
“Improving Mobile Cloud Performance using Offloading
Techniques and Stochastic Models”

By

Francisco Airton Pereira da Silva

Ph.D. Thesis

Federal University of Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, FEB/2017

www.cin.ufpe.br/~posgraduacao

Federal University of Pernambuco

Informatics Center
Pos Graduation in Computer Science

Francisco Airton Pereira da Silva

“Improving Mobile Cloud Performance using Offloading
Techniques and Stochastic Models”

A Ph.D. Thesis presented to the Informatics Center of Fed-

eral University of Pernambuco in partial fulfillment of the

requirements for the degree of Philosophy Doctor in Com-

puter Science.

Advisor: Dr. Paulo Romero Martins Maciel

RECIFE, FEB/2017

Acknowledgements

This thesis is the result of a four year journey, with 12 months of internship in Italy. I
found, both at home and abroad, many new colleagues and friends. I would like to thank
them all for their influence on the outcome of my PhD work, and ultimately on this thesis.
I will mention some names briefly, as space dictates, and, if your name has been left out,
please accept my non-nominative thanks.

I would like to start by thanking the Federal University of Pernambuco for showing
me, as a researcher, that does not matter where we are, but who we want to become. As
a substitute professor, the UFPE has shown me the importance of trying to achieve the
highest student results.

I would like express my gratitude to professor Paulo Maciel, my adviser throughout
the four years of the PhD. Paulo taught me how to do research always targeting the
perfection. He gave me all support not only as an adviser but as a friend. Thank you for
accepting me in your MoDCS research group and as collaborator at the EMC project.
The MoDCS group represented an essential collaboration environment to reach my goals.
I would like to mention my co-authors — Rubens, Jamilson, Bruno, Danilo, Iure and
Thiago — for our mutual support and our continuous collaboration. I want to thank my
colleagues — Maria Clara, Rosangela, Erico, André, Vandi, Ermeson, Gustavo, Aleciano,
Verônica, Jean, Eliomar and João — for providing a stimulating research environment. A
special thank for my Scientific Initiation undergraduate students — Gileno, Éder, Matheus
and Germano — for helping me with the hard work.

My internship at the Sapienza University of Rome was an incredible experience. I
had the opportunity of collaborating with highly professional researchers. I would like
to thank professor Alessandro Mei for accepting me as a research visitor. My special
thanks go to Sokol Kosta, for personally getting involved with my research and improve
my results. Thanks also for my colleagues from the Lab — Irene, Miguel and Enis.

Last, but certainly not least, I would like to thank my friends from home, for their
refreshing support, Renê, Jamilson, João, Alex, Hilário and Adriano. Foremost, I would
like to thank mom, dad and the rest of my family, for being close to me even when I was
far away and for their continuous support. I love you all very much!

3

When you walk through a storm,

Hold your head up high,

And don’t be afraid of the dark.

At the end of a storm,

There’s a golden sky,

And a sweet silver song of a lark

Walk On! Walk On! With hope in your heart,

And you’ll never walk alone....

—RICHARD RODGERS (You’ll Never Walk Alone)

’

Resumo

A escassez de recursos é um grande obstáculo para muitas aplicações móveis, uma vez
que os dispositivos têm bateria e poder de processamento limitados. O uso da computação
em nuvem tem se mostrado uma alternativa viável para processar cargas de trabalho
de dispositivos móveis limitados. Com o objetivo de mitigar este problema nasceu o
campo de pesquisa chamado computação em nuvem móvel (MCC). Ao usar a nuvem, os
dispositivos móveis podem transferir seu processamento para servidores potentes. Muitas
questões relacionadas a esse processo têm sido investigadas na última década, mas as
relacionadas com o processo de execução remota ainda permanecem. Esta pesquisa de
doutorado desenvolveu uma abordagem de execução remota de aplicativos móveis na
nuvem. O algoritmo desenvolvido considerou uma estratégia inovadora de balanceamento
de parâmetros coletados do estado da infraestrutura. Outro desafio do MCC está rela-
cionado ao processo de avaliação e planejamento da infraestrutura tecnológica adotada.
Uma avaliação detalhada do desempenho de diferentes configurações de infraestrutura
pode fornecer aos engenheiros de software informações precisas, guiando suas decisões.
Ao invés de avaliar a infraestrutura como uma caixa-preta, este trabalho propõe analisar a
aplicação em nível de código-fonte, mais precisamente chamadas de método. O trabalho
utiliza redes de Petri estocásticas (SPNs) para representar e avaliar desempenho e gasto
de bateria de dispositivos móveis. As SPNs neste trabalho permitem aos engenheiros de
software entender suas aplicações através de um relatório estatístico. Estudos de caso
mostraram que as técnicas propostas nesta pesquisa são úteis para orientar designers e
administradores de sistemas de nuvem no processo de tomada de decisão.

Palavras-chave: Computação em Nuvem Móvel, Redes de Petri Estocásticas, Offload-
ing, Balanceamento de Carga, Avaliação de Performance, Energia

5

Abstract

Resource scarcity is a major obstacle for many mobile applications, since devices have
limited battery and processing power. The use of cloud computing has been shown to
be a feasible alternative to process demanding mobile devices workloads, leading to
the research field called mobile cloud computing (MCC). By using the cloud, mobile
devices may offload computation to resourceful servers. Many issues related to such a
process have been investigated in the past decade, but those related to offloading process
still remain. This PhD research has developed a smart MCC offloading strategy for
mobile applications. The approach have considered an innovative balanced infrastructure
parameters strategy. Another MCC challenge is related to the process of infrastructure
evaluation and planning. Evaluating the MCC infrastructure in a deep level of detail
may provide to software engineers precise information, guiding their decisions. Instead
of evaluating the MCC infrastructure as a black-box, this work proposes to analyze
the application at source-code level. This PhD research proposes providing a way for
representing method-calls and evaluating mobile cloud applications by using stochastic
petri nets (SPNs). The SPNs in this work allow software engineers to understand their
applications through a statistic report. Case studies have showed that the proposed
techniques are helpful for guiding cloud systems designers and administrators in the
decision-making process.

Keywords: Mobile Cloud Computing, Stochastic Petri Nets, Offloading, Scheduling,
Performance Evaluation, Energy

6

Contents

List of Figures 9

List of Tables 11

List of Acronyms 12

1 Introduction 1
1.1 Context of Mobile Cloud Offloading 2

1.1.1 Offloading Concerns . 3
1.1.2 Offloading Perspectives . 4

1.2 Research Scope and Motivation . 5
1.3 Problem Statement . 6
1.4 Objectives . 6
1.5 Publications . 7
1.6 Organization of the Document . 9

2 Background 10
2.1 Cloud Computing . 10
2.2 Mobile Cloud Computing . 12

2.2.1 Mobile Cloud Offloading . 13
Offloading Benefits . 14
Applications Partitioning . 14

2.3 Performance Evaluation of Systems 16
2.3.1 Measurement . 16
2.3.2 Continuous Time Markov Chains 17
2.3.3 Stochastic Petri Nets . 18
2.3.4 Phase-type approximation . 20

2.4 Benchmark Applications used in MCC 21

3 Related Work 24
3.1 Evaluating and Planning MCC Applications 24
3.2 MCC Offloading . 27

4 Evaluating MCC Applications 30
4.1 Proposal Overview . 30

7

4.2 Evaluating MCC Applications with SPNs 32
4.2.1 Throughput . 35
4.2.2 Execution Time (MTTE and CDF) 36
4.2.3 Energy . 36

4.3 MCC-Adviser: An Evaluation Assistant 39
4.3.1 Collecting Input Parameters 41
4.3.2 Solving SPNs and Plotting Results 43
4.3.3 Web Application Prototype . 44

4.4 Experiment for Estimating the “EnergyPerByte" 45
4.5 Case Study One - Time Metric - Reduce Color Application 51

4.5.1 Model Presentation . 51
4.5.2 Model Validation . 55
4.5.3 Model Solution . 55

4.6 Case Study Two - Time Metric - Face Recognition Application 58
4.7 Case Study Three - Time Metric - GPU Study 61
4.8 Case Study Four - Energy Metric - Reduce Color Application 64

4.8.1 Model Presentation . 64
4.8.2 Model Validation . 64
4.8.3 Model Solution . 65

5 Improving MCC Offloading Process 68
5.1 Proposal Overview . 68
5.2 An Smart MCC Offloading Process . 70
5.3 The SmartRank Prototype in Java . 76
5.4 Case Studies . 76

5.4.1 Case Study One: Local Execution 77
Memory Profiling . 78
Energy Profiling . 78
CPU Profiling . 79

5.4.2 Case Study Two: Round Robin Strategy 80
5.4.3 Case Study Three: Smart WRR Strategy 83

6 Conclusions and Future Work 90
6.1 Future Work . 92

Bibliography 93

8

List of Figures

1.1 PhD Research Scope. 5
1.2 Problem Illustration. 7

2.1 Example of a CTMC model . 18
2.2 SPN Components. 20
2.3 Example of an SPN model. 20
2.4 Mapping by Quantity of Occurrences. 22

3.1 Infrastructure Components Model Example (Matos et al., 2015). 26

4.1 Evaluating and Planning MCC Infrastructure - An Overview 31
4.2 Method Call Partitioning Example. 32
4.3 SPN Representation of One Application with Only One Method Call

without Absorbing State. 34
4.4 Basic SPN Representation of One Application with Only One Method

Call Using Absorbing State. 36
4.5 Example of CDF based on SPN. 37
4.6 Energy and Power Scheme. 37
4.7 Energy Profiling Scheme. 38
4.8 Energy and Power Scheme. 39
4.9 MCC-Adviser Overview. 40
4.10 Collecting Input Parameters. 42
4.11 Mercury GUI . 43
4.12 Main Classes of Mercury API . 44
4.13 MCC-Adviser Sequence Diagram. 45
4.14 MCC-Adviser Web Application - First Page 46
4.15 MCC-Adviser Web Application - First Step. 46
4.16 MCC-Adviser Web Application - Second Step. 47
4.17 MCC-Adviser Web Application - Third Step. 48
4.18 Architecture Scheme for Computing the EnergyPerByte. 49
4.19 Power over Time . 50
4.20 Method Call Distribution Obeying Code Dependency Constraints. . . . 53
4.21 SPNs Generated by MCC-Adviser. 54
4.22 Throughput Evaluation Comparing Applications A, B and C. 56
4.23 MTTE Evaluation Comparing Applications A, B and C. 56

9

4.24 Probability Analysis of Applications A, B and C. 58
4.25 SPN Representing Application_B with a Hypo-Exponential Distribution. 59
4.26 SPN Representing the Face Recognition Application with Absorbing State. 60
4.27 CDF of Face Recognition Application. 61
4.28 Execution time of a hypothetical application on three different types of

GPU. 62
4.29 CDF line plot considering parameters from Amazon EC2 instance. . . . 63
4.30 SPN of Application_C (Three Parallel Method-Calls). 64
4.31 MCETE Comparison in Logarithmic Scale. 66
4.32 MCETE for WiFi and 3G . 67

5.1 MCC Offloading - An Overview . 69
5.2 Virtual Machines Ranking - An Overview 71
5.3 Offloading Steps Using Smart Ranking Approach. 73
5.4 Memory Profiling. 79
5.5 Energy Profiling. 79
5.6 CPU Profiling. 80
5.7 Energy saving through parallel remote execution. 81
5.8 Elapsed time taken through parallel remote execution. 81
5.9 Offloading for 2 or 3 VMs. 82
5.10 Average Time For Each Step at the Offloading Process. 83
5.11 Probability Analysis of Applications A, B and C. 83
5.12 Box-Plot graph to illustrate the distance between the samples. 85
5.13 Pareto Chart representing the effects of each factor. The red line repre-

sents the minimum magnitude of statistically significant effects. 88
5.14 Bar plot with the level of relationship between the factors. 88
5.15 Bar plot showing the relative effects of each level. 89

10

List of Tables

3.1 Related Work Comparison - MCC Modeling. 28
3.2 Related Work Comparison - Optimizing MCC Offloading Process. . . . 29

4.1 Consumed Energy for Offloading one Byte 50
4.2 SPN Validation Using Bootstrap Technique. 55
4.3 SPN Model Validation . 65

5.1 Example of costs calculation using 4 VMs and 14 faces. 74
5.2 Factors and the parameters chosen as relevant. 86
5.3 Results of each treatment of the experiment. 87
5.4 Estimated effects and relevances for the RTT mean time. 87

11

List of Acronyms

CDF Cumulative Distribution Function

CMD Cloudlet Manager Detection

CMTC Cloudlet Manager Threads Creation

CTMC Continuous Time Markov Chain

DoE Design of Experiment

EtpC Execution time per Core

MCC Mobile Cloud Computing

MTTE Mean Time to Execute

NF Number of Human Faces

PT Processing Time

QoS Quality of Services

RCM Return Result to Cloudlet Manager

RD Return Result to Device

RN Resource Pool Number

RTT Round-Trip Time

SCM Send Photo to Cloudlet Manager

SPN Stochastic Petri Net

SVM Send Pictures to the Virtual Machines

Td Transition Delay

Tp Throughput

TT Transmission Time

U CPU Utilization

12

VMR Virtual Machines Face Recognition

13

1
Introduction

Over the past few years, advances in the field of computer networks and operating systems
virtualization led to an explosive growth of sophisticated architectures which started to
provide services with high scalability and elasticity. This architecture, called Cloud Com-
puting, has become an important area of scientific research and industry advancements
since 2006, when the Amazon EC2 was launched (Antonio, 2013). Commonly, Cloud
Computing is described as a range of services that are provided by a cluster system
based on the Internet. Such cluster systems consist of a group of self-manageable servers
that offer reliable, fast, convenient and transparent services, such as data storage and
processing.

Meanwhile, mobile devices began to connect to the Internet due to the rapid growth
of wireless network technology, among other factors. Today, mobility is a key feature in
the new generation of Internet, which provides a set of custom services through numerous
terminals. Cloud computing is marketed as a utility service (e.g: Amazon EC2), similar
to common products such as water, gas, or electricity. Thus, the development of mobile
access and the evolution of the cloud services enabled the creation of a new field of
study called Mobile Cloud Computing (MCC). It is observed today that MCC contributes
significantly to our daily life increasing the capabilities of mobile devices, but creating
numerous challenges where the main one is to combine the two technologies.

The action of moving the processing from the mobile device to remote servers is
called offloading and it aims to increase the capacity of mobile devices. Offloading
can optimize energy usage and improve performance in mobile systems, however this
usually depends on many parameters such as bandwidth and delay. Many algorithms have
been proposed to analyze these parameters and decide when, how, and where to offload.
Although mobile devices are growing in computing power, the role of more powerful
infrastructures will increase, needing more sophisticated offloading techniques.

1

1.1. CONTEXT OF MOBILE CLOUD OFFLOADING

1.1 Context of Mobile Cloud Offloading

Modern handheld devices, such as smartphones and tablets, offer portability, increased
computational power, and communication capabilities. These mobile devices are becom-
ing an attractive option for users to interact with each other. On the other hand, along
with the technological advances in hardware and mobile computing, user demands are
also increasing, as they expect content rich applications, and access to large amounts
of remote data, like multimedia streaming. Advanced as they may be, modern mobile
devices still have some limitations in relation to user demands, in terms of battery supply,
memory capacity and heat dissipation. Thus, it is reasonable to see why mobile devices,
despite their increasing computing power, continue to use more powerful infrastructure.

The convergence of mobile and cloud computing has been studied for a number
of years and is still a hot topic, because of the dynamics in mobile computing and
because of the challenges that continue to arise (Araujo et al., 2016; Matos et al., 2015;
Costa et al., 2015; Abolfazli et al., 2015; Chen et al., 2015; Khan et al., 2015; Lin
et al., 2015). As sales of mobile devices grow above sales of personal computers, many
hardware and software manufacturers compete on the mobile market. Companies such
as Samsung, Nokia, HTC, Motorola, Apple, Acer and Asus produce mobile devices of
various hardware characteristics, using a variety of operating systems, either developed
in house, like Apple’s iOS, or by large software companies, like Google’s Android or
Microsoft’s Windows. The heterogeneity of mobile devices, in terms of hardware and
operating systems, makes it difficult for application developers to reach all the mobile
users, and they usually have to maintain several versions of the same application. Cloud
providers are also interested in tuning their systems to face big variations in the number of
users. In this massive ecosystem, researchers find challenging topics with effects ranging
from user experience to cost optimization for the resource providers.

Cloud offloading is one of the emerging trends in distributed computing involving
mobile devices. Developers and researchers alike study ways of accessing, from user
terminals, the power offered by cloud infrastructure in terms of storage. The cloud
has been used for offloading storage and functionality for computers for a long time.
However, more recently, mobile devices encouraged developments in computation and
communication offloading, with a focus on the trade-offs between the benefits that the
powerful infrastructure brings.

2

1.1. CONTEXT OF MOBILE CLOUD OFFLOADING

1.1.1 Offloading Concerns

Offloading aims to optimize the functionality of an application by using remote resources.
Although most of the existing research efforts focus on key concerns, such as performance,
energy and cost, some of them acknowledge that offloading is much more complex.
Following a list of the main MCC concerns is discussed:

• Execution time In order to offer a minor execution time to its clients, the offloading
system should be fine tuned to have its own performance at peak efficiency. Perfor-
mance analysis is a complex task, but all of its aspects, ranging from modeling to
measuring, have been researched and applied on various distributed systems.

• Energy saving is key for all modern computing systems. Mobiles are focused
on energy saving due to their limited battery supply. Clouds are also focused on
energy saving to ensure low costs for their users.

• Costs, from a financial point of view, can also become a complex aspect of offload-
ing. A single offloading operation can imply costs for multiple service or resource
providers, such as network operators, software manufacturers and cloud owners.
The cost for data transmission can be extremely high.

• Accuracy of the results can also be a serious concern, especially when processing
is done in parallel on the device and on a different architecture.

• Heterogeneity related to the significant number of mobile device brands and
models. The development of technology that supports such variety is not straight-
forward.

• Scalability in offloading systems, as in any distributed system, is a serious concern
when addressing large numbers of inputs. For example, if the offloading system
goes public, it needs to scale well to ensure proper functionality for increasing
numbers of users.

• Elasticity is the ability to adapt to workload changes and it usually involves actively
creating and destroying resources. Thus, the system should either predict or react
quickly to both positive and negative changes in the workload. If the system is not
able to provision new resources, the clients will be affected by lack of service. If
the system is not able to deprovision unused resources, then the financial cost will
grow unnecessary for existing clients.

3

1.1. CONTEXT OF MOBILE CLOUD OFFLOADING

• Customisation refers to the property of a service to be customized to better serve
the needs of various types of customers. Support for value adding operations like
backup, update, cloning and avoid vendor lock-in.

• Security is, like in any distributed system, a topic of great interest, because data
leaves the personal device and needs to travel over public infrastructure for remote
processing.

1.1.2 Offloading Perspectives

Consider the scenario in which a mobile device does not support the execution of one
specific application. To offload the workload to the cloud may be one option to make
it feasible the execution whereas obeying user’s constraints. MCC offloading systems
usually explore one or more of the following three perspectives.

1. What to Offload? Considering that the application will be offloaded and the cloud
supports many servers, then, to split and execute the application in parallel may be
an option. However, the offloading system must decide at which level of granularity
(class, method, components) should an application be partitioned.

2. When to Offload? The offloading system should decide whether it is worthy or
not to execute the processes remotely. It does not make sense, for example, to
offload one application through a very low quality Internet connection or when the
application does not need much resources. Many parameters (such as connectivity
and mobile device capability) should be considered when offloading, otherwise the
application may waste performance.

3. Where to Offload? Usually the application is partitioned in a set of sub-parts.
Next step is to decide for which machine these partitions should be sent. One data
center has different types of servers in terms of resource power and technology.
The characteristics of such a infrastructure should be considered to construct an
offloading solution.

4

1.2. RESEARCH SCOPE AND MOTIVATION

1.2 Research Scope and Motivation

Intending to provide meaningful findings, this PhD research focus on a subset problem
associating specific concerns with perspectives in MCC offloading. The CCS Insight
Institute forecasts that the global mobile phone market is expected to reach 2.35 billion
units until 2019 (CCS-Insight-Forecast, 2015). This huge market-share stimulates mobile
cloud research innovation aiming to satisfy more and more demanding users. Today,
many applications that benefit from using the cloud have real-time constraints. These
constraints become hard to meet expectations, mainly considering sophisticated cloud
infrastructures.

The cloud may encompass heterogeneous components, utilizing virtual and physical
machines with diverse computation power. High number of resources also can be
challenging to manage, whereas powerful data centers become affordable for even small
companies building large infrastructures. These data centers, when providing services
to mobile devices, may tackle communication issues. Resources can be, for example,
geographically distributed, and factors such as latency and intermittent connectivity must
be considered by offloading systems. All the aspects discussed above are directly related
to the “Where offloading perspective". As illustrated in Figure 1.1, this PhD research
have focused mainly on the “where" perspective due to its challenging and important
features.

What?

When?

Where?
Execution

Time

Energy CostsAccuracy

Scalability

Elasticity

Flexibility

Security

Offloading Perspectives Offloading Concerns

PhD Scope

Figure 1.1: PhD Research Scope.

In terms of offloading concerns, this PhD research have focused on execution time and
energy saving. They have always been users’ requirements and consequently a mobile
industry interest. Offloading becomes an attractive solution for meeting response time
requirements on mobile systems as applications become increasingly complex (Balan,
2006). A navigating robot application, for example, needs to recognize an object before
it collides with the object; if the robot’s processor is too slow, the computation may

5

1.3. PROBLEM STATEMENT

need to be offloaded (Nimmagadda et al., 2010; Se et al., 2005). Another application
is context-aware computing (Hong and Landay, 2001) - where multiple streams of data
from different sources like GPS, maps, accelerometers, temperature sensors, etc. need to
be analyzed together in order to obtain real-time information about a user’s context. In
many of these scenarios, the limited computing speed of mobile systems can be enhanced
by offloading Chun et al. (2011b).

In another hand, the advances in smartphone battery life have been slow to respond
the computational demands of applications over the years. Many applications are still
unsuitable for smartphones due to hardware constraints (Khan et al., 2014). Computing
speeds of these mobile devices, however, will not grow at the same pace as servers’
performance. This is due to several constraints, including: Hardware constraints, as users
want devices that are smaller and thinner and yet with more computational capability;
Power consumption, insofar the current battery technology constrains the clock speed
of processors, doubling the clock speed approximately octuples the power consumption.
Consequently, it is difficult to offer long battery lifetimes with high clock speeds (Kumar
et al., 2013). Therefore, execution time and energy will continue being a MCC concern
in long term, motivating further research under these topics.

1.3 Problem Statement

Consider the scenario illustrated in Figure 1.2. Imagine that a software engineer intends
to build a MCC infrastructure. There is a mobile application that runs heavy tasks.
Offloading these tasks may improve the application performance. One problem here is
the distribution of tasks, aiming to use all the available resources. The current states of
the target machines are diverse in terms of Round Trip Time (RTT) and current CPU
consumption. In this context, two questions arise:

• How to distribute tasks considering multiple metrics (e.g.: RTT, CPU, etc.) in
MCC?

• How to evaluate the performance and energy of MCC infrastructures?

1.4 Objectives

The main objective of this research is to develop new approaches in mobile cloud
computing that can lead to performance and energy saving in mobile devices.

6

1.5. PUBLICATIONS

CPU Consumption: 10%

Mobile
Device

CPU Consumption: 50%

CPU Consumption: 80%

Cloud Side

Offloading

RTT: 200 ms

RTT: 300 ms

RTT: 400 ms

Figure 1.2: Problem Illustration.

Among the specific goals of the research, we can list:

1. Develop an algorithm for load balancing in MCC that can consider multiple metrics.

2. Develop an approach for evaluating MCC applications using SPNs.

3. Implement tools based on the proposed theories for assisting MCC application
offloading.

1.5 Publications

Following, a list with the published papers related to this research is presented.
As main author:

• Francisco Airton Silva, Paulo Maciel, Eder Quesado, Rubens Matos, Jamilson
Dantas. Mobile Cloud Face Recognition Based on Smart Cloud Ranking Journal
of Computing , 2016.

• Francisco Airton Silva, Germano Zaicaner, Eder Quesado, Matheus Dornelas,
Bruno Silva and Paulo Maciel Benchmark Applications Used in Mobile Cloud
Computing Research: A Systematic Mapping Study The Journal of Supercomput-
ing, 2016.

• Francisco Airton Silva, Paulo Maciel, Rubens Matos SmartRank: a smart schedul-
ing tool for mobile cloud computing The Journal of Supercomputing, April, 2015.

7

1.5. PUBLICATIONS

• Francisco Airton Silva, Sokol Kosta, Matheus Rodrigues, Alessandro Mei, and
Paulo Maciel. Planning Mobile Cloud Infrastructures Using Stochastic Petri Nets
and Graphic Processing Units. In: Proceedings of 7th IEEE International Confer-
ence on Cloud Computing Technology and Science (CLOUDCOM). November 30
December 3, 2015.

• Francisco Airton Silva, Paulo Maciel, Eder Quesado, Germano Zaicaner, Matheus
Dornelas, Bruno Silva Benchmark Applications Used in Mobile Cloud Computing:
A Systematic Mapping Study The Twentieth IEEE Symposium on Computers and
Communications (ISCC), 2015.

• Francisco Airton Silva, Paulo Maciel, Rubens Matos, Gileno Filho A Scheduler
For Mobile Cloud Based on Weighted Metrics and Dynamic Context Evaluation
30th ACM/SIGAPP Symposium On Applied Computing (SAC), 2015.

As co-author:

• Eliomar Campos, Rubens Matos, Francisco Airton Silva, Francisco Vieira, and
Paulo Maciel. Stochastic Modeling of Auto Scaling Mechanism in Private Clouds
for Supporting Performance Tunning. In: IEEE Int. Conference on Systems, Man,
and Cybernetics (IEEE SMC 2015). October 09-12, 2015, Hong Kong.

• Eliomar Campos, Rubens Matos, Paulo Maciel, Igor Costa, Francisco Airton Silva
and Francisco Souza. Performance Evaluation of Virtual Machines Instantiation in
a Private Cloud. In: Proceedings of IEEE 11th World Congress on Services (IEEE
SERVICES 2015). June 27, July 02, 2015. New York, USA.

• Igor Costa, Jean Araujo, Jamilson Dantas, Eliomar Campos, Francisco Airton
Silva, and Paulo Maciel. Availability Evaluation and Sensitivity Analysis of a Mo-
bile Backend-as-a-Service Platform. Journal Quality and Reliability Engineering
International. 2015. ISSN (online): 1099-1638.

• ARAUJO, C. ; SILVA, Francisco Airton Silva; COSTA, I. ; VAZ, F. ; KOSTA, S.
; MACIEL, P. R. M. . Supporting availability evaluation in MCC-based mHealth
planning. Electronics Letters, p. 1-2, 2016.

8

1.6. ORGANIZATION OF THE DOCUMENT

1.6 Organization of the Document

This thesis is structured as follows. Chapter 2 clarifies some relevant background themes
that the reader should know for properly understanding this document. Chapter 3 dis-
cusses noteworthy works found in literature that have some topics in common to those
addressed in this thesis. Chapter ?? details the core contribution of this thesis. The
Chapter describes an approach that uses stochastic models to evaluate mobile cloud per-
formance and presents a mobile cloud offloading mechanism based on weighted metrics
and dynamic context evaluation. Chapter 6 traces some conclusions and future work.

9

2
Background

This chapter discusses the basic concepts of mobile cloud and offloading mechanisms. The
background presented here shall provide the necessary knowledge for a clear comprehen-
sion of the chapters ahead, including the aspects surrounding the proposed methodology
and subsequent case studies.

2.1 Cloud Computing

Cloud computing is a paradigm in continuous development that originated from the
combination of several different technologies. It has been defined as “a type of parallel
and distributed system consisting of a collection of inter-connected and virtualized com-
puters that are dynamically provisioned and presented as one or more unified computing
resource(s) based on service-level agreements established through negotiation between
the service provider and consumers" (Mell and Grance, 2011; Buyya et al., 2008).

A computational cloud is composed of five essential features (Abraham et al., 2011):

• On-demand self-service: A consumer can obtain computing services (e.g.: server
time and network storage) as needed, without requiring human interaction with
each service provider;

• Broad network access: Capabilities are available over the network and accessed
through standard mechanisms that promote the use by heterogeneous thin or thick
client platforms;

• Resource pooling: The provider’s computing resources are pooled to serve mul-
tiple consumers using a multi-tenant model, with different physical and virtual

10

2.1. CLOUD COMPUTING

resources dynamically being assigned and reassigned according to consumer de-
mand.

• Rapid elasticity:Capabilities can be elastically provisioned and released, in some
cases automatically, to rapidly scale outward and inward, and adjust the consump-
tion of resources to the system’s workload;

• Measured service: Cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropriate to
the type of service.

The basic principle of cloud computing is to assign the computing to a large number of
distributed computers, rather than local computers or remote services. It is characterized
by the efficient utilization of resources, employing virtualization, resources monitoring,
and load balancing mechanisms (Saranya and Vijayalakshmi, 2011).

On modern societies, the majority of essential services is made available on a transpar-
ent way. The water supply, electric power, gas and telephone, essential goods in our daily
life, have this characteristic. These market models follow the concept of “pay for what
you use”: the paid value for the service is flexible in accordance to the necessity of the
organization at any time (Gomes, 2012). Cloud computing provides a similar payment
model for the utilization of computing services.

There are three models of implementation of Cloud Computing (Huang et al., 2010).
Private cloud is a cloud infrastructure provisioned for exclusive use by a single organiza-
tion comprising multiple consumers. In the public cloud model, the cloud infrastructure
is provisioned for open use by the general public that remains unique entities, but they
are bound together by standardized or proprietary technology that enables data and appli-
cation portability. Hybrid cloud model is the composition of two or more distinct cloud
infrastructures (private, community, or public) that remain unique entities. However, the
hybrid clouds introduce additional complexity, the distribution of applications by both
models (Subramanian, 2011).

Briefly, among the benefits associated to the utilization of the services on the cloud,
we could highlight: the centralized management, the reduction of energetic consumption,
and the decrease of inherent costs to the maintenance of traditional infrastructures. The
cloud provides a diversity of services that favors the agility of market (Miller, 2008; Terry,
2011).

11

2.2. MOBILE CLOUD COMPUTING

2.2 Mobile Cloud Computing

Similar to cloud computing, smartphones are also gaining enormous popularity due to
the support for a wide range of applications, such as games, image processing, video
processing, e-commerce, and online social network services (Kocjan and Saeed, 2012).
The smartphone applications complexity grows in parallel with their demand on comput-
ing resources. The advances in smartphone hardware and battery life have been slow to
respond to the computational demands of applications evolving over the years.

Many applications are still unsuitable for smartphones due to constraints, such as
low processing power, limited memory, unpredictable network connectivity, and limited
battery (Khan et al., 2013). The combination of cloud computing, wireless communica-
tion, portable computing devices, location based services, mobile Web, etc., has laid the
foundation for a novel computing model, called mobile cloud computing, which allows
users an online access to unlimited computing power and storage space. Taking the cloud
computing features in the mobile domain, (Kovachev et al., 2011) defines “mobile cloud
computing (MCC) as a model for transparent elastic augmentation of mobile device
capabilities via ubiquitous wireless access to cloud storage and computing resources.
MCC should provide dynamic adjusting of offloading in respect to change in operating
conditions, while preserving available sensing and interactivity capabilities of mobile
devices" .

Mobile cloud computing can be presented in many ways. In this research, we
refer to MCC as the set of techniques that use cloud resources to empower mobile
applications. Generally observing MCC resources it can be presented in two perspectives:
(a) infrastructure based, and (b) ad-hoc mobile cloud (Khan et al., 2013). In infrastructure
based mobile cloud, the hardware infrastructure remains static and provides services to
the mobile users. Alternatively, ad-hoc mobile cloud refers to a group of mobile devices
that acts as a cloud and provides access to local or Internet based cloud services to other
mobile devices. In this research, we limit the selection of application models to the
former case namely, the infrastructure based mobile cloud. Therefore, ad-hoc mobile
cloud based systems/application models and associated issues, such as mobility of cloud
infrastructure and geo-distribution of service nodes (Huerta-Canepa and Lee, 2010), are
beyond the scope of this work.

12

2.2. MOBILE CLOUD COMPUTING

2.2.1 Mobile Cloud Offloading

Cloud offloading is one of the emerging trends in distributed computing involving mobile
devices. Developers and researchers alike study ways of accessing, from user termi-
nals, the power offered by cloud infrastructure in terms of storage. The cloud has been
used for offloading storage and functionality for computers for a long time. However,
more recently, mobile devices encouraged developments in computation and communi-
cation offloading, with a focus on the trade offs between the benefits that the powerful
infrastructure brings and the costs, in time and money, of using remote resources.

Offloading has gained big interest in mobile cloud computing research, because it has
similar aims as the emerging cloud computing paradigm, i.e. to overcome mobile devices
shortcomings by augmenting their capabilities with external resources. Offloading or
augmented execution refers to a technique used to overcome the limitations of mobile
phones in terms of computation, memory and battery. Such applications, which can
adaptability be divided in parts and offloaded are called elastic mobile applications (Kemp
et al., 2012), (Zhang et al., 2010). Basically, this model of elastic mobile applications
enables the developers the illusion as if he/she is programming virtually much more
powerful mobile devices than the actual capacities. Moreover, elastic mobile application
can run as standalone mobile application but also use external resources adaptively.
Which portions of the application are executed remotely is decided at runtime based on
resource availability. In contrast, client/server applications have static partitioning of
code, data and business logic between the server and client, which is done in development
phase (Kovachev et al., 2011).

According to (Olteanu and Tapus, 2013), the offloading process usually is divided
into three modules: decision, allocation and operation:

• Decision gathers some of the most diverse ideas in offloading for mobile devices,
depending on the benefit assessment. The approaches differ in the way they assess
benefits, how they collect feedback from previous iterations of the offloading
process and how they take into account context.

• Allocation refers to the way in which the system decides on what resources to
use for which tasks allocation criteria and how to use multiple tasks on a limited
number of resources allocation strategy.

• Operation The offload operation itself can be met in a variety of conditions,
depending on the theoretical mechanism used and the actual implementation. Of-

13

2.2. MOBILE CLOUD COMPUTING

floading inherently implies a sort of division between what is done locally and what
is done remotely. The division can refer either to data or processing tasks.

Offloading Benefits

Offloading has a number of benefits, some already exposed in commercial applications,
other still only shown in research studies. Offloading addresses some of the limitations of
mobile devices. For example, to prevent mobiles from performing numerous queries to
services, the major mobile operating systems developers implemented push notification
services, a form of communication offloading. Data and content offloading opened the
way for feature recognition applications such as Shazam, that rely on massive amounts of
data, that could not exist on a single device.

From the developer‘s perspective, besides increasing performance, offloading can
ease the development process. The developer will not worry about the mobile device
resource constrained and focus on implementation of core functionalities.

Offloading can be used for various purposes, to increase performance, to enable new
functionality on mobile devices, or to enable new properties in mobile applications (like
fairness in games). Offloading can also make it feasible to produce wearable devices,
smaller, less capable devices, focused on a single function, like collecting statistics for
joggers. Such devices can use mobiles as their offloading target.

Applications Partitioning

Several works have explored mobile cloud applications partitioning (Eom et al., 2012;
Kosta and Aucinas, 2012; Kemp et al., 2012; Cuervo et al., 2010). The remote execution
of mobile applications, namely offloading, seeks to get the best performance of response
time as well as saving energy. Considered a starting point in offloading process, smart
partitioning may optimize jobs distribution in the cloud. Many factors can be taken into
account in MCC applications partitioning. According to (Liu et al., 2015), these factors
are: partitioning granularity, partitioning objective, partitioning model, programming
language support, presence of a profiler, allocation decision, analysis technique, and use
of annotation.

Partition granularity, in particular, refers to the portion of the application which
represents one atomic unit. One application can be offloaded without even any partition,
in this case for example, the atomic unit is the application as a whole. Some of the
possible granularity levels are:

14

2.2. MOBILE CLOUD COMPUTING

• No partitioning: The entire application is offloaded.

• Method-Call level partitioning: Partitioning occurs at the method of application.

• Object level partitioning: The object of an application is partitioned to prepare
for cyber foraging.

• Thread level partitioning: Partitioning occurs at the threads of an application.

• Class level partitioning: Application is partitioned into classes for offloading.

• Task level partitioning: Application is partitioned according to task.

• Component level partitioning: Partitioning a group of classes which may or may
not be coupled for outsourcing to the remote server.

• Bundle level partitioning: Groups of Java class of applications are partitioned.

• Allocation-site level partitioning: Partitioning occurs on the level of allocation
site where all the objects at this particular site will be seen as a single unit.

• Hybrid level partitioning: The results of partitioning consist of different granu-
larity.

To choose a partitioning technique considering concurrently energy saving and per-
formance gain is not straightforward. Although one technique can provide a higher
granularity, the energy saving depends on some other aspects. The total amount of
injected workload may influence the energy consumption, partition size and capacity of
the environment (e.g., servers and network devices).

Considering module level partitioning, the application have a complete copy (a clone)
at a remote server. The applications usually do not need any modification under the clone
and the physical device can run identical binaries. However, one disadvantage arises
when the application running on the clone needs to access the physical device hardware
or there is a user interaction. It is possible to transfer input/output data between the
device and clone environment over the network, but this may result in negative impact on
response time and battery lifetime.

Abstract levels of granularity with larger pieces result in simple offloading mecha-
nisms that require low monitoring communication overhead. However, abstract level
of granularity results in increased data transmission overhead and therefore increases
security threats for outsourcing components of the mobile application. For example, the

15

2.3. PERFORMANCE EVALUATION OF SYSTEMS

migration of an entire application is more vulnerable to network threats in comparison
to the method outsourcing. Considering security aspects, spying finer level code is less
meaningful to attackers, so, root method and input are preferable partitioning techniques.
The above considerations lead us to concentrate on application level instead of cloning a
complete device environment.

Classes and methods represent interesting options to be offloaded taking into account
inherent units. However, the number of such units restricts the level of granularity.
Another problem is related to coupling. Considering the object-oriented paradigm,
classes tend to be referenced by at least one other class, making it hard to split the
application. Hence, classes and methods should first be decoupled before offloading,
but there are many non-trivial constraints to decouple them. Hence, we propose not to
decouple methods by refactoring, but identify the heaviest method(s) and offload its inner
method-calls if possible.

2.3 Performance Evaluation of Systems

System administrators need to provide the highest performance at the lowest cost. A
performance evaluation is necessary when a system administrator wants to compare a
number of alternative configuration scenarios to find the best one. It is also used to
compare two similar systems and decide which one is better for a given task. Performance
evaluation can also help to determine how well a system is performing certain tasks,
and if some improvements are necessary. Generally, evaluating the performance of a
system means to verify its behavior according to a defined set of metrics. The researcher
must select appropriate evaluation techniques (e.g.: analytical modeling, simulation or
measurement), perform a statistical analysis to identify possible bottlenecks and propose
improvement solutions. This work has applied a parametric sensitivity analysis from
the analytical modeling with SPN and CTMC models, and measurements based on the
(Design of Experiment) DoE technique.

2.3.1 Measurement

DoE technique allows to obtaining a maximum of information about a system, regarding
many factors, with a reasonable number of experiments and effort (Jain, 2008; Mont-
gomery and Montgomery, 1984). A set of experiment executions planned through DoE
can be analyzed to determine if the factors have significant effects, or if the differences in

16

2.3. PERFORMANCE EVALUATION OF SYSTEMS

the observed effects are due to variations caused by measurement errors and not controlled
parameters (Guimarães et al., 2013; Jain, 2008; Montgomery and Montgomery, 1984).

This study adopts the General Full Factorial Design, which uses all possible com-
binations of levels for all factors, i.e., there are no limits to the number of factors and
the number of levels. This type of DoE allows every configuration to be examined, so
we can find the effects of all factors and their interactions, which is an advantage; the
disadvantage is that the cost of analysis can be very high if the number of factors and
levels is too high, and also considering that each of these experiments may have to be
repeated several times. It is possible to reduce the number experiments by reducing
the number of factors, and/or the number of levels for each factor, or using Fractional

Factorial Design instead (Jain, 2008).

2.3.2 Continuous Time Markov Chains

As shown in Figure 2.1, Markov chains can be represented as a directed graph with
labeled transitions, indicating the probability or rate at which such transitions occur. In
Markov chains, the states represent different conditions that the system may follow. The
transitions between the states indicate the occurrence of events (Silva et al., 2013) (e.g.:
the arrival of tasks, or completion of service). In Figure 2.1, a new task arrives with rate
λ , and a server completes the task with rate µ . For example, Figure 2.1 depicts a model
for a system with two servers that process incoming jobs. If we observe the number
of busy servers as a time function, we can consider it as a random variable or function
X(t). Each modification of X over (t) is called state Xn(t). The set of all possible states
is the state space of the model. Thus, it is possible to find the transition probabilities
from a state to its successor Xn+1(t). For this, it is necessary to specify the probability
distribution function of Xn(t). Such sequences or random functions of time are called
stochastic processes. Stochastic processes are processes in which the random variable
changes its state over time (Jain, 2008; Maciel and Kim, 2011; Kleinrock, 1975). They
are usually adopted to characterize systems whose behavior is inherently probabilistic
(Silva et al., 2013).

Analytical modeling may consider a random variable or several sequences or families
of random variables. With only one random variable it is simple to know what is the
probability of its states over time (stationary) probability or at a specific time (transient)
probability. Those probabilities are obtained by computing the distribution function.
However, when we represent a number of phenomena in a system, i.e., several random
variables, the calculation may be complex, because it requires computing the joint distri-

17

2.3. PERFORMANCE EVALUATION OF SYSTEMS

bution function. On the other hand, the calculation of probabilities for a random variable
can be simplified when applied to an exponential distribution function or geometric

distribution function. Markov chains is a state space model widely adopted to work
with such distribution functions, and therefore simplify the analysis of systems modeled
through many random variables.

Figure 2.1: Example of a CTMC model

Markov chains are associated to a Markov process (Haverkort, 2002), and are stochas-
tic models, used to analyze a variety of systems (Silva et al., 2013). We have a Markov
process if the past history is not important to know the probability of reaching a given
future state. Only the current state is enough to know such a probability (property known
as lack of memory). When the Markov process has a discrete state space, then it is
known as a Markov chain. A Markov chain with discrete time parameter is called a
DTMC. On the other hand, if the time parameter assumes real values, the model is called
a CTMC (Jain, 2008; Maciel and Kim, 2011; Stewart, 1994). In a homogeneous DTMC,
the time spent in a state follows a geometric distribution, while in the homogeneous
CTMC follows an exponential distribution. Markov chains are said to be homogeneous,
when the transition probability between states does not depend on time but only on the
current state (Maciel and Kim, 2011). Markov chains have been used extensively in
dependability, performance, and performability modeling (Maciel and Kim, 2011; Trivedi,
2001). CTMC was a useful modeling formalism for evaluating the performance of the
cloud system studied in this work.

2.3.3 Stochastic Petri Nets

Petri nets (PNs) are a graphical and mathematical modeling tool applicable to many
systems. They are promising tool for describing and studying information processing
systems that are characterized as being concurrent, asynchronous, distributed, parallel,
nondeterministic, and/or stochastic. As a graphical tool, PNs can be used as a visual-
communication aid similar to flow charts, block diagrams, and networks. In addition,

18

2.3. PERFORMANCE EVALUATION OF SYSTEMS

tokens are used in these nets to simulate the dynamic and concurrent activities of systems.
As a mathematical tool, it is possible to set up state equations, algebraic equations, and
other mathematical models governing the behavior of systems. Since Petri’s seminal
work, many representations and extensions have been proposed allowing more concise
descriptions and representing systems features not observed on the early models (Murata,
1989).

SPNs are special cases of PNs. SPN models were proposed with the goal of developing
a tool that allowed the integration of formal description, proof of correctness, and
performance evaluation. The proposals regarding performance evaluation aimed at
an equivalence between SPN and Continuous Time Markov Chains (CTMC) (German,
2000). In order to obtain an equivalence between a PN and a CTMC, it was necessary to
introduce temporal specifications such that the future evolution of the model, given the
present marking, is independent of the marking history. Therefore, SPNs can be translated
to CTMC, which may then be solved to reach the desired performance or dependability
results (Molloy, 1982; Marsan et al., 1994; Trivedi, 2001; Marsan, 1990).

Figure 2.2 exhibits components used to model an SPN, and Figure 2.3 depicts an
example of an SPN model. Places are represented by circles, whereas transitions are
depicted as filled rectangles (immediate transitions) or hollow rectangles (timed transi-
tions) or gray rectangles (unrefined transitions). The gray rectangle, in particular, has no
associated time yet. It is used to represent that no experiment was executed to collect the
time for that transition. Arcs (directed edges) connect places to transitions and vice versa.
Tokens (small filled circles) may reside in places, which denote the state (i.e., marking)
of an SPN. An inhibitor arc is a special arc that depicts a small white circle at one edge,
instead of an arrow, and they usually are used to disable transitions if there are tokens
present in a place. The behavior of an SPN is defined in terms of a token flow. Tokens
are created and destroyed according to the transition firings (German, 2000). Immediate
transitions represent instantaneous activities, and they have higher firing priority than
timed transitions. Such transitions may also contain a guard condition, and a user may
specify a different firing priority among other immediate transitions. There are also guard
functions in SPNs. Guard functions are boolean expressions that control the firing of a
transition, declaring some condition regarding the net’s marking. If a transition’s guard
function produces a true value, it is able to fire, otherwise, the transition is disabled
(Marsan et al., 1994). Guard functions were not adopted in this work.

19

2.3. PERFORMANCE EVALUATION OF SYSTEMS

Timed
Refined

Timed
Unrefined

Imediate

Transitions

Place Arc Token

Figure 2.2: SPN Components.

Figure 2.3: Example of an SPN model.

2.3.4 Phase-type approximation

Phase-type approximation methods (Desrochers et al., 1995; Malhotra and Reibman,
1993) have been commonly used for representing the behavior of the unknown distribution
functions, but it is also adopted for fitting distributions such as Erlang, hypoexponential
and hyperexponential (Trivedi, 2001).

Measured data related to activities of systems (the respective average value µD

and standard deviation σD, empirical distribution) may have their stochastic behavior
represented by expolynomial distributions. Phase approximation technique may be
applied through the inverse of coefficient of variation of measured data (Equation 1

CV = µD
σD

) (Desrochers et al., 1995). Analyzing the inverse of the coefficient of variation allows to
choose the expolynomial distributions that best matches the measured data.

When the inverse of the coefficient of variation is a integer number and different
from one, the empirical data should be characterized by an Erlang distribution that is
represented in SPN model by a sequence of exponential transitions whose length is

calculated by Equation γ =
(

µD
σD

)2
. The firing rate of each exponential transition is

calculated by Equation λ = γ

µD
(Desrochers et al., 1995).

When the inverse of the coefficient of variation is a non-integer number larger than
one, the empirical data is represented by a hypoexponential distribution which is however
illustrated by a SPN model composed of a sequence whose length is calculated by

20

2.4. BENCHMARK APPLICATIONS USED IN MCC

Equation
(

µD
σ

)2−1≤ γ <
(

µD
σ

)2. Equations λ1 =
γ

µ1
and (λ2 =

γ

µ2
represent the firing rate

of each exponential transition. The respective average delays (expected values) of the time

assigned to the exponential transitions are calculated by Eqs. µ1 = µD∓
√

γ(γ+1)σ2−γµ2

γ+1

and µ2 = γµD±
√

γ(γ+1)σ2−γµ2

γ+1 (Desrochers et al., 1995).
When the inverse of the coefficient of variation is a number smaller than one, the

empirical data should be represented by an hyperexponential distribution. The firing
rate of exponential transition should then be calculated by Equation λh = 2µD

µD2σD2 , in

which the weights of immediate transitions are also calculated by Eqs. ω1 =
2µD

2

µD2σD2 and
ω2 = 1−ω1 (Desrochers et al., 1995).

SPN models can be refined using phase-type approximation methods. In this work,
hypoexponential distributions for phase approximation was adopted to obtain accurate
SPN models and consequently computing mobile cloud performance metrics in a more
precise manner.

2.4 Benchmark Applications used in MCC

A significant amount of research has been performed on MCC offloading. Aiming to
conduct these studies, most of the researchers have adopted real mobile applications
to prove their hypothesis. However, there is no common list of which applications
could be used in MCC research and a systematic mapping study could give important
directions in this sense. A systematic mapping study is a type of investigation that has
an evidence-based nature, applied in order to provide an overview of a research area by
characterizing it (Petersen et al., 2008). Before presenting any offloading strategy that
could solve the pursued objective of this thesis we have applied a systematic mapping
study, aiming to identify mobile applications used in MCC (Silva et al., 2015a). We
have executed a systematic mapping study by means of analyzing three applications‘
facets (Category, Platform, and Evaluated Resource). We synthesized implications for
practicing, identifying research trends, open issues, and areas for improvement.

Starting from 763 papers, we filtered 47 studies that used applications as benchmarks.
Given the current state of MCC research, we judge that there are few studies with con-
trolled experiments using real applications. In our study, only 47 papers used applications
to evaluate their proposals, probably because this field is still relatively recent, with the
first effectively mobile cloud paper dating from 2009 (Liu et al., 2009). In most of the
cases, the studies did not provide evidences of how other researchers could access and
download the applications used, making it hard to replicate their experiments. From the

21

2.4. BENCHMARK APPLICATIONS USED IN MCC

47 papers, we listed 25 downloadable applications with their corresponding category
and URL. Following, by using radar plots, Figure 2.4 summarizes our findings. Radar
plots display multivariate data in the form of a two-dimensional chart of n quantitative
variables represented on axes, starting from the same point. The more distant from the
center, more significant the result is — in this study, meaning higher quantity.

0

10

20

30

40

Imaging
Manipulation

Mathematical Tools

Games

Standalone Utility

Web Applications
Download

Applications

Video Streaming

Text Search

Antivirus

0

10

20

30

40
Time

Energy

CPU

Memory

0

10

20

30

40
Android

Android x86

Maemo Linux

Iphone

Blackberry

Windows

0

5

10

15
Face Detection

Face Recognition

Augumented Reality

Editor

(a) Application Category.

0

10

20

30

40

Imaging
Manipulation

Mathematical Tools

Games

Standalone Utility

Web Applications
Download

Applications

Video Streaming

Text Search

Antivirus

0

10

20

30

40
Time

Energy

CPU

Memory

0

10

20

30

40
Android

Android x86

Maemo Linux

Iphone

Blackberry

Windows

0

5

10

15
Face Detection

Face Recognition

Augumented Reality

Editor

(b) Imaging Manipulation.

0

10

20

30

40

Imaging
Manipulation

Mathematical Tools

Games

Standalone Utility

Web Applications
Download

Applications

Video Streaming

Text Search

Antivirus

0

10

20

30

40
Time

Energy

CPU

Memory

0

10

20

30

40
Android

Android x86

Maemo Linux

Iphone

Blackberry

Windows

0

5

10

15
Face Detection

Face Recognition

Augumented Reality

Editor

(c) Evaluation Metric.

0

10

20

30

40

Imaging
Manipulation

Mathematical Tools

Games

Standalone Utility

Web Applications
Download

Applications

Video Streaming

Text Search

Antivirus

0

10

20

30

40
Time

Energy

CPU

Memory

0

10

20

30

40
Android

Android x86

Maemo Linux

Iphone

Blackberry

Windows

0

5

10

15
Face Detection

Face Recognition

Augumented Reality

Editor

(d) Platform.

Figure 2.4: Mapping by Quantity of Occurrences.

Application category, illustrated in Figure 2.4a, means the functionality provided by
mobile applications. Although games are well known as heavy processing applications,
the imaging manipulation type was the most exploited in MCC so far. Due to the
expressive quantity of papers using imaging manipulation category, we investigated
more closely this topic in order to know what type of applications researchers have used
more. Figure 2.4b shows that image detection and recognition were the most explored.
Among the evaluated metrics (Figure 2.4c), as expected, energy and time were the most
envisioned metrics, since among other motivations their impact is easily perceived by
final users. Regarding platforms (Figure 2.4d), Android was the most employed platform
in MCC, with 37 occurrences. All the decisions in this PhD research shall take into
account these results, aiming to adopt similar test-beds and then make it possible to

22

2.4. BENCHMARK APPLICATIONS USED IN MCC

compare results with related studies.

23

3
Related Work

The related work is presented in two sections, which references the two core contribu-
tions of this thesis: Evaluating/Planning MCC Applications and MCC Offloading. The
following analysis does not intend to provide an exhaustive view of published works
on those topics, but rather to point out significant advances which go towards a similar
direction as this research do, or give basis for future extensions.

3.1 Evaluating and Planning MCC Applications

Table 3.1 synthesizes the contributions of the most prominent works related to this part of
the thesis. The references are ordered by year (from 2009 to 2016) and encompass 17
studies, categorized by four aspects: Objective, Evaluated Metric, Modeling Granularity,
and the use of Multiple Surrogates. For a better understanding we comment each aspect
in details:

Objective - The first papers in MCC had the objective of optimizing the offloading
process itself. They focused only on improving the offloading techniques by monitor-
ing the mobile device, the application, and the network conditions. Many offloading
frameworks have tackled mobile device constraints by offloading as much as possible
heavy tasks obeying context factors (Kristensen, 2010; Cuervo et al., 2010; Kemp et al.,
2012; Kosta and Aucinas, 2012; Soyata et al., 2012; Rahimi et al., 2012). Once the
benefits of these frameworks became widely acknowledged by the research community, a
new research trend appeared: MCC infrastructure planning (Gabner et al., 2011; Park
et al., 2011; Pandey and Nepal, 2012; Oliveira et al., 2013; Chen et al., 2014). The
scope of this field is to obtain an intelligent use of limited Cloudlet resources by applying
sophisticated system evaluation techniques. Formal methods have been applied in diverse
computer areas by evaluating system performance and assisting software engineers with

24

3.1. EVALUATING AND PLANNING MCC APPLICATIONS

architecture planning. Most of them have dedicated to evolve what it is called Software
Performance Engineering (SPE) (Herzog, 2001). SPE is a systematic, quantitative ap-
proach to constructing software systems that meet performance requirements, classified
as real-time or responsive systems. SPE uses model predictions to evaluate trade-offs in
software functions, hardware size, quality of results, and resource requirements. MCC
has presented the need for applying SPE methods requiring to reach higher quality levels.
For this reason, the current work focuses on MCC infrastructure planning applying SPE
methods.

Evaluated Metric - One of the most important decisions when working with perfor-
mance evaluation is the metric to observe. The papers that focus on Offloading Process
Optimization have explored Execution Time and Energy Saving whereas the papers
that investigate Infrastructure Planning have looked into Reliability, Availability, and
Energy Saving. Reliability is defined as the probability that a device will perform its
intended functions satisfactorily for a specified period of time under specified operating
conditions (Araujo et al., 2014). Since the performance of a system usually depends
on the performance of its components, the reliability of the whole system is a function
of the reliability of its components (Kuo and Zuo, 2003). Availability is defined as the
probability that the system is operating properly at any given time (Oliveira et al., 2013).
Availability is the vital metric for nowadays systems; near 100% availability is becoming
mandatory for both users and service providers. High availability is an important fea-
ture for MCC applications given that the cloud–dependency can introduce unexpected
failures (Oliveira et al., 2013). Energy and Execution Time are the most utilized metrics
when evaluating the MCC systems. Computing speeds of mobile devices will not grow at
the same pace as servers’ performance (Nimmagadda et al., 2010). This is due to several
constraints, including: Form Factor—as users want devices that are smaller and thinner
and yet with more computational capability; Power Consumption—insofar the current
battery technology constrains the clock speed of processors, doubling the clock speed
approximately octuples the power consumption. As a result of the above restrictions, it is
difficult to offer long battery lifetimes with high clock speeds (Nimmagadda et al., 2010).
Therefore, execution time and energy will continue to be a MCC concern in long term,
motivating further research under these topics. Although Reliability, Availability, and
Energy are very important metrics, the current work is the only one that considers the
Execution Time when modeling the MCC infrastructure. Response time becomes essential
for mobile systems as far as it increases in complexity (Balan, 2006). In context-aware
computing, for example, need to be analyzed in order to obtain real-time information

25

3.1. EVALUATING AND PLANNING MCC APPLICATIONS

about a user’s context (Hong and Landay, 2001). In many of these scenarios, the limited
computing speed of mobile systems can be enhanced by offloading.

Modeling Granularity - Such aspect refers to the level of granularity the MCC
architecture is represented — which MCC architecture parts are modeled. The offloading
frameworks that invested in offloading process optimization did not use modeling. Among
those papers that have applied modeling most of them did not consider the application
as part of modeling strategy, it is, the SPNs, RBDs or Markov Chains did not include
the behavior and structure of the application (only infrastructure components). Figure
3.1 depicts an RBD representation of one of the related work (Matos et al., 2015). The
model present the application itself as part of the representation but not partitioned in
subparts. In our work the application source code is represented and evaluated with SPNs.
Representing the source code enables the software engineer to access a more accurate
result. Taking into account the availability metric, for example, it is obvious that the
application may stop working prejudicing the availability in this way.

Figure 3.1: Infrastructure Components Model Example (Matos et al., 2015).

Multiple Surrogates - The last column refers to the characteristic of modeling or not
the target servers (or surrogates). The target servers are the machines where the offloaded
tasks are processed. There are papers that models these machines, however, they do not
represent the virtual machine. Besides, different from them, MCC-Adviser is able to tell
how many servers are needed — something new in MCC field. Another new aspect, and
not included at Table 3.1, is that MCC-Adviser generates and solves SPNs providing and
automatic statistic report about performance.

26

3.2. MCC OFFLOADING

3.2 MCC Offloading

Table 3.2 lists and classifies offloading systems according to three aspects: Offloading
Metrics; Number of Targets; and Weighted Metrics.

• Offloading Metrics associate parameters used to calculate the offloading cost. A
number of metrics could be used, but in this thesis part of our objective was to
present the weighted metrics idea. Therefore, we do not include metrics such as
the network instability or the memory load. Having said that, our proposal have
used only CPU and RTT as offloading metrics together. However, only one paper
(Abolfazli et al., 2015) have applied both metrics concurrently, but without using
balancing values.

• Offloding Targets are physical of virtual machines used to run the offloaded appli-
cation workload. Four related work have used Multiple Targets and six have used
Unique Target. It is important to stress that unique targets means in some situations
the cloud is treated as an unique resource and the mobile client does not know the
offloading targets. However, in most of the papers the experiments are performed
by using one VM and not a bunch of VMs working as unique resource. In this
thesis the offloading target are known aiming to realize how to optimize their use.

• Weighted Metrics are our main contribution regarding workload distribution in
MCC. Only our work have employed such a functionality. Embracing more metrics
in future work is essential to turn the algorithm more reliable and sensible, but for
now the idea has shown to be a viable alternative. We are aware that the proposed
weight values may not be the most efficient choice, since the range of options
were not very high. However, again, the goal was not to find a static and strictly
optimized weigh balance but showing the feasibility of reaching better results by
varying those values.

27

3.2. MCC OFFLOADING

Table 3.1: Related Work Comparison - MCC Modeling.

Related Work Objetive Evaluted Metric Modeling

Granularity

Multiple

Surrogates

Kristensen (2010) Offloading Process

Optimization

Execution Time - Yes

Cuervo et al. (2010) Offloading Process

Optimization

Execution Time and Energy - No

Kemp et al. (2012) Offloading Process

Optimization

Execution Time - No

Kosta and Aucinas

(2012)

Offloading Process

Optimization

Execution Time and Energy - Yes

Soyata et al. (2012) Offloading Process

Optimization

Execution Time - Yes

Rahimi et al. (2012) Offloading Process

Optimization

Execution Time and Energy - Yes

Gordon et al. (2012) Offloading Process

Optimization

Execution Time and Energy - No

Pitkänen et al.

(2012)

Offloading Process

Optimization

Execution Time - No

Ou et al. (2007) MCC Infrastructure

Planning

Reliability Infrastructure

Components

No

Gabner et al. (2011) MCC Infrastructure

Planning

Reliability Infrastructure

Components

No

Park et al. (2011) MCC Infrastructure

Planning

Reliability Infrastructure

Components

No

Pandey and Nepal

(2012)

MCC Infrastructure

Planning

Availability Infrastructure

Components

Yes

Oliveira et al. (2013) MCC Infrastructure

Planning

Availability and Energy Infrastructure

Components

No

Chen et al. (2014) MCC Infrastructure

Planning

Energy Infrastructure

Components

No

Araujo et al. (2014) MCC Infrastructure

Planning

Reliability, Availability and Energy Infrastructure

Components

No

Matos et al. (2015) MCC Infrastructure

Planning

Availability Infrastructure

Components

No

Mendonca et al.

(2015)

MCC Infrastructure

Planning

Energy Infrastructure

Components

No

MCC-Adviser MCC Infrastructure

Planning

Execution Time Application

Partitions and

Infrastructure

Components

Applies Tasks

Distribution and

Estimates the

Number of

Needed Target

Machines

28

3.2. MCC OFFLOADING

Table 3.2: Related Work Comparison - Optimizing MCC Offloading Process.

Related Work
Offloading Metrics Number of Targets

Weighted Metrics
CPU RTT Multiple Targets Unique Target

(Abolfazli et al., 2015) X X X

(Chen et al., 2015) X

(Khan et al., 2015) X

(Lin et al., 2015) X

(Chen, 2015) X X

(Kosta and Aucinas, 2012) X X

(Kemp et al., 2012) X

(Soyata et al., 2012) X X

(Pitkänen et al., 2012) X

(Kristensen, 2010) X

Our Work X X X X

29

4
Evaluating MCC Applications

Evaluating the MCC infrastructure in a deep level of detail may provide to software
engineers precise information. This section presents a way for representing method-calls
and evaluating the MCC applications by using stochastic petri nets (SPNs).

4.1 Proposal Overview

Figure 4.1 presents, for example, how to calculate the number of needed machines for
attending an expected performance. System Modeling (Costa et al., 2015) is one way for
evaluating a system based on probability, without having the infrastructure available. In
other words, Stochastic Modeling makes it possible to calculate minimal requirements
for infrastructure resources. We propose to adopt Stochastic Modeling for representing
and evaluating the MCC infrastructure, divided into four activities. The activities are
detailed following:

1. Stochastic Modeling - This activity intends to represent the MCC environment
focusing on the application structure. Initially, the user needs to represent the
system through stochastic models. In our approach, Stochastic Petri Net models
are used for representing the application at source code granularity. Therefore, the
application source code is required. Such a level of granularity (instead of only
modeling machines where the processing occurs) enables the software engineer
to obtain more accurate results. At this stage, the designer must also define the
metrics of interest. In this work the metrics are execution time and energy. This
part of the process resides one of the main research contributions of this thesis.
Different from previous work, the models represent both, the application and the
infrastructure with same model. The model permits to test distinct configurations

30

4.1. PROPOSAL OVERVIEW

Stochastic
Modeling

Model
Refinement

Model
Validation

Evaluate
Execution Time

Evaluate
Energy

Application
Source Code

Metrics of
Interest

Parameter
Values

Model
Represents
the System?

Evaluation

Yes

No

Our Main ContributionsWorkflowDataflow

Statistics
(CDF, MCETE, MTTE and Throughput)

Figure 4.1: Evaluating and Planning MCC Infrastructure - An Overview

by simply changing some model parameters — no additional experiments are
required. Besides, we developed a mechanism for automatically generating models
and evaluating the application with minimal effort.

2. Model Refinement - At this activity the software engineer basically configure the
model with specific values from real experiments. This process is called model
refinement and the parameter values must be inserted into the model to emulate
the actual system operation. There are cases where these parameter values are
extracted from the literature. However, in this work, the software engineer must
execute one experiment for each application which intends to evaluate.

3. Model Validation - The designer must ensure that the model trustworthy repre-
sents the real system, otherwise the previous steps should be repeated; Model
validation consists of comparing the results from the model with the results from
real experiments. Such a comparison must follow some statistical criteria, and in
this work we adopt the statistical technique called Bootstrap (González-Rodríguez
et al., 2012). In practice, the software engineer will not have to always validate the
generated models. The validation that have been performed in this work provide

31

4.2. EVALUATING MCC APPLICATIONS WITH SPNS

validity evidences.

4. Evaluation - At this stage the model is prepared for calculating the metrics of
interest and predict the application performance. By solving the model we have
statistics related to execution time and energy. Specifically, four statistics are
computed: throughput (Tp), mean time to execute (MTTE), cumulative distribution
function (CDF) and mean consumption energy to execute (MCETE), which are
evidenced by graphs. These results guide the software engineer at planning the
MCC infrastructure. This part resides one of the main contributions of this thesis
because we automatically generates the aforementioned statistics.

4.2 Evaluating MCC Applications with SPNs

One of the main cloud computing features is the unlimited resources availability. However,
in the IT industry point of view the cloud has limited resources. IT companies tend to
seek for the most optimized cloud infrastructure to support its systems. In MCC is not
different, the society has adopted mobile devices in large scale and the applications must
be evaluated considering multiple scenarios. Such evaluation should be performed in all
the system life cycle. MCC applications can be evaluated even before the final deployment,
bringing important indicatives of its behavior. Quite often, applications’ QoE could be
satisfied with smaller clouds, with fewer VMs. Aiming to choose one infrastructure,
engineers should first to analyze application requirements creating execution profiles.

Before creating execution profiles, the application structure must be studied. In
MCC, method call partitioning is one intuitive approach, since mobile applications
are inherently organized in methods (Chun et al., 2011b). Besides, method calls can
bring high granularity as long as the methods are uncoupled. For example, consider the
following snippet of code in Figure 4.2. Intending to paralelize the execution of such a
code the dependence of variable “a” impacts on the final decision.

m1() m
2(a)

m3()

public void rootMethod(){
 a = m1();
 m2(a);
 m3();
}

Figure 4.2: Method Call Partitioning Example.

Due to the variable “a”, the calls “m1()" and “m2(a)" must be executed in sequence,

32

4.2. EVALUATING MCC APPLICATIONS WITH SPNS

while “m3()" could be called in parallel. The developer would expect that distributing
the execution of the rootMethod() on two machines (or CPU cores) would reduce the
total execution time instead of using one resource. In this work, we present an approach
to predict the application behavior. For that aim, some assumptions are needed: (i) the
mobile device has an available high speed wireless network and is able to offload method
calls to a nearby cloud; (ii) the target machines have similar resource configuration (CPU,
Memory, etc) and similar current resource consumption.

Nonetheless, factors such as lack of resources, network instability, and allocation
decision instructiveness may degrade the performance of the offloading process. These
factors hamper the infrastructure planning since the application behavior is not easy to
predict. Formal models, such as SPNs and Markov Chains, have been widely adopted for
infrastructure planning (Araujo et al., 2014; Campos and Silva, 2015a,b; Callou et al.,
2014; Haverkort, 2002). However, to the best of our knowledge, only a small number
adopts formal models for MCC (Gabner et al., 2011; Ou et al., 2007; Matos et al., 2015;
Oliveira et al., 2013; Araujo et al., 2014), and no work consider the application at source
code level.

Energy consumption estimation is also an essential issue on the development life cycle
of mobile applications. Without loss of generality, there are two basic approaches based on
simulation for estimating software energy consumption: (i) instruction based simulation
and (ii) hardware based simulation (N. Nikolaidis, 2002). In hardware simulation, despite
the great computational effort, more accurate results might be obtained in comparison
with instruction simulation due to the laborious system specification. However, instruction
simulation has been adopted by many works in order to provide energy consumption
estimation in a satisfactory period of time. Some works concern hardware and instruction
simulation. However, to the best of our knowledge, no one uses formal models for
evaluating MCC focusing on energy consumption and the application source code.

This work proposes an approach that provides statistic information about the mobile
application behavior, representing method calls dependency with stochastic models. More
precisely, this work seeks to answer the following five questions:

i) How many VMs are needed to satisfy an application’s required average execution
time constraint?

ii) What is the number of method calls per time unit (throughput)?

iii) What is the mean time to execute one application when using a certain number of
VMs?

33

4.2. EVALUATING MCC APPLICATIONS WITH SPNS

iv) What is the mean energy consumed by the mobile device to execute one application
when using a certain number of VMs as target resources?

v) What is the probability of finishing the application execution by a specific time when
using a certain number of VMs?

We answer these questions by providing a way of evaluating the mobile cloud through
SPNs. First, a static code analysis is carried out and SPNs are automatically generated
based on such code. Then, the SPNs are employed to evaluate the performance of the
method call execution. As an example, Figure 4.3 depicts the SPN representation for the
basic structure of a method call.

method_call

RsrcN

trigger_time

EXEC

SYSTEM_INACTIVEtrigger_time_0 trigger_time_2

_1

RqstN

Figure 4.3: SPN Representation of One Application with Only One Method Call
without Absorbing State.

The SPN method call is composed of four transitions. The first transition (trigger_-

time_1) is immediate, associating zero. The second transition (proc_time) is called
General Time High-level Transition because when the SPN is generated, no probability is
assigned to it. This transition is depicted by a gray rectangle and the model is later refined
by assigning the respective distribution parameter values. The other two immediate
transitions (trigger_time_0 and trigger_time_2) are needed to enable the model to return
to the initial state when the execution finishes.

The SPN model comprises four places. The place START, when containing a token,
means that the workload is able to be processed. The place EXEC represents the phase
when the method started its execution by allocating one resource, and thus, decreasing the
number of markings at the place RSRC_POOL. Therefore, the number of tokens present
at the place RSRC_POOL represents the current available Resources Number, RN (e.g.,
the number of VMs or phisical machines).

The pool of resources is a powerful mechanism — just changing its marking number
allows different scenarios to be analyzed. The delay associated with the transition proc_-

34

4.2. EVALUATING MCC APPLICATIONS WITH SPNS

time represents the average method processing time. The place FINISH represents that
the method call has completed and is available for further calls. Finally, when the place
SYSTEM_INACTIVE has a marking (i.e., a token), this indicates that there are no method
calls running at the moment and that the system is idle. Such SPN pattern can be extended
to evidence the method calls data dependency of any application. The pattern embraces
general features common to concurrent systems.

We have designed and implemented a tool called MCC-Adviser that can assist soft-
ware engineers with planning mobile cloud infrastructure. MCC-Adviser is based on
the Mercury engine (Callou et al., 2014; Silva et al., 2013) and supports the analysis
of mobile applications from different perspectives, being able to automatically compute
four metrics: throughput (Tp), mean time to execute (MTTE), cumulative distribution
function (CDF) and mean consumption energy to execute (MCETE), which are evidenced
by graphs. These metrics are calculated by numerically solving CTMCs or by simulation.
The main problem of analytical evaluation methods is the state space. Real application
systems usually generate huge state spaces. In some situations the simulation is the only
feasible approach for performance evaluation (Balbo and Chiola, 1989; Silva et al., 2013;
German et al., 1995).

4.2.1 Throughput

The throughput (T pn) represents how many method-calls per unit time one application
can execute when offloaded to the cloud. This metric is obtained based on Equation 4.2.1.
(Maciel et al., 2011). T pn is obtained by computing the expected value of tokens at a
place, multiplied by the inverse of the transition delay. Such a transition delay (Timen)
corresponds to the communication time, it is, strictly the time taken to send and receive
bytes.

For calculating the throughput there are two possibilities, considering a Single Server
Semantics (SSS) or an Infinite Server Semantics (ISS). In this work both ways can be
used (SSS or ISS). In the SSS the flow of tokens will occur in series, regardless of the
degree of the transition activation. In the ISS, every set of tokens of the enabled transition
is processed simultaneously. Equation T p =

(
∑

Z
i=1 P(m(EXECn) = i)× i

)
× 1

Timen
calcu-

lates the throughput according to the ISS strategy, and Equation T p = P(m(EXECn)>=

i)× 1
Timen

for SSS. The variable i represents the weight of the arc that links the place
EXECn and the subsequent transition (refined by Timen value). The variable i may vary
until Z, where Z is the highest enabling degree of the subsequent transition at the place
marking m(EXECn) = i.

35

4.2. EVALUATING MCC APPLICATIONS WITH SPNS

4.2.2 Execution Time (MTTE and CDF)

The MTTE (Mean Time To Execute) represents the average time one application takes
to finish its execution. To compute such measure, the SPN must be slightly different
to the presented before. Figure 4.4 presents the SPN for computing MTTE. The SPN
now presents one new possible state called absorbing state (Bolch et al., 2006). The
state is called absorbing if it is impossible to leave it (i.e., Pii = 1). The MTTE is the
expected time to reach a deadlock marking (Nelson, 2013). The MTTE is based on a set
of probability estimations for when one token goes from the START place to the FINISH

place.

method_call

RsrcN

trigger_time

EXEC

_1

Figure 4.4: Basic SPN Representation of One Application with Only One Method
Call Using Absorbing State.

Cumulative Distribution Functions (CDF) can be calculated based on SPNs (Trivedi,
2002). Figure 4.5 depicts an example of a CDF varying the number of available resources
(VMs). Based on CDFs, the probability of finishing execution can be obtained to specific
periods of time. Calculating the probability of finishing an program execution before
a specific time [P(T < t)] and the probability of finishing execution in a time interval
[P(t1 < T < t2) = P(T < t2)−P(T ≤ t1)], for instance.

4.2.3 Energy

Consider the model in Figure 4.6, which represents three method-calls. Each method-call
have an individual throughput and contributes for spending energy. One of the main
causes for spending energy is transferring method-calls (with data) through the Internet
(da Silva et al., 2014). It is possible predicting the mean energy consumption using SPNs
in such a scenario by calculating the throughputs, and required energy for transferring
data.

The Mean Consumed Energy to Execute (MCETE) is the expected energy con-
sumption of an application execution. As far as the SPN model represents a set of K

36

4.2. EVALUATING MCC APPLICATIONS WITH SPNS

P
(T

 <
 t

)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Execution Time (ms)

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

GPU_1
GPU_2
GPU_3

Figure 4.5: Example of CDF based on SPN.

RsrcN

RqstN

method-call 1

method-call 2

method-call 3

Tp1Tp2Tp3

Energy3 Energy2 Energy1
and and andAssociation

Figure 4.6: Energy and Power Scheme.

method-calls, then individual measurements for each method-call must be considered.
Equations MCETE = T Time×∑

K
n=1 (T pn×Energyn).

T Time , represents the total time in which the application was executed by using
one resource (VM or physical machine). The T Time is multiplied by the sum of the
products between throughputs (e.g.: Tp1, Tp2 and Tp3) and energy consumptions (e.g.:
Energy1, Energy2 and Energy3). It is important to note that the throughput multiplied by
the energy of a method-call is equivalent to the mean Power for that method-call.

Energyn means the energy consumption resulted from offloading a method-call.
Energyn can be obtained by multiplying two values: EnergyPerByte and BytesNumbern,
as presented in Equation Energyn = EnergyPerByte×BytesNumbern.

EnergyPerByte means the energy necessary for transferring one byte between the
mobile device and the cloud. EnergyPerByte was obtained through experiments and

37

4.2. EVALUATING MCC APPLICATIONS WITH SPNS

will be presented later. BytesNumbern means how many bytes were offloaded for each
method-call. In this work, we consider that most of the processing (for n method-calls)
occurs at the cloud (see Figure 4.7). All those methods that do not depend on physical
mobile device resources (e.g.: GPS) are able to be offloaded. Therefore, the energy
consumption is approximately equivalent to the effort in offloading bytes.

method-call 1

1

Return Results

method-call 2

method-call 3

Spending Battery with Data Transmission

method-call 1

method-call 2

method-call 3

processing

2 NOT Spending Battery with Data Transmission

3 Spending Battery with Data Transmission

Energy
Profiler

User’s App

Energy
Profiler

User’s App

Energy
Profiler

User’s App

Figure 4.7: Energy Profiling Scheme.

It is important to highlight that the bytes considered in this work are those data
involved with the offloading process. The bytes include bytes that will be processed
and bytes generated by offloading instructions. Using a music player application as an
example, a streamed song itself with commands (e.g.: play/stop) represents the bytes
we are interested. All these data transmission results in spending mobile device battery.
Therefore, it is important to cautiously profile the mobile applications for computing the
MCETE. In other words, the programmer must know how much data the application is
offloading with the maximum possible accuracy.

Power (P) is defined as the rate at which work is done upon an object. Like all rate
quantities, power is a time-based quantity. Power is related to how fast a job is done. Two
identical jobs or tasks can be done at different rates - one slowly or and one rapidly. The
work, which in this document means energy (E), is the same in each case (since they are
identical jobs) but the power is different. Equation Pi(t) = E(t)

t presents how to obtain
the instantaneous power (Pi).

38

4.3. MCC-ADVISER: AN EVALUATION ASSISTANT

During the execution of an application, the average power (P̃) over the period of time
t also can be obtained by

P̃ =

∫ t
0 E(t)dt

∆t
=

∫ t
0 E(t)dt
t−0

=

∫ t
0 E(t)dt

t
,

As ∫ t

0
E(t)dt = Etotal = P̃× t,

then, as Figure 4.8 illustrates, Etotal and P̃ may be calculated. Etotal is represented
by the area below the line of the power graph and P̃ is computed by summing up the n

instantaneous power and dividing by n:

P̃ =
∑

n
1 Pi(t)

n

Power (W)

Time
t

Etotal

P~

Figure 4.8: Energy and Power Scheme.

The unit for standard metric energy is the Joule and the standard metric unit for time
is the second, so the standard metric unit for power is a Joule/second, defined as a Watt
and abbreviated W. In this work the adopted unit for energy is milijoules (mJ), a common
unit for energy in mobile devices.

4.3 MCC-Adviser: An Evaluation Assistant

We have implemented MCC-Adviser, an evaluation tool for MCC applications. MCC-
Adviser is implemented in Java and aims at assisting software engineers planning MCC
environments. Figure 4.9 illustrates an overview of how MCC-Adviser works. The first
step is to execute an experiment using one machine (VM or physical server) to process
the mobile device requests. The objective is to collect data needed to refine the generated
model. MCC-Adviser requires:

• the source code (to build the SPN structure),

39

4.3. MCC-ADVISER: AN EVALUATION ASSISTANT

• the total communication time,

• the communication time delay (per method-call),

• the number of transfered bytes (per method-call), and

• the “energy spent per byte".

The MCC-Adviser, then, provide measures and plots describing performance and
energy profile according to different number of VMs. Following, these steps are detailed.

public void method(){
 m1();
 m2();
 m3();
}

MCC-Adviser

 m1(): 843 ms
 m2(): 310 ms
 m3(): 124 ms

Source
Code

Communication
Time

 m1(): 113 Bytes
 m2(): 452 Bytes
 m3(): 873 Bytes

Transfered
Data

Input
Parameters

Results

Collecting
Input

Parameters

1

Generate
and Refine

SPN

Plot
Results

2

3

Input Parameters

Total Time: 14009 ms

T
h
ro

u
g
h
p
u
t

Number of VMs

Throughput

M
T

T
E

Number of VMs

MTTE

P
ro

b
a
b
ili

ty

Time

CDF

M
C

E
T

E

Number of VMs

MCETE

EnergyPerByte: 0.273 mJ

Figure 4.9: MCC-Adviser Overview.

40

4.3. MCC-ADVISER: AN EVALUATION ASSISTANT

4.3.1 Collecting Input Parameters

Aiming to refine the SPN, input parameters are strictly necessary. Figure 4.10 presents
an overview of the Collecting Input Parameters phase. The parameters of interest are
basically two: time and transfered data. As far as the MCC-Adviser plays the role of an
adviser, it is expected that the software engineer executes as minimal as possible tasks to
get the estimated statistics. Three softwares were developed aiming to assist with such
tasks: MCC-Instrumenter, MCC-Logger-Client and MCC-Logger-Server.

As Figure 4.10 illustrates, in Step 1, MCC-Instrumenter receives the original source
code (root method) as input and generates an instrumented code. In practice, the user
uploads an entire Java class indicating which method she wants to instrument. Then,
MCC-Instrumenter instruments the code by adding directives before and after each
method-call. MCC-Instrumenter is supported by the library BCEL1.

The process of collecting the metric time must be performed at both sides, the mobile
and the cloud. MCC-Instrumenter instruments the user’s code with the class TimeLogger

(see Code 4.1). In other words, TimeLogger accompanies the instrumented code. The
methods registerStart() and registerEnd() are inserted into the code. After that, MCC-
Adviser returns a zip file containing the instrumented class, and auxiliary classes.

1 p u b l i c c l a s s TimeLogger {
2 p u b l i c s t a t i c d ou b l e i n i t T i m e = 0 ;
3 ManageFi le m = new ManageFi le ("log-exec-time.txt") ;
4

5 p u b l i c s t a t i c vo id r e g i s t e r S t a r t () {
6 i n i t T i m e = System . c u r r e n t T i m e M i l l i s () ;
7 }
8

9 p u b l i c s t a t i c vo id r e g i s t e r F i n i s h (S t r i n g methodCallName , i n t l i n e) {
10 m. W r i t e F i l e (methodCallName+"["+ l i n e +"]:"+(System . c u r r e n t T i m e M i l l i s () − i n i t T i m e)) ;
11 }
12 }

Code 4.1: TimeLogger Class

More specifically, related to time, MCC-Instrumenter generates logs addressing the
following metrics: the total execution time, the communication time, the execution time
in the cloud. The communication time delay is obtained by the difference between total
execution time and the execution time in the cloud.

Still observing Figure 4.10, in Step 2, the programmer will execute the instrumented
source code and collect the input parameters. At the mobile device side, the programmer
needs to install the instrumented application and the MCC-Logger-Client application.

1BCEL: https://commons.apache.org/proper/commons-bcel/

41

4.3. MCC-ADVISER: AN EVALUATION ASSISTANT

MCC-Logger-Client monitors the instrumented application and logs the communication
time delays and transfered bytes — for each method-call. These logs are stored at a
remote server to be used by the MCC-Adviser afterwards. At the server side, the original
code executes the requested tasks from the mobile device. The MCC-Logger-Client

is an evolution of the (PowerTutor, 2014) PowerTutor open-source application. MCC-

Logger-Server, in turn, is responsible for receiving the requests and properly executing
the specific method-calls. For that aim, MCC-Logger-Server uses Java Reflection for
identifying the method-calls targets.

public void method(){
 m1();
 m2();
 m3();
}

MCC- Instrumenter

 m1(): 843 ms
 m2(): 310 ms
 m3(): 124 ms

Original
Code

Instrumented
Code

Instrumenting the Source Code1

Executing Instrumented Source Code2

 m1(): 113 Bytes
 m2(): 452 Bytes
 m3(): 873 Bytes

Offloading

Return Results

Mobile Device Server

Original
Code

public void method(){
 registerStart();
 m1();
 registerEnd();

 registerStart();
 m2();
 registerEnd();

 registerStart();
 m3();
 registerEnd();
}

Instrumented
Code

MCC-Logger
Client

log-bytes.csv

log-time.csv

MCC-Logger
Server

Figure 4.10: Collecting Input Parameters.

As infrastructure, the private cloud Eucalyptus 3.4.0.1 (Nurmi et al., 2009) was used
with two physical machines (one node and one controller). The physical machines have
the following configuration: Intel Core i7-3770 3.4 GHz CPU, 4 GB of RAM DDR3,
and 500 GB SATA HD. An Ethernet network is adopted to connect the physical servers
through a single switch and one VM of type m1.medium (1 CPU, 512MB of RAM, and
10GB Disk). At the mobile device side, a Samsung Galaxy Note 4 was used running the
Android version 5.1.1 Lollipop. Only the essential process was running at the device

42

4.3. MCC-ADVISER: AN EVALUATION ASSISTANT

during this experiment.

4.3.2 Solving SPNs and Plotting Results

After collecting and informing the input parameters to MCC-Adviser, the stochastic
model is generated based on the source code structure. The act of configuring transitions
with input parameters is called refinement process. Only when setting transitions and
places with initial values, the stochastic model may generate some result. Therefore, the
final step is to solve the SPN model and graphically generate the graphics.

MCC-Adviser is based on the Mercury engine (Callou et al., 2014) (Silva et al.,
2013). Mercury was developed by MODCS2 research group to allow the evaluation
of performance and dependability models. The proposed environment can be adopted
as a modeling tool for a number of formalisms but MCC-Adviser uses the Mercury
API to evaluate only SPNs. Mercury can be used as a dashboard through a Graphical
User Interface (as illustrated in Figure 4.11) or working as an API. As an API, Mercury
provides one class called SPNModel that represents one SPN. Thus, the first step MCC-
Adviser does is to instantiate the SPNModel class. Next, for each method-call, the Places,
Transitions and corresponding Arcs are instantiated and incorporated into the model.

Figure 4.11: Mercury GUI

In practice, MCC-Adviser is deployed as a jar file called mcc-adv.jar, containing all
dependencies, including the Mercury library. Figure 4.13 describes a sequence diagram

2MODCS: http://www.modcs.org/

43

4.3. MCC-ADVISER: AN EVALUATION ASSISTANT

Figure 4.12: Main Classes of Mercury API

for MCC-Adviser behaviour. The figure highlights the communication between MCC-
Adviser core and the Mercury library. First, the user informs the application source code,
indicating the target class and its desired root method. Next, the MCC-Adviser statically
analyzes the code and generates a method-call dependencies tree. Calling Mercury, the
MCC-Adviser then instantiates transitions, places and arcs, creating an SPNs. Next, the
MCC-Adviser enable the user to inform the input parameters that are necessary to refine
the model and compute metrics. Finally, the MCC-Adviser generates graphs.

We also have implemented a graphical user interface, which requires minimum user
intervention, hiding all the modeling complexity of MCC-Adviser. At the webpage the
user may download the desktop version or try one of the following functionalities online:
Code Instrumentation, Energy Evaluation, and Time Evaluation. To use the modeling
prototype, the engineer should inform all needed input parameters. In background, the
MCC-Adviser generates the required statistics.

4.3.3 Web Application Prototype

In this work we have implemented a web application prototype where users may download
and test MCC-Adviser through the link: http://cin.ufpe.br/∼faps/mcc-adv/. Figure 4.14
depicts the first page. In this page the user have three options. First, she may download a
Desktop version, with corresponding user manual. In the other two buttons, the user may
test — online — the time and energy evaluation.

Figure 4.15 shows the step one of the online time evaluation. At this step the user
should insert a piece of Java code for static analysis.

44

4.4. EXPERIMENT FOR ESTIMATING THE “ENERGYPERBYTE"

Figure 4.13: MCC-Adviser Sequence Diagram.

In step two (see Figure 4.16), the user should insert the time for each one of the
method-calls.

Finally, in step three (see Figure 4.17), MCC-Adviser presents the statistic report
containing the Throughput, MTTE and CDF. Besides, the usee may obtain the exact
probabilities for finishing the application by simple informing the desired time interval.

4.4 Experiment for Estimating the “EnergyPerByte"

This section presents how we have estimated the average energy consumption for transfer-
ring one byte (EnergyPerByte) involving the mobile device and the cloud. Different from
the metric time, the task of recording energy encompasses diverse challenges (Li et al.,

45

4.4. EXPERIMENT FOR ESTIMATING THE “ENERGYPERBYTE"

Figure 4.14: MCC-Adviser Web Application - First Page

Figure 4.15: MCC-Adviser Web Application - First Step.

2013; da Silva et al., 2014; Oliveira et al., 2013; Araujo et al., 2016; Silva et al., 2014a;
Callou et al., 2011; Tavares et al., 2010; Callou et al., 2008; Tavares et al., 2007; Junior
et al., 2006) related to hardware and runtime system when measuring energy consumption

46

4.4. EXPERIMENT FOR ESTIMATING THE “ENERGYPERBYTE"

Figure 4.16: MCC-Adviser Web Application - Second Step.

of constrained devices.
In terms of hardware, the main obstacle is the difference between the speed at which

instructions execute and hardware devices can perform energy measurements. On modern
processors, individual instructions will execute at a rate of several million per second. At
best, power meters can sample electrical power draw at several tens of KHz, which means
that each sample will include the power consumption of hundreds, perhaps thousands, of
instructions.

The runtime system of an Android smartphone includes both the Android operating
system and the Dalvik Virtual Machine. The runtime system implements several types of
behaviors that affect energy consumption of an app, thread switching, garbage collection,
and tail energy. However, the details of the duration, frequency, and timing of these
events is, by design, hidden from the app. Although it would be straightforward to modify
the runtime systems to track these events, this would introduce considerable overhead
and reduce the portability of the approach, as it would be necessary to provide custom
runtime systems for each smartphone platform.

There are hardware profilers (e.g.: Watts Up (WattsUp, 2016)) that only record the
total consumed energy and not the individual energy per application. There are also some

47

4.4. EXPERIMENT FOR ESTIMATING THE “ENERGYPERBYTE"

Figure 4.17: MCC-Adviser Web Application - Third Step.

profilers at software level (e.g.: eDoctor (Ma et al., 2013) and PowerTutor (PowerTutor,
2014)) that record the energy per application. Therefore, this work have adopted this
software approach.

Aiming to calculate the MCETE for transferring one byte (EnergyPerByte), it is
necessary to profile one application during a certain period of time. Next, EnergyPerByte

is obtained by dividing the total amount of energy (TotalEnergy) by the total num-
ber of transfered bytes (TotalBytesNumber), as shown in Equation EnergyPerByte =

TotalEnergy
TotalBytesNumber .

Based on the (PowerTutor, 2014) PowerTutor application, the MCC-Logger-Client

was also adapted for recording, besides bytes and time, the Power consumption. The
objective was to capture the aforementioned metrics through a controlled experiment as
illustrated in Figure 4.18.

48

4.4. EXPERIMENT FOR ESTIMATING THE “ENERGYPERBYTE"

 m1(): 843 mW
 m2(): 310 mW
 m3(): 124 mW

 m1(): 113 Bytes
 m2(): 452 Bytes
 m3(): 873 Bytes

Offloading

Return Results

Mobile Device

Spotify
Servers

Spotify
App

MCC-Logger
Client

 log-bytes.csv

log-power.csv

Data Compilation

TotalEnergy TotalBytesNumber

Figure 4.18: Architecture Scheme for Computing the EnergyPerByte.

The main hardware components that may impact on energy consumption of mobile
devices are: Display Backlight, GPS, CPU (Ardito et al., 2013), and Connection type (3G,
4G, 5G, WiFi, etc); The Display and the GPS were not profiled because they remained
disabled during the experiment. Considering that most of execution occurs at the cloud,
the mobile device does not require much processing. Most of the processing is related to
transferring bytes and therefore the connection channels (3G and WiFi) were the focus
point.

The experiment was performed by profiling the mobile device power to calculate the
consumed energy. The application Spotify3 was adopted during the experiment. Spotify
plays music online by streaming. Thus, Spotify was executed for six minutes . It is
important to stress that there were other processes running on the device, including the
operating system. All processes were also profiled, not only the Spotify application.
However, all background services not required for running the operating system were
disabled. Figures 4.19a and 4.19b present the profiled power over time for 3G and WiFi,
respectively. The TotalEnergy for 3G and WiFi were calculate by estimating the area
bellow the line graphs wheres the TotalBytesNumber were simply profiled and summed
up.

3Spotify: https://www.spotify.com/br/

49

4.4. EXPERIMENT FOR ESTIMATING THE “ENERGYPERBYTE"

P
o

w
e

r
(m

W
)

0

100

200

300

400

500

600

0

100

200

300

400

500

600

Time (s)

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

(a) Power for 3G Channel.

P
o

w
e

r
(m

W
)

0

100

200

300

400

500

600

700

800

0

100

200

300

400

500

600

700

800

Time (s)

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

(b) Power for WiFi Channel.

Figure 4.19: Power over Time

Table 4.1 presents the TotalEnergy, TotalBytesNumber and EnergyPerByte. The
energy for transferring one byte was about 0.273 mJ for 3G and 0.0024 mJ for WiFi.
We believe that the energy for 3G was higher because its bandwidth is lower then WiFi,
requiring more energy for transferring bytes.

Table 4.1: Consumed Energy for Offloading one Byte

TotalEnergy (mJ) TotalBytesNumber EnergyPerByte (mJ)

3G WiFi 3G WiFi 3G WiFi

164029 218355 600363 90819921 0.273 0.0024

Although the TotalEnergy using WiFi was higher than 3G — for the amount of
bytes was the opposite. The flow of bytes for WiFi was 150% higher then using 3G.

50

4.5. CASE STUDY ONE - TIME METRIC - REDUCE COLOR APPLICATION

Therefore, is “easier" to transmit bytes using WiFi. 3G requires 113 times more Energy
for transmitting one byte then using WiFi connection.

4.5 Case Study One - Time Metric - Reduce Color Ap-
plication

This section presents a case study observing the execution time metric using an application
for reducing images color.

4.5.1 Model Presentation

As we have explained in the previous section, MCC-Adviser hides the complexity of
the problem and the underlying SPN model from the end user, presenting only a User
Interface and graphical prediction reports. However, to offer a full understanding of
MCC-Adviser, we give a detailed description of all involved steps—from building the
SPN to obtaining the results—in this section. This work does not consider applications
that needs user interaction during the application execution, since it deals with offline
evaluation.

We implement and analyze three versions (A, B, and C) of an image processing
Android application following the principles of method call computation offloading (Kosta
and Aucinas, 2012), (Cuervo et al., 2010). The implementation uses a simple elastic client
server architecture with Remote Method Invocation (RMI), but focusing on explaining
the modeling evaluation. The relevant parts of the offloading source code are presented
in Code 4.2. The depicted code arrangements only show the corresponding heaviest
methods of the three application versions.

Figure 4.20 reveals the method calls distribution scheme of the three applications.
The client class resides on the mobile device and makes image processing calls to the
server by passing one or more inputs (original images). The client connects to one or
more VMs and then calls the method reduceColor in the server side.

The method calls inside Application_A present dependencies by passing image inputs
as method arguments (lines 5 to 7). In Application_B, there are two dependent method
calls (lines 16 and 17) and one independent (line 19). The last application, Application_C,
is dependency free.

1

2 p u b l i c c l a s s A p p l i c a t i o n _ A {
3 p u b l i c L i s t <Image > r e d u c e C o l o r C l i e n t (Image image) {

51

4.5. CASE STUDY ONE - TIME METRIC - REDUCE COLOR APPLICATION

4 L i s t <Image > r e s u l t s = new A r r a y L i s t <Image > () ;
5 Image image2 = r e d u c e C o l o r (image) ; / * m_ca l l_1 * /
6 Image image3 = r e d u c e C o l o r (image2) ; / * m_ca l l_2 * /
7 Image image4 = r e d u c e C o l o r (image3) ; / * m_ca l l_3 * /
8 r e s u l t s . add (image4) ;
9 r e t u r n r e s u l t s ;

10 }
11 }
12

13 p u b l i c c l a s s A p p l i c a t i o n _ B {
14 p u b l i c L i s t <Image > r e d u c e C o l o r C l i e n t (Image image1 , Image image2) {
15 L i s t <Image > r e s u l t s = new A r r a y L i s t <Image > () ;
16 Image image3 = r e d u c e C o l o r (image1) ; / * m_ca l l_1 * /
17 Image image4 = r e d u c e C o l o r (image3) ; / * m_ca l l_2 * /
18 r e s u l t s . add (image4) ;
19 r e s u l t s . add (r e d u c e C o l o r (image2)) ; / * m_ca l l_3 * /
20 r e t u r n r e s u l t s ;
21 }
22 }
23

24 p u b l i c c l a s s A p p l i c a t i o n _ C {
25 p u b l i c L i s t <Image > r e d u c e C o l o r C l i e n t (Image image1 , Image image2 , Image image3) {
26 L i s t <Image > r e s u l t s = new A r r a y L i s t <Image > () ;
27 r e s u l t s . add (r e d u c e C o l o r (image1)) ; / * m_ca l l_1 * /
28 r e s u l t s . add (r e d u c e C o l o r (image2)) ; / * m_ca l l_2 * /
29 r e s u l t s . add (r e d u c e C o l o r (image3)) ; / * m_ca l l_3 * /
30 r e t u r n r e s u l t s ;
31 }
32 }
33

34 p u b l i c c l a s s S e r v e r {
35 p u b l i c Image r e d u c e C o l o r (Image image) {
36 / / JavaCV code s u p r e s s e d
37 }
38 }

Code 4.2: Client and Server Classes—Image Processing Source Code.

The server side adopts the Open Source Computer Vision Library (OpenCV, 2015)
and one Java wrapper called JavaCV (JavaCV, 2015). We implement the computing
vision example of Picture’s Colour Reduction (Reduction, 2015), in which images are
transformed by decreasing the number of colors depending on the picture’s size. Such
an activity may be quite time consuming. The test-bed was composed of a private cloud
comprising four machines with the same hardware configuration: Intel Core i7-3770 3.4
GHz CPU, 4 GB of RAM DDR3, and 500 GB SATA HD. One machine is configured as
the front-end while the remaining three are processing nodes. The Linux CentOS 6 (cen,
2015) operating system and Eucalyptus platform 3.4.0.1 (Nurmi et al., 2009) are adopted.
An Ethernet network is adopted to connect the PCs through a single switch and VMs of

52

4.5. CASE STUDY ONE - TIME METRIC - REDUCE COLOR APPLICATION

Figure 4.20: Method Call Distribution Obeying Code Dependency Constraints.

type m1.medium (1 CPU, 512MB of RAM, and 10GB Disk).
We have designed and represent high-level SPN models of the three code arrange-

ments. Application_A is represented by the SPNs in Figures 4.21a and 4.21b. Applica-

tion_B is represented in Figures 4.21c and 4.21d. Finally, Application_C is represented
in Figures 4.21e and 4.21f. Application_A is represented by models with method calls in
a sequential chain fashion. The first and second method-calls are dependent, represented
in the model by FINISH_1_START_2 ∈ (proc_time1)•, where (proc_time1)• is the set of
output transition of proc_time1. The second method-call is data dependent on the third
method-call, represented by FINISH_2_START_3 ∈ (proc_time_2)•. Following the same
idea, Application_B is modeled using data dependence representation.

Application_B and Application_C are represented by SPNs comprising parallel tasks.
Parallel tasks can be expressed by models including each individual task, a fork, and
synchronization transitions. Two tasks are said to be parallel (or concurrent), if they
are causally independent, enabling one transition firing either before or after another
transition. Therefore, the model must encompass transitions such that its firing delivers
tokens to more than one place.

53

4.5. CASE STUDY ONE - TIME METRIC - REDUCE COLOR APPLICATION

RqstN

RsrcN

(a) SPN without Absorbing State Used
to Calculate Throughput of

Application_A (Three Sequential
Method Calls).

RqstN

RsrcN

(b) SPN with Absorbing State Used to
Calculate MTTE and CDF of

Application_A (Three Sequential
Method Calls).

RsrcN

RqstN

(c) SPN without Absorbing State Used
to Calculate Throughput of

Application_B (Two Sequential
Method Calls and One in Parallel).

RsrcN

RqstN
FINISH_ALL

(d) SPN with Absorbing State Used to
Calculate MTTE and CDF of

Application_B (Two Sequential
Method Calls and One in Parallel).

RsrcN

RqstN

(e) SPN without Absorbing State Used
to Calculate Throughput of

Application_C (Three Parallel Method
Calls).

RsrcN

RqstN

FINISH_ALL

(f) SPN with Absorbing State Used to
Calculate MTTE and CDF of

Application_C (Three Parallel Method
Calls).

Figure 4.21: SPNs Generated by MCC-Adviser.

54

4.5. CASE STUDY ONE - TIME METRIC - REDUCE COLOR APPLICATION

4.5.2 Model Validation

Many aspects may interfere in the similarity between the model results and the reality,
such as connection with bad quality. To reduce the impact of errors (e.g., noise) in the
measuring process, a statistical technique called bootstrap was adopted to validate the
models proposed for Applications A, B and C (Efron and Tibshirani, 1993). Bootstrap is
a resampling method: it obtains samples within a previously measured sample.

Table 4.2 shows that the throughput extracted from the models (SPN’s T p column)
remains inside the respective confidence interval (CI). Therefore, this validation indicates
that the generated models represents, statiscally proved, the reality.

Table 4.2: SPN Validation Using Bootstrap Technique.

Throughput Bootstrap
Application MCC-Adv. Experiment CI (Bα/2) CI (B[1−α/2])

A 0.000642715 0.00064485 0.000629256 0.000661383
B 0.0008568 0.00086755 0.00083842 0.000894274
C 0.001057572 0.00102875 0.000985677 0.001070343

4.5.3 Model Solution

The proposed SPNs can be refined allowing one to obtain statistical information regarding
the MCC environment. Hence, the applications were repeatedly executed under one
VM of type m1.medium (1 CPU, 512MB of RAM, and a 10GB Disk), capturing the
execution time for each method call. Only one specific 4MB picture was used as input.
Next, a first SPN refinement was proposed by transforming the high-level transitions
into exponentially distributed timed transitions by assigning the average delays to the
respective transitions. Such transformation of transitions and delays assignment allows
SPN to be solved and the throughput, MTTE, and CDF to be obtained.

Figure 4.22 presents the estimated throughput for applications A, B, and C. The
number of considered resources ranged from one to four VMs because the approach takes
into account higher granularity plus one. Since Application_C can be partitioned into three
parts, four VMs were adopted as an upper limit. Thus, the totally sequential Application_-

A does not depend on the resource number. Therefore, the throughput remains constant
considering different numbers of VMs. Application_B owns two blocks of independent
code. Then, using two VMs the throughput increases. However Application_B has the
same result for two, three, and four VMs since it cannot be partitioned into more than

55

4.5. CASE STUDY ONE - TIME METRIC - REDUCE COLOR APPLICATION

two parts due to coupled code. Comparing the three applications, the throughput of
Application_C is the highest because it considers the highest number of parallel tasks.

The MTTE for Applications A, B, and C can be viewed in Figure 4.23. Similar to
the throughput metric, in Application_A, the MTTE does not vary when the number of
VMs changes. However, Applications B and C have the benefit of parallelism, reaching
saturation with two VMs for Application_B and three VMs for Application_C. Besides
that, the software engineer may consider the MTTE desired by the user and compare
with the results provided by MCC-Adviser. For example, if the final user demands a
minimum MTTE around 2800ms for Application_C, the planner may adopt three VMs
since two VMs do not allow reaching the maximal performance and four VMs do not
offer improvement.

Figure 4.22: Throughput Evaluation Comparing Applications A, B and C.

Figure 4.23: MTTE Evaluation Comparing Applications A, B and C.

Figures 4.24a, 4.24b, and 4.24c present CDFs that describe the execution time of
each method. For each application, the CDF is plotted considering one, two, and three
resources (VMs). The probabilities were computed from t = 0ms to t = 10,000ms.

56

4.5. CASE STUDY ONE - TIME METRIC - REDUCE COLOR APPLICATION

Although the applications have similar behavior, they are more likely to complete ex-
ecution over time when the system is more decoupled. For Application_A (Figure 4.24a),
the probabilities are the same for one, two, and three VMs. For Application_B (Fig-
ure 4.24b), the probabilities for two and three VMs are identical—the probability only
differs when one VM is used. In this case, the probability of finishing the execution is
smaller. Application_C (Figure 4.24c) has the highest probabilities for finishing execution
faster. In addition, the probabilities for one, two, and three VMs are distinct.

Application developers and service providers willing to plan and design an MCC
environment should be aware at when their applications are more likely to finish execution.
The CDF may indicate such a moment through the maximum probability of absorption.
Taking into account only one VM, the maximum probability of absorption is about 95%
for the three applications. Best performance could be observed when using two or three
VMs. Application_A does not reach 100% probability in any of the three scenarios.
Application_B reaches 100% probability at exactly 10,000ms for two and three VMs. As
previously mentioned, the probability for Application_C usually varies with the number
of resources. However, for two and three VMs, 100% probability is achieved around
8500ms.

Willing to obtain the probability of absorption, the service provider may consider
any time within the range. Final users may require that all applications finish by one
specific time. Given that Application_A is the most constrained, the service provider
should specify the observation of mainly Application_A in its Service Level Agreement.
If the final user needing the application finishes execution by 5000ms, the probability
for Application_A is always around 62%. Therefore, the service provider could agree to
deliver the service by charging low prices due to infrastructure limitations.

Probability intervals can also be exploited using CDFs. Aiming to better analyze the
applications, Figure 4.24d depicts the respective probabilities obeying three intervals.
These intervals do not elucidate the cumulative probability starting from zero but rather
the difference between two moments. Consequently, the probability is reduced as far
as the interval values increase over time. Stated differently, the angle of the CDF
line decreases over time. Hence, the more declined the line, the lower the probability.
Observing the CDFs’ cumulative probabilities, Application_C reaches higher results faster
than Application_B. However, Application_B obtains higher values than Application_C
when deploying two or three VMs. Due to such a myriad of interpretations, the application
developer or service provider should also pay attention to probability intervals.

Moment matching (Desrochers et al., 1995) could also be applied to obtain poly-

57

4.6. CASE STUDY TWO - TIME METRIC - FACE RECOGNITION APPLICATION

P(
T

<
 t)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Execution Time (ms)

0 2,000 4,000 6,000 8,000 1e+04

0 2,000 4,000 6,000 8,000 1e+04

1 VM
2 VMs
3 VMs

(a) Application_A

P
(T

 <
 t)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Execution Time (ms)

0 2,000 4,000 6,000 8,000 1e+04

0 2,000 4,000 6,000 8,000 1e+04

1 VM
2 VMs
3 VMs

(b) Application_B

P
(T

 <
 t)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Execution Time (ms)

0 2,000 4,000 6,000 8,000 1e+04

0 2,000 4,000 6,000 8,000 1e+04

1 VM
2 VMs
3 VMs

(c) Application_C

Time Intervals : T1: 2000ms < T < 4000ms T2: 4000ms < T < 6000ms T3: 6000ms < T < 8000ms

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

T1 T2 T3 T1 T2 T3 T1 T2 T3

Application_A Application_B Application_C

P
(t

1
 <

 T
 <

 t
2

)

VMs:
Time Int.:

(d) Probability Intervals.

Figure 4.24: Probability Analysis of Applications A, B and C.

exponential distributions and the respective SPNs (Araujo et al., 2011; Silvaa et al.,
2014; Costa et al., 2015). By adopting moment matching, the planner may estimate
what exponential-based probability distribution best fits the mean. Additionally, moment
matching generates more accurate models, which can still be numerically evaluated.
If non poly-exponential distributions are adopted, simulations should also be adopted.
Figure 4.25 presents an SPN example of refinement using the moment matching technique.
The SPN represents Application_B depicted in Figure 4.21d. The transition proc_time_3

was refined as an example. A hypo-exponential distribution was attributed to such a
transition. Therefore, a more accurate analysis could be done solving this emerging SPN.

4.6 Case Study Two - Time Metric - Face Recognition
Application

In this section, a face recognition application is presented as a real case study aiming
to enforce our statements with a nonliner code structure. Face recognition determines
the match-likelihood of each face to a template element from a database. The widely

58

4.6. CASE STUDY TWO - TIME METRIC - FACE RECOGNITION APPLICATION

Figure 4.25: SPN Representing Application_B with a Hypo-Exponential
Distribution.

accepted Eigenfaces approach was employed (Turk and Pentland, 1991). This process
extracts the relevant information in a face image, encodes it, and compares the encoded
face image with a database of models called face-space, similarly encoded.

Code 4.3 presents the analyzed class called FaceRecognitionService. The heaviest
method, recognize, contains two heavy method calls. The first, readFaceBundles, con-
structs the face-spaces from a given directory. There must be at least 16 images in that
directory and each image must have the same dimensions. The second method call,
checkAgainst, performs the comparison between one photo and the face-space. This
method call identifies the name of the most similar photo from the face-space and a
Euclidean distance in that face.

1 p u b l i c c l a s s F a c e R e c o g n i t i o n S e r v i c e {
2

3 p u b l i c s t a t i c R e c o g n i t i o n R e s u l t r e c o g n i z e (S t r i n g d i r W i t h T r a i n e d F a c e s , S t r i n g
pho toToRecogn ize) {

4 E i g e n F a c e C r e a t o r c r e a t o r = new E i g e n F a c e C r e a t o r () ;
5 c r e a t o r . r e a d F a c e B u n d l e s (d i r W i t h T r a i n e d F a c e s) ; / / m_ca l l_1
6 S t r i n g r e s u l t = c r e a t o r . c h e c k A g a i n s t (pho toToRecogn ize) ; / / m_ca l l_2
7 S t r i n g s t r r e s u l t = "Most closly reseambling: " + r e s u l t +
8 " with "+ c r e a t o r . DISTANCE+" distance" ;
9

10 r e t u r n new R e c o g n i t i o n R e s u l t (s t r r e s u l t) ;
11 }
12

13 p u b l i c vo id r e a d F a c e B u n d l e s (S t r i n g n) {
14 f o r (i = 0 ; i < b u n d l e s . l e n g t h ; i ++) {
15 / / Read each s e t o f 16 images .
16 r e a d B u n d l e (f i l e n a m e s , s e t , i) ;
17 / / m_cal l_1_1 , m_cal l_1_2 , m_ca l l_1_3 . . .
18 }
19 }

59

4.6. CASE STUDY TWO - TIME METRIC - FACE RECOGNITION APPLICATION

20 }

Code 4.3: Face Recognition Application Source Code.

The method calls readFaceBundles and checkAgainst are data dependent. However,
with this application we intend to enhance our proposal by analyzing method calls
repeatedly called. Therefore, readFaceBundles provides a loop that reads groups of 16
images at each iteration. All such processing can be performed in parallel managing
replicated database.

The SPN model in Figure 4.26 represents the face recognition application with
absorbing state. We reference readFaceBundles as m_call_1, checkAgainst as m_call_2

and the “sub method calls" of readFaceBundles as m_call_1_n (where n ranges from 1
to 1000). Hence, the models are simplified, but in reality, the SPNs encompass 10,000
method-calls.

m_call_1_1

m_call_1_2

m_call_1_n

m_call_2

RN

T0

T1

T2

T3

T4

FINISH_ALL

Figure 4.26: SPN Representing the Face Recognition Application with Absorbing
State.

As a first step in the evaluation process we need to collect the delays for each method
call using one resource. Thus, we have executed the application using a database of
16,000 photos in one VM (1000 iterations), registering the average execution times for
the method calls, individually. We have repeated this process 30 times. The result was
0.0142125ms for readFaceBundles (in average) and 2.7ms to checkAgainst. Using these
measurements, MCC-Adviser evaluated the use of 100, 500 and 1000 VMs and generated
a CDF, depicted in Figure 4.27.

The probabilities were computed from t = 0s to t = 1.3s. According to Figure 4.27,
the distances between the probabilities regarding 100 and 500 VMs are larger than the
probabilities regarding 500 and 1000 VMs. The probability of finishing execution with
100 VMs becomes 100% only after 1.25s, whereas for 500 and 1000 VMs, this happens
around 0.95s. With regard to the interval 0.3s to 0.45s, the following probabilities are

60

4.7. CASE STUDY THREE - TIME METRIC - GPU STUDY

obtained: 24.4% for 100 VMs, 26.2% for 500VMs, and 27.4% for 1000 VMs. The
interval 0.65s < T < 0.85s results in higher probabilities for 100 VMs than 500 VMs
or 1000 VMs: 7.7% for 100 VMs, 5.1% for 500 VMs and 5.1% for 1000 VMs. Given
so many tasks, at some point the probabilities for 500 and 1000 VMs are very close to
each other. Such similarity is due to the accumulated effort in dealing with so many tasks
concurrently.

 P
 (T

 <
 t)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Execution Time (s)

0 0.2 0.4 0.6 0.8 1 1.2

0 0.2 0.4 0.6 0.8 1 1.2

100 VMs
 500 VMs
1000 VMs

Figure 4.27: CDF of Face Recognition Application.

4.7 Case Study Three - Time Metric - GPU Study

Until now, MCC is limited to CPU code offloading. Inspired by the recent support for
Graphic Processing Unit (GPU) computation on the cloud Ama (????), and the initial
tentatives of using these GPU-capable virtual machines for data-intensive processing Shih
et al. (2013), Pungila and Negru (2012), we envision a future where MCC will embrace
the enormous possibilities offered by GPU computation offloading. General purpose
computing on GPU (GPGPU) enables the possibility of optimizing the execution time of
many parallel applications thanks to their large number of cores compared to the CPU.
Imagine a normal smartphone being able to run the latest GPU-powered photo editor or
to perform GPU-accelerated virus scanning Pungila and Negru (2012); all thanks to the
cloud. We believe researchers will extend on previous works and integrate GPU code
offloading into their offloading frameworks.

Unfortunately, aside from Amazon Ama (????), no other public cloud provider
accommodates virtual machines with GPU support. Not only that, the only choices
offered by Amazon are the g2.2xlarge and g2.8xlarge instances, both of them very
powerful and expensive: $0.65/h and $2.6/h, respectively. The first instance type has 1

61

4.7. CASE STUDY THREE - TIME METRIC - GPU STUDY

GPU, while the second one has four. The model is the same for both: High-performance
NVIDIA, with 1,536 CUDA cores and 4GB of video memory, which is one the best
graphic cards on the market. Final users would be enforced by the limited choice to pay
for these very high-performance instances, even if their requirements were not so high.

We believe that in the near future this will not be the case anymore. The other
providers are going to catch up Amazon and provide GPU VM instances as well. Not
only that, we also believe that all providers will offer a broader spectrum of instance
types so that users with different needs can choose accordingly and minimize their costs.
In this thesis, we tackle the problem of choosing the optimal GPU instance in order to
satisfy user’s Quality of Service (QoS) requirements, while reducing his costs.

To make the presentation clear, we now consider a trivial example where the offloading
framework should choose among three different GPU virtual instances. This example,
presented in Figure 4.28, shows the execution time of a hypothetical application on the
three GPUs. We assume GPU_1 is the worst performing, while GPU_2 and GPU_3 have
almost the same performance. Since GPU_3 performs slightly better than GPU_2 it can
have a higher cost. From the user’s point of view however, this slight performance can be
insignificant, so she can prefer saving money and use GPU_2.

0 20 40 60 80 100 120 140

GPU_1

GPU_2

GPU_3

Execution Time (ms)

Figure 4.28: Execution time of a hypothetical application on three different types
of GPU.

More concretely, consider the case where the developer has a requirement on the
task execution time to be smaller than 120ms. With high probability, GPU_1 will not
be able to satisfy this requirement. Choosing between GPU_2 and GPU_3 is the only
alternative. Since GPU_2 has lower costs and can deliver the task result in time, the
offloading framework should prefer that one instead of GPU_3.

Using the MCC-Adviser tool, mobile cloud offloading frameworks can automatically
decide which instance type to use so that user’s quality of service requirements are
satisfied, while minimizing the costs. We have run a virus scanning benchmark application
on a g2.2xlarge Amazon instance and measured the execution time, which was 5.48ms on
average over 100 runs. We then divided the execution time by the number of CUDA cores
in order to obtain the execution time per core (EtpC) and feed it to the MCC-Adviser
tool. In absence of Amazon GPU instances with less CUDA cores, we defined four other

62

4.7. CASE STUDY THREE - TIME METRIC - GPU STUDY

types with 98, 256, 512, and 1024 cores, assuming they use the same GPU model as the
real one. Then, we used the previous measured execution time per core to estimate the
probabilities for each of the defined instances.

In Figure 4.29 we present the results of the MCC-Adviser tool for the real GPU
instance with 1536 cores and for the other instances defined by us. If the user requires
her task to finish before 4.5ms, with probability higher than 95% even the less powerful
instance would satisfy her needs. If the desired execution time was less or equal than
2.5ms, the probability of the less powerful instance drops to 76% and maybe another
instance is better in this case.

P
 (

T
<

 t
)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Execution Time (ms)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Number of CUDA Cores
98
256
512
1024
1536

Figure 4.29: CDF line plot considering parameters from Amazon EC2 instance.

We are aware that the example reported has very small delay, however, considering
real-time applications such result is totally possible. Shi et al. Shi et al. (2011), for
example, proposes a real-time video encoding method for mobile cloud gaming in which
some procedures take around 4ms in average. The purpose of this real case study is
to simulate, for the first time, the choice of a GPU powered virtual machine in the
cloud considering user’s quality of service requirements. Our tool is extremely flexible.
Producing the same results for other applications is just a matter of measuring the
execution time per core and feeding the value to the SPN simulator.

Aiming to better present the results of this case study, a dynamic public web page
is delivered through the URL: http://cin.ufpe.br/∼faps/mcc-adv-gpu/. The web page
presents the CDF chart generated for this case study in conjunction with a way to access
the specific probabilities. Thus, it is possible to visualize both, the probability of finishing
execution before a give time P(T < t), and the probability interval P(t1 < T < t2).

63

4.8. CASE STUDY FOUR - ENERGY METRIC - REDUCE COLOR APPLICATION

4.8 Case Study Four - Energy Metric - Reduce Color
Application

This section presents a case study observing the energy metric using an application for
reducing images color.

4.8.1 Model Presentation

Aiming to evaluate the presented approach regarding energy metric we have used one of
the three reduce color image processing application (the “ApplicationC"). The respective
model is presented (again) in Figure 4.30:

RsrcN

RqstN

Figure 4.30: SPN of Application_C (Three Parallel Method-Calls).

The code structure with three parallel method-calls was chosen intending to highlight
the energy consumption tendency as far as the parallelism increases.

4.8.2 Model Validation

Aiming to validate the energy model, we have used the MCC-Logger-Client for profiling
the power and calculating how much energy the application spent. Three scenarios were
tested: WiFi Cloudlet, WiFi Public Cloud and 3G Public Cloud. Each scenario was
executed and monitored 30 times, collecting the mean values. The results have followed a
normal distribution and then we generated 1000 values, extracting the confidence interval
from that (CI) (Efron and Tibshirani, 1993; Silva et al., 2014b). Table 4.3 presents the
results comparison (from both: calculated by MCC-Adviser and experiment). The results
shows that the energy extracted from the models (Model column) remains inside the

64

4.8. CASE STUDY FOUR - ENERGY METRIC - REDUCE COLOR APPLICATION

respective confidence interval. Therefore, this experiment provides evidence that our
proposed SPN modeling with energy metric is reliable.

Table 4.3: SPN Model Validation

Scenario MCETE (Model) MCETE
(Experi-
ment)

Bootstrap -
CI (Bα/2)

Bootstrap -
CI (B[1−

α/2])
WiFi Cloudlet 1037.24364 1038.6984 1036.74625 1039.95812

WiFi Public Cloud 4752.252667 4753.7064 4751.364983 4754.651928

3G Public Cloud 2585201.126 2585367.603 2584100.871 2587251.900

4.8.3 Model Solution

The same infrastructure presented at the previous section were used and three scenarios
were considered. The first, the mobile device have offloaded tasks to a nearby Cloudlet
using WiFi connection. In the second, the mobile device have offloaded to a public cloud
(Amazon EC2) using WiFi connection. Third, the offloading was performed through a
3G connection to a public cloud (Amazon EC2).

The results for respective MCETEs — in logarithmic scale — are presented in Figure
4.31. Due to the maximum level of parallelism, three VMs were used as threshold. The
experiment was conducted by using the same testbed presented in previous section and
repeating the offloading tasks 30 times. The collected input parameters for each method-
call were: the number of transmitted bytes and the communication time. The Figure
4.31 evidences that the 3G connection spends much more energy then WiFi. Observing
WiFi isolated, it is necessary more energy in public cloud offloading then in private cloud
offloading. However, in such scale it is not easy to observe the difference when increasing
the number of VMs.

Figures 4.32a, 4.32b and 4.32c presents the isolated MCETE results for WiFi Cloudlet,
WiFi Public Cloud and 3G Public Cloud, respectively. In the three scenarios, the energy
consumption increases proportionaly to the number of VMs. Such an increment is due to
the effort in dealing with multiple results. When offloading to one VM, only one result is
received by the mobile device, but when offloading to N VMs, N results are received. In
all three contexts, the difference between one and two VMs are higher than two and three
VMs. We believe that close to the threshold of parallelism the difference between the
number of VMs always decreases because it has no linear behavior. In that case, after 3
VMs (4, 5, etc) the MCETE results will be constant.

65

4.8. CASE STUDY FOUR - ENERGY METRIC - REDUCE COLOR APPLICATION

1

10

100

1000

10000

100000

1000000

10000000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

WiFi Cloudlet WiFi Public Cloud 3G Public Cloud

Figure 4.31: MCETE Comparison in Logarithmic Scale.

These results may be used for planning MCC infrastructures. MCC-Adviser guides
the software engineer for deciding to change the code structure. For example, she may
instead of distributing for n VMs to distribute for X×n VMs. The energy consumption
increases but the total execution time tends to decrease as far as the number of VMs
increases. Therefore, the software engineer should balance both metrics, execution time
and energy in their final decision.

66

4.8. CASE STUDY FOUR - ENERGY METRIC - REDUCE COLOR APPLICATION

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

(a) WiFi Cloudlet

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

(b) WiFi Public Cloud

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

1 VM 2 VMs 3 VMs

M
C

ET
E

(m
J)

Number of VMs

(c) 3G Public Cloud

Figure 4.32: MCETE for WiFi and 3G

67

5
Improving MCC Offloading Process

This section presents a smart allocation strategy to perform tasks offloading for mo-
bile applications. The approach have considered an innovative balanced infrastructure
parameters strategy.

5.1 Proposal Overview

Figure 5.1 presents a work-flow describing this part of the contribution. The objective
here is to transfer the processing from mobile device to the cloud. The main activity is
the offloading itself but there are other activities, needed for achieving the proposed goal.
Following, the activities are detailed.

1. Analyze the Application - Not all applications are suitable for using offloading.
Only those applications that demand a high level of processing may benefit from
such a process. Another aspect is related to dependence of specific resources (GPS
for example). Part of the application may not be offloaded since, at the cloud
side, the tasks will not have all required information. Therefore, it is necessary to
cautiously analyze the application and decide for applying offloading.

2. Performance Evaluation (Before and After) - There are many factors that may
influence the offloading process, such as network connection and cloud unavailabil-
ity. It is important to ensure that the application becomes more efficient by using
the MCC approach. Therefore, a performance evaluation is needed before and
after the offloading execution. The performance evaluation generates an evaluation
report, summarizing results.

3. Define the Partitioning Granularity - According to (Liu et al., 2015), partition

68

5.1. PROPOSAL OVERVIEW

Application
Source-Code

Our Main ContributionsWorkflowDataflow

Analyze the
Application

Performance
Evaluation

Define the
Partitioning

Strategy

Identifying
Sub-parts and

Partitioning
Application

Collect
Environment
Parameters

Choose the Most
Efficient

Distribution

Choose the Most
Efficient

Distribution

Offload

Performance
Evaluation

Performance
Report

Figure 5.1: MCC Offloading - An Overview

granularity refers to the portion of the application which represents one atomic
unit. One application can be offloaded without even any partition, in this case for
example, the atomic unit is the application as a whole. Some other partitioning
granularities are class, method, component, etc. In this work, the application is
partitioned at method-level, but is important to note that during the offloading exe-
cution both are transferred: method instructions and input data. The performance
results are directly dependent from the workload. In this work, image files are used
as input data. Algorithms for image processing require much processing.

4. Identifying Sub-parts and Partitioning Application - Identifying the sub-parts
of an application depends on the partitioning granularity. The sub-parts in this
work are method-calls. This research have not focused on dynamic partition
identification. The method-calls are manually identified and partitioned. Using
the example of face recognition, there is a loop at the source code that performs
the recognition for each human face in a photo. We have instrumented the code
inserting offloading instructions.

5. Collect Environment Parameters - Aiming to offload the sub-parts of the appli-
cation, the MCC environment must be monitored. MCC environment refers to the
current state of the servers that process the offloading requests and the distance
between mobile device and the cloud. More specifically, two parameters are col-

69

5.2. AN SMART MCC OFFLOADING PROCESS

lected, RTT and current CPU consumption level. This part is considered a relevant
contribution because previous work have not adopted both metrics together. Case
studies following this strategy has shown a better application performance.

6. Choose the Most Efficient Distribution - This work proposes an algorithm for
tasks distribution based on weighted parameters. The parameters (RTT and CPU)
receives a weigh, meaning that one is “more important" then the other for an
specific application. The objective of this research part was not to find the most
optimized weight combination, but proving that the weighs may influence the
offloading performance. This is the first time weighted parameters strategy is used
in MCC, for the best of our knowledge.

7. Offload - Offloading includes to send, process and return the results to the mobile
device. In this work all servers are configured to receive offloading requests. Each
server has a copy of the application responsible for executing those offloaded
method-calls.

5.2 An Smart MCC Offloading Process

Although the hardware of mobile devices evolve rapidly, they will continue being more
resource poor than non-mobile hardware. Such fact occurs because, in the users point of
view, the size, weight, and battery life have higher priorities than enhancing computational
power. This is not just a temporary limitation of current technology but is intrinsic to
mobility (Satyanarayanan et al., 2009). MCC offloading in many situations can improve
mobile devices performance. In terms of computing target, the ideal scenario was
proposed by Satyanarayanan et al. (2009), with the concept of cloudlets. Cloudlets are
nearby clouds (e.g: private cloud at an university) accessed through a high speed WiFi
connection. Cloudlets are resource constrained, then the workload should be wisely
partitioned and distributed.

The Round Robin algorithm is often used for that, as a simple-yet-effective method
of distributing requests to a single-point-of-entry to multiple servers in the background.
There is still a more sophisticated algorithm called Weighted Round Robin (WRR)
(Nagle, 1988). In a Weighted Round Robin algorithm the “weight" determines the cost
for processing at each server. The cost determines how many more (or fewer) requests are
sent for each server; compared to the other servers on the pool. Round Robin is one of the
most known algorithms for tasks distribution in MCC (Chen, 2015; Kosta and Aucinas,

70

5.2. AN SMART MCC OFFLOADING PROCESS

2012; Chun et al., 2011a). There are also some studies that have applied Weighted Round
Robin with better results compared with the traditional one (Lin et al., 2015; Abolfazli
et al., 2015). Although WRR is considered more accurate then RR, the WRR can be
evolved.

This work proposes to evolve the Weighted Round Robin in MCC by assigning
weights for the metrics used to calculate the offloading costs. The approach is called
Smart Weighted Round Robin or just SmartRank. Figure 5.2 provides an overview
of the proposed architecture. The idea is to partition the application and offloading it
to the cloudlet considering that the target resources (Virtual Machines) have distinct
configurations and states. Two parameters are initially adopted and balanced afterwards:
the current CPU load and latency (Round-Trip Time). The result is a ranking with the
respective offloading costs.

Regarding the cloudlet architecture, some decisions were necessary to guarantee
that the SmartRank algorithm could be implemented. Aiming to avoid mobile device
intrusiveness we propose the existence of an intermediary machine. This machine, named
the Cloudlet Manager, deals with the algorithm for cost calculation and possible needed
additional computing.

Mobile
Device

CPU Consumption: 5%

CPU Consumption: 80%

Cloudlet

Offloading

RTT: 200 ms

RTT: 300 ms

RTT: 400 ms

Cloudlet
Manager

CPU Consumption: 10%

01

02

03
Ranking

1º - VM 02 - Cost: 0.1
2º - VM 01 - Cost: 0.5
3º - VM 03 - Cost: 0.9

Figure 5.2: Virtual Machines Ranking - An Overview

In this work the number of method calls is directly proportional to the number of
items that compose the workload. As aforementioned, the proposed algorithm takes into
account two metrics, described following:

• CPU utilization (U): Measures the current machine’s CPU utilization percentage
at a specific period. In other words, if the VM has two or more CPU cores then

71

5.2. AN SMART MCC OFFLOADING PROCESS

the CPU utilization will be the average use of these cores. The higher the CPU
utilization the lower the chances of allocating more requests to that particular VM.

• Round-Trip Time (RTT) (Dey et al., 2013): Returns the sum of two “sub-metrics":
the processing time on server-side and the Communication Time measured for only
one face recognition. Similarly to the other metric, the higher the RTT the less
requests the VM receives.

– Processing Time (PT): Represents the average time each VM type (large
and small) takes to perform the recognition process in average. To get this
measure we have run an experiment.

– Communication Time (TT): This value is obtained dynamically for each
execution and represents the total time for a request to reach a VM and come
back to the requester (cloudlet manager) without any processing.

Aiming to balance the metrics, each one is associated with a weight. The metrics
U and RTT have the respective weights wU and wRTT, which summed up corresponds
to the value 1.0. These weights are used to balance the formula that calculates the
offloading cost (Ct) for each target machine. The measured metrics are normalized based
on their amplitudes. The Min-max normalization method was adopted (Chakrabarti et al.,
2008). In this method, an attribute is normalized by scaling its values so that they fall
within a small specified range: 0.0 to 1.0. Min-max normalization performs a linear
transformation of the original data. Suppose that minA and maxA are the minimum and
maximum values of an attribute A. Min-max normalization maps a value v to v′ in the new
range [min′A, max′A]. The general corresponding formula for normalization is depicted
in Equation v′ = v−minA

maxA−minA
and the cost formula in Equation Ct = ((wU×NormU)+

(wRT T ×NormRT T))).
Figure 5.3 illustrates how the three macro components (Mobile Device, Cloudlet

Manager and Cloudlet) interact with each other. The objective with Figure 5.3 is to
highlight where the Smartrank algorithm interact with the offloading platform. For sake
of clarity, as an example, lets consider the face detection/recognition mobile application
used by many MCC research papers (Soyata et al., 2012; Chen et al., 2015; Jain et al.,
2011; Luo and Liu, 2010). There are seven steps from sending a photo to the Cloudlet
and receiving the result.

1. Sending Photo to the Cloudlet: first the user takes a picture of a group of people
and sends it to the cloudlet manager;

72

5.2. AN SMART MCC OFFLOADING PROCESS

Mobile
Device

Cloudlet Manager

Offloading

Capture Status 01

01

02

03

Thread 01

Thread 02

Thread 03

Offloads 1 Task

04

Thread 04

Capture Status 02

Offloads 4 Tasks

Capture Status 03

Offloads 3 Tasks

Capture Status 04

Offloads 6 Tasks

Threads
Manager

Resource
Status

Decision

SmartRank
Algorithm

Cloudlet

Result

Figure 5.3: Offloading Steps Using Smart Ranking Approach.

2. Input Partitioning (Faces Detection): the Threads Manager performs the faces
detection and cropping;

3. Computing Optimized Distribution: the Threads Manager applies the Smar-
tRank algorithm for calculating the best distribution of tasks (faces). In case of
Round Robin Strategy such costs are equal;

4. Creating Threads: the Threads Manager sub-module creates a set of threads
according with the number of available VMs and configure the number of tasks
each one will transmit.

5. Transmitting Tasks to VM Targets: in this step the Cloudlet Manager effectively
sends the packages of faces to the respective VMs;

6. Face Recognition: thereupon, the VMs execute the face recognition itself;

7. Return Result to Cloudlet Manager: when the recognition process has finished,
the result is returned to Cloudlet Manager mobile device;

8. Return Result to Device: then, the result is returned to the mobile device.

The Equation NTvm′ = round(1−Ctvm′

∑
K
N=1 1−CtvmN

×T NT) calculates how many tasks each
VM will receive. Let the VM costs be Ctvm1,Ctvm2,Ctvm3,Ctvm4, ...,Ctvmk. The Number of
Tasks that a VM will process (NTvm′) is obtained by the product of its cost percentage and

73

5.2. AN SMART MCC OFFLOADING PROCESS

the Total Number of Tasks to process (TNT). We use 1−Ctvm because the lower the cost,
the more tasks that particular VM will process. Therefore, the tasks are proportionally
distributed among the VMs considering the NTvm′ parameter. In other words, taking the
face recognition as example, the machine with high cost will recognize less faces and
that ones with lower cost will process more faces.

Based on these three Equations (5.2, 5.2 and 5.2) the SmartRank Algorithm was
designed, and presented in Listing 1. Aiming to better present the algorithm, the code
is divided into four procedures: smartRanking (the main procedure that calls the other
auxiliary procedures), calculateMinMax (used to normalize the profiled metrics), calcu-

lateIndividualCosts (computes the costs per VMs), and calculateNumberOfTasksPerVM

(finally it calculates the number of tasks each VM will receive). There is an entity in
such a system that represents the VM and compose the variable listOfVMs. Such an
entity could be expressed in many ways depending the programming language — as
a class (in Java) or an struct (in C) for example. The important aspect is that a VM
owns six atributes that are filed through these four procedures: cost, normU, normRTT,
currentU, currentRTT, nubmerOfTasks. After executing smartRanking, every VM entity
is configured with the corresponding number that they should offload. Next, the Cloudlet
Manager just instantiates the threads and associates each VM entity.

Table 5.1 illustrates an example with real values extracted from an initial experiment,
using 4 VMs and 14 faces. It is important to stress that the weights at the bottom of the
table were just an example, and Section 5.4.2 shows what is the most effective balance
for such weights.

Table 5.1: Example of costs calculation using 4 VMs and 14 faces.

Vm_Code U PT TT RTT Cost NTvm

m1.m_a 69 21574,4 2345 23919,4 0,915 1

m1.m_b 12 21574,4 444 22018,4 0,330 4

m1.l_a 80 18551,0 182 18733 0,600 3

m1.l_b 2 18551,0 700 19251 0,040 6

Metric Wgt. CostSum: 2,11

U 0,6 TNF: 14

RTT 0,4

74

5.2. AN SMART MCC OFFLOADING PROCESS

Algorithm 1 SmartRank Algorithm
1: Global Variables:
2: wU ← 10 // For Example
3: wRT T ← 90 // For Example
4: TY PE_RT T ← “RT T ”
5: TY PE_U ← “U”
6: maxRT T ← 0 minRT T ← 0 maxU ← 0 minU ← 0
7: procedure SMARTRANKING(listO fV Ms, totalTasksNumber)
8: CALCULATEMINMAX(listO fV Ms, minRT T , maxRT T , TY PE_RT T)
9: CALCULATEMINMAX(listO fV Ms, minU , maxU , TY PE_U)

10: CALCULATEINDIVIDUALCOSTS(listO fV Ms)
11: CALCULATENUMBEROFTASKSPERVM(listO fV Ms, totalTasksNumber)
12: end procedure
13: procedure CALCULATEMINMAX(listO fV Ms, min, max, metricType)
14: auxValue← 0 min← Double.MAX_VALUE max← Double.MIN_VALUE
15: for vm← each(listO fV Ms) do
16: if metricType == TY PE_RT T then
17: auxValue← vm.currentRT T
18: else
19: auxValue← vm.currentU
20: end if
21: if auxValue < min then
22: min← auxValue
23: end if
24: if auxValue > max then
25: max← auxValue
26: end if
27: end for
28: end procedure
29: procedure CALCULATEINDIVIDUALCOSTS(listO fV Ms)
30: for vm← each(listO fV Ms) do
31: vm.normRT T ← (vm.currentRT T −minRT T)÷ (maxRT T −minRT T)
32: vm.normU ← (vm.currentU−minU)÷ (maxU−minU)
33: vm.cost← (wU× vm.normU)+(wRT T × vm.normRT T)
34: end for
35: end procedure
36: procedure CALCULATENUMBEROFTASKSPERVM(listO fV Ms)
37: sumO fCosts← 0
38: for vm← each(listO fV Ms) do
39: sumO fCosts← sumO fCosts+(1− vm.cost)
40: end for
41: for vm← each(listO fV Ms) do
42: vm.numberO f Tasks← ((1−vm.cost)÷sumO fCosts)+totalTasksNumber
43: end for
44: end procedure

75

5.3. THE SMARTRANK PROTOTYPE IN JAVA

5.3 The SmartRank Prototype in Java

SmartRank algorithm (see Listing 1) was is implemented in Java language using the face
recognition application as a benchmark. Intending to simplify the explanation we present
a code version using pseudocode in Algorithm 5.1. The OpenCV (OpenCV, 2015) was
used as an auxiliary library for processing the photos at the cloud side. OpenCV is an
open source computer vision library with a strong focus on real-time applications. In
our scenario, the OpenCV must be installed inside each VM and the databases’ images
must be replicated among them. As our focus is not improving the actual face recognition
algorithm, we have adopted the wrapper JavaCV (JavaCV, 2015) to access the OpenCV,
due to its expressive number of adapters.

The communication between mobile devices and the cloudlet-manager is imple-
mented using sockets. We have chosen synchronous strategy because we judge real-time
communication as more important than any other requirements. For the same reason, the
messages are exchanged between cloudlet-manager and cloudlets with a synchronous
remote procedure call (RPC) channel. There are many attractive aspects of RPC. One is
clean and simple semantics: these should make it easier to build distributed computations,
and to get them right. Another is efficiency: procedure calls are simple enough for the
communication to be quite fast. A third is generality: in single machine computations,
procedures are often the most important mechanism for communication between parts of
the algorithm (Birrell and Nelson, 1984).

The SmartRank prototype have three components: SmartRank-Client, SmartRank-
Cloudlet-Manager and SmartRank-Server. The SmartRank-Client is a Android ap-
plication and the other two are traditional Java projects. The tool may be down-
loaded accessing the web-page containing all necessary information to install it: http:
//cin.ufpe.br/~faps/smartrank

5.4 Case Studies

The partitioning granularity, at first, could be any of those presented at the Background
Section (2.2.1), because the algorithm simply considers a bunch of tasks. However, in
MCC, Method Call Partitioning is one of the most intuitive approaches, because mobile
applications are inherently organized in methods (Chun et al., 2011b). Besides, method
calls can bring high granularity as long as the methods are uncoupled. There are cases
in which the computing processing concentrates under an unique method repeatedly

76

http://cin.ufpe.br/~faps/smartrank
http://cin.ufpe.br/~faps/smartrank

5.4. CASE STUDIES

executed. One example is the mobile application for face recognition. As presented
in Section 2.4, face recognition is the most adopted application as benchmark in MCC.
The number possible parallel tasks will depend on the number of faces to be recognized.
Listing 5.1 presents the respective source code in Java.

1 p u b l i c c l a s s F a c e R e c o g n i t i o n S e r v i c e {
2 p u b l i c L i s t < R e c o g n i t i o n R e s u l t > r e c o g n i z e F a c e s (S t r i n g d i r W i t h T r a i n e d F a c e s , S t r i n g

pho toToRecogn ize) {
3 L i s t < R e c o g n i t i o n R e s u l t > r e s u l t s = new A r r a y L i s t < R e c o g n i t i o n R e s u l t > () ;
4 L i s t < S t r i n g > p a t h F o r F a c e s = D e t e c t i o n S e r v i c e . d e t e c t A l l (pho toToRecogn ize) ;
5

6 f o r (S t r i n g p a t h F o r F a c e : p a t h F o r F a c e s) {
7 r e s u l t s . add (r e c o g n i z e O n e F a c e (d i r W i t h T r a i n e d F a c e s , p a t h F o r F a c e)) ;
8 }
9 r e t u r n r e s u l t s ;

10 }
11

12 p u b l i c s t a t i c R e c o g n i t i o n R e s u l t r e c o g n i z e O n e F a c e (S t r i n g d i r W i t h T r a i n e d F a c e s , S t r i n g
p a t h F o r F a c e) {

13 E i g e n F a c e C r e a t o r c r e a t o r = new E i g e n F a c e C r e a t o r () ;
14 c r e a t o r . r e a d F a c e B u n d l e s (d i r W i t h T r a i n e d F a c e s) ;
15 S t r i n g r e s u l t = c r e a t o r . c h e c k A g a i n s t (p a t h F o r F a c e) ;
16

17 S t r i n g s t r R e s u l t = "Most closily reseambling: " + r e s u l t +
18 " with "+ c r e a t o r . DISTANCE+" distance" ;
19

20 r e t u r n new R e c o g n i t i o n R e s u l t (s t r R e s u l t) ;
21 }
22 }

Code 5.1: Face Recognition Application Source Code.

The method recognizeFaces receives a photo with a set of faces. Its first method
call, detectAll, detects and separates the faces. Next, each face passes by the recognition
process. Therefore, the method call recognizeOneFace, in the for loop, will be executed
the number of detected faces. The parallelization can be done by executing the group of
recognizeOneFace method calls in multiple resource targets.

In this section we present a proof of concept using the face recognition application.
The mobile device is a thin client that sends a photo to the Cloudlet (with multiple faces)
and receives the recognition result.

5.4.1 Case Study One: Local Execution

Parallel execution can be exploited much more efficiently on the cloud than on a smart-
phone, either using multiprocessor support or splitting the work among multiple VMs.
Algorithms that deal with large amounts of data may benefit from parallel execution. Face

77

5.4. CASE STUDIES

recognition, for instance, requires comparison of a particular face with a large database
of pre-analyzed faces Kosta and Aucinas (2012). Since these types of applications handle
a large data load, they are limited to completely run on a mobile device. In other words,
not every workload is supported by standalone execution. In order to know what is the
maximum load that a mobile device supports, it may be useful to guide new proposals of
tools for partitioning and offloading. We performed a stress test to characterize the be-
haviour regarding the resource consumption of a recognition application running entirely
on a mobile device to check its maximum power of execution. We tested the recognition
of one face while using different databases containing 50, 100, 200, and 400 faces. At
the end, we observed that the application could load and process the databases of 50,
100, and 200 faces but not the one of 400 faces, for as much as the application stops. We
profiled memory, energy consumption and CPU in order for us to verify reasons for such
a limitation.

Memory Profiling

The use of heap memory was profiled by instrumenting the application code (written in
Java language). The library java.lang.Runtime was used, since it could provide informa-
tion such as total memory and free space, which allowed us to obtain the percentage of
memory used by application. Figure 3 illustrates that the memory traces were very similar
among four database sizes (50, 100, 200, and 400). The most different behaviour was
noticed on database size 400, inasmuch as application stopped working around the second
35 and memory did not reach a peak as had occurred to the other database sizes. The peak
of memory had been reached when database was loaded into memory in order to perform
the recognition. The peaks with databases 50, 100, and 200 are close one to each other
(about 1% of difference). Therefore, for database 400, the peak memory consumption
would likely be around 77% if the application had not stopped, which was still relatively
far from 100% limit. Memory exhaustion was not the cause for the application stop.

Energy Profiling

Figure 5.5 shows the trace of energy consumption, measured with PowerTutor. The
behavior of energy traces were also very similar among the database sizes 50, 100, and
200. The consumption level had a mild decrease as database size increased. This fact
happened because Android devices are usually battery-powered; Android was designed to
manage memory (RAM) to keep power consumption at a minimum. For example, when
an Android app is no longer in use, the system will automatically suspend it in memory -

78

5.4. CASE STUDIES

4035302520151050

75

70

65

60

55

50

Time (s)

U
se

d
 M

e
m

o
ry

 (
%

)

50 Faces

100 Faces

200 Faces

400 Faces

Database

crashed here.

The app

Figure 5.4: Memory Profiling.

while the app is still technically “open". Suspended apps consume no resources and sit
idly in background until they are needed again. This has the double benefit of increasing
general responsiveness of Android devices, since applications do not need to be closed
and reopened from scratch each time, and also ensuring background applications do
not consume power needlessly. Hence, Android limited the power consumption of face
recognition app because memory usage kept constant until actual recognition point. The
consumption fell immediately after recognition process was over. It was impossible to
register consumption for the base of 400 faces, because PowerTutor application stopped
working around the middle of the process. However, even at the databases loading—just
before the app completes— the energy consumption had only a small increase.

2520151050

0.6

0.5

0.4

0.3

0.2

Time (s)

U
se

d
 E

n
e
rg

y
(J

/s
)

50 faces

100 faces

200 faces

Database

Figure 5.5: Energy Profiling.

CPU Profiling

The “proc" file system acts as an interface to internal data structures in the kernel
of operating system. It can be used to obtain information about processes and other
components of the system. The “/proc/stat" entry reads the Total CPU utilization of
mobile phones when executing our recognition application. Figure 5.6 shows CPU
utilization increases as the database size gets larger. Each execution obeys a similar

79

5.4. CASE STUDIES

growth pattern, and afterwards, there is a drop of utilization just before application
completion. This fall was not observed in the performance of 400 faces database because
the application stopped when CPU reached the level of 98%. Once profiling showed
memory did not get close maximum level, we conclude the crash occurred due to the
CPU stress. This result indicates it is advisable to focus on optimizing CPU utilization
rather than memory usage in such applications. This limitation in terms of hardware
capacity motivates the use of cloud infrastructure to run this workload excess. In order to
decide using or not cloud computing for this purpose, we can first evaluate the benefits of
offloading it to a single server machine.

4035302520151050

100

80

60

40

20

0

Time (s)

U
se

d
 C

P
U
 (

%
)

50 faces

100 faces

200 faces

400 faces

Database

crashed here.

The app

Figure 5.6: CPU Profiling.

5.4.2 Case Study Two: Round Robin Strategy

The round-robin experiment was assembled using Eucalyptus platform, comprising three
physical machines. One machine was configured as the front-end, running the CLC, CC,
SC, and Walrus. The two remaining ones ran the node controllers (NC). They executed
the Linux CentOS 6 operating system and Eucalyptus platform 3.4.0.1. We used a 10/100
Mbps Ethernet network to connect the PCs through a single switch. The “m1.large" VM
type was adopted with 2 CPUs (dual-core), 512 MB RAM, and 10 GB Hard Disk. As
it is illustrated in Figure 5.3, we instantiated one, two, three, and four VMs. We used
a database of 50 pictures, replicated among the VMs. The load balancer round-robin
policy was employed to receive and redistribute one picture containing 4 equal faces.
We repeated this experiment 30 times for one, two, three, and four VMs. For a closer
view, the analysis is divided into two parts. First, the results for the offloading process
are observed as a whole; and next, the individual steps are considered.

Analyzing the Offloading Process as a Whole

80

5.4. CASE STUDIES

Figures 5.7 and 5.8 depict results for total energy consumption and total elapsed
time, respectively. In general, results decreased for both energy and elapsed time as we
increased the number of VMs. Comparing energy consumption using one and four VMs,
there was a decrease of 44.69%, whereas elapsed time was reduced in 55.68%. This fact
occurred because, by using round robin strategy, each face was recognized on a different
machine. That was the preferable scenario to get the most from parallelism, since all four
VMs have the same configuration.

Figure 5.7: Energy saving through parallel remote execution.

Figure 5.8: Elapsed time taken through parallel remote execution.

By observing the graphs it can be noted that the energy consumption and elapsed time
were very similar considering two and three machines. Such similarity can be explained
by the round robin faces distribution. As illustrated by Figure 5.9, with two machines,
each of which received two faces. For three machines one received two faces and the other
two machines received one. Since the execution was in parallel, the total “processing
effort" would be approximately for that machine that took longer, it is, the server running
the recognition of two faces.

81

5.4. CASE STUDIES

2 VMs 3 VMs

{Processing
Effort

Figure 5.9: Offloading for 2 or 3 VMs.

.
Analyzing the Offloading Process by Steps

The offloading process is divided into four steps or types of efforts: detection, recog-
nition, latency and others. Detection and recognition are considered primary actions.
Latency and “others" are considered secondary actions. Latency represents the effort
taken with communication between device and the target servers. “Others" are related to
processing performed by the offloading agent. Such an offloading agent is the mechanism
that creates and manages threads. These threads are responsible for sending and receiving
offloading tasks. Figures 5.10 and 5.11 present the offloading process by steps. Figure
5.10 shows the proportion of average time for each step; and Figure 5.11 evidences the
average time considering the distinct number of VMs.

Figure 5.10 evidences that the recognition step takes almost all the total elapsed
time, about 80%. The recognition takes so long because each face is searched inside the
database. The detection task (7%) does not takes long because the computation using
Haar Classifiers Viola and Jones (2004) are very optimized. Latency (11%) is a critical
constraint in MCC but in this context, using a nearby Cloudlet, the latency is not the
botleneck. “Other" processing tasks are insignificant (2%) when compared to the previous
actions.

Considering Figure 5.11, lets observe each step. In Figure 5.11a, the recognition
time decreases as many VMs are included since the recognition is paralelized. In Figure
5.11b, the latency decreases as many VMs are included because the transmitted bytes
are distributed among the VM targets. In Figure 5.11c, the time taken to manage threads
increases as many VMs are included, however, increasing in a very low pace. Therefore,
increasing for much many VMs will not impact much at the total elapsed time. In Figure
5.11d, by focusing on the scale the detection do not vary much (293∼298ms) because the
processing effort is always the same: detecting 4 faces.

82

5.4. CASE STUDIES

291.00

292.00

293.00

294.00

295.00

296.00

297.00

298.00

299.00

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Detection

Others
2%

Detection
7%

Recognition
80%

Latency
11%

Average Time

Figure 5.10: Average Time For Each Step at the Offloading Process.

291.00

292.00

293.00

294.00

295.00

296.00

297.00

298.00

299.00

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Detection

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Recognition

0

100

200

300

400

500

600

700

800

900

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Latency

(a) Recognition

291.00

292.00

293.00

294.00

295.00

296.00

297.00

298.00

299.00

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Detection

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Recognition

0

100

200

300

400

500

600

700

800

900

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Latency

(b) Latency

0

20

40

60

80

100

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Others

0

20

40

60

80

100

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Others

0

20

40

60

80

100

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Others

(c) Others

291.00

292.00

293.00

294.00

295.00

296.00

297.00

298.00

299.00

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Detection

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Recognition

0

100

200

300

400

500

600

700

800

900

1 2 3 4

Ti
m

e
(m

s)

Number of Virtual Machines

Latency

(d) Detection

Figure 5.11: Probability Analysis of Applications A, B and C.

5.4.3 Case Study Three: Smart WRR Strategy

Flores (Flores and Srirama, 2013) claims that the offloading is not a local decision process
that happens just within the device, it involves a global understanding of the infrastructure.
According to Tianyi et. al (Xing et al., 2012), scheduling schemes for mobile cloud must
consider multiple parameters such as computation and connectivity resources since the
cloud environments are heterogeneous. We presented that the use of cloudlet federation
decreased the mean response time around 48% considering the round-robin scheduling
strategy. However, such strategy do not take into account the different VMs’ capabilities

83

5.4. CASE STUDIES

and latencies. For this reason something more sophisticated is needed. Thus, in this
work we apply the Weighted Round-Robin (WRR) strategy that we call an smart strategy
(Nagle, 1988).

This way, as aforementioned, SmartRank performs face detection and recognition
through distribution of tasks among servers based on RTT and CPU utilization to make
better use of heterogeneous infrastructures. Thus, we assign weights to these metrics
because we suppose that depending on the scenario one metric can influence more the
response time than the other. This aspect motivates in this context the following question:
There is a calibration of weights that results in the lowest mean response time, executing
in different scenarios in which the VMs have distinct initial CPU utilization levels? This
section will present an study that aims to answer such a question.

The environment was assembled with one cloudlet comprising three machines with
the same hardware configuration: Intel Core i7-3770 3.4 GHz CPU, 4 GB of RAM DDR3,
500 GB SATA HD. One machine is configured as the front-end, running the CLC, CC,
SC, and Walrus. The remaining two run the node controllers (NC). They execute the
Linux CentOS 6 operating system and Eucalyptus platform 3.4.0.1. We use a 10/100
Mbps Ethernet network to connect the PCs through a single switch.

Two VM types were adopted: m1.medium (1 CPU, 512MB Mem., and 10GB Disk)
and m1.large (2 CPUs, 512MB Mem., and 10GB Disk). As depicted in Figure 5.3,
we simulate two cloudlets with four VMs (2 m1.medium and 2 m1.large). To narrow
the scope, the mobile device is only responsible for sending raw images to the cloudlet-
manager and this process is not repeated during the experiments. Constant mobile transfer
time is added in every experiment.

Before the calibration process we had to estimate the metric processing time (PT),
referring to the time for a VM to perform recognition without considering Communication
Time. RTT is composed of Communication Time (TT) that is dynamically obtained and
the processing time (PT) that is an estimation resulted from an experiment described in
this section. Hence, in the case of TT metric, for each scheduling execution a simple
request is spread for all VMs and then their response times are recorded. In the case of
PT metric we shall not do the same because it could significantly decrease the scheduling
performance, so such metric is obtained as a mean value through experiment.

We registered the PT mean for one VM instance of type m1.medium and other of
type m1.large. They received a specific workload 80 times composed of one picture
with 17 faces. The VM of type m1.large obtained a lower PT mean (18551 ms) than
the m1.medium (21575 ms). This result was expected due to its different computational

84

5.4. CASE STUDIES

power (m1.medium has 1 CPU core and m1.large has 2 CPU cores).
To use these PT mean values only makes sense if the two samples are statistically

different, otherwise the type of VM would not influence the desired response time. So,
aiming to ensure that these means could be used as a relevant metric for ranking, we again
applied the t-test to verify whether these means were statistically different. Considering
95% of confidence, we assume the normality of both samples (p-values equal to 0.735
and 0.300). The t-test showed that there is a significant difference between them: VM
type m1.medium (M=21575, SD=32.26) and VM type m1.large (M=18551, SD=27.10);
T(153)=642.02, p=0.000. Figure 5.12 depicts a box-plot illustrating the samples distance.

Figure 5.12: Box-Plot graph to illustrate the distance between the samples.

Algorithm Calibration

Aiming to find the calibration of weights that results in the lowest mean response
time we arranged different scenarios where the initial CPU utilization of four VMs (2
m1.large and 2 m1.small) are different. We performed experiments using the “real" RTT
as a dependent variable. It is important to stress that we refer two types of RTTs. The
first is used by the scheduling algorithm, including the pre-calculated PT values and
instant TT. The second is the “real" RTT, recorded in our experiments. Table 5.2 shows
the factors and their respective levels. We have chosen the weight balance as a factor
because we want to find the weight balance that results in the lowest RTT. The second
factor is the initial CPU utilization level because depending on the level of this metric a
VM should not receive more requests.

In the case of weight balance factor we have chosen three calibrations, considering
RTT (acronym ’R’) and CPU utilization (acronym ’U’). First, giving more importance for
U (with 20% for R and 80% for U). Second, giving more importance for R (with 80% for

85

5.4. CASE STUDIES

Table 5.2: Factors and the parameters chosen as relevant.

Factors Wgt. Balance (%) Initial CPU Utl. (%)

Levels

20R80U m.a:10,m.b:20,l.a:30,l.b:40

80R20U m.a:40,m.b:30,l.a:20,l.b:10

50R50U m.a:10,m.b:10,l.a:20,l.b:20

R and 20% for U). Third, considering them equally important (with 50% for R and 50%
for U). We have tried others values, however the above 80 and below 20 the difference
was inexpressive.

We have simulated the initial CPU Utl. level using the LookBusy1 tool that generate
fixed and pre-configured loads on CPUs. The acronym m.a means m1.medium.a, m.b
means m1.medium.b, l.a means m1.
large.a and l.b means m1.large.b. The letters “a” and “b” are used only to identify the
two VMs of each distinct type. We configured three scenarios setting arbitrary CPU
utilization levels for the four VMs varying the load from 10 to 40 percent. The acronyms
presented in Table 5.2 will be used it the remainder of the chapter.

As the experiments were executed on the same network, we did not consider Commu-
nication Time as a factor, setting a fixed value equals to 3, a value previously observed
in the previous executions. To capture the real RTTs, we just instrumented the source
code before and after the process in the cloudlet-manager, registering the difference
in milliseconds in a text log. For each sequence of execution, the VMs were cleaned
(processes stopped) and the text logs were also recreated.

We have adopted the statistical method factorial Design of Experiments (DOE)
(Montgomery and Montgomery, 1984), as we have two factors to obtain the desired
measures, and our intent is to study the impact of each factor on those measures to finally
extract the best weights balance. Considering the two factors (weight balance and initial
CPU utilization), and three levels for each one of them, there are nine experiments to run,
which are described in Table 5.3, presenting the real RTT mean and respective standard
deviations (SD). In order to get results in an acceptable confidence level, we decided to
use a photo with 15 faces and run 35 replicas for each executions, yielding a total of 315
experiments.

The effect and relevance of each factor and their interactions were computed by using
the results of the real RTT time, shown in Table 5.3 applying the method factorial Design
of Experiments (DOE). Table 5.4 introduces the respective estimated effects.

The results in Table 5.4 showed that the factor with the greatest impact is weight

1hPT://www.devin.com/lookbusy/

86

5.4. CASE STUDIES

Table 5.3: Results of each treatment of the experiment.

Initial CPU utilization Wgt. B. RTT M. SD

m.a:10,m.b:10,l.a:20,l.b:20 20R80U 988.14 31.22

m.a:10,m.b:10,l.a:20,l.b:20 80R20U 1045.06 43.73

m.a:10,m.b:10,l.a:20,l.b:20 50R50U 1022.86 153.56

m.a:10,m.b:20,l.a:30,l.b:40 20R80U 1078.69 98.68

m.a:10,m.b:20,l.a:30,l.b:40 80R20U 1194.71 233.05

m.a:10,m.b:20,l.a:30,l.b:40 50R50U 1163.63 174.48

m.a:40,m.b:30,l.a:20,l.b:10 20R80U 1018.06 51.27

m.a:40,m.b:30,l.a:20,l.b:10 80R20U 1162.94 270.51

m.a:40,m.b:30,l.a:20,l.b:10 50R50U 1111.00 140.47

Table 5.4: Estimated effects and relevances for the RTT mean time.

Factor Effect T Relev. P

weight_balance 110.93 4.24 61% 0.000

initial_U -65.73 -2.51 36% 0.013

weight_balance*initial_U -5.1 -0.19 2% 0.846

balance (weight_balance), generating an effect with a relevance of 61% (p=0.000, as it
is lower than 0.05, it is significant). It means that a variation in such a balancing may
increase or decrease the resulting response time over the face recognition. The initial
CPU utilization (initial_U) also influences the real RTT, but only by 36% (p=0.013).
The interaction between both factors resulted in a p-value=0.846, indicating absence of
mutual influence. Thus, we analyse the effect of factors on an individual level.

The Pareto chart (see Figure 5.13) depicts the importance of an effect by its absolute
value, drawing a reference vertical line on the chart. The more the effect extends this
line the more it influences the dependent variable (that is the RTT in our study). The line
indicates the minimum magnitude of statistically significant effects, using the criterion
of statistical significance α = 0.05. Figure 5.13 presents a Pareto Chart in which can
be observed the significant influence of weight factor (weight_balance) compared with
the initial CPU utilization of VMs before sending faces for recognition (initial_U). The
graph also shows the little interaction between the factors (term AB), without statistical
significance.

The effect of one factor may depend on the level of the another factor, resulting in
the so called factors interaction. This phenomenon may be evidenced when plotting each
level of a factor and keeping the level of a second factor constant. Thus, it compares
the relative strength of the effects across factors observing the existence of a pattern, if
noted, this pattern means that there is no interaction. For such intent we use a bar plot

87

5.4. CASE STUDIES

Figure 5.13: Pareto Chart representing the effects of each factor. The red line
represents the minimum magnitude of statistically significant effects.

(Figure 5.14) looking for a pattern on the factor initial CPU utilization (initial_U) whereas
keeping the weight balance (weight_balance) constant. By the figure we can reinforce
that there is no interaction between the factors, since for each weight balance level the
RTT increases proportionally to the initial CPU utilization.

Figure 5.14: Bar plot with the level of relationship between the factors.

Since the interaction between the factors is not significant we can treat the factors
individually. Figure 5.15 presents the average result for each one of the factors and then
we can make some conclusions about the factor levels (from left to right side). First,
as observed in the last plot shown in Figure 5.14, the different weight balances present
distinct results. The best performance was when using the balance of 20% for RTT and
80% for CPU utilization metric, it obtained a 5.5% faster result comparing to the average
of the three real RTTs. It can be explained by the invariance of the RTT, as the PT is a

88

5.4. CASE STUDIES

fixed number and the Communication Time is equal for all VMs in our experiments. In
the right side of the graph, the factor initial CPU utilization (initial_U) resulted in a higher
real RTT mean when the values were in a high level, that is, when the VM owned an
expressive initial workload. Thus, when the VMs were with this level of CPU utilization
“m.a:10,m.b:20,l.a:30,l.b:40", the performance was the worst because the instance types
“m1.large" were running more busy, with 30% and 40% of the CPU utilization.

Figure 5.15: Bar plot showing the relative effects of each level.

Thus, we conclude that the weight balance “20R80U" will result in the best face
recognition performance under some assumptions: assuming that all cloudlets are near
from each other (similar Communication Time); the pool of resources is divided into
two groups of VM types (medium and large); and the VMs’ CPU utilization do not
exceed 40%. This scenario is plausible because our proposal aims to have a federation
on cloudlets near the client and close to each other. The RTT can be decreased if more
resources are included. SmartRank can redirect the requests every time the cloudlets
federation is overloaded, however this is not covered in this research.

89

6
Conclusions and Future Work

This PhD research achieved a number of results in the areas that it has explored so
far. The major contributions are the new insights of how to save energy and time of
MCC applications. We believe that smart offloading allocation algorithms and system
modeling have provided meaningful success, despite these mechanisms may still evolve
and conquer further improvements.

First, this research introduced the results of a systematic mapping study about bench-
mark applications used in mobile cloud computing by investigating scientific literature
production. Given the current state of MCC research, we judge that there are few studies
with controlled experiments using real applications. We believe that this mapping study
generated state-of-the-art information about the main issues because the studied subject
can be understood through the provided answers. In future work, more systematic map-
pings should be conducted to acquire further experience to aid new experiments. This
part of the thesis was published in one Symposium (Silva et al., 2015a) and one journal
(Silva et al., 2016a).

This research introduces a modeling approach to represent code dependency of mobile
applications using Stochastic Petri Nets (SPNs). The approach provides graphs depicting
Throughput, Mean Time to Execute, Mean Consumed Energy to Execute, and Cumulative
Distribution Functions (CDFs). A tool called MCC-Adviser was proposed and evaluated
using a private cloud. Such a tool aims at assisting software engineers to plan their mobile
cloud infrastructure with very little effort. To the best of our knowledge, this is the first
work to use SPN in the field of MCC with automatic nature. One version of MCC-Adviser
is delivered in a public web application through the URL: http://cin.ufpe.br/∼faps/mcc-

adv/. This work can also be used in conjunction with other techniques to increase mobile
cloud performance. This part of the thesis was published by one conference (Silva et al.,
2015b) and have two other journal papers in revision.

90

In 2013 Amazon launched the first virtual machines with GPU support. Two years
later, we are still stuck with the same instances. No other public cloud company provides
these type of machines yet, due to technological difficulties and high costs, in our opin-
ion. Mobile devices have been broadly using cloud computing to increase applications
performance. Following the successful trend of mobile application offloading towards
powerful servers, we believe that in the very near future mobile GPU offloading will
be a reality. This work presented an approach to represent GPU parallel processes with
Stochastic Petri Nets. Using such a representation we implemented a tool, called MCC-
Adviser, that can simulate GPU executions and plot cumulative distribution functions in a
highly flexible way. Using the MCC-Adviser, we plot the probabilities of satisfying user
requirements when using GPUs with different number of cores. We found that user can
reduce her costs by opting for a less powerful GPU virtual machine, while still satisfying
application’s requirements in terms of execution time.

Other original contribution in this work is a partitioning and offloading technique that
distributes tasks of mobile applications to the cloud. The approach intends to minimize
response time of mobile applications by using cloud computing with heterogeneous
communication latencies and compute power. We evaluated the smart approach by
experimenting face detection and recognition algorithms on Android devices. To the best
of our knowledge, this is the first work showing such a strategy, comprising private cloud
and the weighted metrics approach. The proposed tool, SmartRank, integrates mobile
devices (e.g: smartphones), the cloudlet manager, and cloudlets. This work focused on
describing the strategy and a sensitivity analysis of SmartRank to find suitable parameters
that would result in good results considering response time. The experiments evidenced
that: the use of cloudlets federation is feasible for face recognition, since maximization of
cloudlet capabilities improved the response time of recognition process by 48%, that is,
instead of one resource, multiple machines can solve faster a recognition task; and it was
possible to find a calibration for the metrics CPU utilization and RTT based on weights,
a functionality not applied so far in our known literature. This part of the thesis was
published by one conference (Silva et al., 2015c) and two journals (Silva et al., 2015d)
(Silva et al., 2016b).

Finally, this research has provided one more step in the maturation of MCC, but
mobility will continue being a hard research challenge.

91

6.1. FUTURE WORK

6.1 Future Work

Following, we list some possible future work:

• Using Stochastic Models for Predicting MCC Costs: This work has adopted
only private clouds during the experiments. We envision the future of MCC taking
advance of public clouds and modeling for considering financial aspects. This
work presented a way of predicting how much time an application could spend
by offloading tasks. Public clouds usually charge their customers based on how
long time their VMs were used. Therefore, using these two information (price
and predicted time) it could be possible to calculate the costs for public cloud
offloading.

• Energy Profiling at Source-Code Line Level: The energy profiling mechanism
proposed in this work was evolved from PowerTutor application. This application
is not precise and more appropriate only for Google phones. Besides, today, there is
no application capable of profiling energy spending at source-code line level. This
possibility could enable programmers evaluating their new applications aiming at
extending the mobile device autonomy.

• Finding the Most Efficient Weigh Balance in SmartRank Strategy: This re-
search has shown that setting weighs for balanced metrics could increase per-
formance during offloading execution. However, this work did not present the
combination of weights that could achieve the optimal result. Artificial neural
network could be applied aiming to solve that problem.

• Extending the Stochastic Models with Other Metrics: The SPN models repre-
senting method-calls could be extended to study dependability, including availabil-
ity and reliability. Although the related work presented some studies exploring
these metrics, their models did not observed the application at source code level.

• Explore MCC Offloading with Wearable Devices : Internet of Things is a hot
topic today. Although in this work we mention mobile devices in general, in practice
we only focused on smartphones. Wearable devices, such as smart swatches, are
even more limited compared with mobile devices. Both approaches/tools of this
work (SmartRank and MCC-Adviser) could be applied using applications that runs
under these gadgets.

92

Bibliography

(????). Amazon web services - amazon ec2 instances. https://aws.amazon.com/
en/ec2/instance-types/. Accessed: 2015-07-28.

(2015). Centos. https://www.centos.org/. Accessed: 2015-07-28.

Abolfazli, S., Gani, A., and Chen, M. (2015). Hmcc: A hybrid mobile cloud computing
framework exploiting heterogeneous resources. In Mobile Cloud Computing, Services,

and Engineering (MobileCloud), 2015 3rd IEEE International Conference on, pages
157–162.

Abraham, A., Mauri, J. L., Buford, J., Suzuki, J., and Thampi, S. M. (2011). Advances in

Computing and Communications, Part IV: First International Conference, ACC 2011,

Kochi, India, July 22-24, 2011. Proceedings, Part IV . Springer Publishing Company,
Incorporated, 1st edition.

Antonio, R. (2013). "who coined ’cloud computing’?". In Technology Review.

MIT. Available on https://www.technologyreview.com/s/425970/

who-coined-cloud-computing/.

Araujo, C., Maciel, P., Zimmermann, A., Andrade, E., Sousa, E., Callou, G., and Cunha,
P. (2011). Performability modeling of electronic funds transfer systems. Computing,
91(4), 315–334.

Araujo, C., Silva, F., Costa, I., Vaz, F., Kosta, S., and Maciel, P. (2016). Supporting
availability evaluation in mcc-based mhealth planning. Electronics Letters, 52(20),
1663–1665.

Araujo, J., Silva, B., Oliveira, D., and Maciel, P. (2014). Dependability evaluation of a
mhealth system using a mobile cloud infrastructure. In Systems, Man and Cybernetics

(SMC), 2014 IEEE International Conference on, pages 1348–1353. IEEE.

Ardito, L., Procaccianti, G., Torchiano, M., and Migliore, G. (2013). Profiling power
consumption on mobile devices.

Balan, R. K. (2006). Simplifying cyber foraging. School of Computer Science, Carnegie
Mellon University.

93

https://aws.amazon.com/en/ec2/instance-types/
https://aws.amazon.com/en/ec2/instance-types/
https://www.centos.org/
https://www.technologyreview.com/s/425970/who-coined-cloud-computing/
https://www.technologyreview.com/s/425970/who-coined-cloud-computing/

BIBLIOGRAPHY

Balbo, G. and Chiola, G. (1989). Stochastic petri net simulation. In Proceedings of the

21st Conference on Winter Simulation, WSC ’89, pages 266–276, New York, NY, USA.
ACM.

Birrell, A. D. and Nelson, B. J. (1984). Implementing remote procedure calls. ACM

Trans. Comput. Syst., 2(1), 39–59.

Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S. (2006). Queueing networks

and Markov chains: modeling and performance evaluation with computer science

applications. John Wiley & Sons.

Buyya, R., Yeo, C. S., and Venugopal, S. (2008). Market-oriented cloud computing:
Vision, hype, and reality for delivering it services as computing utilities. In High Per-

formance Computing and Communications, 2008. HPCC’08. 10th IEEE International

Conference on, page 6. Ieee.

Callou, G., Maciel, P., Andrade, E., Nogueira, B., and Tavares, E. (2008). Estimation
of energy consumption and execution time in early phases of design lifecycle: an
application to biomedical systems. Electronics Letters, 44(23), 1343–1344.

Callou, G., Maciel, P., Tavares, E., Andrade, E., Nogueira, B., Araujo, C., and Cunha,
P. (2011). Energy consumption and execution time estimation of embedded system
applications. Microprocessors and Microsystems, 35(4), 426–440.

Callou, G., Ferreira, J., Maciel, P., Tutsch, D., and Souza, R. (2014). An integrated
modeling approach to evaluate and optimize data center sustainability, dependability
and cost. Energies, 7(1), 238–277.

Campos, Eliomar; Matos, R. M. P. C. I. S. F. and Silva, F. A. (2015a). Performance
evaluation of virtual machines instantiation in a private cloud. In Services (SERVICES),

2015 IEEE World Congress on, pages 319–326.

Campos, Eliomar; Matos, R. M. P. S. F. and Silva, F. A. (2015b). Stochastic modeling of
auto scaling mechanism in private clouds for supporting performance tunning. Systems,

Man, and Cybernetics (SMC), 2015 IEEE International Conference on.

CCS-Insight-Forecast (2015). Smartphone sales to peak in western markets in 2017 as
they enter new phase of maturity. Available on http://tiny.cc/ih0y6x.

94

BIBLIOGRAPHY

Chakrabarti, S., Cox, E., Frank, E., Gting, R. H., Han, J., Jiang, X., Kamber, S. S.,
Nadeau, T. P., Neapolitan, R. E., Pyle, D., Refaat, M., Schneider, M., Teorey, T. J., and
Witten, I. H. (2008). Data Mining: Know It All. Morgan Kaufmann Publishers Inc.

Chen, M., Zhang, Y., Li, Y., Mao, S., and Leung, V. C. M. (2015). Emc: Emotion-aware
mobile cloud computing in 5g. IEEE Network, 29(2), 32–38.

Chen, S., Wang, Y., and Pedram, M. (2014). Optimal offloading control for a mobile
device based on a realistic battery model and semi-markov decision process. In
Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided

Design, ICCAD ’14, pages 369–375, Piscataway, NJ, USA. IEEE Press.

Chen, X. (2015). Decentralized computation offloading game for mobile cloud computing.
IEEE Transactions on Parallel and Distributed Systems, 26(4), 974–983.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. (2011a). Clonecloud: Elastic
execution between mobile device and cloud. In Proceedings of the Sixth Conference

on Computer Systems, EuroSys ’11, pages 301–314, New York, NY, USA. ACM.

Chun, S., Maniatis, P., Naik, M., and Patti, A. (2011b). Clonecloud: Elastic execution
between mobile device and cloud. In Proc. of the Sixth Conf. on Computer Systems,
EuroSys ’11, pages 301–314, New York, NY, USA. ACM.

Costa, I., Araujo, J., Dantas, J., Campos, E., Silva, F. A., and Maciel, P. (2015). Avail-
ability evaluation and sensitivity analysis of a mobile backend-as-a-service platform.
Quality and Reliability Engineering International, pages n/a–n/a.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R.,
and Bahl, P. (2010). Maui: Making smartphones last longer with code offload. In
Proceedings of the 8th Int. Conference on Mobile Systems, Applications, and Services,
MobiSys ’10, pages 49–62, New York, NY, USA. ACM.

da Silva, V. C. O., Oliveira, D. M., de Araujo, J. C. T., and Maciel, P. R. M. (2014). Energy
consumption in mobile devices considering communication protocols. Advances in

Information Sciences and Service Sciences, 6(5), 1.

Desrochers, A., Al-Jaar, R., and Society, I. C. S. (1995). Applications of petri nets in

manufacturing systems: modeling, control, and performance analysis. IEEE Press.

95

BIBLIOGRAPHY

Dey, S., Liu, Y., Wang, S., and Lu, Y. (2013). Addressing response time of cloud-based
mobile applications. In Proc. of the First Int. Workshop on Mobile Cloud Computing

& Networking, MobileCloud, pages 3–10, New York, USA. ACM.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall.

Eom, H., St Juste, P., Figueiredo, R., Tickoo, O., Illikkal, R., and Iyer, R. (2012). Snarf: a
social networking-inspired accelerator remoting framework. In Proc. of the first edition

of the MCC workshop on Mobile cloud computing, pages 29–34. ACM.

Flores, H. and Srirama, S. (2013). Mobile code offloading: Should it be a local decision
or global inference? In Proceeding of the 11th Annual Int. Conference on Mobile

Systems, Applications, and Services, MobiSys ’13, pages 539–540, New York, NY,
USA. ACM.

Gabner, R., Schwefel, H.-P., Hummel, K., and Haring, G. (2011). Optimal model-based
policies for component migration of mobile cloud services. In Network Computing and

Applications (NCA), 2011 10th IEEE International Symposium on, pages 195–202.

German, R. (2000). Performance Analysis of Communication Systems with Non-

Markovian Stochastic Petri Nets. John Wiley & Sons, Inc., New York, NY, USA.

German, R., Kelling, C., Zimmermann, A., and Hommel, G. (1995). Timenet: a toolkit
for evaluating non-markovian stochastic petri nets. Performance Evaluation, 24(1),
69–87.

Gomes, C. N. (2012). Estudo do Paradigma Computação em Nuvem. Ph.D. thesis,
INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA.

González-Rodríguez, G., Colubi, A., and Gil, M. A. (2012). Fuzzy data treated as
functional data: A one-way anova test approach. Comput. Stat. Data Anal., 56(4),
943–955.

Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M., and Chen, X. (2012). Comet:
Code offload by migrating execution transparently. In Proceedings of the 10th USENIX

Conference on Operating Systems Design and Implementation, OSDI’12, pages 93–
106, Berkeley, CA, USA. USENIX Association.

Guimarães, A. P., Maciel, P. R., and Matias Jr, R. (2013). An analytical modeling frame-
work to evaluate converged networks through business-oriented metrics. Reliability

Engineering & System Safety.

96

BIBLIOGRAPHY

Haverkort, B. R. (2002). Lectures on formal methods and performance analysis, chap-
ter Markovian models for performance and dependability evaluation, pages 38–83.
Springer-Verlag New York, Inc., New York, NY, USA.

Herzog, U. (2001). Formal Methods for Performance Evaluation, pages 1–37. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Hong, J. I. and Landay, J. A. (2001). An infrastructure approach to context-aware
computing. Human-Computer Interaction, 16(2), 287–303.

Huang, D., Zhang, X., Kang, M., and Luo, J. (2010). Mobicloud: Building secure cloud
framework for mobile computing and communication. In Service Oriented System

Engineering (SOSE), 2010 Fifth IEEE International Symposium on, pages 27–34.

Huerta-Canepa, G. and Lee, D. (2010). A virtual cloud computing provider for mobile
devices. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &

Services: Social Networks and Beyond, MCS ’10, pages 6:1–6:5, New York, NY, USA.
ACM.

Jain, A., Klare, B., and Park, U. (2011). Face recognition: Some challenges in forensics.
In Automatic Face Gesture Recognition and Workshops (FG 2011), 2011 IEEE Int.

Conference on, pages 726–733.

Jain, R. (2008). The Art Of Computer Systems Performance Analysis: Techniques for

Experimental Measurement, Simulation and Modeling. Wiley India Pvt. Ltd.

JavaCV (2015). Javacv. https://github.com/bytedeco/javacv. Accessed:
2015-07-28.

Junior, M. N. O., Neto, S., Maciel, P., Lima, R., Ribeiro, A., Barreto, R., Tavares, E.,
and Braga, F. (2006). Analyzing Software Performance and Energy Consumption of

Embedded Systems by Probabilistic Modeling: An Approach Based on Coloured Petri

Nets, pages 261–281. Springer Berlin Heidelberg, Berlin, Heidelberg.

Kemp, R., Palmer, N., Kielmann, T., and Bal, H. (2012). Cuckoo: A computation
offloading framework for smartphones. In M. Gris and G. Yang, editors, Mobile

Computing, Applications, and Services, volume 76 of Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications Engineering, pages
59–79. Springer Berlin Heidelberg.

97

https://github.com/bytedeco/javacv

BIBLIOGRAPHY

Khan, A., Othman, M., Madani, S., and Khan, S. (2014). A survey of mobile cloud
computing application models. Communications Surveys Tutorials, IEEE, 16(1),
393–413.

Khan, A. N., Mat Kiah, M. L., Madani, S. a., Khan, A. U. R., and Ali, M. (2013).
Enhanced dynamic credential generation scheme for protection of user identity in
mobile-cloud computing. The Journal of Supercomputing, 66(3), 1687..1706.

Khan, u. R. A., Othman, M., Khan, A. N., Abid, S. A., and Madani, S. A. (2015).
Mobibyte: An application development model for mobile cloud computing. Journal of

Grid Computing, 13(4), 605–628.

Kleinrock, L. (1975). Queueing Systems, volume 1. Wiley, New York.

Kocjan, P. and Saeed, K. (2012). Face recognition in unconstrained environment. In
K. Saeed and T. Nagashima, editors, Biometrics and Kansei Engineering, pages 21–42.
Springer New York.

Kosta, S. and Aucinas, e. a. (2012). Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading. In INFOCOM, 2012 Proc. IEEE,
pages 945–953.

Kovachev, D., Cao, Y., and Klamma, R. (2011). Mobile cloud computing: A comparison
of application models. CoRR, abs/1107.4940.

Kristensen, M. (2010). Scavenger: Transparent development of efficient cyber foraging
applications. In Pervasive Computing and Communications (PerCom), 2010 IEEE

International Conference on, pages 217–226.

Kumar, K., Liu, J., Lu, Y.-H., and Bhargava, B. (2013). A survey of computation offl.g
for mobile systems. Mob. Netw. Appl., 18(1), 129..140.

Kuo, W. and Zuo, M. J. (2003). Optimal reliability modeling: principles and applications.
John Wiley & Sons.

Li, D., Hao, S., Halfond, W. G. J., and Govindan, R. (2013). Calculating source line level
energy information for android applications. In Proceedings of the 2013 International

Symposium on Software Testing and Analysis, ISSTA 2013, pages 78–89, New York,
NY, USA. ACM.

98

BIBLIOGRAPHY

Lin, X., Wang, Y., Xie, Q., and Pedram, M. (2015). Task scheduling with dynamic
voltage and frequency scaling for energy minimization in the mobile cloud computing
environment. IEEE Transactions on Services Computing, 8(2), 175–186.

Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., and Qureshi, A. (2015). Application
partitioning algorithms in mobile cloud computing: Taxonomy, review and future
directions. Journal of Network and Computer Applications, 48, 99 – 117.

Liu, Q., Jian, X., Hu, J., Zhao, H., and Zhang, S. (2009). An optimized solution for
mobile environment using mobile cloud computing. In Wireless Communications,

Networking and Mobile Computing, 2009. WiCom ’09. 5th International Conference

on, pages 1–5.

Luo, R. and Liu, H.-H. (2010). Design and implementation of efficient hardware solu-
tion based sub-window architecture of haar classifiers for real-time detection of face
biometrics. In Mechatronics and Automation (ICMA), 2010 Int. Conference on, pages
1563–1568.

Ma, X., Huang, P., Jin, X., Wang, P., Park, S., Shen, D., Zhou, Y., Saul, L. K., and Voelker,
G. M. (2013). edoctor: Automatically diagnosing abnormal battery drain issues on
smartphones. In Proceedings of the 10th USENIX Conference on Networked Systems

Design and Implementation, nsdi’13, pages 57–70, Berkeley, CA, USA. USENIX
Association.

Maciel, Paulo R. M.; Trivedi, K. S. M. R. J. and Kim, D. S. (2011). Performance and
dependability in service computing: Concepts, techniques and research directions.
1(1), 53–97.

Maciel, P., Trivedi, K. S., Matias, R., and Kim, D. S. (2011). Performance and Depend-

ability in Service Computing: Concepts, Techniques and Research Directions, chapter
Dependability Modeling. Premier Reference Source. Igi Global.

Malhotra, M. and Reibman, A. (1993). Selecting and implementing phase approximations
for semi-markov models. Stochastic Models, 9(4), 473–506.

Marsan, M. A. (1990). Advances in petri nets 1989. chapter Stochastic Petri Nets: An
Elementary Introduction, pages 1–29. Springer-Verlag New York, Inc., New York, NY,
USA.

99

BIBLIOGRAPHY

Marsan, M. A., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G. (1994). Mod-

elling with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., New York, NY,
USA, 1st edition.

Matos, R., Araujo, J., Oliveira, D., Maciel, P., and Trivedi, K. (2015). Sensitivity analysis
of a hierarchical model of mobile cloud computing. Simulation Modelling Practice

and Theory, 50, 151–164.

Mell, P. and Grance, T. (2011). The nist definition of cloud computing.

Mendonca, J., Lima, R., Andrade, E., and Callou, G. (2015). Assessing performance and
energy consumption in mobile applications. In Systems, Man, and Cybernetics (SMC),

2015 IEEE International Conference on, pages 74–79.

Miller, M. (2008). Cloud computing: Web-based applications that change the way you

work and collaborate online. Que publishing.

Molloy, M. K. (1982). Performance analysis using stochastic petri nets. IEEE Trans.

Comput., 31, 913–917.

Montgomery, D. C. and Montgomery, D. C. (1984). Design and analysis of experiments,
volume 7. Wiley New York.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4), 541–580.

N. Nikolaidis, P. N. (2002). Instruction-level Power Measurement Methodology. Elec-
tronics Lab, Physics Dept, Aristotle University of Thessaloniki Greece.

Nagle, J. B. (1988). Innovations in internetworking. chapter On Packet Switches with
Infinite Storage, pages 136–139. Artech House, Inc., Norwood, MA, USA.

Nelson, R. (2013). Probability, stochastic processes, and queueing theory: the mathemat-

ics of computer performance modeling. Springer Science & Business Media.

Nimmagadda, Y., Kumar, K., Lu, Y.-H., and Lee, C. (2010). Real-time moving object
recognition and tracking using computation offloading. In Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 2449–2455.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., and
Zagorodnov, D. (2009). The eucalyptus open-source cloud-computing system. In
CCGRID ’09, pages 124–131.

100

BIBLIOGRAPHY

Oliveira, D., Araujo, J., Matos, R., and Maciel, P. (2013). Availability and energy
consumption analysis of mobile cloud environments. In 2013 IEEE International

Conference on Systems, Man, and Cybernetics, pages 4086–4091. IEEE.

Olteanu, A.-C. and Tapus, N. (2013). Offloading for mobile devices: A survey.

OpenCV (2015). Opencv. http://opencv.org/. Accessed: 2015-07-28.

Ou, S., Yang, K., Liotta, A., and Hu, L. (2007). Performance analysis of offloading
systems in mobile wireless environments. In Communications, 2007. ICC’07. IEEE

International Conference on, pages 1821–1826. IEEE.

Pandey, S. and Nepal, S. (2012). Modeling availability in clouds for mobile computing.
In 2012 IEEE First International Conference on Mobile Services, pages 80–87.

Park, J., Yu, H., Chung, K., and Lee, E. (2011). Markov chain based monitoring service
for fault tolerance in mobile cloud computing. In Proceedings of the 2011 IEEE

Workshops of International Conference on Advanced Information Networking and

Applications, WAINA ’11, pages 520–525, Washington, DC, USA. IEEE Computer
Society.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic mapping studies
in software engineering. In Proc. of the 12th Conf. on Evaluation and Assessment in

Software Engineering, EASE’08, page 68..77, Swinton, UK, UK. British Computer
Society.

Pitkänen, M., Kärkkäinen, T., Ott, J., Conti, M., Passarella, A., Giordano, S., Puccinelli,
D., Legendre, F., Trifunovic, S., Hummel, K. A., May, M., Hegde, N., and Spyropoulos,
T. (2012). SCAMPI: Service platform for social aware mobile and pervasive comput-
ing. In MCC 2012, ACM Mobile Cloud Computing Workshop, collocated with ACM

Sigcomm, August 17, 2012, Helsinki, Finland / Also published in SIGCOMM Computer

Communication Review , Volume 42 Issue 4, September 2012, Helsinki, FINLAND.

PowerTutor (2014). A power monitor for android-based mobile platforms. Available on
http://ziyang.eecs.umich.edu/projects/powertutor/.

Pungila, C. and Negru, V. (2012). A highly-efficient memory-compression approach for
gpu-accelerated virus signature matching. In Information Security, Lecture Notes in
Computer Science, pages 354–369.

101

http://opencv.org/
http://ziyang.eecs.umich.edu/projects/powertutor/

BIBLIOGRAPHY

Rahimi, M. R., Venkatasubramanian, N., Mehrotra, S., and Vasilakos, A. V. (2012).
Mapcloud: Mobile applications on an elastic and scalable 2-tier cloud architecture.
In Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and

Cloud Computing, UCC ’12, pages 83–90, Washington, DC, USA. IEEE Computer
Society.

Reduction, C. (2015). Colour reduction. http://tinyurl.com/pwq8j44. Ac-
cessed: 2015-07-28.

Saranya, S. M. and Vijayalakshmi, M. (2011). Interactive mobile live video learning
system in cloud environment. In Recent Trends in Information Technology (ICRTIT),

2011 International Conference on, pages 673–677. IEEE.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The case for vm-based
cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4), 14–23.

Se, S., Barfoot, T., and Jasiobedzki, P. (2005). Visual motion estimation and terrain
modeling for planetary rovers. In Proceedings of the International Symposium on

Artificial Intelligence for Robotics and Automation in Space.

Shi, S., Hsu, C.-H., Nahrstedt, K., and Campbell, R. (2011). Using graphics rendering
contexts to enhance the real-time video coding for mobile cloud gaming. In Proceedings

of the 19th ACM International Conference on Multimedia, MM ’11, pages 103–112,
New York, NY, USA. ACM.

Shih, C.-S., Chen, Y.-K., Chen, J., and Chang, N. (2013). Virtual cloud core: Opencl
workload sharing framework for connected devices. In Service Oriented System

Engineering (SOSE), 2013 IEEE 7th Int. Symposium on, pages 486–493.

Silva, B., Callou, G., Tavares, E., Maciel, P., Figueiredo, J., Sousa, E., Araujo, C.,
Magnani, F., and Neves, F. (2013). Astro: An integrated environment for dependability
and sustainability evaluation. Sustainable Computing: Informatics and Systems, 3(1),
1 – 17.

Silva, B., Tavares, E., Maciel, P., Nogueira, B., Oliveira, J., Damaso, A., and Rosa,
N. (2014a). Amalghma -an environment for measuring execution time and energy
consumption in embedded systems. In 2014 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), pages 3364–3369.

102

http://tinyurl.com/pwq8j44

BIBLIOGRAPHY

Silva, B., Tavares, E., Maciel, P., Nogueira, B., Oliveira, J., Damaso, A., and Rosa,
N. (2014b). Amalghma -an environment for measuring execution time and energy
consumption in embedded systems. In SMC Conference, pages 3364–3369.

Silva, F. A., Maciel, P., Quesado, E., Germano Zaicaner, M. D., and Silva, B. (2015a).
Benchmark applications used in mobile cloud computing: A systematic mapping study.
The Twentieth IEEE Symposium on Computers and Communications (ISCC).

Silva, F. A., Rodrigues, M., Maciel, P., Kosta, S., and Mei, A. (2015b). Planning mobile
cloud infrastructures using stochastic petri nets and graphic processing units. In 2015

IEEE 7th International Conference on Cloud Computing Technology and Science

(CloudCom), pages 471–474.

Silva, F. A., Maciel, P., Alves, G., and Matos, R. (2015c). A scheduler for mobile cloud
based on weighted metrics and dynamic context evaluation. In Applied Computing

(SAC 2015), Proc. of The 30th ACM/SIGAPP Symposium On.

Silva, F. A., Maciel, P., and Matos, R. (2015d). Smartrank: A smart scheduling tool for
mobile cloud computing. J. Supercomput., 71(8), 2985–3008.

Silva, F. A., Zaicaner, G., Quesado, E., Dornelas, M., Silva, B., and Maciel, P. (2016a).
Benchmark applications used in mobile cloud computing research: a systematic map-
ping study. The Journal of Supercomputing, 72(4), 1431–1452.

Silva, F. A., Maciel, P., Santana, E., Matos, R., and Dantas, J. (2016b). Mobile cloud face
recognition based on smart cloud ranking. Computing, pages 1–25.

Silvaa, B., Maciela, P. R. M., Zimmermannb, A., and Brilhantea, J. (2014). Survivability
evaluation of disaster tolerant cloud computing systems.

Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., and Heinzelman, W. (2012). Cloud-
vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architec-
ture. In Computers and Communications (ISCC), 2012 IEEE Symposium on, pages
000059–000066.

Stewart, W. J. (1994). Introduction to the Numerical Solution of Markov Chains. Princeton
University Press.

Subramanian, K. (2011). Hybrid clouds. Access from http://emea. trendmicro.

com/imperia/md/content/uk/cloud-security/wp01_hybridcloud-krish_110624us. pdf .

103

BIBLIOGRAPHY

Tavares, E., Maciel, P., Silva, B., Oliveira, M., and Rodrigues, R. (2007). Modelling
and scheduling hard real-time biomedical systems with timing and energy constraints.
Electronics Letters, 43(19), 1015–1017.

Tavares, E., Maciel, P., Dallegrave, P., Silva, B., Falcão, T., Nogueira, B., Callou, G., and
Cunha, P. (2010). Model-driven software synthesis for hard real-time applications with
energy constraints. Des. Autom. Embedded Syst., 14(4), 327–366.

Terry, D. (2011). Acm tech pack on cloud computing. ACM Tech Pack Committee on

Cloud Computing.

Triola., M. (2004). Elementary Statistics. Addison Wesley, 9 edition.

Trivedi, K. S. (2001). Probability and Statistics with Reliability, Queuing, and Computer

Science Applications. John Wiley and Sons, New York.

Trivedi, K. S. (2002). Probability and Statistics with Reliability, Queuing and Computer

Science Applications. John Wiley and Sons Ltd., Chichester, UK, 2nd edition edition.

Turk, M. and Pentland, A. (1991). Face recognition using eigenfaces. In Computer

Vision and Pattern Recognition Proc. CVPR, IEEE Computer Society Conf. on, pages
586–591.

Viola, P. and Jones, M. J. (2004). Robust real-time face detection. J. Comput. Vision,
57(2), 137–154.

WattsUp (2016). Watts up: Monitor real-time electricity usage. Available on http:

//www.inds.co.uk/product/watts-up-pro/.

Xing, T., Liang, H., Huang, D., and Cai, L. (2012). Geographic-based service request
scheduling model for mobile cloud computing. In Trust, Security and Privacy in

Computing and Communications (TrustCom), 2012 IEEE 11th Int. Conference on,
pages 1446–1453.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 1(1), 7–18.

104

http://www.inds.co.uk/product/watts-up-pro/
http://www.inds.co.uk/product/watts-up-pro/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Context of Mobile Cloud Offloading
	Offloading Concerns
	Offloading Perspectives

	Research Scope and Motivation
	Problem Statement
	Objectives
	Publications
	Organization of the Document

	Background
	Cloud Computing
	Mobile Cloud Computing
	Mobile Cloud Offloading
	Offloading Benefits
	Applications Partitioning

	Performance Evaluation of Systems
	Measurement
	Continuous Time Markov Chains
	Stochastic Petri Nets
	Phase-type approximation

	Benchmark Applications used in MCC

	Related Work
	Evaluating and Planning MCC Applications
	MCC Offloading

	Evaluating MCC Applications
	Proposal Overview
	Evaluating MCC Applications with SPNs
	Throughput
	Execution Time (MTTE and CDF)
	Energy

	MCC-Adviser: An Evaluation Assistant
	Collecting Input Parameters
	Solving SPNs and Plotting Results
	Web Application Prototype

	Experiment for Estimating the ``EnergyPerByte"
	Case Study One - Time Metric - Reduce Color Application
	Model Presentation
	Model Validation
	Model Solution

	Case Study Two - Time Metric - Face Recognition Application
	Case Study Three - Time Metric - GPU Study
	Case Study Four - Energy Metric - Reduce Color Application
	Model Presentation
	Model Validation
	Model Solution

	Improving MCC Offloading Process
	Proposal Overview
	An Smart MCC Offloading Process
	The SmartRank Prototype in Java
	Case Studies
	Case Study One: Local Execution
	Memory Profiling
	Energy Profiling
	CPU Profiling

	Case Study Two: Round Robin Strategy
	Case Study Three: Smart WRR Strategy

	Conclusions and Future Work
	Future Work

	Bibliography

