
Amanda Ferraz de Albuquerque

Modeling and Performance Evaluation of Software Maintenance Process

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2019

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Amanda Ferraz de Albuquerque

Modeling and Performance Evaluation of Software Maintenance Process

Master dissertation presented to the Postgradu-
ate Program in Computer Science of the Infor-
matics Center of the Federal University of Per-
nambuco, as a partial requirement to obtain the
title of Master in Computer Science.

Concentration area: performance evaluation
Advisor: Paulo Romero Martins Maciel
Coadvisor: Teresa Maria Medeiros Maciel

Recife
2019

FICHA

Amanda Ferraz de Albuquerque

“Modeling and Performance Evaluation of Software Maintenance Process”

Master dissertation presented to the Postgradu-
ate Program in Computer Science of the Infor-
matics Center of the Federal University of Per-
nambuco, as a partial requirement to obtain the
title of Master in Computer Science.

Approved on: 08/26/2019.

Advisor: Paulo Romero Martins Maciel

Coadvisor: Teresa Maria Medeiros Maciel

EXAMINATION BOARD

Prof. Dr. Hermano Perrelli de Moura
Informatics Center / UFPE

Prof. Dr. Renata Cristine de Sá Pedrosa Dantas
Federal Institute of Education, Science and Technology of Pernambuco / IFPE

To my family and friends.

ACKNOWLEDGEMENTS

To my advisor, Professor Paulo Maciel, who from the beginning accepted me as his stu-
dent, even though he knew I wouldn’t be a full time student. He has a steady pulse and
guided me the way I needed, always bringing reality when needed. Also to my co-advisor,
Teresa Maciel, who gave me all the support and started me on this journey. Thank you
so much for your empathy, I know I took some work, but we went ahead and got a great
result.

I thank my mother, Socorro, my greatest supporter, without her, I would not have
started this journey. Thank you for being this battling woman who teaches me so much.
And to my family, friends, and boyfriend, who gave me all the support and strength to
follow through.

Thanks to all colleagues and friends that I met in UFPE and to those from the MoDCS
group, especially Paulo, Renata, and Jamilson, who tried to help me and answered my
questions whenever I needed without hesitation.

To Pitang, the company I worked for, which supported me with its master’s support
benefit, allowing me to work with a shorter workload so that I could continue my studies.

And finally, thanks to the members of the board for the opportunity to enrich this
work and the willingness to participate.

"Spend your most valuable time on your most valuable activities and you’ll change the
trajectory of your life."(TRACY, 2017).

ABSTRACT

Teams always seek to improve their performance, but they need to understand which
points in the process need to be improved. Some metrics can be raised and analyzed
to assist with this performance improvement process before implementing actual process
changes without knowing where their bottleneck is. A performance evaluation of a software
maintenance process is performed to provide information on utilization, throughput and
response time as metrics to be analyzed, assisting in the decision making process to
reduce delivery time and improve the use of human resources. In a scope of software
maintenance processes, this work provides a Stochastic Petri Net (SPN) model as the
basis for a study of data and continuous improvement of the process under analysis. The
validation of this model is performed using the experience of the IT sector of a federal
public education agency, as well as a sensitivity analysis and simulation with the best
scenario are presented as case studies. The results obtained with this work show that it
is possible to analyze various possibilities and find, based on the proposed SPN model, a
better work configuration that better leverages the human resources of the team without
the cost of implementing these changes.

Key-words: Stochastic Petri Net. Performance Evaluation. Modeling. Sensitivity Anal-
ysis.

RESUMO

As equipes buscam sempre melhorar seu desempenho, mas para isso precisam en-
tender quais pontos do processo precisam ser melhorados. Algumas métricas podem ser
levantadas e analisadas para ajudar nesse processo de melhoria de desempenho, antes
de implantar alterações reais no processo sem saber onde é o seu gargalo. A avaliação
de desempenho de um processo de manutenção de software é realizada com o objetivo
de fornecer informações sobre o uso, vazão e tempo de resposta como métricas a serem
analisadas, auxiliando no processo de tomada de decisão para reduzir o tempo de entrega
e melhorar o uso dos recursos humanos. Em um escopo de processos de manutenção de
software, este trabalho fornece um modelo de Rede de Petri Estocástica (SPN) como base
para um estudo dos dados e melhoria contínua do processo em análise. A validação desse
modelo é realizada utilizando a experiência do setor de TI de uma agência federal pública
de educação, assim como uma análise de sensibilidade e uma simulação com o melhor
cenário são apresentadas como estudo de casos. Os resultados obtidos com este trabalho
mostram que é possível analisar várias possibilidades e encontrar, com base no modelo
SPN proposto, uma melhor configuração de trabalho, que aproveite melhor os recursos
humanos da equipe sem o custo de implementar essas alterações.

Palavras-chaves: Redes de Petri Estocásticas. Avaliação de desempenho. Modelagem.
Análise de Sensibilidade.

LIST OF FIGURES

Figure 1 – Types of software maintenance. 19
Figure 2 – Structural elements of Petri net. 28
Figure 3 – Petri net system model example. 29
Figure 4 – Methodology. 43
Figure 5 – Example of an Activity Diagram. 49
Figure 6 – Mapping activities to SPN model. 50
Figure 7 – Mapping transitions to SPN model. 50
Figure 8 – Mapping initial state to SPN model. 51
Figure 9 – Mapping final state to SPN model. 51
Figure 10 – Example of an activity diagram decision. 51
Figure 11 – Mapping decisions to SPN model. 52
Figure 12 – Queue notation representing a queue and its server. 53
Figure 13 – SPN resource representation. 53
Figure 14 – High level team one process UML model. 56
Figure 15 – Queue and server representation. 56
Figure 16 – SPN Process model for team one. 57
Figure 17 – High level team two process UML model. 62
Figure 18 – PN model. 63
Figure 19 – Individual Analyst Utilization vs. Number of Analysts chart. 73
Figure 20 – Database Analyst Utilization vs. Number of database Analysts chart. . 73
Figure 21 – Developer Utilization vs. Number of Developers chart. 73
Figure 22 – Tester Utilization vs. Number of Testers chart. 73
Figure 23 – Configuration Engineer Utilization vs. Number of Configuration Engi-

neers chart. 74
Figure 24 – Throughput - Database vs. Arrival delay chart. 74
Figure 25 – Throughput - Maintenance vs. Arrival delay chart. 74
Figure 26 – Response Time - Database vs. Arrival delay chart. 74
Figure 27 – Response Time - Maintenance vs. Arrival delay chart. 75
Figure 28 – Throughput - Database vs. Weight of transition - Database chart. . . . 75
Figure 29 – Throughput - Maintenance vs. Weight of transition - Database chart. . 75
Figure 30 – Comparative charts of simulation results using real data and Sensitivity

Analysis data. 77

LIST OF TABLES

Table 1 – Keywords used in the systematic review of the literature. 34
Table 2 – Initial search results. 36
Table 3 – Final search results. 36
Table 4 – Comparison table of related works . 41
Table 5 – Ticket per hour in the first quarter of 2017. 67
Table 6 – Number of people working in each area of team one. 68
Table 7 – Timed transitions parameters. 68
Table 8 – Team One simulation results. 68
Table 9 – Number of people working in each area of team two. 69
Table 10 – Timed transitions parameters. 69
Table 11 – Team Two process simulation results. 70
Table 12 – Sensitivity indices for database services Throughput metric. 70
Table 13 – Sensitivity indices for maintenance services Throughput metric. 71
Table 14 – Sensitivity indices for response time of the maintenance services metric. 71
Table 15 – Sensitivity indices for response time of the database services metric. . . 72
Table 16 – Number of people working in each area of the process. 76
Table 17 – Simulation result with data obtained with Sensitivity Analysis. 77
Table 18 – Comparison of simulation results using real data and Sensitivity Anal-

ysis data. 78
Table 19 – Search results in digital libraries. 88
Table 20 – Articles included in the list of Related Works. 97

LIST OF SYMBOLS

𝜆 Lambda

𝜃 Theta

CONTENTS

1 INTRODUCTION . 14
1.1 CONTEXT AND MOTIVATION . 14
1.2 OBJECTIVES . 16
1.3 METHODOLOGY . 17
1.4 STRUCTURE OF DISSERTATION . 17

2 BACKGROUND . 19
2.1 SOFTWARE MAINTENANCE . 19
2.2 PROCESS MODELING . 22
2.3 PERFORMANCE EVALUATION . 24
2.4 STOCHASTIC PETRI NETS . 27
2.5 SENSITIVITY ANALYSIS . 30
2.6 FINAL CONSIDERATIONS . 31

3 RELATED WORKS . 33
3.1 PLANNING . 33
3.2 SEARCH . 34
3.3 REFINEMENT . 35
3.3.1 First step . 35
3.3.2 Second step . 36
3.4 RELATED WORKS . 37
3.5 COMPARISON OF MAIN RELATED WORKS 40
3.6 FINAL CONSIDERATIONS . 41

4 EVALUATION METHODOLOGY 42
4.1 OVERVIEW . 42
4.2 PROCESS MAPPING . 44
4.3 MODEL EVALUATION . 44
4.4 SCENARIOS EVALUATION . 45
4.5 FINAL CONSIDERATIONS . 46

5 MODELING: TRANSLATING ACTIVITY DIAGRAMS TO SPN
MODELS . 48

5.1 PROCESS MAPPING . 48
5.2 MAPPING ACTIVITY DIAGRAMS IN SPN 48
5.3 SPN PROPOSED MODEL . 52
5.4 METRICS . 53

5.5 FINAL CONSIDERATIONS . 54

6 PROCESSES MAPPING . 55
6.1 TEAM ONE PROCESS MAPPING . 55
6.2 TEAM TWO PROCESS MAPPING . 61
6.3 FINAL CONSIDERATIONS . 66

7 SCENARIOS EVALUATION . 67
7.1 REAL CASES PRESENTATION . 67
7.1.1 Team One Process . 67
7.1.2 Team Two Process . 69
7.2 SENSITIVITY ANALYSIS . 70
7.3 SIMULATION OF THE SENSITIVITY ANALYSIS SCENARIO 76
7.4 FINAL CONSIDERATIONS . 78

8 CONCLUSIONS . 80
8.1 CONTRIBUTIONS . 81
8.2 DIFFICULTIES AND LIMITATIONS . 82
8.3 FUTURE WORKS . 82

REFERENCES . 84

APPENDIX A – SYSTEMATIC REVIEW RESULTS 88

APPENDIX B – ARTICLES INCLUDED IN RELATED WORKS . 97

APPENDIX C – MERCURY MODELS AND SCRIPTS 98

14

1 INTRODUCTION

This chapter provides a brief introduction to software maintenance, its needs and de-
mands, and presents a way to evaluate the quality of the process through its performance,
focusing on capacity, speed, and productivity, as well as highlighting the importance of
having this analysis for the project planning. Next, the motivations and objectives of this
dissertation are presented, and finally, the general structure.

1.1 CONTEXT AND MOTIVATION

Each day the Information Technology (IT) sector of public organizations are more focused
on responding to their customers’ demands quickly and with quality, providing support
to reach corporate strategic goals and better experiences for users of their IT services.

Software development has many phases. These phases include Requirements Engi-
neering, Architecting, Design, Implementation, Testing, Software Deployment, and Main-
tenance. Maintenance is the last stage of the software life cycle. After the product has
been released, the maintenance phase keeps the software up to date with environmental
changes and changing user requirements (SOMMERVILLE, 2011). All this happens through
a software process, that is, through the execution of a set of activities and associated
results that generate a software product.

To achieve the continuous improvement in the software development, several methods
and best practices can be applied to improve the process as well as the quality of IT service
delivery and business alignments, such as Agile Methodologies (BECK, 2001) and Lean
(BELL; ORZEN, 2012). However, regardless of the method, if there is no measurement and
evaluation of the performance of the service in the value chain, there will be insufficient
visibility and data to support decision making.

According to Sommerville (SOMMERVILLE, 2011) it is impossible to produce software
of any size that does not need to be modified. When the software is put into use, it
is possible to identify new needs, as soon as these new requirements arise, the existing
requirements need to be modified. Just as errors may have been identified in the software
that needs correction, or the need to improve its performance and other non-functional
characteristics. This means that after the software is delivered to its customers it always
evolves in response to changing demands.

Maintenance consists of four parts. Corrective maintenance deals with fixing bugs in
the code. Adaptive maintenance deals with adapting the software to new environments.
Perfective maintenance deals with updating the software according to changes in user
requirements. Finally, preventive maintenance deals with updating documentation and
making the software more maintainable. All changes to the system can be characterized

15

by these four types of maintenance. Corrective maintenance is ‘traditional maintenance’
while the other types are considered as ‘software evolution’ (SOMMERVILLE, 2011).

Larger and complex software projects require significant management control. Accord-
ing to Erdil et Al (ERDIL K.; YOON, 2003), they also introduce challenges to management
as complex software systems are a crucial part of the organization. Also, the maintenance
of large software systems requires a large number of employees. Therefore, management
needs to find ways to increase productivity and ensure job satisfaction, which can be
achieved by employing the right people, as well as motivating and training employees.
Another factor that affects maintenance is selecting an appropriate way to organize main-
tenance tasks. This will increase productivity, control cost and deliver a quality system
to the customer.

As with the case in other engineering disciplines, measurement is very significant in
software engineering. Software measurement aims to find out if the requirements for soft-
ware quality have been met throughout the software development life cycle. Software
measurement is an approach to comprehending, controlling and managing software pro-
cesses, and also to monitoring and improving their performance. This approach is about
the application of a software criterion to a specific software product, and the improvement
of software quality through software metrics.

There has been great interest in the measurement of software development processes in
the last two decades. According to Kurtel (KURTEL, 2013), Software measurement studies
are complemented by software engineering concepts, both of which aim to encourage the
efforts for both software and quality improvement.

While working together with a team of a federal Organization, we felt the need to
improve the response time of its services. For that, we needed to start having visibility
of its work process so that we could analyze the possibilities of process changes that will
result in the improvement of the services provided.

Defining adequate processes that guarantee product quality and productivity has been
a challenge for the software industry. In this context, the structure of flexible processes
composed of independent assets, to be easily adapted to each specific project, has been
an approach widely adopted by the organizations. To increase the quality, notations such
as the Unified Modeling Language - UML (LARMAN, 2006) (BOOCH, 1998) specified by
the OMG provide considerable advances in the modularization and maintenance of soft-
ware processes. However, these models alone do not provide support for evaluating the
performance of process specifications, so it is necessary to map these semi-formal models
to formal models.

Thus, environments that provide the evaluation of the processes performance and that
make possible the estimation of the use of resources are mechanisms that help improve the
indexes of quality and productivity of the organizations. Process execution models focused
on performance estimation that takes into account combinations of diverse and active

16

scenarios can bring substantial gains in productivity both in the process customization
and in the process effectiveness defined for the project.

With Stochastic Petri Nets being applied in the most diverse areas, ranging from the
computer science to the areas of business administration and because it makes possible to
specify competing, asynchronous, distributed, parallel, non-deterministic and stochastic
systems (MARSAN M.A.; FRANCESCHINIS, 1995).

Methodologies and methods for process evaluation have been widely adopted in var-
ious systems engineering contexts. Performance Engineering is the term used to refer to
the set of policies, activities, practices, and tools applied to the life cycle phases of the pro-
cesses aiming at ensuring that the implemented solutions meet the defined non-functional
requirements. It involves, therefore, the monitoring of the existing systems, considering
loads appropriate to the representation of scenarios to allow the reproduction of the tem-
poral behavior. In Performance Engineering, particular emphasis is given to stochastic
modeling in the various stages of development (SMITH, 1993).

Typical representations of performance models are based on stochastic simulation
mechanisms, queue networks (KLEINROCK, 1975), timed Petri nets (most notably Stochas-
tic Petri Nets), and stochastic process algebras. Some of these means of representation
enable both evaluations through simulation and via numerical analysis.

Stochastics Petri Nets allows the evaluation of systems from metrics, for example, the
probability of using a computational resource (processor, disk, memory, among others),
or the availability andor reliability of these resources. These metrics can be computed
for a given time interval (transient analyzes), or when the system comes into equilibrium
(stationary analyzes) (GERMAN, 2000). Also, the metrics results can be obtained from
analytical form, as well as by model simulation (MURATA, 1989). With these information,
this formalism was chosen to evaluate the Organization processes performance that will
be analyzed in this study.

Being defined use Stochastic Petri Net models to map processes, statistical data can
be obtained and will help organizations better analyze its processes performance and
applicability. With this in mind, this work is concerned with demonstrating a way to
evaluate process performance by evaluating the proposed model and analyzing its metrics
and was designed to follow the objectives described in the following session.

1.2 OBJECTIVES

The main objective of this study is to define a methodology to evaluate software mainte-
nance processes and validate it using real cases, verifying the applicability of this proposal
in common scenarios in IT service organizations.

This methodology presents a series of steps ranging from the study of the maintenance
process and modeling UML activity diagrams to the generation and analysis of Stochastic
Petri net (SPN) models. This methodology supports the mapping of different processes

17

to SPN models, using a proposed resource SPN model as basis to facilitate this mapping,
and is the basis for the analysis that supports the continuous improvement of the analyzed
process. This can be accomplished without the need for real implementation, making the
process more agile and cheap.

More specifically, this work has the following objectives:

• Propose a methodology that allows the evaluation of software maintenance processes
by converting mapped processes in activity diagrams to SPN models;

• Propose a stochastic model performance model that will be used to evaluate the
software maintenance process;

• Validate the proposed methodology and SPN model in different processes and rec-
ommend improvements to these processes through the sensitivity analysis results.

1.3 METHODOLOGY

The methodology used in the production of this dissertation aimed to evaluate the appli-
cability of the proposed evaluation methodology from the perspective of studies applied
in real scenarios, considering the response time, the throughput, and the utilization as
metrics to be evaluated through the performance evaluation from different teams process,
consisting of the generation of analytical models, scenario evaluation and presentation of
alternatives for improvements in the evaluated maintenance process. In the description
of the proposed methodology, the steps of how it is possible to perform an evaluation of
maintenance processes are detailed, needing to define only the stakeholder interest objec-
tive to be achieved with this study. These studies were made following the guidelines of
the evaluation methodology phase Scenarios Evaluation.

1.4 STRUCTURE OF DISSERTATION

This work is organized into eight chapters. Besides this first chapter, Introduction, Chapter
2 presents the theoretical basis of the work, introducing the fundamental concepts about
software engineering, software process, software change process, the fundamental concepts
about Petri nets and metrics. Chapter 3 presents the relevant works to the research, found
in the literature, that demonstrate the differentiation of this dissertation concerning the
other studies, commenting on their goals and what they propose, contributing to the
accomplishment of this work. Chapter 4, presents the methodology used in this work
from the information gathering to the analysis of the results. Chapter 5 presents a basic
SPN model that represents a minimal team structure that can be used as a basis for
mapping other processes. Chapter 6 present the SPN model for each process that will be
evaluated and its metrics. Chapter 7, addresses studies for the application of the proposed

18

model. Chapter 8 sets out the conclusion and future work. The Appendix A presents the
results of the searches from the digital libraries for the systematic review, the Appendix
B presents the list of articles that were not returned in the searches but were included in
Related Works, and finally, the Appendix C with complementary information that was
used for the development of this work.

19

2 BACKGROUND

This chapter presents the main concepts used in this dissertation. First, concepts about
Software Maintenance are introduced. Next, the concepts of software process and process
modeling are addressed through the Unified Modeling Language (UML) activity diagram.
After that, an overview of Stochastic Petri nets (SPN) is presented. And finally, concepts
about Sensitivity Analysis.

2.1 SOFTWARE MAINTENANCE

Software maintenance is a result of changes in the business environment of the organization
where the software operates, and because it is performed when the system is in its full
operating phase, it can not be left in the background, an undisputed necessity and the
one responsible for consuming the largest share of the financial and human resources of a
software company. As software systems age, it becomes increasingly difficult to keep them
up and running without maintenance.

The types of maintenance of existing software is not a consensus, for Sommerville
(SOMMERVILLE, 2011), software maintenance encompasses only three activities: corrective
maintenance (software defect repair), adaptive maintenance (an adaptation of software to
a different operating environment), and evolutionary maintenance (to add functionality
to the software or modify it). For Pressman (PRESSMAN, 2009), there is a fourth type of
maintenance: preventive maintenance or re-engineering, which would be changed in the
software to improve reliability or provide a better structure for future maintenance.

These four types of maintenance can be structured as shown in Figure 1, which ex-
emplifies this structure from a modification request, followed by a generic evaluation of
the types of maintenance that would be the correction or improvement processes in the
software.

Figure 1 – Types of software maintenance.

Corrective maintenance deals with the repair of faults or defects found. A defect can
result from design errors, logic errors and coding errors (TAKANG A.A.AND GRUBB, 2003).

20

Design errors occur when, for example, changes made to the software are incorrect, in-
complete, wrongly communicated or the change request is misunderstood. Logic errors re-
sult from invalid tests and conclusions, incorrect implementation of design specifications,
faulty logic flow or incomplete test of data. Coding errors are caused by the incorrect
implementation of detailed logic design and incorrect use of the source code logic. De-
fects are also caused by data processing errors and system performance errors. All these
errors, sometimes called residual errors or bugs, prevent the software from conforming to
its agreed specification. The need for corrective maintenance is usually initiated by bug
reports drawn up by the end-users (COENEN; BENCH-CAPON, 1993). Examples of correc-
tive maintenance include correcting a failure to test for all possible conditions or a failure
to process the last record in a file (MARTIN; MCCLURE, 1983).

Preventive maintenance concerns activities aimed at increasing the system’s maintain-
ability, such as updating documentation, adding comments, and improving the modular
structure of the system (VLIET, 2000). The long-term effect of corrective, adaptive and
perfective changes increases the system’s complexity (TAKANG A.A.AND GRUBB, 2003).
As a large program is continuously changed, its complexity, which reflects the deterio-
rating structure, increases unless work is done to maintain or reduce it. This work is
known as preventive change. The change is usually initiated from within the maintenance
organization to make programs easier to understand and hence facilitating future main-
tenance work (TAKANG A.A.AND GRUBB, 2003). Examples of preventive change include
restructuring and optimizing code and updating documentation.

Adaptive maintenance consists of adapting software to changes in the environment,
such as the hardware or the operating system. The term environment in this context refers
to the totality of all conditions and influences which act from outside upon the system,
for example, business rule, government policies, work patterns, software and hardware
operating platforms (TAKANG A.A.AND GRUBB, 2003). The need for adaptive maintenance
can only be recognized by monitoring the environment (COENEN; BENCH-CAPON, 1993).
An example of a government policy that can affect a software system is the proposal to
have a ‘single European currency’, the ECU. Acceptance of this change will require that
banks in the various member states, for example, make significant changes to their software
systems to accommodate this currency (TAKANG A.A.AND GRUBB, 2003). Other examples
are an implementation of a database management system for an existing application
system and an adjustment of two programs to make them use the same record structures
(MARTIN; MCCLURE, 1983).

Evolutionary maintenance mainly deals with accommodating to new or changed user
requirements. Perfective maintenance concerns functional enhancements to the system and
activities to increase the system’s performance or to enhance its user interface (VLIET,
2000). A successful piece of software tends to be subjected to a succession of changes,
increasing the number of requirements. This is based on the premise that as the software

21

becomes useful, the users tend to experiment with new cases beyond the scope for which
it was initially developed (TAKANG A.A.AND GRUBB, 2003). Examples of perfective main-
tenance include modifying the payroll program to incorporate a new union settlement,
adding a new report in the sales analysis system, improving a terminal dialogue to make
it more user-friendly, and adding an online HELP command (MARTIN; MCCLURE, 1983).

Among these four types of maintenance, only corrective maintenance is ‘traditional’
maintenance. The other types can be considered software ‘evolution’. The term evolution
has been used since the early 1960s to characterize the growth dynamics of software
(CHAPIN N.; TAN, 2001). Software evolution is now widely used in the software maintenance
community.

One of the key metrics used at the managerial level is the cost of development activities.
According to surveys (SOMMERVILLE, 2011), the bulk of the IT budget for companies is
targeted at software maintenance activity (approximately two-thirds of the maintenance
budget, versus one-third for development).

The purpose of this study is not to present an analysis of change costs, but rather to
provide a way to analyze metrics related to process performance from a proposed model
and then to help decision making in project management to better take advantage of
available resources, minimizing the costs of maintaining software.

Niessink and van Vliet (NIESSINK; VLIET, 2000) proposed software maintenance be seen
as providing a service, whereas software development is concerned with the development
of products. However, this is not yet widely recognized. Within the software maintenance
domain, the focus is still on product aspects. The final phases of software development
supposedly concern the delivery of an operations manual, installing the software, handling
change requests and fixing bugs (VLIET, 2000).

A service is defined as an essentially intangible set of benefits or activities that are sold
by one party to another (NIESSINK; VLIET, 2000). The main differences between products
and services are: services are intangible; services tend to be more heterogeneous than
products; services are produced and consumed simultaneously, whereas production and
consumption of products can be separated and services are perishable, products are not
(VLIET, 2000).

The difference between products and services is not clear-cut. For example, babysitting
is a ‘relatively’ pure service, while packaged food is a ‘relatively’ pure product. There is
a product-service continuum for software development and maintenance. For example,
adaptive maintenance can be seen as a hybrid of product and service, whereas corrective
maintenance is a product-intensive service, and software operation is a relatively pure
service. A custom software development is a service-intensive product (NIESSINK; VLIET,
2000).

According to Niessink and van Vliet (NIESSINK; VLIET, 2000), customers judge the
quality of software maintenance differently from how they judge the quality of software

22

development. This implies a need to carry out software maintenance through different
processes from those used by the average software development organization.

There are a few aspects of software maintenance that set it apart from the other phases.
Software maintenance cost comprises more than half of the total software development
cost. Also, without software maintenance, it is impossible to change the problems within
the product after its release, and many disasters can happen because of immature software.

Some characteristics of software that affect software maintenance are system size, age,
and structure. Understanding the characteristics of the software will facilitate maintaining
the software more efficiently. It is also important to look at how software maintenance
fits into the relationship between products and services. Software maintenance, includ-
ing software operation, has relatively more aspects of a service than a product, whereas
software development yields a product rather than a service.

Maintenance processes vary depending on the type of software being maintained, the
development processes used in an organization, and the personnel involved in the pro-
cess. In some organizations, maintenance can be an informal process. Most maintenance
requests arise from conversations between users and system developers. In other organiza-
tions, this is a formalized process, with structured documentation produced at each stage
of the process (SOMMERVILLE, 2011)).

In general, the use of metrics is considered as important for the understanding of the
generated software product itself. Even with the difficulty of comparing different products,
the measurement activity assists in the analysis of quality and productivity and, through
experience in past projects, in the elaboration of the planning and estimates. Despite
this, few companies have made a long-term commitment to collecting data about their
software (SOMMERVILLE, 2011), so it is difficult to see where the possible causes of low-
quality software are.

2.2 PROCESS MODELING

A process is defined as a sequential set of steps to be followed consisting of activities,
methods, practices, and transformations, used to achieve a goal, which is usually associ-
ated with one or more concrete final results, which are the products of the execution of
the process. A process is characterized by containing detailed documentation of what is
done (product), when (steps), by whom (agents), what uses (input) and what produces
(result) (JACOBSON I.; RUMBAUGH, 1999).

In the most frequent conception, the process is any activity or set of activities that
take an input, adds value to it and provides output to a specific customer. Processes use
the organization’s resources to deliver objective results to its customers (PEREIRA, 2011).

The purpose of process modeling is to ensure understanding of the structure and
dynamics of the organization, aiming at an understanding among all involved, as well
as: customers, end-users, and developers so that everyone has a common vision. The

23

professionals who are responsible for the modeling of business processes can count on
several techniques, tools, processes, and methods used for the modeling of the processes.

Modeling makes it possible to study the system since models allow us to understand
how systems work or will work, as well as allowing us to relate and ’experiment’ with
alternatives to how it can get better. Modeling allows our assumptions to become visible
and therefore available for review and correction. The modeling enables the discussion of
corrections, modifications, and validation with the client and the team at a low cost. This
is possible because the discussion occurs using a simulation environment, using ’virtual’
agents and inputs and times smaller than those needed for real-world experimentation.
Modeling facilitates communication between members of the analysis and design teams
and between them and customers and users (PEREIRA, 2011).

Models are constructed using languages that allow you to completely specify, without
ambiguity, business rules, structural aspects (these include business concepts, the rela-
tionships they maintain among each other, sequences of operations, and other aspects
necessary for the accomplishment of the purposes of the system. In this way, the team’s
understanding of all aspects of the process is the same. The modeling also allows us
to document systems, recording all their characteristics, the decisions taken throughout
the project and the other aspects necessary for the complete understanding and correct
operation of the system.

The UML is a language with a semiformal semantic specification, which includes ab-
stract syntax, well-defined rules, and dynamic semantics. Visual modeling is the use of
semantically rich graphic and textual design notations to capture software designs. A no-
tation, such as UML, allows the level of abstraction to be increased while maintaining
strict syntax and semantics.

The UML Activity Diagram is used to describe programming logic, business processes,
and workflows. For a process, this diagram determines the essential sequence rules to follow
for execution, showing the flow from one activity to another (JACOBSON I.; RUMBAUGH,
1999). An activity diagram consists of activities and transitions, showing the flow of con-
trol from activity to activity. They can be used to model both sequential and concurrent
activities. Also, an activity diagram can be viewed as a graph with nodes representing
activities and edges labeled with transitions (SAPNA; MOHANTY, 2008).

The activity diagram is formed by some components such as the initial state and
final state, that determine the beginning and the end of the control flow of the diagram.
There must always be an initial state and there may be several final states. The decision
component is represented by a diamond and indicates the possibility of choosing between
the available flows. For the definition of conditions, you can use free text or pseudo-code
and the condition is expressed in the guard condition. The merge component, also known
as merge, is like the decision, represented by a diamond. Action is a task to be performed
within an activity. It can be of type entry - executed immediately upon entering the

24

activity; exit - executed immediately before exiting the activity; do - performed during
the stay in the activity; or event - performed when a specific event happens. The UML
components are exemplified in more detail in Chapter 5.

An activity diagram contains activity states, which represent the execution of a state-
ment in a procedure or the performance of an activity in a workflow. Instead of waiting
for an event, as in a normal wait state, an activity state waits for the completion of its
computation. When the activity completes, the execution proceeds to the next activity
state within the diagram. A completion transition in an activity diagram fires when the
preceding activities are complete. An activity diagram may contain branches, as well as
forking of control into concurrent threads. Concurrent threads represent activities that
can be performed concurrently by different objects or persons in an organization (CHEN

M.; LI, 2007).In this dissertation, we consider an activity diagram as a design specification,
which describes the workflow of a process. Each activity state in the activity diagram is
interpreted as the execution of a step of the process.

2.3 PERFORMANCE EVALUATION

To evaluate the performance of systems, a set of techniques must be considered, which
can be classified into two components: measurement-based techniques and modeling tech-
niques (LILJA, 2005).

Measurements are only possible if something similar to the proposed system already
exists, such as in designing an improved version of a product. Measurement-based tech-
niques require the construction of a real environment and involve monitoring the system
while under the action of a workload (LILJA, 2005). Techniques based on modeling can be
solved both analytically and by simulation. The analytical models use closed formulas or
a set of system equations to describe the behavior of a system. The metrics of interest can
be provided through the solution of closed formulas or the exact or approximate solution
of a set of system equations provided by numerical mathematical algorithms (BOLCH G.;

TRIVEDI, 2006).
Measurement-based techniques require the construction of a real environment and

involve monitoring the system while under the action of a workload. Before the workload
is applied to the system, a primary study of the load to be applied must be carried out. The
choice of workload is just as important as the definition of which measurement strategy
should be followed since it is from this that you must choose tools and measurement
strategies.

Tools that aid the performance evaluation of systems modify the behavior of what is
being measured. The greater the amount of information and resolution that the measuring
tool can provide, the greater the disturbance introduced by this tool. This disturbance
introduced by the measurement tool makes the data collected by its less reliable (LILJA,
2005). In this way, event-driven measurement tools are, in a way, more reliable because

25

they offer less disturbance to the measured data, occasioned only when the occurrence
of events, on the other hand, the frequency of the events is that will determine the dis-
turbance caused by the events. Another type of measuring tool is sampled, this type of
tool causes disturbances regardless of the number of times the event occurs (LILJA, 2005)
(MENASCE D.A.; ALMEIDA, 2004).

Techniques based on modeling can be solved both analytically and by simulation. The
analytical models use closed formulas or a set of system equations to describe the behavior
of a system. The metrics of interest can be provided through the solution of closed formulas
or the exact or approximate solution of a set of system equations provided by numerical
mathematical algorithms (BOLCH G.; TRIVEDI, 2006).

Simulation models can be used both in the evaluation of systems performance and
in the validation of analytical models. Unlike measurements, simulations are based on
abstract models of the system, so they do not require the system to be fully deployed for
them to be applied. Thus, the models used during the simulation are elaborated through
the abstraction of essential characteristics of the system, and the complexity and the
degree of abstraction can vary from one system to another. During the simulation, the
values assumed by system parameters (LILJA, 2005) (MENASCE D.A.; ALMEIDA, 2004) are
more efficiently controlled.

Simulation is a useful technique for computer systems performance analysis. A simu-
lation model provides an easy way to predict the performance or compare several alter-
natives. Further, even if a system is available for measurement, a simulation model may
be preferred over measurements because it allows the alternatives to be compared under
a wider variety of workloads and environments (JAIN, 1991).

Performance evaluation helps determine system performance and the necessary im-
provements to these systems, however, given the number of existing systems, there is no
established performance standard, not even a standard environment or technique for evalu-
ating performance. The three performance assessment techniques are analytical modeling,
simulation, and measurement. The key consideration in deciding the evaluation technique
is the phase of the life cycle in which the system is (JAIN, 1991). Thus, the first step
in evaluating performance is to select the most appropriate measures, environments, and
techniques. Thus, the objectives will be determined seeking the best performance for a
given cost, which should be done by the analyst who will indicate the requirements and
compare the performance alternatives that will best meet their need.

According to Jain (JAIN, 1991), for each performance study, a set of performance
criteria or metrics must be chosen. One way to prepare this set is to list the services
offered by the system. For each service request made to the system, there are several
possible outcomes. Generally, these outcomes can be classified into three categories: the
system may perform the service correctly, incorrectly, or refuse to perform the service.
For example, a gateway in a computer network offers the service of forwarding packets to

26

the specified destinations on heterogeneous networks. When presented with a packet, it
may forward the packet correctly, it may forward it to the wrong destination, or it may
be down, in which case it will not forward it at all.

If the system performs the service correctly, its performance is measured by the time
taken to perform the service, the rate at which the service is performed, and the resources
consumed while performing the service. These three metrics related to time-rate-resource
for successful performance are also called responsiveness, productivity, and utilization
metrics, respectively. For example, the responsiveness of a network gateway is measured
by its response time - the time interval between the arrival of a packet and its successful
delivery. The gateway’s productivity is measured by its throughput - the number of packets
forwarded per unit of time. The utilization indicates the percentage of time the resources
of the gateway are busy for the given load level. The resource with the highest utilization is
called the bottleneck. Performance optimizations at this resource offer the highest payoff.
Finding the utilization of various resources inside the system is thus an important part of
performance evaluation (JAIN, 1991).

Response time is defined as the interval between a user’s request and the system re-
sponse. This definition, however, is simplistic since the requests, as well as the responses,
are not instantaneous (JAIN, 1991). The users spend time typing the request and the sys-
tem takes time outputting the response. There are two possible definitions of the response
time in this case. It can be defined as either the interval between the end of a request
submission and the beginning of the corresponding response from the system or as the in-
terval between the end of a request submission and the end of the corresponding response
from the system. Both definitions are acceptable as long as they are specified. The second
definition is preferable if the time between the beginning and the end of the response is
long. Following this definition, the response time for interactive users in a timesharing sys-
tem would be the interval between striking the last return (or enter) key and the receipt
of the last character of the system’s response. A reduction in the order cycle time leads
to a reduction in the supply chain response time. This is an important measure as well as
a major source of competitive advantage (BOWER; HOUT, 1988) (CHRISTOPHER, 1992).
According to Towill (MASON-JONES; TOWILL, 1997), it directly influences the customer
satisfaction level.

Throughput is defined as the rate (requests per unit of time) at which the requests can
be serviced by the system (JAIN, 1991). For batch streams, the throughput is measured
in jobs per second. For interactive systems, the throughput is measured in requests per
second. For CPUs, the throughput is measured in Millions of Instructions Per Second
(MIPS), or Millions of Floating-Point Operations Per Second (MFLOPS). For networks,
the throughput is measured in packets per second (pps) or bits per second (bps). For
transaction processing systems, the throughput is measured in Transactions Per Second
(TPS). The throughput of a system generally increases as the load on the system initially

27

increases. After a certain load, the throughput stops increasing; in most cases, it may even
start decreasing. The maximum achievable throughput under ideal workload conditions
is called the nominal capacity of the system.

The utilization of a resource is measured as the fraction of time the resource is busy
servicing requests (JAIN, 1991). Thus this is the ratio of a busy time and total elapsed
time over a given period. The period during which a resource is not being used is called
the idle time. The device with the highest total service demand has the highest utiliza-
tion and is called the bottleneck device. This device is the key limiting factor in achieving
higher throughput. Improving this device will provide the highest payoff in terms of sys-
tem throughput. Improving other devices will have little effect on system performance.
Therefore, identifying the bottleneck device should be the first step in any performance
improvement project. According to Slack et al. (SLACK N.; JOHNSTON, 1995), capacity uti-
lization directly affects the speed of response to customers’ demand. Hence, by measuring
capacity, gains in flexibility, lead-time and deliverability will be achieved.

Performance metrics can be evaluated by adopting measurement approaches and mod-
eling techniques. The most suitable models to evaluate performance metrics are: Temporal
Logics, Networks of Queues and Markov Chain based models (e.g., SPN) (MACIEL, 2011).

2.4 STOCHASTIC PETRI NETS

Petri nets (PNs) (MURATA, 1989) are a family of formalisms very well suited for modeling
several system types, since concurrency, synchronization, communication mechanisms as
well as deterministic and probabilistic delays are naturally represented. This work adopts
a particular extension, namely, Stochastic Petri Nets (MARSAN M.A.; FRANCESCHINIS,
1995), which allows the association of stochastic delays to timed transitions.

The applicability of Petri nets as a tool for systems studies is important because it
allows for mathematical representation, analysis of models and also for providing infor-
mation about structure and behavior modeling systems. Petri net applications can occur
in many areas (manufacturing systems, software development, administrative systems,
among others).

Petri nets (PN) allow the modeling and analysis of discrete event systems that are
too complex to be described by automata or row models (REISIG, 1992). Thus, Petri nets
allow for mathematical representation and analysis through graphical models, providing
useful information on the structure and behavior of the systems.

In general, Petri nets are a bipartite directed graph, in which places (represented by
circles - Figure 2 (a)) denote local states, and transitions (depicted as rectangles - Figure
2 (b)) represent actions. Arcs (directed edges - Figure 2 (c)) connect places to transitions,
and vice versa and tokens (marks - Figure 2 (d)) represent the current state of the system.
This elements are shown in the Figure 2.

28

Figure 2 – Structural elements of Petri net.

To perform a certain action in a Petri net, it must be associated with some precondi-
tion, that is, there is a relation between the places and the transitions that allow or not
the accomplishment of a certain action. After performing a certain action, some places
will have their information changed and may create a postcondition. The arcs represent
the flow of the marks through the network and the marks represent the state in which
the system is at a given moment.

The original Petri Net does not have the notion of time for analyzing performance and
dependability; the introduction of event durations results in a timed Petri Net. Stochastic
Petri nets (SPN) are a special type of timed Petri Net, which allows the association of
probabilistic delays with the transition, by using exponential distribution. Stochastic Petri
nets are very well suited for modeling several system types. This is because concurrency,
synchronization, communication mechanisms, and deterministic and probabilistic delays,
are naturally represented.

The timed transitions model activities through the associated times, so that the timing
transition enablement period corresponds to the execution period of the activity, and the
trigger of the timed transition corresponds to the term of the activity. Different levels
of priority can be attributed to the transitions. The tripping priority of the immediate
transitions is greater than that of the timed transitions. Priorities can solve confounding
situations (MARSAN M.A.; FRANCESCHINIS, 1995). The firing probabilities associated with
the immediate transitions can solve conflict situations (BALBO, 2000).

It is a high-level model that allows automatically to generate and evaluate Continuous
Time Markov Chain (CTMC) (TRIVEDI, 2001). This characteristic is particularly useful
when the system’s state space is large and/or system components interactions are complex.
Besides, SPN may also be evaluated through simulation. Simulation may be the alternative
when a non-phase-type distribution is required and/or the system state space is infinity.

Figure 3 shows an example of a system through a simple model in Stochastic Petri
Nets. A server is shown answering a call. Place P3 containing a token represents a state
in which the server services will be available, similarly to not having a token, place P3
represents a state in which the system is unavailable.

In this example, the directed arc of the place P0 to the transition T0 indicates the
arrival of a call in the queue to be answered, for it, is necessary that there is a token in
the place P3, indicating the availability of a server to attend to such a call. One having a

29

Figure 3 – Petri net system model example.

token in place P3 the directed arc from place P1 to the transition TI0 indicates that the
call is being resolved by the server. Likewise, the directed arc from place P2 to transition
T1 indicates that the server has been released and has become available again, the token
returns to the server location. The location of the token on the Petri net will indicate
whether the call is waiting for service (Figure 3 (a)) or is being attended (Figure 3 (b)).

Timed transitions can be characterized by different firing semantics known as single
server, multiple server and infinite server (MARSAN M.A.; FRANCESCHINIS, 1995).

In the single server semantics, the markings are serially processed. After the first
trip of the timed transition, the timer was restarted as if the timed transition had been
enabled again. This type of semantic is used in the availability models, considering that
there is only one maintenance team, when several components of the system enter a fault
condition.

In the semantic multiple server, the markings are processed with a maximum degree K
of parallelism. If the degree of enabling is greater than K, no new timer will be created to
process the time for the new trip until the degree of enablement has decreased of K. This
type of semantic is used in the availability models considering that there is a number of
maintenance teams smaller than the number of components in the fault condition. Excess
components will be in a row.

In the semantic infinite server, the value of K is infinite, all markings are processed
in parallel, and the associated timings are decremented to zero in parallel. This type of
semantic is used in the availability models, considering that there are as many maintenance
teams as there are the failed components. For each component, there is an exclusive and
independent maintenance team. In this type of semantic, all markings are processed in
parallel.

The SPN models are used for performance analysis of systems since they allow the
description of the activities of systems through reachability graphs. These graphs can be
converted into Markovian models, which are used for the quantitative evaluation of the

30

analyzed system.

2.5 SENSITIVITY ANALYSIS

Sensitivity Analysis aims at identifying the factors for which the smallest variation implies
the highest impact in the model’s output measure (HAMBY, 1994). The main aim of
Sensitivity Analysis is to predict the effect on outputs (measures) concerning variations
in inputs (parameters), helping to find performance or reliability bottlenecks, and guiding
an optimization process (BLAKE J. T.; TRIVEDI, 1988). Another benefit of Sensitivity
Analysis is the identification of parameters that can be removed without a significant
effect on the results.

Sensitivity Analysis is an efficient method for determining the order of influence of
parameters on model results. According to Hamby et al. (HAMBY, 1994), models are prone
to two kinds of influence from their parameters. The first kind is related to the variability,
or uncertainty, of an input parameter, which may cause a high variability in the model’s
output. The second kind is the actual correlation between an input parameter and model
results, so that small changes in the input value may result in significant changes in
the output. There are different types of analysis to deal with each kind of parametric
sensitivity.

When dealing with analytic models, Sensitivity Analysis is a particularly important
technique used to find performance and reliability bottlenecks in the system, thus guiding
the optimization process (BLAKE J. T.; TRIVEDI, 1988; ABDALLAH; HAMZA, 2002). It can
also guide the exclusion of parameters without a significant effect on the results. Large
models, with dozens of rates, may be drastically reduced by using this approach.

There are many ways of performing Sensitivity Analysis. Factorial experimental design,
correlation analysis, and regression analysis are some well-known techniques (JAIN, 1991).
The simplest method is to repeatedly vary one parameter at a time while keeping the
others constant. When applying this method, a sensitivity ranking is obtained by noting
the changes to the model output.

Without a Sensitivity Analysis, analysts often place too much emphasis on the results
obtained in their analysis, presenting them as truth. However, it has no evidence of how
it achieved the results (JAIN, 1991). In the absence of adequate SA, the results obtained
are not certain, so some questions arise, such as: are the conclusions correct? Could the
conclusions be different, or what would happen if the analysis had been performed in a
slightly different scenario? Moreover, not considering the SA, it is difficult to identify which
are the relevant parameters, especially if the system has many parameters (JAIN, 1991).
Thus, SA brings the necessary security and can drive the results from the perspective
pre-established by system administrators.

Several methods of Sensitivity Analysis are available in the literature such as: correla-
tion analysis, regression analysis and perturbation analysis (PA), parametric differential

31

analysis, one by one variation, Monte Carlo simulation, Pearson correlation, Spearman
correlation, analysis of variance (ANOVA), fourier amplitude sensitivity test (FAST),
design of experiments (DoE), percentage difference, importance for reliability and avail-
ability and the Sobol method.

One of the methods for determining the Sensitivity Analysis parameter, and the one
used in this dissertation, is to calculate the percentage output difference when varying an
input parameter from its minimum value to its maximum value (HAMBY, 1994). Hoffman
and Gardner (HOFFMAN F.; GARDNER, 1983), advocate the use of the full range of each
possible value parameter to evaluate the sensitivity of parameters.

The sensitivity index is calculated using Equation 2.1. This equation shows the expres-
sion for this approach, where 𝑚𝑎𝑥{𝑌 (𝜃)} and 𝑚𝑖𝑛{𝑌 (𝜃)} are the maximum and minimum
output values, respectively, calculated by varying the parameter 𝜃 over a range of n pos-
sible values of interest. If 𝑌 (𝜃) is known to vary monotonically, so that only the extreme
values of 𝜃 (i.e., 𝜃1 and 𝜃n) can be used to calculate 𝑚𝑎𝑥{𝑌 (𝜃)} and 𝑚𝑖𝑛{𝑌 (𝜃)} and
hence 𝑆𝜃{𝑌 } (MATOS R., 2015).

𝑆𝜃{𝑌 } = 𝑚𝑎𝑥{𝑌 (𝜃)} − 𝑚𝑖𝑛{𝑌 (𝜃)}
𝑚𝑎𝑥{𝑌 (𝜃)} (2.1)

Where,

𝑚𝑎𝑥{𝑌 (𝜃)} = 𝑚𝑎𝑥{𝑌 (𝜃1), 𝑌 (𝜃2), . . . , 𝑌 (𝜃𝑛)} (2.2)

and

𝑚𝑖𝑛{𝑌 (𝜃)} = 𝑚𝑖𝑛{𝑌 (𝜃1), 𝑌 (𝜃2), . . . , 𝑌 (𝜃𝑛)} (2.3)

Choosing which method to use to perform Sensitivity Analysis is a difficult step.
This choice must be following the issues to be addressed, the available computational re-
sources and the characteristics of the problems addressed (CAMPOLONGO F.; TARANTOLA,
1999);(PIANOSI F., 2016).

Sensitivity Analysis strategies are a key piece that can help keep these environments
running most of the time throughout the year. This allowance happens as these strategies
indicate the critical components with security and reliability, so that system adminis-
trators can implement corrective improvement actions on these components to improve
system availability.

2.6 FINAL CONSIDERATIONS

The topics covered in this chapter such as software maintenance, process modeling, perfor-
mance evaluation, Stochastic Petri Nets, and Sensitivity Analysis have guided the devel-
opment of this work and made possible the establishment of connections of these concepts

32

with those applied in this research. The next chapter will present the related works and
a systematic review of the literature.

33

3 RELATED WORKS

This chapter aims to present some of the work related to this dissertation, highlighting
some of the main contributions related to the context of this document, as well as the
need to propose improvements and the importance of evaluating the performance of the
maintenance processes through the formal models.

A systematic review of the literature is a form of secondary study that uses a well-
defined methodology to identify, analyze and interpret all available materials from various
authors related to a specific research question impartially (KITCHENHAM; CHARTERS,
2007). It covers research to answer a key question by making a critical study of the
literature. It starts with a question that guides the main objective to make a review
project. Then, a literature search is done to find similar studies and finally, methodological
criteria are applied to make an analysis.

The systematic review is a complex study that would take a long time, but to make
more structured research of the related works, a simplification of the process recommended
by Kitchenham (KITCHENHAM; CHARTERS, 2007) was made and in this chapter, the
planning and results of this activity are presented. This review was carried out for six
months at the beginning of this study, in 2017.

3.1 PLANNING

The first step in undertaking a systematic review is to define the research question. The
research question that guided this review was:

Which studies deal with the operational analysis focused on service management?

Three digital libraries were selected to be searched to identify relevant published arti-
cles:

• Portal CAPES (http://www.periodicos.capes.gov.br/)

• Google Scholar (http://scholar.google.com.br)

• IEEE Xplore (http://ieeexplore.ieee.org/)

Keywords were defined according to related categories and are described in Table 1.
For an article to be included in the analysis, it should be available online and be clearly

describing operational analysis focused on service management. The classification of the
results found followed two steps: initially, when reading title and abstract, the articles
were separated into two groups:

34

Table 1 – Keywords used in the systematic review of the literature.

Categories Keywords
Operational Analysis Operational

Analysis
Performance

Metrics Metrics
Statistical Analysis

Agile Methodology Agile
Management Management

Stochastic modeling
Process

modeling Petri Net

• [Incl] indicating the candidate articles related to the operational analysis;

• [Excl] indicating articles not related to the operational analysis.

All articles in the [Excl] group were excluded, while the articles in the [Incl] group
were analyzed in more detail from the reading of some sections of the article, namely:
introduction, parts related to the main contribution of the article and conclusion. From
this (second step), a subset of articles in the group [Incl] was selected, leaving only those
who had information about the operational analysis.

3.2 SEARCH

For each digital library, search strings were constructed according to the characteristic of
each search tool in each library and some refinements were used.

1. Google Scholar:

a) String:

((Operational) AND (Analysis) AND (Performance) AND (Agile) AND
(Metrics) AND (Management) AND (Stochastic modeling) AND (Statistical

analysis) AND (Process) AND (Petri Net))

b) Refinement:

• Since 2017
• Not include Patents and Citations

2. IEEE Xplore:

a) String:

35

((((((((((Operational) AND Analysis) AND performance) AND Agile) AND
metrics) AND Management) AND Stochastic modeling) AND Statistical

analysis) AND Process) AND Petri Net)

b) Refinement:

• Year: 2017-2018

3. Portal CAPES:

a) String:

operational analysis performance agile metrics management stochastic
modeling statistical analysis process Petri net

b) Refinement:

• 2016 – 2017

3.3 REFINEMENT

Until reaching the final result, the search went through three steps, the first was the selec-
tion by reading only the title and abstract; the second was from the materials selected in
the previous step, perform the reading of the introduction, contributions, and completion
sessions. Each step is detailed below.

It is possible to observe that several returned articles were excluded from the analysis
since they have related keywords, however, the research area is not related to the work,
the great majority was related to electrical engineering.

For an article to be included in the analysis, it should be available online, be writ-
ten in English or Portuguese, and be clearly describing operational analysis in service
management.

3.3.1 First step

The first step consists in reading the title and the Abstract and then classify the works
from the information obtained, among the following categories:

• [Incl]: included articles in the results.

• [Excl]: excluded articles from the results.

When searching the digital libraries, a total of 65 results were returned. The list of
all articles returned and the classification of each can be found in Appendix A. After
the initial step, seven articles were selected for the second classification step, as shown in
Table 2.

36

Table 2 – Initial search results.

Digital library Number of Articles [Incl] [Excl]
Google Scholar 57 7 50
IEEE Xplore 4 0 4
Portal CAPES 4 0 4
Total 65 7 58

3.3.2 Second step

The seven articles of the group [Incl] were analyzed in more detail from the reading of
the sessions: Introduction, Contribution, and Conclusion.

Table 3 – Final search results.

Digital library Number of Articles Repeated Not relevant Selected
Google Scholar 7 0 4 3
IEEE Xplore 0 - - 0
Portal CAPES 0 - - 0
Total 7 0 4 3

After the second step, only two related works were selected from the query string and
none were repeated, as shown in Table 3.

The work (SILVA, 2017) proposed the structuring of a decision support model, seeking
to highlight the scientific contribution of the Performance Evaluation applied to the public
procurement planning process in Brazil. This article was excluded from the list because it
focused much more on public management and was not relevant to the study in question.

The article (SETH D.; DHARIWAL, 2017) has almost the same objectives, which would
improve cycle time, but uses Value Stream Mapping (VSM) with graphical resources as
the basis for identifying value activities and non-value in ETO environments (Engineer
to Order) and HMLV (High-Mix Low-Volume) in waste reduction. (VASAVA, 2017) also
works with VSM to streamline process production and try to identify non-value-added
activities to make the work process efficient. These studies were also excluded from the
analysis because they were not related to performance evaluation.

In (BI J.; LI, 2017), the focus is on dynamic resource allocation to minimize service
provider energy costs and maximize revenue in complex cloud environments. Also being
classified as not relevant because it is not the focus of the study.

In (LIMA-JUNIOR; CARPINETTI, 2017) a literature review of 84 studies proposing quan-
titative models that support the performance evaluation of Supply Chain is also carried
out. It is also not included in the study and is excluded from the analysis because it
suggests a framework for literary analysis.

37

Other works that did not return in the queries of the digital libraries, but meet the
inclusion criterion defined were included in the related works. These related articles are
listed in Appendix B and discussed in the following section along with those selected from
the systematic review.

3.4 RELATED WORKS

In the article (SILVA F.A.; MACIEL, 2017), a modeling strategy in SPN (Stochastic Petri
Nets) is proposed to represent the execution of a method call of mobile cloud systems.
This approach allows a designer to plan and optimize Mobile Cloud Computing (MCC)
environments where SPN’s represent the behavior of the system and estimate the runtime
of parallelizable applications. SPNs are used in this study to estimate the performance
metrics of each downloadable task and the entire application. This work has as contribu-
tions the design and implementation of an SPN modeling approach that allows predicting
the behavior of the system in terms of execution time by calculating three statistics: (i) es-
timated execution time of the application based on the number of remote server instances;
(ii) the number of method tickets per unit of time; and (iii) the probability of terminating
application execution at a specific time; with this same SPN model, a representation of
the MCC and the application was made; an SPN modeling approach that represents the
distribution of tasks that allow predicting the number of necessary target resources, and
finally, the MCC-Adviser was created, a graphical tool that generates and solves SPN’s
based on the proposed model to plan and design an MCC environment.

In (APRIL A.; DUMKE, 2005), a maturity model for daily software maintenance ac-
tivities is proposed to evaluate and improve the software maintenance process based on
CMMi integration (Capability Maturity Model integration) and is designed to be used
as a complement to this model. An inventory of software engineering maturity models is
also presented, identifying those that include software maintenance topics and discussing
the limitations of the CMMi model concerning unique software maintenance activities.
The authors present an overview of a proposed Software Maintenance Maturity Model
(SMMM) and its architecture. To illustrate the details of this model, the objectives and
detailed practices of a Key Process Area (KPA) are presented. An initial validation con-
sisted of case studies in an industrial setting. Empirical studies on the use of the SMMM
as a tool for continuous improvements in maintenance management could contribute to
the development of a better understanding of the problems of the software maintenance
function.

In (AN Y.; CHEN, 2017), the problem of developing a traffic-priority traffic control
model using colored hierarchical Petri nets (HCPN) is considered. This paper focuses on
the use of Petri nets (PN) to formalize the traffic signal priority control model (TSP),
adopting state-space analysis to verify the correctness and reliability of the control model
before the implementation phase. The resulting system is based on the on-board unit and

38

road unit (RSU) network for TSP applications that provide traffic vehicles with safety and
convenience. This work for the first time uses HCPN to design a traffic control system for
a four-phase intersection dealing with priority to provide public transit passing through
the intersection. This helps to enhance the state of the art in traffic real-time detection
and traffic management of an intersection. Future work is to design a traffic control system
that is complex and close to the actual application. For example, the impact of pedestrians
on the transit priority should be considered.

In (JIN Y.; GE, 2017), the authors propose an approach to find backlogged activities in
software processes and present a case study that demonstrates the high-level efficiency of
the approach to concretely illustrate this solution. Besides, some reasonable reviews and
modifications are developed at the end. In this paper, is adopted two research methods
(quantitative analysis method and validation method). On one hand, it is designed an
algorithm to perform quantitative analysis for calculating probabilities of the places with
tokens. On the other hand, the research is validated through a case study. First, a transac-
tion flow diagram (TFD) of the software process was constructed and then we transferred
it to the SPN model, then the isomorphic Markov chain (MC) and the achievable marking
chart of the SPN were drawn to calculate the equations in the MC probability transfer
matrix. Thus, it was possible to locate the sites that contain tokens with the highest prob-
ability values, which correspond to the activities delayed in software processes. Finally, a
practical example was presented to show the correctness and rationality of this algorithm.

Another work (RACHDI A.; DAHCHOUR, 2016) related to Petri nets and process eval-
uation is based on the presentation of a method for the verification of BPMN models,
defining the formal semantics of BPMN in terms of mapping for timed Petri nets (TPN).
Given that BPMN has not been provided with a formal semantics, which limits the anal-
ysis of BPMN models to using solely informal techniques such as simulation, in order
to address this limitation and use formal verification, this work defines a certain “map-
ping” between BPMN and a formal language, that means, a method for the verification
of BPMN models by defining formal semantics of BPMN in terms of a mapping to Time
Petri Nets (TPN), which are equipped with very efficient analytical techniques. After
the mapping, a verification is done to ensure that some functional properties are satis-
fied by the model under investigation, namely liveness and reachability properties. The
main advantage of this approach over existing ones is that it takes into account the time
components in modeling Business process models.

The study (DIAS, 2010) proposes a model in the SPN to evaluate the impact of costs
in executing the software change process by studying its difficulties in the execution,
deadlines, effort and cost in the CCB’s involvement in the impact analysis. It focuses on
possible process failures that can generate rework, whether there is planning and what
roles are allocated for the analysis of the change request. Also, a performance evaluation
methodology is proposed, to assist the modeling and evaluation processes, using metrics

39

and analyzing them as an instrument to better understand the difficulties and to assem-
ble strategies by facilitating the use of the process. Finally, case studies were presented
showing the applicability of the work. This study had as a contribution a developed
methodology that can be applied to support the planning to any other type of software
process, wherewith the application of the proposed methodology, several problems related
to the modeling of the analyzed process can be solved.

The authors, (RAMAMOORTHY; HO, 1980), discussed a systematic method to evaluate
and verify the performance of concurrent systems. The system to be studied is first mod-
eled by a Petri net. Based on the Petri net model, the system is classified. Procedures
for predicting and verifying the system performance of all three types are presented. It is
discussed as a systematic method to evaluate and verify the performance of concurrent
systems. The system to be studied is first modeled by a Petri net and then is classified
into either: a consistent system or an inconsistent system. A consistent system is further
subclassified into a decision free system; a safe persistent system; or a general system.
The performance of decision-free systems and safe persistent systems can be computed
quite efficiently. With that, an approach for computing the upper and lower bounds of
the performance of a conservative general system is proposed. However, further research
is needed.

The paper (CAR; MIKAC, 2002) proposes a method for software process modeling and
evaluation of telecommunication software maintenance process performances to improve
the software maintenance process. The method is based on queuing networks and it ap-
plies discrete simulation to determine process performances. The queuing network model
focuses on such as utilization and service quality expressed as the time the user mod-
ification request spends in the maintenance process. This work was divided into seven
activities: project definition; process modeling in the form of queuing network; collection
and data analysis; queuing and model simulation; process performances analysis; mod-
eling and analysis of alternative process designs; and finally, comparison of alternative
design performances. The suggested method can be applied to different telecommunica-
tion software maintenance processes.

In (FEBBRARO A.; SACCO, 2016) a deterministic and Stochastic Petri Net based micro-
scopic model for urban traffic networks, whose objective is the heuristic optimization of
the green duration of each phase has been proposed. The model can represent both light
and saturated traffic conditions, as well as deadlock situations which may affect a traffic
system minimization of queue lengths in the traffic network through the optimization of
phase durations. This paper describes the adopted model for an urban traffic network
and proposes the Petri net models for representing traffic dynamics within intersections,
roads, and traffic networks, together with a discussion about their possible uses and ap-
plications. The control system aimed at minimizing the traffic congestion of the network
is also presented, and a case study and some numerical results are reported to illustrate

40

the proposed approach. The control strategy has the objective of minimizing the sum of
queue lengths through the optimal setting of phase durations every 5 minutes, following
the incoming traffic flows.

The work (FADAHUNSI; SATHIYANARAYANAN, 2016) proposes an approach to using
a mathematical formula to revise business processes modeled combined with Petri nets
formalism, to reduce the cost and cycle time taken to complete the business process by
reducing the number of tasks needed to complete the process. Based on the findings
of this research, it has been confirmed that it is possible to exploit the graphical and
quantitative features of Petri nets, combined with combination mathematical theory, in
revising a current business process to generate future process design options based on
the objective of process attribute optimization via a reduction in the number of tasks or
events required in an end-to-end business process.

The present work offers a different approach from those described above and from
others in the literature by proposing a modeling strategy through SPN to evaluate the
software maintenance process and estimate performance metrics to support backlog re-
duction and better use of resources.

3.5 COMPARISON OF MAIN RELATED WORKS

Table 4 summarizes the main related works mentioned in this Chapter, establishing a com-
parison between them and this thesis based on these four subjects: operational analysis,
performance metrics, modeling, and agile methodology.

The papers (FEBBRARO A.; SACCO, 2016) and (AN Y.; CHEN, 2017) both deal with mod-
eling the traffic lights system, one using colored Petri Net and the other using Stochastic
Petri Net modeling. (SILVA F.A.; MACIEL, 2017) uses Stochastic models to evaluate mobile
cloud performance. In (RACHDI A.; DAHCHOUR, 2016) it is possible to find an analysis of
BPMN models based on Time Petri Nets. In (RAMAMOORTHY; HO, 1980) it is made a
performance evaluation of asynchronous concurrent systems Using Petri Nets. By compar-
ison, all are different from what is proposed in this thesis, which would be an evaluation
of the software maintenance process through its SPN model.

The paper (APRIL A.; DUMKE, 2005) proposes a maturity model for daily software
maintenance activities, for this maturity model construct it was made these processes
mapping. In (JIN Y.; GE, 2017) showed an approach to locating delayed activities in Soft-
ware Processes. Dias (DIAS, 2010) mapped the change software process using SPN. Car
(CAR; MIKAC, 2002) made the maintenance process modeling using a queue system. And
finally, in (FADAHUNSI; SATHIYANARAYANAN, 2016) was made a business process map-
ping in SPN. None of them used sensitivity analysis. This thesis presented here covers
those four subjects that had not been previously combined in the literature reviewed so
far.

41

Table 4 – Comparison table of related works

Work Process
Mapping

Performance
metrics

PN Model-
ing

Sensitivity
Analysis

This thesis Yes Yes Yes Yes
Dias, M.D.S.(DIAS,
2010)

Yes Yes Yes No

Silva, F.A. et. al.
(SILVA F.A.; MACIEL,
2017)

No Yes Yes No

Jin, Y. et. al. (JIN Y.;
GE, 2017)

Yes No Yes No

Rachdi, A. et. al.
(RACHDI A.; DAH-
CHOUR, 2016)

Yes No Yes No

Fadahunsi, O. and
Sathiyanarayanan,
M. (FADAHUNSI;
SATHIYANARAYANAN,
2016)

Yes No Yes No

Ramamoorthy, C.V.
and Ho, G.S. (RA-
MAMOORTHY; HO,
1980)

No No Yes No

Car, Z. and Mikac, B.
(CAR; MIKAC, 2002)

Yes No No No

An, Y. et. al. (AN Y.;
CHEN, 2017)

No No Yes No

April, A. et. al. (APRIL
A.; DUMKE, 2005)

Yes No No No

Di Febbraro, A. et.
al. (FEBBRARO A.;
SACCO, 2016)

No No Yes No

3.6 FINAL CONSIDERATIONS

This chapter presented a systematic review of the literature based on the process recom-
mended by Kitchenham and was presented some of the works related to this dissertation.
The next chapter will present the proposed support methodology used to guide this study.

42

4 EVALUATION METHODOLOGY

This chapter presents the support methodology used during the research to understand the
maintenance model, to support create an SPN model to be analyzed and simulated, and
the results of these evaluations will support decision making for process improvements.

4.1 OVERVIEW

Although organizations have an interest in improving their processes, they generally do
not evaluate the performance of the process that guides the activities of the team. To
provide a better understanding of the software maintenance model and the performance
evaluation of the process, it is possible to identify process bottlenecks, this section presents
a methodology to support organizations in decision making, proposing process modeling
of software maintenance in performance models based on Stochastic Petri Nets (SPN).

The support methodology used in this study is divided into three phases: Process
Mapping, Model Evaluation, and Scenarios Evaluation. Process Mapping involves two
steps: Understand the maintenance model and define the activity diagram, and Generate
SPN model with parameters and metrics. The Model Evaluation is divided into the steps:
Validate model, Evaluate model and metrics, and Adjust model and/or metrics. In Sce-
narios Evaluation we have the steps: Setting Scenario and change parameters, Execute
the model simulation, Execute the Sensitivity Analysis, Analyze the results, and finally
Present results and recommendations. The flowchart of Figure 4 represents visually the
methodology adopted in this work.

The rectangles represent each step of the support methodology that was followed
obeying the order of execution pointed out by the arrows. Only when one step is completed
does the evaluator move on to the next step. The diamond represents a decision and we
have two different paths, depending on the result obtained. In this case we have two
decisions: (1) the analysis can proceed to the next step if the models and the results are
satisfactory, that is, they do not present errors in the model or return unusual results,
or go back to the previous step for adjustments if they are not; (2) when the analysis of
another scenario is necessary, go back to set the new scenario and change the parameters,
or finalize the study and present results and recommendations.

43

Figure 4 – Methodology.

44

4.2 PROCESS MAPPING

This section presents the three steps that constitute the Process Mapping phase: Under-
standing the maintenance model, and generation of the process model with parameters
and metrics. The objective is to present the necessary inputs for the implementation of
the next phase.

Understand the maintenance model and define the activity diagram: The step of un-
derstanding the maintenance model was carried out following the maintenance team and
by understanding the way the team works and the steps that the ticket goes through
until it is resolved. In this step was constructed the UML model of the process to be
evaluated, which served as the basis for the construction of the SPN model. This is the
main point because it will serve as a basis for the process modeling, so the understanding
of the process requires great attention and special care by the evaluator to avoid errors
of interpretation and commitment of the other stages of the methodology. It is part of
this step as well as raise the parameters to use in the model evaluation, this can be done
by searching for historical data in the tool used by the team to manage the tickets. The
result obtained from this step is further detailed in Chapter 6.

Generate process model in SPN with parameters and metrics: At this stage, the models
and metrics expressions will be effectively constructed, considering the understanding of
the maintenance model that was raised in the previous step and the SPN base model
described in Chapter 5. For the SPN modeling, we used the Mercury tool (SILVA B.;

MACIEL, 2015), where we can do the evaluation and allows the computation of the metrics.
The model, the metrics expressions and the parameters used to validate the model are
detailed in Chapter 6.

4.3 MODEL EVALUATION

The Model Evaluation phase is divided into three steps: Validate model, Evaluate model
and metrics and Adjust model and/or metrics. It aims to use all the knowledge acquired
and material developed in the previous steps to evaluate the SPN model.

Validate model: With the model built, it is made a validation through the Token Game
from Mercury tool (SILVA B.; MACIEL, 2015) to ensure that the model is analyzable and
simulable. Token Game corresponds to the functionality of the tool in which users can
simulate SPN models’ behavior. In order words, users are able, for instance, to debug the
model that is under analysis. Thus, model construction mistakes can be easily discovered
as well as their solution. This step is detailed in Chapter 6.

Evaluate model and metrics: This is the step where the evaluation is executed and then
the output values are compared with a predefined reference value, in this case, it would be
the parameters obtained from historical data raised in the Understand the maintenance
model and define the activity diagram step. When the computed value is satisfactory,

45

the process proceeds to the step Setting scenario and change parameters. However, if at
least one metric of interest has not reached a satisfactory level, the process must go to
the Adjust model and/or metrics step so that necessary changes are made and then the
model is reevaluated. This step is detailed in Chapter 7, Section 7.1.

Adjust model and/or metrics: In case the results from the evaluation are not satisfac-
tory we must change the model and/or metrics until we reach a satisfactory comparison
with the historical data.

4.4 SCENARIOS EVALUATION

The final phase of the methodology is the Scenarios Evaluation and it is composed of
the following steps. The objective is to use the results that were obtained in the previous
evaluation step and use them to construct scenarios, giving possibilities of configurations
to analyze possibilities of improvements.

Execute Sensitivity Analysis: Sensitivity Analysis is useful for testing different scenar-
ios to answer "what if" questions and identifying which number of uncertain input values
have the greatest impact on a specific evaluated metric. This analysis can also be done
using the Mercury tool. A range is defined where the metric to be analyzed varies and
then the list of metrics that most impact the result of the analyzed metric is returned.
This data can be used to help generate the scenarios to be evaluated.

Setting scenario and change parameters: This step of the methodology is the construc-
tion of the scenario for the evaluation. Based on the Evaluate model and metrics step,
which uses parameters with historic team data, it is possible to identify bottlenecks in
the process. Possible improvements can be a scenario to be evaluated. For this, it is nec-
essary to insert the new parameters in the model to be evaluated. This technique does
not guarantee the best answer, but it is possible to analyze various situations. This step
is detailed in Chapter 7.

Execute model simulation: This is the step where the transient simulation is executed
using the Mercury tool and the results obtained from this simulation will be compared
with the results of other possible scenarios and the outcome of the Evaluate model and
metrics step.

Analyze the results: This step verifies the results achieved based on scenarios, with a
good estimate that this same behavior can be presented by a real system. In this way,
it is possible to identify the influence of a given parameter on the analyzed metrics.
With the sequence of parameter changes and model evaluations/simulations, scenarios
are generated. The choice of the best parameter combination gives us the best scenario
based on the characteristics adopted. The description of scenario generation and search
for better solutions are explained in detail in Chapter 7.

Present results and recommendations: The final step of this support methodology is
to present the results and recommendations. That is, with all the data obtained in the

46

simulations and the analysis made from it, it is necessary to present this information to
the interested parties. Start giving context about what goals this evaluation was trying to
achieve; Present the data in charts and their analysis comparatively with the parameters
obtained from the historical data raised in the step Understand the maintenance model
and define the activity diagram; and finally show the recommendations and explain how
implementing each suggestion will benefit the process.

4.5 FINAL CONSIDERATIONS

This chapter presented the proposed support methodology that will be used as a guide
to this study to understand the process to be evaluated, to support create an SPN model
for this process and the results of the evaluation be used to support decision making for
process improvements. The next chapter will present a basic SPN model to be used as a
basis for the mapping process and will explain the translation of activity diagrams into
SPN models.

47

]

48

5 MODELING: TRANSLATING ACTIVITY DIAGRAMS TO SPN MODELS

This chapter presents a basic SPN model that represents a minimal team structure that
can be used as a basis for mapping other processes. The translation of activity diagrams
into an SPN model with examples is presented and performance metrics are described.

5.1 PROCESS MAPPING

The most widely used way to specify software processes is through semiformal languages,
such as UML (Unified Modeling Language), mainly due to its friendly and intuitive no-
tation. The UML was developed to specify, visualize and model software systems, as well
as for business modeling and software processes. The UML represents a notation that
has been successfully approved in system modeling (SIEGEL, 2019). However, semiformal
models generated by these languages alone do not provide support for evaluating the
performance of system specifications, so it is necessary to map these semiformal models
to formal models. Formal models are backed by solid mathematical fundamentals that
support their precise semantics, stimulate performance evaluation, and provide support
for qualitative property checks and analyzes.

Activity diagrams are used to describe programming logic, business processes, and
workflows. Also, this diagram has many features that allow you to represent complex
structures, such as parallel and conditional processes, exceptions, events, among others.
Activity diagrams represent pre and postcondition actions and their results and provide
a graphical representation of the flow of interactions. An activity diagram uses rounded
rectangles to describe a specific function of the system, arrows to represent precedence
relations between the system components and diamonds to represent decisions (SIEGEL,
2019) (PENDER, 2003).

In the next sections, the elements of the UML activity diagrams are mapped to SPN to
adopt them for the construction of the process model. Also, is proposed a stochastic Petri
net model and its expressions to calculate the utilization, throughput and response time
metrics for the maintenance process that is studied. The proposed model for performance
evaluation will address the problem of bottlenecks. The validation of the proposed model
is carried out in Chapter 7, section 7.1.

5.2 MAPPING ACTIVITY DIAGRAMS IN SPN

Stochastic Petri Nets have been chosen because it provides refinement and abstraction
mechanisms that are of great importance for complex systems designs, there is a wide
variety of tools available for modeling, analysis, and verification and has several extensions

49

for the representation of characteristics of competition study and analysis of practical
problems of organizations (GIRAULT; VALK, 2003).

The activities represent the execution of a process, involving one or more actions. An
action consists of processing that results in a change of state in the system.

Figure 5 shows a simple flow of activities represented through the activity diagram.
This diagram describes a simplified example of the ticket opening process. The activity
of requesting the opening of a ticket starts with the ticket to the Service Central. Once
the problem is understood, the activity of opening the ticket begins in the monitoring
system. Finally, the last activity consists of the screening for the Central responsible for
solving the problem.

Figure 5 – Example of an Activity Diagram.

Activities are represented by rectangles with rounded corners and depict an invocation
of an operation that may be physical or electronic and action represents a step within a
single activity.

In the SPN Model generated by the mapping process, activities are represented by
places and transitions. The places in_A and out_A represent, respectively, the precondi-
tions and postconditions of activity A. The transition t_A can represent the duration of
the activities or a set of conditions for assigning a certain time, such as the variation of
the time of the activity according to the number of people involved. Figure 6 illustrates
the mapping of an activity to the SPN model.

According to [Gue08], a transition represents an event that causes a change in the
state of the entity, generating a new activity. Transitions are graphically represented by
an arrow pointing to the target activity. Besides, a transition can have several origins (in
this case, it represents a junction of several simultaneous activities) and targets (in this
case, it represents a fork for various activities simultaneous). The transition represents

50

Figure 6 – Mapping activities to SPN model.

the relationship between two or more activities and is called a non-activated transition
because it does not represent a space of time.

In Figure 5, a transition related to the ticket opening process is presented. In this
example, there are two activities, the first, the user acts performing the opening request.
After this action is performed, it causes a transition to the open ticket activity. The
transition is represented by an arrow connecting the two activities.

Figure 7 – Mapping transitions to SPN model.

Figure 7 (a) represents the transition from activity A to activity B in the UML ac-
tivity diagram. In the SPN model generated by the mapping process; the transitions are
represented by a place. The place (out_A_in_B) represents the transition from activity
A to activity B (see Figure 7 (b)).

The initial state is a pseudo-state, whose function is to indicate (point to) the starting
point of the activity diagram, this pseudo-state is represented by a circle (see Figure 8
(a)). This initial state is represented by a place composed of a mark in the SPN model,
Figure 8 (b) represents the initial state, where the place iniSta_A contains the mark. The
transition t_in_A represents the transition between the initial state and the beginning
of an activity A. Figure 8 shows the mapping.

The final state is a pseudo-state, whose function is to indicate the completion of the
flow in the activity diagram, this pseudo-state is represented by a bold circle, as can be
seen in Figure 9 (a).

The final state is mapped in one place (endSta_A) in the SPN model, in which the
presence of a mark represents the end of the activity diagram, as can be seen in Figure 9

51

Figure 8 – Mapping initial state to SPN model.

Figure 9 – Mapping final state to SPN model.

(b). Also, the transition t_end_A is used to represent the transition between the terminus
of activity A and the final state. Figure 9 shows the mapping.

The decision represents a point in the flow of control where a decision must be made.
It is usually represented by a diamond with one entrance and several exits. The outputs
have guard conditions that control which transitions (from a set of alternative transitions)
succeed the activity that will be completed. Figure 10 shows an example in which, at
the end of the sorting activity, two possibilities are verified: perform maintenance or
adjustment in the database. If you choose to perform maintenance, the flow will go to
the maintenance activity, if you choose adjustment in the database it is forwarded to the
database activity.

Figure 10 – Example of an activity diagram decision.

In Figure 11 (a), the result of activity A will be verified by the decision element through
the expressions of conditions and thus chosen one of activities B or C. In the mapping to
SPN, the decision is defined by two transitions t_decB or t_decC, see Figure 11 (b).

52

Figure 11 – Mapping decisions to SPN model.

5.3 SPN PROPOSED MODEL

Based on these transformations of activities, transitions, initial and final states and deci-
sions in SPN, the service model of a team role is proposed. The model is shown in Figure
13 represents the arrival of a ticket and its resolution in a certain area, based on the
queuing and server model described in the above session.

In this work is being used, for means of modeling and simulation, the Mercury tool,
that is a software for supporting performance, dependability, and energy flow modeling
easily and powerfully. The tool provides graphical interfaces for creating and evaluating
Stochastic Petri Nets (SPN), Reliability Block Diagrams (RBD), Energy Flow Models
(EFM), Continuous-Time Markov Chains (CTMC) and Discrete-Time Markov Chain
(DTMC) (GROUP,).

To help understand the SPN model, it is possible to compare with the queue repre-
sentation showed in Figure 12. The queue part is equivalent to place P0, and the server
is represented by P3.

The transition trigger T0 is generated at an arrival rate 𝜆𝑇0. The letter K in the
place P0 represents the definition of the buffer size and the letter N in the place P3,
represents the quantity definition of persons working in the area. The transition TI0 is
immediately triggered upon reaching a ticket in the queue, represented by the place P1,
as long as there is an available resource, that means, there is at least one token in place
P3. After a rate 𝜆𝑇1 the ticket is resolved by the area in question and leaves the place
P2 for the next area queue if it exists, otherwise, the token is consumed and represents

53

the ticket resolution.

Figure 12 – Queue notation representing a queue and its server.

Figure 13 – SPN resource representation.

The idea of this base model is that it can represent any area of the process, that is, a
piece of the puzzle that is joined to others would form the process to be studied. In the
study case in question, this base model is used to represent the areas of analysis, database,
development, testing, and configuration engineering.

5.4 METRICS

After mapping the SPN models is the time to generate their metrics equations. Perfor-
mance metrics were used to evaluate the currently used software maintenance process,
with the main objective of having a sense of the use of the available resources and being
able to evaluate the ticket delivery capacity. The metrics selected for analysis in this study
are described below using the notation adopted by the Mercury tool, for the SPN resource
representation (Figure 13):

Area Utilization (AU)1: The expression below represents the percentage of the occupa-
tion level of at least one person in the analyzed area is working in one ticket. This metric
is obtained by computing the probability of existing tokens in place P2.

𝐴𝑈 = 𝑃{#𝑃2 > 0}

Individual Utilization (IU)2: The expression below represents the mean of the occupation
level of the people in the analyzed area to carry out the ticket. This metric is obtained by
1 Operator P{#Pn <condition>}, is the probability of the number of tokens in place Pn reaches the

specified condition.
2 Operator E{#Pn}, is the expected number of tokens in place Pn

54

computing the expected number of tokens in place P2, divided by the number of people
in the area.

𝐼𝑈 = 𝐸{#𝑃2}
𝑁

Throughput (TP): The following expression represents how many tickets per hour the
area can deliver.

𝑇𝑃 = 1
𝜆𝑇1 × (1 − ((𝑃{#𝑃1 = 𝐾}) + (𝑃{#𝑃2 = 𝑁})))

Response Time (RT): The expression below represents how long the team can resolve
one ticket. This metric is obtained by computing the expected value of tokens at the
places P1 and P2, divided by the throughput (TP).

𝑅𝑇 = ((𝐸{#𝑃1}) + (𝐸{#𝑃2}))/𝑇𝑃

The most widely used resource can be considered the bottleneck of the system. Also,
if this resource is considered the bottleneck of the system, it should have greater attention
on the part of the appraiser to optimize it.

5.5 FINAL CONSIDERATIONS

This chapter presented the translation of activity diagrams into the SPN model using
examples and presented a basic SPN model as a proposal to be the basis of process
mapping. The next chapter will present the process mapping for two different teams in
SPN using this basic SPN model and the expressions for each metric.

55

6 PROCESSES MAPPING

This chapter aims to present the SPN model of each process that will be analyzed in
Chapter 7 and the expressions of their metrics following the guideline of the proposed
methodology initial steps: Understand the maintenance model and define the activity di-
agram, and Generate process model in SPN with parameters and metrics. The processes
of two different IT teams from a federal public education agency (Federal University of
Pernambuco - UFPE) that will be used as input for scenario evaluation are presented.

6.1 TEAM ONE PROCESS MAPPING

The team one is a maintenance team responsible for the SIG@ system and is part of
the Operations Central, the UFPE IT sector. The SIG@ system is used by the academic
community of UFPE to support teaching, research, human resources, administrative pro-
cesses, institutional planning, patrimonial management, the election process, and univer-
sity restaurant management.

With the information obtained from the step Understand the maintenance process and
define the activity diagram, it was created a UML model represented in Figure 14. The
user, having a problem in the system to be reported, contacts the service center, which
is responsible for opening the ticket. With the ticket opened, the person in charge of the
analysis does the initial screening to classify the ticket and direct it to the corresponding
sector. For this study, the interest is in the Operations central. Once assorted, the ticket
passes through a second screening to be designated between database and maintenance.

Inside maintenance, the ticket will be resolved by the developer available in the team.
Once resolved, the tester will perform the validation of the ticket resolution. And finally,
the configuration engineer is responsible for deploying the most up-to-date version of
the system to production. And the activities classified as being a problem related to the
database, will be resolved by the database analyst and closed, not going through all the
steps that the ticket classified as maintenance problem needs to pass. The validation of
the ticket resolution will be done by the service center, which will contact the user to
validate the correction of the problem. For this study, was taken into account only the
analysis of the Operations Central (N2) area.

With that, a graphic queue notation was created, represented in Figure 15, based
on the steps of the process to be modeled in Petri net, for the sake of visualizing the
conversion of the UML model to SPN, it is not a required step. The ticket arrives initially
in the server one (S1) queue and after S1 does its service, that is, it analyzes the ticket,
the ticket is destined for server two (S2) queue, that represents the database area queue;
or server three (S3) queue, that is the start of maintenance queue, which goes to the

56

Figure 14 – High level team one process UML model.

Figure 15 – Queue and server representation.

queues of servers four (S4) and five (S5) after the respective servers does its service.
As part of the Generate process model in SPN with parameters and metrics step, it

was constructed the complete SPN model, as shown in the Figure 16, from the base
model defined and explained in Chapter 5 and from the UML defined for the process. It
was necessary to add transitions that represent the bifurcation between the activities of
database and maintenance and ensure that the model is analyzable and simulable, allowing
its reuse in other contexts. This work only addresses the simulation by computational
limitations.

Explaining the behavior of the defined model, once having at least one token in the
places that represents the queue (Q_Anl, Q_DB, Q_Dev, Q_Tst and Q_Prod) and
respective servers available (there are tokens in places P2, P7, P10, P13 and P16), means
that the respective immediate transitions (TI_Start_Anl, TI_Start_DB, TI_Start_Dev,
TI_Start_Tst and TI_Start_Prod) are able to start the work.

57

Figure 16 – SPN Process model for team one.

The SPN model has two immediate transitions that have probability associate, the
TI_DB has Pdb associate as a value and the TI_M transition has Pm associate, repre-
senting the probability the token have to go to each queue, that is, the database queue
and the maintenance queue respectively.

The parameters Kn in places P0, P4, P5, P8, P11 and P14 exists to limit the queue
and allow the model to be also analyzable, as previously explained, but in the study
scenario, the queue is infinite. The value of Kn was randomly set to a high value that
would not influence the results. The places P2, P7, P10, P13, and P16, has the number
of tokens that represent the number of persons working in each area.

To validate if the model is also analyzable, it is necessary to limit the queues and
ensure that the tokens are not lost, that is, that they are attended and return to the
queue from which they originated, for this it was used the token game, as defined by
the step Validate model. It corresponds to the functionality of the Mercury tool in which
users can simulate SPN models’ behavior. In other words, users are able, for instance,
to debug the model that is under analysis. Thus, model construction mistakes can be
easily discovered as well as their solution, also, users can simulate failures as well as those
correspondents consequences on the system availability.

Token Game starts by highlighting the active transitions, in this case, the T0 tran-
sition, meaning that there is only this transition ready to fire. Each time we click on
the highlighted transition the Mercury tool highlights the next active transitions and the
tokens change accordingly. Then, by clicking on the T0 transition, a token of the place
P0 is transferred to the place Q_Anl, the variable K1 has 1 taken from its value and the
immediate transition TI_Start_Anl is enabled. This means that a ticket has arrived in
the analysis queue and is ready for the Analyst to accept this ticket for the screening.

58

By clicking on the TI_Start_Anl enabled transition, the tool enables the next tran-
sitions T0 and T1, the token of the place Q_Anl is transferred to the place P1 and the
token of the place P2 meets the place P1 ; therefore, the N1 variable has 1 taken from its
value. This means the Analyst is screening the ticket and at the same time, the queue is
open to receive other tickets.

Now, the tool gave two options: if we want to put another ticket on the queue, we can
click on the transition T0, but if we want to continue with the process flow, we click on the
transition T1. Clicking on the transition T1, immediate transitions TI_DB and TI_M
are enabled, the token that was in place P1 is returns to place P2 and the other one
follow the flow and is transferred to place P3, the token from place P4 meets the one in
place P3 and the variable K2 has 1 removed from its value. This means the screening has
been done and will now define whether the token will go to the database or maintenance
queue and that the Analyst is free to begin work on the next incoming ticket.

Following the flow to the database queue, we need to click on the transition TI_DB.
After clicking this transition, the token that was in place P3 returns to the place P4 adding
1 to the value of the variable K2, the same token that was in place P3 follows the flow to
the place Q_DB and the token from the place P5 also goes to the place Q_DB removing
1 from the value of the variable K6 and enables the immediate transition TI_Start_DB.
This means that the ticket is now in the database Analyst queue and ready to be resolved.

Now the only active transition is the TI_Start_DB, so by clicking on this transition,
the token in place Q_DB will be transferred to place P6, the token in place P7 will meet
it in place P6, so the value of the N2 variable will decrease by 1 and the transition T2
will be enabled. This means that the database Analyst is resolving the ticket. By clicking
on the enabled transition T2, the token that was put on place P6 from place P7 returns
to place P7, and the token that was following the flow is resolved.

Going back to the step where we decided to follow the database flow, but now following
the maintenance flow, by clicking on the immediate transition TI_M, the token that was
in place P3 is back to the place P4 adding 1 to the value of the variable K2, the same
token that was in place P3 follows the flow to the place Q_Dev and the token from the
place P8 also goes to the place Q_Dev removing 1 from the value of the K3 variable and
enables the immediate transition TI_Start_Dev. This means that the ticket is now in the
development queue and ready for the Developers to resolve it.

Now the only active transition is the TI_Start_Dev, by clicking this transition, the
token in place Q_Dev will be transferred to place P9 adding 1 to the value of the K3
variable, the token in place P10 will meet it in place P9, so the N3 variable will decrease
1 from its value and the transition T3 will be enabled. This means that one Developer is
resolving the ticket.

Clicking on the enabled transition T3, the token that went to place P9 from place P10
returned to place P10, and the token that is following the flow goes to the place Q_Tst,

59

the token in place P11 meets the token in place Q_Tst and the K4 variable decreases 1
from its value, and the immediate transition TI_Start_Tst is enabled. This means that
the development is done and the ticket is ready to be tested.

Now the only active transition is the TI_Start_Tst, by clicking this transition, the
token in place Q_Tst will be transferred to place P12 adding 1 to the value of the K4
variable, the token in place P13 will meet it on place P12, so the N4 variable will decrease
1 from its value, and the transition T4 will be enabled. This means that the Tester is
testing the ticket.

By clicking the enabled transition T4, the token that went to place P12 from place
P13 returned to place P13, and the token that is following the flow goes to the place
Q_Prod, the token in place P14 meets the token in place Q_Prod and the K5 variable
decreases 1 from its value, and the immediate transition TI_Start_Prod is enabled. This
means that the test is done and the ticket is ready to be deployed.

Now the only active transition is the TI_Start_Prod, by clicking on this transition the
token in place Q_Prod will be transferred to place P15, the token in place P16 will meet
it in place P15, so the N5 variable will decrease 1 from its value, and the transition T5
will be enabled. This means that the Configuration Engineer is deploying the version to
production. Clicking on the enabled transition T5, the token that went to place P15 from
place P16 is back to place P16, and the token that was following the flow is resolved.

With the entire model validated with Token Game, as part of the Generate process
model in SPN with parameters and metrics step, with the SPN model developed, we can
assemble the expressions for each metric by following the concepts explained in Chapter
5. The metrics were made by area and are described below using the notation adopted by
the Mercury tool:

Analysis Area Utilization (AUanl): This expression represents the percentage of the
analysis area occupancy level to screen a ticket.

𝐴𝑈𝑎𝑛𝑙 = 𝑃{#𝑃1 > 0}

Analyst Utilization (IUanl): This expression represents the percentage of an Analyst’s
individual occupancy level to screen the ticket.

𝐼𝑈𝑎𝑛𝑙 = 𝐸{#𝑃1}
𝑁1

Database Analysis Area Utilization (AUdb): This expression represents the percentage
of the database analysis area occupancy level to resolve a ticket related to database
problems.

𝐴𝑈𝑑𝑏 = 𝑃{#𝑃6 > 0}

Database Analyst Utilization (IUdb): This expression represents the percentage of a
database analyst’s individual occupancy level to resolve a ticket related to database prob-
lems.

𝐼𝑈𝑑𝑏 = 𝐸{#𝑃6}
𝑁2

60

Development Area Utilization (AUdev): This expression represents the percentage of
the development area occupancy level to resolve a ticket.

𝐴𝑈𝑑𝑒𝑣 = 𝑃{#𝑃9 > 0}

Developer Utilization (IUdev): This expression represents the percentage of a devel-
oper’s individual occupancy level to resolve a ticket.

𝐼𝑈𝑑𝑒𝑣 = 𝐸{#𝑃9}
𝑁3

Testing Area Utilization (AUtst): This expression represents the percentage of the
testing area occupancy level to validate the resolution of a ticket.

𝐴𝑈𝑡𝑠𝑡 = 𝑃{#𝑃12 > 0}

Tester Utilization (IUtst): This expression represents the percentage of tester’s indi-
vidual occupancy level to validate the resolution of a ticket.

𝐼𝑈𝑡𝑠𝑡 = 𝐸{#𝑃12}
𝑁4

Production Area Utilization (AUprod): This expression represents the percentage of
the production area occupancy level to deploy the updated version to production.

𝐴𝑈𝑝𝑟𝑜𝑑 = 𝑃{#𝑃15 > 0}

Configuration engineer Utilization (IUprod): This expression represents the percentage
of configuration engineer’s individual occupancy level to deploy the updated version to
production.

𝐼𝑈𝑝𝑟𝑜𝑑 = 𝐸{#𝑃15}
𝑁5

Throughput - Database (TPdb): This expression represents how many tickets per hour
the database analyst can resolve.

𝑇𝑃𝑑𝑏 = 1
𝜆𝑇1 × (1 − ((𝑃{#𝑄_𝐴𝑛𝑙 = 𝐾1}) + (𝑃{#𝑃1 = 𝑁1}))) × 𝑃𝑑𝑏

Throughput - Maintenance (TPm): This expression represents how many tickets per
hour the maintenance team can resolve.

𝑇𝑃𝑚 = 1
𝜆𝑇1 × (1 − ((𝑃{#𝑄_𝐴𝑛𝑙 = 𝐾1}) + (𝑃{#𝑃1 = 𝑁1}))) × 𝑃𝑚

Response Time - Database (RTdb): This expression represents how long the database
analyst can resolve one ticket.

𝑅𝑇𝑑𝑏 = ((𝐸{#𝑄_𝐴𝑛𝑙}) + (𝐸{#𝑃1}) + (𝐸{#𝑃3}) + (𝐸{#𝑄_𝐷𝐵}) + (𝐸{#𝑃6}))
𝑇𝑃𝑑𝑏

61

Response Time - Maintenance (RTm): This expression represents how long the main-
tenance team can resolve one ticket.

𝑅𝑇𝑚 = ((𝐸{#𝑄_𝐴𝑛𝑙}) + (𝐸{#𝑃1}) + (𝐸{#𝑃3})

+(𝐸{#𝑄_𝐷𝑒𝑣}) + (𝐸{#𝑃9})

+(𝐸{#𝑄_𝑇𝑠𝑡}) + (𝐸{#𝑃12})

+(𝐸{#𝑄_𝑃𝑟𝑜𝑑}) + (𝐸{#𝑃15}))/𝑇𝑃𝑚

With all the steps for the Process mapping phase completed, and with the validation
made as defined in phase Model evaluation, we want to evaluate the model and metrics.
The parameters to be used in the SPN model for this step were extracted from the
OTRS system that is used by the team to manage the tickets. The data were collected
during three months and these, after analysis, were inserted into the model to evaluate
the software maintenance process. The step Evaluate model and metrics is detailed in
Chapter 7, Section 7.1. Model and metrics adjustments were made during this process,
as defined by the methodology, but the model presented in this chapter was the final one,
with all the adjustments made in step Adjust model and/or metrics.

6.2 TEAM TWO PROCESS MAPPING

To validate the application of the model in another context, was take into account a
different team process. This is a team that is also part of the Operations Central but
is responsible for maintaining another internal system. With the information obtained
from the step Understand the maintenance process and define the activity diagram, it was
created a UML model represented in Figure 17.

The user, having a problem in the system to be reported, contacts the service center,
the center is responsible for opening the ticket. With the ticket opened, the person in
charge of the analysis does the initial screening to classify the ticket and direct it to the
corresponding sector. The interest of this study remains to be in the Operations central
(N2). Once assorted, the ticket passes through a second screening to be designated between
the internal team and external team queues.

Inside the internal team, the ticket will be resolved by the developer. Once resolved,
the configuration engineer is responsible for deploying the most up-to-date version of the
system to production. Inside the external team, the ticket is resolved and then the ticket
is returned to the internal team to be validated, that is, the internal team tester performs
the ticket validation resolved by the external team and then releases to the configuration
engineer to deploy the version of the system to production. The validation of the ticket
resolution will be done by the service center, which will contact the user to validate the
correction of the problem. For this study, was taken into account only the analysis of the
Operations Central (N2) area. The external team process was not taken into account in
this study.

62

Figure 17 – High level team two process UML model.

As part of the Generate process model in SPN with parameters and metrics step, it
was constructed the complete SPN model, as shown in the Figure 18, from the base
model defined and explained in Chapter 5 and from the UML defined for the process. It
was necessary to add transitions that represent the bifurcation between the activities of
database and maintenance and ensure that the model is analyzable and simulable, allowing
its reuse in other contexts. This work only addresses the simulation by computational
limitations.

Explaining the behavior of the defined model for the internal team, once having at least
one token in the places that represents the queue (Q_Anl, Q_Exe, Q_Val and Q_Prod)
and respective servers available (there are tokens in places P2, P7, P10 and P14), means
that the respective immediate transitions (TI_Start_Anl, TI_Start_Exe, TI_Start_Val
and TI_Prod) are able to start the work.

The SPN model also has two immediate transitions that have probability associate,
the TI_Exe has Pexe associate as a value and the TI_Val transition has Pval associate,
representing the probability the token have to go to each queue, that is, the execution
queue and the validation queue respectively.

The parameters Kn in places P0, P5, P8 and P11 exists to limit the queue and allow

63

Figure 18 – PN model.

the model to be also analyzable. The value of Kn was randomly set to a high value that
would not influence in the results. The places P2, P7, P10 and P14, has the number of
tokens Nn that represent the quantity of persons working in each area.

To validate if the model is also analyzable, it is necessary to limit the queues and
ensure that the tokens are not lost, that is, that they are attended and return to the
queue from which they originated, for this it was used the token game, as defined by the
step Validate model.

Token Game starts by highlighting the active transition T0. Then, by clicking the T0
transition, a token of the place P0 is transferred to the place Q_Anl, the variable K1 has
1 taken from its value and the immediate transition TI_Start_Anl is enabled. This means
that a ticket has arrived in the analysis queue and is ready for the Analyst to accept this
ticket for the screening.

By clicking the TI_Start_Anl enabled transition, the tool enables the next transitions
T0 and T1, the token of the place Q_Anl is transferred to the place P1 and the token of
the place P2 meets the place P1 ; therefore, the N1 variable has 1 taken from its value.
This means the Analyst is screening the ticket and at the same time, the queue is open
to receive other tickets.

Now, the tool gave two options: if we want to put another ticket on the queue, we
can click on the transition T0, but if we want to continue with the process flow, we click
on the transition T1. Clicking on the transition T1, immediate transitions TI_Exe and
TI_Val are enabled, the token that was in place P1 returns to place P2 and the variable
N1 has its value back, the other one follow the flow and is transferred to place P3, the
token from place P4 meets the one in place P3 and the variable K2 has 1 removed from

64

its value. This means the screening has been done and will now define whether the token
will go to the execution or validation queue and that the Analyst is free to begin work on
the next incoming ticket.

Following the flow to the execution queue, we need to click on the transition TI_Exe.
After clicking this transition, the token that was in place P3 returns to the place P4 adding
1 to the value of the variable K2, the same token that was in place P3 follows the flow to
the place Q_Exe and the token from the place P5 also goes to the place Q_Exe removing
1 from the value of the variable K5 and enables the immediate transition TI_Start_Exe.
This means that the ticket is now in the execution queue and ready to be resolved.

Now the only active transition is the TI_Start_Exe, so by clicking on this transition,
the token in place Q_Exe will be transferred to place P6, the token in place P7 will meet
it in place P6, so the value of the N2 variable will decrease by 1 and the transition T2
will be enabled. This means that the Developer is resolving the ticket.

By clicking on the enabled transition T2, the token that was put on place P6 from
place P7 returns to place P7 adding 1 back to the value of the variable N2, the token that
was following the flow goes to the place Q_Prod, the token in the place P11 meets the on
in place Q_Prod, the value of the variable K4 decreases in 1, and the TI_Prodtransition
is enabled. This means that the execution is done and the ticket is ready to be deployed.

Clicking the TI_Prod immediate transition, the token in place Q_Prod goes to place
P13, the token from place P14 meets the one in place P13, the value of the variable N4
decreases in 1, the token that was in place Q_Prod from place P11 goes back to the place
P11 and is added 1 to the value of the variable K4. This means that the Configuration
Engineer is deploying the version to production. Clicking on the enabled transition T4,
the token that went to place P13 from place P14 is back to place P14 adding 1 back to
the value of the variable N4, and the token that was following the flow is resolved.

Going back to the step where we decided to follow the execution flow, but now following
the validation flow, by clicking on the immediate transition TI_Val, the token that was
in place P3 is back to the place P4 adding 1 to the value of the variable K2, the same
token that was in place P3 follows the flow to the place Q_Val and the token from the
place P8 also goes to the place Q_Val removing 1 from the value of the K3 variable and
enables the immediate transition TI_Start_Val. This means that the ticket is now in the
validation queue and ready for the Testers to resolve it.

Now the only active transition is the TI_Start_Val, by clicking this transition, the
token in place Q_Val will be transferred to place P9 adding 1 to the value of the K3
variable, the token in place P10 will meet it in place P9, so the N3 variable will decrease
1 from its value and the transition T3 will be enabled. This means that the Tester is
resolving the ticket.

Clicking on the enabled transition T3, the token that went to place P9 from place
P10 returned to place P10 adding 1 back to the value of the N3 variable, and the token

65

that is following the flow goes to the place Q_Prod, the token in place P11 meets the
token in place Q_Prod and the K4 variable decreases 1 from its value, and the immediate
transition TI_Prod is enabled. This means that the validation is done and the ticket is
ready to be deployed.

Clicking the TI_Prod immediate transition, the token in place Q_Prod goes to place
P13, the token from place P14 meets the one in place P13, the value of the variable N4
decreases in 1, the token that was in place Q_Prod from place P11 goes back to the place
P11 and is added 1 to the value of the variable K4. This means that the Configuration
Engineer is deploying the version to production. Clicking on the enabled transition T4,
the token that went to place P13 from place P14 is back to place P14 adding 1 back to
the value of the variable N4, and the token that was following the flow is resolved.

With the entire model validated with Token Game, so as part of the Generate process
model in SPN with parameters and metrics step, with the SPN model developed, we can
assemble the expressions for each metric following the concepts explained in Chapter 5.
The metrics were made by area and they are described below using the notation adopted
by the Mercury tool:

Analysis Area Utilization (AUanl): This expression represents the percentage of the
analysis area occupancy level to screen a ticket.

𝐴𝑈𝑎𝑛𝑙 = 𝑃{#𝑃1 > 0}

Analyst Utilization (IUanl): This expression represents the percentage of an Analyst’s
individual occupancy level to screen a ticket.

𝐼𝑈𝑎𝑛𝑙 = 𝐸{#𝑃1}
𝑁1

Development Area Utilization (AUexe): This expression represents the percentage of
the development area occupancy level to resolve a ticket.

𝐴𝑈𝑒𝑥𝑒 = 𝑃{#𝑃6 > 0}

Developer Utilization (IUexe): This expression represents the percentage of a devel-
oper’s individual occupancy level to resolve a ticket.

𝐼𝑈𝑒𝑥𝑒 = 𝐸{#𝑃6}
𝑁2

Testing Area Utilization (AUval): This expression represents the percentage of the
testing area occupancy level to validate the resolution of a ticket.

𝐴𝑈𝑣𝑎𝑙 = 𝑃{#𝑃9 > 0}

Tester Utilization (IUval): This expression represents the percentage of tester’s indi-
vidual occupancy level to validate the resolution of a ticket.

𝐼𝑈𝑣𝑎𝑙 = 𝐸{#𝑃9}
𝑁3

66

Production Area Utilization (AUprod): This expression represents the percentage of
the production area occupancy level to deploy the updated version to production.

𝐴𝑈𝑝𝑟𝑜𝑑 = 𝑃{#𝑃13 > 0}

Configuration engineer Utilization (IUprod): This expression represents the percentage
of configuration engineer’s individual occupancy level to deploy the updated version to
production.

𝐼𝑈𝑝𝑟𝑜𝑑 = 𝐸{#𝑃13}
𝑁4

Throughput (TP): This expression represents how many tickets per hour the team can
resolve.

𝑇𝑃 = 1
𝜆𝑇1 × (1 − ((𝑃{#𝑄_𝐴𝑛𝑙 = 𝐾1}) + (𝑃{#𝑃1 = 𝑁1})))

Response Time (RT): This expression represents how long the team can resolve a
ticket.

𝑅𝑇 = ((𝐸{#𝑄_𝐴𝑛𝑙}) + (𝐸{#𝑃1}) + (𝐸{#𝑃3})

+(𝐸{#𝑄_𝐸𝑥𝑒}) + (𝐸{#𝑃6})

+(𝐸{#𝑄_𝑉 𝑎𝑙}) + (𝐸{#𝑃9})

+(𝐸{#𝑄_𝑃𝑟𝑜𝑑}) + (𝐸{#𝑃13}))/𝑇𝑃

With all the steps for the Process mapping phase completed, and with the validation
made as defined in phase Model evaluation, we want to evaluate the model and metrics.
The parameters to be used in the SPN model for this step were extracted from the
OTRS system that is used by the team to manage the tickets. The data were collected
during three months and these, after analysis, were inserted into the model to evaluate
the software maintenance process. The step Evaluate model and metrics is detailed in
Chapter 7, Section 7.1. Model and metrics adjustments were made during this process,
as defined by the methodology, but the model presented in this chapter was the final one,
with all the adjustments made in step Adjust model and/or metrics.

6.3 FINAL CONSIDERATIONS

This chapter presented the details on the steps related with the Process mapping and
Model evaluation phases for the two process that will be use as input for the Scenarios
evaluation phase detailed in the next chapter, Chapter 7.

67

7 SCENARIOS EVALUATION

In this chapter, three studies are presented to evaluate situations of practical interest.
Initially, it is made the evaluation using the two processes presented in Chapter 6. After
this, a Sensitivity Analysis is made and, finally, the last study shows the results of the
simulation using the Sensitivity Analysis data and comparing these results with the results
of the first study that used real data.

7.1 REAL CASES PRESENTATION

As part of the step Evaluate model and metrics, this section has as objective to validate
the SPN model in two different maintenance processes. The first one is showed in the next
Subsection 7.1.1 and the second one in the Subsection 7.1.2.

7.1.1 Team One Process

In this stage of the adopted methodology, the data related to system maintenance was
collected. The collection consists of measuring events of interest in the system, through
historical data and in obtaining information from the team.

Table 5 shows the arrival rate calculated from the data obtained from the OTRS tool
for the SIG@ system in three months (January to March).

Table 5 – Ticket per hour in the first quarter of 2017.

Month Database Maintenance Total

Jan 0.125 0.3667 0.4917
Feb 0.1083 0.3583 0.4667
Mar 0.1667 0.4667 0.6333
Average 0.1333 0.3972 0.5305

The first evaluation is based on the context currently experienced by Team One, which
is made of ten people and is distributed as follows: an analyst, five developers, a tester, two
configuration engineers and a database analyst. The number of people described working
in each area will represent the token quantity in the designated place in the SPN model
(Figure 14) presented in Chapter 6.

Based on the scenario currently used by the Operations Central, the stationary simu-
lation was made using the average data as parameters described on Tables 5, the number
of people described on Table 6, and the delays for each timed transition described on
Table 7. The confidence level was set to 95% and the maximum relative error was set

68

Table 6 – Number of people working in each area of team one.

Place Variable Quantity

P2 N1 1
P7 N2 1
P10 N3 5
P13 N4 1
P16 N5 2

Table 7 – Timed transitions parameters.

Transition Delay Type

T0 3.44 h Single Server
T1 0.5 h Infinite Server
T2 6 h Infinite Server
T3 8 h Infinite Server
T4 4 h Infinite Server
T5 2 h Infinite Server

to 10%. The probabilities associated with the immediate transitions TI_DB and TI_M
were 0.25 and 0.75, respectively. The results of the simulation are described in Table 8.

Table 8 – Team One simulation results.

Metric Result Confidence Interval (95%)

TPdb 0.07267442 ticket/h [0.07267441860467339, 0.0726744186046778]
TPm 0.21802325 ticket/h [0.21802325581437196, 0.21802325581438306]
RTdb 12.9086989 h [12.79764059863279, 13.019757388672756]
RTm 42.2280976 h [41.83142343547035, 42.62477188754499]
AUan 14.5321688% [0.14504350176043118, 0.14559987455409884]
AUdb 43.582423% [0.43339386567724225, 0.43825461275539757]
AUdev 82.7807516% [0.826945159108653, 0.8286698730381001]
AUtst 87.1441065% [0.8701775697938032, 0.872704561026328]
AUprod 35.7572249% [0.35705578513688113, 0.3580887138259479]
IUan 14.5321688% [0.14504350176043118, 0.14559987455409884]
IUdb 43.5824239% [0.43339386567724225, 0.43825461275539757]
IUdev 35.8623960% [0.3577285324166937, 0.35951938783721876]
IUtst 87.1441065% [0.8701775697938032, 0.872704561026328]
IUprod 21.8428328% [0.21799654903075885, 0.21886010842601442]

It is possible to see from these results that the use of the configuration engineer is
low and that the use of the tester is very high, as well as that of the developers, thus

69

identifying the process bottleneck, with almost 100% of utilization of the resources, these
areas need changes. The database and the analysis area have very low utilization, the
possible solution to better take advantage of these resources, since it only has one person
per area, would be allocating them also in other activities.

7.1.2 Team Two Process

The second validation is based on the context currently experienced by another team
from NTI, where five people are distributed as follows: one analyst, one developer, two
testers and one configuration engineer. The number of people described working in each
area will represent the token quantity in the designated place in the SPN model (Figure
17) presented in Chapter 6.

For the stationary simulation, the confidence level was set to 95% and the maximum
relative error was set to 10%. The probability Pexe of getting a ticket to the execution
queue is around 33%, so the probability Pval of the ticket going to the validation queue is
67%. The other immediate transitions have no associated probability. The other param-
eters used in this model are detailed in Tables 9 and 10.

Table 9 – Number of people working in each area of team two.

Place Variable Quantity

P2 N1 1
P7 N2 1
P10 N3 2
P14 N4 1

Table 10 – Timed transitions parameters.

Transition Delay Type

T0 2.2 h Single Server
T1 10.4 h Single Server
T2 28 h Single Server
T3 32 h Infinite Server
T4 2 h Single Server

Table 11 shows the results of the metrics obtained by the simulation in the Mercury
tool. It is possible to see from these results that the use of the configuration engineer is very
low and the use of the analyst and the testers is very high, showing the possible process
bottlenecks. In order to validate it is possible to compare the Response Time calculated
with the real data reported by the team, that on average every 58 hours deploys a version
to production and the calculated was 62 hours, we have a result with a difference of 6.5%,

70

Table 11 – Team Two process simulation results.

Metric Result Confidence Interval (95%)

TP 0.0177 ticket/h [0.017121, 0.019149]
RT 62.2119 h [62.192328, 62.627803]
AUan 99.99 % [0.999964, 1.000007]
AUexe 92.83 % [0.923290, 0.933378]
AUval 99.51 % [0.992370, 0.997477]
AUprod 18.89 % [0.187193, 0.194578]
IUan 99.99 % [0.999964, 1.000007]
IUexe 92.83 % [0.923290, 0.933378]
IUval 98.33 % [0.982370, 0.987477]
IUprod 18.89 % [0.187193, 0.194578]

thus being considered a valid model for representing the process in question, since the
result is lower than the relative error.

7.2 SENSITIVITY ANALYSIS

To evaluate the impact of the parameters in the system and find the ideal quantity of
human resources per area, the Sensitivity Analysis was made for each metric. The process
used in this analysis was the Team One process, validated in 7.1.1.

It is important to highlight that parameters are ordered according to absolute values of
scaled sensitivities. A negative sensitivity indicates that if the parameter value increases,
the measure of interest decreases, which means have an inverse impact. A positive sensi-
tivity indicates that an increase in the parameter value causes an increase in the measure
of interest.

The scaled Sensitivity Analysis of the database services Throughput, concerning five
parameters is shown in Table 12.

Table 12 – Sensitivity indices for database services Throughput metric.

Parameters Result

Testers 𝑁4 1.2085
Analysts 𝑁1 1.1840
Database Analysts 𝑁2 -0.2796
Developers 𝑁3 -0.3806
Configuration Engineers 𝑁5 -0.5194

This decreasing sensitivity ranking shows that the number of testers has the greatest
impact among all parameters when the database service Throughput is the measure of

71

interest, but it’s a small impact. This parameter indicates that when the number of testers
changes, the database throughput may change more than if the other quantities change.
This impact is followed by the number of Analysts, which also shows to have a major
impact on the database Throughput metric when compared to the other parameters that
have an inverse impact on the result.

The scaled Sensitivity Analysis of the maintenance services Throughput, concerning
five parameters is shown in Table 13.

Table 13 – Sensitivity indices for maintenance services Throughput metric.

Roles Result

Testers 𝑁4 1.2087
Database Analysts 𝑁2 1.1985
Analysts 𝑁1 -0.2427
Developers 𝑁3 -0.2744
Configuration Engineers 𝑁5 -0.3705

This decreasing sensitivity ranking shows that the number of testers also has the
greatest impact among all parameters when the maintenance service Throughput is the
measure of interest, but it’s a small impact. This parameter indicates that when the
number of testers changes, the maintenance throughput may change more than if the
other quantities change. This impact is followed by the number of database Analysts,
which also shows to have a major impact on the maintenance Throughput metric when
compared to the other parameters that have an inverse impact on the result.

The scaled Sensitivity Analysis of the maintenance services Response Time, concerning
five parameters is shown in Table 14.

Table 14 – Sensitivity indices for response time of the maintenance services metric.

Roles Result

Testers 𝑁4 98.9158
Database Analysts 𝑁2 14.3621
Configuration Engineers 𝑁5 -0.2315
Analysts 𝑁1 -0.2594
Developers 𝑁3 -0.2938

This decreasing sensitivity ranking shows that the number of testers also has the great-
est impact among all parameters when the maintenance services Response Time is the
measure of interest, and it’s the greatest impact compared with the other parameters.
This parameter indicates that when the number of testers changes, the maintenance Re-
sponse Time change more than if the other quantities change. This impact is followed

72

by the number of database Analysts, which also shows to have a major impact on the
maintenance Response Time metric when compared to the other parameters that have
an inverse impact on the result, but still a small impact compared with the number of
testers impact.

The scaled Sensitivity Analysis of the database services Response Time, concerning
five parameters is shown in Table 15.

Table 15 – Sensitivity indices for response time of the database services metric.

Roles Result

Testers 𝑁4 149.3573
Database analysts 𝑁2 105.8583
Developers 𝑁3 -0.0965
Analysts 𝑁1 -0.3876
Configuration engineers 𝑁5 -0.4288

This decreasing sensitivity ranking shows that the number of testers also has the
greatest impact among all parameters when the database services Response Time is the
measure of interest, and it’s the greatest impact compared with the other parameters. This
parameter indicates that when the number of testers changes, the database Response Time
change more than if the other quantities change. This impact is followed by the number
of database Analysts, which also shows to have a great impact on the database Response
Time metric when compared to the other parameters that have an inverse impact on the
result.

The rankings presented showed that the number of testers is the most important
among all parameters when the Throughput or Response Time is the measure of interest.

The results of the Sensitivity Analysis related with the Utilization metrics are detailed
in the Figures 20, 21, 22 and 23 for the number of Analysts, database Analysts, Developers,
Testers and Configuration Engineers respectively.

It is important to point out that these results showed in Figures 19 to 29 are point
estimates, that is, mean values and not a confidence interval, and the stopping criteria
used were the confidence level set to 95% and the maximum relative error set to 10%.

It is important to stress these parameters to see which one has the highest influence
on the performance metrics. Our Sensitivity Analysis helped to see that the Testers have
the highest influence, and the second one for the most metrics are the database Analysts.

The Sensibility Analysis was made in addition to the number of persons in each area,
also for the parameters 𝜆𝑇0 varying from 0.5 to 4 hours and transitions TI_DB and
TI_M weight as well, varying from 0.1 to 0.9 each.

The variation of the arrival rate for the metrics TPdb, RTdb, TPm and RTm are
shown in the Figures 24, 26, 25 and 27 respectively.

73

Figure 19 – Individual Analyst Utilization vs. Number of Analysts chart.

Figure 20 – Database Analyst Utilization vs. Number of database Analysts chart.

Figure 21 – Developer Utilization vs. Number of Developers chart.

Figure 22 – Tester Utilization vs. Number of Testers chart.

With an arrival delay of 0.5 hours, we get the highest result for the TPdb and TPm
metrics. From the charts, you can see that with 1 hour delay or more, these metrics start

74

Figure 23 – Configuration Engineer Utilization vs. Number of Configuration Engineers
chart.

Figure 24 – Throughput - Database vs. Arrival delay chart.

Figure 25 – Throughput - Maintenance vs. Arrival delay chart.

Figure 26 – Response Time - Database vs. Arrival delay chart.

to get lower results, which means the team will take longer to deliver tickets. For RTdb
and RTm metrics, you can get the highest result with a task arrival delay between 1 hour
and 2 hours.

For the TPdb, TPm, RTdb, and RTm with the transitions TI_DB and TI_M weight
from 0.1 to 0.9, the results do not have many variations. For illustration, following on the

75

Figure 27 – Response Time - Maintenance vs. Arrival delay chart.

Figure 28 – Throughput - Database vs. Weight of transition - Database chart.

Figure 29 – Throughput - Maintenance vs. Weight of transition - Database chart.

Figures 28 and 29, are the charts for TPdb and TPm results, respectively.
Working with integers numbers, since we are talking about the number of people, the

number of persons working in each area of the process can be as follows: one Analyst,
two database Analysts, four Developers, two Testers, and one Configuration Engineers.
With this configuration in the team, we may improve each aspect of the performance of
the Team One process of the Operations Central of Federal University of Pernambuco
(UFPE), and the next study detailed in Section 7.3 will evaluate the model with these
parameters to validate this assumption.

As the importance of this study, numerical factors were presented that impacted on
process metrics and, consequently, impacted on decision making. It is important to em-
phasize that the presented study does not compose an in-depth study, so this study aimed
to highlight only the superficial relationship, which future works may deepen since the
pure look of the metric does not necessarily represent the best solution for the process
improvement. The main results of the Sensitivity Analysis had the goal to serve as input
for the next study.

76

7.3 SIMULATION OF THE SENSITIVITY ANALYSIS SCENARIO

As the last study, the data set obtained in the Sensitivity Analysis study was used to
replace the number of people parameters in each area of the Team One process. The step
Execute model simulation was done with these new parameters to validate the scenario
and a comparison was made between these results, and the results from the first study,
using the real data.

According to the Sensitivity Analysis, one possible scenario would be to have a team
with 1 Analyst, 2 database Analysts, 4 Developers, 2 Testers, and 2 Configuration Engi-
neers. These data were used to replace respectively the number of tokens Nn in the places
P2, P7, P10, P13 and P16 of the model represented in the Figure 16 for the simulation.
These parameters are shown in Table 16. The confidence level was set to 95% and the
maximum relative error was set to 10%.

Table 16 – Number of people working in each area of the process.

Place Variable Quantity

P2 N1 1
P7 N2 2
P10 N3 4
P13 N4 2
P16 N5 1

The results obtained in this simulation are detailed in Table 17. As shown in the
table, it was observed that the maintenance Response Time had the greatest improvement
compared to the simulation with real data, changing from 42.2 hours to 16 hours.

This proved to corroborate with the Sensitivity Analysis result that for the mainte-
nance Response Time, the number of Testers had a much greater impact on the metric
than compared to the other parameters, followed by the number of database Analysts,
which was also changed.

Comparing the data obtained in the simulation using the real data of the Team One
with the data obtained in this scenario, it is possible to see in Figure 30 that we had great
improvements especially in the Response Time metrics. The database Response Time
decreased from 12.9 hours to 8.4 hours, and the maintenance Response Time decreased
from 42.2 hours to 16 hours.

We have achieved many improvements in the metrics evaluated. These improvements
are shown in detail in Table 18. Throughput metrics were the least impacted, with the
biggest improvement of 0.01 %. In Response Time metrics, we can see big improvements,
decreasing by 61.99 % and 34.7 % for maintenance and database, respectively. Analyzing
utilization metrics is complicated because what we are evaluating is human resources and
not computational systems, so we don’t want team members to be overwhelmed and we

77

Table 17 – Simulation result with data obtained with Sensitivity Analysis.

Metric Result Confidence Interval (95%)

TPdb 0.07267441 ticket/h [0.07267441860467157, 0.0726744186046863]
TPm 0.21802325 h [0.21802325581433146, 0.21802325581440574]
RTdb 8.428818 h [8.197279482401399, 8.660357523408436]
RTm 16.048574 h [15.92003631580553, 16.177112393313426]
AUan 14.715205% [0.14658249026154863, 0.14772161034051712]
AUdb 34.690879% [0.3386973072770197, 0.3551202825815622]
AUdev 82.242852% [0.8218860897280867, 0.8229709525234329]
AUtst 61.437301 % [0.6083283022843549, 0.6204177321509128]
AUprod 35.860994 % [0.3532588042272103, 0.3639610786758422]
IUan 14.715205% [0.14658249026154863, 0.14772161034051712]
IUdb 21.108947% [0.20452786138326637, 0.21765108083330423]
IUdev 43.43442% [0.42853122063003174, 0.44015728906725077]
IUtst 44.449616 % [0.4424599497125482, 0.44653238705065346]
IUprod 43.773480 % [0.43202754417194483, 0.44344207461932045]

Figure 30 – Comparative charts of simulation results using real data and Sensitivity Anal-
ysis data.

don’t want also them to be underused, so it’s up to the evaluator to determine if the
results are good or not. But for the purposes of this study, we can consider that the
results obtained, even if the individual Utilization is less than 50%, are good results, since
we obtained improvements in the Throughput and Response Time metrics, which directly
impact the users.

In this scenario, we only made the simulation with the data obtained in the Sensitivity

78

Table 18 – Comparison of simulation results using real data and Sensitivity Analysis data.

Metric Real data Simulation Sensitivity Analysis data Simulation Percentage

TPdb 0.07267442 ticket/h 0.07267471 ticket/h 0.00039904%
TPm 0.21802325 ticket/h 0.21804597 ticket/h 0.0104209%
RTdb 12.9086989 h 8.428818 h -34.70436%
RTm 42.2280976 h 16.048574 h -61.9955%
AUan 14.53217 % 14.71521 % 1.25955%
AUdb 43.58242 % 34.69088 % -20.40167%
AUdev 82.78075 % 82.24285 % -0.649789%
AUtst 87.14411 % 61.43730 % -29.4992%
AUprod 35.75722 % 35.86099 % 0.290207%
IUan 14.5321688 % 14.715205 % 1.259524%
IUdb 43.5824239 % 21.10894 % -51.5655%
IUdev 35.862396 % 43.43442 % 21.1141%
IUtst 87.1441065 % 44.449616 % -48.993%
IUprod 21.842833 % 43.77348 % 100.402%

Analysis, but it is possible to test several scenarios, changing the parameters as desired
with no considerable costs for the company. It is worth pointing out that, if this solution
is implemented by the team, they can improve their service and balance the load as saw
in the results, and consequently, will also be able to improve the quality of the team’s
work environment, since team members are not overwhelmed with activities.

The solution provided by Sensitivity Analysis may not be the best option for the
company because the cost of putting more people on the project may not be feasible.
This is why simulating different scenarios is important. Sensitivity Analysis should be
done to obtain guidelines for the choice of parameters. Several simulations can be done
so that the balance between cost and benefit can be found. This step is detailed in the
proposed method step Setting scenario and change parameters.

The studies presented in this chapter used in their execution the guidelines described in
the methodology proposed in Chapter 4, thus revealing the applicability of this method-
ology to obtain comparative simulation results, with the predictability of maximizing
metrics results if the changes tested in the simulations are applied to the process.

7.4 FINAL CONSIDERATIONS

This chapter presented three studies that showed the usefulness and efficacy of the
methodology proposed. The first study evaluated the models from two different teams.
These evaluations were made by comparing the simulation result with the data collected
with the team. The second study was an investigation, carried out through the Sensitiv-

79

ity Analysis, to find the ideal number of people in each area where the best results of
the analyzed metrics would be obtained. The last study showed a simulation with the
numbers obtained with the Sensitivity Analysis, and its results showed improvements in
Throughput, Response time and Utilization metrics.

80

8 CONCLUSIONS

In a software maintenance context, the response time factor for request delivery time is
very important. Users of the system in maintenance are directly impacted by the problems
encountered in the production environment and the shorter the response time the better
for them. It is needed to calculate some metrics to analyze the maintenance process and
then improve this service for the users.

Analytical and simulation models are useful for planning and predicting systems be-
haviors. This dissertation showed that simulation models are important and effective for
the analysis of processes. Although the creation and analysis of performance models for
maintenance processes is a challenge that requires the combination of some skills for
reaching significant results, the proposed methodology brings in a simplified way to make
this analysis and to create these models.

This dissertation addressed the fundamental factors for a team’s process evaluation,
providing guidance on how to perform these measures that relate to the process perfor-
mance that also impacts users. As one of the contributions, the model presented allows
mathematical expressions to calculate the probable results of the metrics. The studies
presented showed that the evaluation of throughput, response time and utilization in dif-
ferent scenarios is possible through simulations and their results provide the equivalent
response to process improvement if these simulation changes are implemented in the real
context of the team.

This research achieved many results in the areas that it explored, being the main con-
tribution the proposal of a methodology that seeks to guide the stakeholders to detect
improvement points or bottlenecks in the processes of their teams based on the factors
that are most important to them through the analysis of the response time, the through-
put and the utilization of software maintenance teams and individuals metrics, and at
the same time, it is possible to improve the waiting time of the users. The methodology
can also be applied in an integrated manner with the sensitivity analysis to help create
different scenarios for evaluation. We found that by using simulation and sensitivity anal-
ysis together to find opportunities for process improvements we were able to achieve good
improvements in metric results.

The proposed methodology was tested during the process evaluation of different teams.
In this dissertation, three studies focused on two maintenance teams were presented. The
first study presented validations of the SPN models of the process of each team. These
validations were made by comparing the simulation result with the historical data. The
second study showed a sensitivity analysis where it was possible to obtain the parameters
that most impact the metrics results and use them to generate the scenarios to be eval-
uated. The result of the second study was used as a parameter for the last study, where

81

simulation results were presented with a different team distribution than the existing one.
The contributions of this study are summarized below.

8.1 CONTRIBUTIONS

This study presented a methodology to evaluate software maintenance processes, as a
way of trying to validate assumptions of process improvements to be evaluated through
simulations. As seen in Chapter 3, none of the studies found while researching related
works brought this approach. This methodology consists of a series of steps that are
divided into three phases: process mapping, model evaluation, and scenarios evaluation.
Ten different steps are presented as the basis of the proposal: understand the maintenance
model and define the activity diagram, generate SPN model with parameters and metrics,
validate model, evaluate model and metrics, adjust model and/or metrics, setting scenario
and change parameters, execute model simulation, execute Sensitivity Analysis, analyze
the results, and finally present results and recommendations. This study showed that
with the application of the proposed methodology, it is possible to evaluate the impact of
changes in the process without the cost of implementing each possibility of improvement,
to evaluate its performance, to carry out simulations to obtain more accurate estimates
and to assist in team planning.

One of the steps of the proposed methodology is Generate SPN model with parameters
and metrics. As part of this step, another contribution presented was the SPN model of the
service of a team area was proposed and represents the arrival of a ticket and its resolution
by this area to be used as a basis to model processes. Also, the translation of activities
diagrams to Stochastic Petri Nets was detailed. How to map activities, transitions, initial
and final states, and decisions to an SPN model were shown. From this basic knowledge
provided by this study, it is possible to create the model of a software maintenance process,
and then, with the model built it is possible to use the parameters collected in the step
Understand the maintenance model and define activity diagram to make the simulation
and evaluate the process.

In summary, the main contributions of this dissertation are:

• The proposition of a methodology to support the performance evaluation of software
maintenance processes;

• The mapping of UML activity diagrams that represent the process to SPN models,
was through these models it is possible to measure performance metrics;

• Proposition of a resource base SPN model to represent an area of the process, that
ease the transition from UMLs to SPN models.

82

8.2 DIFFICULTIES AND LIMITATIONS

The difficulties encountered in the development of this project were as follows:

• The first difficulty found was to find works related to performance evaluation of
software maintenance processes;

• Another difficulty was to obtaining the historical data of the team process, since
they were in process of change in the way of registering this data, because in the real
projects the teams do not record the information at the exact moment and the time
of the ticket in each queue and the main response time had to be complemented
through the feeling of the team members;

• The last one was the effort of the validation phase, several adjustments were nec-
essary for the model to make it also analyzable and not only simulable, as well as
adjustments so that the results obtained in the simulations were close to the real
and so we could consider that the model is acceptable.

This dissertation has some limitations:

• The main limitation is that process models in the most distinct scenarios tend to be
large. In this way, the model is not evaluated analytically and begins to be solved
only by simulation, due to the explosion of states;

• Another limitation is the models and techniques used in this dissertation. The user
must have the basic knowledge for the development of the model, the parameteri-
zation of its variables and its metrics.

8.3 FUTURE WORKS

Although this dissertation has achieved results and covered some points related to the
improvement of the software maintenance process, there are some possibilities to extend
the current work. As said before, the knowledge about formal models for performance
evaluation is not widespread among IT organizations, so the implementation of a tool
that automatically converts UML, or similar modeling languages that are well known by
software engineers, to SPN models would be helpful and will allow a complete abstraction
regarding the use of SPN. With this future work, the limitation about the need of prior
knowledge on the part of those involved for the development of the model is remedied.

Another study that could be integrated into the proposed methodology in future works
is to perform case studies that involve other software processes besides maintenance and
validate the application of the proposed methodology in other contexts. In the same line
of thought, extended this work to cover other metrics of process performance, in addition

83

to utilization, response time and throughput. With these add-ons, the work would cover
more contexts and help more teams to follow continuous improvement.

One thing that this study does not consider is the times when someone on the team
is unavailable to complete the service, whether for vacation, illness, etc. An interesting
future work would be to include in the analysis the calculation of the Mean Time Of
Unavailability (MTOU) to provide even more accurate results.

84

REFERENCES

ABDALLAH, H.; HAMZA, M. On the sensitivity analysis of the expected accumulated
reward. [S.l.]: Performance Evaluation, 47(2):163–179, 2002.

AN Y., W. N. Z. X. L. X.; CHEN, P. Hierarchical colored petri nets for modeling and
analysis of transit signal priority control systems. 2017.

APRIL A., H. J. A. A.; DUMKE, R. Software Maintenance Maturity Model (SMmm): the
software maintenance process model. Journal of Software Maintenance and Evolution:
Research and Practice, 2005.

BALBO, G. Lectures on Formal Methods and Performance Analysis: Introduction to
Stochastic Petri Nets. 1. ed. [S.l.]: Springer, 2000. 84-155 p.

BECK, K. e. a. Manifesto for Agile Software Development. 2001. Disponível em:
<http://agilemanifesto.org/>.

BELL, S.; ORZEN, M. Lean IT: Enabling and sustaining your lean transformation. 1.
ed. [S.l.]: CRC Press, 2012.

BI J., Y. H. T. W. Z. M. F. Y. Z. J.; LI, J. Application-aware dynamic fine-grained
resource provisioning in a virtualized cloud data center. 2017.

BLAKE J. T., R. A. L.; TRIVEDI, K. S. Sensitivity analysis of reliability and
performability measures for multiprocessor systems. [S.l.]: Proceedings of the 1988 ACM
SIGMETRICS conference on Measurement and modeling of computer systems, pages
177–186, New York, NY, USA. ACM, 1988.

BOLCH G., G. S. d. M. H.; TRIVEDI, K. Queueing networks and Markov chains:
modeling and performance evaluation with computer science applications. 2. ed. [S.l.]:
John Wiley & Sons, 2006. ISBN 978-0-471-56525-3.

BOOCH, J. R. e. I. J. G. UML User Guide. [S.l.]: Addison-Wesley Longman, 1998.

BOWER, J.; HOUT, T. Fast cycle capability for competitive powers. [S.l.]: Harvard
Business Review, 1988. 110-118 p.

CAMPOLONGO F.; TARANTOLA, S. S. A. Tackling quantitatively large dimensionality
problems. Computer physics communications, v. 117, p. 75–85, 1999.

CAR, Z.; MIKAC, B. A method for modeling and evaluating software maintenance
process performances. Proceedings of the Sixth European Conference on Software
Maintenance and Reengineering, 2002.

CHAPIN N., H. J. K. K. M. R. J.; TAN, W. Types of software evolution and software
maintenance. Journal of Software Maintenance and Evolution: Research and Practice,
v. 13, p. 3–30, 2001.

CHEN M., Q. X. X. W. W. L. Z. J.; LI, X. Uml activity diagram-based automatic test
case generation for java programs. The Computer Journal Advance Access, 2007.

http://agilemanifesto.org/

85

CHRISTOPHER, M. Logistics and Supply Chain Management. [S.l.]: FT Press, 1992.
ISBN 0273731122.

COENEN, F.; BENCH-CAPON, T. Maintenance of Knowledge-Based Systems: Theory,
Techniques and Tools. [S.l.]: Hartnolls Ltd, 1993.

DIAS, M. Um modelo de avaliação de desempenho para suporte ao planejamento do
processo de mudança de software. 2010. Disponível em: <https://repositorio.ufpe.br/
handle/123456789/2319>.

ERDIL K., F. E. K. K. M. J. P. S.; YOON, D. Software maintenance as part of the
software life cycle. 2003. Disponível em: <http://hepguru.com/maintenance/Final_
121603_v6.pdf>.

FADAHUNSI, O.; SATHIYANARAYANAN, M. Visualizing and analyzing dynamic
business process using Petri Nets. 2nd International Conference on Contemporary
Computing and Informatics (ic3i), 2016.

FEBBRARO A., G. D. D.; SACCO, N. A Deterministic and Stochastic Petri Net
Model for Traffic-Responsive Signaling Control in Urban Areas. IEEE Transactions on
Intelligent Transportation Systems, v. 17, n. 2, 2016.

GERMAN, R. Performance Analysis of Communication Systems with Non-Markovian
Stochastic Petri Nets. [S.l.]: John Wiley & Sons, 2000. ISBN 0471492582.

GIRAULT, C.; VALK, R. Petri nets for systems engineering: a guide to modeling,
verification, and applications. [S.l.]: Springer, 2003. ISBN 9783662053249.

GROUP, M. R. Mercury Tool Manual v4.6.5. Disponível em: <http://www.modcs.org/
wp-content/uploads/tools/Mercury_Tool_Manual_v4.6.5.pdf>.

HAMBY, D. M. A review of techniques for parameter sensitivity analysis of environmental
models. [S.l.]: Environmental Monitoring and Assessment, pages 135–154, 1994.

HOFFMAN F.; GARDNER, R. Evaluation of Uncertainties in Environmental
Radiological Assessment Models. [S.l.]: In: TILL, J.; MEYER, H. (Ed.). Radiological
Assessments: a textbook on environmental dose assessment, 1983.

JACOBSON I., B. G.; RUMBAUGH, J. The Unified Software Development Process. 1.
ed. [S.l.]: Addison-Wesley, 1999.

JAIN, R. The art of computer system performance analysis: techniques for experimental
design, measurement, simulation and modeling. 1. ed. [S.l.]: John Wiley & Sons, 1991.

JIN Y., Z. H. Y. H. Z. S.; GE, J. An approach to locating delayed activities in software
processes. International Journal of Automation and Computing, 2017.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature
Reviews in Software Engineering. [S.l.]: Technical Report – Department of Computer
Science, University of Durham, 2007.

KLEINROCK, L. Queueing Systems. [S.l.]: Wiley-Interscience New York, 1975. ISBN
0471491101.

https://repositorio.ufpe.br/handle/123456789/2319
https://repositorio.ufpe.br/handle/123456789/2319
http://hepguru.com/maintenance/Final_121603_v6.pdf
http://hepguru.com/maintenance/Final_121603_v6.pdf
http://www.modcs.org/wp-content/uploads/tools/Mercury_Tool_Manual_v4.6.5.pdf
http://www.modcs.org/wp-content/uploads/tools/Mercury_Tool_Manual_v4.6.5.pdf

86

KURTEL, K. Measuring and monitoring software maintenance services: An industrial
experience. Joint Conference of the 23nd International Workshop on Software
Measurement (IWSM) and the Eighth International Conference on Software Process and
Product Measurement (Mensura), 2013.

LARMAN, C. Utilizando UML e padrões. [S.l.]: Livraria Tempo Real Inform, 2006. ISBN
8560031529.

LILJA, D. Measuring computer performance: a practitioner’s guide. [S.l.]: Cambridge
university press, 2005. ISBN 978-0521646703.

LIMA-JUNIOR, F.; CARPINETTI, L. Quantitative models for supply chain performance
evaluation: A literature review. 2017.

MACIEL, P. e. a. Performance and dependability in service computing: Concepts,
techniques and research directions. [S.l.]: Information Science Reference (Premier
Reference Source), 2011. 52-97 p. ISBN 1609607945.

MARSAN M.A., B. G. C. G. D. S.; FRANCESCHINIS, G. Modelling with Generalized
Stochastic Petri Nets. [S.l.]: John Wiley & Sons, 1995. ISBN 0471930598.

MARTIN, J.; MCCLURE, C. Software Maintenance: The Problem and Its Solutions.
[S.l.]: Prentice Hall, 1983.

MASON-JONES, R.; TOWILL, D. Enlightening supplies. IET, p. 156–160, 1997.

MATOS R., A. J. O. D. M. P. T. K. Sensitivity analysis of a hierarchical model of mobile
cloud computing. Simulation Modelling Practice and Theory, 2015.

MENASCE D.A., D. L.; ALMEIDA, V. Performance by design: computer capacity
planning by example. [S.l.]: Prentice Hall Professional, 2004. ISBN 978-0130906731.

MURATA, T. Petri Nets: properties, analysis and applications. Proceedings of the IEEE,
v. 77, n. 4, p. 541–580, 1989.

NIESSINK, F.; VLIET, H. V. Software maintenance from a service perspective. Journal
of Software Maintenance and Evolution: Research and Practice, v. 12, p. 103–120, 2000.

PENDER, T. UML Bible. [S.l.]: John Wiley & Sons, 2003. ISBN 0764526049.

PEREIRA, L. Análise e Modelagem de Sistemas com a UML. 1. ed. [S.l.]: EdiÇão do
Autor, 2011.

PIANOSI F., B. k. F. J. W. J. R. J. B. D. W. T. Sensitivity analysis of environmental
models: a systematic review with practical workflow. Environmental Modelling &
Software, v. 79, p. 214–232, 2016.

PRESSMAN, R. Software Engineering: a practitioner’s approach. 7. ed. [S.l.]:
McGraw-Hill Higher Education, 2009.

RACHDI A., E.-N. A.; DAHCHOUR, M. Liveness and reachability analysis of bpmn
process models. CIT. Journal of Computing and Information Technology, v. 24, n. 2, p.
195–207, 2016.

87

RAMAMOORTHY, C.; HO, G. Performance evaluation of asynchronous concurrent
systems using petri nets. IEEE Transactions on Software Engineering, 1980.

REISIG, W. Petri Nets - An Introduction. [S.l.]: Springer Verlag, 1992. ISBN
978-0387137230.

SAPNA, P.; MOHANTY, H. Automated scenario generation based on uml activity
diagrams. International Conference on Information Technology, 2008.

SETH D., S.-N.; DHARIWAL, P. Application of value stream mapping (vsm) for lean
and cycle time reduction in complex production environments: a case study. 2017.

SIEGEL, J. Introduction to OMG’s Unified Modeling Language. 2019. Disponível em:
<http://www.uml.org/>.

SILVA B., M.-R. C. G. F. J. O. D. F. J. D. J. L. A. A. V.; MACIEL, P. Mercury: An
integrated environment for performance and dependability evaluation of general systems.
IEEE 45th Dependable Systems and Networks Conference (DSN-2015), 2015.

SILVA F.A., K.-S. R. M. O. D. M. T. M. A.; MACIEL, P. Mobile cloud performance
evaluation using stochastic models. IEEE Transactions on Mobile Computing, 2017.

SILVA, G. Modelo construtivista de avaliação de desempenho do processo de
planejamento de compras no poder judiciário do estado de santa catarina. 2017.

SLACK N., C.-S. H. C. H. A.; JOHNSTON, R. Operations Management. [S.l.]: FT
Prentice Hal, 1995. ISBN 0273603167.

SMITH, C. Software performance engineering. performance evaluation of computer
and communication systems. IFIP International Symposium on Computer Performance
Modeling, Measurement and Evaluation, p. 509–536, 1993.

SOMMERVILLE, I. Software Engineering. 9. ed. [S.l.]: Pearson, 2011.

TAKANG A.A.AND GRUBB, P. Software Maintenance: Concepts and Practic. 2. ed.
[S.l.]: World Scientific, Singapore, 2003.

TRACY, B. Eat That Frog. New York: Berrett-Koehler Publishers, 2017. ISBN
978-1626569416.

TRIVEDI, K. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. [S.l.]: John Wiley & Sons, 2001. ISBN 978-0-471-33341-8.

VASAVA, P. Optimizing the process flow in heat treatment plant through value stream
mapping via simulation. 2017.

VLIET, H. V. Software Engineering: Principles and Practices. 2. ed. [S.l.]: John Wiley
& Sons, 2000.

http://www.uml.org/

88

APPENDIX A – SYSTEMATIC REVIEW RESULTS

Table 19 – Search results in digital libraries.

Step 1 Step 2 # Library Title Autor(s)

[Incl] [Incl] 1 Google
Scholar

Mobile Cloud Perfor-
mance Evaluation Using
Stochastic Models

Francisco Airton
Silva, Sokol Kosta,
Matheus Rodrigues,
Danilo Oliveira,
Teresa Maciel,
Alessandro Mei
and Paulo Martins
Maciel

[Incl] [Excl] 2 Google
Scholar

Quantitative models for
supply chain performance
evaluation: A literature
review

Francisco Rodrigues
Lima-Junior and
Luiz Cesar Ribeiro
Carpinetti

[Excl] 3 Google
Scholar

Designing software for op-
erational decision support
through coloured Petri
nets

F.M. Maggi and M.
Westergaard

[Excl] 4 Google
Scholar

The International Journal
of Production Research at
55: a content-driven re-
view and analysis

Jian (Jeff) Guan, An-
drew S. Manikas and
Lynn H. Boyd

[Excl] 5 Google
Scholar

Quality Assessment in De-
vOps: Automated Analy-
sis of a Tax Fraud Detec-
tion System

Diego Perez-Palacin,
Youssef Ridene and
José Merseguer

[Excl] 6 Google
Scholar

Modelling and analysis
of sustainable manufac-
turing system using a
digraph-based approach

Vimal K. E. K., Vin-
odh S. and Anand Gu-
rumurthy

Continues on the next page

89

Table 19 – Continued from previous page

Step 1 Step 2 # Library Title Autor(s)

[Incl] [Incl] 7 Google
Scholar

Hierarchical Colored Petri
Nets for Modeling and
Analysis of Transit Signal
Priority Control Systems

Yisheng An, Naiqi
Wu, Xiangmo Zhao,
Xuan Li and Pei Chen

[Excl] 8 Google
Scholar

Application of Lean and
JIT principles in supply
chain management

Chandan Deep Singh,
Rajdeep Singh,
Jaskanwal Singh
Mand and Sukhvir
Singh

[Excl] 9 Google
Scholar

Model-Based Systems
Engineering: Motivation,
Current Status, and
Needed Advances

Azad M. Madn and
Michael Sievers

[Excl] 10 Google
Scholar

Cloud manufacturing sys-
tem for sheet metal pro-
cessing

Petri Helo and Yuqi-
uge Hao

[Excl] 11 Google
Scholar

Data envelopment anal-
ysis with multiple modes
of functioning. Appli-
cation to reconfigurable
manufacturing systems

Sebastián Lozano,
Gabriel Villa ORCID
Icon and Ignacio
Eguía

[Excl] 12 Google
Scholar

Process models in design
and development

David C. Wynn and P.
John Clarkson

[Excl] 13 Google
Scholar

Self-Aware Resource Man-
agement in Virtualized
Data Centers

Simon Spinner

[Excl] 14 Google
Scholar

Strategies and Techniques
for Quality and Flexibility

Miryam Barad

[Excl] 15 Google
Scholar

Development of sustain-
able platform for modu-
lar product family: a case
study

Ahm Shamsuzzoha
and Petri Helo

Continues on the next page

90

Table 19 – Continued from previous page

Step 1 Step 2 # Library Title Autor(s)

[Excl] 16 Google
Scholar

Infrastructure Resilience
Assessment, Management
and Governance – State
and Perspectives

Hans R. Heinimann
and Kirk Hatfield

[Excl] 17 Google
Scholar

Performance evaluation of
holonic control of a switch
arrival system

Carlos Indriago,
Olivier Cardin, Odile
Bellenguez-Morineau,
Naly Rakoto, Pierre
Castagna and Edgar
Chacòn

[Excl] 18 Google
Scholar

Safety and Reliability.
Theory and Applications

Marko Cepin and
Radim Bris

[Incl] [Excl] 19 Google
Scholar

Optimizing the process
flow in heat treatment
plant through value
stream mapping via sim-
ulation: A case study
at Volvo Group Trucks
Operations

Pratikchandra Vasava

[Excl] 20 Google
Scholar

Development and analysis
of system and human ar-
chitectures for critical in-
frastructure vulnerability
assessment

Johnathon D. Huff

[Excl] 21 Google
Scholar

A Context-Driven Frame-
work for Proactive Deci-
sion Support With Appli-
cations

Manisha Mishra,
David Sidoti, Gopi
Vinod Avvari, Pu-
jitha Mannaru, Diego
Fernando Martínez
Ayala, Krishna R.
Pattipati and David
L. Kleinman

Continues on the next page

91

Table 19 – Continued from previous page

Step 1 Step 2 # Library Title Autor(s)

[Excl] 22 Google
Scholar

BME VIK Annual Re-
search Report on Electri-
cal Engineering and Com-
puter Science 2016

Hassan Charaf, Gá-
bor Harsányi, András
Poppe, Sándor Imre
and Bálint Kiss

[Excl] 23 Google
Scholar

Applications of Cyber-
Physical System: A Liter-
ature Review

Hong Chen

[Incl] [Excl] 24 Google
Scholar

Application-Aware Dy-
namic Fine-Grained
Resource Provisioning in
a Virtualized Cloud Data
Center

Jing Bi, Haitao Yuan,
Wei Tan, MengChu
Zhou, Yushun Fan, Jia
Zhang and Jianqiang
Li

[Excl] 25 Google
Scholar

Automated Validation of
Minimum Risk Model-
Based System Designs
of Complex Avionics
Systems

Nils Fischer

[Excl] 26 Google
Scholar

Cloud-based smart asset
management for urban
flood control

Gangyan Xu, George
Q. Huang, Ji Fang and
Ji Chen

[Excl] 27 Google
Scholar

A Case for Asynchronous
Many Task Runtimes: A
Modeling Approach for
High Performance Com-
puting and Big Data Ana-
lytics

Joshua Suetterlein

[Excl] 28 Google
Scholar

A CRM Performance
Measurement in Banking
Using Integrated BSC and
Customized ANP-BOCR
Approach

Vesna Tornjanski,
Snežana Knežević and
Boris Delibašić

Continues on the next page

92

Table 19 – Continued from previous page

Step 1 Step 2 # Library Title Autor(s)

[Excl] 29 Google
Scholar

Mining and Matching Re-
lationships From Interac-
tion Contexts in a Social
Manufacturing Paradigm

Jiewu Leng and
Pingyu Jiang

[Excl] 30 Google
Scholar

Architecture Design and
Interoperability Analy-
sisof a SCADA System
for the Power Network
Control and Management

Pablo Albiol
Graullera

[Incl] [Excl] 31 Google
Scholar

A Research on Simula-
tion Framework for the
Advancement of Supply-
ing Management Compe-
tency

Jong Hun Woo,
Youngmin Kim,
Yong-Kuk Jeong and
Shin Jong-Gye

[Excl] 32 Google
Scholar

A Cost Model for Express-
ing and Estimating Eco-
logical Costs of Software-
Driven Systems

Thomas Schulze

[Excl] 33 Google
Scholar

Modeling and evaluation
of software system gamifi-
cation elements

Darius Ašeriškis

[Excl] 34 Google
Scholar

A survey on search-based
model-driven engineering

Ilhem Boussaïd,
Patrick Siarry and
Mohamed Ahmed-
Nacer

[Excl] 35 Google
Scholar

Computational Frame-
works: Systems, Models
and Applications

Mamadou Kaba
Traore

[Excl] 36 Google
Scholar

Reverse logistics network
redesign under uncer-
tainty for wood waste in
the CRD industry

Julien Trochu, Amin
Chaabane and
Mustapha Ouhim-
mou

Continues on the next page

93

Table 19 – Continued from previous page

Step 1 Step 2 # Library Title Autor(s)

[Excl] 37 Google
Scholar

A Contribution to
Resource-Aware Ar-
chitectures for Humanoid
Robots

Manfred Kroehnert

[Excl] 38 Google
Scholar

Qualitative and Multi-
Attribute Learning from
Diverse DataCollections

Hao Zhang

[Excl] 39 Google
Scholar

Automatic scaling in
cloud computing

Tomáš Vondra

[Excl] 40 Google
Scholar

Network performance
& Quality of service in
data networks involv-
ing spectrum utilization
techniques

Hassan Fadel

[Excl] 41 Google
Scholar

Designing a Self-
Optimization System
for Cognitive Wireless
Home Networks

Elena Meshkova,
Zhou Wang,
Krisakorn Rerkrai,
Junaid Ansari, Jad
Nasreddine, Daniel
Denkovski, Tim Farn-
ham, Janne Riihijärvi,
Liljana Gavrilovska
and Petri Mähönen

[Incl] [Excl] 42 Google
Scholar

Application of value
stream mapping (VSM)
for lean and cycle time
reduction in complex
production environments:
a case study

Dinesh Seth, Nitin
Seth and Pratik
Dhariwal

Continues on the next page

94

Table 19 – Continued from previous page

Step 1 Step 2 # Library Title Autor(s)

[Excl] 43 Google
Scholar

A Complete Bibliography
of Publications in Com-
puter Systems Science and
Engineering and Interna-
tional Journal of Com-
puter Systems Science

-

[Excl] 44 Google
Scholar

Real-Time Adaptive
Data-Driven Perception
for Anomaly Priority
Scoring at Scale

Seyed Ali Mi-
raftabzadeh

[Excl] 45 Google
Scholar

Control-Theoretical Soft-
ware Adaptation: A Sys-
tematic Literature Review

Stepan Shevtsov,
Mihaly Berekmeri,
Danny Weyns and
Martina Maggio

[Excl] 46 Google
Scholar

Cloud manufacturing – a
critical review of recent
development and future
trends

Göran Adamson,
Lihui Wang, Magnus
Holm and Philip
Moore

[Excl] 47 Google
Scholar

Model-Based Testing for
Internet of Things Sys-
tems

Abbas Ahmad, Fab-
rice Bouquet, Eliza-
beta Fourneret and
Bruno Legeard

[Excl] 48 Google
Scholar

Simulation-Based Usabil-
ity Evaluation of Spoken
and Multimodal Dialogue
Systems

Stefan Hillmann

[Excl] 49 Google
Scholar

A Generalized Procedu-
ralization Framework for
Urban Models with Ap-
plications in Procedural
Modeling, Synthesis, and
Reconstruction

Ilke Demir

Continues on the next page

95

Table 19 – Continued from previous page

Step 1 Step 2 # Library Title Autor(s)

[Excl] 50 Google
Scholar

On the Move to Mean-
ingful Internet Systems:
OTM 2016 Workshops:
Confederated ...

Ioana Ciuciu,
Christophe Debruyne,
Hervé Panetto, Georg
Weichhart, Peter
Bollen, Anna Fensel
and Maria-Esther
Vidal

[Incl] [Excl] 51 Google
Scholar

Modelo construtivista de
avaliação de desempenho
do processo de plane-
jamento de compras no
Poder Judiciário do Es-
tado de Santa Catarina

Guilherme Mattos da
Silva

[Excl] 52 Google
Scholar

List of Recently Published
Quality Research Papers

Dr. M. N. Ansari

[Excl] 53 Google
Scholar

A Bibliography of Publi-
cations in Scientific Pro-
gramming

-

[Excl] 54 Google
Scholar

A Bibliography of Publi-
cations in ACM SIGOPS
Operating Systems Re-
view

-

[Excl] 55 Google
Scholar

A Bibliography of Publi-
cations in Computer Lan-
guages

-

[Excl] 56 Google
Scholar

A Complete Bibliography
of Publications in Sci-
ence of Computer Pro-
gramming

-

[Excl] 57 Google
Scholar

A Complete Bibliography
of Publications in the
Journal of Network and
Computer Applications

-

Continues on the next page

96

Table 19 – Continued from previous page

Step 1 Step 2 # Library Title Autor(s)

[Excl] 58 IEEE A Context-Driven Frame-
work for Proactive Deci-
sion Support With Appli-
cations

Manisha Mishra,
David Sidoti, Gopi
Vinod Avvari, Pu-
jitha Mannaru, Diego
Fernando Martínez
Ayala, Krishna R.
Pattipati and David
L. Kleinman

[Excl] 59 IEEE iCAST 2017 proceedings -

[Excl] 60 IEEE Systematic mapping
study on MBT: tools and
models

Maicon Bernardino,
Elder M. Rodrigues,
Avelino F. Zorzo and
Luciano Marchezan

[Excl] 61 IEEE A Consensus-Based Mul-
ticriteria Group Decision
Model for Information
Technology Management
Committees

Alberto Sampaio
Lima, José Neuman
de Souza, J. Antão B.
Moura and Igor P. da
Silva

[Excl] 62 Periódicos Perspectives and relation-
ships in Supply Chain
Simulation: A systematic
literature review

Josenildo Brito
Oliveira, Renato
Silva Lima and José
Arnaldo Barra Mon-
tevechi

[Excl] 63 Periódicos A Survey on Spot Pricing
in Cloud Computing

Dinesh Kumar,
Gaurav Baranwal,
Zahid Raza and Deo
Prakash Vidyarthi

[Excl] 64 Periódicos The evolution and future
of manufacturing: A re-
view

Behzad Esmaeilian,
Sara Behdad and Ben
Wang

[Excl] 65 Periódicos Decision-making models
for supply chain risk
mitigation: A review

Varthini Rajagopal,
Prasanna Venkatesan,
Shanmugam and
Mark Goh

97

APPENDIX B – ARTICLES INCLUDED IN RELATED WORKS

Table 20 – Articles included in the list of Related Works.

Title Autor(s)
An Approach to Locating Delayed Activities in
Software Processes

Yun-Zhi Jin, Hua Zhou, Hong-Ji
Yang, Si-Jing Zhang, Ji-Dong Ge

Liveness and reachability analysis of BPMN pro-
cess models

Anass Rachdi, Abdeslam En-
Nouaary and Mohamed Dah-
chour

Software Maintenance Maturity Model (SMmm):
the software maintenance process model

Alain April, Jane Huffman Hayes,
Alain Abran, Reiner Dumke

Um modelo de avaliação de desempenho para su-
porte ao planejamento do processo de mudança de
software

Marcely Dias

98

APPENDIX C – MERCURY MODELS AND SCRIPTS

Listing C.1 – Mercury Team One Process Model Script
1 arrival_delay = 3.44;

anls_delay = 0.5;

3 db_delay = 6.0;

dev_delay = 8.0;

5 tst_delay = 4.0;

prod_delay = 2.0;

7 anls = 1;

db = 1;

9 dev = 5;

tst = 1;

11 prod = 2;

weight_db = 0.25;

13 weight_m = 0.75;

15
SPN Model{

17
place P0;

19 place P1;

place P10;

21 place P11(tokens= 30);

place P12;

23 place P13(tokens= dev);

place P14;

25 place P15(tokens= 30);

place P16;

27 place P17(tokens= tst);

place P18;

29 place P19(tokens= 30);

place P2(tokens= 40);

31 place P20;

place P21(tokens= prod);

33 place P3(tokens= anls);

place P4;

35 place P5(tokens= 40);

place P6;

37 place P7(tokens= 10);

place P8;

39 place P9(tokens= db);

41
immediateTransition TI0(

43 inputs = [P0, P3],

outputs = [P1, P2]

45);

47 immediateTransition TI1(

inputs = [P4, P7],

49 outputs = [P5, P6]

);

99

51
immediateTransition TI2(

53 inputs = [P4, P11],

outputs = [P5, P10]

55);

57 immediateTransition TI3(

inputs = [P6, P9],

59 outputs = [P8, P7]

);

61
immediateTransition TI4(

63 inputs = [P10 , P13],

outputs = [P12 , P11]

65);

67 immediateTransition TI5(

inputs = [P14 , P17],

69 outputs = [P15 , P16]

);

71
immediateTransition TI6(

73 inputs = [P18 , P21],

outputs = [P19 , P20]

75);

77 timedTransition TE0(

inputs = [P2],

79 outputs = [P0],

delay = arrival_delay

81);

83 timedTransition TE1(

inputs = [P1, P5],

85 outputs = [P3, P4],

delay = anls_delay ,

87 serverType = "InfiniteServer"

);

89
timedTransition TE2(

91 inputs = [P8],

outputs = [P9],

93 delay = db_delay ,

serverType = "InfiniteServer"

95);

97 timedTransition TE3(

inputs = [P12 , P15],

99 outputs = [P13 , P14],

delay = dev_delay ,

101 serverType = "InfiniteServer"

);

103
timedTransition TE4(

105 inputs = [P16 , P19],

outputs = [P18 , P17],

107 delay = tst_delay ,

100

serverType = "InfiniteServer"

109);

111 timedTransition TE5(

inputs = [P20],

113 outputs = [P21],

delay = prod_delay ,

115 serverType = "InfiniteServer"

);

117
metric IUanls = stationaryAnalysis(expression = "(E{#P1})/anls");

119 metric IUdb = stationaryAnalysis(expression = "(E{#P8})/db");

metric IUdev = stationaryAnalysis(expression = "(E{#P12})/dev");

121 metric IUtst = stationaryAnalysis(expression = "(E{#P16})/tst");

metric IUprod = stationaryAnalysis(expression = "(E{#P20})/prod");

123 metric AUanls = stationaryAnalysis(expression = "P{#P1 >0}");

metric AUdb = stationaryAnalysis(expression = "P{#P8 >0}");

125 metric AUdev = stationaryAnalysis(expression = "P{#P12 >0}");

metric AUtst = stationaryAnalysis(expression = "P{#P16 >0}");

127 metric AUprod = stationaryAnalysis(expression = "P{#P20 >0}");

metric TPm = stationaryAnalysis(expression = "(1/ arrival_delay)*(1-P{((#P0=40)

AND(#P1=anls))})*(weight_m)");

129 metric TPdb = stationaryAnalysis(expression = "(1/ arrival_delay)*(1-P{((#P0=40)

AND(#P1=anls))})*(weight_db)");

metric RTm = stationaryAnalysis(expression = "((E{#P0})+(E{#P1})+(E{#P4})+(E{#

P10})+(E{#P12})+(E{#P14})+(E{#P16})+(E{#P18})+(E{#P20}))/((1/ arrival_delay)

(1-P{((#P0=40) AND(#P1=anls))})(weight_m))");

131 metric RTdb = stationaryAnalysis(expression = "((E{#P0})+(E{#P1})+(E{#P4})+(E{#

P6})+(E{#P8}))/((1/ arrival_delay)*(1-P{((#P0=40) AND(#P1=anls))})*(weight_db)

)");

}

133
main {

135 setIntegerParameters("anls", "db", "dev", "tst", "prod");

137 IUanls = solve(Model ,IUanls);

println(IUanls);

139
IUdb = solve(Model ,IUdb);

141 println(IUdb);

143 IUdev = solve(Model ,IUdev);

println(IUdev);

145
IUtst = solve(Model ,IUtst);

147 println(IUtst);

149 IUprod = solve(Model ,IUprod);

println(IUprod);

151
AUanls = solve(Model ,AUanls);

153 println(AUanls);

155 AUdb = solve(Model ,AUdb);

println(AUdb);

157
AUdev = solve(Model ,AUdev);

101

159 println(AUdev);

161 AUtst = solve(Model ,AUtst);

println(AUtst);

163
AUprod = solve(Model ,AUprod);

165 println(AUprod);

167 TPm = solve(Model ,TPm);

println(TPm);

169
TPdb = solve(Model ,TPdb);

171 println(TPdb);

173 RTm = solve(Model ,RTm);

println(RTm);

175
RTdb = solve(Model ,RTdb);

177 println(RTdb);

179 }

Listing C.2 – Mercury Sensitivity Analysis Script
percentageDifference (

2 model_ = "Model",

metric_ = "\textit{<metric >}",

4 samplingPoints = 10,

parameters = (

6 anls = [<interval >],

dbas = [<interval >],

8 devs = [<interval >],

tsts = [<interval >],

10 engs = [<interval >]

),

12 output = (

type = "R",

14 yLabel = "\textit{<metric >}",

baselineValue = \textit{<metric >},

16 format = "png"

)

18);

	Title page
	
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of symbols
	Contents
	Introduction
	Context and Motivation
	Objectives
	Methodology
	Structure of Dissertation

	Background
	Software Maintenance
	Process Modeling
	Performance Evaluation
	Stochastic Petri Nets
	Sensitivity Analysis
	Final considerations

	Related Works
	PLANNING
	SEARCH
	REFINEMENT
	First step
	Second step

	Related Works
	Comparison of Main Related Works
	Final considerations

	Evaluation Methodology
	Overview
	Process Mapping
	Model Evaluation
	Scenarios Evaluation
	Final considerations

	Modeling: translating Activity Diagrams to SPN models
	Process mapping
	Mapping activity diagrams in SPN
	SPN proposed model
	Metrics
	Final considerations

	Processes Mapping
	Team One Process mapping
	Team Two Process mapping
	Final considerations

	Scenarios Evaluation
	Real cases presentation
	Team One Process
	Team Two Process

	Sensitivity Analysis
	Simulation of the Sensitivity Analysis scenario
	Final considerations

	Conclusions
	Contributions
	Difficulties and Limitations
	Future works

	References
	Systematic Review Results
	Articles included in Related Works
	Mercury Models and Scripts

