



## MARCO'S BACKGROUND- RESEARCH

Fault Injection and Vulnerability & Attack Injection

- Dependability & Security Evaluation and Benchmarking
- Robustness and Security Testing
- Software Verification & Validation



Resilience Benchmarking







Applications (RIA)

ATMOSPHERE: REsilient Cloud Computing (RIA)





## SOFTWARE AND SYSTEMS ENGINEERING SSE - Part of the Centre for Informatics and Systems of the University of Coimbra – lead by Prof. Bernardete Ribeiro Key people: - Lead by Prof. Henrique Madeira - 16 PhDs (Full Members) + 8 PhDs (Associate Members) > 20 PhD students

## Areas of interest:

- Trustworthy and Resilient Software and Systems
- Critical Services on the Cloud
- Efficiency in Software Development
- Reconfigurable Hardware for Resilient Systems

UFPE, Recife, PE, Brazil, Feb. 12th, 2019









## OUTLINE

The past: Performance & Dependability Benchmarking

- The present: Security Benchmarking
- Benchmarking the Security of Systems
  - Approach: Qualification + Trustworthiness Assessment
- Example: Benchmarking Web Service Frameworks
- Benchmarking Security Tools
  - Approach: Vulnerability and Attack InjectionExample: Benchmarking Intrusion Detection Systems

UFPE, Recife, PE, Brazil, Feb. 12th,

Challenges and Conclusions













| System | Operating System      | DBMS                 | DBMS      | Hardware                                                    |
|--------|-----------------------|----------------------|-----------|-------------------------------------------------------------|
|        | operating system      | 55.10                | Config.   | Internet                                                    |
| A      | Windows 2K Prof. SP 3 | Oracle 8i R2 (8.1.7) | Config. A |                                                             |
| В      | Windows 2K Prof. SP 3 | Oracle 91 R2 (9.0.2) | Config. A | Processor: Intel Pen-                                       |
| С      | Windows Xp Prof. SP 1 | Oracle 8i R2 (8.1.7) | Config. A | tium III 800 MHz                                            |
| D      | Windows Xp Prof. SP 1 | Oracle 9i R2 (9.0.2) | Config. A | Memory: 256MB                                               |
| E      | Windows 2K Prof. SP 3 | Oracle 8i R2 (8.1.7) | Config. B | Hard Disks: Four                                            |
| F      | Windows 2K Prof. SP 3 | Oracle 9i R2 (9.0.2) | Config. B | 20GB/7200 rpm                                               |
| G      | SuSE Linux 7.3        | Oracle 8i R2 (8.1.7) | Config. A | Network: Fast Ethernet                                      |
| Н      | SuSE Linux 7.3        | Oracle 9i R2 (9.0.2) | Config. A |                                                             |
| I      | SuSE Linux 7.3        | PostgreSQL 7.3       | -         |                                                             |
| J      | Windows 2K Prof. SP 3 | Oracle 8i R2 (8.1.7) | Config. A | Processor: Intel Pen-<br>tium IV 2GHz<br>Memory: 512MB      |
| К      | Windows 2K Prof. SP 3 | Oracle 9i R2 (9.0.2) | Config. A | Hard Disks: Four<br>20GB/7200 rpm<br>Network: Fast Ethernet |

















|             | Systems Under Benchmarking |                       |                         |       |  |  |  |  |  |  |
|-------------|----------------------------|-----------------------|-------------------------|-------|--|--|--|--|--|--|
|             |                            |                       |                         |       |  |  |  |  |  |  |
| THE P       | Framework                  | Version               | Security Qualification  | ,<br> |  |  |  |  |  |  |
|             | Apache Axis 1              | 1.4.1                 | ×                       |       |  |  |  |  |  |  |
|             |                            | 1.6.1                 | $\checkmark$            |       |  |  |  |  |  |  |
|             | Apache Axis 2              | 1.6.2                 | ×                       |       |  |  |  |  |  |  |
|             | Anacho CVE                 | 2.5.1                 | $\checkmark$            |       |  |  |  |  |  |  |
|             | Apache CAF                 | 3.0.3                 | $\checkmark$            |       |  |  |  |  |  |  |
|             | Oracle Metro               | 2.1.1                 | ×                       |       |  |  |  |  |  |  |
|             |                            | 2.3.1                 | $\checkmark$            |       |  |  |  |  |  |  |
|             | XINS                       | 3.1                   | ×                       |       |  |  |  |  |  |  |
|             | Spring JAX-WS              | 1.9                   | ×                       |       |  |  |  |  |  |  |
|             | Spring WS                  | 2.2.0                 | ×                       |       |  |  |  |  |  |  |
|             |                            |                       |                         |       |  |  |  |  |  |  |
| Marco Vieir | a UFPE, Re                 | cife, PE, Brazil, Feb | 12 <sup>th</sup> , 2019 | 29    |  |  |  |  |  |  |

|                                                           | Т        | RUSTWO                                | RTHINESS                              | RESULTS  |  |  |  |  |  |  |
|-----------------------------------------------------------|----------|---------------------------------------|---------------------------------------|----------|--|--|--|--|--|--|
| Scenario                                                  | Axis 2   | CXE v2                                | Metro                                 | CXE v3   |  |  |  |  |  |  |
| Neutral                                                   | 72.3 (1) | 70.7 (2)                              | 58.1 (3)                              | 57.9 (4) |  |  |  |  |  |  |
| Scenario1                                                 | 73.4 (2) | 77.1 (1)                              | 66.5 (4)                              | 70.0 (3) |  |  |  |  |  |  |
| Scenario2                                                 | 67.4 (3) | 73.1 (1)                              | 66.6 (4)                              | 68.7 (2) |  |  |  |  |  |  |
| Scenario3                                                 | 61.8 (4) | 70.3 (1)                              | 63.6 (3)                              | 67.0 (2) |  |  |  |  |  |  |
|                                                           | 1        | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |          |  |  |  |  |  |  |
|                                                           |          |                                       |                                       |          |  |  |  |  |  |  |
| Marco Vieira UFPE, Recife, PE, Brazil, Feb. 12th, 2019 30 |          |                                       |                                       |          |  |  |  |  |  |  |







|                                                                                                                                                                                                          | EVALUATION APPROACH                                                    | 1  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----|
| Scenario<br>Guerra di<br>Marcone<br>Marcone<br>Marcone<br>Marcone<br>Sector<br>Marcone<br>Marcone<br>Sector<br>Marcone<br>Sector<br>Marcone<br>Marcone<br>Sector<br>Sector<br>Sector<br>Sector<br>Sector | 25<br>Terl<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |    |
| Marco Vieira                                                                                                                                                                                             | UFPE, Recife, PE, Brazil, Feb. 12 <sup>th</sup> , 2019                 | 34 |

| Original PHP code                      | Code with injected | Operation performed                                                                                                         |
|----------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <pre>\$id=intval(\$_GET['id']);</pre>  | \$id=\$_GET['id']; | Removed the "intval"<br>function allowing also non<br>numeric values (i.e. SQL<br>commands) in the "\$id"<br>variable       |
| <pre>\$page = urlencode(\$page);</pre> | \$page = \$page;   | Removed the "urlencode"<br>function allowing also<br>alphanumeric values (i.e.<br>SQL commands) in the<br>"\$page" variable |
|                                        |                    |                                                                                                                             |

|                                      | EXAMPLES OF ATTACKS                                                                                                 |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| y                                    |                                                                                                                     |
| Attack payloads                      | Expected result                                                                                                     |
| 1                                    | Modifies the structure of the query; usually results in an error                                                    |
| or 1=1                               | Modifies the structure of the query. Overrides the query<br>restrictions by adding a statement that is always true. |
| ' or 'a'='a                          | Modifies the structure of the query. Overrides the query                                                            |
| or u u                               | restrictions by adding a statement that is always true.                                                             |
| +connection_id()-<br>connection_id() | Modifies the query result to 0                                                                                      |
| +1-1                                 | Modifies the query result to 0                                                                                      |
| +67-ASCII('A')                       | Modifies the query result to 0                                                                                      |
| +51-ASCII(1)                         | Modifies the query result to 0                                                                                      |
|                                      |                                                                                                                     |

|                          | System                           | s Undei                          | R BENC                | HMARKING                           |
|--------------------------|----------------------------------|----------------------------------|-----------------------|------------------------------------|
| Tool                     | Architectural<br>Level monitored | Detection<br>Approach            | Data Source           | Known<br>Technology<br>Limitations |
| ACD                      | Application                      | Anomaly Based                    | Apache Log            | Only GET method                    |
| Apache Scalp             | Application                      | Signature Based                  | Apache Log            | Only GET method                    |
| ModSecurity              | Application                      | Signature Based                  | HTTP traffic          | -                                  |
| Snort (v2.8 and<br>v2.9) | Network                          | Signature Based                  | Network<br>Trafic     | -                                  |
| GreenSQL                 | Database                         | Signature Based                  | SQL Proxy<br>Trafic   | MySQL data                         |
| DB IDS                   | Database                         | Anomaly Based                    | SQL Sniffer<br>Trafic | MySQL and Oracle<br>data           |
|                          |                                  |                                  |                       |                                    |
| rco Vieira               | LIEPE Recif                      | e PF Brazil Feb 12 <sup>ti</sup> | 0010                  |                                    |



|    |                                                                                        |             |      |     |             |     |            |       |     |       | MAIN RESULTS        |       |               |  |  |
|----|----------------------------------------------------------------------------------------|-------------|------|-----|-------------|-----|------------|-------|-----|-------|---------------------|-------|---------------|--|--|
|    |                                                                                        |             |      |     |             |     |            |       |     |       |                     |       |               |  |  |
| TA |                                                                                        |             |      |     |             |     |            | Α     | II  |       |                     |       |               |  |  |
|    | Ivi                                                                                    | Tool        | F    | Rev | iew         | Δ   | Repo       | orted | Α   | Prec. | Recall              | Mark. | Infor.        |  |  |
|    | _                                                                                      | ACD         | P    | N   | Pop<br>1275 | 376 | 1 N<br>174 | 675   | 50  | 0.883 | 0.358               | 0.088 | 0.135         |  |  |
|    | dd                                                                                     | Scalp       | 1051 | 224 | 1275        | 206 | 224        | 845   | 0   | 1.000 | 0.196               | 0.210 | 0.196         |  |  |
|    | A                                                                                      | ModSecurity | 826  | 25  | 1051        | 236 | 225        | 590   | 0   | 1.000 | 0.286               | 0.276 | 0.286         |  |  |
|    | Vet                                                                                    | Snort 2.8   | 8    |     | 1275        | 0   | 817        | 458   | 0   | •     | 0.000               | -     | 0.000         |  |  |
|    | ~                                                                                      | GreenSQL    | 158  | 317 | 1275        | 244 | 813        | 214   | 4   | 0.984 | 0.5 <mark>33</mark> | 0.775 | 0.528         |  |  |
|    | B                                                                                      | DBIDS       | `    | Ĩ   | 1275        | 451 | 384        | 7     | 433 | 0.510 | 0.985               | 0.492 | 0.455         |  |  |
|    | Net                                                                                    | Snort 2.9   | 173  | 878 | 1051        | 0   | 878        | 173   | 0   | -     | 0.000               | -     | <b>0.0</b> 00 |  |  |
| Ma | Marco Vieira         UFPE, Recife, PE, Brazil, Feb. 12 <sup>th</sup> , 2019         39 |             |      |     |             |     |            |       |     |       |                     |       |               |  |  |















- The benchmarking concept is well established!
- Acceptance by "big" industry depends on perceived utility for marketing
- Acceptance by users requires "adaptability"
- From a research perspective, performance and dependability benchmarking are well known
- Security benchmarking approaches are weak
- New types of benchmarks will bring additional challenges!

fe, PE, Brazil, Feb. 12th, 2019

