurrent state diagrams, statecharts, and Petri nets.
- It is not a surprise that the selected formalism for this presentation is Petri nets:
 - Rigorous computational model
 - Precise execution semantics
 - Graphical representation
 - Formal representation

- How to handle design complexity
- Some issues and challenges
- Petri-nets for controller modeling
- Distributed Embedded Controllers Development Flow
 - Operations on nets
 - Distributed execution
 - Tools
- Sum-up

