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Pré-requisitos

Avaliagdo de Desempenho de Sistemas

Modelos para Sistemas Comunicantes

Programa

Sistemas de Tempo Real (at¢ o 08/10)

Caracteristicas e requisitos

Categorias

Alocagdo de tarefas e escalonamento

Métricas de desempenho para sistemas de tempo real

Modelos
Algebras de Procesos Temporizada
Redes de Petri Temporizadas

Analise e verificagdo e estimativa

Objetivo

E 0 estudo, fixacdo e aplicacdo de métodos e
modelos para avaliacdo de sistemas criticos.

Programa

Sistemas de Tempo Real (t¢ o 08/10)

Dependabilidade (de 15/10 até 26/11)

Programa

Dependabilidade (de 15/10 até 26/11)

Historia
Conceitos basicos e terminologia
Fundamentos

Andlise de Dados
Analise de tempo de vida
Modelos de aceleragdo de tempo de vida




Programa

Dependabilidade (de 15/10 até 26/11)
Modelagem
Mecanismos de detecgdo, recuperagdo e tolerancia a falhas
Mantenabilidade
Sistemas coerentes
Modo de falha e operacional
Modelos combinacionais: RBD, FT, RG
Fungdo estrutural e logica
Métodos de andlise
Modelagem
Cadeias de Markov e Redes de Petri Estocasticas
Modelagem
Modelagem hierarquica e heterogénea

Avaliacao

Resolucdo de listas.

Dependability

Dependability of a computing system is the ability to
deliver service that can justifiably be trusted.

The service delivered by a system is its behavior as it is
perceived by its user(s).

A user is another system (physical, human) that interacts
with the former at the service interface.

The function of a system is what the system is intended
for, and is described by the system specification.

[Laprie, J. C. (1985)].

Metodologia

Aulas expositivas

Aulas praticas.
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Dependability

In early 1980s Laprie coined the
term dependability for
encompassing concepts such
reliability, availability, safety,
confidentiality, maintainability,
security and integrity etc [Laprie, 1. C.
(1985)].

Dependable Computing and Fault Tolerance:

Concepts and terminology. In Proc. .
15th IEEE Int. Symp. on Fault-Tolerant Computing, Jean Claude Laprie
(pp. 2-11).




A Brief History A Brief History

Dependability is related to disciplines 2 iy

such as reliability and fault tolerance. \ In the nineteenth century, reliability theory evolved from probability
) and statistics as a way to support computing maritime and life insurance

The concept of dependable computing rates.

first appeared in 1820s when Charles ‘ .

Babbage undertook the enterprise to In early twentieth century methods had been applied to estimate

conceive and construct a mechanical survivorship of railroad equipment [Stott, H. G. (1905)] [Stuart, H. R.
calculating engine to eliminate the risk of (1905)].

human errors. In his book, “*On the
Economy of Machinery and
Manufacture”, he mentions
‘The first objective of every person
who attempts to make any article of
consumption is, or ought be, to
produce it in perfect form’.

" (Blischke, W. R. & Murthy, D. N. Charles Babbage in 1860

P. (Ed.) 2003).

.

The first IEEE (formerly AIEE and IRE) public document to mention

reliability is “Answers to Questions Relative to High Tension Transmission” In 1907, A. A. Markov began

that summarizes the meeting of the Board of Directors of the American the study of an important new
Institute of Electrical Engineers, held in September 26, 1902. type of chance process.

[Answers to Questions Relative to High Tension Transmission. (1904). Transactions of the American
Institute of Electrical Engineers, XXIII, 571-604.]

In this process, the outcome of
a given experiment can
In 1905, H. G. Stott and H. R. Stuart: discuss “Time- affect the outcome of the next
Limit Relays and Duplication of Electrical Apparatus to Secure experiment.
Reliability of Services at New York and at

Pittsburg. This type of process is now called a

Markov chain [Ushakov, I. (2007)] e
In these works the concept of reliability was primarily qualitative. Andrei A. Markov

A Brief History A Brief History

In 1910s, A. K. Erlang studied .

telephone traffic planning Later in the 1930s,

problems for reliable  service extreme value theory was

provisioning [Erlang, A. K. (1909)]. applied to model fatigue life of
materials by W. Weibull and
Gumbel [Kotz, S., Nadarajah, S. (2000)].

Gumbel, Emil Julius
Waloddi Weibull (18.7.1891 -
[Erlang, A. K. (1909)] Principal Works of A. K. Erlang - 1887-1979 10.9.1966)
The Theory of Probabilities and Telephone

Conversations . First published in Nyt Tidsskrift for Agner Karup Erlang
Matematik B, 20, 131-137.




A Brief History

In 1931, Kolmogorov, in his
famous paper “Uber die
analytischen Methoden in der
Wahrscheinlichkeitsrechnung”
(Analytical methods in probability
theory) laid the foundations for the

modern theory of Markov processes
[Kolmogoroff, A. (1931)].

Kolmogoroff, A. (1931). Uber die analytischen
Methoden in der Wahrscheinlichkeitsrechnung (in
German). Mathematische Annalen, 104, 415-458.
Springer-Verlag.

A Brief History

The most prominent researchers during that period were Shannon, Von
Neumann and Moore, who proposed and developed theories for building
reliable systems by using redundant and less reliable components.

These were the predecessors of the statistical and probabilistic techniques
that form the foundation of modern dependability theory [Avizienis, A. (1997)].

s L
C. E. Shanon John von Neumann ~ Edward Forrest Moore

A Brief History

Epstein and Sobel’'s 1953 paper studying the ex tial distribution was a
landmark contribution.

Epstein, B. & Sobel, M. (1953). Life Testing. Journal of the American Statistical
Association, 48(263), 486-502.

Milton Sobel

A Brief History

In the 1940s quantitative analysis of reliability was applied to many

operational and strategic problems in World War II [Blischke, W. R. & Murthy, D. N.
P. (Ed.) (2003)] [Cox, D. R. (1989)].

The first generation of electronic computers were quite
undependable, thence many techniques were investigated for
improving their reliability, such as error:

control codes,

replication of components,
comparison monitoring and
diagnostic routines.

In the 1950s, reliability became a subject of great engineering interest as a
result of the:

cold war efforts,

failures of American and Soviet rockets, and

failures of the first commercial jet aircraft, the British de Havilland
comet [Barlow, R. E. & Proschan, F. (1967)][Barlow, R. E. (2002)].

A Brief History

In 1954, the Symposium on Reliability and Quality Control (it is now the IEEE
Transactions on Reliability) was held for the first time in the United States.

In 1958, the First All-Union Conference on Reliability took place In Moscow
[Gnedenko, B. V., Ushakov, I. A. (1995)] [Ushakov, 1. (2007)].

Gnedenko Bo:
(1912-1995)

Gnedenko, B. V., Ushakov, I. A. (1995). Probabilistic Reliability Engineering. J. A. Falk (Ed.), Wiley-
Interscience.

Ushakov, 1. (2007). Is Reliiabiility Theory Still Alive?. e-journal “Reliability: Theory& Applications”,

1(2).




A Brief History

In 1957 S. J. Einhorn and F. B. Thiess adopted Markov chains for

modeling system intermittence [Einhorn, S. 3. & Thiess, F. B. (1957)].

In 1960, P. M. Anselone employed Markov chains for evaluating

availability of radar systems fanselone, P. M. (1960)].

In 1961 Birnbaum, Esary and Saunders published a milestone paper
introducing coherent structures [Bimbaum, z. W., J. D. Esary and S. C. Saunders. (1961)].

Zygmunt William Birnbaum

A Brief Histor

In 1967, A. Avizienis integrated
masking methods with practical
techniques for error detection,
fault diagnosis, and recovery into

the concept of fault-tolerant systems
[Avizienis, A., Laprie, J.-C., Randell, B. (2001].

Fundamental Concepts of Dependability. LAAS-
CNRS, Technical Report N01145.

Basic Concepts

vizienis

AVAILABILITY
RELIABILITY

ATTRIBUTES SAFETY

INTEGRITY

FAULTS

THREATS4E ERRORS
FAILURES

CONFIDENTIALITY

MAINTAINABILITY

FAULT PREVENTION

FAULT TOLERANCE
DEPENDABILITY MEANS‘E FAULT REMOVAL
FAULT FORECASTING

The dependability tree
Avizienis, A., Laprie, J.-C., Randell, B. (2001).
Fundamental Concepts of Dependability. LAAS-CNRS,
Technical Report NO1145

A Brief History

Fault Tree Analysis (FTA) was originally developed in 1962 at Bell
Laboratories by H. A. Watson to evaluate the Minuteman I
Intercontinental Ballistic Missile Launch Control System.

Afterwards, in 1962, Boeing and AVCO expanded use of FTA to the entire
Minuteman II.

Minuteman I Minuteman IT

In late 1970s some works were proposed for mapping Petri nets to Markov
chains [Molloy, M. K. (1981)][Natkin, S. 1980][Symons, F. J. W. 1978].

These models have been widely adopted as high-level Markov chain
automatic generation models as well as for discrete event simulation.

Natkin was the first to apply what is now generally called Stochastic
Petri nets to dependability evaluation of systems.

Basic Concepts

Dependability of a system is the ability to deliver service that can
justifiably be trusted.

A correct service is delivered when the service implements what it is
specified.

B A system failure is an event that occurs when the delivered
service deviates from correct service.

A failure is thus a transition from correct service to incorrect
service.

A transition from incorrect service to correct service is service
restoration.




Basic Concepts

B An error is that part of the system state that may cause a
subsequent failure.

A failure occurs when an error reaches the system interface and alters the
service.

fault 0y gy 2202070y, failure

tivati ti i
s fault 2T rror PRI Ny, filure o e fault e -+

Basic Concepts

M Failure Modes

VALUE FAILURES
DOMAIN 4[
TIMING FAILURES

BERCEPTION BY TWO COMNSISTENT FAILURES
FAILURES QR MORE USERS
INCONSISTENT FAILURES

MINOR FAILURES
CONSEQUENCES .
ON ENVIRONMENT :

CATASTROPHIC FAILURES

A motivational example

What is the respective RBD?
This?

Appl VML VMMI  Hostl

Or this?

VMMI  Hostl

App2 VM2 VMMZ  Hosi2

Basic Concepts

B Fault is the adjudged or hypothesized cause of an error.
A fault is active when it produces an error; otherwise it is dormant.

if 5 has failed

0,
Xs(t) = ;1, if §is operational

ndicator random variable X(t) that repi 5 m state at time ¢

A motivational example

VM1

VMM1

Hardware
CPU
Memory
Power
NIC
Cooler

A motivational example

W It is not clear.
Something is still missing!
® What is it?
The operational mode(s)
(success oriented networks: RBD and Relgraph)
or

The failure mode(s)
(failure oriented networks: FT)




Operational Mode

is a condition that defines the system as
operational.

= Operational Mode 1
OM; = App, AVMM AVM AH{ A SAN
/\A:DPZAVMMzAVMzAHz

Appl WMI VMM Hostl SAN App2 VM2 VMM2  Host2

R(t) = 0.805735302, t=0.002 tu

Basic Concepts

W Fault prevention: how to prevent the occurrence or
introduction of faults;

B Fault tolerance: how to deliver correct service in the
presence of faults;

B Fault removal: how to reduce the number or severity of faults;

B Fault forecasting: how to estimate the present number,
the future incidence, and the likely consequences of faults.

Basic Concepts

Fault Tolerance is intended to preserve the delivery of correct service in
the presence of active faults.

B Active strategies
Phase:
1) Error detection
2) Recovery

B Passive strategies
Fault masking

Operational Mode

¥ QOperational Mode 2
OMy = ((App, \VMM{AVM{A\H ;)
V (App,AVMM, AV M3AHR)) A SAN

Host2

R(t) = 0975215145, t=0.002 tu

Basic Concepts

Fault prevention is attained by quality control techniques employed
during the design and manufacturing of  hardware and  software,
including  structured programming, information hiding, modularization,
and rigorous design.

Operational physical faults are prevented by shielding, radiation
hardening, etc.

Interaction  faults are prevented by training, rigorous
procedures  for maintenance, "foolproof" packages.

Malicious faults are prevented by firewalls and similar defenses.

Basic Concepts

Fault Removal is performed both during the development phase,
and during the operational life of a system.

Fault removal during the development phase of a system life-cycle consists
of three steps: verification, diagnosis, correction.

Checking the specification is usually referred to as validation.




Basic Concepts

Fault Forecasting is conducted by performing an evaluation of the
system behavior with respect to fault occurrence or activation.

Classes:
qualitative evaluation identifies event combinations that  would
lead to system failures;
probabilistic evaluation evaluates the probabilities of attributes of
dependability are satisfied.

The methods for qualitative and quantitative evaluation are either
specific (e.g., failure mode and effect analysis for qualitative evaluation,
or Markov chains and stochastic Petri nets for quantitative evaluation), or
they can be used to perform both forms of evaluation (e.g., reliability block
diagrams, fault-trees).

Basic Concepts

= Reliability

R(t) Reliability Function t

The probability that the system S does not fail up to time ¢ (reliability) is
P{T=t}=R() =1—Fr(t),
R(0)=1 and tlimw R(t) =0.

Basic Concepts

The probability of the system S fail within the interval [t, t + At] may be calculated by:

P{t <T < t+At}=Fp(t+At) — Fr(t) =
R(t) —R(t+At) = tt)

J;“mf'f(t) dt.

Basic Concepts

= Time to Failure

(0, if S hasfailed
Xs(0) = {1‘ if § is operational

fr(®

fr)(t) - Density Function  t

3

States of Xs(¢ - -
es of Xs(t) F7(t) — Cumulative Distribution Function

Now, consider a random variable T as the time to reach the state X(t) = 0, given that the system started in state
X(t) = 1 at time t = 0. Therefore, the random variable T represents the time to failure of the system S, Fr(£) its
cumulative distribution function, and f7(¢) the respective density function, where:

Fr(0) =0 and lim F(0) =1, .
Folt) = %L f fr©xde=1

dc’

Basic Concepts
= Reliability

Reliability (Survivor function) - Complementary of th

function: R(t) =1 -F(t)

Basic Concepts

» Hazard function
The probability of the system S failing during the interval [¢, t + At]
if it has survived to the time 7 (conditional probability of failure) is

P{t<T(0) < t+ AT >t} =

R(t) — R(t + At)
R(O)
P{t <T < t+ At|T > t}/At is conditional probability
of failure per time unit. When At — 0, then

i R(t)—R(t+At)_l_ —[R(t+At) — R()] 1 dR(®) 1
D0 R XA arte At RO~ dt (RO

dFp(t) 1 fr
PTES R(t)  R(E) A8




Basic Concepts

= Hazard function

Hazard rates may be characterized as decreasing failure rate (DFR),
constant failure rate (CFR) or increasing failure rate (IFR) according to A(t).

(d)
Hazard rate: (a) Decreasing, (b) Constant, (¢) Increasing, (d) Bathtub curve

Basic Concepts

= Mean Time To Failure
MTTF = E[T] = [t % fr()dt.
Since
_dFr __dRE)
fr() = T a

thus,

MTTF = E[T] = — fmd‘q(t) Xt dt.

, dt
Letu=t, dv= ? X dt, and applying integration
by parts (fudv=uv— [vdu), then du=dt, v=
R(t), hence:

Basic Concepts

= Median Time To Failure
, Fr = R(t) =

The median time to failure divides the time to fail distribution
into two halves, where 50% of failures occur before
MedTTF and the other 50% after.

Basic Concepts

= Cumulative Hazard function

Since
dR(t) 1

Alt) = — at X my
_dR@®)
R(®)’

¢ __[fdR®) _
J;/l(t)dt— LT(:) =

A(t)dt =

t
—f A@)dt =InR(t) =
0

R = efjc’/l(t)dr (O]

Basic Concepts

= Mean Time To Failure

MTTF = 7Jm%§t)xmt = 7[th(t)|§ 7me(t) th] =
1]

o

- [0 - fumR(t) X dt] = LwR(:) x dt,

hence

MTTF = [°R(t) x dt

Basic Concepts

Now, consider the random variable D
that represents the time to reach the state
Xs(t) = 1, given that the system started in state
Xs()=0attimet =0.

Therefore, the random variable D represents the
system time to repair,

Fp(t) its cumulative distribution function,
and f (t) the respective density function

0, if S hasfailed
if Sisoperational

Fp (0) =0 and llim INOESY
oo

fr@® =
fo(t) = 0,and

dFp)
dt

States of Xg(t)

fmfu(t)xdt= 1
0




Basic Concepts Basic Concepts

= Maintainability = Mean Time To Repair
The probability that the system S will be repaired by ¢ - - -
is defined as maintainability. The mean time to repair (MTTR) is defined by:

t o0
M) =P{D <t} = Fy(t) =JfD(t) x dt MTTR = E[D] :fo t % fp (t)dt
0

, if S has failed

| if sis operational An alternative often easier to compute MTTR is

MTTR = [,” M(¢) x dt.

States of Xs(t)

Basic Concepts Basic Concepts

= Repairable Systems = Downtime and Uptime

Consider a repairable m S that is either operational (Up) or faulty (Down).
'Whenever the system a set of activities are conducted in order to allow Occurence ofa falure Uptime  OCTeTeeprafalure Uptime
the restoring process.

SystemUp
These activities might encompass administrative time,

transportation time, logistic times etc.

When the maintenance team arrives to the system site, the actual repairing
process may start.

System Down

Further, this time may also be divided into
diagnosis time and actual repair time, checking time ete.
Downtime = TR = NRT +TTR
However, for sake of simplicity, we group these times such that
the downtime equals the time to restore
—TR, which is composed by non-repair time — NRT —
(that groups transportation time, order times, deliver
times, etc.) and time to repair — TTR

tet”

Downtime and Uptime

Basic Concepts Basic Concepts

= Availability = Availability
Consider that the system started operating at time t = t’ and
fails at t =t", thus At =t" —t' = Uptime.

" ” n - - Therefore, the system availability may also be expressed by:
The simplest definition of Availability is expressed as the ratio of the

expected system uptime to the expected system up and downtimes: — __MTTE
MTTF+MTR

_ E[Uptime]
E[Uptime]+E[Downtime]

Uptime

¥ down-

SystemDown .

ToF ﬂ
Downtime

NRT TR

o
Downtime and Uptime




Basic Concepts ﬂ:_ Basic Concepts

= Availability ‘ = Availability
where MTR is the mean time to restore, defined by

MTR = MNRT + MTTR (MNRT — mean non-repair As MTBF = MTTF + MTR = MTTF + MNRT + MTTR,

time. MTTR —mean time to repair) $0° and if MNRT = 0, then MTBF = MTTF + MTTR.

MTTF

A= . Since MTTF » MTTR, thus MTBF = MTTF, therefore:
MTTF + MNRT + MTTR

MTBF

If MNRT =0, = —
MTBF+MTTR

B MTTF
" MTTF + MTTR

Basic Concepts Basic Concepts

= Instantaneous Availability = Steady State Availability

The instantaneous availability is the probability that
the system is operational at t, that is, If the system approaches stationary states as the time increases,

it is possible to quantify the steady state availability

A(t) = P{Z(t) =1} = E{Z(t)}, t=0. A=l A, £20

If repairing is not possible, the instantaneous availability,
A(t), is equivalent to reliability, R(t).

Probability Review Exponential Distribution

W Slides 32-120 (SPN1
( ) B Arises commonly in reliability & queuing theory.

Ja vimos este assunto. B A non-negative continuous random variable.

M It exhibits memoryless property (continuous counterpart
of geometric distribution).

W Related to (discrete) Poisson distribution




Exponential Distribution

W Often used to model

— Interarrival times between two IP packets (or voice calls)
— Service times at a file (web, compute, database) server
— Time to failure, time to repair, time to reboot etc.

B The use of exponential distribution is an assumption
that needs to be validated with experimental data; if
the data does not support the assumption, then other
distributions may be used

Remember these formulae

Exponential Distribution: EXP(1)

B Mathematically (CDF and pdf are given as):

1—-e 2 fo<z<oo

CDF: F(z) =4 o otherwise

here X is a paramter and the base of natura
logarithm, e = 2.7182818284

. _[xe M ifz>0
pdf: f(z) = { 0, otherwisd]

A f(z)de = e
¢

b
Pa< X <b)= /[ f(z)dx = F(b)

“Xa _

Exponential Distribution: EXP(A)

The memoryless property can be demonstrated with conditional reliability:

Pr(T > x+1)
R(x =P(T T>)= ——— -
x 10 T>x+t|T>1) PT > 1)
e MtHx)

=—= e~ = R(x), x> 0.
o

Exponential Distribution

M For instance, Weibull distribution is often used to
model times to failure;

B [ ognormal distribution is often used to model
repair time distributions

B Markov modulated Poisson process is often used to
model arrival of IP packets (which has non-
exponentially distributed inter-arrival times)

Exponential Distribution: EXP(1)

R(t) = e,
F(t)=1—e™,
h(t) = A,

Hyperexponential Distribution

fx(.'z'):quuje Rz >0,
i=1

_ : 1
X=3L_" a5
Son

variance:  var(.X) = 2

12



Erlang Distribution

(hpiz)-!
fxlr) = -7kjl((k fjl))! -

= 1
mean: X = —,
I

variance:  var(X) = —

coefficient of variation:

1500 2000

Weibull Distribution

Fx(x) = ar(Az)* Vexp(—~(Az)*), A >0,

shape parameter o

scale parameter A > 0

o < U means infant mortality and « > 0 means wear out

Lognormal Distribution

tion is often
used to model repair time
distributions

from the t the product of
has a lognormal distribution in the

Hypoexponential Distribution

fxl@) =3 ape™™, z>0,
i=1
k
[

with a; = e
5 — I

=Ly

coefficient of variation:

Weibull Distribution

Cox Distribution

e model consists of & phases in series with exponentially distributed
times and rates pp, o, ..., ux. After phase j, another phase j + 1 follows
with probability a; and with probability b; = 1 — a; the total time span
is completed.

13



Cox Distribution

by k(L by)

= ; )
Cktbik=1) (i1 —k)+k-2)
= 2

2 kb1 (h(l-k) +k-2)
A [br + k(1 = b))

var (X))

kb (k-1)

Redundancy Mechanism

m Parallel Redundancy

Parallel Redundancy refers to the approach of having multiply units running in parallel.
All units are highly synchronized and receive the same input information at the same time.

But because all the units are powered up and actively engaged, the system is at risk of
encountering failures in many units.

Redundancy Mechanisms

y (TMR)

Deciding which unit is correct can be challenging if you only have two units. Sometimes you
just have to choose which one you are going to trust the most and it can get complicated.

If you have more than two units the problem is simpler, usually the majority wins or the two
that agree win.

A generalization is named NMR

Cox Distribution

_ M tapiz-a)
o wiemd
13 +apf(2 —a)

var (X)

2 _
cy =

Redundancy Mechanism

W Parallel Redundancy

Deciding which unit is correct can be challenging if you only have two units. Sometimes you
just have to choose which one you are going to trust the most and it can get complicated.

If you have more than two units the problem is simpler, usually the majority wins or the two
that agree win.

Redundancy Mechanisms

| HOt Standby In hot standby, the secondary unit is powered up.

If you use the secondary unit as the watchdog and/or voter to decide when to switch over, you
can eliminate the need for a third party to this job.

This design does not preserve the reliability of the standby unit. However, it shortens the
downtime, which in turn increases the availability of the system.

14



Redundancy Mechanisms

m Hot Standby

Some flavors of Hot Standby are similar to Parallel/ Redundancy.
These naming conventions are commonly interchanged.

For us, Hot Standby and Parallel Redundancy are the same mechanism!
But, attention!

Redundancy Mechanisms

® Warm Standby

In warm standby, the secondary unit is powered up, but not receiving the workload.

It is common to assume that in such a state the standby component has higher
reliability than when receiving the workload (properly working).

When the main component fails, the standby device promptly assumes the task.

Its switching time is shorter than the cold standby’s switching time .

Redundancy Mechanisms

m N-version programming

Hardware
c
Hardware
D

Primary Avionics Software System

(PASS)
Hardware
E

Backup Flight Control System
S)

System

Input

Hardware and software redundancy in the Space Shutile’s avionies control system. .

Redundancy Mechanisms

In cold standby, the secondary unit is powered off, thus preserving the reliability of
the unit.

The drawback of this design is that standby unit have to power up, since it is initially
powered off.

Perfect switching AND non-prefect switching

Redundancy Mechanisms

m K out of N

Consider a system composed of n identical and independent components
that is operational if at least k out of its n components are working

properly.

This sort of redundancy is named & out of n

Redundancy Mechanisms
m Checkpoints and recovering

4
Chee

paint provessing

Foll back to Altemative
check paint procasEng
“

Roll back to
sheek point
|

15



Redundancy Mechanisms Redundancy Mechanisms

m Backward Recovery W Reboot

The simplest - but weakest - recovery technique.

—— Compensation 1 From the implementation standpoint is to reboot or restart the system.

| Journaling - To employ these techniques requires that:
Sompenssiond 1. a copy of the original database, disk, and filename be stored,
2. all transactions that affect the data must be stored during execution, and
3. the process be backed up to the beginning and the computation be retried.
Transaction 4
Clearly, items (2) and (3) require a lot of storage; in practice, journaling
can only be executed for a given time period, after which the inputs and the
process must be erased and a new journaling time period created.

Coherent System Coherent System

. Operations .

W Structure Function (-1, - anthmetc operatons W Structure Function
Consider a system S composed by a set of components, C = {¢;|1 < i < n}, where the state of the system S and
its components could be either operational or failed. Let the discrete random variable x; indicate the state of
component i, thus:

For any component ¢;,

d(x) = x; p(1;,%) + (1 = x;) $(0;, %),

X {0 if the component i has failed
=

S U et thas faed whete $(14%) = By ooy Ly ) a0d OLX) = Bt Oy ).
- . ) eact - i . The first term (x; ¢(1;, X)) represents a state where the component ¢;
he vector x= (:c‘,‘x.'z, ey Xy eve X)) {cprcscms.t he sf;\tc of each component o tz: system, and it is names sm.tc is operational and the state of the other components are random variables
vector. The system state may be represented by a discrete random variable ¢(X) = $((xy,Xz, -, Xy e, Xy ), Such
that (p(xy, x5, ., 1, ..., x3)). The second term ((1 — x;) ¢(0,%)), on the other hand,

if the system has failed

states the con
if the system is operational

on where the component ¢; has failed and the state

0
‘p(x)*{l of the other components are random variables (¢p(xy, Xy, .., Of, -, X))

$(x) is called the structure function of the system.

Equationis known as factoring of the structure function and very useful for studying
sted in representing the system state at a specific time ¢, the compo: ¢| complex system structures, since through its repeated QPPI'C_BUO_“- .
ndom variables at time ¢. Hence, ¢(x(t)), where x(t) = (x, (£), 2, ( ). one can eventually reach a subsystem whose structure function is simple to deal with (1).

Coherent System Coherent System

m Irrelevant Component A system with s_trucmre funlction ¢§x) is said .
to be coherent if and only if ¢ (x) is non-decreasing
in each x; and every component ¢; is relevant.

A component pfa system is irrelevant tp the dependability A function ¢(x) is non-decreasing if for every
of the system if the state of the system is not affected two state vectors X and y, such that x <y,

by the state of the component. then ¢(x) < ¢(y).

¢; is irrelevant to the structure function if ¢(1;,x) = ¢(0;,x). Another aspect of coherence that should also be
highlighted is that replacing a failed component
in working system does not make the system fail.
But, it does not also mean that a failed system will

work if a failed component is substituted by an
operational component.

16



Coherent System

W Example - Structure Function
Consider a coherent system (C, ¢p) composed of three blocks, C = {a, b, c}

Coherent System

®m Example - Structure Function
Fact ¢p(1,, 0y, x.) on component ¢ to get:
D1 0p,x.) = x, (1, 0p, 1) + (1 — x.) Pp(14,05,0.).
Since ¢(1,,04,1,.) = 1 and ¢(1,,04,0.) = 0, thus:
P(1,,0p,x.) = x,.
So
P(xg xp,x) = xg X [x5 + (1 —2x3) p(14,05,%.)] =
xg X [xp +(1—xp) x.] =
Plxg. Xy xc) = XqXp + XX (1 —xp) =
P(xq, xp, xc) = Xa[1 = (1 — x)(1 — x)].

Coherent System

W Example — Logical Function

Example: Consider a system (C, ¢) composed of three blocks, € = {a, b, c}

©(Sa,5p,Sc) = Sa A(Sp Vse) =5 N (§p A5

Coherent System

B Example - Structure Function
factoring on component a, we have:
Do xp, xe) = Xg G(La,xp, %) + (1= x0) $(0g, xp, %) = X p(1a, X5, %c).
since ¢ (04, xp,x.) = 0.

Now factoring ¢ (14, xp, %) on component b,
P(La,xp, %) = xp P(Lg, 1y, xc) + (1 = xp) (14, 0p, %)
As (1,4, 1,,x.) = 1, thus:

G (Lo xp,x) =2 + (1 —xp) P14, 0p,%c).

Therefore:
O (xaxp, X)) = Xg $(1a, Xy, x2) = X0 X [x5 + (1 —xp) ¢(1, 04, %))

Coherent System

W Logical Function

Operations

if the component i has failed + {A,-}  logic operations

if the component i is operational

if the system has failed

ws)={7
¢ —r if the system is operational

bs = (51,52, ...,5;,...,5,) represents the Boolean state of each component of the system.
The svstem state could be either operational or failed.
The operational system state is represented by @(bs), whereas @(bs) denotes a faulty system.

Coherent System

B Example — Converting a Logical Function into a Structure Function

Using the notation described. s; is eauivalent to x;, 5, represents 1 — x;,
@(bs) is the counterpart of ¢(x) =1, ¢(bs) depicts ¢p(x) =0,
A represents X, and V is the respective counterpart of +.

Consider a system (C, ) composed of three blocks, C = {a, b, ¢}

_{:F‘
4{:}4 ’ I (P(sa‘sb‘sc) =Sa/\(5_b /\S_c)

a

‘ P(x) = xa X [1— (1 —xp) X (1= x)]




Modeling Techniques

m Classification

— State-space based models
mCTMC, SPN, SPA

— Combinatorial models
ERBD, FT, RG

Reliability Block Diagram

m A RBD is not a block schematic diagram of a

system, although they might be isomorphic in some
particular cases.

m Although RBD was initially proposed as a model
for calculating reliability, it has been used for
computing availability, maintainability etc.

Reliability Block Diagram

B Series 5°"‘% H % { }Eg“
bl b2 bn

Plp(x) = 1} = P{op(xixz Xy k) = 1 = [T Pl = 1 =[Timap = 1.

Therefore, the system reliability is
Rs(t) = P{p(x, ) = 1} = [TiL, P{xi(t) = 1 =[Ti, Re(8),
where R;(t) is the reliability of block b;.
Likewise, the system instantaneous availability is
As(t) = P{p(x, 1) = 1} = TIL, P{xi(6) = 1} =TTi, Ae(e),
where 4;(t) 1s the instantaneous availability of block b;
The steady state availability is
Ag = P{p(x) = 1} = [IL; Pl = 13 =TT, 4,
where A; is steady state availability of block b;.

Reliability Block Diagram

RBD is success oriented diagram.
Each component of the system is represented as a block

RBDs are networks of functional blocks connected such that they affect
the functioning of the system

Failures of individual components are assumed to be independent for easy
solution.

System behavior is represented by connecting the blocks
— Blocks that are all required are connected in series
— Blocks among which only one is required are connected in parallel
— When at least k out of n are required, use k-of-n structure

Reliability Block Diagram

P(x) = x;x,
As ¢(x) is a Bernoulli random variable, then:
P{p(x) = 1} = E{¢p(®)} = E{x,x,}
Since x; and x, are independent:
P{p(x) =1} = E{p(0)} = E{x1} X E{x;}
As x; are Bernoulli random variables, then:
Plx; =1} = E{x;} =p;
Therefore:
P{p(x) =1} = E{x;} X E{xy} = pip,
P{p(x) =1} =p,p,

P{p(x) = 1} canbe R(t), A(t), A

Computing the Reliability

Appl WML VMMI  Hostl SAN  Appl VM2 VMMZ2  Host

R(t) = e7tapp1t x e~ Avant
x e~ AvMMit x g—AH1t
x @~4sant x
e~ tappzt w p=Avmzt x o= Avmmat
X e~ AH2t =
e~ (Rapp1+Avm1+Avmm1 +AH1+AsaN+ap
R(t) = 0.805735302, t=0.002 tu
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Reliability Block Diagram

W Series

Series system of n independent components, where
the i component has lifetime exponentially
distributed with rate /;

Thus lifetime of the system is exponentially
distributed with parameter pyi4 1\
=

and system MTTF = l/ i=1 )\j

Reliability Block Diagram

B Example:

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw system are A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =
0.00004 failures per hour, respectively. The sw system cannot work
when any one of the web services is down.

a) Calculate the total sw system failure rate.
b) Calculate MTTF of sw system.
c) Calculate the R(t) at 730h

Reliability Block Diagram

H Example:
The sw system cannot work when any one of the web services is down.
=

The sw system only works when all web services work.

wsy ¥ web services 1 working
ws, ¥ web services 2 working
wsg ¥ web services 3 working
wsy ¥ web services 4 working

W5y, WSy, WS, WS,) = Ws; AWS,; A WS3A W5,y

Reliability Block Diagram

R.v. X: series system life time
R.v. X;: i comp’s life time (arbitrary distribution)
0 < B[X] < min{ BIX,]}
Case of weakest link
X=min{X,, X,, .. X}

Rx(® = T[ Rx,(H) < min{Rx, ()}, (0 < Ry,(H) < 1)

B[X] = Zoo Rx(®)dt < min{ [~ Ry, (t)it |
= miin {E[Xi]}

Reliability Block Diagram

B Example:

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw system are A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =
0.00004 failures per hour, respectively. The sw system cannot work
when any one of the web services is down.

a) Calculate the total sw system failure rate.
b) Calculate MTTF of sw system.
c) Calculate the R(t) at 730h

Reliability Block Diagram

W Example:

@(Wsy, WSy, WS4, WE) = Ws; AWSy; A WSz A wsy

0.00001 + 0.00002 + 0.00003 + 0.00004
0.0001 failures per hour

q I
- b) M'I'I'F: q MM TTEs = ey = 10000k
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Reliability Block Diagram

W Example:
= C)

# (3, %2,73) = X1 2%,%3%4
PLp 0%z, %5) = 1} = E{p (g, %5,%3)} = E{x:1 %5755}
If the components are independent, then:

PLP(xy 2z, %5) = 1} = E{x,) Elx,} E{x} E{x,} =

As
P{ ¢(xq,x5,33) = 1} = R(t), then
PLP(ryxz,73) = 1} = R(t) = 13 () ()72 () (1)
And, since 7; (£) = e~%%, therefore:
R(E) = e~fat x g~Hat x gt x g=Het = p=(ArtiatigtAy)t

R(730Hh) = g~ (0-00001+0.00002+0.00003+0.00004)X730 = 0.929500830

Reliability Block Diagram

H Parallel

P{p(x) =1} + P{p(x) =0} =1

Plp(x) =1} =1-Pp( =0} "
P =0
Hence, d(x) =0 Y(s)
So, P(s) =5 A8,
Therefore: ) =0=(1—x)1—x,)
So, P{p(x) = 0} = P{(1 —x)(1 —x,)} =

P{p(x) =0} = E{(1 —x)(1 —xp)} =
E{(1 = )}E{(1 —x)} = (1 = p) (1 —p2) = 0192
P{p(x) =1} =1 - P{¢(x) = 0}
or Plpx) =1}=1-qq,
Pp00 =1 cnber@, 40,4 P{P(X) =1} =1—(1—p)(1—p,)

Reliability Block Diagram

H Parallel

. . . Source Target
Similarly, the system instantancous availability is
n

) = Ppx 0 =1} =1-[ [Prrr =0y =1- [1- a0,

Ap(6) = PBCS ) = 1) = 1 [Ty UAE) =1 — [Ty 1 — A0, L\:IJ

such that, UA,() = P{x;(t) = 0} = 1 — P{x,(¢) = 1} = 1 — A(1). -

where A;(t) and UA;(t) are the instantaneous availability and unavailability of block by, respectively.

The steady state availability is
Ap = Plp(x) = 1} =1 -1, UA; =1 - [[is, 1 - 4,
where A; and UA; are the steady availability and unavailability of block b;, respectively.

Due to the importance of the parallel structure, the following simplifying notation is adopted:

Plpx) =1} = 1-[Il(1 =Pl = 1) =L Pl = = iep =1 - —p)™

Reliability Block Diagram

M Problem:

Now, considering the previous example, suppose that the repairing time of each
web service is exponentially distributed with average 2h.

a) Compute the steady state availability.
b) Compute the downtime in minutes in one year period.

Reliability Block Diagram

H Parallel

PO = 1) = PPG o X t) = 1) = 1= [ [P =0y = 1= [ - P = 1) =
Pow=11=1-] [a-n.

i=1
Thus Plgp(x) = 1} =1—(1—p)".
The svstem reliabilitv is then: Sousce | Target
Rty =1-[ [P =0y =1-] Ja - peuor = 1 o
=1 i=1
Re(6) = 1 =TIiL; Q(6) = L =I5, 1 = Ri(®)

such that,

Qi) = P{x;() = 0} = 1 = Pxi(t) = 1} = 1 = Ry(1),
where R;(t) and Q;(t) are the reliability and the unreliability of block b;, respectively.

Reliability Block Diagram

H Parallel

For a parallel system with n independent and
identical components with rate 1

Ry(1) = 1= (1 -

20



Reliability Block Diagram Reliability Block Diagram

W Example

The system works when at least one server works

W Example

s, ¥ server 1 working
s, & server 2 working

(s, ) =51 Vs, © @lsy,8) =5 A5

We know that

Plox)=13=1-(1-p)1-p,)
As
P{¢(x) =1} canbe R(t), A(t), A

Reliability Block Diagram Reliability Block Diagram

W Example
We know that
Plip®=11=1-(1-p)A -p,)
As
P{gp(x) =1} canbeR(t), A(t), A

W Example
We know that
Pipx)=1}=1-(1-p)A —-p2)

As
P{gp(x) =1} canbeR(t), A(t), A

R(1) =1—(1- R (1)(1- R, (1)) e

=R (1) +R, (1) — Ri(D)R, (1) AN

ot —Iat (W42t
=€ +e € R(730R) = 0.9997906870

MTTF = 105 000k

Reliability Block Diagram Reliability Block Diagram

W Series-Parallel System W Series-Parallel System

— Series-parallel system: n stages in series, stage i with n; parallel Example:
components.

— Fori=1,..n,R >j>1

— Reliability of series-parallel system is given by

n

Rsp = H [1-(1-R)™]

P=(1-(1-p)1-p3))x (1 -1 —-p)(1—p)1—ps))




Reliability Block Diagram

W Series-Parallel System
Example:

P=(1-(1-pp:)(1 - pspaps))

Reliability Block Diagram

B Problem

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =
0.00004 failures per hour, respectively. The sw system provides the
praper service if the web services 1 or 3 are up and the web services 2
or 4 are up.

a) Calculate MTTF of sw system.
b) Calculate the R(t) at 730h

Reliability Block Diagram

mKout of N

Sequence of Bernoulli trials: # independent repetitions.
= 71 consecutive executions of an if-then-else statement

S,,: sample space of n Bernoulli trials

0,1
{(0,0),(0,1),(1,0),(1,1)}
S, = {2" n-tuples of Os and 1s}

Reliability Block Diagram

W Example:

Consider a system S, represented by four blocks (by, by, bs, by) where each block has
11,73,73 and 1, as their respective reliabilities.

sowee |: 62 bl Target

RBD of System 5;
The system reliability of the system S, is

Ry, =r x[1-(1 -1 x7y) x (1 -13)].

1

Reliability Block Diagram

B Problem

Now, considering the previous example, suppose that the repairing
time of each web service is exponentially distributed with average 2h.

a) Compute the steady state availability.
b) Compute the downtime in hours in one year period.

Reliability Block Diagram

mKout of N

Consider s € §,, such that, s =(1,1,...,1,0,0,...,0)

k n-k

s=A4 N4, .4 A Ara Ao Ao

P(s) = P(4)P(4,)...P(4,)P(A1)..P(A)

k _n-k

=pP4q
P(s): Prob. of sequence of k successes followed by (n-k)
failures. What about any sequence of k successes out of
n trials?

22



Reliability Block Diagram

mKout of N

can be arranged in (2) different ways,

= P(Exactly k successes and n — k failures)
—_ (™ k n—k
= (k)p 1-p)

k=n, reduces to Series system p(n) = p"

=1, reduces to Parallel system p(1) = 1—(1 — p)"

Reliability Block Diagram

Example: 2 out of 3 system

n statistically identical components; also statistically independent

n

D (Hpta-pr

i=k
Block

So‘nﬂ ]

2outof 3

Ifn=3andk = 2,then

> (ria-pri=

Gyrra-w2+()ra-p=

3p%(1—p) +p* = 3p% — 2p°.

Reliability Block Diagram

Comparison of 2003 and simplex reliabilities

Thus 2003 actually reduces (by 16%) the MTTF over
the simplex system.

Although 2003 has lower MTTF than does Simplex, it
has higher reliability than Simplex for “short”
missions, defined by mission time t<(In2)/A.

Reliability Block Diagram

Example: 2 out of 3 system
n statistically identical components; also statistically independent

block0

2outof 3

Reliability Block Diagram

W 2 out of 3

Assume independence and that the reliability of a
single componentis: R, . (1) =¢”"

we get: R20u3 (,) — 36—2/} _ 26—3/‘1

© ©

E[X]= [ R, (0)dt = [3e™"dr - fze"‘”dz

0 0 0

= > MITF .
62 2003

Comparing with expected life of a single
component:  MTTF, =i<%=MTTF

2003 ‘Simplex
S6A v

Fault Tree

FT is failure oriented diagram.
The system failure is represented by the TOP event.
The TOP event is caused by lower level events (faults, component’s failures etc).

The term event is somewhat misleading, since it actually represents a state
reached by event occurrences.

The combination of events is described by logic gates.

The most common FT elements are the TOP event, AND and OR gates, and basic
events.

The events that are not represented by combination of other events are named
basic events.
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Fault Tree Fault Tree

Failures of individual components are assumed to be independent for easy W Basic SymbOIS
solution. Basic Symbols and their description’

Symbol Description

. . ) TOP event represents the system failure.
In FTs, the system state may be described by a Boolean function that is

evaluated as true whenever the system fails.

Basic event is an event that may cause a system failure.

Basic repeated event,

The system state may also be represented by a structure function, which, opposite
to RBDs, represents the system failure.

AND gate generates an event (A) if All event B, have occurred

If the system has more than one undesirable state, a Boolean function (or N ;)c‘z‘w:‘;é“"““"“‘““““'““\'"'“‘ least one event B, have
h " . b urred.
a structure function) should be defined for representing each failure mode. )

Many extensions have been proposed which adopt other gates such as XOR, - fﬁm gate gcndcrzucs an event (A) if at least K events B; out of
transfer and priority gates. T ave occurre

The comment rectangle.

Fault Tree Fault Tree

B Structure Function B Logical Function

Consider a system S composed of a set of components, C = {¢;|1 <i < n}.

. L . FT Logic Function W denotes the counterpart that represents the FT structure function (1)
Let the discrete random variable y;(t)indicate the state of component {, thus According to the notation previously introduced, s; (a Boolean variable) is equivalent to x;

and § represents 1 — x;. T i cti scl i .
wilt) = [l if the component i is faulty at time t 1 Tep) i~ The W(bs) (Logical function that describes conditions that cause
E (1]

a system failure) is the counterpart of 1(y(t)) = 1 (FT structural function — represents
system failures), W(bs) depicts of ¥(y(t)) = 0, A represents X, and V is the
respective counterpart of +.

if the component i is operational at time t

The vector y(t) = (¥4 (t), ¥2(t), ..., i (t), ..., ¥u () represents the state
of each component of the system, and it is named state vector. The
system state may be represented by a discrete random
variable (x(t)) = @(y1(t), ¥2(t), oo, ¥i(t), o) Yn (1)), such that

_ {0 if the system is operational at time t
Vi) = {1 if the system is faulty at time t

Y(y(t)) is named the Fault Tree stru

Fault Tree Fault Tree

® Example ® Example

Consider a system in which software applications read, write

and modify the content of the storage device D, (source).

The system periodically replicates the production data

(generated by the software application) of one storage device (D;)
in two storage replicas (targets) so as to allow recovering

data in the event of data loss or data corruption. The system is The system is considered to have failed if the hardware infrastructure does
composed of three storage devices (D,, D, D3), one

A hub that s the disk not allow the software applications to read, write or modify data on D,
Server and hub that connects the disks Vi P . . o
D, and Dj to the server and if no data replica is available,

Server

Hence, if Dy or the Server
or the Hub,

Server or both replica storages (D5, D3) have failed.




Fault Tree

m Example

Y(bs) = 50 V 5,V 53 V(s3A 54 ),

S V51V s V(53 84) =
So N51/ASz A(s3A 54)
The respective FT structure function may be expressed as
Py(©) = [1= (1 =xe()) X (1 =y1(0)) X (1 = ¥2(£)) X (1 = y3(£) X ya(O))].

ifyp(t) = Lory (£) = Lory,(t) = 1 or y3(t) = y4(t) = 1, then
P(y(t)) = 1, which denotes a system failure.

Fault Tree

W Problem

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =

0.00004 failures per hour, respectively. The sw system provides the
proper service if the web services 1 or 3 are up and the web services 2
or 4 areup.

a) Calculate MTTF of sw system.
b) Calculate the R(t) at 730h

Analysis by Expected Value of the

Structure Function

B The method by an example

Consider a system (C, ¢) composed of three blocks, C

={a,b,c}

—] -
S

SH

3

A(p(sa,sb,sc) =5aA(spVse) =saA(GpASc)
P) =xa X [1=(1—xp) x (1 —x)]

Rs=P{p(x) = 1} = E[p(®)] = E[xa X [1 = (1 = x,) X (1 = x)]] =
Rs =P{p(x) =1} = E[xg] X E[1- (1= %) x 1 = x)] =
Rs = P{$p(x) = 1} = E[xg] x [1 = E[(1 = x)] X E[(1 = x)] =
Rs = P{¢p(x) = 1} = E[xa] X [1 = (1 = E[x]) X (1 - E[x])
Ry =P{p(x) =1} =p, x[1 = (1 =pp) X (1 = p)] = Pa X [1 = q» X qc]

Fault Tree

W Problem

Consider that the constant failure rates areA s =0.00002, Az = 0.00001, Ap,
= 0.00008, Ap, = 0.00009, and Ap; = 0.00007, respectively.

a) Calculate the R(t) at 730h
b) Calculate MTTF of system.

Server

A A~
L f
D1
o Q
D2 D3

ANALYSIS METHODS

Analysis by Expected Value of the
Structure Function

B Summary of the Process
As x; is a binary variable, thus x;" = x; for any { and ;
hence ¢ (x) is a polynomial function in which
each variable x; has degree 1.

13

Summarizing, the main steps for computing the system
failure probability, by adopting this method are:

i) obtain the system structure function.
ii) remove the powers of each variable x;; and
iii) replace each variable x; by the respective p;.
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Analysis by Expected Value of the

Structure Function

W Example
Consider a 2 ouf of 3 system represented by the RBD

2 out of 3 system
‘components statistically independent

in figure. The logical function of the RBD

presented in figure is Flm”:mlj -
@(bs) = (S, AS)V (SLAS)V (S2VS3)  ete|  Jotb SQWL{:P:B

Therefore tocks

2ourof3

@(bs) = (51 AS52) V (51 A 53)V (52V 53)

blockl

@(bs) = (51 As2) A (514 53) A (52A53)

=
P(x) =1 = (1= x2) (1 — x73) (1 = x2¢3).

Considering that x; is binary variable, thus x;* = x; for
any i and &, hence, after simplification

P(X) = x1xp + X1 X3 + x5 — 2230223

Pivotal Decomposition
or Factoring

This method is based on the conditienal probability of the system
according the states of certain components. Consider the system
structure function as depicted in

$x) = % (1,%) + (1 = x) (0, %)
and identify the pivot component i,
then

W Method

Pip(x) =1} = E[x; ¢(1,0) + (1 —x) ¢(0,0] =
E[x; ¢(1;,%)] + E[(1 — x;) ¢(0;,x)]
If x, is independent, then:
E[x;] % E[¢(1,x)] + E[(1—x)] X E[$(0;,x)].
As x; is a Bernoulli random variable, thus:
P{¢p() =1} = pi X E[p(1,3)] + (1 = pp) x E[$(0;,%)].
Since E[¢(1;,x)] = P{¢(1;,x) = 1} and E[$(0;, X)] = P{$(0;,x) = 1},

then:

Plp(x) =1} = p; x P{p(1,x) = 1} + (1 — p) x P{gp(0,x) = 1}.

Pivotal Decomposition
or Factoring

H Example
Now factoring on component b,

Pip(la xp,xe) = 1} =
Po X E[p(1a,1p,xc)]

(1 =pp) X E[ $(1a. 0p, xc)],
then

P (%aXp,20) = 1} = pa X [Py X E[d(La, 1p,x)] + (1= pp) X E[ (14,05, x)]].
As E[¢p(1g.1p,x;)] = 1, thus:
Plg(aa x5, %) = 1} = a [ + (1= py) X E[4(14,0,20)]]-
Now, as we know that
E[¢(14,0p,20)] = P{(14,05,%c) = 1}, and
P{¢(1a, Oy, xe) = 13 = E[xc $(10,0p, 1) + (1 — x) (12,05, 0.)1.
then
E[¢(1q,0p,x0)] = E[xc] E[$(14,05,1)] + E[(1 = x)E[¢ (14, 05, 00)],
thus
E[¢(1q,0p,xc)] = pe X E[$(14,05,1c)] + (1 = pc) X E[$(14, 05, 00)]-

Analysis by Expected Value of the
Structure Function

2 out of 3 system

components statistically independent

H Example
=
Il

o
block2

blockl

Since ¢p(x) is Bernoulli random variable, its expected value
is equal to P{¢p(x) = 1}, that is, £[¢p(x)] = P{¢(x) =
1, thus

Plp(x) = 1} = E[¢p(x)] = E[x12z + X1 X5 + Xp%3 — 201 05%3] =

Elx122] + E[x1x3] + E[x3x3] — 2 X E[x3x023] =

Elx] Elxz] + El[x1] Elxrs] + Elxa] E[x3] — 2 X E[x1]E[x2]E [x3].
Therefore

P{p(x) = 1} = p1pz + p1P3 + P2Ps — 2 X p1paps,
Aspi=p2=p3=p

P{p(x) = 1} = 3p? — 2p°

Pivotal Decomposition

or Factoring

B Example

Consider the system composed of three components, a, b
and ¢, depicted inthe figure where ¢(x,, X}, x.) denotes the
system structure function.

As Pp(x) = 1} = E[x; $(1,%) + (1 = x) $(0;, x)], then:

Plp(xq.xp,x;) = 1} = pg X E[$ (10, %5, 2.)]
+ a
(1 —pa) X E[ ¢(0g, x5, %)
But as E[ ¢(04, xp,x.)] = 0, s0:
P{p(xg, xpx.) = 1} = pg X E[p(14,xp,x.)].
Since
El¢(La, xp,x)] = P14, xp, X)) = 1},

Pivotal Decomposition
or Factoring

B Example — Bridge Structure
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Pivotal Decomposition
or Factoring

B Example

Computing the Reliability

As El¢(lc1’01111r.')] = P[¢(]cll Db:L.‘) = 1] =1

What is the respective RBD?
and E[¢(1,,05,00)] = P{¢p(14,05,0,) =1} =0,
then

This?
EI. ¢(lu1 Db! xL')J = Pe

Therefore:

P{gp(xa xp, %) = 1} = pg [pp + (1 —pp) X 2] =

Appl VMl VMMI  Hostl  SAN  App VM2  VMMZ  HostZ
Hon

Or this? ‘
P{d’(xw x!vxc) = 1} = PaPp + papc(l - pb)J
which 1s

P{cp(xq, xp, xc) = 1} = pa[1 — (1 — pp)(1 = pc)]-
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