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Dependability

Dependability of a computing system is the ability to
deliver service that can justifiably be trusted.

The service delivered by a system is its behavior as it is
perceived by its user(s).

A user is another system (physical, human) that interacts
with the former at the service interface.

The function of a system is what the system is intended
for, and is described by the system specification.

[Laprie, J. C. (1985)].



Dependability

In early 1980s Laprie coined the
term dependability for
encompassing concepts such
reliability, availability, safety,
confidentiality, maintainability,

security and integrity etc [Laprie, 3. C.
(1985)].

Dependable Computing and Fault Tolerance:
Concepts and terminology. In Proc. _
15th IEEE Int. Symp. on Fault-Tolerant Computing, Jean Claude Laprie

(pp. 2-11).



A BRIEF HISTORY



A Brief History

Dependability is related to disciplines
such as reliability and fault tolerance.

The concept of dependable computing

first appeared in 1820s when Charles
Babbage undertook the enterprise to
conceive and construct a mechanical

calculating engine to eliminate the risk of
human errors. In his book, “On the
Economy of Machinery and

Manufacture”, he mentions

‘The first objective of every person
who attempts to make any article of

consumption is, or ought be, to
produce it in perfect form’.

" (Blischke, W. R. & Murthy, D. N.
P. (Ed.) 2003).
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Charles Babbage In 1860
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A Brief History

In the nineteenth century, reliability theory evolved from probability
and statistics as a way to support computing maritime and life insurance
rates.

In early twentieth century methods had been applied to estimate
survivorship of railroad equipment [Stott, H. G. (1905)] [Stuart, H. R.
(1905)].



A Brief History

The first IEEE (formerly AIEE and IRE) public document to mention
reliability is "Answers to Questions Relative to High Tension Transmission”
that summarizes the meeting of the Board of Directors of the American
Institute of Electrical Engineers, held in September 26, 1902.

[Answers to Questions Relative to High Tension Transmission. (1904). Transactions of the American
Institute of Electrical Engineers, XXIII, 571-604.]

In 1905, H. G. Stott and H. R. Stuart: discuss “Time-

Limit Relays and Duplication of Electrical Apparatus to Secure
Reliability of Services at New York and at

Pittsburg.

In these works the concept of reliability was primarily qualitative.



A Brief History

In 1907, A. A. Markov began

the study of an important new
type of chance process.

In this process, the outcome of
a given experiment can

affect the outcome of the next
experiment.

This type of process is now called a
Markov chain [Ushakov, I. (2007)]

Andreil A. Markov



A Brief History

In 1910s, A. K. Erlang studied
telephone traffic planning
problems for reliable service
provisioning [Erlang, A. K. (1909)].

[Erlang, A. K. (1909)] Principal Works of A. K. Erlang -
The Theory of Probabilities and Telephone

Conversations . First published in Nyt Tidsskrift for Agner Karup ErIang
Matematik B, 20, 131-137.



A Brief History

Later in the 1930s,

extreme value theory was
applied to model fatigue life of
materials by W. Weibull and
Gumbel [Kotz, S., Nadarajah, S. (2000)].

N Gumbel, Emil Julius
Waloddi Weibull (18.7.1891 -

1887-1979 10.9.1966)



A Brief History

In 1931, Kolmogorov, in his
famous paper “Uber die

analytischen Methoden in der
Wahrscheinlichkeitsrechnung”

(Analytical methods in probability
theory) laid the foundations for the

modern theory of Markov processes
[Kolmogoroff, A. (1931)].

Kolmogoroff, A. (1931). Uber die analytischen
Methoden in der Wahrscheinlichkeitsrechnung (in

German). Mathematische Annalen, 104, 415-458.
Springer-Verlag.

Andrey Nikolaevich Kolmogorov
(25 April 1903 — 20 October 1987)



A Brief History

In the 1940s quantitative analysis of reliability was applied to many

operational and strategic problems in World War II [Blischke, W. R. & Murthy, D. N.
P. (Ed.) (2003)] [Cox, D. R. (1989)].

The first generation of electronic computers were quite
undependable, thence many techniques were investigated for
improving their reliability, such as error:

B control codes,

B replication of components,
B comparison monitoring and
B diagnostic routines.



A Brief History

The most prominent researchers during that period were Shannon, Von
Neumann and Moore, who proposed and developed theories for building
reliable systems by using redundant and less reliable components.

These were the predecessors of the statistical and probabilistic techniques
that form the foundation of modern dependability theory [Avizienis, A. (1997)].
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A Brief History

In the 1950s, reliability became a subject of great engineering interest as a
result of the:

cold war efforts,
failures of American and Soviet rockets, and

failures of the first commercial jet aircraft, the British de Havilland
comet [Barlow, R. E. & Proschan, F. (1967)][Barlow, R. E. (2002)].



A Brief History

Epstein and Sobel’s 1953 paper studying the exponential distribution was a
landmark contribution.

Epstein, B. & Sobel, M. (1953). Life Testing. Journal of the American Statistical
Association, 48(263), 486-502.

Milton Sobel



A Brief History

In 1954, the Symposium on Reliability and Quality Control (it is now the IEEE
Transactions on Reliability) was held for the first time in the United States.

In 1958, the First All-Union Conference on Rellablllty took place In Moscow
[Gnedenko, B. V., Ushakov, 1. A. (1995)] [Ushakov, I. (2007)]. :

Gnedenko Boris V.
(1912-1995)

Gnedenko, B. V., Ushakov, I. A. (1995). Probabilistic Rel|ab|I|ty Engmeermg A. Falk (Ed.), Wiley-
Intersaence

Ushakov, I. (2007). Is Reliiabiility Theory Still Alive?. e-journal “Reliability: Theory& Applications”,
1(2).



A Brief History

In 1957 S. J. Einhorn and F. B. Thiess adopted Markov chains for
modeling system intermittence [Einhorn, S. J. & Thiess, F. B. (1957)].

In 1960, P. M. Anselone employed Markov chains for evaluating
availability of radar systems [Anselone, P. M. (1960)].

In 1961 Birnbaum, Esary and Saunders published a milestone paper
introducing coherent structures [Birnbaum, z. W., J. D. Esary and S. C. Saunders. (1961)].

Zygmunt William Birnbaum



A Brief History

Fault Tree Analysis (FTA) was originally developed in 1962 at Bell
Laboratories by H. A. Watson to evaluate the Minuteman I

Intercontinental Ballistic Missile Launch Control System.

Afterwards, in 1962, Boeing and AVCO expanded use of FTA to the entire
Minuteman II.

Minuteman |
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A Brief History

In 1967, A. Avizienis integrated
masking methods with practical
techniques for error detection,
fault diagnosis, and recovery into

the concept of fault-tolerant systems
[Avizienis, A., Laprie, J.-C., Randell, B. (2001].

Fundamental Concepts of Dependability. LAAS-
CNRS, Technical Report N01145.

A. Avizienis



A Brief History

In late 1970s some works were proposed for mapping Petri nets to Markov
chains [Molloy, M. K. (1981)][Natkin, S. 1980][Symons, F. J. W. 1978].

These models have been widely adopted as high-level Markov chain
automatic generation models as well as for discrete event simulation.

Natkin was the first to apply what is now generally called Stochastic
Petri nets to dependability evaluation of systems.



BASIC CONCEPTS



Basic Concepts

AVAILABILITY
RELIABILITY

SAFETY
CONFIDENTIALITY
INTEGRITY
MAINTAINABILITY

ATTRIBUTES

FAULT PREVENTION
FAULT TOLERANCE
FAULT REMOWVAL
FAULT FORECASTING

DEPENDABILITY MEANS

FAULTS

TH F{EAT54E ERRORS
FAILURES

The dependability tree

Avizienis, A., Laprie, J.-C., Randell, B. (2001).
Fundamental Concepts of Dependability. LAAS-CNRS,
Technical Report N01145.



Basic Concepts

Dependability of a system is the ability to deliver service that can
justifiably be trusted.

A correct service is delivered when the service implements what is
specified.

B A system failure is an event that occurs when the delivered
service deviates from correct service.

A failure is thus a transition from correct service to incorrect
service.

A transition from incorrect service to correct service is service
restoration.



Basic Concepts

B An error is that part of the system state that may cause a
subsequent failure.

A failure occurs when an error reaches the system interface and alters the
service.

activation ropagatio -
fault ————— 3= error M failure

activation ropagatio . causatio
oo 3 faull —————3= error M failure 4 fault —- - --




Basic Concepts

B Fault is the adjudged or hypothesized cause of an error.

A fault is active when it produces an error; otherwise it is dormant.

(0, if § has failed
(1, if5isoperational

Xc(t)=

Consider an indicator random variable X(t) that represents the system state at time f,



Basic Concepts

B Failure Modes

VALUE FAILURES
— DOMAIN —I:
TIMING FAILURES

COMSISTENT FAILURES
FAILURES PERCEPTION BY TWO I: ' A
OR MORE USERS INCOMSISTENT FAILURES

MINOR FAILURES
LONSEQUENCES -
O ENVIRONMENT




A motivational example

VM1 VM2

VMM]I1 VMM2

l I.ll'\l\\'.ll'(‘

CPU
Memory
I'U\\'c'l'

NIC

Cooler




A motivational example

What is the respective RBD?
This?

WV

APP1

Or this? ™

VMM1



A motivational example

H It is not clear.
Something is still missing!
B \What is it?
The operational mode(s)
(success oriented networks: RBD and Relgraph)

or

The failure mode(s)
(failure oriented networks: FT)

36



Operational Mode

IS @ condition that defines the system as
operational.

= Operational Mode 1

OMy = App, A\VMM1AVM{AH; A SAN
A App, A\VMM, AV My AH,

Lppl VIl VNI Hostl SAN Lipp?2 V2 VIVMEZ

Hiost2



Operational Mode

¥ Operational Mode 2
V (App,AVMM;AVMAH;)) A SAN

[ o -

dpp2 V2 VN2 Host2

R(t) = 0.975215145, t =0.002 tu




Basic Concepts

B Fault prevention: how to prevent the occurrence or
introduction of faults;

B Fault tolerance: how to deliver correct service in the
presence of faults;

B Fault removal: how to reduce the number or severity of faults;

B Fault forecasting: how to estimate the present number,
the future incidence, and the likely consequences of faults.



Basic Concepts

Fault prevention is attained by quality control techniques employed
during the design and manufacturing of hardware and  software,
including  structured programming, information hiding, modularization,
and rigorous design.

Operational physical faults are prevented by shielding, radiation
hardening, etc.

Interaction  faults are prevented by training, rigorous
procedures  for maintenance, "foolproof" packages.

Malicious faults are prevented by firewalls and similar defenses.



Basic Concepts

Fault Tolerance is intended to preserve the delivery of correct service in
the presence of active faults.

B Active strategies
Phase:
1) Error detection
2) Recovery

B Passive strategies
Fault masking



Basic Concepts

Fault Removal is performed both during the development phase,
and during the operational life of a system.

Fault removal during the development phase of a system life-cycle consists
of three steps: verification, diagnosis, correction.

Checking the specification is usually referred to as validation.



Basic Concepts

Fault Forecasting is conducted by performing an evaluation of the
system behavior with respect to fault occurrence or activation.

Classes:

qualitative evaluation identifies event combinations that would
lead to system failures;

probabilistic evaluation evaluates the probabilities of attributes of
dependability are satisfied.

The methods for qualitative and quantitative evaluation are either
specific (e.qg., failure mode and effect analysis for qualitative evaluation,
or Markov chains and stochastic Petri nets for quantitative evaluation), or
they can be used to perform both forms of evaluation (e.q., reliability block
diagrams, fault-trees).



Basic Concepts

= Time to Failure

X (t)_{O, if S has failed
YW1, if Sisoperational

failure

] r 1 | N—
Fr(t) — Cumulative Distribution Function f'r}(t) - Density Function t

States of Xg(t)

Now, consider a random variable T as the time to reach the state X(t) = 0, given that the system started in state
X(t) = 1 at time t = 0. Therefore, the random variable T represents the time to failure of the system S, Fy(t) its
cumulative distribution function, and f (&) the respective density function, where:

Fr(0) =0 and Jim Fr(t) =1,
fr f frt) xdt=1
0




Basic Concepts

= Reliability

R(t) Reliability Function t

The probability that the system S does not fail up to time ¢t (reliability) 1s

P{T >t} = R(t) = 1— F(t),

R(0) =1 and lim R(t) = 0.

t— oo




Basic Concepts

. azard function

0.9




Basic Concepts

= Reliability
Reliability (Survivor function) - Complementary of the distribution

function: R(t) =1 -F(t). Therefore, F(t) is the unreliability function.

= DPM
It is common to measure service unreliability as defects per million
operations. DPM values are related to a time period. The time period

may be In minutes, hours, days, weeks, months etc.



Basic Concepts

= Unreliability as DPM

R(t) =1—F(t) n — n; is the number of failures (defects -D)

. , in the test period, so
Now consider that n devices have been placed ° s
under test. D=n—n; =UR(AT) Xn

If after a testing period AT, n; devices survived, Ifn = 10° (one million), then
then the reliability may be estimated as — ‘
DPM = UR(AT) x 10

— n:
R(AT) = —
(47) n (DPM — Defect per million)
Therefore, the unreliability UR(AT) = F(AT) _
may also be estimated by: Therefore:
(AT AT STAT — 6
UR(AT) = F7(AT) = 1 — R(AT) = DPM = UR(t) X 10
n, n-—n

1-R(AT) =1-—+=
n n

DPM = (1 — R(t)) X 10°
R(t) =1— (DPM x 10°9)

Time period = t—0
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Basic Concepts

» Hazard function

The probability of the system S failing during the interval [t, t + At]
if 1t has survived to the time ¢ (conditional probability of failure) is

P{t<T< t+At|IT >t} =

R(t) — R(t + At)
R(t) '
P{t <T < t+ At|T > t}/At is conditional probability
of failure per time unit. When At — 0, then

1 R(t) — R(t + At) i —[R(t + At) — R(t)] 1 dR(t) 1
a0 T RO XAL At At “RO - dt R@

dFr(t) 1 fr
dt X R(t) R(t) A(t)




Basic Concepts

» Hazard function

Hazard rates may be characterized as decreasing failure rate (DFR),
constant failure rate (CFR) or increasing failure rate (IFR) according to A(t).

(d)
Hazard rate: (a) Decreasing, (b) Constant, (c) Increasing, (d) Bathtub curve




Basic Concepts

= Cumulative Hazard function

Since

b “dR(t)
At .irz—f —_— =
J[, e , RO

t
—f A)dt =InR(t) =
0

R(t) = e~ Jo MDAt — ,-H(1)




Basic Concepts

= Mean Time To Failure
MTTF = E[T] = [t x fr(t)dt.

Since

() = dFy  dR(b)
() = = —

dt dt

!

thus,

“dR(t)
MTH“=EW]=—J‘ — X t dt.
o dt

aRr(t) . . .
Let u=t, dv= — X dt, and applying integration
[FAA

by parts (fudv=uv— [vdu), then du =dt, v =
R(t), hence:




Basic Concepts

= Mean Time To Failure

e D00

Xtdt= — It}{RUHD —J

\ J.R(r}xdr] fR{r}xdt

"dR(t)

MTTF = — [ R(t) x u:.it‘ =

0

hence

MTTF = [ R(t) x dt




Basic Concepts

» Median Time To Failure
MedTTF =t, Fr = R(t) = 0.5

The median time to failure divides the time to fail distribution

into two halves, where 50% of failures occur before
MedTTF and the other 50% after.




Basic Concepts

| Consider a continuous time random variable Xg(t)

that represents the system state. Xs(t) =0 when § is failed,
Xs(t) =1 when Sisoperational

Now, consider the random wvariable D

if S has failed that represents the time to reach the state
. Xs(t)= 1, given that the system started in state

XsW)=0attimet =0.

Therefore, the random variable D represents the
system time to repair,

Fp(t) its cumulative distribution function,
and fp (t) the respective density function

Xs(t) = {1, if Sisoperational

Fp (0) =0 and ilim Fp (t) =1,

fo®) = ra
States of Xs(t) fo(t) = 0, and

J‘me(f) Xdt=1
0




Basic Concepts

Maintainability is the probability the system S will be

repaired by t, hence

M(t) = P{D < t} = Fp(t) = f £ (©)dt
0

X<(t _{0, if S has failed
s(t) = 1, ifSisoperational

States of X(t)




Basic Concepts

= Mean Time To Repair

The mean time to repair (MTTR) is defined by:

00

MTTR = E[D] = j t X fp(t)dt
0




Basic Concepts

= Repairable Systems

Consider a repairable system S that 1s either operational (Up) or faulty (Down).
Whenever the system fails, a set of activities are conducted in order to allow
the restoring process.

These activities might encompass administrative time,

transportation time, logistic times etc.
When the maintenance team arrives to the system site, the actual repairing

process may start.

Further, this time may also be divided into
diagnosis time and actual repair time, checking time etc.
Downtime = TR = NRT + TTR.

However, for sake of simplicity, we group these times such that
the downtime equals the time to restore

—TR, which 1s composed by non-repair time — NRT —

(that groups transportation time, order times, deliver

times, etc.) and time to repair - TTR




Basic Concepts

= Downtime and Uptime

Occurrence of a failure Occurrence of a failure _
| Uptime Uptime

System Up
System Down

Downtime

t=t”

Downtime and Uptime



Basic Concepts

= Availability

The simplest definition of Availability 1s expressed as the ratio of the
expected system uptime to the expected system up and downtimes:

_ E[Uptime]
- E|Uptime|+E[Downtime]




Basic Concepts

= Availability
Consider that the system started operating at time ¢t = t’ and
fails at t =t'"', thus At = t"" — t' = Uptime.
Therefore, the system availability may also be expressed by:

_ MTTF
 MTTF+MTR

Occurrence of a failure Occurrence of a failure )
! Uptime Uptime

»
System Up
time

System Down

TBF
Downtime

t=t”

Downtime and Uptime



Basic Concepts

= Availability
where MTR 1s the mean time to restore, defined by
MTR = MNRT + MTTR (MNRT — mean non-repair
time, MTTR —mean time to repair), so:
MTTF
A= MITTF + MNRT + MTTR

It MNRT = 0,
MTTF

A =
MTTF + MTTR




Basic Concepts

= Availability

As MTBF = MTTF + MTR = MTTF + MNRT + MTTR,
and if MNRT = 0, then MTBF = MTTF + MTTR.

Since MTTF > MTTR, thus MTBF = MTTF, therefore:

_ MTBF
MTBF+MTTR




Basic Concepts

= Jnstantaneous Availability

The instantaneous availability 1s the probability that
the system is operational at t, that 1s,

A(t) =P{Z(t) =1} =E{Z(t)}, t=0.

If repairing i1s not possible, the instantaneous availability,
A(t), is equivalent to reliability, R(t).




Basic Concepts

= Steady State Availability

If the system approaches stationary states as the time increases,

it 1s possible to quantify the steady state availability

A=lim;_,A(t), t=0




Basic Concepts | Betery et |

MTBF vs Useful Life Time

Sometimes MTBF is confused with useful life. Consider, a
battery has a useful life of four hours and MTBF of 100,000
hours. This means that in a set of 100,000 batteries, there will
be about one battery failure every one hour during their useful
lives.

The reason of sometimes these numbers are so much high is
that these numbers are calculated based on the failure rate of
usefulness period of component, and it is assumed that the
component will remain in this stage for along period of time.
In the above example, wear out period affects the life of

component, and the usefulness period becomes much smaller
than its MTBF. -




Basic Concepts ULT s MTeE

MTBF vs Useful Life Time

Consider another example in which 100,000 20-year-old people
in the sample. We monitored this sample for one year. During
that period, the death rate calculated was 100/ 100,000 =
0.1%/year. Considering TTF exponentially distributed, the MTBF
is the inverse of the failure rate, thatis 1/0.001 = 1000.

This example shows that high MTBF is different from the life
expectancy. As people become older, more deaths occur, so the

best way to compute MTBF would be monitor the sample to
reach their end of life. After that, the average of these life
spans is computed. Then, we reach values of order of 75-80,

which would be much more realistic.



A REVIEW ON STATISTICAL INFERENCE



Check Performance Evaluation

Basic COI‘ICepts Slides (Exploratory Data Analysis

and Statistical Inference)
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Some Important
Probability Distributions



Exponential Distribution

B Arises commonly in reliability & queuing theory.

B A non-negative continuous random variable.

B |t exhibits memoryless property (continuous counterpart
of geometric distribution).

B Related to (discrete) Poisson distribution

72



Exponential Distribution

B Often used to model

— Interarrival times between

two IP packets (or voice calls)

— Service times at a file (web, compute, database) server
— Time to failure, time to repair, time to reboot etc.

B The use of exponential distribution Is an assumption

hat needs to be validateo

t
the data does not support
distributions may be used

with experimental data; If
the assumption, then other

73



Exponential Distribution

B For instance, Weibull distribution 1s often used to
model times to failure;

B | ognormal distribution is often used to model
repair time distributions

B Markov modulated Poisson process Is often used to
model arrival of IP packets (which has non-
exponentially distributed inter-arrival times)

74



- Remember these formulae

Exponential Distribution: EXP(A)

B Mathematically (CDF and pdf are given as):
fOo<z <
otherwise

here A is a paramter and the base of natural
logarithm, e = 2.7182818284

Ae M if >0
0, otherwise

Pla< X <b) = fbf(:r:)dx — F(b) — F(a)
g e—Xa _ o= Ab
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Exponential Distribution: EXP(A)

R(t) =e ™,

Fit)=1—eM,

)/
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Exponential Distribution: EXP(A)

The memoryless property can be demonstrated with conditional reliability:

Pr(T >x+1)

Rix|t)=PAT >x+1t|T >1) = -
(10 =BT > x 41| T >0 = =

e—k(t+x)

- =M= R(x), x = 0.
e—kt
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Exponential Distribution: EXP(A)

Exp(A =10) = E[X] = 0.1

R(0.1)=0.367879 R(0.2]0.1)=0.36788
R(0.2)=0.135335

Function Digtnbaition | it sl

Exporeential 0|
Location [Hheta): i Dt s shse:

03678734412

Scale lambdal

Probability density funchion: 1 - Cumulative distibubion function
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Exponential Distribution: EXP(A)

N(u=0.1,0=0.1)
R(0.1)=0.5 R(0.2]0.1)=0.317311
R(0.2)=0.158655

Distrbubon Input vahe:

M odrnal 0.2

Location or mean [mul il Dubpuit seabue

Scale or 50 [sigma)

Probability dersity furchion: 1 - Curpndatree distribubion funchion
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Hyperexponential Distribution

pdf:  fx(z) = E qipg e T

=1

80



Hyperexponential Distribution

In case ¢x > 1,one fits a Ho(py, po: i1, p12) distribution.
Al

2
Fx(z) =Y qi(l—e ™%, x>0
1=1

Hy(p1, po; pt1, p2) is not uniquely determined
by its first two moments.

Therefore, the normalization
p_p
Hio M2

may be adopted, so that:




mean:
VATrlance:

coefhcient of variation:

Erlang Distribution

D

Phase 1

Distribution Plot
Gamma; Scale=100; Thresh=0




Hypoexponential Distribution

pdf:  fx(z) =) aipie”
i=1
K

with a; =

coeflicient, of variation:




Weibull Distribution

Fx(z) =1 —exp(—(Az)"),

T > ()

fx(z) = aA(Az)* Texp(—(Az)*), A >0,

shape parameter c
scale parameter A > (

a > () means wear out

Weibull distribution is often used to
model times to failure

| ' '/ }

]

{C(1+1/a)}?

{ : R
X 84




Weibull Distribution [I—

Probabelity Denssty Function Probability Density Function

Probabslity Density Function




Lognormal Distribution

fx(z) = ———=exp(—{In(z) - A}?/2a?), x>0

oy 27

Lognormal distribution is often
used to model repair time
distributions

The importance of this distribution arises from the fact that the product of

n mutually independent random variables has a lognormal distribution in the
limit n — oc.



Cox Distribution

‘The model consists of & phases in series with exponentially distributed
times and rates pi,ps,...,ux. After phase j, another phase j + 1 follows
with probability a; and with probability b; = 1 — a; the total time span
is completed.




Cox Distribution

"

¥
k+bi(k=1)(bi(1—k)+k—2)

!
b ]

var (X)) = _,
2

k+bi(k—1)(1{1l —k)+ k- 2)

i - o - —

X by + k(1 — by))2




Case 1: cx <1
ample
Let us construct a phase-type distri-

bution having expectation E[X]| = 4 , ,
and variance SD [X] = 2.236068. kz[m[)f]z‘:|0-5590172‘ =[3:2]=1

With these parameters, we have gy = 2X4X 0559017 +(4—2) — 42 +4— 4 X 4x 055
2% (0.559017% +1) x (4 — 1)

Cov|X] =0.559017, which is less 4, = 0.9203788377837205
than 1. We may choose parameters _ 4-09203788377837205 X (4—1)

for a Coxian distribution as repre- B 4
A =0.9402841283377904

sented in

a) ( jl
—— &8 8 =l
El
h=1—a
-




Cox Distribution

Ey ] P

R 15 + apsl2
var (X ) = H2 ‘L A
MY - Ha

15 +apy(2 —a)
2 2 14 )
Cy = ——

(2 + apq )?




Cox Distribution

Example

A random variable X having expecta-

tion E|X| = 3 and standard devia-
tion equal to 0 y = 4 may be mod-
eled as a two-phase Coxian. Given
that E[X] —3and Cov|X]| = 4/ 3,
we may take the parameters of the

Coxian distribution to be:

2 2
MTEXR T3




Reliability Data Analysis



Reliability Data Analysis

The aim is the selection and the specification of
suitable reliability (and maintainability) models
based on failure (and repair) data.

Non-parametric approaches

Parametric approaches



Reliability Data Analysis

The observation of failures (or repairs) times

can be represented by:

Failure
Time t,,

The functions f(t), F;(t),R(t) (M(t)) and
h(t) and H(t) represent the failure time

(repair time) of the population.




Reliability Data Analysis

A taxonomy of data

Failure data may be classified as:

e Operational X Test-generated failures
e Grouped X Ungrouped data

e Large samples X Small samples

Complete Data
sample size 5

e Complete X Censored data

Failed
Failed
Failed




Reliability Data Analysis

A taxonomy of data
Failure data may be classified as:

® Operational X Test-generated failures

® Grouped X Ungrouped data

Failure times are usually either field data or failures « Large samples x Small samples

¢ Complete X Censored data

observed from reliability testing.

Often failure field data are grouped into time intervals
in which the exact failure times are not preserved.

For large sample sizes, grouping data into time
intervals may be preferred.

Testing may result in small sample sizes.

Failure data obtained from testing are likely to be more
precise and appropriate.

However, field data usually provide larger data samples
and reflect the operating environment conditions.




Reliability Data Analysis

A taxonomy of data

Failure data may be classified as:

¢ Operational X Test-generated failures
® Grouped X Ungrouped data
e Large samples X Small samples

¢ Complete X Censored data

Censoring occurs when data are incomplete when units
are removed from the analysis. The censoring occurs

because:

e units may have been removed before their failures

or
e because the test finishes before the respective

failures occur.



Reliability Data Analysis

Singly censored data: all units have the same test A taxonomy of data

time. Failure data may be classified as:

Multiply censored data: test time or operating e Operational X Test-generated failures

time differ from censored units. e Grouped X Ungrouped data

Left censored: failure time occurs before a e Large samples X Small samples
specified time. e Complete X Censored data
Right censored: failure time occurs after a
specified time.

e Typel-right censored: the testing stopsat T

time units. Left Censored

sample size 5

e Type ll -right censored: the testing stops

. 3¢ Failed
when r out n failures occur. -

-

< Failed - Censored

X Failed

< Failed - Censored

> Failed

-

time




A taxonomy of data

Reliability Data Analysis [

® Operational X Test-generated failures
® Grouped X Ungrouped data
e Large samples X Small samples

e Complete X Censored data

Right Censored Type |

: i sample size 5
Singly censored data: all units have the same test P

time. » Operational
X Failed censored

Multiply censored data: test time or operating
time differ from censored units. »Operational

< fai i . censored
Left censored: failure time occurs before a X Failed

specified time.

X Failed

Right censored: failure time occurs after a

specified time. the testing stopped at T
e Typel-right censored: the testing stopsatT

Right Censored Type Il
time units. sample size 5, r=3 failures
e Type ll - right censored: the testing stops

X Failed
when r out n failures occur.

» Operational
% Failed censored

»Operational

. censored
X Failed

- >
time

|
1
the testing stopped at 1



Reliability Data Analysis
Non-parametric approaches

Ungrouped Complete Data Ungrouped Complete

_ Data
Consider tq, ty,...t;,, where t; < t;41 are 10

n ordered failure times. i | Failure times

Confidence int

bootstrap.




Reliability Data Analysis
Non-parametric approaches

Grouped Complete Data

Failures that have occurred into time
intervals, their original values are lost.

Consider k time intervals where

tq1, ty,...t) are the time instants
representing the ends of each time
interval, such that t; < t;41.

Let nq, ny,..., N be the number of units
that survived at respective ordered time
tq1, to,...t, and n the number of units at
risk at the beginning of the test.

-~ T;
R(t;) = f i=12..

F(t)=1-R(t;)
R(t;+ 1) — R(ty)

tiv1 — ¢
ni —Nj41q

 (tip1 —ti) X n

ni —nj4+1

flt) =-




Reliability Data Analysis
Non-parametric approaches

The MTTF is estimated considering the

midpoint of each interval and fraction of i Number | Number
failing surviving

units that have failed in each interval. 70
67
— i+t 60
t, = > 52

43
30

MTTF = Z — M+ 12

0

=0,ng=n

Confidence interval for the MTTF: adopt
bootstrap.




Reliability Data Analysis
Non-parametric approaches

Ungrouped Censored Data So: i n+1—i
R(tj))=1- =

For singly censored on the right, n+1l n+1
R(t), f(t), and A(t) may be iteratively Therefore:
estimated from the equation adopted for n+1—(—1) n 19

R(ti_1) =
Ungrouped Complete Data. (ti-1) n+ 1 n+ 1

We know that:

A ~ [ :

F(ti)=1—R(t;) = ———g Now, consider:
R(t;) = R(ti-1) X
P(Unit will not fail between t;
and t;_q1, given it has

survived tj_q)




Reliability Data Analysis
Non-parametric approaches | Excel |

Two events may occur at t; (since t; is
there, otherwise it is not there): a failure
Or a censoring. So:

10

Failure
times R(t)

1 if failure occurs at t;
O; = g .
0 if censoring occurs at t;

1
0.909091 s,
0.909091| |5t . ) x R(t;_1)
0.808081
0.707071 Fr(t;) =1—R(t;)

0.707071 X G

0.589226 FGJ:( 1) X F(t;—1)
0.589226
0.589226
0.392817

0.196409

W O~NOOWU A WNRO|—

R R OO0 R OR RO

=
o




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method

for grouped censored data ti-

P(ANB) Therefore  Two Ceisofing'ci
P(A|B) =

P(B) R(t;) = R(t;—1) X R(At;)

So where t; = t;_; + At;
P(ANnB)=P(A|B) X P(B) If at t; we have 1; failures, then:
If A and B are independent, then:

X -
R(At) =1——
P(A|B) = P(A), so: n;

. where n; is the number of available

P(ANB)=P(4) XP(B) units at the instant t; — At; without
considering the censoring, that is,
shortly after t;_,. You should bear In
mind that the interval (t; — At;, t;]is
open at the left hand side.

The probability of a subject surviving to any point in time T = (t + At) 15 the product of the
cumulative survival probability up to time € and the probability of surviving interval At.




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method

for grouped censored data
For the sake of calculating n;, it is assumed that

censoring occurs shortly after the failures at
ti_q.

Therefore:  R(t,) = R(t,) X R(At,)

_ 7
R(ep) = (1--
()= (1

Generalizing:

R(t)=n(1—%

t<t;

ie(1l,m),i e’



Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method summary -

Kaplan-Meier method

for grouped censored data

-~ 1
ivs = Roy = [(1-7)
+\Lni—q—’ri (®) n;

| . t<t;
S S
-1 i Diiva i€(1l,m),i €’
0 1

Two censoring - Cj Y.
L

Niyq =Ny — ¢ —1;




Reliability Data Analysis
Non-parametric approaches

(1]
T
87T
£
i 2
£ 2
T
3 O
-
=g
=
]
a 2
m on
¥ o
o
[Tl

[N I N N NN S N S S S I S S —
| =B m|cd]| = | =] =S| || =D | =fF
[t = | = =] ™| =] ™
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=
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Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method
for grouped censored data

TTF or TTS (ti)

1-rifni

R{ti)=(1-ri/ni)x (1-ri-1/ni-1)

el
=

1.000000000

1.000000000

9

[
H_‘J

0.857142857

0.857142857

11

=
h

0.941176471

0.800722689

13

[
5]

0.937500000

0.756302521

15

=
)

1.000000000

0.756302521

17

=
[

0.9166600600667

0.693277311

19

=
[

1.000000000

0.693277311

21

=
[

1.000000000

0.693277311

23

0.905090309

0.620252101

0
1
2
3
4
3
o
7
B
9

25

1.000000000

0.620252101

[
=

27

0.888888389

0.560224090

[
=

29

0.857142857

0.450192077

[
fud

31

0.833333333

0.400160064

[
]

33

1.000000000

0.400160064

[
o

35

1.000000000

0.400160064

&

37

0.500000000

0.200080032

[
T

39

O [ (B s (LR | ] [ LD LD

fod | Pod [P | Pod | Pod [ Pd [ Pd [P | Pl [ Pd [ Pd [ Pod [P | Bl | B | LD

1.000000000

0.200080032

Total

MTTF

| 19.54545455




) «D]D ) -
Kaplan-Meier method
for grouped complete data
i |TTFor TS (i) ri ci ni | ti- ti-1 1-ri/mi___ |1-ri/ni)x (1-ri-1]
0 0 0 f0 1.000000000 1.000000000
1 a 3 67 3 0.957142857 0.957142857
2 10 ) 60 3 0.895522388 0.857142857
3 15 ) 22 3 0.866060060007 0.742857143
4 20 9 43 3 0.820923077 0.614285714
3 25 13 30 5 0.697674419 0.428571429
7] 30 13 12. 5 0.400000000 0.171428571
7 35 12 0 5 0.000000000 0.000000000
Total 70
MTTF

25.64285714




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method summary

Kaplan-Meier method
for ungrouped complete data

As the data set is complete (no censoring), then Hence:
C; = 0, Vﬂfi. Niy1 =Ny — 1

And since the data set is ungrouped (exact time Therefore:

~ 1
to failure) 1; = 1, VAt,. R(t) = l_[ (1 B n_)
L

t=t;
Niy1 = , ,
?}({_ Atl \Lni —71; [ € (1, m),[ €7
#

i Api1




Kaplan-Meier method
for ungrouped complete data

TTF or TTS (ti)

Reliability Data Analysis
Non-parametric approaches

ri

ci

1-ri/ni

R(ti)=(1-ri/ni)x (1-ri-1/ni-1)

[
=

1.000000000

1.000000000

15.4

=

0.300000000

0.500000000

18.9

0.333888889

0.200000000

20.1

0.875000000

0. 700000000

24.5

0.857142857

0.600000000

29.3

0.833333333

0.500000000

33.9

0.800000000

0.400000000

435.2

0.750000000

0.300000000

34.7

0.666060067

0.200000000

0
1
2
3
4
5
3}
7
8
9

72

0.300000000

0.100000000

[
-

86.1

= e e e e [ = |

O = R [ [ (L0 [ | =] (DD | LD

0.000000000

0.000000000

[
-




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method summary

Kaplan-Meier method

for ungrouped censored data
Hence:

Njt1 = ni_|_1 — ni — Ci — 1
\Lni —c; —1

S Ve S — Therefore:
ti-i + Ativa 1
Two censoring - Cj r; =1 R(t) N l_[ (1 B ?’1_[)

t<t;

Since the data set is ungrouped (exact time to , ,
grouped ( i€(1l,m),i€Z

failure) r; = 1, VAt,.




Reliability Data Analysis

Non-parametric approaches

Kaplan-Meier method

for ungrouped censored data

TTF or TTS (ti)

ri

Cci

1-rifni

R(ti)={1-ri/ni)x (1-ri-1/ni-1)

FT(ti)

[
=

1.000000000

1.000000000

0.000000000

150

0.900000000

0.900000000

0.100000000

1.000000000

0.900000000

0.100000000

0.8 75000000

0.787500000

0.212500000

0.857142857

0.675000000

0.325000000

1.000000000

0.6/75000000

0.325000000

0.800000000

0.540000000

0.40000000

1.000000000

0.5340000000

0.460000000

1.000000000

0.240000000

0.460000000

WO |00 | =] Jem [ | (b =D

0.500000000

0.270000000

0.730000000

[
=]

O | = (R (s lnfon |~ || LD

0.000000000

0.000000000

1.000000000[

Total

MTTF

2558.333333




Reliability Data Analysis
Non-parametric approaches

Other methods:

Actuarial method
Rank method



Reliability Data Analysis
Parametric approaches

General process:

¢ |dentitying a theoretical
distribution
= Build graphs and compute
statistics, analyze the
empirical failure rate, and
consider the properties of
theoretical distributions

e Estimating the distribution
parameters
= Point estimation
e Graphical methods
e Least square method
e Method of moments
e Maximum Likelihood
Estimation method
= Confidence interval
e Performing the goodness-of-fit

test
= KS, AD, x?2...




Reliability Data Analysis
Parametric approaches

Point estimation

Graphical method

A distribution isbe transformed into a standard
distribution by means of linear transformation. On
the graph paperwith y axis socalibrated, x and
y are linearly related with positive slope, where vy
represents a cdf F(x) with some scale and
location parameters.

Method of Least Squares

The method of least squaresfitsa curve (or
straight line) to a series of data points, by
minimizingthe sum of squared deviations of the
fitted curve and the actual data points.

Method of Matching Moments

The theoretical moments of the distribution are
equated with the sample moments.

Method of Maximum Likelihood

The core of this method is selecting as estimate of the
distribution parameter a value for which the observed
sample is most “likely” to occur.




Reliability Data Analysis
Parametric approaches

Graphical Methods

ti E(ti)=(i-0.3)/(n+0.4) | Normal(Mean,SD] | Exp(1/Mean) Obtaln data ({ti}ﬂample size—1 = |{t1}|)

33.644504 0.023026316 0.041458762 0.278184055
37.260691 0.055821053 0.050101038 0.303033838

46.976141 0.088815789 0.080501834 | 0.365648018 SDrt thE‘ data {tl} |n aﬂcendlng Drder.

525372153 0121710526 0.103256356 0.30BE03672 . ﬂ 3
L—u. - . . .
—— V' t; (FE-Empirical distribution)

£8.199177 0.154605263 0.191415776 | 0483552201
74143111 0.1875 0.234370113 | 0.512454557 CDmputE FE (I‘-L) —
75.609671 0.220394737 0.245734482 | 0.519333339 n+0.4
77.902866 0.253289474 0.264815321 | 0.530305129 . . . . .
84.106853 0.286184211 0.316976454 | 0.557320992 Dbta 1a] FT(I_’L) v t!. [FT— Th el ret”:a I d|5t Il b ut|D N )
85.319391 0.319078947 0.327818003 | 0562491275
85.616182 0.351973684 0.330494386 | 0.563747569

86.157104 0.384868421 0.3353594568 05660275981 Create a pa per pIDt:

B9.882303 0.417763158 0.369865514 0.581412209

sozenasil  ossoss7ees| esmessiaf osssoswss) 5] 0 Divide the range distance over the x-axis considering

593.959074 0483552632 0409203848 05977795962
98.763826 0516447368 0455877347 0.615826604

103.34724 0549342105 0.50136525 0.632609593 th E Va I UES FE (ti) v tf_-
108.64749 0582236842 0553806792 0.651000325

LIo0s 0L OeenRlsg oewiie; 5§ D Divide the range distance over the y-axis, considering
115.22631 0.680921053 0617720916 0.672552122

118.77664 0.713815789 0.650999795 | 0.683624529 the U’alues FT(I:L) v t!.'

123.39757 0.746710526 0.692589569 | 0.697476911
134 87269 0.779605263 0785013214 | 0.729309712 I h H (FE( ) FT . ) - h

139.79835 0.8125 0.519119786 | 0.741924904 6 P Dt eac pDInt t:_ ’ t:_ inin t e paper'
141.49929 0.845394737 0.530062916 | 0.746143219

issorsn | osmassre| osossssons | ormanssi| 7, |f FT fits the data set {t;}, the points should imply a straight

177.01418 0911184211 0967091734 0.820052212
183.85396 0.9440785947 0977752953 0.831590865 I -
186.71777 08976873684 0951308025 0.8361585956 I ne'

1
2
3
4
5
6
7
B
£l
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Parametric approaches

Graphical Methods

Exp(1/Mean)

# Normal{Mean,sD)

— Linear (NormaliMean,s0))

21053
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Graphical Methods
Probability Plot of C1 Probability Plot of C1
Exponential - 95% CI Lognormal - 95% CI
S S
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Parametric approaches

Method of Matching Moments

THE METHOD OF MOMENTS PROCEDURE

Suppose there are | parameters to be estimated, say 6 = (61, ..., 6)).
. Find I population moments, ”Eﬂk =12 ....1. ;..;.;c will contain one or more parameters &y, ..., 6.

. Find the corresponding | sample moments, rﬂ_I~ k =1,2,...,1.The number of sample moments

should equal the number of parameters to be estimated.
. From the system of equations, ,u.;__ = m;t_,,k = 1,2, ...,1,solve for the parameter @ = (¢4, ..., 6));

this will be a moment estimator of 6.




Reliability Data Analysis
Parametric approaches

Method of Matching Moments

Let X1,..., X, be arandom sample from a Bernoulli population with parameter p.

Find the moment estimator for p.
Tossing a coin100times and equating heads to value 1 and tails to value 0, we obtained the

following values:

}
Obtain a moment estimate for p, the probability of success (head).

For the Bernoulli random variable, ,ui_ = E[X] = p. so we can use mr] to estimate p. Thus,

m

Then, the method of moments estimator for p is p = Y /n. That is, the ratio of the total number of
heads to the total number of tosses will be an estimate of the probability of success.

Note that this experiment results in Bernoulli random variables. Thus, using part {a) with Y = 33 we

get the moment estimate of pis p = % —0.333 ..




Reliability Data Analysis
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Method of Matching Moments

Let the distribution of X be N(u, o<).
(a) Fora given sample of size , use the method of moments to estimate x and o.
(b) The following data (rounded to the third decimal digit) were generated using Minitab from a

normal distribution with mean 2 and a standard deviation of 1.5.
{1.35902, 3.14884, 0.965424, 2.18839, 2.876, 3.5389, 1.52715, —0.0196308, 1.
-0.354723, 3.49483, 0.330451, 3.47302, 5.01e6e8, 1.1625, 0.625021, 1.9390
,72912, 3.46589, 1.24573, 1.73628, -0. Z, 3. 4.
345, -0.37E8024, 2. 7, 2.10456, 2.366862, 3.01285, 2.
39, 1.58864, 0. 38307, 0.94671, 1.49392]1, 1.15941,
: 395, 0.82342, -2.77245, 1.92475, 2.67788
.51121, 4.61112, 1. : . 78596, 1.4498, -0.7
,24755, 3.85384, 1.67251, 3. 0382, 4.21188, 2.

84462, 3.04684, 1. : . 49371, .991947, 2.3

.59153, 0.873494, 0. . 0. . 2.0818, -
66317, -0.75596, 2.26349, 3.84623, 2.02748, 1.21615, 1.40214, 1.5392, 4.47945,

. 637378, 0.97747, 1.95484, 3.31798, 0.404918, 1.82952, 1.80883, 2.360935}
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Method of Matching Moments

Let the distribution of X be N(u, o<).
(a) For a given sample of size n, use the method of moments to estimate . and o2,
(b) The following data (rounded to the third decimal digit) were generated using Minitab from a
normal distribution with mean 2 and a standard deviation of 1.5,

For the normal distribution, E(X) =, and because Var(X) = EX* — u*, we have the second
moment as E{XE} =g + g:’-'.
Equating sample moments to distribution moments we have

] n I.
n 4

=1

and

]H
! 2 2 2
Ly = — Xt =0+ u~.
Hy == X :

i=1




Reliability Data Analysis
Parametric approaches

Method of Matching Moments

For the normal distribution, E(X)=u, and because Var(X) = EX? — u*, we have the second
moment as E(X?) = a2 + ,u1.
Equating sample moments to distribution moments we have

n

1 '
- Xi= = p
n 4

i=1
and

1
I
' 2 2 2
fly = — Xi=0"+p".
PN A
i=1
Solving for i and 2, we obtain the moment estimators as
=X

and
"

1 .
-5 (xi - X)°.
n 4
i=1
Because we know that the estimator of the mean is i = X and the estimator of the variance is G2 =
(1/n) :i=1 X;?- —f?, from the data the estimates are i = 2.00612, and 52 — B.26614 - (2.00612)2 =2.24163

Notice that the true mean is 2 and the true variance is 2.25, which we used to simulate the data.




Reliability Data Analysis
Parametric approaches

Method of Matching Moments

X,; be a random sample from a uniform distribution on the interval [a, b].
Obtain method of moment estimators for a and 5.

The pdf of a uniform distribution is

a=x=2~b
flx) = -

otherwise.

The first two population moments are
I b

2 2 2
X a-+b 4 f B a<+ab+ b
_ _ = 1y = E(X°) = dx = :
1 = E(X) f P “d_x 5 and M2 (X7) b—a 3

o o
The corresponding sample moments are

H
_ 1 9
1 =X and 12 = — X7,
M1 H2 =~ Z i
=1
Equating the first two sample moments to the corresponding population moments, we have
a’ + ab + b?




Reliability Data Analysis
Parametric approaches

Method of Matching Moments

As an example, consider the sample:

{85.5507,
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; = 3873.881

55B?982——J3:{(38?3581}{55B?9822}—-8358458
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Reliability Data Analysis
Parametric approaches

Method of Maximum Likelihood

PROCEDURE TO FIND MLE  maximum likelihood estimators (MLEs)

1. Define the likelihood function, L(#).
2. Often it is easier to take the natural logarithm (In) of L(#).
3. When applicable, differentiate In L(#) with respect to 6, and then equate the derivative to zero.

4, Solve for the parameter 6, and we will obtain 6.




Reliability Data Analysis
Parametric approaches

Method of Maximum Likelihood

Let fixy,..... ti6).0 € © C RY, be the joint probability (or density) function of n
random variables X, X, with sample values x,. ..., x.. The likelihood function
of the sample is given by L(0;x1.....x5) = f(x1....,. tni B), [= L(0), in a briefer notation].

. X, are discrete iid random variables with probability function p(x, #), then,
the likelihood function is given by L(8) = P(X; = x;

n
= 1_[ P(X; =x;), (by multiplication rule for independent
i=1 random variables)

= ]_[ pix;, d)

i=1
and in the continuous case, if the density is f(x, ), then the likelihood function is

LO)=]]fx.0.

i=1

We emphasize that L is a function of € for fixed sample values.




Reliability Data Analysis
Parametric approaches

Method of Maximum Likelihood
X, are a random sample from a geometric distribution with parameter p,0 < p < 1.

Suppose X
Find MLE p.
For the geometric distribution, the pmf is given by f(x, p) = p(1 ;:}"_1. D<p=1, x=1,
" _ 1+ i X
L{;J]:]_[[;J{I —p}"'_]]:,.u”f,l—p} i=1

2.3,....

Hence, the likelihood function is

i=1
Taking the natural logarithm of L(p), Solving for p
. y ,
InL=nlnp+ (—n + Z,r,-) In(1— p)
i=1
Taking the derivative with respect to p, we have
H .
N Thus, we obtain a
” ( et f; 'l‘) maximum likelihood

dlIn L :
= — — estimator of p as

dp p (1—p)

Equating dinL(p) 4, zero, we have w4 i ;
— ] I'I

dp
=1

(1 —p)




Reliability Data Analysis
Parametric approaches

Method of Maximum Likelihood

Assume that X denotes the time to failure of device.
The time to failureis exponentially distributed with
failure rate A.

fx)=2e* 1>0,x>0

We intend to estimate A from random sample
X1, X5,..., X, where x = (xq,x9, ..., X,) is the vector
representing the observed values of the sample.

1=0(x)
The joint pdf of X4, X5,..., X,, is given by
L(x, ) = Am e ALj=2%)

L(x, A)is called the likelihood function, which is the

function of the unknown parameter A and the real data
X.

The parameter value that maximizes the likelihood
function is called the maximum likelihood estimator.
The MLE can be interpreted as the parameter value
that is most likely to explain the dataset.

The parameter value that maximizes the log-likelihood
function will maximize the likelihood function.

n(L(x, ) = In (A" e 2=

In(L(x,A)) — InA" + In e A Ei=1%

ln(L(x,.l)) =nind— &Z X;
=1




Reliability Data Analysis
Parametric approaches

Method of Maximum Likelihood
The function I-n..(L(x, ,1)) cah be maximized by
deriving it with respect to A, setting the resulting
expression to zero, and solving the equation for A.
Therefore:

n

dA A

j=1
Accelerated life testing
n Now assume for a certain system that we
observed 60 failures during T = 15 116 772.7753 min

hours. Hence:
3= 60 failures _ 3 94 x 10~° failures/ min

A=

N 4
j=1%)




Reliability Data Analysis
Parametric approaches

Relationships among probability distributions
[ Megative hinomial{n,p) }-j— —A=n{1l-p) , Nwos — — }':Disson(.\} — — -A=np, N e =

~ Exi Bermouli{p)
p=MIN , ik , N - e
A Y :
\—{ Hypergeometric(M,N,K) J

-
u=np , g’=np(1-p) , N~
| ==

——apem
o

—
H=rA, g?=rAZ,
-]

Uniform({0,1)

a+{b-a)x a=0b=1




Consider that we have observed 60 units

of a specific type until the respective lysis

failures. The failure times were registered hes

and are depicted in the spreadsheet. -

Assuming the time to failure is
exponentially distributed, compute the

confidence interval for A. MTTF; MTTF,)
. B iy 25?’1:?" 25?’1:?‘
Consider a reliability test starts at O and _ ( 5 , 5 )
. )1/"-)'1/1 i/ }f,f}m 4 ¥ 7
thatall (n) failures are reported as o\ also consider an accelerated test in

fail . The test finish h 1 : :
AIHTES. TETES TNENES WA 9% Which 60 units have been placed. The test

fail or after r failures occur (right

. . was finished when 10 failures occurred.
censoring type Il). The confidence

for A and MTTFcan be computed The observed failure times are registered
, Inthe spreadsheet. Assuming the time to

2
Xon1-a Xonte _ _ o
z,n’il /2, 2” failure is exponentially distributed,
2Sn.r 25y

(Al Au) — (

compute_ the confidence interval for A.



Reliability Data Analysis
Parametric approaches

Confidence Interval Exponential Distribution

If right censoring type | is considered, the
method still provides a useful
approximation.

The same process can be applied to
estimate the confidence interval for
MTTR.




Reliability Data Analysis

Parametric approaches

Consider now that the units have been
repaired. The respective time to repairs

are also registered in the spreadsheet.
Compute confidence interval for the re: A= - - _
s 3 TP
availability. =%
The CTMC representing the system: fidence interval for pis (P Pu),
p p
A IOI — }C a .DH — f‘ 1—
e 1 2n,2n;%/, 21,21; a:/z
" ‘he confidence interval for A is
B L+ 4 (4;, Ay), where:
2
1 1
A=m where p= T 14y Y1+

If T, and T, are chi-squared random variables with n, and n, degrees of freedom respectively, then (T,/n,)/(T,/n,) is an F(n,, n,) random variable.



Reliability Data Analysis
Parametric approaches

Confidence Interval

You may also adopt:

e Adopt Bootstrap or Semi-parametric Bootstrap
e |f possible, you may also use t-student distribution or

¢ Central Limit Theorem




REDUNDANCY MECHANISMS



Redundancy Mechanisms

B Parallel Redundancy

Parallel Redundancy refers to the approach of having multiply units running in parallel.
All units are highly synchronized and receive the same input information at the same time.

But because all the units are powered up and actively engaged, the system is at risk of
encountering failures in many units.



Redundancy Mechanisms

B Parallel Redundancy

Deciding which unit is correct can be challenging if you only have two units. Sometimes you
just have to choose which one you are going to trust the most and it can get complicated.

If you have more than two units the problem is simpler, usually the majority wins or the two
that agree win.



Redundancy Mechanisms

B Parallel Redundancy (Active-Active) — load sharing

Active-Active refers to the approach of having multiply units sharing the load.

As the units are powered up and actively engaged, the system is at risk of encountering failures
in many units.



Redundancy Mechanisms

B Triple Modular Redundancy (TMR)

Deciding which unit is correct can be challenging if you only have two units. Sometimes you
just have to choose which one you are going to trust the most and it can get complicated.

If you have more than two units the problem is simpler, usually the majority wins or the two
that agree win.

A generalization is named NMR



Redundancy Mechanisms

B Hot Stand by In hot standby, the secondary unit is powered up.

If you use the secondary unit as the watchdog and/or voter to decide when to switch over, you
can eliminate the need for a third party to this job.

This design does not preserve the reliability of the standby unit. However, it shortens the
downtime, which in turn increases the availability of the system.



Redundancy Mechanisms

B Hot Standby

Some flavors of Hot Standby are similar to Parallel/ Redundancy.
These naming conventions are commonly interchanged.

For us, Hot Standby and Parallel Redundancy (active-active) are the same
mechanism!

But, attention!



Redundancy Mechanisms

B Cold Standby

In cold standby, the secondary unit is powered off, thus preserving the reliability of
the unit.

The drawback of this design is that standby unit have to power up, since it is initially
powered off.

Perfect switching AND non-prefect switching



Redundancy Mechanisms

B Warm Standby

In warm standby, the secondary unit is powered up, but not receiving the workload.

It is common to assume that in such a state the standby component has higher
reliability than when receiving the workload (properly working).

When the main component fails, the standby device promptly assumes the task.

Its switching time is shorter than the cold standby’s switching time .



Redundancy Mechanisms

B Active-Active

Active—active redundancy means that workload is shared by two
operational units, but workload can be served with acceptable
quality by a single unit.



Redundancy Mechanisms

B Kout of N

Consider a system composed of n identical and independent components
that is operational if at least k out of its n components are working

properly.

This sort of redundancy is named k out of n



Redundancy Mechanisms

B RAID (redundant array of independent disks)

Many types of RAID have been developed and more will
probably come out in the future.

The technology is driven by the variety of methods available
for connecting multiple disks as well as various coding
techniques, alternative read-and-write strategies, and the
flexibility in organization to “tune” the architecture of the

system.



Redundancy Mechanisms

B RAID O

involves striping, which is the distribution of data
across multiple disk drives in equally sized
chunks.

For example, a 150 KB file can be striped, or
chunked, across ten 15 KB chunks.

The RAID set of striped disks appears as a
single, logical disk to the operating system.

RAID-0 does not provide any data redundancy.



Redundancy Mechanisms

B RAID 1

uses mirroring, or shadowing: all data written on a
given disk is duplicated on another disk.

B RAID 4

uses block-level striping with a dedicated
parity disk.

Disk O Disk 1 Disk 2 Disk 3



Redundancy Mechanisms

B RAID 5

is similar to RAID 4 except that the parity data is
striped across all HDDs instead of written on a
dedicated HDD.

RAID 1

B RAID 0+1

striped sets in @ mirrored set.

RAID 10
RAID O

m RAID 1+0 (RAID 10)

mirrored sets in a striped set.




Redundancy Mechanisms

B N-version programming

Hardware Software

System ardware 0 f ' Svalem

Input : ; Chutput

Hardware
8]

Primary Avionics Software System
(PASS)

Hardware Software

E B

Backup Flight Control System
(BFS)

Hardware and software redundancy in the Space Shuttle’s avionics control system. -




Redundancy Mechanisms

B Checkpoints and recovering

Foll back Al tarmatwe
ol back to .

eheack pont : procesE ng

Foll hack to
eheck point




Redundancy Mechanisms

B Backward Recovery

Compensation 1

1 r by AR Compensation 2

Compensation 3

Transaction 4




Redundancy Mechanisms

B Reboot

The simplest - but weakest - recovery technique.
From the implementation standpoint is to reboot or restart the system.

H Jou rnaling = To employ these techniques requires that:

1. a copy of the original database, disk, and filename be stored,

2. all transactions that affect the data must be stored during execution, and
3. the process be backed up to the beginning and the computation be retried.

Clearly, items (2) and (3) require a lot of storage; in practice, journaling
can only be executed for a given time period, after which the inputs and the
process must be erased and a new journaling time period created.



MODELING



Modeling Strategy

Hierarchical modeling +

Are expolinomial
distributions
suitable?

Are combinatorial
models suitable?

Adopt RBD or FT

Is there a closed-
form solution?

In many cases through high-level model
representations, such SPN

.

T
I
1
1
1
I
I
I
1
1
1
I
I
I

Simulation

Is the state space
finite and do |
have resources for
obtaining numerical
solution?

Markov chain




Coherent System

Let x; be a random variable, and

I 1f component ; functions

Xi = - .
0 if component i fails

Therefore, x; is a Bernoulli variable.

As BernoulliDistribution[ p]

PDF

DistnbutionDomain
DistnbutionParameterAssumptions
Mean

Vanance

P(x; =1) =p; = E[x;]




Coherent System

Operations

. StI'LI CtU re FU nCtIOn « {+,-,%,+}— arithmetic operations

Consider a system S composed by a set of components, C = {¢;|1 < i < n}, where the state of the system S and
its components could be either operational or failed. Let the discrete random variable x; indicate the state of
component i, thus:

v = [D if the component i has failed
T [f the component [ is operational

The vector X = (xq, X3, ..., X, ..., X, )! represents the state of each component of the system, and it is named state
vector. The system state may be represented by a discrete random variable ¢(x) = ¢(xy, x5, ..., X, ..., X, ), Such
that

if the system has failed

if the system is operational

60 =1,

¢(x) 1s called the structure function of the system.

If one is interested in representing the system state at a specific time t, the components’ state variables should be
interpreted as a random variables at time t. Hence, ¢p(x(t)), where x(t) = (x;(t), x2(t), ..., x; (L), ..., x, (£)).




Coherent System

As ¢ (x) is also a Bernoulli random variable, then

P(p(x) =1) = E[¢p(xX)]

If p; is the reliability of component j (at t) or its
instantaneous availability (at t) or its steady-state

availability, then P(¢(x) = 1) is the respective
system measure.

If one is interested in representing the system state at a specific time t, the components’ state variables should be
interpreted as a random variables at time t. Hence, ¢p(x(t)), where x(t) = (x;(t), x2(t), ..., x; (L), ..., x, (£)).




Coherent System

B Structure Function $(C3,C5,C1,Cp) =Co X (1 — ((_-1 —C; X C3) x (11— Cl)))

Cc3

o o
1] o
o o
I
I
I
o o

A




Coherent System

B Irrelevant Component

A component of a system 1s 1rrelevant to the dependability
of the system if the state of the system is not affected

by the state of the component.

¢; 1s irrelevant to the structure function if ¢(1;,x) = ¢(0;, x).

Component 2 is irrelevant.




Coherent System

B Irrelevant Component

A component of a system 1s 1rrelevant to the dependability
of the system if the state of the system is not affected

by the state of the component.

¢; 1s irrelevant to the structure function if ¢(1;,x) = ¢(0;, x).

Component 2 is| relevant




Coherent System

B Structure Function

For any component c¢;,

d(x) = x; p(1;,x) + (1 — x;) (0, %),

where ¢(1;,x) = P(x1,%5, ..., 1;, ..., X)) and $(0;,X) = P(x1, %3, o, 04, v0e ) Xp).

The first term (x; ¢(1;, X)) represents a state where the component c;

is operational and the state of the other components are random variables
(p(xq,%5, ..., 1, .., Xy )). The second term ((1 — x;) ¢(0;,x)), on the other hand,
states the condition where the component ¢; has failed and the state

of the other components are random variables (¢(xq, %2, ..., 04 ., Xp)).

Equationis known as factoring of the structure function and very useful for studying
complex system structures, since through 1ts repeated application,
one can eventually reach a subsystem whose structure function 1s simple to deal with (1).




Coherent System

A system with structure function ¢(x) is said

to be coherent if and only if ¢p(x) is non-decreasing
in each x; and every component ¢; is relevant.

A function ¢p(x) 1s non-decreasing if for every
two state vectors X and y, such that x <y,

then ¢p(x) < p(y).

Another aspect of coherence that should also be
highlighted 1s that replacing a failed component

In working system does not make the system fail.
But, it does not also mean that a failed system will

work 1f a failed component is substituted by an
operational component.




Coherent System

B Example - Structure Function

Consider a coherent system (C, ¢p) composed of three blocks, € = {a, b, ¢}




Consider a coherent system (C, ¢) composed of three blocks, C = {a, b, c}

Coherent System Z{E}

B Example - Structure Function
factoring on component a, we have:

Q{-"{IEUII:HIE] = g f}t’(]uuxh;l}) + (1 o Iu) ¢(D£1:Ibixt'] = Xg ¢{1H.Ih,l't-).
since (0,4, xp,x.) = 0.

Now factoring ¢(1,, xp, X.) on component b,
¢{1EIJI!']! Ir_‘) = Xp ¢{1ﬂ: 11’;: Ir_‘) + {1 o Ih} {ﬁ'(-lm ﬂh: IE)‘

As ¢p(1,, 1, x.) = 1, thus:
‘i}(lmxhrxf:) = Xp + (1 o Ih) ‘;b[]-cu Uhlxr.')-

Theretore:
fi}(IuaIu:Ig) = Xg ‘i’(larxb-xc) = Xg x [xb + (1 T Ib) 'i’(laa ﬂbaxc)]-




Coherent System

B Example - Structure Function

Fact ¢p(1,, 04, x.) on component ¢ to get:
qb(lu: ﬂfuxr_') = X¢ ‘f"(-lu' Dh: lﬂ) + (1 o Ir_') ¢(1RJ DbJ D-r_]

Since ¢p(1,,04,1,.) =1 and ¢(1,,04,0.) = 0, thus:
d(14,0p,xc) = x,.

S0

P(xq, xXp,xc) =xg X [xp + (1 —2xp) p(14,0p,x.)] =
Xg X [xp +(1—=2) x] =

P(xgq, Xp X)) = XgXp + XX (1 —x3) =

b (xa) Xp, Xc) = Xq[1 = (1 = xp)(1 — x.)].




Coherent System

B Logical Function

Operations

if the component i has failed
/ P / « {A,v,—}—logic operations

if the component iis operational

if the system has failed
if the system is operational

bs = (s5,,5;,...,5;, ..., 8, ) represents the Boolean state of each component of the system.
The svystem state could be either operational or failed.
The operational system state 1s represented by @(bs) , whereas @(bs) denotes a faulty system.




Coherent System

B Example — Logical Function

EXBIT\plEZ Consider a system (C, ¢) composed of three blocks, C = {a, b, ¢}

QO(Saer:SC) = Sq N\ (Sb v Sc) = Sg N\ (57) A S_c)



Coherent System

| Example — Converting a Logical Function into a Structure Function

Using the notation described. s; 1s equivalent to x;, S, represents 1 — x;,
@(bs) is the counterpart of ¢(x) = 1, @(bs) depicts ¢p(x) = 0,
A represents X, and V 1s the respective counterpart of +.

Consider a system (C, ¢) composed of three blocks, C = {a, b, ¢}

— 4 @(Sa,SpSc) = Sa A (Sp ASe).

8 4 e

P(x) = xq X [1 = (1 —xp) X (1 —x)]



Modeling Techniques

M Classification

— State-space based models
mCTMC, SPN, SPA

— Combinatorial models
mRBD, FT, RG



Combinatorial models



Reliability Block Diagram

RBD is success oriented diagram.
Each component of the system is represented as a block

RBDs are networks of functional blocks connected such that they affect
the functioning of the system

Failures of individual components are assumed to be independent for easy
solution.

System behavior is represented by connecting the blocks
— Blocks that are all required are connected in series
— Blocks among which only one is required are connected in parallel
— When at least k out of n are required, use k-of-n structure



Reliability Block Diagram

B A RBD is not a block schematic diagram of a

system, although they might be isomorphic in some
particular cases.

B Although RBD was initially proposed as a model
for calculating reliability, it has been used for
computing availability, maintainability etc.



Reliability Block Diagram

H Series

VM1

VMM]1

Hardware

CPU
Memory
I 'ower
NIC
Cooler

= Operational Mode
OM; = App, AVMM;AVM AH; A SAN
A\ Appz/\VMMz/\VMz/\HZ




Reliability Block Diagram

H Series

= Operational Mode
OM; = App, AVMM;A\VM{AH; A SAN
A App, A\VMM,A\VM,AH,

Lppl VIl VNI Hostl SAN Lipp?2 VM2 VN2 Host2



Reliability Block Diagram

H Series

As ¢ (x) is also a Bernoulli random variable, then

P(p(x) =1) = E[¢(X)]

If p; is the reliability of component j (at t) or its
instantaneous availability (at t) or its steady-state
availability, then P(¢(x) = 1) is the respective
system measure.




Reliability Block Diagram

H Series

P{p(x) = 1} = P{op(xy, x5, o X, 0, X)) = 1} = [, P{x; = 1} =[] = 1.

Therefore, the system reliability is

Rg(t) = P{op(x,t) = 1} = [[i=y P{x;(t) = 1} =[Ti=; Ri(0),
where R;(t) 1s the rehability of block b;.

Likewise, the system instantaneous availability is

As(t) = P{lp(x, ) = 1} = [[i=, P{x;(t) = 1} =IiZ, A (2),
where A;(t) is the instantaneous availability of block b;.

The steady state availability is
AS = P{¢{K} = 1}= }'T’:lF{I!- = 1}=n?=1-"1;‘-
where A; is steady state availability of block b;.




Computing the Reliability

Appl VM1 VMM Hostl SAN ppd V2 VWM2  Host2

If for every component i, TTF; £ EXP(4;), then
R;(t) = e M.
Hence:
R(t) = e *avr1t x e~Avmit
X e~ AvmMmit w o—AH1t
X e ~Asant x
e tapp2t % p=Avmzt x o—AvMM2t
X e ~AH2t —
e~ (Aapp1tAvmitAvmmi tAn1tAsan+Aap)

R(t) = 0.805735302, t =0.002 tu




Reliability Block Diagram

H Series

Series system of n independent components, where
the 1 component has lifetime exponentially
distributed with rate 4.

Thus lifetime of the system is exponentially
distributed with parameter >

and system MTTF = Il Z



Reliability Block Diagram

B Series
R.v. X: series system life time

R.v. X;: i""comp’s life time (arbitrary distribution)
0 < E[X] <min{E[X;]}
Case of weakest link
X=min{X,, X,, ...X,}

Rx(t) = ]] Rx,(t) <min{Rx,(1)}, (0 < Ry;(¢) <1)
1=1

B[X] = /;G Rx(t)dt < min {/;’O RXi(t)dt}
= r‘n?:in {E[X;]}




Reliability Block Diagram

B Example:

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.0001 failures per hour, A2 = 0.0002
failures per hour, A3 = 0.0003 failures per hour,and A4 =
0.0004 failures per hour, respectively. The sw system cannot work

when any one of the web services is down.

a) Calculate the total sw system failure rate.
b) Calculate MTTF of sw system.
c) Calculate the R(t) at 730h




Reliability Block Diagram

B Example:

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =
0.00004 failures per hour, respectively. The sw system cannot work

when any one of the web services is down.

a) Calculate the total sw system failure rate.
b) Calculate MTTF of sw system.
c) Calculate the R(t) at 730h




Reliability Block Diagram

B Example:

The sw system cannot work when any one of the web services is down
=

The sw system only works when all web services work.

= web services 1 working
¥ web services 2 working
55 & web services 3 working

'5, ¥ web services 4 working

@ (W5, WS,, W53, WS,) = WSs; AWws, A Wiy A Ws,




Reliability Block Diagram

B Example:

@(Wsy, Ws,, WSq, WS,) = W5; AWS, A WSy A WS,

0.00001 + 0.00002 + 0.00003 + 0.00004

0.0001 farlures per hour

_ ] .
/ Vo = e = |} ) K
MTTEs = o001 = 1000




Reliability Block Diagram

B Example:
— C)

(x4, X5,%3) = Xy X3X3%4
P{ d(xy,x5,%5) =1} = E{d(xy, x5, x5)} = E{xx,x5%,)
If the components are independent, then:
P{ ¢(xy,%x5,x3) = 1} = E{x, } E{x, } E{x3} E{x,} =
As

P{ &(xy,%5,%3) = 1} = R(t), then
P{ ¢ (1,2, %3) = 1} = R(t) = 13 ()73 ()73 ()73 (£)

And, since 7:(t) = e, therefore:

R(t) = e~ Mf x %2t % p=Aal % gl = o= (Aa+dg+dz+Ay)r

RL?‘Sﬂh} — E—lj:ﬂ.ﬂEIEIEll+EI.EIEIEII:IE+EI.EIEIEIE|3+EI.EIEIEIEI-'~1'_]ZZ=-=ZZ'.T"3E| = 0.929600830



Reliability Block Diagram

H Problem:

Now, considering the previous example, suppose that the repairing time of each
web service is exponentially distributed with average 2h.

a) Compute the steady state availability.

b) Compute the downtime in minutes in one year period.




Reliability Block Diagram

H Parallel

VM1

VMM

Hardware

CPU
Memory
[Il W er
M
."'-"II"I'

Operational mode: OM; ¥ H,V H,
Logical function: @ (Sy1,Sn2) = Sp1 V Spo

Structure function: ¢ (x4, Xp2) = [1 — ((1 — X)) X (1 — xhz)]]




Reliability Block Diagram

H Parallel

PO®) = 1} = P{pCxr, X i) = = 1= | [Pli=0)=1-] [a =Pl =1p =
n i=1 i=1

Plpo=13=1-| [a-p.

i=1

Thus P{p(x) =1} =1—(1-p)"

The svstem reliabilitv is then:

Rp(t) =1 — HP{IE(E} —0}=1- nﬂ — P{x;(t) = 1})
i=1 i=1

RF‘(t} =1- ?=1 Qf(rj =1- ﬂf‘:; 1—=R;(t) ,
such that,

Qi(t) = P{x;i(t) = 0} = 1 = P{x;(t) = 1} = 1 — R;(1),
where R;(t) and Q;(t) are the reliability and the unreliability of block b;, respectively.




Reliability Block Diagram

B Parallel

Similarly, the system instantancous availability 1s vouee e
Tt T

(0 =P =1} =1-| [P =0y =1-] [1- 40, "
i=1 i=1 )

Ap(t) = P{p(x,t) = 1} = 1 - [[[Z, UA; () =1 —[[12, 1 — A (@),

such that, UA;(t) = P{x;(t) = 0} =1 = P{x;(t) = 1} = 1 — A;(¢t), o

where A;(t) and UA;(t) are the instantaneous availability and unavailability of block b;, respectively
The steady state availability 1s

Ap =Plop(x) =1} =1—-[[iL, UA; =1 - ][}, 1 — 4,

where A; and UA; are the steady availability and unavailability of block b;, respectively.

Due to the importance of the parallel structure, the following simplifying notation 1s adopted:
Pip(x) =1} = 1 —=[1j=;(1 = P{x; = 1}) = iz, P{x; = 1} =

P =1—=(01-p)™"




Reliability Block Diagram -

H Parallel

For a parallel system with n independent and
Identical components with rate A

and system

L om)

MTTF = ["R(t) x dt = [[1-(1-¢”

0



Reliability Block Diagram Mathematica

B Example

R_1comp (t) - MTTF=15000h

R(t)
—=——  END

1 1 R lcomp_[t] -
bl MTTF=15000h

15000.0 0.8 =——Qpar Zoom(t)

Rpar_2com(t) 08 7

—-— D.4 -

bl 0.2 -

10000.0 0

- MTTFs=15000h

10000.0




Reliability Block Diagram

B Example

The system works when at least one server works.

s, ¥ server 1 working

& gserver 2 working

s

@(51,5;) =8, VS, © @(51,5,) =5, \§;

We know that

Plg(x)=1}=1-(1 —p)(1 —p,)
As
P{¢(x) = 1} canbe R(t), A(t), A




Reliability Block Diagram

B Example

We know that

Plg(x)=1}=1-(1 —p)(1 —p,)
As
P{¢(x) = 1} canbe R(t), A(t), A

R(t) =1 (1= R (1))(1 =R, (7))
= R1 (1) +R, (1) = R(1) R, (1)

—) [ —Jnt —( A+ A1
—¢ 4 —e



Reliability Block Diagram

B Example

We know that

Plg(x)=1}=1-(1 —p)(1 —p,)
As
P{¢(x) = 1} canbe R(t), A(t), A

o0

MTTF, = J' R(t)dr = J‘ (e 4o — oy

0
1

0
1 1
= —+ —
A A A+4

R(730h) = 0.9997906870

MTTF = 105 000h



Reliability Block Diagram

B Series-Parallel System

— Series-parallel system: n stages in series, stage i with n; parallel
components.

— Fori=1,..n,Rij=Rj, ni>) >1
— Reliability of series-parallel system is given by




Reliability Block Diagram

B Series-Parallel System
Example:

P=1-(1—-p )@ —-p:))x(1—(1—-p)1A—p)A—ps))




Reliability Block Diagram

B Series-Parallel System
Example:

P=(1-1—-pp)(1—p3psp:))



Reliability Block Diagram

B Example:

Consider a system S, represented by four blocks (by, by, bs, by) where each block has
11, 1o, T3 and ry as their respective reliabilities.

b

RBD of System 5

The system reliability of the system 5, 1s

R.S'] ZT‘1H[l—(l—?’zxmj}{fl—ﬁ}].




Reliability Block Diagram

B Problem

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =

0.00004 failures per hour, respectively. The sw system provides the

proper service if the web services 1 or 3 are up and the web services 2
or 4 are up.

a) Calculate MTTF of sw system.
b) Calculate the R(t) at 730h




Reliability Block Diagram

B Problem

Mow, considering the previous example, suppose that the repairing
time of each web service is exponentially distributed with average 2h.

a) Compute the steady state availability.

b) Compute the downtime in hours in one year period.




Reliability Block Diagram

B K out of N

Sequence of Bernoulli trials: » independent repetitions.
= 71 consecutive executions of an if-then-else statement

S, sample space of n Bernoulli trials

(O 0),(0,1),(1,0),(1,1)}
2™ n-tuples of Os and 1s}




Reliability Block Diagram

Consider that event
A & Success,

thus, A  Failure.

H K out Of \ A. isasuccess at the it"

repetition an experiment.

J

Consider s € S, such that, s = LL....L p 0,....0)
4

nlfk
S = Al N AEA Ai’ 74\ E,ﬂ:—l/\ VA Eu
P(s)=P(A4)P(4,)..P(4,)P(Ar1)...P(4,)

v ok If each event 4; is independent, and
T T P) =p,P(A) =q
P(s): Prob. of sequence of k successes followed by (n-k)
failures. What about any sequence of k£ successes out of

n trials?




Reliability Block Diagram

B K out of N

k 1's can be arranged in (;’) different ways,

p(k) P(Exactly k successes and n — k failures)
mn -

k
k=n, reduces to Series system p(n) = p"

k=1, reduces to Parallel systemp(1) = 1—-(1 — p)"




Reliability Block Diagram

Example: 2 out of 3 system

n statistically identical components; also statistically independent

block(

blockl




Reliability Block Diagram

Example: 2 out of 3 system

n statistically identical components; also statistically independent
n

z ()pi = p)n

i=k

If n =3 and k = 2, then

3
3\ .. n—i _
=2

L

Qra-pr+ Qra-p-

3p*(1—p) +p* = 3p* - 2p°.




Reliability Block Diagram

Example: 2 out of 3 system

n statistically identical components; also statistically independent

n

Rs(f) — Z (2)8—;‘»{1(1 _ e—lr)n—x

x=k

Target

n o0
- MTTF = Z (") f e MX(1 — e MY X dy
x=k * 0

| o 1
O
x=k




Reliability Block Diagram -

H 2 out of 3

Assume independence and that the reliability of a
single componentis: R, .. (1)=e™"

we get: (1) =3e" =27

200

R, . (t)dt = j;se*‘-”dr - [ e
0 0

= —= MITF,_, .
64 -

Comparing with expected life of a single

component: MTTF,, , = > L vrrE

6& J., Simplex




Reliability Block Diagram -

l 2 out of 3

Reliability

3.75
At

Comparison of 2003 and simplex reliabilities

Thus 2003 actually reduces (by 16%) the MTTF over
the simplex system.

Although 2003 has lower MTTF than does Simplex, it
has higher reliability than Simplex for “short”
missions, defined by mission time t<(In2)/A.




Reliability Block Diagram

B Example: 2 out of 5

2|5
blockl

: a component failure rate

= a component repatr rate

u

' g Componet Availability

Steady-State Availability

o A o OE AR P
oo _Avail 9.99540000e-001



Reliability Block Diagram

B Example

For a system with 6 HDDs in a RAID-0 disk set, if the
reliability of each HDD at t=3 years is 0.9, the reliability

of the RAID set is

RraD set(t) =

RRraID set (3 }’EHT’S) —

RRAID set (3 }’EHT’S) —

Rupp(t)

Rupp (3 years) =

0.9 = 0.531441




Reliability Block Diagram

B Example Consider the reliability of each HDD at t=3 years as 0.9.
For a storage system with 6 HDDs configured as RAID-1
array, what is the storage system reliability at t= 3
years?

SCSI SCsI SC5l

— -
SCSI & = SCSI &= SCSI =

# of RAID sets
RraiD-1 set(t) = H Rramp-1 ' (t)
i=1
. N2
Rra-1 (t) =1 — (1 — Rupp(t))” = 0.99
3

Rraip-1set(t) = 1_[ (RRAID—:L i(_-t))

i=1 "
Reaip1 <et(t) = 0.99 x 0.99 x 0.99 = 0.97029899




Reliability Block Diagram

RAID-5 can tolerate one HDD failure in an array of n
HDDs. For example, if the parity HDD fails, the
remaining data HDDs are not affected, but redundancy
is lost. If a data HDD fails, the RAID controller uses the
remaining data HDDs and the parity HDD to recalculate
the missing data on the fly. System performance
slightly degrades until the failed HDD is replaced,;
however, no data is lost.

All data in the RAID set will be lost if another HDD fails
before the failed HDD is restored.

The mathematical relationship that evaluates the

reliability of n HDDs in a RAID-5 configuration is

n

RRrAID-5 set () = Z C,) R} pp (1) X ( pr(f))

J=n-1




Reliability Block Diagram

H Example For a storage system with 14 HDDs, one possible
configuration is 13 HDDs dedicated to RAID-5 with the
remaining HDD available for failover. The reliability for
this configuration is (in which 12 of 13 HDDs must

operate)

Rra1D-5 set(t)
13

13\ _: . . \13—j
- ( ) Rion(® x (1= Ripp(®)
Jj=12 '

Rraip-s set (3 years)

B 13!
121 (13 — 12)!

N 13!
131 (13 — 13)!

x 0.912 x (1 — 0.99)13-12

x 0.913 x (1 —0.99)13713 =

RRraip—s set (3 years) = 0.6213



Reliability Block Diagram

B Importance Indices

Reliability Importance

The reliability importance, or Bimmbaum importance (B-importance), of component
i 18 defined as

pi 1s the reliability of component i, p is the vector of component reliabilities,
and R 1s the reliability of the system.

17 = Re(1;, p') — Ry(0;, p').

where p’ represents the component reliability vector with the ith component re-
moved.

1P = E(¢p(1;,x') — ¢(0;, X)) = Pr(¢(1;,x') — p(0;, x') = 1)
where ¢ is the structural function of the system.




Reliability Block Diagram

B Importance Indices

Normalized Reliability Importance

where Inf Is normalized reliability importance and

I, = maxy;{I”}.



Reliability Block Diagram

Time:

Value Reliability Importance

Importance

Value

B Importance Indices

= - ) -
e ]

il

Component i

Component's failure rate



Reliability Block Diagram

B Importance Indices

Availability Importance

I' = A(1;,p") — A0, p')

(2

Normalized Availability Importance

where Inf Is normalized availability importance and

I, = maxy;{I#}.




Reliability Block Diagram

Importanc

Availability Importance
Value

B Importance Indices

Component i

Component's failure rate
Component’s repair rate



Reliability Block Diagram

B Importance Indices
Reliability and Cost Importance

(.
1§C=1§X(1— "“ )
CSys

Availability and Cost Importance

(.
I{lc:]{lx(l— - )
CSys

where C; is the cost of component /, and (g is the

system cost.



Reliability Block Diagram

B Importance Indices

Normalized Reliability Cost Importance

BC
BC _ l;

Normalized Availability Cost Importance
AC
AC _— I_
n _Ifc

IAC

max{I/¢}
Vi )




Reliability Block Diagram

B Importance Indices

BEGIN

Component i

dil

- N - -
) - )

Component's failure rate

Component's repair rate

Component's cost (5)

Time

Importance Value

0.4313978207988774

0.3155243258411295

0.23520918429128282
0.22730722126170033
0.22680885628087985
0.19943343152247847
0.15415809331859246
0.12988573173506824

MNormalized Value

1.0
0.7313999066032152
0.5452257126744737
0.5268085987517622
0.5257533657932425
0.462295872179328
0.35734787216383085
0.30108110317882775

Component namea

e52

el

el

c53

cd 213

Reliability-Cost Importance

Walue

Component:

Importance Value

0.8171333852333148
0.7706045489447356
0.14912841780255645
0.1109232876616923
0.0813524536691608
0.023360211871619525
0.022525918590490256
0.007565523162967663

Meormalized Value

10

0.9430585823529412
0.18250192746680646
0.1357468556128331
0.09955957636699922
0.028583003248636723
0.027567003132613982
0.0092586146834 7891

Component name

Availability-Cost Importance

Yalue

c0
c3
e12
cd 273
11

52

c51 ’
53 '




100

Component:

[=H
c53:
cd 2/3:

Component:

Importance Value

0.4313978207988774

0.3155243258411295

0.23520918429128282
0.22730722126170033
0.22680885628087985
0.19943343152247847
0.15415809331859246
0.12988573173506824

MNormalized Value

1.0
0.7313999066032152
0.5452257126744737
0.5268085987517622
0.5257533657932425
0.462295872179328
0.35734787216383085
0.30108110317882775

Component namea

BEGIN

- N - -
) - )

- -

) -
Component i co c11 c12 3 ca cs1 cs2 53
Component's failure rate 0.001 0.02 0.01 0.0001 0.0001 0.01 0.01 0.04
Component's repair rate 0.05 0.1 0.1 0.05 0.05 0.1 0.1 0.1
Component's cost (§) 1000 500 500 1200 1500 600 400 300
100
Re"ab“lty_cost |mp0|—tance Component:  Importance Value Re'iab““_‘y |mportance
) Value a2 0.4706158045078663 Valus
: cll: 0.3442083554630504 o
e 0.2727686655140404
51 0.25200984031208873
52: 0.25200984031208873
=t 0.24929178977809807
o 2/% 0.17318097572675767 "
ERS 5% 0.1622727298090447 £
el - E 51
Component:  Mormalized Value = ¢
=
= . =
az 10 g =
o3 cll: 0,7313999066032152 S =
el 01.5795994586269384
c53 €51 0.535489539233858 c42/3
€52: 0.535489539233858
e42i3 3 0.52971402020548 e53
el 2% 0.36798801499634504
€53: 0.344809350333521




Reliability Block Diagram

B Importance Indices

Compeonent:  Importance Value

0.9805600622799777
0.9632560611809194
0.16268554669369795
0.1478977168822564
0.08874922218453907
o5l 0.025028798433878063
52 0.025028796433878063
53 0.00796370859259754
Compenent: MNormalized Value
cl: 1.0
c3: 0.9823529411764708
cdz: 0.16591084315164226
cd 2/3: 0.15082983956981455
cll: 0.09050870578818113
o5l 0.025525002900568503
c52: 0.025525002900568503
53 0.008121591831999043

Component name

o3

c12

c4 2/3

cl1

(=3

52

ch3

BEGIN

- N - -
) - )

Availability Importance
Value

J

Component:  Importance Value

0.8171333852333148
0.7706045489447356
0.14912841780255645
/3 0.1109232876616923
0.0813524536691608
oo 0.023360211871619525
c51: 0.022525918590490256
0.007565523162967663

Meormalized Value

cl: 10

c3: 0.943058823529412
cl2: 0.18250192746680646
ol 2/3: 0.1357468556128331
cll: 0.09955957636699922
c52: 0.028588003248636723
c51: 0.027567003132613982
0.00925861468847891

Component name

c0
c3
e12

e 2/3

52

c51 ’
53 '

Yalue

1
Component i Co Cl11 C12 C3 ca
Component's failure rate 0.001 0.02 0.01 0.0001 0.0001 0.01 0.01 0.04
Component's repair rate 0.05 0.1 0.1 0.05 0.05 0.1 0.1 0.1
Component's cost (5)

Availability-Cost Importance




Fault Tree

FT is failure oriented diagram.
The system failure is represented by the TOP event.
The TOP event is caused by lower level events (faults, component’s failures etc).

The term event is somewhat misleading, since it actually represents a state
reached by event occurrences.

The combination of events is described by logic gates.

The most common FT elements are the TOP event, AND and OR gates, and basic
events.

The events that are not represented by combination of other events are named
basic events.



Fault Tree

Failures of individual components are assumed to be independent for easy
solution.

In FTs, the system state may be described by a Boolean function that is
evaluated as true whenever the system fails.

The system state may also be represented by a structure function, which, opposite
to RBDs, represents the system failure.

If the system has more than one undesirable state, a Boolean function (or
a structure function) should be defined for representing each failure mode.

Many extensions have been proposed which adopt other gates such as XOR,
transfer and priority gates.



Fault Tree

B Basic Symbols

Basic Symbols and their description’

Description

TOP event represents the system failure.

Basic event 1s an event that may cause a system failure.

Basic repeated event.

AND gate generates an event (A) if All event B; have occurred.

OR gate generates an event (A) if at least one event B; have
occurred.

KOFN gate generates an event (A) if at least K events B, out of
N have occurred.

The comment rectangle.




Fault Tree

B Structure Function

Consider a system S composed of a set of components, C = {¢;|1 < i < n}.
Let the discrete random variable y;(t)indicate the state of component i, thus:

_ { if the componentiis faulty at timet
Yilt) 0 if the component [ is operational at time t

The vector v(t) = (v, (t), v=(t), ..., vi(t), ..., ¥, (t)) represents the state

of each component of the system, and it is named state wvector. The
system state may be represented by a discrete random
variable Y(x(t)) = (v (£), y2(t), ..., ¥i(t), ..., ¥ (t)). such that

if the system is operational at time t

Y(y(t)) = “ if the system is faulty at time t

P (y(t)) 1s named the Fault Tree structure function of the system.




Fault Tree

B Logical Function

FT Logic Function ¥ denotes the counterpart that represents the FT structure function (i)
According to the notation previously introduced, s; (a Boolean variable) is eauivalent to x;
and §; represents 1 — X;. The W(bs) (Logical function that describes conditions that cause

a system failure) is the counterpart of Y(y(t)) = 1 (FT structural function — represents
system failures), W(bs) depicts of P(y(t)) = 0, A represents X, and V 1s the
respective counterpart of +.




Fault Tree

B Example

Consider a system in which software applications read. write

and modify the content of the storage device D, (source).

The system periodically replicates the production data

(generated by the software application) of one storage device (D)
in two storage replicas (targets) so as to allow recovering

data in the event of data loss or data corruption. The system 1s
composed of three storage devices (D;, D5, D3), one

server and hub that connects the disks D, and D, to the server

Server




Fault Tree

B Example

Server

The system 1s considered to have failed if the hardware infrastructure does

not allow the software applications to read. write or modify data on Dy,
and 1f no data replica 1s available,

Hence, if Dy or the Server
or the Hub,
or both replica storages (D5, D3) have failed.




Server

Fault Tree

B Example

L]-"(hﬁ:]' = 3p V 511'|.|"r 37 ll'l-"r'[ SHJ'HL 54 L

Sg V51V s, V(s3/Nsy)=
So N1\ Sz A( 53\ 54)

The respective FT structure function may be expressed as

P(y(t)) =[1—(1 —yp(t)) x (1 —y1(t)) X (1 —y2(t)) x (1 —y3(t) X ya(t))].

ifyg(t) =T1ory;(t) =1ory,(t) =1orvy;(t) = yu(t) =1, then
P (y(t)) = 1, which denotes a system failure.




Fault Tree

B Problem

a) Calculate the R(t) at 730h
b) Calculate MITTF of system.




Fault Tree

B Problem

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =

0.00004 failures per hour, respectively. The sw system provides the

proper service if the web services 1 or 3 are up and the web services 2
or 4 are up.

a) Calculate MTTF of sw system.
b) Calculate the R(t) at 730h




ANALYSIS METHODS



Computing the Reliability

What is the respective RBD?
This?

WV

APP1

Or this? ™

VMM1



Analysis by Space Enumeration

B The method by an example

State-space enumeration method proceeds by determining the whole set of state vectors,
checking for each one if the systemis operational or not.

The whole set of state vectors represents all the combinations where each of the m
component can be good or bad, resulting in 2" combinations.

Each of these combinations is considered as an event E;. These events are all
mutually exclusive (disjoint) and the reliability expression is simply the probability of the union
of the subset of events that contain a path between the source and the target nodes.

Re((S) = Pr(E; UE, U..UE,,) = Pr(E;) + Pr(E,) + -+ P(Ep)

where Ein E =0Vi,Vj,i+]j
| -
c2 c3




Analysis by Space Enumeration

B The method by an example
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Analysis by Expected Value of the
Structure Function

B The method by an example

Consider a system (C, ¢) composed of three blocks, C = {a, b, ¢}

‘QD(Sa:Sb»Sc) =Sq AN(SpVSe) =5 (SpASe)
P(X) =xg X [1=(1—xp) X (1 —x.)]

Rs = P{¢p(x) = 1} = E[¢p(X)] = E[xy X [1 = (1 —x) X (1 = x.)]] =
Rs =P{p(x) =1} = E[xg] XE[1 - (1 —x,) X (1 — x)] =
Rs = P{p(x) = 1} = E[xq] X [1 = E[(1 — xp)] X E[(1 = x)] =
Rs = P{¢p(x) =1} = E[xq] X [1 = (1 — E[x,]) x (1 —E[x,])
Rs =P{p(x) =1} =pa X [1 = (1 —pp) X (1 —=pc)] =pa X [1 = qp X q]




Analysis by Expected Value of the
Structure Function

B Summary of the Process

As x; 1s a binary variable, thus x;¢ = x; for any i and k;

hence ¢ (x) is a polynomial function in which
each variable x; has degree 1.

Summarizing, the main steps for computing the system
failure probability, by adopting this method are:

1) obtain the system structure function.
11) remove the powers of each variable x;; and

111) replace each variable x; by the respective p;.




Analysis by Expected Value of the
Structure Function

B Fxample
Consider a 2 out of 3 system represented by the RBD
in figure. The logical function of the RBD
presented in figure is

@(bs) = (S; AS3)V(S1AS3)V (52 AS3)
Therefore

(p(bs) = (51/\52)\/(31/\53)\/(52/\53) blockl

2 out of 3 system

components statistically independent

block3

block?2

@(bs) = (s AS3)A (51 AS3)A(S,AS3)

I
$(x) =1 = (1 —x1x2)(1 = x1x3)(1 = xx3).

Considering that x; is binary variable, thus x;* = x; for
any / and k, hence, after simplification

P(X) = x1x + X1X3 + XpX3 — 2X1X2X3,




Analysis by Expected Value of the
Structure Function

2 out of 3 system
components statistically independent

B Example

block3

block?2

blockl
Since ¢(x) is Bernoulli random variable, its expected value

is equal to P{¢p(x) = 1}, that is, E[¢p(x)] = P{pp(x) =

1. thus

P{p(x) = 1} = E[¢p(x)] = E[x1x5 + x1X3 + XpX3 — 2X X5 X3]

Elxix;] + E[xyx3] + E[xx3] — 2 X E[xyx5x3] =

Elx,] E[xz] + E[x1] Elx3] + E[x3] E[x3] — 2 X E[x,]E[x2] E[x3].
Therefore

P{p(x) = 1} = p1p; + p1p3 + 2Pz — 2 X p1p2ps,
ASpPy=pa =pP3=p
P{p(x) = 1} = 3p? — 2p?




Pivotal Decomposition, Factoring or
Conditioning

B Method This method 1s based on the conditional probability of the system
€tho according the states of certain components. Consider the system
structure function as depicted in

p(x) = x; P(1;,x) + (1 — x;) p(0;,x)
and identify the pivot component i,
then

P{o(x) =1} = E[x; ¢(1,x) + (1 —x;) ¢(0,x)] =
Elx; (1;,x)]+ E[(1 —x;) ¢(0;,x)]

If x; is independent, then:
E[x;] X E[¢(1,x)] + E[(1—x;)] X E[¢(0;,x)].
As x; is a Bernoulli random variable, thus:
P{p(x) =1} = pi X El¢p(15x)] + (1 —p;) X E[¢(0;,%)].
Since E[¢(1;,x)] = P{¢p(1;,x) = 1} and E[¢p(0;,x)] = P{¢p(0;,x) = 1},

then:

Plo(x) =1} = pi X P{op(1,x) = 1} + (1 = py) X P{¢(0;,x) = 1}.



Pivotal Decomposition, Factoring or

Conditioning

B Example

Consider the system composed of three components, a, b
and ¢, depicted inthe figure where ¢(x4, xp, x-) denotes the
system structure function.

As P{p(x) = 1} = E[x; ¢(1;,%) + (1 — x;) ¢(0;,%)], then:

P{fi’(l‘n-xh!xc} = 1} = Pa X Ew’{laa xb-xcﬂ
_I_

[1 _ Pﬂ) X E[ t,ﬁ'l:ﬂﬂ.l‘h,xc)
But as E[ ¢p(0,, xp, x:)] = 0, s0:
P{¢{IHFIBJIE) — 1} = Pa X E[(p(lmxbr:"c)]-
Since

Elgp(1,, xp.x:.)] = P{p(1,, xp, x.) = 1},




Pivotal Decomposition, Factoring or
Conditioning

B Example
Now factoring on component b,

Pip(1g, xp, xc) = 1} =
Pp X E[‘p(ln- lb-xc”
_.|_
{1 - ph) X E[ ﬁb[laa DDJIEHJ

c
then

P{ﬁ{?‘{xa,l’b.lc) = 1} = Pa X [p.i':l X E[(ﬁ(lm ]hrxl'_‘)] + (1 - ph) X Elqj(lﬂr{]hrxf)”-
As E[¢p(1,,1p,x.)] = 1, thus:

P{p(xq,Xp, %) =1} = pg |pp + (1 = pp) X E[ (14,05, x)]].-
Now, as we know that
E[ (14,05, x.)] = P{¢(14,0p,x.) = 1}, and

P{qb(lﬂr []hu xf.') = 1} = E[Ir: ¢(1n: GF}: ]-r) + (1 - xc] ':b(]-ul C'JE:- []f.')]'-
then

El ¢(1uJ ﬂh!xr_‘]_l - E[xr_‘] E[‘ﬁ(im DhJ lf::]J T EI.(I o IE)JE1¢(1:1J ﬂbJ GL‘)J:
thus

E[q’(larﬂﬂrxc)] =P X E[(,b(lﬂ,ﬂb, 15)] + (1 - pc) X E[q’(la: ﬂﬂ'fﬂf‘}]'




Pivotal Decomposition, Factoring or

b

- I

Conditioning }

B Example

As Elq‘](lmﬂb:itjj = P{q‘](lcu Dfﬂ'-]-r_'} = 1} =1
and E[Q{?“mﬂmﬂc)] = P{¢{1uﬂﬂhﬂﬂt') = 1.} =0,
then
El qb(]ur ﬂhxxr_')_] = Pe-
Therefore:
Plop(xq, xp, xc) = 1} = pq lpp + (1 —pp) X pcl =

P{¢{Iu1 Xhs If.') = 1} = PaPp T+ Fu;ﬂf(l o F!})J
which 1s
P{p(xg,xp,x;) =1} = pall — (1 — pp)(1 — p.)].




Pivotal Decomposition, Factoring or

Conditioning

B Example — Bridge Structure

d(x) = x; p(1;,x) + (1 — x;) P(0;,%)
Factoring on bs
$(x) = x3 ¢(13,x) + (1 — x3) ¢$(03,%)
P{p(x) =1} = E[x3 ¢(13,x) + (1 — x3) ¢(05,x)] =
P{¢(X) =1} = E[x3 ‘3’3’(13:3)1 + E[(l — X3) Qb({]a:x)] —

By independency
P{¢(x) =1} = E[x3] E[¢p(15,x)] + E[(1 — x3)] E[¢(03,x)] =
P{¢(K) =1} =p; E[¢(131K)] + (1 _PE) E[‘i’(ﬂmx)] —



Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

If x; =1 = p; = 1, then:

Configuration 1:

Plop(x) = 1} = E[¢p(15,x)] = P{pp(15,x) = 1}
P{p(15,x) =1}=(1 -1 —p)(A —ps)) x (1 = (1 —p,)(1 —ps))




Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

Ifx; = 0= p; =0, then:

Configuration 2:

P{p(x) = 1} = E[¢(05,x)] = P{¢p(05,x) = 1}
P{p(05,x) =1} = (1 — (1 — p1p,) (1 — pups))




Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

Therefore:
P{p(x) =1} =ps X P{pp(15,x) = 1} + (1 — p3) X P{p(05,x) = 1}

P{p(x) =1} =p; X ((1 - (1-p)(A - F’aL)) X (1 - (1-p)(1 -
p))) + (1 —ps) (1 - A -p)A-p))x (1~ (1 -p)(1-ps)))
e



Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

Ryrigge(t) = €712 )t _gmliarisraurdolt 4 gnlhrdsrdot

- At

i . e_(/ll+ﬂ‘2 +ﬂ<3+/15)t . e_(ﬂl+ﬂ’2 +ﬂ/3+2“4)t . e_(/11+/18+ﬂ“4+ﬂ“5)t

+ e_(ﬂl+/12)t + e_(ﬂ~4+2~5)t . e—(ﬂzl+/12 + A4+ 45)t




Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

(t)dt

E)a idge

] " ] 2
_I_

MITE = ——tF ——t+t —————+ —
/Lfl -I_ /Lr: /b4 -I_/LrS /sz +/Lr3 +/h4 Z;

] ] ]

/;Lrl +/j|..f2 +/;Lr3 +}Lr_1_ )LE -I_ ;LS +/;Lr_1_ +/;Lr5 /11 +/;Lr2 +/;Lr3 +/15
1 1 1

At A+ A+ A At A+ A At A+ A+ A




Reductions

The dependability evaluation of complex system
structures might be conducted iteratively by indentifying
series, parallel. k out of n and bridee subsvstems.

evaluating each of those subsystems, and then reducing each

subsystem to one respective equivalent block.

This process may be iteratively applied to the resultant
structures until a single block results.




Reductions

B Series reduction

B Parallel reduction



Reductions

B 2 out of 3 reduction

B Bridge reduction

P{p(x) =1} =p; x P{p(15,x) = 1} + (1 — p3) x P{¢p(05,%) = 1}



Reductions

B Example

Consider a system composed of four basic blocks (by, bo, b3, bs), one 2 out of 3
and one bridge structure. The three components of the 2 out of 3 block are equivalent,

that is, the failure probability of each component is the same (p4). The failure
probabilities of components by, by, b3, bs and the failure probability of

the bridge structure are ppq, Ppz, Poa, Ppa and pps, respectively.

EI:ILE'CE" \

b1




Reductions

B Example

The 2 out of 3 structure can be represented one equivalent block whose reliability is 3p? — 2p* . The
bridge structure can be transformed into one component, by, whose failure probability is pp, =

(1= (1 = pp1Pp2)(1 — PpaPps) (1 — Pp1PpaPus) (1 — PraPpaPea) )-

After that, two series reductions may be applied, one reducing blocks b, and bzinto block b,3; and a second that
combines blocks bg and by and reduces it to the block bgy,. The reliability of block bys 18 py3 = p; X ps, and the

block reliability of block bgy is psp = ps X [(1 — (1 — Pp1Pp2) (1 — PpaPps) (1 — Pp1PpaPes) (1 — PpaPpiPea))] -

Source 23 |7
, .




Reductions

B Example

Now a parallel reduction may be applied to merge blocks b, and b,.
The block b,3, represents the block by; and b, composition, whose reliability is py34 =1 — (1 —p; X p3) X

(1—3p? —2p?).

Source Target

b1 hl34 b5k

Finally, a final series reduction may be applied to RBD and one block RBD is generated ,
whose reliability 1s
P12zasp = P1 X [1 — (1 — py X p3) x (1 —3p? — 2p?)]
X [Ps. X [(1 = (1 = pp1Pp2) (1 — PpaPps) (1 — Py1PpaPps)(1 — I?bzpuazpm)ﬂ]-




Computation Based on Minimal
Paths and Minimal Cuts

B Path and Minimal Path

Consider a system S with » components and its structure function ¢p(x), where SCS = {¢,,¢5, ..., € } is the set of
components. A state vector X is named a path vector if ¢p(x) = 1, and the respective set of operational components is
defined as path set. More formally, the respective path set of a state vector is defined by PS(x) = {¢;i|¢p(x) = 1,x; =
1,c; € SCS}. A path vector X is called minimal path vector if ¢p(x) = 0, for any y < x, and the respective path set is
named minimal path set, that is MPS(x) = {c;|c; € PS(x),p(x) =0 Yy < x}.

PS: 158 a mmmimal path set

1

PS., 15 a minimal path set
?

PS5 1s not minimal

= {by, b3} and PS; = {by, by, by} are path sets




Computation Based on Minimal
Paths and Minimal Cuts

B Cut and Minimal Cut

A state vector X is named a cut vector is ¢p(x) = 0, and the respective set of faulty components is defined as cut set.
Therefore, CS(x) = {c;|¢p(x) = 0,x; = 0,¢; € SCS}. A cut vector X is called minimal cut vector if ¢p(x) = 1, for any
y > X, and the respective path set is named minimal cut set, that is MCS(x) = {¢;|¢c; € CS(x),p(x) =1 Vy > x}.

Source ‘ ' Target

bl

C51 = {b1:b2}- f:.gz — {blrbB}: (53 = {bpbz:b:;}: [‘:5-1 = {b1}1 and
CSs = {by, b3}

CS4 is a minimal cut set,
(S5 1s a minimal cut set,

The same is not true for €S, €S>, and (55.



Sum-of-Disjoint-Products (SDP)
method

AUB =AU ((A° nB)
A ={e f,g.h .., 7}
A NnB={e f,gh,. } {c,d,e f} =
A° NB ={e f}
AUB ={a,b,cd}VU f {a,b,c,d, e f}

—

AUB ={a,b,c,d,e,f} ={ab,c,d}U{cd, e, f}

Now, consider P(AUB) = P(A U (A° nB))
AsA N (A° NB) =
since A and (A° N B) are disjoint, then

P(AUB) = P(A) + P(A° N B)




Sum-of-Disjoint-Products (SDP)
method

A

Disjoint Terms: Addition Law The addition law of probabilities is the underlying
justification for the SDP method. If two or more events have no elements in common,
the probability that at least one of the events will occur is the sum of the probabilities
of the individual events. If two events A and B have elements in common, the union
of these two events, A U B, may be expressed as the union of event A with event

B, where A¢ denotes the complement of A. Then we have the following equation
for evaluation of the probability of A U B:

Pr(AU B) = Pr(A) + Pr(4A°B).




Sum-of-Disjoint-Products (SDP)
method

D@ | &

Similarly with three events
A, B, and C, we have

P(AUBUC) =
Pr(A) + Pr(A°B)
+ Pr(4°B°C)




Sum-of-Disjoint-Products (SDP)
method

Similarly with three events A, B, and C, we have

Pr(AUBUC) =Pr(A) + Pr(4°B) + Pr(A°B°C).

With n events Ay, A>, ..., A,, we have

Pr(4,) + Pr(4A{4,) + Pr(474543) + --- + Pr(Af ... A5, _{A,)




Sum-of-Disjoint-Products (SDP)
method

Considering a system composed of three independent

components by, b, and b5, where the components failure

probabilities are py, p;, and p3, respectively.

The respective RBD logical function 1s:
©(S1,S2,53) = S; A (S, V S3)

Then define all minimal paths: Source

P(S1,S2,53) = (St ASp) V (S1 A S3)

The minimal paths are:
PS, =1{by, by} and PS, = {b,, b3}

(and PS, = {b;}, and PSc = {b,, b3} are minimal cut sets)

P(S1,52,53) © Pp(x1,x,x3) =1




Sum-of-Disjoint-Products (SDP)
method

The respective RBD logical function 1s:  Therefore:

@(S1,S2,53) = Sy A (52 V S3) P((p (51,57, 53 )) = P(¢p(xq,xy,x3) = 1).
Then define all minimal paths:

| | _ o ~ Then., applving the SDP formula:

The minimal paths are: L
= ITMET PAts are P(PS, U PS;) = P(PS,) + P(PS,° N PS,).

e A e ] , Every component within the minimal
(and PSy = iby}, and PS5 = {by, b3} path PS; must properly work for PS; being
are minimal cut sets) responsible for (x4, x5, x3) =1

P(51,52,53) © P(xq,x9,x3) =1

PS; ={by, by} and PS, ={by, b3}.




Sum-of-Disjoint-Products (SDP)
method

So,

eq Therefore:
PS5, < sy As; and P(PS;“ NnPS,)=P(5{ NS; AS; AS3)

P(P51) = P(s1 A s3). PS,° N PS, & 5 A5, AS;ASs

As PS5, S S1 N\ Sy, thus: So,

ps,° o SRS, P(PS; N PS,)=P(s;{ As; AS; AS3)

Then:

P(¢(51,52,53)) = P(s1 Asp) + P(5; As; Asy Asy) =
P(sy Ns3) + P((51V 53) Asy As3) =

P(sy Asp) + P((S1 Asy As3)V (S Asy As3)) =
P(sy Asy)+ P(5; Asg Asg) =P(PS;)+P(PS,° nPS,)

: . ca
Since PS, & 54 A s3, thus:

. eq
PS;°NPS, & 5; As; AS; Sy




Sum-of-Disjoint-Products (SDP)
method

Source

Now,consider P(x;) = P(x5) = P(x3) = 0.9
P(p(xq,x9,x3)=1)=09%x09+(1-09)x09x09 =
P(p(xq,x5,x3)=1) =0.891

It is worth noting that:
P(p(xq,x9,x3)=1) =
Pxy) X (1 =(1-=P(xz)) X (1 =P(xy)) =
09%Xx(1—-(1-09))x(1—-0.9))=0.891




State-space based models



Single Component System Availability Model

Consider a system with one component

or when the system is considered as a A simple 2-state CTMC
black-box. This systems may have a

normal functioning (1) state and a ?1'1(0) =1

failed state (2).
1 A
my(t) =

_I_
At+u A4+u
A R~

o—(A+w)t

m,(t) = +
If the TTF and TTR are exponentially A+ H A+ H

distributed with rate A and g, m(t) +my(t) =1
respectively, the CTMC that represents A(t) = T, (t)




CTMC

Single Component System Availability Model

l
'L—j t — 00 ) .
A+ u Figure shows the transient and

A simple 2-state CTMC
m(t) =m =

bl steady-state behavior of the 2-state

my(t) = my = t—>© BCTMC for 3A=p = 1.

A=my
Steady state availability




CTMC

A simple 2-state CTMC

DT = (1—-A)XT
T — time perioad

Downtime
DT = (1 —A) X 8760h

Steady state availability hours in a year

DT = (1 — A) X 525,600 min

minutes In a year



CTMC

Single Component System Reliability Model

m,(0) =1 o0 o :
R(t)dt = [ e Mdt =—

At
J p

MTTF = [

mi(t) = e~ Jo
i (t) + my(t) = 1
R(t) = my(t)
Reliability

R(t)=m(t) =0,t >



CTMC

Two Component System - Hot Standby
Availability Model

Two-component parallel redundant

system with the same repair rate u

and the same failure rate for both

components is (A4).

When both the components fail, the
system fails.




CTMC

Two Component System - Hot Standby
Availability Model

Non-shared (independent) repair

A(t) = my(t) + my(t)
Instantaneous availability

w(2A + p)

A — ﬂ-z + ﬂ'-l — (/1 n 'u._)z

Steady state availability

DT =(1—-A)XT

T — time period

Downtime



CTMC

Two Component System - Hot Standby

Availability Model

Shared repair
A(t) = my(t) + my(t)
Instantaneous availability

H(2A+ )

A=m,+m =——"""——
T T2 4 2+ w?

Steady state availability

DT =(1—-A)XT

T — time period

Downtime



CTMC

Two Component System - Hot Standby
Availability Model

Non-shared case can be modeled & solved
using a RBD or a FTREE but shared case needs

the use of Markov chains.




CTMC

Two Component System - Hot Standby

Reliability Model

Some authors erroneously claim
that reliability models do not admit
repair.

Yy . . 00 B :, /:{ + -
R(t)=1—m,(t) @ MTTF = j R(t)dt = - a

o 272




CTMC -

Generalization of the two-component system
Model with shared repair facility

B Example — Availability model

M similar machines independent repair facility.

Hot Standby
Failure rate of each machine is A

Repair rateis i




CTMC -

| Example — Avallablhty model Generalization of the two-component system

model with independent repair facility
M similar machines independent repair facility.

Hot Standby

Failure rate of each machineis A

Repair rate is

System availability is then computed
using a combinatorial approach



CTMC

Hot Standby

2-equal component availability model
without perfect switching (with finite
detection delay)

Hot Standby

2-equal component availability model
with perfect switching




CTMC

Hot Standby
2-equal component availability model

without perfect switching (with finite
detection delay)

Then Unavailability is given by

| Then Unavailabilty s given by




Plot of downtime D(6), D(6, tw), and D (for 3
state model without state 1D) as functions of
1/6 (in seconds) for 1/A =10, 000 h and 1/u =
2 h.

G P A D D
o® 5}”‘ oF 7 o

i+

AP
o

Qﬁp"'ﬁ,}{’ Qq;"’g@" ~ 1/8(s)




CTMC

Hot Standby
2-equal component without perfect

switching with imperfect coverage availability model

Coverage factor = ¢ (conditional
probability that the fault is correctly

handled)

1C state is a reboot (down) state.

A+ (1 = c)
poE
D(5,¢c) =U(S,c)x8760x60 (down time in min/year

U(B,c) = mo+mic = (E = pryh)




Cold Standby

A:0.001 A: (PISD}+PI52Y) A: 0.9900375256
w 0.1 DTyh: 8760*(P{51}+P{s3))  DTyh: 87.27127561.

& b




Cold Standby
Reliability Model with Perfect Switching

£
w 0.1 v

K
)
R: 0.9640809
R: (1-PiF})

MTTA: 101999.9999849




CTMC

Active-Active Redundancy

Consider a system with two parallel servers.
The system is considered to be operational
if at least one of the servers is operational.

An availability model is represented by the following CTMC:

Server 1

7o S N

'l

\..,U ~

(U

Server 2
H(2A + p)

A=n(UU)+n(UD) = 2+ 200 + 122




CTMC

Capacity oriented availability
Now, if the users are interested not as much
whether the system is operational or not, but
rather in the service capacity the system may
deliver. Considering the depicted
architecture, it is assumed that if the two
servers are operational, the system may
deliver its full service capacity. If only one
server is operational, the system may deliver
only half of it service capacity. And when
none of the servers is operational, the system
may not deliver the service. Therefore
Capacity Oriented Availability (COA) is:

COA =(2 X m(UU) + m(DU)) /2

COA =

Active-Active Redundancy

p(A+ p)
2% + 21 + u?




Active-Active system with imperfect fault coverage,

automatic and manual failover mechanism

200% = . . .ge
\1/10000  UF ‘ Capacity Oriented Availability

wl/24 I*h*{1-c) COA Yo xn
0. 0.25 -

NS
af: 8

n, UP D, Up S
mf: 2 e

0% I} !’11.5 X n; if i U F, C F, AFE, AMF
c:0.99 v t o
afps: 0.95 N %

mfps: 0.98

5l
NS: 7 X ) ,- . where n; € N is the number of active servers at
mf*mfps A F state .

otherwise

AN .5 I | I " I f Y "

oT £ 0793693296 COA: ((PIUP_DFR{UP_D}+(P{U_F*R{U_F})+
_ym: b. P{C_FF + " + 4 +
COA: 0.9975661053 (PLC_FYR{C_FH+(P{UP_S}R{UP_S})+ (P{AFFY"R{AFF})
P{AMF}*R{AMF})+ (P{F}*R{F})/(MNS)
A 1-PiF}
DT _ym: ((P{F"8760)"60)
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Capacity Oriented State

Availability in Cloud = S
Systems Si = (Spm,» Spm, HVMyp )

A Simple Example

U — Up

g M — {
| PMi D Down
vmM |pvz | v e A
#L’}”Lu:p — {l.-z.:ih‘df}

Consider a system composed by two
physical machines, PM1 and PM2,
where each physical machine sup-
ports two virtual machines (VMs).



A =0.9999999868771198
COA=0.9995384300392318

APIMI2

3*APM1
pae p3"APM1

pI*APM1 APM1

WP AV

HVM

p1*APM2 &AM HVM
pIAPM2

p3*APM2
APM1

1 | Component Failure rate
""”H.f/—'. PM, Apyy = 1/B760H
|}1le | - FJWZ - lll-\.jl-'l'j'z = lfﬂ?bﬂ';l
Virtual machine Ay = 1/2880h

___/"/ W= 1h=1is the repair rate assigned to

/ physical and virtual machines.
__J————“‘/ pl: p2: p3:0.25




APM: 1/8760
AVM: 1/2880

UWM: 1

uPm: 1

pl: 0.5 WPM
p2:0.5 VM |PM1 | VM
Un=2.615917789133822E-8 1 2
Av=0.9999999738408221 q

COA=0.999538513813583

S; = (#pmyp, #vmyy)

#pmyp = {1,2}
2*(p2*APM) #vmu, — 1’2’3’4




CTMC
Comparison

| Model | A | @ COA
Model 1 0.9999999868771198 | 0.9995384300392318

Model 2 0. 9999999738408221 0. 999538513813583




CTMC
| vamanay |

Warm Standby WSB = (WSbM || WSbS)




SPN

2 out of 3 with shared repair
Availability Model

The CTMC model:

1

A= h=1
a760

1
1 =—~h"
* =24

Availability=rr(5:) + m(S,) = 9.99955210e-001



CTMC

B Example — Availability model

An equivalent 2-state availability model
It is interesting to consider an equivalent 2-
state availability model that has the same Repair rate is u

steady state availability as the given multi-
state availability model.

To represent system availability in the simple
form of equivalent 2-state system, we need
to properly define equivalent failure rate )Leq

and equivalent repair rate /1,,, such that 1 = ATy
R AR AR AR SE A

_ MTTE, e
MTTF,, + MTTR.q  Aeq + Heg Heg = H

A




CTMC

B Example — Availability model

An equivalent 2-state availability model

Let U be the set of up states, D the set of 2
" i
down states, R the set of all transitions from A M-1
Uto D, G the set of all transition from D to Tyt 7T, T, +... T,

U, t;; the transition from state itoj /”eq = 1

Iy =R

Aoy = Z P(system in state / | system is up)x g, =

[;r-ER Zﬁk

k=sU

PIALE

el

H,, = ZP(system in state 7 | system 1s down ) x q; =

;=G 1_2‘:‘?}%

k=7




CTMC

B Example

Consider a system consisting of two web-
servers, one database server and a network
infrastructure. The system is operational as
long as one web-server and the database
server are operational. It is assumed that a
network infrastructure is fault-free. The
database server repairing has priority over
the web-servers’ repairing activities. The
failure rates of the web-servers and of the

database server are constant (4,5, 443

respectively), and the respective time to
repair are exponentially distributed with rate

Uyws and Ugp.

Ays = 1.14 X 10™* failures per hour
Agp = 2.28 X 107* failures per hour

Uys = Hgp = 4.17 X 1072 repairings per hour




CTMC

B Example — Availability model

1.14 X 10~* failures per hour

2.28 X 10~* failures per hour

0.99454705138



CTMC

B Example — Availability model

A=, +m = 0.994547080

A, =1.14x 10-* failures per hour Downtime = (1 — A) X T = 2866.05467 minutes

Agp = 2.28 X 107 failures per hour

Uys = Ugp = 4.17 X 1072 repairings per hour




CTMC

B Example — Availability model

The equivalent two-state model




States (0,1), (1,0) and (2,0) are absorbing states

and (2,1) and (1,1) are transient states.

Absorbing states can be combined into a single

one.
Ays = 1.14 X 10~* failures per hour

Agp = 2.28 X 107 failures per hour R(f) — ﬂ:'_" ] (t) + 7l 1.1 (t)

Uys = Ugp = 4.17 X 1072 repairings per hour




C I MC General Controller

— ]

B Example - Availability model
EUCALYPTUS is composed by five high-level .

components: Cloud Controller, Cluster Controller, - A

Node Controller, Storage Controller, and Walrus. E —

L1 il
Node 1 Mode_2

exposing and managing th underlying virtualized No redundancy

The Cloud Controller (CLC) is responsible for

resources (servers, network, and storage).

ClusterA / e X | Cluster B

\ Il

Mode 1  MNode 2 Mode M,
Redundancy in the GC




CTMC

B Example - Availability model
EUCALYPTUS is composed by five high-level

components: Cloud Controller, Cluster Controller,
Node Controller, Storage Controller, and Walrus.
The Cloud Controller (CLC) is responsible for

exposing and managing th underlying virtualized

resources (SEFVEFS, network, and storage).
—H_s1—_

st —

Parameter Description Value
Asl = A _s2=1/A Mean time for host failure 1/180.721
Ai_s2=1/X\; Mean time for inactive host failure  1/216.865
- p_sl =pu_s2=1/p Mean time for host repair 1/0.9667
‘El sa_s2 = 1/sa Mean time to system activate 1/0.005

pw(Xi(p + sa) + p? + sa(\+ p))

LY
MNode_1  Mode_2 Mode_ K A-GC-' = /\ (

Redundancy in the GC i A+ ,u)(,u + 3{1) + ‘{52()\ + ;‘Ji) + Sﬂ-()\z + /\f_t -+ ,LLQ)




CTMC

B Example — Reliability model

System composed by Two Subsystem:

One Switch/Router and Server Cluster

Perfect switching cold
standby server architecture

The system is composed by a Switcher/Router and Serve subsystem. The system fails if the
Switcher/Router fails OR if the Serve subsystem fails. The Server subsystem is composed by two servers,
S1 and S2. S1 is the main server and S2 is the spare server. They are configured in Cold Standby, that is,

S2 starts as soon as S1 fails. The start-up time of S2 is zero. This is named perfect switching.



System composed by Two Subsystem:

Clients Switcher/Route
) . ) ~
, : - - i -

Perfect switching cold

One Switch/Router and Server Cluster standby server architecture
The CTMC reliability model Absorbing states can be
) . . . . compined II"IID.’:'ISII"IgIE one
A rs
) Wariable Yalue
tie | e larbda_rs 1/2000
System Unreliability: - lambda_s1 TR
' O"‘ ' mu 1424
L
UR(4000h)= 0.181615244 U lambda_s 113000
The unity of these rates is h™1.
SYSIEITI Reliabi |Tt‘f' Ay is failure rate of the Switcher/Router.

Agq is failure rate of the Server 1.

R(4000h) = 0.818384756

Aso is failure rate of the Server 2.

W is the repair rate assigned to Server 1 repair activity.




CTMC

B Preventive Maintenance

Preventive maintenance is useful when the time [l Two main strategies:

: . , : : : Condition-based (inspection-based)
to failure distribution has an increasing failure PM considered here

rate. Time-Based PM

We model TTF by Hypoexponential HYPO(A3, A2)
distribution.

Time to trigger inspection is assumed to be
EXP(Ain),

Time to carry out inspection is EXP(uin ),

Time to repair is EXP(u ),

Time to carry out PM is EXP(yu).




CTMC

B Preventive Maintenance

Preventive maintenance is useful when the time
to failure distribution has an increasing failure

rate.

CTMC with corrective maintenance only




CTMC

B Preventive Maintenance

Preventive maintenance is useful when the time
to failure distribution has an increasing failure
rate.

CTMC with preventive maintenance
Inspection triggered after EXP(Ain) intervals
Time to carry out inspection is EXP(Jin)
Time to carry out PM is EXP(yp)

PM carried out if inspection finds the system
to be in degraded state (1,0)

A=Tgo+



CTMC

A, =0.001 A
A, =0.001 A1
Uin =10 h71
u=0.1h1

B Preventive Maintenance

Preventive maintenance is useful when the time -
y =

to failure distribution has an increasing failure 2 = 0.0005 h-1

rate.

Steady=-state Availability

100 1500

= r-..II.J'II'E:I =1 2000 2508
A= To,0 T 1,0 MTBI - meantime Availability as function of

between inspections MTBI=1//.




SPN

Single Component System Availability Model

The instantaneous availiability :

A(t) = P{(m(C_0K) = D)(©)}
X (8) = =

Downtime in period T :

J‘rITTF "mm'P Server DT =T x P{(m(C_F)=1)}=
MTTR | p | single Server |

The stationary availability

A=P{(m(COK)=D}= Y nrx

{1 se mi(C_0K)=1
]""[ =

0 sem(C_OK)=10




Transition | Time Type of Service
F MTTF
tA

Although the reliability of the basic component is analytically defined by R(t) = e, it s
possible to calculate the respective value through numerical transient analysis, once the

transiton R. is removed. The reliability can be calculated by:

R(t) = P{(m(C_0K) = 1)(t)} = Z 7 x m; (8),

VYMERS

. (1 se m(C_OK)=1
710 sem;(C_OK) =0




SPN

Basic Model with Erlang Distributed Repair Time
Availability Model

A= P{(m(C_OK) = 1)} = z ro X,
VM ERS
_ (1 se my(C.OK) =1 E[Tg] =X e DP[Tg] = SD
""T1l0 sem(C_OK)=0

pe of service

-

Basic Model with the Erlang Distributed Repair Time




SPN

Basic Model with imperfect coverage
availability model

A=P{(m(C_OK)=1)}=
M€
— {1 se m;(C_OK) =1
0 sem;(C_.OK) =0

FI-'|I |-|_|

Det |1 | Wpe |
Ndet |1 | Wype | | |
Percep | E | mMmP | B |singleserver |
R e [mmR | u [ singlesereer

Failure Coverage Basic Model




SPN

Hot Standby Model
Availability Model

A =P{(m(C_OK) = 2)V(m(C_OK) = 1)}

z Ti X m; = 1- TR —
2A° + 2Ap + p°

VM;ERS

1 se (m(Cog) = 2)V(Mm(Cog) = 1)
: sem;(C_OK) = 0.




Cold Standby
Availability Model

{ CS_ON_OK

Transition Time or Weight Type of Service

CPF MTTF_CP single server /—I‘
CPR MTTR_ CP single server Ly
CSF MTTF _CS single server
CSR MTTR_ CS single server
Start TTs single server

T7 Ww=1

The stationary availability of the component is calculated by the expression:

A= P{((m(CP_OK ) = 1)V(m(CS_ON_OK) = 1))} = Z Iy X T

VM;ERS

where 1; is a function that

(1 se (m(CP_OK) = 1)V(m(CS_ON_OK) = 1)
1= {0 se (m(CP_OK ) = 0)A(m(CS_ON_OK) = 0)




SPN

The Warm Standby model is similar to the
Cold Standby model. However, in a system with

Warm Standbv redundancv. the reserve
component remains energized (but inoperative),
so that. when the main component fails.
the reserve component takes over operations without
the delay that occurs in a Cold Standby system.

Warm Standby
Availability Model

Transition | Type | Time or Weight Rate | Type of Service | Priority
CPF E MTTF_CP A | single server

CPR E MTTR CP [l single server

CSF1 E MTTF1_CS o single server

CSR1 E MTTR1_CS p single server

CSF2 E MTTF2_CS o single server

CSR2 E MTTR2_CS f single server

Start / w=1 1

T7 / w=1

CS_OFF_DE




SPN

2 out of 3 with shared repair
Availability Model

The CTMC model:

1

A= h=1
a760

1
1 =—~h"
* =24

Availability=rr(5:) + m(S,) = 9.99955210e-001



SPN

2 out of 3 with shared repair
Availability Model

The equivalent SPN model:

P1

The result obtained through TimeNET:

The Availability = P{#P1= 2} = 0.




SPN

Example

Clients Switcher/Route

B

Perfect switching cold
standby server architecture

The system is composed by a Switcher/Router and Serve subsystem, The system fails if the
Switcher/Router fails OR if the Serve subsystem fails. The Server subsystem is composed by two servers,
51 and 52. 51 is the main server and 52 is the spare server. They are configured in Cold Standby, that is,
52 starts as soon as 51 fails. The start-up time of 52 is zero,




Example

Clients Switcher/Route

-~

Perfect switching cold
standby server architecture

CTME I“E"EIhI Ilt"f I“I"IﬂdE| Aypg is failure rate of the Switcher/Router.

o
-\._h_'_"ll
A

A rs -

-~

A A 18

7 asl a2 .
(= O—O
0 a 7 3

System Unreliability:

UR(4000h)=0.181615244
System Reliability:

R(4000h) = 0.818384756

Agq is failure rate of the Server 1.
Az is failure rate of the Server 2.

i is the repair rate assigned to Server 1 repair activity.

Yariahle

Value

lamhbda_rs

172000

lambda_s1

1115000

i

15724

lambda_s2

1115000

The unity of these rates is h~ L.




Example

System Unreliability:
UR({4000h)=0.18161528133
System Reliability:
R(4000h) = 0.81838471867

SystemiJrreiabity = P#SR_F=1 OR (#51_F=1 AND #52_F=1) }

Switcher/Route

B = e

Perfect switching cold

standby server architecture

SPN reliability model

MTTF_SR := 20000
MTTF_St ‘= 15000

MTTF_S2 = 15000

S2_0K 52_OFF
MTTR_St =24
= <} 9

S2_SwitchingOn

SystemReliabiity = 1-P(#SR_F=1 OR (#51_F=1 AND £52_F=1) }

L]




Perfect switching cold
standby server architecture

The component’s state machines are:

1) SR state machine (SR)

Server's state machine (CS)




Clients Switcher/Route

sen CRR
Perfect switching cold
Example CTMC availability model

standby server architecture

System availability:
A=0.998799526

System unavailability:
UA=0.00120047377




Example

Switcher/Route

B= —

Perfect switching cold

standby server architecture

SPN availability model

MTTF_SR = 20000
MTTF_S1 = 15000
MTTF_S2 = 15000
MTTR_S1 = 24
MTTR_SR = 24
MTTR_S2 = 24

Syslemlinavailability = P[#5R_F=1 OR (#51_F=1 AND #52_F=1) }

systamAxallabliity = 1-P{#5RE_F=1 OR (#51_F=1 AND #®52_F=1) }

Availability Results:
Steady State Unavailability = 0.0012011
Steady State Availability = 0.9987989

52 _mwitchingn




SPN

Capacity Oriented Availability in Cloud Systems
A Simple Example

Consider a system composed by two
physical machines, PM1 and PM2,
where each physical machine sup-

ports two virtual machines (VMs).




NVM=64
Hstates=4489
~ 5s

FWMs51_D2=0

EFPM1_U=0

#Ms51 D2 #h:52_D7

VMs51_D2
FWMs52_D1L
L~

VMs51_U

#YMs51_D1
U EVIMSS1 U +#VMsS1 D1

WMSSI_U | —T ,-M:SE_U
N »
' MTTFpm: 8760
MTTFvmm: 2880 A = P{(#VMsS1_U+#VMsS2_U)>0}
MTTR: 1 COA=
(((P{(#VMsS1_U+#VMsS2_U)=(2*NVM)}*
(2*NVM))
+
A: 0,999999985971564 (P{(HVMsS1_U+#VMsS2 _U)=((2*NVM)-
COA: 0.9993764859658381 1)}*((2*NVM)-1))
+

MWVM: 64

(P{(#VMsS1_U+#VMsS2_U)=((2*NVM)-
2P ((2*NVM)-2))
(P{(#VMsS1_U+#VMsS2_U)=((2*NVM)-

3)h)
/ (2*NVM))




SPN

Comparison

Model 1 0.9999999868771198 | 0.9995384300392318

Model 2 0.9999999738408221 | 0.999538513813583
Model 3 O 999999986909146 0.9995387092788293




SPN

SIEI(SCR(S sl Corrective Maintenance

R51

o I MTTRI: 24
-

MTTFL: 720 )

PO MTTF2: 800

MT:1

™ [y Tk
Teams

10

n
A 0,8673325740429562
PIEPO=1)ANDFEPI=1LJAND{#PT=1)}

DTyh DTyh: 1162.166651385704

1-PIiEPO=1)AND(EP3=1)AND(EPT=1)1)*8760 TU: 0.132667425957043...
TU

(NT-E{#Teams})/MNT

MTTE3: 600




HIERARCHICAL MODELING



Hierarchical Modeling

EUCALYPTUS is composed by five high-level
components: Cloud Controller, Cluster Controller,
Node Controller, Storage Controller, and Walrus.
The Cloud Controller (CLC) is responsible for
exposing and managing th underlying virtualized
resources (servers, network, and storage).

ClusterA / s X | Cluster B

Mode 1  MNode 2 Mode M,

Redundancy in the GC




Hierarchical Modeling

EUCALYPTUS is composed by five high-level
components: Cloud Controller, Cluster Controller,
Node Controller, Storage Controller, and Walrus.
The Cloud Controller (CLC) is responsible for
exposing and managing th underlying virtualized
resources (servers, network, and storage).

Mode 1  Mode 2 Mode I

Redundancy in the GC

ClusterA / ‘ K T ' | Cluster B

by




[nput Parameters for the nodes

H iera I‘Ch ica I M od el i ng Component  MTTF _ MTTR

kM 2990 h I b
NC T8R4 h I k

Redundancy in the GC

Parameter Description Value
Asl=M_s52=1/A Mean time for host failure 1/180.721
Ai_82 =1/X; Mean time for inactive host failure 1/216.865
psl=p_s2=1/p Mean time for host repair 1/0.9667
sa_s2 =1/sa Mean time to system activate 1/0.005

Component MTTF MTTR

HW 8760 h 100 min

SO 2893 h 15 min
CLC 788.4 h h

CcC 788.4 h

SC 788.4 h

Walrus T88.4 h

1
1
1
1

Redundant general
controller subsystem

= N B B B N
BEGIN —= END
HW S0 CLC cC 5C

Walrus

cloud system HLM RBD model of the non-redundant

General Controller subsystem




Hierarchical Modeling

p(Ni(p + sa) + p* + sa(\+ p))
Ml 4 ) (e + sa) + p? (N + p) + sa(A\? + A+ p?

Actoud = Acc * (1 H{l flwﬂdﬂ—i)}

=

Measure GC without redundancy GC with redundancy
Steady-state availability 0.99467823178 0.99991793
Number of 97s 2.273944 4.08581
Annual downtime 46.66 h 0.72 h

0.999522

0.999921
0.999520
0.999919
0.999918
0.999917 I
12 18 24 30 36 4z 48 54 60

Awvailability

0.999916

Mode_1  MNeode 2 Nede_ N

Redundancy in the GC MTTF of GC Hardware (months)




Hierarchical Modeling

Estimating Capacity Oriented
Availability (COA) in Cloud
Systems

Consider a system composed by two
physical machines, PM1 and PM2,

where each physical machine sup-
ports two virtual machines (VMs).

A Simple Example




Hierarchical Modeling

The respective model is represented
by RBD and CTMC availability models.

_-_-_ Model 4




Hierarchical Modeling

Model 4
Availability model .

. 4 . 4—i
Considering the components of a node Atpos = Z (l) X ALy g X (1 —APMWM)
are independent and identical, so all the i=1

nodes (PM+VM) have the same failure  FeSch node is composed of 1 PM and 2
and repair distribution. VMs:

Hence, the availability of the system is _-_

VML i
- -
4_ PMi
A _ 4 % Ai _-_
loo4 — i PM+VM e

: Considering
X (1 _APMWM)”"‘ MTTRpy = MTTRy = MTTR

2
Ai — MTTFPM _ MTTFVM
PMAVM = ST F oo + MTTR <\ L ~\ MTTF, ., + MTTR



Hierarchical Modeling

Model 4
COA model - The respective model is

represented by RBDs and CTMC

L | | | |
P[N — 2) :PEGGE :Z() X P! x (_'l—P_)n_I

x

=2

n \ _ _ .
=N (M) xpix - Py
PEG&E — 1XP2 X(I_P)U

23
PEGGE = P~




Hierarchical Modeling

COA model - The respective model is
represented by RBDs and CTMC Model 4

ioon

mn

B n o -
Pioon _Z(I) XP'x(1—P)

L

P(N = 1) = Pyopz = 2 (?) X P! x (1 —P)?!

i=1

2 _ , 1 2 S .
Pi,02 = (l) XPl'x(1-P)+ (2) X P¢x(1—-P)Y

Pioo2 = 2X P X (1—P) + P?
P‘looEZZ-P—ZPE—I—Pzzzp_PE




Hierarchical Modeling

COA model - The respective model is  Model 4
represented by RBDs and CTMC

PIN=1)=P,=P(N=1)-P(N =2)
P(N=1)=P, =2P — P2 - p?

n

n . .
:Z(i)xplx(l—f’)” ‘ P(N=1) =P, = 2P — 2P?




Hierarchical Modeling

COA model - The respective model is Model 4
represented by RBDs and CTMC

P4, P3, P2 and P1 represent the probability of being at each
state (CTMC model), where P4 is the probability of having
four virtual machines running, P3 is the probability of having

three virtual machines running, P2 is the probability of
having two virtual machines running and P1 is the

probability of having only one virtual machines running.



Hierarchical Modeling

: : M 14
COA model - The respective model is ode

represented by RBDs and CTMC

2}1 P(N — j) % ZEITH.VMj?I IPI

COA =

m
n
Pi :Piuan_ Z Fzr

j=i+1

nmVMjn
maximal number of Virtual Machines for j PMs




Hierarchical Modeling

Model 4

COA model - The respective model is
represented by RBDs and CTMC

. A i Hom \3 ) . : 24 mMom ; ) 1
COA = (( _hpm) )xupqmlﬂpsxs]ﬂpzxz]+[pm+(m)x.([p:xz]ﬂpl]}

4
Where,

e
P4 =

24 24 + 24 23 u+ 12 A2 2+ 4 A3+ ps

24 A3 u

A8 +24 3 u+ 12 A% u2 + 4 A pd+ b




Model A COA
Model 1 0.99959999868/71198 | 0.9995384300392318
Model 2 0.9959999738408221 | 0.999538513813583
Model 3 0.995999986509146 |0.9955387092/88293
Model 4 0.995999987 0.9955384342
0del 4
NUMh;; :;iﬁ‘:ﬁm! Number of virtual machine COA
.... 0 100 0.9998823844
100 200 0.9998841211
500 1000 0.9998855104




