
AVAILABILITY AND CAPACITY MODELING FOR VIRTUAL NETWORK
FUNCTIONS BASED ON REDUNDANCY AND REJUVENATION SUPPORTED

THROUGH LIVE MIGRATION

By

ERICO AUGUSTO CAVALCANTI GUEDES

Ph.D. Thesis

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE/2019

www.cin.ufpe.br/~posgraduacao

Erico Augusto Cavalcanti Guedes

AVAILABILITY AND CAPACITY MODELING FOR VIRTUAL
NETWORK FUNCTIONS BASED ON REDUNDANCY AND

REJUVENATION SUPPORTED THROUGH LIVE MIGRATION

A Ph.D. Thesis presented to the Center for Informatics of

Federal University of Pernambuco in partial fulfillment of

the requirements for the degree of Philosophy Doctor in

Computer Science.

Advisor: Paulo Romero Martins Maciel

RECIFE
2019

Tese de doutorado apresentada por Erico Augusto Cavalcanti Guedes ao programa de Pós-
Graduação em Ciência da Computação do Centro de Informática da Universidade Federal de
Pernambuco, sob o título Availability and Capacity Modeling for Virtual Network Functions
based on Redundancy and Rejuvenation Supported through Live Migration, orientada
pelo Prof. Paulo Romero Martins Maciel e aprovada pela banca examinadora formada pelos
professores:

———————————————————————–
Prof. Dr. Antonio Alfredo Ferreira Loureiro

Departamento de Ciência da Computação/UFMG

———————————————————————–
Prof. Dr. Edmundo Roberto Mauro Madeira

Instituto de Computação/Unicamp

———————————————————————–
Prof. Dr. Djamel Fawzi Hadj Sadok

Centro de Informática/UFPE

———————————————————————–
Prof. Dr. Nelson Souto Rosa
Centro de Informática/UFPE

———————————————————————–
Prof. Dr. Paulo Roberto Freire Cunha

Centro de Informática/UFPE

RECIFE
2019

If you think high availability is expensive, try downtime.

—TERRY CRITCHLEY

Resumo

O sucesso da virtualização de servidores e da computação em nuvem levou a um subsequente
requisito de virtualização de rede, porque a flexibilidade alcançada pelos recursos de hardware
virtualizados poderia ser prejudicada por interconexões de rede estáticas. A virtualização de
rede refere-se à capacidade de executar instâncias virtuais de roteadores, switches e links so-
bre um substrato de rede físico. Assim, várias redes virtualizadas podem coexistir em uma
infraestrutura de rede comum. Tecnologias como Redes Definidas por Software, Virtualização
de Funções de Rede e Encadeamento de Funções de Serviços foram lançadas para permitir a
substituição de dispositivos de hardware de rede tradicionais por cadeias lógicas de Funções
de Redes Virtuais (VNFs - Virtual Network Functions). Como uma conseqüência, as redes
virtualizadas representam obstáculos adicionais ao fornecimento de serviços de alta disponibili-
dade, porque resultam em mais camadas de software: o número crescente de componentes de
software necessários para executar sistemas virtualizados também aumenta o número de pos-
síveis falhas. Esta tese projetou e avaliou um conjunto de modelos estocásticos para melhorar o
fornecimento de funções de rede virtual, considerando métricas de disponibilidade e capacidade.
Os modelos são capazes de representar mecanismos de alta disponibilidade, como redundância
e rejuvenescimento de software, permitindo estimar o comportamento das métricas estudadas
diante desses mecanismos. A metodologia adotada abrange a montagem e configuração de uma
infraestrutura de alta disponibilidade de computação em nuvem. A nuvem implementada suporta
o fornecimento de VNFs e cadeias de serviços virtuais redundantes, permitindo a medição
de valores dos parâmetros a serem injetados nos modelos. Para mostrar a aplicabilidade das
soluções propostas, também é apresentado um conjunto de estudos de caso. Os resultados
demonstram a viabilidade em fornecer cadeias de VNFs em uma infraestrutura de nuvem para os
cenários estudados, e podem ser úteis para provedores e operadoras de telecomunicações nas
suas infraestruturas heterogêneas.
Palavras-chave: Funções de Rede Virtuais, Virtualização de Funções de Rede, Cadeias de
Funções de Serviços, Alta Disponibilidade, Modelagem Estocástica, Agrupamento, Envelheci-
mento e Rejuvenescimento de Software

Abstract

The success of server virtualization and cloud computing led to a subsequent network virtual-
ization requirement, because the flexibility achieved by virtualized hardware resources could
be impaired by static network interconnections. Network virtualization refers to the ability to
execute virtual instances of routers, switches, and links on top of a physical network substrate. So,
multiple virtualized networks can co-exist in a shared network infrastructure. Technologies such
as Software-Defined Networks, Network Function Virtualization and Service Function Chaining
have been launched to enable the replacement of traditional network hardware appliances by
softwarized Virtualized Network Function (VNF)s chains. As a consequence, virtualized net-
works represent additional obstacles to the provision of high availability services, because it
results in more layers of software: the increasing number of software components required to
run virtualized systems also increases the number of possible failures. This thesis designed and
evaluated a set of stochastic models to improve virtual network functions provision considering
metrics of availability and capacity. The models can represent high availability mechanisms,
such as redundancy and software rejuvenation, allowing to estimate the behavior of the studied
metrics facing these mechanisms. The adopted methodology encompasses the assembling and
configuration of high available cloud computing infrastructure. The implemented cloud supports
the provision of redundant virtual network functions and service function chains, enabling the
measurement of parameter values that were injected in the designed models. In order to show
the applicability of proposed solutions, a set of case studies are also presented. The results
demonstrate the feasibility in providing high available Virtual Network Functions and Service
Function Chains in a cloud infrastructure for the studied scenarios. Such results can be useful for
telecommunication providers and operators and their heterogeneous infrastructures.

Keywords: Virtual Network Functions, Network Function Virtualization, Service Function
Chaining, High Availability, Stochastic Modeling, Clustering, Software Aging and Rejuvenation

List of Figures

2.1 High-level NFV Framework . 25
2.2 VNF Forward Graph representing Chains of VNFs. Source: ETSI [36] 26
2.3 Cloud Computing Features . 28
2.4 Openstack Architecture . 30
2.5 Openstack Deployment Modes . 33
2.6 Openstack All-In-One Deployment Mode . 34
2.7 SFC Graph . 35
2.8 Load Balancing Cluster . 36
2.9 High Available Load Balanced Cluster . 36
2.10 Pacemaker and Corosync . 37
2.11 Dependability Taxonomy . 39
2.12 Reliability Block Diagram . 42
2.13 CTMC: availability model . 43
2.14 Example SPN . 46
2.15 System Layers considered in the software rejuvenation classification 48

4.1 Overview of Adopted Support Methodology 58
4.2 Aging and Rejuvenation processes . 61

5.1 Testbed for UGC video cache cluster . 65
5.3 Bonding between each testbed server and the switches 66
5.2 Openstack HA Cloud Architecture . 67
5.4 Pacemaker: HA Controller Cluster . 68
5.5 Pacemaker: HA Neutron Cluster . 68
5.6 Pacemaker: HA Neutron Compute . 69
5.7 Methodology to estimate TTFs . 70
5.8 Proxmox Testbed: additional machines to execute TTF experiments 71
5.9 Time to Failure (TTF) of the 3 evaluated cache capacities 72
5.10 UGC video flow through SFC composed of a load balancer, a firewall, and a

cache server . 72
5.11 Detailed openstack SFC flow . 73
5.12 TISVEP messages for live migration experiments 76

6.1 RBD for VNF Cache Cluster . 77
6.2 RBD model for VNF cache sub-system . 78
6.3 Hierarchical Composition: top-level CTCM of system’s availability model;

bottom level RBD of cache node sub-system model 80

6.4 Hierarchical Composition: no load balancer SPOF 81
6.5 Architecture for nodes providing VNFs: the software rejuvenation is imple-

mented by VM live migration and conditions 82
6.6 Low-level RBDs models: the MTTF of each low-level sub-system is computed

and injected in the top-level SPN models . 83
6.7 Low-level RBD for Service Function Chains 84
6.8 SPN sub-model for node . 84
6.9 SPN sub-model for nodes with rejuvenation 86
6.10 SPN sub-models for service chains . 87
6.11 SPN sub-model for VNF chain live migration 88
6.12 SPN for chain interconnection without rejuvenation 89
6.13 SPN for chain interconnection adopted in rejuvenation model: the chain inter-

connection without SAR . 90
6.14 SPN for chain interconnection with rejuvenation 92

7.1 RBD for Non-Redundant Cluster . 94
7.2 RBD for Redundant VNF Cache Cluster . 96
7.3 Percentage of annual downtime due to UA and COUA 98
7.4 Load balancer failure rate is the most influential parameter for COA, but with

similar magnitude order . 102
7.5 Load balancer recovery rate is the most influential parameter for COA, but one

order of magnitude higher than other parameters 103
7.6 3N redundant baseline model . 104
7.7 RBD for joint Controller and Neutron deployment modes Node 104
7.8 RBD for Compute deployment mode node . 104
7.9 RBD for Compute deployment mode node . 105
7.10 Top-level model of reference work . 105
7.11 VIM of reference work . 106
7.12 VNF of reference work . 107
7.13 VIM of reference work . 108
7.14 VNF without elasticity . 109
7.15 Customized VIM of reference work . 111
7.16 Customized VNF without elasticity . 112
7.17 3N redundant baseline model: the insertion of input parameters in chain and

compute node were represented only in the first instances of there sub-models to
do not overload the figure . 113

7.18 Service Chain’s RBD . 114
7.19 3N redundant baseline model . 115
7.20 3N redundant model with rejuvenation based on VM live migration 117

7.21 Daily MTBPM and corresponding availability 121
7.22 Very high availability for MTBPM=23hs . 121
7.23 High availability with minimum MTBPM=8hs 122
7.24 SPNs for baseline All-In-One scenario . 123
7.25 SPNs for baseline scenario 2 . 125
7.26 SPNs for baseline scenario 3 . 126
7.27 SPN Model with Rejuvenation technique . 127
7.28 SSA for All-In-One configuration (scenarios 3 and 6) 132
7.29 COA for All-In-One Configuration (scenarios 3 and 6) 132
7.30 SSA for Controller/Neutron Configuration (scenarios 2 and 5) 133
7.31 COA for Controller/Neutron Configuration (scenarios 2 and 5) 133
7.32 SSA for Controller/Neutron/Compute Configuration (Scenarios 3 and 6) 134
7.33 COA for Controller/Neutron/Compute Configuration (Scenarios 3 and 6) 134

List of Tables

2.1 Server Virtualization Platforms . 22
2.2 Service availability and downtime ratings . 41

3.1 Comparison with most relevant related works 53
3.2 Comparison with most relevant SAR works 56

5.1 Parameters for UGC video characterization 65
5.2 rgamma results: file sizes and frequencies . 70
5.3 Port pairs for SFC live migration experiments 74
5.4 Mean Confidence Intervals . 76

6.1 Dependability parameters for VNF Cache Cluster 78
6.2 Dependability parameters for low-level . 83
6.3 Dependability parameters for Node SPN . 85
6.4 Transitions attributes for Node SPN . 85
6.5 Dependability parameters for Node SPN with Rejuvenation 86
6.6 Transitions attributes for Node SPN with Rejuvenation 86
6.7 Dependability parameters for Service Chain SPN 87
6.8 Transitions attributes for Service Chain SPN 87
6.9 Dependability parameters for Service Chain SPN with Rejuvenation 88
6.10 Transitions attributes for Service Chain SPN with Rejuvenation 88
6.11 Dependability parameters for Chain Live Migration SPN 89
6.12 Transitions attributes for Chain Live Migration SPN 89
6.13 Dependability parameters for Chain Interconnection SPN 89
6.14 Transitions attributes for Chain Interconnection SPN 90
6.15 Dependability parameters for Chain Interconnection SPN with Rejuvenation -

First Scenario . 91
6.16 Transitions attributes for Chain Interconnection SPN with Rejuvenation - First

Scenario . 91
6.17 Dependability parameters for Chain Interconnection SPN with Rejuvenation -

Second Scenario . 91
6.18 Transitions attributes for Chain Interconnection SPN with Rejuvenation - Second

Scenario . 92

7.1 Scenarios of First Case Study . 93
7.2 Applied times in the RBD models . 94
7.3 MTTF and MTTR, in hours, for cache servers 94
7.4 Availability measures for Non-redundant VNF Cache Cluster 94

7.5 Ranking of Sensitivities for SSA of Non-Redundant VNF Cluster 95
7.6 Availability measures of Redundant VNF Cache Cluster 95
7.7 Ranking of Sensitivities for SSA in Redundant VNF Cluster 96
7.8 Scenarios of Second Case Study . 97
7.9 Steady-State Availability and COA for CTCM 97
7.10 Ranking of Sensitivities for SSA and COA . 99
7.11 Ranking of Sensitivities for SSA and COA: no LB SPOF 101
7.12 Steady-State Availability, COA and COUA for CTCM without LB SPOF . . . 102
7.13 Guard expressions for the VIM of the reference work model 106
7.14 Input mean times for cloud components . 110
7.15 Steady-State Availability Comparison . 113
7.16 Input mean times for cloud components . 114
7.17 Results from low-level RBDs analysis . 115
7.18 Guard expressions and mean times for transitions in the 3N baseline model . . 116
7.19 Guard expressions in 3N rejuvenation model: migration sub-model 118
7.20 Guard expressions in 3N rejuvenation model: node sub-model 118
7.21 Guard expressions in 3N rejuvenation model: chain sub-model 119
7.22 Guard expressions and mean times in 3N rejuvenation model: chain interconnec-

tion sub-model . 119
7.23 Analyzed scenarios . 123
7.24 Guard expressions for the All-In-One baseline model 124
7.25 Mean times of timed transitions in scenario 2 124
7.26 Mean times of timed transitions in scenario 3 126
7.27 SSA and COA for 2N baseline scenarios . 127
7.28 Guard expressions for rejuvenation models . 128
7.29 SSA e COA equations for rejuvenation models 131

A.1 OpenStack Components Status . 150
A.2 OpenStack: Additional Required Softwares 151

List of Acronyms

AMQP Advanced Message Queuing Protocol . 32

API Application Programming Interface . 17

AWS Amazon Web Services . 16

CAPEX Capital Expenditure . 17

COA Capacity Oriented Availability . 47

COUA Capacity Oriented Unavailability . 47

CT Container . 65

CTMC Continuous Time Markov Chain . 43

DC Data Center . 52

DPI Deep Packet Inspection . 17

ETSI European Telecommunications Standards Institute . 17

GRE Generic Routing Encapsulation . 24

HA High Availability . 19

IaaS Infrastructure as a Service . 29

IoT Internet of Things . 25

IETF Internet Engineering Task Force . 26

KVM Kernel-based Virtual Machine . 59

NAT Network Address Translation . 31

NaaS Network as a Service . 31

NIST National Institute of Standards and Technology . 16

NFV Network Function Virtualization . 17

NIC Network Interface Card . 23

NTP Network Time Protocol . 32

OS Operating System . 16

OPEX Operational Expenditure . 17

OVS Open vSwitch . 24

PaaS Platform as a Service . 29

RA Resource Agent . 37

RBD Reliability Block Diagram . 42

S3 Simple Storage Service . 18

SaaS Software as a Service . 29

SDN Software-Defined Networking . 16

SFC Service Function Chaining . 17

SLA Service Level Agreement . 18

SPOF Single Point Of Failure . 19

SPN Stochastic Petri Net . 42

UGC User Generated Content . 64

vNIC Virtual Network Interface Card . 24

VCS Virtual Computer System . 16

VIM Virtualized Infrastructure Manager . 51

VIP Virtual IP . 67

VM Virtual Machine . 16

VMM Virtual Machine Monitor .16

VNF Virtualized Network Function . 17

VLAN Virtual Local Area Network . 23

VXLAN Virtual eXtensible Local Area Network . 24

WSGI Web Server Gateway Interface . 31

Contents

1 Introduction 16
1.1 Motivation and Justification . 18
1.2 Objectives . 19
1.3 Thesis Organization . 20

2 Background 21
2.1 Server Virtualization . 21

2.1.1 Proxmox VE . 23
2.2 Network Virtualization . 23

2.2.1 Network Function Virtualization . 25
2.2.2 Service Function Chaining . 27
2.2.3 Software-Defined Networking . 27

2.3 Cloud Computing . 28
2.3.1 Openstack . 29
2.3.2 The Openstack SFC API . 34

2.4 Clusters and High Availability . 35
2.4.1 Redundancy Strategies . 37

2.5 Dependability . 38
2.5.1 Reliability . 39
2.5.2 Availability . 39
2.5.3 Maintainability . 41

2.6 Dependability Modeling . 42
2.6.1 Reliability Block Diagrams . 42
2.6.2 Continuous Time Markov Chains . 43
2.6.3 Stochastic Petri Nets . 44
2.6.4 Capacity Oriented Availability . 47
2.6.5 Hierarchical Modeling . 47

2.7 Software Aging and Rejuvenation . 47
2.8 Sensitivity Analysis . 49

3 Related Works 50
3.1 Hierarchical Modeling of Virtual Environments 50
3.2 Software Aging and Rejuvenation of Server Virtualized Systems 53

4 A Methodology for Provisioning of High Available VNF Chains 57
4.1 Methodology Overview . 57
4.2 Methodology Activities . 59

4.2.1 System Understanding . 59
4.2.2 Environment Conception . 59
4.2.3 Definition of Parameters and Metrics 59
4.2.4 Models Design . 61
4.2.5 State Input Parameters Sources . 62
4.2.6 Evaluation . 62
4.2.7 Yield Recommendations . 62

5 Measurement Experiments 64
5.1 Workload for User Generated Content . 64
5.2 Proxmox Server Virtualization Testbed . 65
5.3 HA Openstack Cloud Testbed . 66
5.4 Time To Failure Measurements in Proxmox Server Virtualization Testbed . . . 69
5.5 Service Function Chain Migration Experiments in HA Cloud Testbed 71

5.5.1 Experiments execution . 75

6 Availability Models 77
6.1 Introduction . 77
6.2 Models for VNFs in Proxmox server virtualization infrastructure 77

6.2.1 Model for VNF Cache Cluster . 77
6.2.2 Model for Cache VNF and Load Balancer 78
6.2.3 Model for Cache VNF and Load Balancer without SPOFs 81

6.3 Models for SFCs in openstack cloud infrastructure 82
6.4 Low-level RBDs for openstack deployment modes 82
6.5 Low-level RBDs for service function chains 83
6.6 Top-level SPN sub-models for openstack nodes 84

6.6.1 SPN sub-model for openstack nodes without rejuvenation 84
6.6.2 SPN sub-model for openstack nodes with rejuvenation 85

6.7 Top-level SPN sub-models for service chain 86
6.8 Top-level SPN sub-model for service chain live migration 88
6.9 Top-level SPN sub-models for chains interconnection 89

7 Case Studies 93
7.1 Introduction . 93
7.2 VNF Cache Clusters . 93

7.2.1 Non-redundant VNF Cache Cluster 94
7.2.2 Redundant VNF Cache Cluster . 95

7.3 Redundant VNF Caches and Load Balancers 97
7.3.1 Redundant VNF Cache and Load Balancer 97
7.3.2 No Load Balancer SPOF . 100

7.4 Comparison with Reference Work . 103
7.4.1 3N Redundant Baseline Model . 103
7.4.2 Reference Work for Comparison . 105

7.5 Rejuvenation of Service Function Chains . 114
7.6 3N Redundant Service Function Chain . 114

7.6.1 Baseline model . 115
7.6.2 Rejuvenation model . 116
7.6.3 Experimental Results . 120

7.7 2N Redundant Service Function Chain . 122
7.7.1 Baseline models . 123
7.7.2 Rejuvenation models . 127
7.7.3 Experimental results . 131

8 Conclusion 136
8.1 Contributions . 137
8.2 Limitations . 137
8.3 Future Work . 138

References 139

Appendix 149

A HA OpenStack Implementation 150

B Specification of TISVEP Extension Messages 152

161616

1
Introduction

Virtualization is a technique to abstract the resources of computer hardware, decoupling
the application and operating system from the hardware, and dividing resources into multiple
execution environments. Previously to virtualization, it was not uncommon to accommodate
only one application per Operating System (OS), i.e., per server. This approach was known as
server proliferation. It increases the availability of services, mainly in scenarios where reboot
the OS was overused as main troubleshooting action. However, server proliferation promotes
machine’s resources wastage.

Goldberg [50], in 1976, stated the concept of Virtual Computer System (VCS), also
called as Virtual Machine (VM). VMs were conceived to be very efficient simulated copies of the
bare metal host machine. One new layer of software, called Virtual Machine Monitor (VMM),
was adopted to mediate the communication between the VMs and the hardware resources.

The main motivation for the adoption of virtualization was to increase the efficiency
of hardware resources, with a direct effect on the contraction of infrastructure costs, dropping
power requirements at a green data center effort.

With the adoption of VMs, server virtualization enables the consolidation of services.
Previously isolated into individual machines, the services started to be provided in VMs that
share virtualized server resources.

In 2006, Amazon Web Services (AWS) began offering IT infrastructure services to
businesses in the form of web services, which is now known as cloud computing [8]. In 2011, the
five essential characteristics that define cloud computing were standardized by National Institute
of Standards and Technology (NIST) [82], namely: on-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured service. Such a set of features results in
an increased rate of changes in networks.

The success of virtualization and cloud computing led to subsequent network virtualiza-
tion requirement, because static network interconnections could impair the flexibility achieved
by virtualized hardware resources. Cloud providers need a way to allow multiple tenants to share
the same network infrastructure. It was needed to virtualize the network.

Similarly to decoupling between OS and bare-metal hardware occurred in server virtu-
alization, Software-Defined Networking (SDN) [65] implements the decoupling between the

17

control plane (which decides how to handle the traffic) from the data plane (which forwards
traffic according to decisions that the control plane makes) in network interconnection devices,
such as switches. Such a decoupling also enables the consolidation of control planes to a single
control program managing all data plane devices [41]. So, SDN relates to network virtualization
as an enabling technology.

The SDN control plane performs direct control over the state in the network’s data-plane
elements via a well-defined Application Programming Interface (API). From 2007 to around
2010, the OpenFlow [45] API development represented the first instance of widespread adoption
of an open interface, providing ways to make a practical control-data plane separation. The most
adopted implementation of OpenFlow is Open vSwitch [43], functioning as a virtual switch in
VM environments.

In 2012, an European Telecommunications Standards Institute (ETSI) white paper pro-
posed Network Function Virtualization (NFV) [38] an alternative to reduce Capital Expen-
diture (CAPEX) and Operational Expenditure (OPEX) through the virtualization of network
specialized (and expensive) hardware, known as appliances. These expensive appliances run a set
of services (such as firewalling, load balancing, and Deep Packet Inspection (DPI)) throughout
traffic aggregation points in the network, intending to apply traffic policies. They are added in an
over-provisioned fashion, wasting resources. Several other issues contribute to the deprecation
of adding appliances model:

� additional cost of acquisition, installing, managing, and operation. Each appliance requires
power, space, cabling, and an all lifecycle that must be managed;

� network virtualization. As a virtual network topology can be moved to diverse servers in the
network, it is problematic to move the appliances to accomplish the dynamism of virtualized
networks.

As can be noted, virtualized cloud infrastructures claim for connectivity for migration
of VMs, in several use cases, a live migration. Virtualized network appliances should become
mobile. Its service continuity could be improved by mobile network infrastructure. The ossifica-
tion of traditional data center networks denied the agile and required mobility of VMs because it
requires manual tunning in the physical infrastructure.

Virtualized Network Function (VNF) replaces vendor’s appliances by systems per-
forming the same functions, yet running on generic hardware through the adoption of server
virtualization. Chains of VNFs quickly emerged and can be mobile. The term Service Function
Chaining (SFC) [104, 54] was used to describe an ordered list of VNFs, and the subsequent
steering of traffic flows through those VNFs. SDN can handle the classification and forwarding
tasks required by SFCs.

As a consequence of the massive adoption of server virtualization, cloud computing, and
network virtualization was the emergence of new network architectures designed to be fault
tolerant [22]. Regarding resilience, NFV moves the focus from physical network nodes, that are

1.1. MOTIVATION AND JUSTIFICATION 18

highly available, to highly available end-to-end services comprised of VNFs chains [37].

1.1 Motivation and Justification

As we have seen, several technologies were launched to enable the replacement of tradi-
tional network hardware appliances by softwarized VNFs chains. As a consequence, virtualized
networks demands greater efforts over availability, because it represents more layers of software:
the increasing number of software components required to run a cloud also increases the number
of possible failures [125].

According to Han et al. [56], the virtualization of network services ”may reduce capital

investment and energy consumption by consolidating networking appliances, decrease the time

to market of a new service [..], and rapidly introduce targeted and tailored services based on

customer needs". However, along with the benefits, there are many technical challenges to be
covered by the network operators. For instance, ensuring that the network resilience will remain
at least as good as that of commodity hardware implementations, even if relying on virtualization,
is a great challenge. The VNF chains need to ensure the availability of its part in the end-to-end
service, just as in the case of non-virtualized appliances [58].

Furthermore, the network operators should also be able to dynamically create and migrate
their SFCs in order to consolidate VNFs or to provide service elasticity based on user demand
or traffic load. When migrating SFCs, the network operator should keep in mind that service
availability and service level agreements cannot be affected. Replication mechanisms have
already been proposed to target the required service reliability based on VNF redundancy [21].

Service downtime not only negatively effects in user experience but directly translates
into revenue loss [35]. Along last decade, several cloud service outages were reported [48].
In February 28, 2017, Amazon reported a outage from 9:37AM to 1:54PM in Simple Storage
Service (S3) [9], with clients’ estimated losses around US$150 millions. Due to a typo, a
large scale services restart was required. A number that can explain such impressive losses:
big companies, such as Google, Microsoft, and Amazon, have millions of servers on their
data centers [15]. Regarding virtualized values: eBay has 167,000 of VMs [90]. Such huge
numbers are persuasive regarding availability. Amazon S3 has three 9’s (99.9%) of availability
in its Service Level Agreement (SLA), meaning a maximum downtime of 9 hours per year. They
spent 4 hours and 17 minutes already with the 2017 February typo issue.

Another downtime source may be generated by continuously execution software, such as
those offered by cloud and network providers. The continuous software execution is susceptible
to slowly degradation regarding the effective usage of their system resources [59]. Such a
phenomenon is called software aging, and it impacts the availability and performance of computer
systems. The occurrence of software aging in systems where multiple software components are
joined, such as those at cloud computing environments, can be catastrophic. The more software
components there are, the greater the risk of failure caused by aging. However, some proactive

1.2. OBJECTIVES 19

action can be triggered to minimize the effects of aging software, known as software rejuvenation.
This action is commonly triggered by a time-based, threshold, or prediction-based strategies [13].

Moreover, than software rejuvenation, successful approaches adopted to setup High
Availability (HA) include elimination of Single Point Of Failure (SPOF) through redundancy, as
well as the interconnection of redundant components in clusters. However, those methods are
only suitable for existing infrastructures.

Models can be designed to aid network specialists in the assembling of high available
software-centric virtualized networks. Dependability modeling [14, 57, 75, 77] is a largely
accepted technique that is concerned about measuring the ability of a system to deliver its
intended level of service to users, especially related to failures or others incidents which affect
performance. The quantitative fault forecasting [120] adopts models such as Markov Chains and
Stochastic Petri Nets to evaluate, in terms of probability, the extent to which some attributes of
dependability are satisfied.

This work deals with modeling of VNF chains aiming at aid network specialists to fit
availability and capacity requirements, not only in their existent virtualized network but also to
estimate these metrics in future virtual infrastructures.

1.2 Objectives

Increase the availability of virtualized infrastructures, such as virtualized data centers
and cloud computing environments, and subsequent savings in COPEX and OPEX costs while
maintaining user’s agreements, are goals of network operators. The main objective of this
research is to propose and analyze a set of stochastic models to evaluate and improve virtual
network functions considering metrics of availability and capacity. The following list presents
the specific objectives that should be accomplished to realize the main objective:

� Create stochastic models to estimate the behavior of availability and capacity metrics of
virtual network functions provided in cloud computing infrastructure;

� Assembly and configure a highly available cloud computing infrastructure with support for
redundant virtual network functions in order to generate parameter values that will be used
as input into stochastic models;

� Adopt the models in case studies aiming at identifying the behavior of the metrics of interest.

One of the main challenges of this research is to propose scalable models considering the
high complexity of cloud computing infrastructures and virtual network functions configurations.
To cover this problem, we developed hierarchical stochastic models that are not so detailed at
a point that forbids its analysis as well as are not so simple that fail in representing the real
systems.

1.3. THESIS ORGANIZATION 20

We restrict our proposal to private clouds due to configuration complexity of high
available cloud computing infrastructures. The assembling of a private cloud offers complete
flexibility of configuration and has a low cost.

1.3 Thesis Organization

The remainder of this thesis is organized as follow: Chapter 2 presents the background
that is required for understanding the remaining chapters. Chapter 3 shows a series of related
works with points in common with this thesis. The support methodology is described in Chapter
4. It explains the methodology for evaluation of VNF clusters adopting stochastic modeling.
Chapter 5 presents the measurement experiments that were executed in the assembled testbeds
during this research. Chapter 6 presents the models that represent the components aimed at
providing VNF chains. Chapter 7 summarizes the results achieved during this research and also
presents suggestions for future works.

212121

2
Background

This chapter discusses the basic concepts of primary areas that set up the focus for this
work: network virtualization - including Network Function Virtualization, Software-Defined
Networks, and Service Function Chaining - cloud computing, dependability modeling, and
software aging and rejuvenation. The background presented here shall provide the necessary
knowledge for a clear comprehension of the subsequent chapters.

2.1 Server Virtualization

Server virtualization is the abstraction of applications and operating systems from phys-
ical servers. It is required to select a virtualization approach to apply server virtualization.
Actually, there are four main accepted approaches that can be applied to implement server
virtualization:

i. Full Virtualization: it is the particular kind of virtualization that allows an unmodified guest
operating system, with all of its installed softwares, to run in a special environment, on top of
existing host operating system. Virtual machines are created by the virtualization software by
intercepting access to certain hardware components and certain features. Most of the guest
code runs unmodified, directly on the host computer, and in a transparent way: the guest is
unaware that it is being virtualized. Virtual Box [100], VMWare Virtualization softwares [122]
and [103] are examples of full virtualization products. KVM [67] kernel-level virtualization
is a specialized version of full virtualization. The Linux kernel serves as the hypervisor. It
is implemented as a loadable kernel module that converts the Linux kernel into a bare-metal
hypervisor. As it was designed after the advent of hardware-assisted virtualization, it did not
have to implement features that were provided by hardware. So, it requires Intel VT-X or
AMD-V (see Hardware Virtualization below) enabled CPUs.

ii. Paravirtualization: this approach requires to modify the guest operating system running
in the virtual machine and replace all the privileged instructions with direct calls into the
hypervisor. So, the modified guest operating system is aware that is running on a hypervisor
and can cooperate with it for improved scheduling and I/O: it includes code to make guest-
to-hypervisor transitions more efficient. Paravirtualization does not require virtualization

2.1. SERVER VIRTUALIZATION 22

extensions from the host CPU. Xen hypervisor [129] was the precursor of paravirtualization
products.

iii. Operating System virtualization, also known as container-based virtualization, is a lightweight
alternative. It presents an operating system environment that is fully or partially isolated
from the host operating system, allowing for safe application execution at native speeds.
While hypervisor-based virtualization provides an abstraction for full guest OS’s (one per
virtual machine), container-based virtualization works at the operating system level, providing
abstractions directly for the guest processes. OpenVZ [99], LXC[73], Docker [60], and are
examples of container-based virtualization solutions.

iv. Hardware Virtualization: it is the hardware support for virtualization. VMs in a hardware
virtualization environment can run unmodified operating systems because the hypervisor can
use the native hardware support for virtualization to handle privileged and protected operations
and hardware access requests; to communicate with and manage the virtual machines [123].
Both Intel and AMD implement hardware virtualization, calling their products as Intel VT-X
and AMD-V, respectively.

There are some server virtualization platforms that aid to achieve application availability
and fault tolerance. Proxmox VE [110], Citrix XenServer [26], VMWare vSphere [61], and
Windows Hyper-V [86] are well-known server virtualization platforms. Some of their features
are compared in Table 2.1.

Table 2.1: Server Virtualization Platforms

Proxmox VE VMware vSphere Windows Hyper-V Citrix XenServer
Guest OS
support

Linux and
Windows

Linux,
Windows,UNIX

Windows and
Linux(limited)

Windows and
Linux(limited)

Open
Source Yes No No Yes

License
GNU AGPL

v3 Proprietary Free Proprietary
High

Availability Yes Yes
Requires MS

Failover clustering Yes

Centralized
control Yes

Yes, but requires
dedicated

management
server or VM

Yes, but requires
dedicated

management
server or VM Yes

Virtualization
Full and

OS Full
Full and

Paravirtualization Paravirtualization

In this research, we adopted Proxmox VE due to its full operation in Linux systems, its
native support for high availability and its compatibility with full and OS virtualization.

2.2. NETWORK VIRTUALIZATION 23

2.1.1 Proxmox VE

Proxmox VE is a virtualization environment for servers. It is an open source tool,
based on the Debian GNU/Linux distribution, that can manage containers, virtual machines,
storage, virtualized networks, and high-availability clustering through both web-based interface
or command-line interfaces [110].

Proxmox VE supports OpenVZ container-based virtualization kernel. OpenVZ adds
virtualization and isolation, enabling: various containers within a single kernel; resource manage-
ment, that limits sub-system resources, such as CPU, RAM, and disk access, on a per-container
basis; checkpointing, that saves container’s state, making container migration possible. OpenVZ
guest OSs are instantiated based on templates. These templates are pre-existing images that
can create a chrooted environment - the container - on a few seconds, enabling small overhead
during creation, execution, and finalization of containers, providing fast deployment scenarios.
Programs in a guest container run as rehular applications that directly use the host OS’s system
call interface and do not need to run on top of an intermediate hypervisor [99].

OpenVZ offers three major networking modes of operation:

� Route-based (venet);
� Bridge-based (veth);
� Real network device (eth) in a container.

The main differences between them are the layer of operation. While route-based mode works
in Layer 3, bridge-based works in Layer 2 and real network in Layer 1. In the real network
mode, the server system administrator will assign a real network device (such as eth0) into the
container. This latter approach will provide the best network performance, but the Network
Interface Card (NIC) will not be virtualized.

As Proxmox VE implements Full and OS Virtualization and has centralized control,
we adopted it as server virtualization platform during testbed assembling. Both KVM (for
full virtualization) and OpenVZ (for OS virtualization) hypervisors have natively supported by
Proxmox VE.

2.2 Network Virtualization

Network virtualization is a technique that enables multiple isolated logical networks,
each with potentially different addressing and forwarding mechanisms, to share the same physical
infrastructure [108]. Historically, the term virtual network refers to legacy overlay technologies,
such as Virtual Local Area Network (VLAN), a physical method for network virtualization
provided in traditional switches. Through a VLAN ID, hosts connected to a switch could be
separated in distinct broadcast domains. This approach has several well-known limitations, such
as the available number of VLAN IDs (4094). It is not enough to divide multi-tenants VMs.

2.2. NETWORK VIRTUALIZATION 24

Jain and Paul [62] performed a detailed explanation about network virtualization required
by server virtualization and clouds, exposing the components that must be abstracted to virtualize
a network. These components are:

� a NIC, where a computer network starts;
� a Layer 2 (L2) network segments, like Ethernet or WiFi, in which hosts’ NICs are connected;
� a set of switches (also called bridges) interconnecting L2 network segments to form an L2

network;
� a Layer 3 (L3) network (IPv4 or IPv6), in which L2 is accommodated as sub-nets;
� routers, in which multiple L3 networks are connected to form the Internet.

Each physical system has at least one L2 physical NIC. If multiple VMs are running
on a system, each VM needs its own Virtual Network Interface Card (vNIC). One solution to
implement vNICs is through hypervisor software. The hypervisor will not only abstract the
computing, memory, and storage, but also implement as many vNICs as there are VMs.

L2 segments virtualization is deployed through overlay. Server virtualization and cloud
solutions have been using Virtual eXtensible Local Area Network (VXLAN) [76] to address the
need for overlay networks within virtualized data centers. VXLAN overcome several restrictions
of VLANs: it enables to accommodate multiple tenants; it runs over the existing networking
infrastructure; it provides a means to expand an L2 network, and; it enables location-independent
addressing. An alternative protocol is Generic Routing Encapsulation (GRE) [40].

A virtual switch (vSwitch) is the software component that connects virtual machines
to virtual networks of L2. L2 switching is typically implemented by means of kernel-level
virtual bridges/switches interconnecting a VM’s vNIC to a host’s physical interface [19]. Many
hypervisors running on Linux systems implement the virtual LANs inside the servers using Linux
Bridge, the native kernel bridging module. The Linux Bridge basically works as a transparent
bridge with MAC learning, providing the same functionality as a standard Ethernet switch in
terms of packet forwarding. But such standard behavior is not compatible with SDN and is
not flexible enough when aspects such as multitenant traffic isolation, transparent VM mobility,
and fine-grained forwarding programmability are critical. The Linux-based bridging alternative
is Open vSwitch (OVS), a software switching facility specifically designed for virtualized
environments and capable of reaching kernel-level performance.

L3 network virtualization provides addressing (IPv4 or IPv6) for the VMs. Blocks of
addresses can be configured and provided for each virtual L3 network. These virtual networks
are connected through virtual routers. They replicate in software the functionality of a hardware-
based Layer 3 routers.

VM networking had initially been implemented using Linux bridging. Besides its suitable
operation and simplicity of configuration and management, it was not originally designed for
virtual networking and therefore posed integration and management challenges [23].

2.2. NETWORK VIRTUALIZATION 25

2.2.1 Network Function Virtualization

With the exponential increase in bandwidth demand, heavily driven by video, mobile,
and Internet of Things (IoT) applications, service providers are constantly looking for ways to
expand and scale their network services, preferably without a significant increase in costs [22].
The features of traditional devices are bottlenecks to the expansion of services, because they
present several limitations such as: coupling between software system (such as Internetworking
Operating Systems (IOS) and management systems) and hardware, loosing flexibility (the ability
to adapt to changes); and scalability constraints, because the design of each hardware device is
limited to a certain maximum performance requirement.

NFV is a network architecture concept that uses virtualization to implement classes of
network functions into building blocks that may connect or create communication services [78].

NFV involves the implementation of network functions (NF) in software that can be
moved to, or instantiated in, various locations in the network as required, without the need for
installation of new equipment [38].

As specified by European Telecommunications Standards Institute (ETSI) [36], the NFV
architecture is composed by three working domains, as depicted in Figure 2.1:

Figure 2.1: High-level NFV Framework

� Virtualized Network Function (VNF): it is the software implementation of the network function
which is able to run over NFVI;

� NFV Infrastructure (NFVI): it includes physical resources and how they can be virtualized. It
supports the execution of the VNF;

� NFV Management and Orchestration (MANO): it covers the orchestration and lifecycle
management of physical or software or both resources that support virtualized infrastructure,
as well as the lifecycle management of VNFs.

2.2. NETWORK VIRTUALIZATION 26

The NFV framework enables a dynamic construction and management of VNF instances,
as well as a relationship between these VNFs, considering several attributes, such as data, control,
management, and dependencies. We highlight two relationships among VNFs: (i) VNF chains,
in which the connectivity between VNFs is ordered, following routing decision based on policies;
(ii) a collection of VNFs, in which the forward decisions follows traditional routing (based on
destination IP).

VNFs chains are the analog of connecting existing physical appliances via cables. Cables
are bidirectional and so are most data networking technologies that will be used in virtualized
deployments. So, NFV describes a software architecture with VNFs as building blocks to
construct VNF Forwarding Graphs (FG) [36] to represent Chains of VNFs. A VNF FG provides
the logical connectivity between virtual appliances (i.e., VNFs). An example is depicted in
Figure 2.2.

Figure 2.2: VNF Forward Graph representing Chains of VNFs. Source: ETSI [36]

A network service provider designed an end-to-end network service between two physical
network functions that involve several VNFs (VNF-A, VNF-B, VNF-C, VNF-D1, VNF-D2,
VNF-E). This set of VNFs will be combined, forming an ordered chain according to the tenant’s
requirements. The physical network logical interface at left, represented by a dashed circle,
is responsible for performing the classification of distinct tenant’s packet flows. Four distinct
packet flows, representing different tenant’s requirements, are exhibited. According to traffic
classification, the tenant’s packet flow will be forward through the designed VNF chain. For
example, packet flow 1 will be forwarded through VNF-A, VNF-B, VNF-C, and VNF-D1.
Observe that service VNF-D is replicated. Some motivations are load balancing and failover. All
these functionalities involving VNF chains, flow classification, and traffic steering motivated the
creation of Internet Engineering Task Force (IETF) Service Function Chaining Working Group.

2.2. NETWORK VIRTUALIZATION 27

2.2.2 Service Function Chaining

The term Service Function Chaining (SFC) is used to describe the definition and instan-
tiation of an ordered list of instances of virtual network service functions, and the subsequent
steering of traffic flows through those service functions [104]. Fundamentally, SFC routes
packets through one or more service functions instead of conventional routing that routes packets
using the destination IP address.

The emergence of SFC is aimed to address three main functionalities:

� service overlay: SFCs adopts the decoupling of services to the physical topology. It allows
operators to use whatever overlay or underlay they prefer to create a path between service
functions and to locate service functions in the network as needed;

� service classification: it is used to identify which traffic will be steered through an SFC
overlay;

� SFC encapsulation: it enables the creation of a service chain in the data plane and also carries
data-plane metadata to enable the exchange of information between logical classification
points and service functions.

The combination of VNF chains and a flow classifier creates a service function chain.
A flow classifier is a component that matches traffic flows against policies for subsequent
application of the required set of network service functions, whereas a service function chain
defines an ordered set of abstract service functions and ordering constraints that must be applied
to packets and/or frames and/or flows selected as a result of classification.

As presented by Luis et al. [72], flow classification, as well as its monitoring, can make
networking more dependable, motivating the investigation of dependability metrics.

2.2.3 Software-Defined Networking

Software-Defined Networking (SDN) is a network architecture in which network con-
trol (called control-plane) is decoupled from forwarding control (called data-plane) and is directly
programmable [96]. It emerged as an approach to network management conducted in Stanford
University[81].

Its well-known dissociation between control plane (where routing decisions are built)
and data plane (responsible for reception and transmission of packets) enables to centralize the
management of several network devices. The network intelligence is logically centralized inside
controllers. The software-based SDN controllers perform the administration of the network using
high-level policies. The controllers build flow tables with the aim of forwarding packages to
connected VMs.

The separation of the control plane and the data plane can be realized employing a
well-defined programming interface between the switches and the SDN controller. The controller
exercises direct control over the state in the data plane elements via this well-defined API. The

2.3. CLOUD COMPUTING 28

most notable example of such an API is OpenFlow [45] whereas the most adopted implementation
of OpenFlow is Open vSwitch [43], functioning as a vSwitch in VM environments. The Open
vSwitch enables Linux to become part of a SDN architecture. In this research, we adopted Open
vSwitch as the underlying connection technology of VNF chains.

Regarding NFV, SDN enables to separate the network functions from expensive appli-
ances. It also enables to implement the separation between VNFs and the underlying physical
network. So, it has a central role in the network virtualization and all its previously discussed
benefits. SDN, as an enabler of network virtualization, can expand the services provided by
cloud infrastructures and offer an even higher level of innovation. It can allocate networking
resources dynamically and proficiently as dictated by the demands of VM clients.

Among the benefits of SDN, we highlight increasing in network availability as a result
of centralized and automated management of network devices, decreasing manual configuration
errors.

2.3 Cloud Computing

Cloud computing is the on-demand delivery of computing power, database storage,
applications, and other IT resources through a cloud services platform via the Internet with
pay-as-you-go pricing [10].

A set of 5 attributes, depicted in Figure 2.3, was defined by NIST to define cloud
computing in a more instructive way.

Figure 2.3: Cloud Computing Features

1. On-demand self-service: a client can provision computing resources from the cloud without
having to interact with IT or service provider personnel. It is possible to rent virtualized
resources online.

2. Ubiquitous access: it is possible to use standard platforms that provide simple connectivity
without having to put down dedicated cables or systems and without having to buy custom
hardware for access.

2.3. CLOUD COMPUTING 29

3. Measured service: resource usage can be monitored, controlled, and reported, providing
transparency for both the provider and consumer of the utilized service. It enables a pay-per-
use model.

4. Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward commensurate with demand.

5. Resource pooling: the cloud provider has different types of grouped resources, including
storage, memory, computer processing, and bandwidth (to name a few), which instead of
being dedicated to anyone client are allocated to clients as they need them.

There are different ways that providers can offer resources as services within a cloud to
their clients.

1. Infrastructure as a Service (IaaS): it refers to on-demand provisioning of infrastructural
hardware resources.

2. Platform as a Service (PaaS): it refers to providing platform layer resources, including
operating system support and software development frameworks.

3. Software as a Service (SaaS): it refers to providing on-demand applications over the Internet.

With clear attributes that define what cloud services are and the types of services that the
cloud could provide, it makes sense to look at how cloud services are deployed. Clouds have
four basic deployment models:

1. Public cloud: The cloud infrastructure is provisioned for open use by the general public.
2. Private cloud: it is created when an enterprise data center is reconfigured in such a way as to

provide the five cloud attributes. The enterprise owns the cloud. It is both the provider and the
client.

3. Community cloud: the cloud infrastructure is provisioned for exclusive use by a specific
community of consumers from organizations that may own, manage, and operate the cloud
resources.

4. Hybrid cloud: it is a composition of two or more distinct cloud infrastructures (private,
community, or public) through a single management interface.

There are several opensource cloud platforms that allow to provide private IaaS approach.
Openstack [98], CloudStack [28], and OpenNebula [97] are the most adopted. In this research, we
have been using the openstack IaaS cloud platform due to its natural relationship with NFV [44].

2.3.1 Openstack

Openstack is a cloud management system that controls pools of computing, storage, and
networking resources. It is exposed to the cloud end users as HTTP(s) APIs that provide its
independent parts called openstack services. Openstack cloud logical architecture is depicted in
Figure 2.4:

2.3. CLOUD COMPUTING 30

Figure 2.4: Openstack Architecture

Openstack Dashboard, Image Service, Compute, Block Storage, Networking, and Iden-
tity Service are core projects of openstack cloud. In Figure 2.4, they are represented by the
external rectangles. Each openstack project releases components, represented by internal rounded
rectangles. These are the daemons (background processes) that are executed to provide the
associate functionality of each component. Internal solid arrows represent the relationship among
daemons that form a component, whereas dashed arrows represent the relationship between the
daemons of distinct projects. Openstack components are explained below.

� Compute: known as nova, it provides a way to provision Compute instances. It supports
the creation of the virtual machines through the execution of a set of daemons in Linux or
UNIX servers. Compute services manage and automate pools of CPU and RAM resources.
It is split into five daemons:

� nova-api: it accepts and responds to end user compute API calls;

� nova-scheduler: it picks a compute node to run a VM instance;

� nova-conductor: it provides coordination and database query support for nova;

� nova-consoleauth: it provides authentication for nova consoles;

� nova-novncproxy: it provides a proxy for accessing running instances through a VNC
connection;

� nova-compute: is responsible for building a disk image, launching it via the underlying
virtualization driver, responding to calls to check its state, attaching persistent storage,
and terminating it.

2.3. CLOUD COMPUTING 31

� Networking: known as neutron, the standalone openstack Networking provides cloud
operators and users with an API to create and manage networks in the cloud. Indeed,
openstack Neutron is a SDN project focused on delivering Network as a Service (NaaS) in
virtual computing environments. It does so by deploying several network processes across
many nodes. Such processes provide resources used by the VM network interface, including
IP addressing and routing. Its main daemon is:

� neutron-server: it relays user requests to the configured layer 2 plug-in (responsible
for interacting with the underlying infrastructure so that the traffic can be routed). Linux
Bridge and Open vSwitch are two examples of L2 plug-ins.

Besides neutron-server, openstack Networking, also includes two agents:

� neutron-dhcp-agent: it provides DHCP services to tenant networks;

� neutron-l3-agent: it does L3/Network Address Translation (NAT) forwarding to enable
external network access for VMs on tenant networks.

� Block Storage: provides the traditional disk block-level storage for VMs. It is composed of
the following daemons:

� cinder-api: it authenticates and routes requests throughout the Block Storage service;

� cinder-volume: manages Block Storage devices, specifically the backend devices
themselves;

� cinder-schedule: schedules and routes requests to the appropriate volume. By default,
it uses round-robin, but can use more sophisticated policies based capacity or volume
type, deciding which cinder-volume node will be used.

� Dashboard: it provides a web-based user interface to the various openstack components. It
includes both end user area for tenants to manage their virtual infrastructure and administra-
tion area for cloud operators to manage the openstack environment. Horizon service runs as
a Web Server Gateway Interface (WSGI) application, hosted by Apache Web Server.

� Identity Service: it provides identity and access management for all the openstack compo-
nents. It dells with all authentication and authorization transactions aimed at using cloud
resources. Users have credentials they can use to authenticate, and they can be a member of
one or more groups. Any API call results in an authentication interaction with this service.
Similar to the horizon, identity service, called keystone, runs as a WSGI application and is
also hosted by apache. Each project contains a component that establishes communication
with Identity Service, as can be evinced by the green dashed lines, labeled as Opentack
Identity API in Figure 2.4.

2.3. CLOUD COMPUTING 32

� Image Service: known as glance, it includes registering, discovering, and retrieving of
virtual machine images. It allows querying of VM image metadata as well as retrieval of
the actual image. VM images made available through glance can be stored in a variety
of locations from simple filesystems to disk-block storage systems like openstack cinder.
Glance is split into two daemons:

� glance-api: interacts with users requesting VM images;

� glance-registry: connects to the database backend aiming to store, process, and re-
trieves images metadata, such as size and type.

Figure 2.4 also depicts openstack shared services, adopted by openstack components to
support the provision of their functionalities:

� relational database: each of the previously mentioned components has its own database,
represented by traditional cylinder symbol. Each service requires the creation of tables to
store its data. Most traditional used databases in openstack are MySQL, MariaDB, and
PostgreSQL. For HA, Galera Cluster has been used;

� a message queue is used for communication among all openstack daemons through Advanced
Message Queuing Protocol (AMQP). It coordinates operations and status information among
services. Most traditional message queue services supported by openstack include RabbitMQ,
Qpid, and ZeroMQ. Message queues are represented by circles in Figure 2.4. One example
of AMQP is exhibited by black dashed lines, labeled as AMQP, between cinder daemons
and openstack Compute;

� a cache system, used to speed up dynamic database-driven openstack services by caching data
in RAM. It reduces the number of times that an external data source must be read. Keystone
and Identity are examples of openstack components that use a cache system. Memcached is
the default cache system adopted by openstack.

The openstack platform defines a nomenclature formality that associate services to
servers. They are called deployment modes and are described below:

� Controller node: it is the control plane for the openstack environment, running Identity
service for access control, Image service for virtual machines image provision, the manage-
ment portions of nova and neutron services, and the Dashboard. Moreover, it also includes
support for the shared services: SQL database, message queue, and cache system. Finally,
it also executes Network Time Protocol (NTP) daemon for clock synchronization. All
the components and shared services with a blue background in Figure 2.4 are executed in
Controller nodes;

� Compute node: it runs the hypervisor portion of nova that operates tenant virtual machine
instances. Besides hypervisor, the compute node also runs the networking plug-in and an

2.3. CLOUD COMPUTING 33

agent that connect tenant networks to instances and provide firewalling (security groups)
services;

� Neutron node it runs networking services for L3, metadata, DHCP, and Open vSwitch. The
network node handles all networking between other nodes as well as tenant networking and
routing. It also provides floating IPs that allow instances to connect to public networks.

Figure 2.5 depicts one instance for each each deployment mode. At the bottom, the
names of each role are exhibited in bold. We also insert the hardware (HW), the storage(S), and
operating system (OS) at Figure 2.5 to enable a complete view of each openstack deployment
mode.

glance-api

glance-registry

horizon

nova-api

nova-conductor

nova-scheduler

nova-consoleauth

Controller Node Compute Node Neutron Node

neutron-server

nova-compute

neutron-agent-
dhcp

neutron-agent-l3

HW

S

OS

HW

S

OS

HW

S

OS

Hypervisor

DB

rabbitMQ

neutron-
openvswitch-agent

rabbitMQ

NTP NTP NTP

Figure 2.5: Openstack Deployment Modes

Besides the provision of deployment modes in isolated physical servers, it is also possible
to group deployment modes in one physical server:

� Controller/Neutron: the controller and neutron services are grouped in one single server;

� All-In-One: as suggested by its name, in this configuration, all the openstack services are
provided in the same physical server.

Figure 2.6 depicts one instance of All-In-One openstack node.

2.3. CLOUD COMPUTING 34

All-In-One Node

HW

S

OS

NTP

DBrabbitMQ Hypervisor

glance-apiglance-registry

horizonnova-api

nova-conductornova-schedulernova-consoleauth

neutron-server

nova-compute

neutron-agent-
dhcp

neutron-agent-l3neutron-
openvswitch-agent

Figure 2.6: Openstack All-In-One Deployment Mode

The deployment modes are highlighted in this work because the adopted assembling is
relevant for the studied metrics of interest.

Designing an openstack cloud requires an understanding of its user’s requirements to
state the best fit configuration. A specific objective of this research is to assembly and configure
a High Available cloud infrastructure. Knowing the openstack architecture is a requirement to
provide all its services over a hardware infrastructure without SPOFs. The openstack modular
architecture enables to replicate its components and execute them on several physical servers.
For HA openstack cloud, each service must be clustered to ensure its high availability.

2.3.2 The Openstack SFC API

The Openstack SFC API [132] is formed by two parts: the flow classifier and the port
chain, as depicted in Figure 2.7. The flow classifier specifies the classification rules that are
used to state which flows will go through the specific chains. The port chain consists of an
ordered sequence of service functions that a particular flow will go through. A neutron port (a
logical connection of a virtual network interface to a virtual network) receives the ingress flow
and another neutron port forwards the egress flow. The SFC API calls these two neutron ports
as port pair. Each port pair is attached to a particular VM providing the associated virtualized
service. Port chains may be provided in a redundant configuration, in which combined port pairs
compose a port pair groups.

Our implemented studied scenario, that is used to exemplify the adoption of SFC API,
depicted in Figure 2.7, is composed by a port chain with three port pair groups: Firewall, Load
Balancer, and Cache. For 3N redundancy, each port pair group contains 3 VNF instances. We

2.4. CLUSTERS AND HIGH AVAILABILITY 35

opt for these services due to our previous experience with firewalls, load balancer, and cache
implementations.

Figure 2.7: SFC Graph

Figure 2.7 represents a classification process that directs the traffic through FW2, LB1,
and Cache3 neutron ports. To provide redundancy and high availability, VNFs are executed
as VMs in Pacemaker clusters, and the traffic flows can be classified and steering in a load-
balanced way by port pair groups containing these NFV VMs.

2.4 Clusters and High Availability

A cluster is any ensemble of independently operational elements integrated by some
medium for coordinated and cooperative behavior [126]. Consistent with this broad interpretation,
computer clusters are ensembles of independently operational computers integrated through an
interconnection network. They support user-accessible software for organizing and controlling
concurrent computing tasks that may cooperate on processing a typical application program or
workload.

Motivations for the adoption of server clusters include: high availability, load balancing,
parallel processing, systems management and scalability. Following the motivations for clusters
adoption, we can classify clusters in three types [101, 124]: high performance, load balancing,
and high availability.

High-performance clusters are used in environments with intensive and heavy computing
requirements. Large rendering tasks, as well as scientific computing, are examples of high-
performance clusters adoption. In these kinds of processing, all nodes of the cluster should be
active, providing as much processing capacity as possible.

Heavy demand environments typically adopt load balancing clustering. As depicted in
Figure 2.8, users’ requests are distributed to multiple machines in a server farm to optimize the

2.4. CLUSTERS AND HIGH AVAILABILITY 36

Figure 2.8: Load Balancing Cluster

response time of performed requests.
High availability (HA) clusters are adopted to make sure that critical resources reach

the maximum possible availability [124]. In HA clusters, the elimination of SPOFs is a strong
(or even a mandatory) requirement. Figure 2.9 exhibits a HA cluster. An HA cluster software
must be installed to monitors both cluster nodes availability as well as the availability of services
provided by the cluster’s nodes.

Figure 2.9: High Available Load Balanced Cluster

As can be observed in Figure 2.9, the load balancer was also replicated with the purpose
of eliminate SPOFs. Two-way arrows lines represent the monitoring operation of HA cluster
software, usually called as heartbeat mechanism.

High availability is established by the usage of failover softwares combination [16], such

2.4. CLUSTERS AND HIGH AVAILABILITY 37

as Pacemaker [68], Corosync [94], and HAProxy [114], to cite a few. By their joint action, they
deploy load balanced HA clusters enabling automatic recovery of services.

Pacemaker is a cluster resource manager. A resource is a service made highly available
by a cluster. So, Pacemaker is responsible for the lifecycle of deployed resources. It achieves
HA for cluster services by detecting and recovering failures from resource-level. Pacemaker
adopts Corosync for detection and recovering of failures from node-level. Corosync provides
messaging and membership services for cluster’s nodes.

Figure 2.10 exhibits Pacemaker and Corosync roles in a layer-based view: Pacemaker
probes the resources whilst Corosync monitors physical nodes.

Figure 2.10: Pacemaker and Corosync

Every resource has a Resource Agent (RA). They are external programs that abstract the
service in the provision, presenting a consistent view of the cluster. The cluster does not need
to understand how the resource works because it relies on the RA to perform a start, stop, or
monitor commands over the resource.

2.4.1 Redundancy Strategies

Failover softwares protect computer systems from failure adopting standby equipment(s)
that automatically takes over when the main system fails. During a failover, the cluster software
will move the required set of resources, such as filesystems, databases, and IP addresses to the
standby node(s).

Without a redundancy strategy, the system works in a simplex scheme, i.e., there is at
least one SPOF component. Any failure in such components will inevitably result in longer
system downtimes. With redundancy strategies, system components are arranged in a pool,
resulting in higher availability. The following redundancy strategies are usually adopted:

� Active-Active: two units are deployed in a fully operational capacity, sharing workload
during normal operation.

2.5. DEPENDABILITY 38

� Active-Standby: two units are deployed, however one active unit will provide service for all
the traffic intended for the system. A standby unit, also known as secondary unit, can be
maintained at varying degrees of readiness to restore service, which may be classified as:

� Hot Standby: the secondary unit is on, and its data are maintained in sync with an active
unit;

� Warm Standby: the secondary unit is powered on, but is not receiving the workload;

� Cold Standby: the secondary unit is powered off, and the activation time is larger than
the warm approach.

Pacemaker can create any of the previous redundancy strategies.

2.5 Dependability

Due to ubiquitous provision and access to services on the Internet, dependability has
become an attribute of prime concern in computer systems development, deployment, and
operation [75]. The main concern of dependability is to deliver services that can be justifiably
trusted. Laprie [69] provides a conceptual framework for expressing the attributes of what
constitutes dependable and reliable computing. Such a framework has been widely adopted
by academy and industry to guide research and practical works regarding systems’ trustability.
Because cloud computing is a large-scale distributed computing paradigm, and its applications
are accessible anywhere, anytime, cloud dependability is becoming more important and more
difficult to achieve [112].

In Laprie’s work, a set of basic definitions and associated terminology regarding depend-
ability concepts were presented. They are presented in Figure 2.11 and mentioned below.

� The impairments encompass faults, errors, and failures. A system fault represents the event
that occurs when service delivery does not happen as planned;

� The means are the methods, tools, and solutions enabling to provide the ability to deliver a
service with the desired specification. A system is fault tolerant when it does not fail even
when there are faulty components;

� The attributes make it possible to obtain quantitative measures, which are often crucial for the
analysis of the provided services.

Computer systems analysts have been adopting dependability with the aim of compute
and evaluate systems’ dependability metrics, such as reliability and availability. Reliability can
be defined as the continuity of correct service, whereas availability is the readiness for correct
service. Each of the methods to compute these two metrics are discussed below.

2.5. DEPENDABILITY 39

Dependability

Impairments

Fault Prevention

Attributes

Faults

Errors

Failures

Means
Fault Removal

Fault Tolerance

Fault Forecast

Availability

Safety

Reliability

Security

Maintainability

Figure 2.11: Dependability Taxonomy

2.5.1 Reliability

The reliability metric measures the probability that a system will deliver its function
correctly during a specified time interval, without the occurrence of failures in this interval. So,
the reliability does not consider the system repair and consider the working of analyzed system
uninterruptedly.

The Equation

R(t) = P{T > t}= e−
∫ t

0 λ (t)dt , t ≥ 0
�
 �	2.1

provides the reliability of a system, where T is a random variable that represents the time to
failure of the system and λ (t) is known as the Hazard function. So, T represents the required
time interval to reach the state X(t) = 0, starting from state X(t) = 1, i.e., the time to failure
(TTF) of a system.

2.5.2 Availability

The availability is the probability of a system being in operation at a desired time, or
during an expected period of time, considering failures and/or repairs within that interval.

2.5. DEPENDABILITY 40

A system failure occurs when the system does not provide its specified functionality. A
system failure can be defined as the failure of a system component, a system sub-system, or
another system that interacts with the considered one. With the aim to model the time to failure
of a system, consider an indicator random variable X(t) that represents the system state at time
t. X(t) = 1 represents the operational state and X(t) = 0 represents the faulty state. A random
variable T represents the time to reach the state X(t) = 0, given that the system started in state
X(t) = 1 represents the time to failure of the system, and its cumulative distribution function
FT (t) and the respective probability density function fT (t) are defined as:

FT (0) = 0 and lim
t→∞

FT (t) = 1,
�
 �	2.2

fT (t)≥ 0 and
∫

∞

0
fT (t)dt = 1.

�
 �	2.3

So, the time to failure is a non-negative continuous random variable.
The simplest definition of Availability is expressed as the ratio of the expected system

uptime to the expected system up and downtimes:

A =
E[U ptime]

E[U ptime]+E[Downtime]
.

�
 �	2.4

The availability metric can be defined as

A =
MT T F

MT T F +MT T R
,

�
 �	2.5

where,
MT T F =

∫
∞

0
R(t)dt,

�
 �	2.6

and
MT T R = MT T F×UA

A
.

�
 �	2.7

The UA represents the system unavailability (Equation (2.8))

UA = 1−A.
�
 �	2.8

The instantaneous availability is the probability that the system is operational at a specific
time instant t, that is,

A(t) = P{X(t) = 1}= E{X(t)}, t ≥ 0.
�
 �	2.9

If the system approaches stationary states as the time increases, it is possible to quantify
the steady-state availability and estimate the long-term fraction of time the system is available.

A = lim
t→∞

A(t), t ≥ 0.
�
 �	2.10

2.5. DEPENDABILITY 41

Availability can be expressed using the number of nines that represents the probability of
service readiness, as shown in Table 2.2 [115]. For instance, a system with five 9’s of availability
is classified as high availability, meaning an annual downtime of nearly 5 minutes.

Table 2.2: Service availability and downtime ratings

Number of 9’s
Service Availability

(%) System Type Practical Meaning

1 90 Unmanaged Down 5 weeks per year
2 99 Managed Down 4 days per year
3 99.9 Well managed Down 9 hours per year
4 99.99 Fault tolerant Down 1 hour per year
5 99.999 High availability Down 5 minutes per year
6 99.9999 Very high availability Down 30 seconds per year
7 99.99999 Ultra availability Down 3 seconds per year

2.5.3 Maintainability

The maintainability is the probability that a failed system will be restored to operational
effectiveness within a given period of time when the repair action is performed in accordance
with prescribed procedures.

Consider a a continuous time random variable YS(t) that represents the system state.
YS(t) = 0 when S is failed, and YS(t) = 1 when S has been repaired. Consider yet the random
variable D that represents the time to reach the state YS(t) = 1, given that the system started in
state YS(t) = 0 at time t = 0. The random variable D represents the system time to repair, FD(t)

its cumulative distribution function, and fD(t) the respective density function, where:

FD(0) = 0 and lim
t→∞

FD(t) = 1,
�
 �	2.11

and
fD(t)≥ 0 and

∫
∞

0
fD(t)dt = 1,

�
 �	2.12

Quantitatively, the maintainability M(t) can be computed as the probability that the
system S will be repaired by t considering a specified resource.

P{D6 t}= FD(t) =
∫ t

0
fD(t)dt

M(t) = 1−FD(t)

�
 �	2.13

Then, the MTTR can be defined as:

MT T R =
∫

∞

0
t×M(t)dt =

∫
∞

0
(1−FD(t))dt

�
 �	2.14

2.6. DEPENDABILITY MODELING 42

2.6 Dependability Modeling

Dependability models can be broadly classified into combinatorial models and state-
space models. In combinatorial models, it is assumed that the failure or recovery (or any other
behaviors) of a system component is not affected by the behavior of any other component. i.e.,
system components are independents. Reliability Block Diagram (RBD) and Fault Trees are
examples of combinatorial models.

Analysts may adopt state-space models to represent more complex interactions between
system components, such as active-standby redundancy. Markov chains and Stochastic Petri
Net (SPN) are examples of state-space models.

2.6.1 Reliability Block Diagrams

RBDs are models represented by a source and a target vertex, a set of blocks, each
representing a system component, and arcs connecting the components and the vertices, as
depicted in Figure 2.12. Besides its graphical representation, RBDs are used to analyze systems
and assess their availability and/or reliability through equations. The blocks represent the groups
of components or the smallest entities of the system, which are not further divided. The blocks
are usually arranged using composition mechanisms: series, parallel, bridge, k-out-of-n blocks,
or a combination of previous compositions [20]. The RBDs adopted in this research are series-
parallel structures only. If the individual components of a system are connected in series, the
failure of any component causes the system to fail. If the individual components of a system
are connected in parallel, the failures of all components cause the system to fail. For series and
parallel structures, the steady-state availability is given respectively by:

AS =
n

∏
i=1

Ai
�
 �	2.15

and
AP = 1−

n

∏
i=1

(1−Ai),
�
 �	2.16

Figure 2.12: Reliability Block Diagram

2.6. DEPENDABILITY MODELING 43

2.6.2 Continuous Time Markov Chains

First introduced by Andrei Andreevich Markov in 1907, Markov chains have been in
use intensively in dependability modeling and analysis since around the fifties [75]. Aiming to
understand Markov chains, we should start by the comprehension of a stochastic process.

A stochastic process is a family of random variables X(t) defined on a sample space. The
values assumed by X(t) are called states, and the set of all the possible states is the state space,
I. The state space of a stochastic process is either discrete or continuous. If it is discrete, the
stochastic process is called a chain.

A stochastic process can be classified by the dependence of its state at a particular time on
the states at previous times. If the state of a stochastic process depends only on the immediately
preceding state, we have a Markov process. So, a Markov process is a stochastic process whose
dynamic behavior is such that probability distributions for its future development depend only
on the present state and not on how the process arrived in that state. It means that at the time of a
transition, the entire past history is summarized by the current state.

If we assume that the state space, I, is discrete (finite or countably infinite), then the
Markov process is known as a Markov chain (or discrete-state Markov process). If we further
assume that the parameter space t, is also discrete, then we have a discrete-time Markov chain
(DTMC). If the parameter space is continuous, then we have a continuous-time Markov chain
(CTMC).

Markov chains can be represented as a directed graph, with the nodes representing the
system’s states and the edges representing changes in the system’s state. There are labels in
transitions, indicating the probability or rate at which such transitions occur.

When dealing with Continuous Time Markov Chain (CTMC), such as the availability
model of Figure 2.13, transitions occur with a rate, instead of a probability, due to the continuous
nature of this kind of model. The CTMC is represented through its transition matrix, often
referenced as the infinitesimal generator matrix.

Figure 2.13: CTMC: availability model

Considering the CTMC availability model of Figure 2.13, the rates are measured in
failures per second, repairs per second, and detections per second. The generator matrix Q is

2.6. DEPENDABILITY MODELING 44

composed by components qii and qi j, where i 6= j and ∑qi j =−qii. Considering a state-space S
= Up, Down, Repair = 0, 1, 2 the Q matrix is:

Q =

q00 q01 q02

q10 q11 q12

q20 q21 q22

=

−0.05 0.05 0
0 −0.7 0.7

0.1 0 −0.1

 �
 �	2.17

Equation (2.18) and the system of Equations (2.19 describe the computation of the state
probability vector, respectively for transient (i.e., time-dependent) analysis, and steady-state (i.e.,
stationary) analysis. From the state probability vector, nearly all other metrics can be derived,
depending on the system that is represented.

π
′(t) = π(t)Q, given π(0)

�
 �	2.18

πQ = 0,∑
i∈S

πi = 1
�
 �	2.19

Detailed explanations about how to obtain these Equations may be found in [17].
For all kinds of analysis using Markov chains, an important aspect must be kept in

mind: the exponential distribution of transition rates. The behavior of events in many computer
systems may be fit better by other probability distributions, but in some of these situations, the
exponential distribution is considered an acceptable approximation, enabling the use of Markov
models. It is also possible to adapt transition in Markov chains to represent other distributions
by means of phase approximation, as shown in [117]. The use of such technique allows the
modeling of events described by distributions such as Weibull, Erlang, Cox, hypoexponential,
and hyperexponential.

2.6.3 Stochastic Petri Nets

Petri Nets [88] are a family of formalisms very well suited for modeling discrete event
systems due to their capability for representing concurrency, synchronization, and communication
mechanisms, as well as deterministic and probabilistic delays. Time (stochastic delays) and
probabilistic choices are often used in dependability evaluation models [74, 75, 117, 119]. The
original Petri Net does not have the notion of time for analysis of performance and dependability.
The introduction of a duration of events results in a timed Petri Net. A special case of timed
Petri Nets is the SPN, where the delays of activities (represented as transitions) are considered
random variables with exponential distribution. An SPN can be translated to a CTMC, which
may then be solved to get the desired dependability or performance results. This is especially
useful because building a Markov model manually may be tedious and error-prone, especially
when the number of states becomes very large. Marsal et al. [5] proposed extensions to SPN
that considers two types of transitions: timed and immediate. The transition firing times in

2.6. DEPENDABILITY MODELING 45

SPNs correspond to the exponential distribution. The exponentially distributed firing times are
associated only with timed transitions, since immediate transitions, by definition, fire in zero
time.

We adopted the formal SPN definition (according to German [49]), presented below,
composed by the 9-tuple SPN = (P,T,I,O,H, Π,G, M0, Atts), in which:

� P = {p1, p2, ..., pn} is the place set, where n is the places number;
� T = {t1, t2, ..., tm} is the immediate and timed transitions set, P∩ T = /0, where m is the

transitions number;
� I ∈ (Nn→ N)n×m is the matrix representing the input arcs (may be marking dependent);
� O ∈ (Nn→ N)n×m is the matrix representing the output arcs (may be marking dependent);
� H ∈ (Nn→ N)n×m is the matrix representing the inhibitor arcs (may be marking dependent)
� Π ∈ Nn is the vector that associates the priority level to each transition;
� G ∈ (Nn→{true, f alse})n is the vector that associates a guard condition related to the place

marking with each transition;
� M0 ∈ Nn is the vector that associates an initial marking of each place (initial state);
� Atts = (Dist,Policy,Concurrency,W)m defines the transitions attributes set:

� Dist ∈ Nm→ F is a probability distribution function associated to each transition,
with F ≤ ∞. This distribution may be depedendent of the marking;

� Policy ∈ {prd, prs}) defines the memory policy adopted by a transition (prd-
preemptive repeat different, the default value, identical to enabling memory policy;prs-
preemptive resume, equivalent to age memory policy);

� Concurrrency ∈ {ss, is} defines the transition concurrency policy, in which ss
represents single server semantics and is represents infinity server semantics;

� W ∈ N+ is the weight function, associating a weight(wt) to immediate transitions
and a rate(λt) to timed transitions.

The addition of timed transitions introduces the concept of multiple enabling, which
should be considered in timed transitions with enabling degree greater than one. In this case,
the firing semantics should consider the number of tokens that can be fired in parallel. The
possibilities of semantics are:

� Single Server (SS): The firing time is computed when the transition is enabled. After the
transition firing, a new time will be computed if the transition remains enabled. Therefore, the
firings will occur in series, regardless of the enabling degree of the transition;

� Infinite Server (IS): the entire set tokens from the enabled transition is processed simultane-
ously. Then, all the tokens will be processed in parallel.

Figure 2.14 depicts an example of a SPN model. Places are represented by circles, SPNs
transitions are depicted as hollow rectangles (timed transitions) or as filled rectangles (immediate
transitions). Arcs (directed edges) connect places to transitions and vice versa. Tokens (small

2.6. DEPENDABILITY MODELING 46

filled circles) may reside in places. A vector containing the current number of tokens in each
place denotes the global state (i.e., marking) of a Petri Net. An inhibitor arc is a special arc
type that depicts a small white circle at one edge, instead of an arrow, and they are used to
disable transitions if there are tokens present in a given place. The behavior of Petri Nets, in
general, is defined in terms of a token flow, in the sense that tokens are created and destroyed
according to the transition firings. Immediate transitions represent instantaneous activities, and
they have higher firing priority than timed transitions. Besides, such transitions may contain
a guard condition, and a user may specify a different firing priority among other immediate
transitions.

Figure 2.14 represents the availability of a system comprising three servers. Each token
in the place Servers Up denote one server that is properly running. All three servers might
fail independently, by the firing of (exponential) timed transition Failure. A token in Servers
Down might be consumed either by immediate transition Repairable or by immediate transition
Non-repairable. Weights are assigned to each of those transitions to represent the probability of
firing one or another. When the failed server can be repaired, the transition Repairable puts a
token in Servers to repair. When the repair is not possible, the transition Non-repairable puts
the token in Servers to replace. The transitions Repair and Replace fire after exponential
delays corresponding to those activities. The probability of having at least one server available,
the average number of servers waiting for repair or replacement and other similar metrics can be
computed from the underlying CTMC generated from that SPN.

Figure 2.14: Example SPN

SPNs also allow the adoption of simulation techniques for obtaining dependability
and performance metrics as an alternative to the generation of a CTMC, which is sometimes
prohibitive due to the state-space explosion.

2.7. SOFTWARE AGING AND REJUVENATION 47

2.6.4 Capacity Oriented Availability

Users and analysts may also be interested in how much service the system is delivering,
including situations of partial failure. An important measure associated with available capac-
ity is Capacity Oriented Availability (COA) [11]. This metric allows estimating how much
service the system is capable of delivering considering failure states. According to Liu and
Trivedi [70], COA is computed as:

COA =
n

∑
i=1

i
n

πi,
�
 �	2.20

where i is the number of available service units and πi is the probability that these units are
working. The contrary measure is called Capacity Oriented Unavailability (COUA), and can be
calculated as: COUA = (1−COA).

2.6.5 Hierarchical Modeling

Complex systems modeling may take advantage of multiple levels of models, forming
hierarchies, where the lower-level models capture the detailed behavior of sub-systems and the
topmost is the system-level model [117]. Hierarchical modeling makes sense when the whole
system can be analyzed by the sub-systems that compose it.

Hierarchical models scale better when the number of system sub-systems and sub-system
components than non-hierarchical regular models. It is possible to isolate the number of system
components in each level of the hierarchy, decreasing the analysis time of the whole model.

Hierarchical models also support heterogeneous modeling, in which the models presented
in distinct hierarchical levels are also distinct. For example, an analyst may use combinatorial
RBD model at the bottom level and a SPN at the top level of a hierarchical model.

As the number of sub-systems and sub-system components in cloud computing and
virtual networks are not a small one, the adoption of hierarchical modeling may improve the
dependability analysis of these systems.

2.7 Software Aging and Rejuvenation

The ordinary usage of computational systems results in the fatigue of its components.
Such a phenomenon is called aging and can result in premature failure of a computer system.
The procedure that aims to reverse the aging of computer systems is called rejuvenation. It is the
technique which refreshes system components in order to avoid failures caused by its aging [89].
It can be categorized into two primary levels: hardware and software rejuvenation.

From the hardware aging perspective, besides the replacement of failed components
to rejuvenate the system as a whole, a re-initialization, and a possible power-off period, can
reduce the electric effects over microelectronic components [113] and is commonly adopted

2.7. SOFTWARE AGING AND REJUVENATION 48

as the hardware rejuvenation technique. We perform preventive maintenance through nodes
re-initialization with the aim of mitigating physical aging.

The phenomenon of software aging refers to the accumulation of errors during the
execution of the software, which eventually results in its crash/hang failure. Software often
exhibits an increasing failure rate over time, typically because of increasing and unbounded
resource consumption, data corruption, and numerical error accumulation.

Some techniques to tackle software aging considers to classify the system into layers
and propose rejuvenation approaches following layers’ classes [7]. The considered layers into
virtualized software systems is presented in Figure 2.15.

APPLICATION

VIRTUAL MACHINE

VIRTUAL MACHINE MONITOR/HYPERVISOR

OPERATING SYSTEM

HARDWARE

Figure 2.15: System Layers considered in the software rejuvenation classification

Some of the techniques regarding layered classification are:

� Application re-initialization: it is the restart of the application. In production environments, it
is performed automatically. In cloud computing environments, the cloud framework has a set
of services that also degrades due to aging phenomena. Aiming at eliminating the aging of the
framework components, their re-initialization is also required;

� Virtual machine re-initialization: due to its hardware isolation feature, virtual machines can
be replicated, including the usage of alternative physical machines, to rejuvenate the primary
VMs through its re-initialization. This approach mitigates and even eliminates in several cases
the downtime overhead perceived by the end users;

� VMM/hypervisor re-initialization: with the broad adoption of cloud computing in data centers,
the Virtual Machine Monitor gained growing attention. VMMs are complex enough to suffer
software aging phenomena [7]. VMMs are usually implemented as operating modules, such
as kvm.ko, for KVM hypervisor, in Linux systems. Their re-initialization comprises unload
and reload of such modules;

� Operating system re-initialization: this technique re-initializes the entire operating system,
which usually involves rebooting the firmware, re-executing Power On Self Test (POST)
routines, rebooting the kernel, the essential operating system services, and finally rebooting
the services being provided;

2.8. SENSITIVITY ANALYSIS 49

� Fast Operating system re-initialization: the default operating system reboot leads to a large
delay due to the sequence of stages that need to be executed before the application can run.
The operating system fast reboot maintains the current state of the machine concerning the
firmware, so it is not necessary to perform the POST routines. It is only required to reboot the
operating system kernel, the necessary routines and finally the application;

� Physical machine re-initialization: the hardware restart results in cleaning up the internal
state of all provided software. Indeed, the hardware re-initialization also implies software
rejuvenation whose origin if due to degradation phenomena over time.

2.8 Sensitivity Analysis

Sensitivity analysis is a technique used to determine the factors that are most relevant
to the parameters or outputs of a model. In computer system dependability analysis, one can
apply sensitivity analysis to help identify the components that most influence system availability,
reliability, or performance [55].

A sensitivity analysis can be performed through distinct methods, including: differential
analysis, correlation analysis, regression analysis, or perturbation analysis. The simplest method
is to repeatedly vary one parameter at a time while keeping the others constant. By applying this
method, a sensitivity ranking is obtained by observing changes in the model output.

Parametric sensitivity analysis aims at identifying the factors for which the smallest
variation implies the highest impact in the model’s output measure. System parameters, such as
failure and repair rates, are used to identify the most relevant factors that impact on system’s
operation.

Differential sensitivity analysis is performed through the partial derivatives of the measure
of interest with respect to each input parameter. Through partial derivatives of closed-form
equations, one is able to find the most important system factors and improve its behavior in an
optimized fashion.

The sensitivity of a given measure Y, which depends on a specific parameter λ , is
computed as shown in Equation (2.21), or Equation (2.22) for a scaled sensitivity:

Sλ (Y) =
∂Y
∂λ

�
 �	2.21

SSλ (Y) =
θ

Y
∂Y
∂λ

�
 �	2.22

Sλ (Y) is the sensitivity index (or coefficient) of Y with respect to λ , and SSλ (Y) is the
scaled sensitivity index, commonly used to counterbalance the effects of largely different units
between distinct parameters values.

505050

3
Related Works

This chapter presents a list of related works in the main topics covered in this thesis. The
researches are divided into two categories: Hierarchical Modeling of Virtual Environments
and Software Aging and Rejuvenation of Server Virtualized Systems. The following sections
are not intended to provide an exhaustive view of the works published on those topics, but rather
to point out significant advances which go towards a similar direction as this research do, or give
a basis for future extensions.

3.1 Hierarchical Modeling of Virtual Environments

Kim et al. [64] construct a two-level hierarchical model of non-virtualized and virtualized
systems representing two hosts systems in an active/active redundancy configuration. Fault trees
are used to represent the overall system in the top-level, and CTMCs are used to capture the
behavior of sub-components in the low-level. They incorporate hardware failures (e.g., CPU,
memory, power), and software failures, including VMM, VMs, and application failures. The
aim is to estimate steady-state availability, downtime, and COA. A strong point of this work
is the scope analysis, considering failure and repair rates from the hardware to the application.
Besides scope analysis, this work also resembles this thesis by the comparison between a baseline
environment and a proof-of-concept environment. This paper is one that most closely resembles
this thesis. However, in this thesis, a complete study of the application was carried, with a focus
on VNF chains. Furthermore, we were also able to measure VM live migration time intervals
for the considered service, whereas Kim et al. adopted previous measurements for VM live
migration that do not consider the application.

Melo et al. [84] propose models to evaluate the capacity of nodes in cloud computing
environments. They combine RBD and SPN models to state the real amount of available
hardware resources at predetermined time intervals. A strong point of this paper is to consider a
generic cloud computing platform, composed by Platform Manager, Cluster Manager, Block-
based Storage, File-based Storage, and Instance Manager. As expected, all of these generic
components are presented in the openstack platform. Through a sensitivity analysis, the authors
were able to state that the Node component is higher impactful for COA in comparison with the

3.1. HIERARCHICAL MODELING OF VIRTUAL ENVIRONMENTS 51

VM. This paper resembles this thesis, as availability and COA analyses were performed in a
cloud computing environment. The main differences are our concern regarding high availability,
as well as our analysis of SFC applications.

Dantas et al. [32] present availability models for private cloud architectures based on the
Eucalyptus platform, as well as a comparison of costs between evaluated architectures and similar
infrastructure rented from a public cloud provider. The COA and steady-state availability were
used to compare architectures with distinct numbers of clusters. A heterogeneous hierarchical
modeling approach, using RBD and CTMC, was employed to represent the systems considering
both hardware and software failures. They concluded that it takes 18 months, on average, for
the private cloud architectures to be paid off the cost equivalent to the computational capacity
rented from a public cloud. This work resembles the presented thesis mainly for the adoption of
hierarchical modeling of availability and COA, whereas the main distinction is our analysis of
network function virtualization applications.

Mauro et al. [33] address an availability evaluation of a chain of network nodes im-
plementing an SFC managed by a Virtualized Infrastructure Manager (VIM). A double-layer
model is adopted, where Reliability Block Diagram describes the high-level dependencies among
the architecture components, and Stochastic Reward Networks (SRN) model the probabilistic
behavior of each component. In particular, a steady-state availability analysis is carried out
to characterize the minimal configuration of the overall system guaranteeing the so-called five
9’s requirement, along with a sensitivity analysis to evaluate the system robustness concerning
variations of some key parameters. This paper closest resembles this thesis regarding the analysis
of service function chains availability. A strong point of this paper is the adoption of elasticity in
the SRN to model the variation of the workload during 24 hours. However, they do not present a
testbed to capture time parameters with the aim to be used as input in their model.

Fernandes et al. [42] proposed and evaluated a method to estimate dependability attributes
in virtualized network environments. The proposed approach provides a basis for estimating
metrics, such as reliability and availability, through the adoption of hierarchical and heteroge-
neous modeling based on RBDs and SPNs. The hierarchical modeling was adopted with the
aim to mitigate the complexity of representing large virtual networks. Experimental results
demonstrated the feasibility of the proposed modeling approach, in which dependability metrics
have been estimated from results generated by the resource allocation algorithm for virtual
networks. A strong point of this paper is to reach the goal in demonstrating the feasibility in
adoption proposed modeling approach to study dependability metrics. This work resembles
the presented thesis by the study of virtualized network infrastructures adopting hierarchical
modeling, whereas no concern about high availability was presented, which is a noticeable
difference between the works.

Costa et al. [29] proposed a hierarchical model, adopting RBD and CTMC, to assess
the availability of a mobile cloud platform. A strong point of this work was the validation of
designed models through testbed measurements by automatically fault injecting and repairing of

3.1. HIERARCHICAL MODELING OF VIRTUAL ENVIRONMENTS 52

the infrastructure, taking into account the three evaluated layers: hardware, operating system,
and the Mobile cloud Platform. This work resembles this thesis by the experiments of fault
injection in the experimental infrastructure.

Cotroneo et al. [30] proposed a methodology for the dependability evaluation and bench-
marking of NFV Infrastructures (NFVIs), based on fault injection. Authors applied experimental
availability, defined as the percentage of traffic units, such as packets, that are successfully
processed during a fault injection experiment. They aimed to analyze the effects over requests,
due to VNF unavailability, that will not be processed by an IP Multimedia Sub-system (IMS)
deployed as VNF. During fault injection experiments, they found experimental availability
varying from 8.01% to 82.40% for all tested scenarios, with an average value of 51.37%. They
showed the important factors that can impact the experimental availability, concluding that while
it is important to have redundant and reliable devices to prevent I/O faults, it is even more
important to introduce additional resources to mitigate CPU and memory faults, including more
VM instances and physical CPUs to compensate for faulty ones.

Gonzalez et al. [51] focused their work in the system availability of virtualized Evolved
Packet Core (vEPC), specifically in how to assess the availability of a vEPC and which are the
main availability concerns to be considered. As the all-IP framework for providing converged
voice and data on a 4G Long-Term Evolution (LTE) network, the study of potential failures
sources in a vEPC environment, that is provided through VNFs under NFVI, is quite relevant.
Authors provided a Stochastic Activity Network (SAN), an extension of SPNs, claiming that
it is applicable to study how sensitive the availability is to the main parameters. The presented
numerical results show that a cluster of twelve Commercial Off-The-Shelf (COTS) servers
are required to obtain five 9’s of availability in the studied vEPC system. Furthermore, the
steady-state availability of each individual hardware (H), software (S), and hypervisor (Y) must
be equal to 99.99%. Authors adopted equal values for failure and repair rates of H, S, and Y, i.e.:
λH = λS = λY and µH = µS = µY , and based their recommendations to improve availability in
general design criteria, such as: design VNF functions with adequate operational redundancy to
cover individual failures; and provide high robustness software, hardware and hypervisor entities.
This paper resembles thesis by the study of VNF and NFVI availability.

Endo et al. [35] made a systematic review to present and discuss High Available (HA)
solutions for Cloud Computing, where they argued that delivering a higher level of availability
has been one of the biggest challenges for Cloud providers (similar to telecommunication service
providers serving VNF). As a result of the systematic review, HA cloud solutions were organized
into three layers. Redundancy was classified in the services middle layer. Four redundancy
models were presented, according to Availability Management Framework (AMF) of the Service
Availability Forum (SAF): 2N, N+M, Nway, and Nway active. The systematic review revealed a
preference for 2N model, due to its simplicity.

Herker et al. [58] modeled different backup strategies for VNF service chains and
provided algorithms for the resilient embedding of such VNF service chains in diverse Data

3.2. SOFTWARE AGING AND REJUVENATION OF SERVER VIRTUALIZED SYSTEMS
53

Center (DC) topologies. Author’s purpose was to deploy VNF service chains with predefined
levels of availability in DC networks.

Yoon et al.[131] implemented a virtualized network computing testbed on openstack
cloud. Such a testbed allows users to configure various types of virtualized networks using
their VNFs. They classified virtualized networks in 4 categories, according to how VNF: host
VM/nested VM; host VM/nested container; VM based; and container-based. No concerns about
high availability were looked on. Just one neutron node and one controller node were deployed,
whereas ten compute nodes are available.

Table 3.1 summarizes the most relevant presented related works regarding hierarchical
modeling, establishing a comparison between each of them in this thesis. The compared aspects
were:

� type of performed dependability evaluation;
� if some HA Testbed was assembled, analyzed, or both;
� concerns regarding high availability;
� adoption of cloud computing in the studies.

Our aims to define such aspects were justify the adoption of the used formalisms in the
research area and capture the aspects of high availability. One remarkable confirmation obtained
from related works is the adoption of small testbeds for measurements experiments, without HA
features such as clustering and 3N redundancy.

Table 3.1: Comparison with most relevant related works

Evaluation HA Testbed Parameters source five 9’s

Kim et al. [64] FT, CTMC No
previous literature,
estimated guesses Yes

Melo et al. [84] RBD, SPN No previous literature No
Dantas et al. [32] RBD, CTMC No previous literature No
Mauro et al. [33] RBD, SPN No previous literature Yes
Fernandes et al. [42] RBD, SPN No previous literature No
Costa et al. [29] RBD, CTMC No previous literature No
Cotroneo et al. [30] Measurement Yes - No
Gonzalez et al. [51] SPN No estimated guesses Yes

This thesis
Measurement,
RBD, CTMC

and SPN
Yes

previous literature,
estimated guesses,

experiment
Yes

3.2 Software Aging and Rejuvenation of Server Virtualized Systems

Machida et al. [74] presents analytic models using stochastic reward nets for three time-
based rejuvenation techniques for VMs and VMMs. The authors goal is compute the steady-state
availability and the number of transactions lost per year regarding three analyzed rejuvenation

3.2. SOFTWARE AGING AND REJUVENATION OF SERVER VIRTUALIZED SYSTEMS
54

techniques, named: (i) Cold-VM rejuvenation, in which all VMs are shut down before the VMM
rejuvenation; (ii) Warm-VM rejuvenation, in which all VMs are suspended before the VMM
rejuvenation; (iii) Migrate-VM rejuvenation, in which all VMs are moved to the other host
server during the VMM rejuvenation. The analyzed server virtualization system comprises two
servers. This work resembles this thesis by the adoption of dependability modeling with a focus
on availability. A positive aspect of this work is the report of an optimum rejuvenation schedule
for VM and VMM rejuvenation. A difference for this thesis is does not consider the remaining
layers of virtualized systems, such as services in the top-level and operating system and physical
server in bottom-level.

Matos et al. [79] presents an approach that uses time series to schedule rejuvenation to
reduce the downtime by predicting the proper moment to perform the rejuvenation. They used a
testbed environment to perform experiments looking for aging symptoms, characterized by the
consumption of CPU time, memory space, hard disk space, and process IDs. They adopted an
Eucalyptus testbed with 4N redundancy for servers hosting VM, however they adopt only one
server to the cloud controller. A positive aspect of this work was the detection of aging aspects
in virtual and resident memories with experiments with a duration of only 72 hours. This work
resembles this thesis by the adoption of a redundant testbed for servers running virtual machines
in a cloud environment. A difference for this thesis is not to consider the adoption of an HA
environment, such as Pacemaker/Corosync/HAProxy, in the Testbed provision assembling.

Araujo et al. [12] investigate the memory leak and memory fragmentation aging effects on
the Eucalyptus cloud-computing framework, as well as proposed a software rejuvenation strategy
to mitigate the observed aging effects. A positive aspect of this work was to experimentally
detect the existence of the investigated aging effects in the cloud environment under study. The
aging phenomenon was detected through workloads composed of intensive requests addressing
different virtual machines. The rejuvenation mechanism was implemented sending restarting
signals to the aged processes. This paper resembles the presented thesis by the analysis of
cloud Virtual Infrastructure Manager, named Eucalyptus. However, the impact of the adopted
rejuvenation mechanism over dependability measures was proposed as future work.

Alonso et al. [6] present a comparative experimental study of six different rejuvenation
techniques with different levels of granularity: (i) physical node reboot, (ii) virtual machine
reboot, (iii) OS reboot, (iv) fast OS reboot, (v) standalone application restart, and (vi) application
rejuvenation by a hot standby server. A key aspect of this work was to discover that application-
level rejuvenation strategies are better as a first tentative approach to mitigate the aging effects.
If the rejuvenation at a higher level was not effective, the rejuvenation of the next level could be
adopted. The authors argue that their results can contribute to availability improvement, but did
not analyze dependability metrics. That last aspect constitutes the key distinction between paper
authors and this thesis.

Nguyen et al. [91] show an availability model for a virtualized servers system using
stochastic reward nets considering software rejuvenation of VMs and VMMs. The models

3.2. SOFTWARE AGING AND REJUVENATION OF SERVER VIRTUALIZED SYSTEMS
55

take into account: (i) the detailed failures and recovery behaviors of multiple VMs; (ii) several
failure modes and corresponding recovery behaviors; (iii) dependency between different sub-
components (e.g., between physical host failure and VMM). The authors’ goal is to show
numerical analysis on steady-state availability, downtime in hours per year, transaction loss,
and sensitivity analysis. This work resembles this thesis regarding the dependencies among
virtualized system components. The main contribution of this paper is to show that a frequent
rejuvenation policy on VM may lower the SSA of the virtualized systems, whereas that on VMM
may enhance the system SSA. We can highlight the main difference between this paper and the
presented thesis as the absence of top-level service in authors analyzes.

Melo et al. [83] investigate the software aging effects on the openstack cloud computing
platform using a stressful workload. They collect information about the utilization of hardware
resources and openstack related processes. An All-in-one openstack deployment mode was
adopted. The study was carried out by performing repeated instantiations and terminations
of virtual machines. Furthermore, a resource utilization prediction based on time series was
performed, with the aim to identify possible failure scenarios. The authors argue that time series
models explain the behavior of the adopted cloud computing platform, as well as its associated
process. Four different types of time series were analyzed, namely: (i) the linear model; (ii) the
exponential growth model; (iii) the quadratic model; and (iv) the S-Curve Model. The goal was to
identify which one presents the best fitting with the collected results. The main aspect of this work
was the detection of software aging issues regarding database used by openstack, specifically
memory leak aging effects. As a result, openstack processes, like nova-api, suffer degradation
due to memory shortage. This paper resembles the presented thesis by analyzing the software
aging and rejuvenation phenomena in openstack cloud environment. However, a single server
All-in-one environment was adopted, without considering High Available implementations.

Torquarto et al. [116] presents an availability model based on SPN for virtualized servers
with software rejuvenation of VMM enabled by VM live migration scheduling. During model
analyses, this paper adopts two different approaches for VM live migration, named: Cold-Standby
Migration and Warm-Standby Migration. A positive aspect of this paper is observed from its
results: in environments with a heavy workload, the rejuvenation scheduling brings significant
improvement over availability. This work resembles this thesis by adopting live migration during
the software rejuvenation process. However, High Available environments were not covered.

Table 3.2 summarizes the most relevant related works regarding SAR of server virtualized
systems, also establishing a comparison between each of them and this thesis.

The compared aspects were:

� VMs live migration as a mechanism to rejuvenation;
� Software Aging and Rejuvenation of virtualized networks, with a focus on VNF and

SFC adoption;
� concerns regarding high availability;
� adoption of cloud computing in the studies.

3.2. SOFTWARE AGING AND REJUVENATION OF SERVER VIRTUALIZED SYSTEMS
56

Table 3.2: Comparison with most relevant SAR works

LM
Rejuvenation

SAR of
VNF/SFC

Consider
HA

Cloud
Analysis

Machida et al. [74] Yes No No No
Matos et al. [79] No No No Yes
Araujo et al. [12] No No No Yes
Alonso et al. [6] No No No No
Nguyen et al. [91] No No No No
Melo et al. [83] No No No Yes
Torquarto et al. [116] Yes No No Yes
This thesis Yes Yes Yes Yes

Our aims to define such aspects were justify the adoption of the proposed research
framework and verify the originality in the joint selection of these aspects.

575757

4
A Methodology for Provisioning of High Available VNF Chains

The main objective of this thesis is to propose and analyze stochastic models to evaluate
and improve virtual network functions. An aimed goal of this research is to propose high
availability solutions in the provisioning of these VNF chains.

We now present the adopted methodology in order to achieve these objectives. We aim
to support network specialists on estimate availability and capacity of VNFs, improving the
provision of virtualized network services into their infrastructures.

4.1 Methodology Overview

Figure 4.1 illustrates the adopted methodology and contextualizes the environment in
which this work is inserted. The main activities of the methodology are:

� System Understanding: it encompasses the comprehension of the systems, the identification
of its components and functionalities and the following infrastructure definition;

� Environment Conception: with the defined infrastructure, the environment conception takes
place with the implementation of the system that will further be modeled;

� Definition of Parameters and Metrics: with the understanding of the system and the defined
environment, the next activity defines the parameters the will be used to estimate the defined
metrics;

� Models Design: this activity is composed of the selection of suitable models and the tools
that are able to design and analyze them;

� State Input Parameters: it aims at identifying the sources of input parameters;
� Evaluation: it aims at performing the analysis of the studied system, producing the results,

i.e., the metrics estimations, of designed models;
� Yield Recommendations: based on generated results from models analysis, produce the

recommendations for network and cloud specialists.

4.1. METHODOLOGY OVERVIEW 58

System
Understanding

START

Environment
Conception

Models
Design

Definition of
Parameters
and Metrics

State Input
Parameters

Sources

Identify system
components and

functionalities

Define
infrastructure

Testbed
Assembling

Measurement
experiments

Previous
Literature

Manufactures
Data

END

SSA
COA

Environment
parameters

Model
parameters

Hierarchical
Models

Specific
components
sub-models

Evaluation

ite
ra

tio
n

satisfactory

satisfactory
not

Best
Practices

Yield
Recommendatios

Redundancy

Rejuvenation

Modeling
Tools

Definition of
Studied Scenarios

Figure 4.1: Overview of Adopted Support Methodology

We point out that the proposed methodology can be adopted by users with experience in
combinatorial and state-space based models for infrastructure planning and decision making in
virtualized environments, such as private cloud and its services. It is relevant to highlight that
this methodology can also be adopted to assist in the modeling of several systems that present
characteristics similar to those addressed in this work. The methodology activities are detailed
below.

4.2. METHODOLOGY ACTIVITIES 59

4.2 Methodology Activities

4.2.1 System Understanding

Aiming at planning virtualized infrastructures, such as server virtualization and cloud
computing ones, requires to understand how that systems work, identifying its main components
and making a survey of the main existing solutions, applications, and functionalities. For this
thesis, this activity represents a relevant goal, because it aids to delimit the work, mitigating the
risks to its conclusion. Understanding the system requires great attention and special care by the
analyst to avoid misinterpretation that could compromise the later steps of the methodology. This
activity is essential, as it enables us to learn about the techniques that can be adopted, adapted, or
will have to be created.

4.2.2 Environment Conception

The assembling of testbeds is a direct activity to consolidate the comprehension of the
studied systems. This activity corresponds to the selection, installation, configuration, and
management of an environment to execute VMs providing VNFs. The testbed must provide an
environment in which an NFV ecosystem can be executed and the VNF chains can be evaluated.
We opt by an open-source solution to keep the research with low costs. Some fundamental
decisions of this activity are presented below:

� Preliminary testbed: a Proxmox VE Server Virtualization was deployed, with the aim at
analyzing VNFs. Such a decision was motivated by its simple installation, configuration, and
management, as well as our previous experience [53] with the platform. We use container-
based virtualization with OpenVZ;

� Subsequent testbed: Following, an HA Openstack Cloud Infrastructure was implemented.
During the infrastructure update, we performed the HA environment installation (both hard-
ware and software). Openstack has an official project regarding SFC [132]. It provides an
implementation of the classifier and the VNF chains. We use full-virtualization with Kernel-
based Virtual Machine (KVM), the default openstack hypervisor. It has the advantage to
provide both server virtualization and network virtualization solutions. As the main OpenFlow
Protocol agent, the Open vSwitch was selected as L2 virtual solution (as Open vSwitch was
originally designed for virtualized networking, it is fully compatible with L2-L4 networking
and can benefit for previously presented advantages provided by SDN). The practical expe-
riences with these structures aids to generate dependability models that can be sufficiently
representative.

4.2.3 Definition of Parameters and Metrics

Any element in which the variation of its values modifies the solution of a problem,
without, however, changing its nature, is called a parameter. In this work, we can identify two

4.2. METHODOLOGY ACTIVITIES 60

types of parameters: those used to excite the measurement environments and those used to
estimate the metrics of interest on models. So, at this stage, the analyst must define which
scenarios and metrics will be covered, focusing mainly on those that have the greatest influence
on the quality of provided service.

Regarding environment parameters, the virtualization approach (Full-, Para-, or Container-
based Virtualization), the SFC size, and the video cache spool capacity are the most influential.

Regarding models parameters, we widely adopted Mean Time To Failure (MTTF) and
Mean Time to Repair (MTTR) of the system components. Furthermore, in rejuvenation scenarios,
any preventive maintenance execution, resulting in a live migration of the chain’s VMs, is
scheduled by Mean Time Between Preventive Maintenance (MTBPM) parameter. As MTBPM
expires, a set of conditions is verified to state if the environment is favorable to the execution
of preventive maintenance. If the verification is not favorable, all issues postponing preventive
maintenance must be resolved before migrate the VNF chain.

The following conditions were adopted:

1. the destination server must be active.

2. there will be no simultaneous VNF chain migration.

3. the VNF chain in destination server must be active.

4. the Open vSwitch in destination server must be active.

Condition 1 is an evident requirement, as the destination server that will receive VMs,
must be active. Condition 2 prevents simultaneous preventive maintenance in both servers, that
would put the overall system in a down state. Conditions 3 and 4 avoid downtime at the start of
any preventive maintenance, verifying if all the VMs, services, and the Open vSwitch are active
in the destination server.

Besides MTBPM, we are also considering two other parameters: Mean Time To Perform
Preventive Maintenance (MTTPPM) and Mean Time To Chain Live Migration (MTTCLM)
(Figure 4.2). The MTTPPM is the estimated mean time interval in which the maintenance
procedures related to the aging elimination take place. On the other hand, the MTTCLM is the
time interval required to migrate all the VMs belonging to a service chain.

We consider that the server and their softwares age during MTBPM period, as depicted
in Figure 4.2. As soon as MTBPM expires, the chain’s VM live migration starts, and during this
period, the chain is not working. We take advantage of MTTCLM window to reinitialize the
VMs. So, when the service chain is activated in destination openstack node, it is rejuvenated.
During the MTTPPM window, preventive maintenance is performed. The last step of the process
is to return the chain to its original openstack node, in order to minimize the downtime if the
destination node fails. Some of the model parameters only require valid choices. For example,
the percentage of a component fast repairs in comparison with the percentage of its slow repairs.

4.2. METHODOLOGY ACTIVITIES 61

 Aging HW to Hypervisor
Rejuvenation

TIME

MTTPPM MTBPM . . .

 Aging

MTBPM
Text

System
Initialization

SFC
Rejuvenation

M
T
T
C
L
M

M
T
T
C
L
M

Chain return to
the original node

Figure 4.2: Aging and Rejuvenation processes

It is evident that the sum of these percentages must be 100% for a correct estimation of the
metric under analysis.

The main conclusions of this thesis will emerge through the metrics analysis. In this
research, we aim at estimating dependability metrics, namely Steady-State Availability and
Capacity Oriented Availability.

4.2.4 Models Design

The activity of models designing is associated with the representation of the infrastruc-
ture scenarios, such as those observed in environment conception activity. Analytical models
may not be satisfactory in its first proposals. Iterative modeling approach may be applied to
adjust proposed models through successive improvements until it is suitable to represent an
achievable target behavior. Dependability modeling may adopt an iterative approach to consider
progressively: the dependencies between system components [106] or yet improvements in the
metrics of interest [80].

In this phase, the scenarios are modeled considering the following variables: number
of nodes, number of VNFs, type of services, and redundancy mechanisms. We adopted a
hierarchical and heterogeneous approach for modeling, based on a reliability block diagram used
at low-level, and CTCM or SPN in the top-level.

A modeling tool that has a visual environment is helpful. It assists in model development
while also enables the computation of the metrics of interest. Among some tools, we can mention
Mercury [109]. The inputs of this activity are: the type of metrics to be evaluated (for example,
dependability metrics, such as availability), established in previous activities; understanding
the operation of key components or subsystems, as well as the description of dependencies or
interconnections between system components.

Firstly, RBD models were created to evaluated Cache VNFs considering both a single
server and two redundant servers. The RBD models enable using closed-form formulas for
computing Steady-State Availability. Closed-form formulas are useful to facilitate the generation
of sensitivity indices with respect to each model parameter. After, hierarchical and heterogeneous

4.2. METHODOLOGY ACTIVITIES 62

models were conceived to represent systems with a higher number of components, when load
balancers were inserted in the analyzed systems. Next, specific sub-models were designed to the
study of VNF chains in a cloud computing environment. The combination of these sub-models
represents the entire system whose metrics are estimated.

4.2.5 State Input Parameters Sources

With the aim to adequately represent system behavior, some of the input values must
be obtained through measurement experiments. Experiments are used to study the behavior of
processes and systems. Besides the implementation of a test environment, the experiments may
also require the creation of support tools. Such a requirement will depend on the existence of tools
that support the combination of the analyzed metrics, the observed scenario, and the investigated
environment. However, for scenarios in which experiments execution are not feasible, the input
parameter values should be obtained through previous literature with similar features to conduced
study. In addition, manufacturer data can also be used to feed the proposed models. However,
caution is required as the values provided by the manufacturers may be overestimated. In this
case, the analyst may adopt a reduction factor based on literature or even in empirical knowledge,
to reduce values and bring them closer to reality. In some cases, the input parameter values of
some models may be obtained through other models, which may be sub-models of this thesis
itself or models from the literature.

4.2.6 Evaluation

During this activity, we analyze the designed models, producing the results for the studied
metrics. In the evaluation process, the lower-level models should be resolved first, because
their results will be used as input parameters for top-level models. The solution method (i.e.,
numerical analysis or simulation) may vary for each model, depending on the constraints of
modeling formalism.

The results are compared with predefined reference values. The aim is to observe the
possible improvements that can be obtained by the adoption of the strategies implemented by the
models in existing infrastructures.

New iterations may be conducted to capture updates implemented in the modeled system
or to adjust proposed models through successive improvements until it is suitable to represent an
achievable target behavior.

4.2.7 Yield Recommendations

After the results generation, the analyst should report recommendations regarding im-
provements that may be implemented in an existent system, or establish configuration require-
ments for systems under design and/or deployment. We will report the improvements over

4.2. METHODOLOGY ACTIVITIES 63

Steady-State Availability and Capacity Oriented Availability metrics, that cloud operators may
reach through the adoption of the redundancy and rejuvenation strategies presented in this thesis.

646464

5
Measurement Experiments

This chapter presents the measurement experiments that were executed in the assembled
testbeds during this research. First, the adopted workload, based on User Generated Con-
tent (UGC), is presented. After, the proper testbeds are presented. Finally, the measurement
experiments for each testbed, as well as their results, are reported.

5.1 Workload for User Generated Content

Global IP traffic has increased fivefold between 2011 and 2015, and it will increase
threefold until 2020. Additionally, Cisco VNI [25] indicates that 82% of all IP traffic will be
video and, at every second, nearly a million minutes of video content will cross the network
by 2020. Video streaming is the main factor of this growth, and is basically composed of
two media platforms: Video on Demand (VoD), such as Netflix, and User Generated Content
(UGC), such as Youtube. Motivated by these values, we performed the workload characterization
of User Generated Content (UGC) video system, enabling us to reproduce the behavior of
an UGC video system in a controlled environment. Abhari and Soraya [2] performed a workload
characterization of Youtube, during a five-month period for 250,000 videos. The characterization
revealed a file popularity behavior that fits Zipf distribution [3, 18] and a file size behavior
that fits gamma distribution [87]. The probability mass function (pmf) and probability density
function (pdf) of these distributions are given respectively by:

f (x) =
1

xs ∑
n
i=1(1/i)s x = 1,2, ...,n,

�
 �	5.1

and

f (x) =
xβ−1e−x/α

αβ Γ(β)
x > 0.

�
 �	5.2

In Equation(5.1), s parameter is skew factor of Zipf distribution. In Equation(5.2), α

and β are respectively the scale and shape parameters of gamma distribution. The parameter
values presented by Abhari and Soraya [2] and exhibited in Table 5.1 were adopted during the
workload tool configuration.

This workload characteristics have been used during the performed measurements exper-

5.2. PROXMOX SERVER VIRTUALIZATION TESTBED 65

Table 5.1: Parameters for UGC video characterization

Parameter Value
skew(s) 0.9
scale(α) 5441.93
shape(β) 1.80

iments.

5.2 Proxmox Server Virtualization Testbed

The NFV video cache cluster shown in Figure 5.1 was designed to support TTFs estima-
tion. This testbed adopts Proxmox as the MANO component. Proxmox provides a management
interface for orchestration, which allows containers’ loading and monitoring.

Figure 5.1: Testbed for UGC video cache cluster

Two servers (AMD Phenom Quad-Core Processors, 2.3 GHz, 8 GB RAM, Gigabit
Ethernet adapter) compound the cluster. They have 3 directed attached hard disks (HD) (250GB,
6Gb/s, 7200RPM). Two HDs are exclusively used for cache server spools (labeled as HD1 and
HD2 for Server1 and HD3 and HD4 for Server2), whereas the third HD rooms the server operating
system.

Each server hosts two Container (CT) with sole hard disks. Such an approach improves
availability, as highlighted in our previous work [52]. All VNF cache servers were implemented
using Squid Server 3.4.2. A Gigabit switch interconnects the testbed nodes. The nodes with
Squid Servers adopted an active-active redundant video cache cluster to measure the failure rates.

5.3. HA OPENSTACK CLOUD TESTBED 66

5.3 HA Openstack Cloud Testbed

We accomplished HA by incorporating features such as redundancy for failover and
replication for load balancing in each component without using costly specialized hardware and
software.

� HA Openstack Cloud: Hardware Infrastructure

Our HA Cloud is formed by 9 servers divided into 3 Pacemaker clusters, as depicted in
Figure 5.2.

� HA Controllers cluster is composed of 3 servers. Two of them with Intel Xeon CPU
E3-1220 3.10GHz, 16GB RAM, 4 Gigabit Ethernet Adapters, and 1TB of hard disk
capacity, and the third with Intel Core CPU i7-2600 3.40GHz, 8GB RAM, and also 4
Gigabit Ethernet Adapters, and 750GB of hard disk capacity, divided in one disk with
500GB e another with 250GB;

� HA Computes cluster nodes differs from HA Controllers in the amount of RAM for Intel
Xeon server (32GB);

� HA Neutron cluster is composed of three servers with AMD Phenom Quad-Core Proces-
sors, 2.3GHz, 8 GB RAM, 5 Gigabit Ethernet adapters, and 500GB of hard disk capacity.
The fifth network adapter of neutron’s nodes is used for an external Internet connection.
Two Gigabit switches interconnect testbed nodes.

Figure 5.2 shows the redundant connections between clusters and both testbed switches.

Figure 5.3: Bonding between each testbed server and the switches

Indeed, there are four UTP Cat 5e cables physically connected to each node, as depicted
in Figure 5.3. Each pair of cables forms a redundant round-robin Linux bond [127], depicted by
the ellipses, and there is no cabling SPOF. Bonding interfaces are a cost-effective way to provide
hardware-level network redundancy to the cloud infrastructure.

We are able to ensure that there are no hardware SPOF in the assembled HA Openstack
Cloud. The heterogeneity of equipment is due to their availability in the laboratory. During the
testbed assembling, no configuration differences were required due to servers heterogeneity. The
operating systems, openstack components, and pacemaker/corosync packages were installed
without distinctions, as described below.

5.3. HA OPENSTACK CLOUD TESTBED 67

HA Controllers

Users

Internet

VNF

HA Computes

VNF

VNF

VNF

VNF

VNF

VNF

HA Neutrons

VNF

SRC
VM

DST
VM

VNF

Figure 5.2: Openstack HA Cloud Architecture

� HA Openstack Cloud: Software Components

Regarding the installation of openstack software components, Pacemaker and Corosync
were installed and configured in all 9 HA cloud nodes, as depicted in Figures 5.4, 5.5, and 5.6.
The management (initialization, shutdown, re-initialization, and monitoring) of each openstack
daemon is performed by Pacemaker.

MariaDB was adopted as the underlying database. Its HA solution was implemented
through Galera Cluster. The AMPQ message queue system was implemented, and its native HA
solution configured and enabled.

HAProxy was installed to perform the load balancing to requests performed to the HA

Controllers cluster. Any requests regarding instantiation of VMs are forwarded to the Virtual
IP (VIP) of HA Controllers cluster. HAProxy receives these requests and forwards them, using
a round-robin policy, to the aimed openstack component. HAProxy was also wrapped by
Pacemaker (refer to Table A.2).

All the clusters (HA Controllers, HA Computes, and and HA Neutron) were configured
in an active/active/active redundancy. Even without spare nodes, there are advantages in adopt
active-active redundancy in the selected clustering softwares system, such as management
centralization (all the nodes in the cluster may be managed in any server) and dropping of
recovery rates.

5.3. HA OPENSTACK CLOUD TESTBED 68

glance-api

glance-registry

horizon

nova-api

nova-novncproxy

nova-conductor

nova-scheduler

nova-consoleauth

Pacemaker

CoroSync

ha-controller01 ha-controller02 ha-controller03

glance-api

glance-registry

horizon

nova-api

nova-novncproxy

nova-conductor

nova-scheduler

nova-consoleauth

glance-api

glance-registry

horizon

nova-api

nova-novncproxy

nova-conductor

nova-scheduler

nova-consoleauth

neutron-server neutron-server neutron-server

Figure 5.4: Pacemaker: HA Controller Cluster

neutron-agent-
dhcp

Pacemaker

CoroSync

ha-neutron01 ha-neutron02

neutron-agent-l3

neutron-agent-
dhcp

neutron-agent-l3

neutron-agent-
dhcp

neutron-agent-l3

ha-neutron03

Figure 5.5: Pacemaker: HA Neutron Cluster

5.4. TIME TO FAILURE MEASUREMENTS IN PROXMOX SERVER VIRTUALIZATION
TESTBED 69

nova-compute

Pacemaker

CoroSync

ha-compute01 ha-compute02 ha-compute03

nova-compute nova-compute

neutron-
openvswitch-agent

neutron-
openvswitch-agent

neutron-
openvswitch-agent

Figure 5.6: Pacemaker: HA Neutron Compute

Openstack HA implementation is not free of conflicting requirements. For example: it is
not possible to bound services to IP address 0.0.0.0, which results in offering the service in all
configured interfaces, including loopback. So, the service is bounded to virtual IP instantiated by
Pacemaker. But some resource agents configured in pacemaker monitor port services bounded to
the loopback address, by default. This impacts the deployment time of HA Openstack solution.
Some troubles can arise, such as performability issues related to bottlenecks of network I/O. We
had experienced and troubleshooted a similar issue in a previous work [52].

5.4 Time To Failure Measurements in Proxmox Server Virtualization Testbed

Software component MTTFs are not readily available, and experiments can be performed
to estimate them. We proposed and executed a series of experiment replications aiming at measur-
ing TTFs in the UGC video cache cluster of Proxmox Server Virtualization testbed (Figure 5.1).
The goal was to detect how long all the caching processes take to cause a cluster failure.

The adopted methodology to measure the TTFs comprises 2 activities, as depicted in
Figure 5.7:

� Activity 1 - Configure workload generation tool: Web-Polygraph (WP) [102] was adopted to
excite the video cache VNF cluster (see Figure 5.8). It includes both client and server-side
simulators. Two additional machines were added to the Proxmox Testbed with the aim to
execute the WP client-side and server-side, as depicted in Figure 5.8.

The client-side is used to generate and forward the configured workload to video cache VNF
cluster, populating it in a balanced way through a round-robin policy. As any traditional
caching system, when the required objects are found, the caching system answers the request
with the desired object. Otherwise, the request is forwarded to WP server-side, that answers
with the requested objects.

WP natively supports Zipf distribution, so that we could model file popularity behavior through
WP popZip f function. Gamma distribution, required to represent file size behavior, is not
natively available in WP, but we could represent it using a WP additional resource called

5.4. TIME TO FAILURE MEASUREMENTS IN PROXMOX SERVER VIRTUALIZATION
TESTBED 70

Figure 5.7: Methodology to estimate TTFs

user-defined distribution. Non-native distributions can be modeled as a value-frequency table.
We generated value-frequency pairs presented in the Table 5.2 using R [47] rgamma function,
adopting shape and scale parameters as defined in Table 5.1.

Table 5.2: rgamma results: file sizes and frequencies

File size(MB)
[min : max) Frequency(%)
0.128 : 5.12 28.65
5.12 : 10.24 32.31

10.24 : 15.36 19.60
15.36 : 20.48 10.17
20.28 : 25.60 4.98
25.60 : 30.72 2.35
30.72 : 35.84 1.11
35.84 : 40.96 0.45
40.96 : 46.08 0.215
46.08 : 51.20 0.085
51.20 : 56.32 0.03
56.32 : 61.44 0.03
61.44 : 66.56 0.01

Observing Table 5.2, one can notice that the majority of UGC video files (32.31%) have size
between 5.12MB and 10.24MB.

� Activity 2 - Run stressing experiment replications: it aims to capture TTFs of VNF video
cache executing UGC video workload.

These experiments are hard to conduct because of time they will take, or yet because of the
difficulty of attributing the cause of failures. With the aim of accelerating the results of the

5.5. SERVICE FUNCTION CHAIN MIGRATION EXPERIMENTS IN HA CLOUD
TESTBED 71

Figure 5.8: Proxmox Testbed: additional machines to execute TTF experiments

experiments, avoiding unpredictable experiments duration time intervals for TTFs estimation,
we limited the total cache capacity of the cluster. With UGC workload and a limited cache
space, the storage capacity was quickly exhausted, overloading the video cache cluster and
accelerating failure events.

Observing the methodology of Figure 5.7, if the experiments replication time is below a
predefined threshold, the cache capacity is doubled, and three new replications are executed. The
experiments were started with 4GB of cache capacity (1GB per container) and a time threshold
of 1-hour. We were able to increase the cache capacity twice without infringing the adopted
threshold, reaching 16GB of total cache capacity.

Figure 5.9 exhibits the obtained TTFs. As can be noted, as the storage capacity increases,
the failure times also increase. Adopting the configured User Generated Content workload, a
capacity storage greater than 16GB does not result in cluster failure in the 1 hour threshold, and
we finalize the experiments.

The MTTF=315.33s from 16GB scenario was adopted as input parameter in availability
models presented in the next chapter, because it is the most relevant due to higher storage
capacity.

5.5 Service Function Chain Migration Experiments in HA Cloud Testbed

The measurement experiments adopted a VNF chain composed of a load balancer, a
firewall, and a cache aimed at store User Generated Content videos, as depicted in Figure 5.10.

5.5. SERVICE FUNCTION CHAIN MIGRATION EXPERIMENTS IN HA CLOUD
TESTBED 72

Figure 5.9: Time to Failure (TTF) of the 3 evaluated cache capacities

SRC
VM

DST
VM

VNF

VNF

VNF

Figure 5.10: UGC video flow through SFC composed of a load balancer, a firewall, and a cache
server

The UGC workload (Section 5.1) was also configured in Web-Polygraph for SFC live
migration experiments. However, distinctly for Proxmox Testbed, WP server-side was executed
in DST VM (Figure 5.10) whereas SRC VM executes WP client-side.

The first VNF to process the UGC packet flow is the load balancer. We adopted the
round-robin policy using HA Proxy. After, firewall VNF inspects packets, looking for SYN
flooding and ping of death flows. Lastly, the cache VNF looks for requested video files.

We choose KVM as the hypervisor to execute VM instances in openstack. It is one of the
most popular hypervisors with openstack deployments, it is also the default configuration option,
and it has a low configuration time cost. Moreover, as full virtualization platform presents large
migration times in comparison with para-virtualization or container-based virtualization (as can
be seen in our previous work [53]), our goal is establishing an upper limit for SFC migration
time.

When an instance is booted for the first time, neutron assigns a virtual port to each
network interface of the instance. A port for neutron is a logical connection of a vNIC to a
subnet (a layer 3 IPv4 or IPv6 network object). A VM instance running on KVM uses its vNIC
so that the applications, such as load balancers and cache server, can communicate to the outside
world through.

We implemented service function chains using openstack SFC API. When the SFC API
executes the Open vSwitch driver, an Ethernet frame will pass through a set of virtual devices, as

5.5. SERVICE FUNCTION CHAIN MIGRATION EXPERIMENTS IN HA CLOUD
TESTBED 73
depicted in Figure 5.11.

FW-sfLB-sf VC-sf

br-int

br-int
patch-tun

patch-int
br-tun
bond1

qvb06b19bf5-09

qvo06b19bf5-09

pLB1
192.168.66.11

ens3

qbr06b19bf5-09
tap06b19bf5-09

ens4

pLB2
192.168.66.12

tap1b94f919-8d
qbr1b94f919-8d
qvb1b94f919-8d qvb26ece2c1-a6

qbr26ece2c1-a6

qvo1b94f919-8d

tap26ece2c1-a6

pFW1
192.168.66.13

ens3

qvo609892d2-9e

ens4

pFW2
192.168.66.14

qbr609892d2-9e
qvb609892d2-9e

tap609892d2-9e

qvo26ece2c1-a6
Vlan tag 1

qvof505af83-bc

ens4

pCache2
192.168.66.16

tapf505af83-bc
qbrf505af83-bc
qvbf505af83-bc

qbrc7aa8444-d5
tapc7aa8444-d5

qvbc7aa8444-d5

qvoc7aa8444-d5

pCache1
192.168.66.15

ens3

ha-compute01

port
pair

port
pair

port
pair

SRC
ens3
pSrc

192.168.66.1

tap0e1c4027-c7
qbr0e1c4027-c7
qvb0e1c4027-c7

qvo0e1c4027-c7

pDst
192.168.66.50

DST

tap14b6baf5-cb
qbr14b6baf5-cb
qvb14b6baf5-cb

qvo14b6baf5-cb

eth0

Figure 5.11: Detailed openstack SFC flow

The packets flow starts from Web-Polygraph SRC virtual machine, through its vNIC
ens3. But for this vNIC to be operational, it has to be able to connect to something on the other
end that gets it to some destination. This is the purpose of the other components of the network
architecture depicted in Figure 5.11. So, after vNIC ens3, the next device is the tap software-only
interface. Tap devices are the way that KVM implement a vNIC attached to the VMs. The traffic
from a vNIC (such as ens3), in a virtual machine instance, can be observed on the respective tap
interface in the host Compute server. The tap interface was useful during the execution of the
experiments because it enables traffic monitoring in the openstack compute host.

After tap interface in the stack, the Open vSwitch driver requires a Linux Bridge. The
virtual interface with prefix qbr shows the Linux Bridge (the "q" stands for quantum, the initial
name of neutron project in the openstack community). All the iptables support that implement
access rules for virtual machines are configured in the Linux Bridges. The next two layers,
qvb and qvo, constitutes the virtual ethernet (veth) cable. The first one, qvb, represents the
bridge veth side. The second one, qvo, represents the Open vSwitch veth side, connected to
the Open vSwitch integration bridge br-int. The integration bridge is the central virtual switch
that most virtual devices are connected to, including instances, DHCP servers, and routers. The
multi-tenant feature is implemented by the integration bridges using VLANs. As one can observe
in Figure 5.11, all the five VMs used in the migration experiments belongs to the same VLAN,
identified by its tag ID 1.

The flow from Web-Polygraph SRC VM is now forward, through OpenFlow rules, to the
qvo interface of LB-sf VM, passing through qvb, qbr and tap, reaching LB-sf ens3 vNIC. As all

5.5. SERVICE FUNCTION CHAIN MIGRATION EXPERIMENTS IN HA CLOUD
TESTBED 74
openstack networking services and openstack Compute instances connect to a virtual network
via ports, it is possible to create a traffic steering implementation for service chaining using only
openstack ports.

All the VMs belonging to the service function chain were instantiated in a unique
compute node (ha-compute-01). In scenarios in which multiple compute nodes would be used,
the integration bridge will forward the traffic through the veth composed of patch-tun and patch-
int connections. The bond1 interface represents the collections of physical network interfaces.

The SFC API implements the concept of port pair. A port pair represents a specific
service function. The port pairs used in the SFC live migration experiment can be observed in
Figure 5.11, and are detailed in Table 5.3.

VM/Port Pair Name Port IP vNIC

LB-sf/LBPP_C1
pLB1 192.168.66.11 ens3
pLB2 192.168.66.12 ens4

FW-sf/FWPP_C1
pFW1 192.168.66.13 ens3
pFW2 192.168.66.14 ens4

VC-sf/CachePP_C1
pCache1 192.168.66.15 ens3
pCache2 192.168.66.16 ens4

Table 5.3: Port pairs for SFC live migration experiments

Regarding LB-sf VM, the ports pLB1 and pLB2 form a port pair. The pLB1 port is the
ingress port in the pair, whereas the pLB2 port in the egress port in the pair. Similar behavior is
presented by port pairs (pFW1, pFW2) and (pCache1, pCache2).

The adopted flow classifier was created using the rules below:

i. IPv4 traffic;
ii. the source IP address equal to Web-polygraph (192.168.66.1);

iii. the destination IP address equal to cache video VNF (192.168.66.15);
iv. TCP protocol;
v. the TCP source ports in the 30000:65535 range;

vi. the TCP destination port equals to the video cache VNF server (3128);
vii. neutron source port equals to WP Source VM (pSrc).

From the dashed line depicted in Figure 5.11, one can observe that the traffic from
Web-Polygraph SRC VM will ingress in the port chain through port pLB1. The load balancer
VNF will apply its policies in the traffic of vNIC ens3, forwarding the resulting throughout
ens4. The traffic flow egress from port pLB2, continuing its journey inside the port chain. All
the virtual interfaces and virtual devices steer the flow until it reaches VC-sf ens3 vNIC. The
video cache VNF looks up its spools. If the desired object is found, the video cache answers
the request, otherwise, it forwards the request to the Web-Polygraph DST VM. The DST VM
simulates all the Internet. Any requested object will be found and sent to the video cache VNF

5.5. SERVICE FUNCTION CHAIN MIGRATION EXPERIMENTS IN HA CLOUD
TESTBED 75
implemented on VC-sf VM. As the answer is unrelated with the port chain, it is sent for the SRC
VM outside the port chain, as can be observed by pointed line.

5.5.1 Experiments execution

The TISVEP (Tuning Infrastructure for Server Virtualization Experiment Protocol) [53]
was adopted to manage the execution of the experiments. TISVEP automatizes all required
configuration steps to replicate experiments.

We collected three time intervals during experiments:

i. deletion of SFC API openvswitch chain rules;

ii. chain migration;

iii. creation of SFC API openvswitch chain rules.

The procedures (i) and (iii) are mandatory for SFC migration in openstack SFC API because the
packet flow transmitted through the chain will fail after migration if the Open vSwitch rules were
not deleted before VMs migration. As TISVEP is extensible, five new messages were created to
capture VNF chain live migration times. They are presented below:

� 312 - createChain: results in the execution of all required commands in a controller node to
mount the chain;

� 313 - deleteChain: similar to message 312, but aimed to remove the chain;
� 314 - detectMigration: sent to a compute node, it results in monitoring the VMs hypervisor

Process Identification (PID). While the PIDs are not detected, TISVEP waits;
� 315 - fwRulesInjection: results in required netfilter [107] configuration of security rules aimed

to allow the chain’s traffic;
� 316 - migrateChain: execute the chain’s migration commands in the controller node.

All physical and virtual machines run TISVEP server-side with the goal to configure the
experiment environment during its execution. Figure 5.12 depicts the TISVEP messages that
were sent with the aim to capture the time intervals (i), (ii), and (iii).

As can be noted in Figure 5.12, messages 313, 316, and 312 are delivered for one
controller node, whereas messages 314 and 315 are delivered to the migration target compute
node. According to TISVEP, all messages must be answered with the STATUS of executed
configuration commands, so that the experiments can be monitored in the experimenter’s system.

Forty migration experiments were performed and Table 5.4 exhibits 95% mean confidence
intervals.

Specifically to this set of migration experiments, message 316 (migrateChain) conduced
VMs back and forth nodes ha− compute01 and ha− compute02, the more powerful servers
of HA Computes cluster. The mean values of Table 5.4 will be inserted in the SPN models
presented in the next chapter.

5.5. SERVICE FUNCTION CHAIN MIGRATION EXPERIMENTS IN HA CLOUD
TESTBED 76

Experimenter
System

hacompute02hacontroller01

313: delet
eChain

STATUS

316: migra
teChain

314: detectMigration

STATUS

STATUS

315: fwRulesInjection

STATUS

312: creat
eChain

STATUS

Figure 5.12: TISVEP messages for live migration experiments

Table 5.4: Mean Confidence Intervals

Time interval(s) LB(s) Mean(s) UB(s)
SFC rules deletion 6.119 6.147 6.175
VNF chain migration 108.797 114.511 120.226
SFC rules creation 12.049 12.089 12.129

777777

6
Availability Models

6.1 Introduction

This chapter presents the models that represent the components aimed at providing VNF
chains. Preliminary, a study was conducted with models representing VNFs in the Proxmox VE
server virtualization platform. After, Service Function Chains models were proposed for HA
openstack cloud.

6.2 Models for VNFs in Proxmox server virtualization infrastructure

For this first proposed models regarding VNFs, the components of the Proxmox platform
were modeled using RBDs, as depicted in Figure 5.1. The Proxmox servers, the containers, and
the applications provided in containers are the represented components.

6.2.1 Model for VNF Cache Cluster

This model represents the utilization of only two containers running in one node of a
Proxmox Server Virtualization Infrastructure. The components of the model, represented by the
composition of series and parallel RBDs, are depicted in Figure 6.1. The Server block represents
the hardware components of the physical server. The Storage (S) block represents the persistent
memory of the server. The OS block represents the Operating System. The CTi blocks represent
the containers, whereas the APPi blocks represent the VNF cache servers.

Figure 6.1: RBD for VNF Cache Cluster

6.2. MODELS FOR VNFS IN PROXMOX SERVER VIRTUALIZATION
INFRASTRUCTURE 78

The closed-form equation for availability of the non-redundant VNF cluster is expressed
as:

(6.1)SSA = AServer × AS × AOS × (1− (1− ACT 1 × AAPP1)× (1− ACT 2 × AAPP2))

Table 6.1 report the input parameters adopted in the first case study (Figures 6.1 and 6.2).
The parameters represent the mean time to failure and repair of each component. In addition
to using manufacturer data for the modeling phase, cloud computing analysts, technicians, and
managers can use historical data from their environments. In this way, the values can contribute
to the obtention of closer results.

Table 6.1: Dependability parameters for VNF Cache Cluster

Parameter Description
MTTFSRV Server Mean Time To Failure
MTTRSRV Server Mean Time To Repair
MTTFS Storage Mean Time To Failure
MTTRS Storage Mean Time To Repair
MTTFOS Operating System Mean Time To Failure
MTTROS Operating System Mean Time To Repair
MTTFC Container Mean Time To Failure
MTTRC Container Mean Time To Repair
MTTFAPP Application Mean Time To Failure
MTTRAPP Application Mean Time To Repair

6.2.2 Model for Cache VNF and Load Balancer

The interaction among applications was modeled using top-level CTMCs. The details are
provided below. This first proposed model represents a cache VNF system chained with a load
balancer appliance. We adopted four cache VNF sub-system due to the number of containers
in the first assembled testbed (Figure 5.1). Each cache VNF sub-system is composed by one
Server(HW), one Storage(S), one OS, one container(CT), and one cache VNF(APP). The series
RBD depicted in Figure 6.2 represents the low-level cache VNF model.

Figure 6.2: RBD model for VNF cache sub-system

The reliability of each component (Ri(t)) [75] is considered to compute the resulting
MTTF of a series RBD:

6.2. MODELS FOR VNFS IN PROXMOX SERVER VIRTUALIZATION
INFRASTRUCTURE 79

Ri(t) = e−λit

MT T Fi =
∫

∞

0
Ri(t)dt =

∫
∞

0
e−λitdt =

[
−e−λit

λi

]∣∣∣∣∣
∞

0

MT T Fi = lim
t→∞

−e−λit

λi
− lim

t→0

−e−λit

λi
= 0− −1

λi
=

1
λi

�
 �	6.2

So, for the entire system,

R(t) = e−λ1t× e−λ2t× e−λ3t× ...× e−λnt = e−∑
n
i=1 λit

MT T FSS =
1

∑
n
i=1 λi

,

�
 �	6.3

where λi is the failure rate of each system component. So, the sub-system MT T FSS may be
estimated by the Equation 6.4.

MT T FSS =
1

λHW +λS +λOS +λCT +λAPP

�
 �	6.4

The maintainability of each component(Mi(t)) is considered to compute the resulting
MTTR of a series RBD:

Mi(t) = 1− e−µit

MT T Ri =
∫

∞

0
1−Mi(t)dt =

∫
∞

0
e−µitdt =

[
−e−µit

µi

]∣∣∣∣∞
0

MT T Ri = lim
t→∞

−e−µit

µi
− lim

t→0

−e−µit

µi
= 0− −1

µi
=

1
µi

�
 �	6.5

So, for the entire system,

M(t) = (1− e−µ1t)× (1− e−µ2t)× (1− e−µ3t)× ...× (1− e−µnt) = (e−∑
n
i=1 µit)

MT T RSS =
1

∑
n
i=1 µi

,

�
 �	6.6

where µi is the failure rate of each system component. So, the sub-system MT T RSS may be
estimated by the Equation 6.7.

MT T RSS =
1

µHW +µS +µOS +µCT +µAPP

�
 �	6.7

The top-level model representing the whole system, i.e., the joint behavior of the cache
VNF and the load balancer, was modeled through a CTMC. This hierarchical ans heterogeneous
model is represented in Figure 6.3. The system will be available when at least one cache VNF
sub-system is working and the load balancer is working.

6.2. MODELS FOR VNFS IN PROXMOX SERVER VIRTUALIZATION
INFRASTRUCTURE 80

Figure 6.3: Hierarchical Composition: top-level CTCM of system’s availability model; bottom
level RBD of cache node sub-system model

We adopted a notation for the CTMC model states based on the current condition of each
component. The first character represents the number of working (up) cache VNFs. The second
character represents the state of the load balancer: up (U) or down (D). We shaded the states in
which the system is down.

The system is at full capacity at state 4,U . From this state, the failure of one working
cache VNF sub-system brings the system to state 3,U , at a 4λSS rate. From this latter state, when
a failure occurs in load balancer at λlb rate, the system goes to inactive state 3,D. From this
state, the system can be repaired at µlb rate, returning to working 3,U state. Likewise, from 3,U
state, the failed cache VNF sub-system can be repaired at muSS rate, and the system returns to
its full capacity at state 4,U . The remaining states and transitions have a similar understanding.
The sub-system failure rate λSS and repair rate 4µSS, obtained through low-level RBD sub-
system, are inserted in the top-level CTMC, as showed by expressions λSS = 1/MT T FSS and
µSS = 1/MT T RSS in Figure 6.3.

The SSA and COA of Figure 6.3 model are given respectively by:

SSA = π4,U +π3,U +π2,U +π1,U ,
�
 �	6.8

and

COA =
∑

4
i=1 i×π(i,U)

4
,

�
 �	6.9

where i is the number of available cache sub-systems and π(i,U) is the long-run steady-state
probability of i cache sub-systems and a load balancer were available.

6.2. MODELS FOR VNFS IN PROXMOX SERVER VIRTUALIZATION
INFRASTRUCTURE 81
6.2.3 Model for Cache VNF and Load Balancer without SPOFs

With the aim of claim conformance with the elimination of Single Points Of Fail-
ure (SPOF), defined in the resiliency objective of European Telecommunications Standards
Institute (ETSI) [37], a redundant load balancer is represented by one additional character U or
D in the model states depicted in Figure 6.4. As a result, the new model is five states bigger than
the first CTMC.

Figure 6.4: Hierarchical Composition: no load balancer SPOF

The SSA and COA for this scenario are given respectively by:

SSA =
4

∑
i=1

πi,UU +πi,UD,
�
 �	6.10

and

COA =
∑

4
i=1 i× (πi,UU +πi,UD)

4
,

�
 �	6.11

where i is the number of available cache sub-systems and πi,UU and πi,UD is the long-run
steady-state probability of i cache sub-systems were available with both or one load balancer,
respectively. Again, the sub-system failure rate λSS and repair rate µSS, obtained through
low-level RBD sub-system, are inserted in the top-level CTMC.

6.3. MODELS FOR SFCS IN OPENSTACK CLOUD INFRASTRUCTURE 82

6.3 Models for SFCs in openstack cloud infrastructure

Our work adopts regarding SFC in openstack cloud infrastructure adopts time-based live
migration rejuvenation with conditions that may postpone migration, leveraging dependability
attributes. The rejuvenation is performed proactively through preventive maintenance. Figure 6.5
exhibits the system architecture in which the proposed rejuvenation is applied.

I
T
I
O
N
S

Srv1

Hypervisor

Operating System

VM1OVS 1

Srv2

VM2

C
O
N
D

Hypervisor

Operating System

Srv3

VM3

Srv4

VM4 OVS 2

Live Migration

Physical Server Physical Server

Figure 6.5: Architecture for nodes providing VNFs: the software rejuvenation is implemented by
VM live migration and conditions

In Figure 6.5, two physical servers are presented. They host their own operating sys-
tem (OS), the openstack services, the hypervisor, the VMs running its services, and the Open
vSwitch. The VNFs are provided by each (VMi,Srvi) pair. Our models aim at representing the
hardware and software components of Figure 6.5.

Regarding HA openstack cloud infrastructure, its services and the SFCs are modeled
using RBDs. The interaction among nodes, the service chains, and their interconnections, as
well as the aging and rejuvenation phenomena, are modeled using SPN. The presented modeling
is generic and can be used in any cloud infrastructure.

6.4 Low-level RBDs for openstack deployment modes

We model the openstack services (as presented in Figures 2.5, and 2.6) as low-level
RBDs, as depicted in Figure 6.6.

By using these RBDs, one can estimate the MTTF and/or MTTR of each openstack
server configuration. These values will also be injected as input parameters in the top-level SPN
models. The Figures. 6.6a, 6.6b, and 6.6c correspond to openstack servers roles provided in
distinct nodes. Figure 6.6d depicts the joint roles of controller and neutron provided in one single
Node, whereas Figure 6.6e depicts the RBD for All-In-One assembling, in which controller,
neutron, and compute roles are provided in one physical server.

6.5. LOW-LEVEL RBDS FOR SERVICE FUNCTION CHAINS 83

HW OS rabbitMQ DBNTP nova
consoleauth

nova
scheduler

nova
conductor

nova
api horizon glance

registry
glance
api

neutron
server

(a) Controller’s RBD

HW OS NTP neutron
l3-agent

neutron
dhcp-agent

neutron
openvswitch-agent

(b) Neutron’s RBD

HW OS rabbitMQHypervisor nova
computeNTP

(c) Compute’s RBD

HW OS rabbitMQ DBNTP nova
consoleauth

nova
scheduler

nova
conductor

nova
api

neutron
l3-agent

neutron
dhcp-agent

neutron
openvswitch-agent

glance
registry

glance
apihorizon neutron

server

(d) RBD for joint Controller and Neutron configuration

OS rabbitMQ DBNTP nova
consoleauth

nova
scheduler

nova
conductor

nova
api

Hypervisor nova
compute

neutron
l3-agent

neutron
dhcp-agent

glance
registry

glance
api

HW horizon

neutron
server

neutron
openvswitch-agent

(e) RBD for All-In-One configuration

Figure 6.6: Low-level RBDs models: the MTTF of each low-level sub-system is computed and
injected in the top-level SPN models

Table 6.2 report the input parameters adopted in the low-level sub-models representing
openstack deployment modes (Figure 6.6).

Table 6.2: Dependability parameters for low-level

Parameter Description

MTTFSRV Server Mean Time To Failure
MTTRSRV Server Mean Time To Repair
MTTFOS Operating System Mean Time To Failure
MTTROS Operating System Mean Time To Repair
MTTFHV Hypervisor Mean Time To Failure
MTTRHV Hypervisor Mean Time To Repair
MTTFDB Database Mean Time To Failure
MTTRDB Database Mean Time To Repair
MTTFRS Required Services Mean Time To Failure
MTTRRS Required Services Mean Time To Repair

6.5 Low-level RBDs for service function chains

The Service Function Chains are modelled as series RBD, as depicted in Figure 6.7. A
failure in any component results in the chain failure, regardless if the failure occurs in a VM or

6.6. TOP-LEVEL SPN SUB-MODELS FOR OPENSTACK NODES 84

in a service being provided in its correspondent VM.

VMSrv1 Srv1 VMSrv2 Srv2 VMSrvn Srvn. . .

Figure 6.7: Low-level RBD for Service Function Chains

Similarly to low-level RBDs of openstack deployment server roles, it is also possible to
estimate the MTTF and/or MTTR of each chain represented by an RBD.

6.6 Top-level SPN sub-models for openstack nodes

For Service Function Chains provided in openstack infrastructure, besides redundancy,
we also consider the aging phenomenon as well as the rejuvenation countermeasure mechanism.
Furthermore, we also modeled the service chain without rejuvenation to be used as a baseline
comparison. The aim was to state the impact of aging and rejuvenation process in the service
chain availability and capacity.

6.6.1 SPN sub-model for openstack nodes without rejuvenation

Figure 6.8 depicts the SPN that represents openstack’s nodes without rejuvenation. The
presence of a token at place Nup indicates the working state of an openstack node.

Nup

nLR nF

NMnt

Ndn

sR

lR

nSR

NSM

Figure 6.8: SPN sub-model for node

The expression P{(#Nup > 0)}, meaning the number of tokens probability at place Nup

is greater than zero, is used to estimate the component’s availability. Only the nF transition
can fire at the beginning, representing a node failure. When nF fires, it deposits a token at
NMnt place. At NMnt, a fast repair representing a simple node reboot is performed by the nSR

firing, depositing a token at place NSM. From NSM, there are two alternatives: (i) the fast repair
solves the issue, then the sR is fired with a certain probability psR, and the token is deposited
back at working place Nup; (ii) the fast repair procedure is unsuccessful, then lR is fired with a
(1− psR) probability, the token reaches Ndn place and a troubleshooting repair, represented by

6.6. TOP-LEVEL SPN SUB-MODELS FOR OPENSTACK NODES 85

the transition nLR, is performed. When nLR fires, the token is deposited back at working place
Nup.

The nodes are modeled with redundancy using two or more tokens at place Nup. As all
nodes may fail simultaneously, the transition nF has infinite server semantic(iss) [17] concurrency.
Table 6.3 presents the descriptions of the transitions applied in the Node SPN, whereas Table 6.4
describes the transitions attributes for that SPN. The models’ transitions can be tuned to represent
service repair policies. So, it is possible to analyze conditions where the average repair time is
shorter or longer, considering service repair policies.

Table 6.3: Dependability parameters for Node SPN

Parameter Description
MTTFN Node Mean Time To Failure
MTTRN Node Mean Time To Repair
TRBT Node Mean Time To Reboot
sR Short Repair
lR Large Repair

Table 6.4: Transitions attributes for Node SPN

Transition Type Semantics Weight Priority
nF Timed Infinite Server - -

nSR Timed Single Server - -
sR Immediate - psR 1
lR Immediate - 1-psR 1

nLR Timed Single Server - -

6.6.2 SPN sub-model for openstack nodes with rejuvenation

Figure 6.9 depicts the SPN sub-model for the openstack nodes adopting rejuvenation.
We used a k-phases Erlang sub-net to model the node aging phenomenon. This proposed

sub-net prevents the immediate transition to a failure state after a single firing, adequately
modeling the aging phenomenon. For an aging time interval of nodeMT T F , each of the k

Erlang phases is exponentially distributed with mean nodeMT T F/k. The places Ndup and
Nddn represent the working and the failure states, respectively. When ndAg1 fires, the Ndup

token is taken from this place, and (k−1) tokens are deposited at place Ag1nd, representing the
first aging period. The transition ndAg1 also redeposits a token at Ndup, as the node remains
working. So, a node reaches failure Nddn place, only after ndAg2 fires (k-1) times, representing
the remaining aging periods. When there are (k− 1) tokens at place Ag2nd, the immediate
transition dNd fires, the (k− 1) tokens are taken from Ag2nd, the Ndup token is also taken,
and one token is deposited at place Nddn, representing the node failure. The rejuvenation will
occur when the service chain migrates from a node to another. After the VMs migration, all the

6.7. TOP-LEVEL SPN SUB-MODELS FOR SERVICE CHAIN 86

k-1

Ndup

Nddn

Ag2nd
#Ag2nd

#Ag1nd
Ag1nd

rjvAg1nd

rjvAg2nd
ndAg2ndR

ndAg1

dNd

k-1

Figure 6.9: SPN sub-model for nodes with rejuvenation

tokens at places Ag1nd and Ag2nd will be consumed by the immediate transitions r jvAg1nd and
r jvAg2nd, respectively, completing the rejuvenation. The inhibitor arcs from the places Ag1nd

and Ag2nd to the transition ndAg1 avoid ndAg1 to fire after the start of the aging process.
If one needs to represent redundancy of openstack nodes, it is just required to add two or

more sub-models presented in Figure 6.9. Tables 6.5 and 6.6 report the parameters and attributes
of the transitions belonging to SPN of Figure 6.9.

Table 6.5: Dependability parameters for Node SPN with Rejuvenation

Parameter Description
MTTFN Node Mean Time To Failure
MTTRN Node Mean Time To Repair
RJVN Node Rejuvenation

Table 6.6: Transitions attributes for Node SPN with Rejuvenation

Transition Type Semantics Weight Priority
ndAg1 Timed Single Server - -
ndAg2 Timed Single Server - -

rjvAg1nd Immediate - 1 1
rjvAg1nd Immediate - 1 1

dNd Immediate - 1 1

6.7 Top-level SPN sub-models for service chain

Figure 6.10a depicts the chain sub-model without rejuvenation. Initially, two distinct
transitions can be fired: (i) the cF transition fires to represent any failure in a VM or in a service

6.7. TOP-LEVEL SPN SUB-MODELS FOR SERVICE CHAIN 87

belonging to the chain, depositing the token at place Cs0; and (ii) the cmpF fires to represent a
failure in the compute node hosting the chain, depositing the Cs1 token at Cs0. The chain repair
is represented by the firing of the cR transition, redepositing the token at working place Cs1.

Cs1

cR cF

cmpF

Cs0

(a) SPN for service chain without rejuvenation

#Cs1

k-1

k-1

#Cs1

Cs1

Cs0

Ag1C
#Ag1C

Ag2C
#Ag2C

rjv1C

rjv2C

cAg1

cR cAg2

dC

cF

(b) SPN for service chain with rejuvenation

Figure 6.10: SPN sub-models for service chains

On the other hand, Figure 6.10b depicts the chain sub-model considering aging and
rejuvenation. It has a similar behavior of node sub-model (Figure 6.9). After a chain migration
(see Section 6.8), the place Cs1 will contain two tokens representing two service chains. The
immediate transition cF was added to model the failure of the compute node hosting the service
chain. It fires whenever the compute node fails, depositing the token at place Cs0.

Tables 6.7 and 6.8 report the parameters and attributes of the transitions belonging to
Chain SPN (Figure 6.10a).

Table 6.7: Dependability parameters for Service Chain SPN

Parameter Description
MTTFC Chain Mean Time To Failure
MTTRC Chain Mean Time To Repair
DACTC Chain Deactivation

Table 6.8: Transitions attributes for Service Chain SPN

Transition Type Semantics Weight Priority
cR Timed Single Server - -
cF Timed Single Server - -

cmpF Immediate - 1 1

Following, Tables 6.9 and 6.10 report the parameters and attributes of the transitions
belonging to Chain SPN with rejuvenation (Figure 6.10b).

6.8. TOP-LEVEL SPN SUB-MODEL FOR SERVICE CHAIN LIVE MIGRATION 88

Table 6.9: Dependability parameters for Service Chain SPN with Rejuvenation

Parameter Description
MTTFC Chain Mean Time To Failure
MTTRC Chain Mean Time To Repair
RJVC Chain Rejuvenation
DACTC Chain Deactivation
DACTN Node Deactivation

Table 6.10: Transitions attributes for Service Chain SPN with Rejuvenation

Transition Type Semantics Weight Priority
cAg1 Timed Single Server - -
cAg2 Timed Single Server - -
rjv1C Immediate - 1 1
rjv2C Immediate - 1 1

dC Immediate - 1 1
cF Immediate - 1 1

6.8 Top-level SPN sub-model for service chain live migration

Figure 6.11 exhibits the SPN sub-model for service chain live migration. There are two
chains in operation, represented by the tokens at places C1s1 and C2s1. The transition ch1m2
fires, with an MT BPM, takes the C1s1 token and depositing it at m12. As soon as the migration
conditions in mC1C2 are satisfied, the mC1C2 transition becomes enabled and fires with an
MT TCLM+MT T PPM mean time. The transition mC1C2 adds a token at C2s1, completing the
chain migration. As soon as the source node is rejuvenated, mC2C1r is enabled and fires with an
MT TCLM mean time, depositing one token from C2s1 at C1s1. Similar behavior occurs when
the preventive maintenance starts at C2s1 and continues with the firing of transitions ch2m1,
mC2C1, and mC1C2r.

mC2C1r

ch1m2

C1s1 C2s1

m12 mC1C2

mC2C1 m21 ch2m1

mC1C2r

Figure 6.11: SPN sub-model for VNF chain live migration

Tables 6.11 and 6.12 report the parameters and attributes of the transitions belonging to
Chain Live Migration SPN (Figure 6.11).

6.9. TOP-LEVEL SPN SUB-MODELS FOR CHAINS INTERCONNECTION 89

Table 6.11: Dependability parameters for Chain Live Migration SPN

Parameter Description
MTBPM Mean Time Between Preventive Maintenance
MTTPPM Mean Time To Perform Preventive Maintenance
MTTCLM Mean Time To Chain Live Migration

Table 6.12: Transitions attributes for Chain Live Migration SPN

Transition Type Semantics Weight Priority
ch1m2 Timed Single Server - -
mC1C2 Timed Single Server - -
mC2C1r Timed Single Server - -
ch2m1 Timed Single Server - -
mC2C1 Timed Single Server - -
mC1C2r Timed Single Server - -

6.9 Top-level SPN sub-models for chains interconnection

The chain interconnection sub-model represents the Open vSwitch containing the open-
stack SFC API rules. Such rules are required to redirect the packet flow through the service chain.
The sub-model behavior of Figure 6.12 is equal to the service chain sub-model (Figure 6.10a)
for non-rejuvenation approach.

Cicup

cicR cicF

ndF

Cicdn

Figure 6.12: SPN for chain interconnection without rejuvenation

Tables 6.13 and 6.14 report the parameters and attributes of the transitions belonging to
Chain Interconnection SPN (Figure 6.12).

Table 6.13: Dependability parameters for Chain Interconnection SPN

Parameter Description

MTTFCI Chain Interconnection Mean Time To Failure
MTTRCI Chain Interconnection Mean Time To Repair
DACTCI Chain Interconnection Deactivation

6.9. TOP-LEVEL SPN SUB-MODELS FOR CHAINS INTERCONNECTION 90

Table 6.14: Transitions attributes for Chain Interconnection SPN

Transition Type Semantics Weight Priority

cicR Timed Single Server - -
cicF Timed Single Server - -
ndF Immediate - 1 1

Regarding chains interconnection sub-models applied in rejuvenation scenarios, we
adopted two SPN sub-model, depicted in Figures 6.14 and6.13. In the first sub-model, the
transition cicD can fire, enabling the service chain migration, depositing the Cicup token at place
CicMnt (the Mnt suffix means maintenance), indicating the deletion of SFC API rules and, as
a consequence, the interruption of Open vSwitch rules required for the packets flow routing
throughout the chain.

Cicup

cicR cicF

nF

Cicdn CicMnt

cicD

cicC

nFM

nR

Figure 6.13: SPN for chain interconnection adopted in rejuvenation model: the chain
interconnection without SAR

At CicMnt, two alternatives are possible: (i) the transition cicC fires, representing the
recreation of SFC API rules, after the service chain migration; (ii) the nFM fires, indicating the
failure of the compute node that is hosting the service chain, depositing the CicMnt token at
place Cicdn. As soon as the compute node is recovered, the nR transition fires, depositing the
Cicdn token at working place Cicup. The mean times adopted in the cicD and cicC exponential
transitions were obtained from the measurement experiments, presented in Chapter 5. In addition,
the immediate transition nFM will fire if during a live migration rejuvenation process, the Node
containing the Open vSwitch fails. The token is taken from place CicMnt and is deposited in
place Cicdn.

Tables 6.15 and 6.16 report the parameters and attributes of the transitions belonging to
Chain Interconnection SPN with Rejuvenation, adopted in the First Scenario (Figure 6.13).

6.9. TOP-LEVEL SPN SUB-MODELS FOR CHAINS INTERCONNECTION 91

Table 6.15: Dependability parameters for Chain Interconnection SPN with Rejuvenation - First
Scenario

Parameter Description

MTTFCI Chain Interconnection Mean Time To Failure
MTTRCI Chain Interconnection Mean Time To Repair
MTTDCI Chain Interconnection Mean Time To Deletion
MTTCCI Chain Interconnection Mean Time To Creation
DACTCI Chain Interconnection Deactivation
RACTCI Chain Interconnection Reactivation

Table 6.16: Transitions attributes for Chain Interconnection SPN with Rejuvenation - First
Scenario

Transition Type Semantics Weight Priority

cicR Timed Single Server - -
cicF Timed Single Server - -
cicD Timed Single Server - -
cicC Timed Single Server - -
nF Immediate - 1 1
nR Immediate - 1 1

nFM Immediate - 1 1

In the second sub-model, we consider that the proper chain interconnection software,
i.e., the Open vSwitch, ages. So, in Figure 6.14 one can observe a similar SAR behavior as one
adopted for service chain (Figure 6.10b).

Tables 6.17 and 6.18 report the parameters and attributes of the transitions belonging to
Chain Interconnection SPN with Rejuvenation, adopted in the Second Scenario (Figure 6.14).

Table 6.17: Dependability parameters for Chain Interconnection SPN with Rejuvenation - Second
Scenario

Parameter Description
MTTFCI Chain Interconnection Mean Time To Failure
MTTRCI Chain Interconnection Mean Time To Repair
MTTDCI Chain Interconnection Mean Time To Deletion
MTTCCI Chain Interconnection Mean Time To Creation
RJVCI Chain Interconnection Rejuvenation
DACTCI Chain Interconnection Deactivation
RACTCI Chain Interconnection Reactivation

6.9. TOP-LEVEL SPN SUB-MODELS FOR CHAINS INTERCONNECTION 92

k-1

k-1

Cicup

Cicdn

Ag1cic
#Ag1cic

Ag2cic
#Ag2cic

rjvAg1cic

rjvAg2cic

cicAg1

cicD

cicAg2

dCic

nF

CicMnt

cicR

cicC

nRnFM

Figure 6.14: SPN for chain interconnection with rejuvenation

Table 6.18: Transitions attributes for Chain Interconnection SPN with Rejuvenation - Second
Scenario

Transition Type Semantics Weight Priority
cicR Timed Single Server - -

cicAg1 Timed Single Server - -
cicAg2 Timed Single Server - -
cicD Timed Single Server - -
cicC Timed Single Server - -
nF Immediate - 1 1
nR Immediate - 1 1

nFM Immediate - 1 1
dCic Immediate - 1 1

939393

7
Case Studies

7.1 Introduction

This chapter presents practical experiments divided into five cases studies. Preliminary,
two case studies analyze the Steady-State Availability and Capacity Oriented Availability of
cache VNFs and load balancers provided in Proxmox server virtualization environment.

The third case study aims at analyzing how reasonable is our proposed modeling approach
and our results to estimate the availability of Service Function Chains in openstack cloud through
a comparison with previous literature. The fourth case study analyzes the benefits of the
rejuvenation adoption in a 3N redundant SFC provided in openstack cloud. Finally, the fifth
case study analyzes the behavior of SSA and COA facing the reduction for a 2N redundant
environment in an openstack cloud.

7.2 VNF Cache Clusters

The analyzed scenarios of this first case study are presented in Table 7.1. Along with
the first case study, we adopted failure and repair rates mentioned in literature (exhibited in
Table 7.2) and from conduced stressing experiments (see Section 5.4).

Table 7.1: Scenarios of First Case Study

Scenario Model
1 Non-Redundant VNF Cache Cluster
2 Redundant VNF Cache Cluster

In order to compute the measures of interest, we used Mercury Tool [109]. Mercury
provides a Graphical User Interface (GUI) for intuitive modeling of RBDs. As RBDs provide
closed-form equations, Mercury solves them and presents the computed metrics.

In addition to values listed in Table 7.2, the MTTF of 315.33 seconds for cache servers
were obtained from previous experiments (see Section 5.4) and an MTTR of 10 seconds was
adopted. It is a sufficient time interval to restart the cache cluster services. These values are
inserted in hours on Mercury, as presented in Table 7.3.

7.2. VNF CACHE CLUSTERS 94

Table 7.2: Applied times in the RBD models

Component MTTF MTTR
Server 8760h 1.67h

S 4380h 5 min
OS 2893h 0.25h
CT 2990h 1h

Table 7.3: MTTF and MTTR, in hours, for cache servers

Component MTTF MTTR
APP 0.0875925926h 0.0027777778h

7.2.1 Non-redundant VNF Cache Cluster

This scenario represents the utilization of only two containers running in one node of
Proxmox Server Virtualization. It was modeled using one RBD for VNF Cache Cluster (Fig-
ure 6.1). It is representation can be observer in Figure 7.1.

Figure 7.1: RBD for Non-Redundant Cluster

The steady-state availability, number of 9’s, and annual downtime were the measures of
interest for this scenario. The results are exhibited in Table 7.4.

Table 7.4: Availability measures for Non-redundant VNF Cache Cluster

Measure Results

SSA (%) 99.87394%
SSA (Number of 9’s) 2.89943
Annual Downtime 11.049853h

Following the classification of Table 2.2, two 9’s of availability not even result in a
fault-tolerant system type, with more than 10 hours of downtime per year, or 50 minutes per
month. Due to users requirements of telecommunication service providers, such downtime is not
suitable for NFV compatible infrastructures.

Aiming at reveal the most impactful parameters over SSA, a parametric sensitivity
analysis was conducted. The closed-form equation for availability of non-redundant VNF cluster
is expressed as:

7.2. VNF CACHE CLUSTERS 95

(7.1)SSA = AServer1 × AS1 × AOS1 × (1− (1− ACT 1 × AAPP1)× (1− ACT 2 × AAPP2))

This closed-form equation was used to obtain the partial derivatives and compute the complete
sensitivity ranking, as described in [80]. Table 7.5 shows the results, where the parameters are
presented in decreasing order of the sensitivity index.

Table 7.5: Ranking of Sensitivities for SSA of Non-Redundant VNF Cluster

Parameter S(SSA)
Server1 0.998929836

OS1 0.998825744
S1 0.998758439

APPn 0.031042188
CTn 0.030098085

Each value in the ranking of sensitivities represents how changes in any particular block
affect systems’ steady-state availability.

The ranking points Server component as the most important when A is the measure of
interest, nearly followed by OS and S components. The results also show that APP and CT are
more than thirty times less influential than the other components. So, Server, OS, and S should
receive priority when improvements to the system availability are considered on the NFV video
cache cluster.

7.2.2 Redundant VNF Cache Cluster

Motived by the results of sensitivity analysis in the first scenario, as Server, OS, and S
are the most important components regarding availability improvements, we replicated them.
Clearly, a directed advantage of such components replication is the possibility of insert CT
and APP blocks, as they model software components running under Server, OS, and S replicas.
Thus, in order to improve availability, we propose the implementation of active-active parallel
redundancy for VNF cache service, representing the utilization of four containers running in
two nodes of Proxmox Server Virtualization testbed (2 containers per node). The resulting RBD
model is shown in Figure 7.2, where servers 1 and 2 were connected in parallel to represent the
proposed active-active redundancy.

Analysis results are summarized in Table 7.6.

Table 7.6: Availability measures of Redundant VNF Cache Cluster

Measure Result
SSA (%) 99.99984%
SSA (Number of 9’s) 5.79887
Annual Downtime 0.013929h

The Steady-State Availability was improved to 99.99984%, meaning an annual downtime
below 5 minutes. According to the ranking of Table 2.2, the high availability classification was

7.2. VNF CACHE CLUSTERS 96

Figure 7.2: RBD for Redundant VNF Cache Cluster

reached. Such an increase in availability, in comparison with a simplex scheme, is an evidence
of the improvements in the adoption of the proposed active-active redundancy strategy.

Regarding sensitivity analysis, the closed-form equation for Steady-Sate Availability of
redundant cluster is expressed as:

(7.2)SSA = 1− (1−AServer1×AS1×AOS1× (1− (1−ACT 1×AAPP1)× (1−ACT 2×AAPP2)))
× (1−AServer2×AS2×AOS2× (1− (1−ACT 3×AAPP3)× (1−ACT 4×AAPP4)))

The results of parametric sensitivity analysis are presented in decreasing order of the
sensitivity index in Table 7.7.

Table 7.7: Ranking of Sensitivities for SSA in Redundant VNF Cluster

Parameter S(SSA)
Servern 0.0012592133431

OSn 0.0012590821281
Sn 0.0012589972864

APPn 0.0000391306135
CTn 0.0000379278885

The ranking shows that the Server components remains as the most relevant component
when A is the measure of interest, again followed by OS and S components. However, in
comparison with the non-redundant scenario, the failure of these components had less influence
on availability, as sensitivity coefficients are smaller due to components replication.

7.3. REDUNDANT VNF CACHES AND LOAD BALANCERS 97

7.3 Redundant VNF Caches and Load Balancers

In this section, we analyzed the models presented in Sections 6.2.2 and 6.2.3. They are
summarized in Table 7.8. In this case study, besides rates mentioned in literature (previously
reported in Table 7.2), estimated guesses were applied for VNF cache application.

Table 7.8: Scenarios of Second Case Study

Scenario Model
1 Redundant VNF Cache and Load Balancer
2 Redundant VNF Cache and Load Balancer without SPOFs

Hierarchical and heterogeneous models were adopted, using RBD in the low-level and
Continuous Time Markov Chains (CTMC) in the top-level. We also evaluated Capacity Oriented
Availability (COA) in this scenario.

7.3.1 Redundant VNF Cache and Load Balancer

The analysis results for the system composed by VNF caches and one load balancer are
presented in Table 7.9.

Table 7.9: Steady-State Availability and COA for CTCM

MTTFAPP(h) SSA COA
4380 99.9520205% 99.8851661%
8760 99.9520180% 99.8870576%

13140 99.9520185% 99.8876941%
26280 99.9520190% 99.8882247%
43800 99.9520192% 99.8885130%
87600 99.9520193% 99.8887930%

The estimated guesses for MTTFAPP presented in the first column of Table 7.9 correspond
to six months, one year, one year and six months, three years, five years, and ten years.

The application MTTF variability did not result in a significant impact over Steady-State
Availability: the resulting difference among MTTFs over SSA is smaller than 1 second, all
of them with an Unavailability (UA) nearly 4h12m11s per year, or 252.18 minutes (1 year
is equivalent to 525,600 minutes). Regarding Capacity Oriented Unavailability (COUA), the
difference between COUAMTTFAPP=87600 and COUAMTTFAPP=4380 was 1h16m12s.

In order to compare the source of downtime minutes, consider, for instance, the sce-
nario with MTTFAPP=87600h, in which the system is up during 99.9520193% of the time.
Consequently, UA=0.0479807%. The product of UA, one year of functional minutes and the
number of cache sub-systems (0.000479807× 525600× 4 = 1008.74) reveals that the VNF
cache cluster can be expected to be out of operation during 1008.74 minutes. Similarly, as

7.3. REDUNDANT VNF CACHES AND LOAD BALANCERS 98

COAMTTFAPP=87600=99.8887930%, COUAMTTFAPP=87600=0.0526357%, and 2338.01 of cache-
minutes were not delivered. This downtime consists of 1008.74 cache-minutes of system
downtime (UA) and the remaining 2338.01−1008.74 = 1329.27 cache-minutes of downtime
due to degraded capacity (COUA).

The percentage of downtime due to UA and COUA for all considered MTTFAPP can be
observed in Figure 7.3.

4380 8760 13140 26280 43800 87600

MTTF(h)

D
ow

nt
im

e
(m

in
ut

es
)

0

500

1000

1500

2000

2500

41.78% 42.48% 42.72% 42.92% 43.04% 43.14%

58.22% 57.52% 57.28% 57.08% 56.96% 56.86%

2414.26 2374.49 2361.11 2349.96 2343.9 2338.01

Downtime source

COUA
UA

Figure 7.3: Percentage of annual downtime due to UA and COUA

With the aim to state which of the VNF cache system parameters are most influential in
the presented downtime, we proceeded with the SSA and COA sensitivity analysis for the top-
level CTMC of the hierarchical model. Closed-form formulas were obtained using StateDiagram
Software Package available for Mathematica [128].

The insertion of CTMC infinitesimal generator matrix enables StateDiagram Package to
obtain the respective closed-form formulas for SSA and COA:

SSA =
µlbn(

24λ 4
ss

β1
)

(λlbn +µlbn)

�
 �	7.3

7.3. REDUNDANT VNF CACHES AND LOAD BALANCERS 99

Table 7.10: Ranking of Sensitivities for SSA and COA

δ Sδ (SSA)
λ LB -2.39·101

µLB 1.15·10-2

λ HW 2.77·10-17

λ OS 2.77·10-17

λ S 2.77·10-17

λ CT 2.77·10-17

λ APP 2.77·10-17

µHW 0.0
µS 0.0

µOS 0.0
µCT 0.0
µAPP 0.0
(a) MTTFAPP=4380

δ Sδ (SSA)
λ LB -2.39·101

µLB 1.15·10-2

λ HW 0.0
λ OS 0.0
λ S 0.0

λ CT 0.0
λ APP 0.0
µHW 0.0
µS 0.0

µOS 0.0
µCT 0.0
µAPP 0.0

(b) MTTFAPP=26280

δ Sδ (SSA)
λ LB -2.39·101

µLB 1.15·10-2

λ HW 0.0
λ OS 0.0
λ S 0.0

λ CT 0.0
λ APP 0.0
µHW 0.0
µS 0.0

µOS 0.0
µCT 0.0
µAPP 0.0

(c) MTTFAPP=87600

δ Sδ (COA)
λ LB -2.39·101

λ HW -4.24·10-2

λ OS -4.24·10-2

λ S -4.23·10-2

λ CT -4.24·10-2

λ APP -4.24·10-2

µLB 1.15·10-2

µHW 2.25·10-6

µS 2.25·10-6

µOS 2.25·10-6

µCT 2.25·10-6

µAPP 2.25·10-6

(d) MTTFAPP=4380

δ Sδ (COA)
λ LB -2.39·101

λ HW -4.24·10-2

λ OS -4.24·10-2

λ S -4.23·10-2

λ CT -4.24·10-2

λ APP -4.24·10-2

µLB 1.15·10-2

µHW 1.63·10-6

µS 1.63·10-6

µOS 1.63·10-6

µCT 1.63·10-6

µAPP 1.63·10-6

(e) MTTFAPP=26280

δ Sδ (COA)
λ LB -2.39·101

λ HW -4.24·10-2

λ OS -4.24·10-2

λ S -4.23·10-2

λ CT -4.24·10-2

λ APP -4.24·10-2

µLB 1.15·10-2

µHW 1.58·10-6

µS 1.58·10-6

µOS 1.58·10-6

µCT 1.58·10-6

µAPP 1.58·10-6

(f) MTTFAPP=87600

COA =
µlbnµssβ2

(λlbn +µlbn)β1

�
 �	7.4

where:
β1 = 24λ 4

ss +24λ 3
ssµss +12λ 2

ssµ
2
ss +4λssµ

3
ss +µ4

ss,
β2 = 6λ 3

ss +6λ 2
ssµss +3λssµ

2
ss +µ3

ss,
λss = λHW +λS +λOS +λCT +λAPP, and
µss = µHW +µS +µOS +µCT +µAPP.

The parametric sensitivity analysis was computed using equation (2.21) in the closed-
form formulas (7.3) and (7.4). The full methodology can be observed in [80]. We selected the
shorter, the intermediate, and the higher values of MTTFAPP, respectively 4380h, 26280h, and
87600h, to proceed with sensitivity analysis. The sensitivities coefficients Sδ (SSA) and Sδ (COA)

7.3. REDUNDANT VNF CACHES AND LOAD BALANCERS 100

with respect to system’s failure and recovery parameters are presented in Table 7.10.
The sensitivity rankings of Table 7.10 are ordered from the most influential parameters

to less ones. It reveal that the load balancer failure rate has the greatest influence when SSA
and COA are the metrics of interest, one order of magnitude more influential than the second
parameters, that are µLB for steady-state availability and all other failure rate parameters (λHW

λOS, λS, λCT , and λAPP) for COA.
Due to the replication of their components, the other sensitivity coefficients for SSA did

not present critical importance, because they had 15 orders of magnitude less (failure rates when
MTTFAPP=4380) than µLB or were null.

Regarding COA, µLB presented an influence level over system degradation of the same
order of magnitude to λHW λOS, λS, λCT , and λAPP, but with only nearly a quarter of impact. The
remaining recovery rates were 4 orders of magnitude less impactful on the system degradation.

Yet according to Table 7.10, note that failure rates present a negative sensitivity coefficient
because when they increase, SSA and COA decreases, and recovery rates have positive values
because when they increase, SSA and COA also increases.

According to these sensitivity analysis results, a second load balancer was inserted in the
next scenario aiming to improve SSA and COA.

7.3.2 No Load Balancer SPOF

Besides the recommendation for Single Point Of Failures elimination, the indication of
sensitivity analysis results, presented in the previous scenario, also drives to the addition of a
second load balancer.

The prevention of load balancer VNF SPOF results in availability improvement from
three 9’s of the previous scenario (Table 7.9) to six 9’s, as can be noted in Table 7.12. It is an
evidence that justifies the ETSI attention to prevent SPOF in their resiliency objectives [37] for
NFV architectures.

Similarly to the previous scenario, the variability of application MTTF did not result in
a significant impact over steady-state availability. System unavailability, according to second
column of Table 7.12, was smaller than 15 seconds for all the MT T FAPP variations. The resulting
annual capacity degradation, represented by not delivered cache-minutes, can be observed in
COUA column.

Regarding sensitivity analysis, an identical approach to previous scenario was adopted
and the closed-form formulas are presented below:

SSA =
µlbnµss(2λlbn +µlbn)β1

β3β4

�
 �	7.5

COA =
µlbnµss(2λlbn +µlbn)β2

β3β4

�
 �	7.6

7.3. REDUNDANT VNF CACHES AND LOAD BALANCERS 101

Table 7.11: Ranking of Sensitivities for SSA and COA: no LB SPOF

δ Sδ (SSA)
λ LB -4.60·10-2

µLB 2.21·10-5

λ HW 0.0
λ OS 0.0
λ S 0.0

λ CT 0.0
λ APP 0.0
µHW 0.0
µS 0.0

µOS 0.0
µCT 0.0
µAPP 0.0
(a) MTTFAPP=4380

δ Sδ (SSA)
λ LB -4.60·10-2

µLB 2.21·10-5

λ HW 2.00·10-12

λ OS 2.00·10-12

λ S 2.00·10-12

λ CT 2.00·10-12

λ APP 2.00·10-12

µHW 0.0
µS 0.0

µOS 0.0
µCT 0.0
µAPP 0.0

(b) MTTFAPP=26280

δ Sδ (SSA)
λ LB -4.60·10-2

µLB 2.21·10-5

λ HW 0.0
λ OS 0.0
λ S 0.0

λ CT 0.0
λ APP 0.0
µHW 0.0
µS 0.0

µOS 0.0
µCT 0.0
µAPP 0.0

(c) MTTFAPP=87600

δ Sδ (COA)
λ LB -4.60·10-2

λ HW -4.24·10-2

λ OS -4.24·10-2

λ S -4.24·10-2

λ CT -4.24·10-2

λ APP -4.24·10-2

µLB 2.21·10-5

µHW 2.04·10-6

µS 2.04·10-6

µOS 2.04·10-6

µCT 2.04·10-6

µAPP 2.04·10-6

(d) MTTFAPP=4380

δ Sδ (COA)
λ LB -4.60·10-2

λ HW -4.24·10-2

λ OS -4.24·10-2

λ S -4.24·10-2

λ CT -4.24·10-2

λ APP -4.24·10-2

µLB 2.21·10-5

µHW 1.90·10-6

µS 1.90·10-6

µOS 1.90·10-6

µCT 1.90·10-6

µAPP 1.90·10-6

(e) MTTFAPP=26280

δ Sδ (COA)
λ LB -4.60·10-2

λ HW -4.24·10-2

λ OS -4.24·10-2

λ S -4.24·10-2

λ CT -4.24·10-2

λ APP -4.24·10-2

µLB 2.21·10-5

µHW 1.86·10-6

µS 1.86·10-6

µOS 1.86·10-6

µCT 1.86·10-6

µAPP 1.86·10-6

(f) MTTFAPP=87600

where:
β1 = 24λ 3

ss +12λ 2
ssµss +4λssµ

2
ss +µ3

ss,
β2 = 6λ 3

ss +6λ 2
ssµss +3λssµ

2
ss +µ3

ss,
β3 = 24λ 4

ss +24λ 3
ssµss +12λ 2

ssµ
2
ss +4λssµ

3
ss +µ4

ss,
β4 = 2λ 2

lbn +2λlbnµlbn +µ2
lbn,

λss = λHW +λS +λOS +λCT +λAPP, and
µss = µHW +µS +µOS +µCT +µAPP.

The sensitivity rankings of Table 7.11 show that the load balancer failure rate λLB is
again the most influential parameter for SSA and COA. For A, λLB is 3 orders of magnitude
more influential than µLB, the second most important parameter. However, both parameters
had their influence level reduced in comparison to SPOF case: λLB was one order of magnitude
smaller while µLB reduced 3 orders of magnitude. These values reveal an attenuation of the load

7.3. REDUNDANT VNF CACHES AND LOAD BALANCERS 102

Table 7.12: Steady-State Availability, COA and COUA for CTCM without LB SPOF

MTTFAPP SSA COA
COUA

(minutes)
4380 99.99995374% 99.93306726% 1407.19
8760 99.99995381% 99.93496226% 1367.35

13140 99.99995383% 99.93559851% 1353.97
26280 99.99995385% 99.93612895% 1342.82
43800 99.99995365% 99.93641699% 1336.77
87600 99.99995358% 99.93673706% 1330.88

balancers influence over SSA. The other failure rates were 7 orders of magnitude smaller than
µLB for MTTFAPP=26280h and null for the other MTTFs. The remaining recovery rates were
null. So, the load balancers are the critical component for Steady-State Availability. For COA,
in comparison with the previous scenario: λLB reduced one order of magnitude, µLB reduced 3
orders of magnitude, and the other parameters presented similar orders of magnitude.

Figs. 7.4 and 7.5 plot a comparison of failure and recovery rates, respectively, for the
scenario without SPOF. They demonstrate that maintenance services should be focused on
failures mitigation, mainly in load balancers, whereas the attention of recovery team should be
directed to the load balancer recovery, aiming to mitigate capacity degradation issues.

Failure Rates

0.00

0.01

0.02

0.03

0.04

0.05 MTTFAPP=4380h
MTTFAPP=26280h
MTTFAPP=87600h

S
en

si
tiv

ity
 C

oe
ffi

ci
en

ts
 fo

r
C

O
A

(|
S

|)

λLB λHW, λOS, λS, λCT, λAPP

Figure 7.4: Load balancer failure rate is the most influential parameter for COA, but with similar
magnitude order

7.4. COMPARISON WITH REFERENCE WORK 103

Recovery Rates

0.0e+00

5.0e−06

1.0e−05

1.5e−05

2.0e−05

2.5e−05
MTTFAPP=4380h
MTTFAPP=26280h
MTTFAPP=87600h

S
en

si
tiv

ity
 C

oe
ffi

ci
en

ts
 fo

r
C

O
A

(|
S

|)

µLB µHW, µOS, µS, µCT, µAPP

Figure 7.5: Load balancer recovery rate is the most influential parameter for COA, but one order
of magnitude higher than other parameters

7.4 Comparison with Reference Work

This case study aims at analyzing how reasonable are our proposed modeling approach
and results to estimate the availability of VNF chains through a comparison with previous
literature. We performed a comparison with the Di Mauro et al. [33] work, because they also
perform an availability study of VNFs chains. The authors address an availability evaluation of
a chain of network nodes implementing an SFC managed by openstack Virtual Infrastructure
Manager (VIM). A double-layer model was also adopted, where an RBD describes the top-level
dependencies among the architecture components and Stochastic Reward Networks (SRN) model
the probabilistic behavior of each component. Firstly, we present one instance of our proposed
model for 3N redundant VNF chain. Next, we present Di Mauro et al. model. Finally, we
compare the results regarding steady-state availability.

7.4.1 3N Redundant Baseline Model

Figure 7.6 depicts simultaneously: (i) a 3N redundant model, representing three openstack
VIM nodes, based on the SPN sub-model of Figure 6.8 and (ii) a 3N redundant VNF model, based
on sub-models Node (Figure 6.8), Chain(Figure 6.10b), and Chain Interconnection (Figure 6.12).
Each openstack VIM node represents the joint operation of the controller and neutron deployment

7.4. COMPARISON WITH REFERENCE WORK 104

modes. The VNF sub-system represents three redundant instances of computer deployment
mode providing their chains and chains interconnections.

N1up

n1LR

n1F

N1Mnt

N1dn

sR1

lR1

n1SR

N1SM

cic1R cic1F

ndi1F

Cic1dn

Cic1up

c1R c1F

nd1F

C1s0

C1s1

N1Rst rst1

N2up

n2LR

n2F

N2Mnt

N2dn

sR2

lR2

n2SR

N2SM

cic2R cic2F

ndi2F

Cic2dn

Cic2up

c2R c2F

nd2F

C2s0

C2s1

N2Rst rst2

N3up

n3LR

n3F

N3Mnt

N3dn

sR3

lR3

n3SR

N3SM

cic3R cic3F

ndi3F

Cic3dn

Cic3up

c3R c3F

nd3F

C3s0

C3s1

N3Rst rst3

CNup

cnLR cnF

CNMnt

CNdn

sR

lR

cnSR

CNSM

VIMVIM

VNF

Figure 7.6: 3N redundant baseline model

The sub-models representing computer nodes interact with chains and chain intercon-
nection sub-models through the NiRst place and the rsti transition (1 <= i <= 3). One token is
deposited at place NiRst whenever a Node is recovered, firing rsti. We consider that all software
(Figure 6.6c) is working when its underlying Node is restarted: the token is taken from place
NiRst and deposited at working places CiS1 and Ciciup.

Using hierarchical modeling, each token in place CNup of top-level SPN represents a
Controller/Neutron joint deployment mode node, as depicted in the low-level RBD of Figure 7.7.

HW OS rabbitMQ DBNTP nova
consoleauth

nova
scheduler

nova
conductor

nova
api

neutron
l3-agent

neutron
dhcp-agent

neutron
openvswitch-agent

glance
registry

glance
apihorizon neutron

server

Figure 7.7: RBD for joint Controller and Neutron deployment modes Node

Similarly, each token in places Niup of top-level SPN represents a Compute node, as
depicted in the low-level RBD of Figure 7.8.

HW OS rabbitMQHypervisor nova
computeNTP

Figure 7.8: RBD for Compute deployment mode node

Finally, each token in places Cis1 of top-level SPN represents a Service Function Chain,
as depicted in the low-level RBD of Figure 7.9.

7.4. COMPARISON WITH REFERENCE WORK 105

VMFW FW VMLB LB VMCache Cache

Figure 7.9: RBD for Compute deployment mode node

The system is considered active when at least one VIM sub-system is active and one
VNF sub-system is also active. The expression

P{(((#C1s1 = 1)AND(#Cic1up = 1))OR((#C2s1 = 1)AND(#Cic2up = 1))OR((#C3s1 = 1)

AND(#Cic3up = 1)))AND(#CNup > 0)} �� ��7.7
was adopted to estimate the Steady-State Availability of our 3N redundant baseline model (Fig-
ure 7.6).

7.4.2 Reference Work for Comparison

Figure 7.10 depicts the top-level RBD model representing the dependencies among the
VIM and VNF sub-systems. The VIM sub-system is composed of N redundant VIM nodes. The
comparison with our previously proposed model requires N = 3.

Figure 7.10: Top-level model of reference work

The Figure 7.11 depicts the proposed model for openstack VIM, whereas the Figure 7.12
depicts the authors’ model for VNFs. We describe the model behavior of the reference work
below.

Places PupDB, PupFB, PupHA, PupV MM, and PupHW indicate the conditions where the
database, the functional blocks, the HAproxy, the hypervisor, and the hardware of the VIM
are working. Places with index f indicate the conditions where such components are down.
Figure 7.11 shows the fully working condition of VIM sub-system. As an exemplary case,
consider the failure of the database. When DB fails, Tf DB fires and the token removed from
PupDB is deposited into Pf DB . The immediate transition tDB fires when the transition TfV MM is
fired, meaning that a hypervisor failure implies virtual modules failure as well. Similarly, the
immediate transition tV MM accounts for a hypervisor failure as a consequence of a hardware
failure. The inhibitory arc between PupHW and tV MM compels the hypervisor failure in case of

7.4. COMPARISON WITH REFERENCE WORK 106

hardware failure. The inhibitory arc between Pf HW and trV MM forbids the hypervisor repair in
case of hardware failure.

Figure 7.11: VIM of reference work

Furthermore, the first guard expressions of Table 7.13 enables tDB, tFB, tHA when hy-
pervisor fails, namely, when a token is moved from PupV MM to PfV MM, whereas #PupV MM = 1
inhibits the repair of the virtual modules in case of hypervisor failure.

Table 7.13: Guard expressions for the VIM of the reference work model

Transition Guard Expressions
tDB, tFB, tHA #PfV MM = 1
trDB, trFB, trHA #PupV MM = 1

Figure 7.12 depicts the VNF sub-system. The place PupV NF indicates the VNF working
state, implying that the hardware, software and, virtual resources are correctly working. The
token value inside PupV NF amounts to L+M, namely, the number of initial working VNFs
replicas. Originally, the authors of reference work consider the assumption that the number of
deployed VNFs can vary dynamically with time. So, an elasticity functionality was developed
through the sub-net composed by the place Pp and transitions tSo, tSi, Tp, and through the sub-net
composed by the place PL, and transitions Trem, Tadd . The Scale-Out (tSo) and Scale-In(tSi)
operations corresponding to a provisioning phase (deploying replicas) and a de-provisioning

7.4. COMPARISON WITH REFERENCE WORK 107

Figure 7.12: VNF of reference work

phase (un-deploying replicas), respectively. Thus, when tSo fires, a token is deposited in place
Pp, modeling the condition of a replica requested but not working yet, until the token enters
PupV NF after Tp firing. The inhibitory arc from Pp to tSo models the impairment of multiple
provisioning stages. On the contrary, a Scale-In operation happens when tSi fires. The inhibitory
arc from Pp to tSo preventing Scale-In operations during provisioning stages. A complete
explanation can be found in the authors’ work. The reference work models were implemented on
SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) tool [118].

The Steady-State Availability of reference work is estimated by

ANS = AV IM

3

∏
m=1

A(m)
V NF

�
 �	7.8

which consider a 3N redundant system.
Aiming at enabling a comparison between the reference work and our models, the

adopted approach was based on 4 steps:

i. Reproduce the reference work model and its results on our adopted Mercury tool;
ii. Remove the elasticity sub-nets of the model;

iii. Execute the analysis of the steady-state availability metric adopting our input values in the
reference work;

iv. compare the results obtained in step iii with the analysis of our model.

Step i: Figure 7.13 represents the 3N redundant VIM model of reference work im-

7.4. COMPARISON WITH REFERENCE WORK 108

plemented by us in Mercury tool. Regarding VNF, we also reproduce the model exhibited in
Figure 7.12 in Mercury tool.

PfDB1

PupDB1

TrDB1 TfDB1
tDB1

PfFB1

PupFB1

TrFB1 TfFB1
tFB1

PfHA1

PupHA1

TrHA1 TfHA1
tHA1

PupVMM1

tVMM1

PfVMM1

TrVMM1 TrVMM1

PfHW1

PupHW1

TrHW1 TfHW1

PfDB3

PupDB3

TrDB3 TfDB3
tDB3

PfFB1

PupFB3

TrFB3 TfFB3
tFB3

PfHA3

PupHA3

TrHA3 TfHA3
tHA3

PupVMM3

tVMM3

PfVMM3

TrVMM3
TrVMM3

PfHW3

PupHW3

TrHW3 TfHW3

PfDB2

PupDB2

TrDB2 TfDB2
tDB2

PfFB2

PupFB2

TrFB2 TfFB2
tFB2

PfHA2

PupHA2

TrHA2 TfHA2
tHA2

PupVMM2

tVMM2

PfVMM2

TrVMM2

PfHW1

PupHW2

TrHW2 TfHW2

TrVMM2

Figure 7.13: VIM of reference work

The VIM sub-system is in working state when at least two instances of database are
active and at least one of instance of functional blocks and HAproxy is active. This state is
represented by the equation:

7.4. COMPARISON WITH REFERENCE WORK 109

AV IM = P{(((#PupDB1 = 1)AND(#PupDB2 = 1))OR((#PupDB1 = 1)AND(#PupDB3 = 1))

OR((#PupDB2 = 1)AND(#PupDB3 = 1)))

AND((#PupFB1 = 1)OR(#PupFB2 = 1)OR(#PupFB3 = 1))

AND((#PupHA1 = 1)OR(#PupHA2 = 1)OR(#PupHA3 = 1))} �
 �	7.9
The VNF sub-system is in working state when the number total replicas is no less than

the number of regular replicas. This state is represented by the equation:

AV NF = P{#PupV NF > #PL}
�
 �	7.10

The estimation for Steady-State Availability from the reference work, using Equation 7.8
at SHARPE tool, is equal to SSA = 99.998444%, whereas our result, using Mercury tool, was
equal to 99.998618%. We consider these results close enough to accept them as equivalents,
associating the difference in the order of 10−6 due to the adoption of distinct tools.

Step ii: Figure 7.14 depicts the VNF model of reference work without elasticity sub-net.

Tm

PmigTfhw

Tfvmm TrvmmPfvmm Pfvmm1PupVNF tvmm2

tvmm1Tfsw
Pfsw

Trsw
Pfsw1 Pfsw2

Trsw1

tsw1

tsw2

Figure 7.14: VNF without elasticity

As our goal is to perform a fair comparison with our model, we now estimate the Steady-
State Availability adopting an identical approach used in our model. The VNF sub-system now
is considered in working state when the number of VNFs are not null. This state is represented
by the expression:

7.4. COMPARISON WITH REFERENCE WORK 110

P{(#PupV NF > 0)}
�
 �	7.11

Step iii: Aiming at perform the comparison between our model and the reference work
model, we consider the working state of VIM sub-system without elasticity as a not null number
of required services. So, the SSA for the model of Figure 7.14 is estimated by:

P{((#PupDB1 = 1)OR(#PupDB2 = 1)OR(#PupDB3 = 1))

AND((#PupFB1 = 1)OR(#PupFB2 = 1)OR(#PupFB3 = 1))

AND((#PupHA1 = 1)OR(#PupHA2 = 1)OR(#PupHA3 = 1))}

�
 �	7.12

Furthermore, the inputted parameters for failure and repair rates for functional blocks
and hardware were originated from RBDs numerical analysis, as depicted in Figure 7.15. Using
Mercury tool, we can compute the MTTF and MTTR of all RBD. The failure and repair rates
λFB and µFB were inserted in transitions T f FBi and TrFBi, respectively, whereas λCN and µCN

were inserted in transitions T f HWi and TrHWi, respectively.
Similarly, for VNF SPN, the failure rate for the hardware and for the chain, as well

as the chain repair rate, were also originated from their correspondent RBDs, as depicted in
Figure 7.16.

Table 7.14: Input mean times for cloud components

Component MTTF MTTR

HW 60000h 8h
Hypervisor 5000h 10min
OS 2893h 0.25h

DB, NTP, rabbitMQ, nova-consoleauth,
nova-scheduler, nova-conductor, nova-api, horizon,

neutron-server, glance-registry, glance-api,
neutron-l3-agent, neutron-dhcp-agent

nova-compute

3000h 1h

VMFW, VMLB, VMCache 2160h 0.25h
FW, LB, Cache 2160h 0.25h

7.4. COMPARISON WITH REFERENCE WORK 111

PfDB1

PupDB1

TrDB1 TfDB1
tDB1

PfFB1

PupFB1

TrFB1 TfFB1
tFB1

PfHA1

PupHA1

TrHA1 TfHA1
tHA1

PupVMM1

tVMM1

PfVMM1

TrVMM1

PfHW1

PupHW1

TrHW1 TfHW1

PfDB3

PupDB3

TrDB3 TfDB3
tDB3

PfFB1

PupFB3

TrFB3 TfFB3
tFB3

PfHA3

PupHA3

TrHA3 TfHA3
tHA3

PupVMM3

tVMM3

PfVMM3

TrVMM3 TrVMM3

PfHW3

PupHW3

TrHW3
TfHW3

PfDB2

PupDB2

TrDB2 TfDB2
tDB2

PfFB2

PupFB2

TrFB2 TfFB2
tFB2

PfHA2

PupHA2

TrHA2 TfHA2
tHA2

PupVMM2

tVMM2

PfVMM2

TrVMM2

PfHW1

PupHW2

TrHW2 TfHW2

TrVMM2

rabbitMQNTP nova
consoleauth

nova
scheduler

nova
api horizon neutron

server

neutron
l3-agent

neutron
dhcp-agent

glance
registry

glance
api

λCN = 1
MTTFCN

 μCN = 1
MTTRCN

HW OS

 λFB = 1
MTTFFB

 μFB = 1
MTTRFB

TrVMM1

nova
conductor

Figure 7.15: Customized VIM of reference work

Table 7.14 exhibits the parameters’ values [64] used as input in the RBDs of Figures 7.15
and 7.16. We consider a three month for MTTF and 15 minutes for MTTR to VMs and its hosted
services.

Step iv: Finally, aiming at comparing the results, we performed an identical approach
regarding our model, inserting resulting failure and repair rates from RBDs numerical analysis.

7.4. COMPARISON WITH REFERENCE WORK 112

Tm

PmigTfhw

Tfvmm TrvmmPfvmm Pfvmm1PupVNF tvmm2

tvmm1Tfsw
Pfsw

Trsw
Pfsw1 Pfsw2

Trsw1

tsw1

tsw2

HW OS nova
computerabbitMQ

VMFW FW VMLB LB VMCache Cache

λHW = 1
MTTFHW

 μSW = 1
MTTRSW

 λSW = 1
MTTFSW

NTPhypervisor

Figure 7.16: Customized VNF without elasticity

The failure and repair rates λc and µc were inserted in transitions ciF and ciR, respectively. Also,
The failure and repair rates λCN and µCN were inserted in transitions cnF and cnLR, respectively.
Finally, the failure and repair rates λN and µN were inserted in transitions niF and niLR.

Table 7.14 exhibits the parameters’ values [64] used as input in the RBDs of Figure 7.17.
The input parameters of the RBDs depicted in Figure 7.17 were also in Table 7.14.

7.4. COMPARISON WITH REFERENCE WORK 113

N1up

n1LR

n1F

N1Mnt

N1dn

sR1

lR1

n1SR

N1SM

cic1R cic1F

ndi1F

Cic1dn

Cic1up

c1R c1F

nd1F

C1s0

C1s1

N1Rst rst1

N2up

n2LR

n2F

N2Mnt

N2dn

sR2

lR2

n2SR

N2SM

cic2R cic2F

ndi2F

Cic2dn

Cic2up

c2R c2F

nd2F

C2s0

C2s1

N2Rst rst2

N3up

n3LR

n3F

N3Mnt

N3dn

sR3

lR3

n3SR

N3SM

cic3R cic3F

ndi3F

Cic3dn

Cic3up

c3R c3F

nd3F

C3s0

C3s1

N3Rst rst3

CNup

cnLR cnF

CNMnt

CNdn

sR

lR

cnSR

CNSM

VIMVIM

VNF

VMFW FW VMLB LB VMCache Cache

HW OS rabbitMQ DBNTP

neutron
l3-agent

neutron
dhcp-agent

neutron
openvswitch-agent

glance
registry

glance
api

nova
consoleauth

nova
scheduler

nova
conductor

nova
api horizon neutron

server

 λCN = 1
MTTFCN

 μCN = 1
MTTRCN

 μC = 1
MTTRC

 λC = 1
MTTFC

HW OS nova
computerabbitMQNTPhypervisor

 λN = 1
MTTFN

 μN = 1
MTTRN

Figure 7.17: 3N redundant baseline model: the insertion of input parameters in chain and
compute node were represented only in the first instances of there sub-models to do not overload

the figure

Table 7.15 shows the analysis results for both models. As one can observe, the difference
between results is in the order of 10−7. Such a distinction results in a daily downtime difference
of 1.15s between the models’ SSA estimations.

Table 7.15: Steady-State Availability Comparison

Model SSA(%)
Reference Model 99.99997229308%
Proposed Model 99.99991759069%

The evidence of such close results does not allow to claim that the models are different

7.5. REJUVENATION OF SERVICE FUNCTION CHAINS 114

enough to consider them as heterogeneous. So, we consider our results effectual.

7.5 Rejuvenation of Service Function Chains

The studied service chain is composed of firewalling, load balancing, and video caching
services. Figure 7.18 depicts the RBD of the adopted service chain. It has a series design because
a failure in any component means a service chain downtime.

VMFW FW VMLB LB VMCache Cache

Figure 7.18: Service Chain’s RBD

The resulting MTTF of Figure 7.18 RBD, adopting Eq. (6.2), is computed as:

MT T FSFC =
1

λvm f w +λ f w +λvmlb +λlb +λvmcache +λcache

�
 �	7.13

Table 7.14 exhibits the parameters’ values [64] used as input in the RBDs of Figs. 6.6
and 7.18. We consider a three month for MTTF and 15 minutes for MTTR to VMs and its hosted
services.

Table 7.16: Input mean times for cloud components

Component MTTF MTTR

HW 60000h 8h
Hypervisor 5000h 10min
OS 2893h 0.25h

DB, NTP, rabbitMQ, nova-consoleauth,
nova-scheduler, nova-conductor, nova-api, horizon,

neutron-server, glance-registry, glance-api,
neutron-l3-agent, neutron-dhcp-agent

nova-compute

3000h 2h

VMFW, VMLB, VMCache 2160h 0.25h
FW, LB, Cache 2160h 0.25h

Table 7.17 exhibits the resulting MTTF of all components present in the scenarios
described in Table 7.23. These values are used as input of the high-level SPN models and are
referred by their IDs.

7.6 3N Redundant Service Function Chain

This case study analyzes an All-In-One openstack deployment. We consider a 3N redun-
dant SFC composed of 3 instances of the chain depicted in Figure 7.18. The first scenario (Sec-

7.6. 3N REDUNDANT SERVICE FUNCTION CHAIN 115

Table 7.17: Results from low-level RBDs analysis

RBD MTTFID MTTF(h)
Controller cMTTF 248.20083
Neutron nMTTF 589.74019
Compute ndMTTF 640.07020
Joint Controller and Neutron cnMTTF 198.84687
All-In-One allMTTF 179.78082
Service Chain chainMTTF 500.00000

tion 7.6.1) is the baseline one, without rejuvenation, whereas the second scenario (Section 7.6.2)
presents the 3N redundant model with rejuvenation based on VM live migration.

7.6.1 Baseline model

Figure 7.19 depicts the 3N redundant model, representing three All-In-One openstack
nodes.

N1up

n1LR

n1F

N1Mnt

N1dn

sR1

lR1

n1SR

N1SM

cic1R cic1F

ndi1F

Cic1dn

Cic1up

c1R c1F

nd1F

C1s0

C1s1

N1Rst rst1

N2up

n2LR

n2F

N2Mnt

N2dn

sR2

lR2

n2SR

N2SM

cic2R cic2F

ndi2F

Cic2dn

Cic2up

c2R c2F

nd2F

C2s0

C2s1

N2Rst rst2

N3up

n3LR

n3F

N3Mnt

N3dn

sR3

lR3

n3SR

N3SM

cic3R cic3F

ndi3F

Cic3dn

Cic3up

c3R c3F

nd3F

C3s0

C3s1

N3Rst rst3

Figure 7.19: 3N redundant baseline model

The sub-models Node, Chain, and Chain Interconnection interact through NiRst place
and rsti transition (1 <= i <= 3). One token is deposited at place NiRst whenever a Node is
recovered, firing rsti. We consider that all software (Figure 6.6e) is working when its underlying
Node is restarted. The restarting is represented when the token is taken from place NiRst and
deposited at working places CiS1 and Ciciup.

7.6. 3N REDUNDANT SERVICE FUNCTION CHAIN 116

Table 7.18: Guard expressions and mean times for transitions in the 3N baseline model

Transition Guard Expressions Mean Time

c1F - 500 h
cic1F - 3000 h
c1R, cic1R #N1up>0 2 h
nd1F, ndi1F #N1Mnt>0 -
n1F - 179.780 h
n1SR - 7 min
n1LR - 8 h
rst1, sR1, lR1 - -

7.6.2 Rejuvenation model

The model exhibited in Figure 7.20 adopts VM live migration as rejuvenation technique
to improve the system steady-state availability. Figure 7.20 depicts the 3N redundant model in
which preventive maintenance is performed in the three modeled openstack All-In-One nodes.

If there is a Node failure during a live migration, the model put the VMs back to the
original place. For example, if Node 01 fails during a migration, m12F fires and the token in
m12 is taken and deposited at place C1s0. An identical behavior occurs when m13F , m21F ,
m23F , m31F , or m32F fire.

Several requirements must be accomplished to allow preventive maintenance. They were
mapped to the model through guard expressions. All the procedures are similar when considering
preventive maintenance from any openstack node to another. We presented them only between
Nodes 01 and 02 for brevity.

Table 7.19 presents the guard expressions for transitions involved in the preventive
maintenance from Node 01 to Node 02. The transition ch1m2 fires with an MTBPM, representing
the initiation of a preventive maintenance, if:

i. the destination Node 02 is working (#N2up>0);
ii. there is no other migration between these Nodes in process ((#m21=0)AND(#m12=0));

iii. the destination chain interconnection is working (#Cic2up=1);
iv. there are no failure chains is the destination Node (#C2s0=0);
v. there is only one chain in Node 01 (#C1s1<2);

vi. there are no failure chains in the source Node (#C1s0=0).

Such requirements aim to minimize the downtime, allowing the initiation of maintenance
with as many operational resources as possible. From place m12, the model verifies again if
destination Node is active (#N2up>0) and if the openstack SFC API mandatory requirement of
delete Open vSwitch rules before migration is valid (#Cicup=0).

7.6. 3N REDUNDANT SERVICE FUNCTION CHAIN 117

Figure 7.20: 3N redundant model with rejuvenation based on VM live migration

After the preventive maintenance execution, the chain return will occur if

i. the Open vSwitch rules were not configured (#Cic1up=0);
ii. the Node 01 is active (#N1up>0);

iii. there is no chains in Node 01 (#C1s1+#C1s0=0).

An identical behavior is true for the firing of transition triads: ch2m1, mC2C1, mC1C2r;
ch1m3, mC1C3, mC3C1r; ch3m1, mC3C1, mC1C3r; ch2m3, mC2C3, mC3C2r; and ch3m2,
mC3C2, mC2C3r.

Table 7.20 shows the adopted guard expressions for Node. The guard expressions

7.6. 3N REDUNDANT SERVICE FUNCTION CHAIN 118

Table 7.19: Guard expressions in 3N rejuvenation model: migration sub-model

Transition Guard expressions
Mean

time(h)

ch1m2
(#N2up>0)AND(#m21=0)AND(#m12=0)AND(#Cic2up=1)
AND(#C2s0=0)AND(#C1s1<2)AND(#C1s0=0) MTBPM

mC1C2 (#N2up>0)AND(#Cic1up=0)
MTTCLM+
MTTPPM

mC2C1r
(#Cic1up=0)AND(#N1up>0)AND
(#C2s1>1)AND(#C1s1+#C1s0=0) MTTCLM

(#Ag1N1>0) and (#Ag2N1>0) prevents the firing of rjv1n1 and rjv1n2, respectively, without
tokens in place Ag1n1 and Ag2n1. The model detects a live migration from Node 01 by:

i. the sum of two tokens at places C2s1 and C2s0 and the sum of one token at places C3s1 and
C3s0 ((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1));

ii. the sum of one token at places C2s1 and C2s0 and the sum of two tokens at places C3s1 and
C3s0 ((#C2s1+#C2s0=1)AND(#C3s1+#C3s0=2));

iii. the sum of three tokens at places C2s1 and C2s0 or at places C3s1 and C3s0 ((#C2s1+#C2s0=3))
OR((#C3s1+#C3s0=3)).

In any of these conditions, as the live migration occurred, the tokens at places Ag1n1 and
Ag2n1 are removed, realizing the rejuvenation. An identical behavior is true for the rejuvenation
of Nodes 02 and 03, with their respective guard expressions.

Table 7.20: Guard expressions in 3N rejuvenation model: node sub-model

Transition Guard expressions
Mean

time(h)
c1Ag1, c1Ag2 - 179.780/k

rjv1n1

(#Ag1N1>0)AND
(((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1))
OR((#C2s1+#C2s0=1)AND(#C3s1+#C3s0=2))
OR((#C2s1+#C2s0=3))OR((#C3s1+#C3s0=3))) -

rjv2n1

(#Ag2N1>0)AND
(((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1))
OR((#C2s1+#C2s0=1)AND(#C3s1+#C3s0=2))
OR((#C2s1+#C2s0=3))OR((#C3s1+#C3s0=3))) -

n1R - 8
dN1 - -

Table 7.21 shows the guard expressions for the Chain sub-model.
The requirements for chain rejuvenation are :

i. the presence of tokens in places m12 (#m12>0) or m13 (#m13>0);
ii. the presence of tokens at places C1s1 or C1s0 (#C1s1+#C1s0>0) while Node 01 is inactive

(#N1dn>0).

7.6. 3N REDUNDANT SERVICE FUNCTION CHAIN 119

Table 7.21: Guard expressions in 3N rejuvenation model: chain sub-model

Transition Guard expressions
Mean

time(h)
c1Ag1, c2Ag1 - 500/k

rjv1c1
(#Ag1C1>0)AND((#m12>0)OR
(#m13>0))OR((#C1s1+#C1s0>0)AND(#N1dn>0)) -

rjv2c1
(#Ag2C1>0)AND((#m12>0)OR
(#m13>0))OR((#C1s1+#C1s0>0)AND(#N1dn>0)) -

dC1 (#Ag2C1=(k-1)) -
c1F (#N1dn=1)AND(#Cic1up=0)AND(#C1s1>0) -
c1R (#N1up>0) 2

because when a Node returns of a downtime period its software will be rejuvenated. The
conditions for rejuvenation are identical for Chain 02 and Chain 03.

Table 7.22 shows the guard expressions for the Chain interconnection sub-model.
The transition cic1D will be enabled after the initiation of a migration process ((#m12 =

1)OR(#m13 = 1)) or after its conclusion, enabling the return of a chain to its original Node. The
guard expressions for transitions cic1C, cic1R, and, n1R state the conditions in which a down
chain can return to working state, whereas the guard expressions for transitions n1F and n1MF
state the conditions in which an up chain must be conducted to a down state. This behavior is
identical for the Chain Interconnections 02 and 03.

Table 7.22: Guard expressions and mean times in 3N rejuvenation model: chain interconnection
sub-model

Transition Guard expressions
Mean

time(h)

cic1D

(#m12=1)OR(#m13=1)OR((#C2s1=2)AND
(#C3s1+C3s0=1))OR((#C3s1=2) AND(#C2s1+C2s0=1))
OR(#C2s1+#C2s0=3)OR(#C3s1+#C3s0=3) 0.0017075

cic1C,
cic1R

((#C1s1+#C1s0>0)AND(#N1up>0))
OR((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1)AND(#N2up>0))
OR((#C3s1+#C3s0=2)AND(#C2s1+#C2s0=1)AND(#N3up>0))
OR((#C2s1+#C2s0=3)AND(#N2up>0))
OR((#C3s1+#C3s0=3)AND(#N3up>0))

0.0033580,
2

cic1F - 3000

n1F, n1MF

((#C1s1+#C1s0>0)AND(#N1dn>0))
OR((#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1)AND(#N2dn>0))
OR((#C3s1+#C3s0=2)AND(#C2s1+#C2s0=1)AND(#N3dn>0))
OR((#C2s1+#C2s0=3)AND(#N2dn>0))
OR((#C3s1+#C3s0=3)AND(#N3dn>0)) -

n1R

((#N1Rst=1)AND(#C1s0>0))
OR((#N2Rst=1)AND(#C2s1+#C2s0=2)AND(#C3s1+#C3s0=1))
OR((#N3Rst=1)AND(#C3s1+#C3s0=2)AND(#C2s1+#C2s0=1))
OR((#N2Rst=1)AND(#C2s1+#C2s0=3))
OR((#N3Rst=1)AND(#C3s1+#C3s0=3)) -

Similar to the baseline model, the system is active if at least one chain and its corre-

7.6. 3N REDUNDANT SERVICE FUNCTION CHAIN 120

sponding chain interconnection are active. But for the rejuvenation model, there are additional
conditions of working states: when there are two or three chains in an openstack Node due to
VM live migrations. So, we adopted Equation 7.14 to compute SSA for the 3N rejuvenation
model. It encompasses all the additional conditions in which the system is considered up.

SSA = P{(((#C1s1 = 3)OR(#C2s1 = 3)OR(#C3s1 = 3))

AND

((#Cic1up = 1)OR(#Cic2up = 1)OR(#Cic3up = 1)))

OR

(((#C1s1 = 2)AND((#Cic1up = 1)OR(#Cic2up = 1))OR((#Cic1up = 1)OR(#Cic3up = 1))OR

((#Cic2up = 1)OR(#Cic3up = 1))))

OR

(((#C2s1 = 2)AND((#Cic1up = 1)OR(#Cic2up = 1))OR((#Cic1up = 1)OR(#Cic3up = 1))OR

((#Cic2up = 1)OR(#Cic3up = 1))))

OR

(((#C3s1 = 2)AND((#Cic1up = 1)OR(#Cic2up = 1))OR((#Cic1up = 1)OR(#Cic3up = 1))OR

((#Cic2up = 1)OR(#Cic3up = 1))))

OR

((#C1s1 = 1)AND(#Cic1up = 1))OR((#C2s1 = 1)AND(#Cic2up = 1))

OR((#C3s1 = 1)AND(#Cic3up = 1))} �
 �	7.14

7.6.3 Experimental Results

Figures 7.21, 7.22, and 7.23 present the analysis results for 3N redundant baseline and
rejuvenation models. We performed experiments with varying MTBPM over from one to seven
days, and with a MT T PPM of seven minutes, aiming at investigating which value maximizes
availability. Figure 7.21 shows that the Steady-State Availability is higher than 99.999% (dashed
line) for MTBPM values from 24 to 96 hours (i.e., from one to four days). The comparison
with the baseline model is also depicted in Figure 7.21. The BL column exhibits the SSA of
the baseline model: 99.99872%. The SSA of the baseline strategy is lower than ones where
preventive maintenances are performed in the range from one to seven days.

7.6. 3N REDUNDANT SERVICE FUNCTION CHAIN 121

Figure 7.21: Daily MTBPM and corresponding availability

From these results, we explored the SSA behavior around the highest result, i.e., with
MTBPM around 24 hours. Figure 7.22 shows that if preventive maintenance occurs in mean
time intervals of 23 hours, very high availability can be reached. The availability is higher than
99.9999% (dashed line), with the estimated value of 99.9999131%, which corresponds to 27.404
seconds of annual downtime.

Figure 7.22: Very high availability for MTBPM=23hs

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 122

Finally, Fig 7.23 depicts the lower end in which the required five 9’s stands. The
preventive maintenance should be performed at least every eight hours.

Figure 7.23: High availability with minimum MTBPM=8hs

So, if all the requirements mapped to guard expressions of rejuvenation model were
accomplished, and the MTBPM was equal to 23 hours, the annual downtime can be imperceptible
to cloud SFC users. Furthermore, if cloud operators with similar SFCs perform preventive
maintenance based on rejuvenation at every four days, they should experience high availability
from their openstack Service Function Chains.

7.7 2N Redundant Service Function Chain

This final case study was designed to analyze the benefits of rejuvenation mechanism
in a 2N redundant openstack cloud providing Service Function Chains. So, we also propose
baseline models without rejuvenation to enable a comparison and state the possible benefits. Six
distinct scenarios, listed in Table 7.23, were analyzed.

Scenarios 1 and 4 require two servers as all deployment modes are implemented in all
servers; scenarios 2 and 5 require four servers, since the Controller and Neutron deployment
modes are implemented together in the same server; and finally, scenarios (3 and 6) requires six
servers, one pair for each deployment mode.

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 123

Table 7.23: Analyzed scenarios

Id Configured Openstack Deployment Modes Rejuvenation # of Nodes
1 All-In-One

No
2

2 Controller + Neutron and Compute 4
3 Controller, Neutron and Compute 6
4 All-In-One

Yes
2

5 Controller + Neutron and Compute 4
6 Controller, Neutron and Compute 6

7.7.1 Baseline models

The SPN models presented in this subsection does not consider the adoption of rejuvena-
tion mechanism. Figure 7.24 depicts the baseline SPN model for scenario 1.

Scenario 1

Nd1up

nd1LR

nd1F

Nd1Mnt

Nd1dn

sR1

lR1

nd1SR

Nd1SM

cic1R cic1F

ndi1F

Cic1dn

Cic1up

c1R c1F

ndc1F

C1s0

C1s1

Nd1Rst rst1

Nd2up

nd2LR

nd2F

Nd2Mnt

Nd2dn

sR2

lR2

nd2SR

Nd2SM

cic2R cic2F

ndi2F

Cic2dn

Cic2up

c2R c2F

ndc2F

C2s0

C2s1

Nd2Rst rst2

Figure 7.24: SPNs for baseline All-In-One scenario

The places NdiRst and the immediate transitions rsti were added to represent the interac-
tion at recovery occurrences between (i) nodes (Ndiup) and their hosted chains; and (ii) nodes
and its hosted Open vSwitch.

As soon as a node is recovered, a token is deposited at its correspondent place NdiRst.
So, the immediate transition rsti becomes enabled and fires, depositing one token at working
places CiS1 and Ciciup. The transitions c1R, cic1R, c2R, and cic2R will be enabled only if their
correspondent nodes were working, i.e., the places Nd1up and Nd2up have tokens. The guard
expressions reflecting these conditions are presented in Table 7.24.

Regarding scenario 1, the system is working when at least one service chain (C1s1 or
C2s1) and its correspondent chain interconnection (Cic1up or Cic2up) are working. The working
condition is represented in the model by the concomitant presence of tokens at these places. The
guard expressions presented in Table 7.24 assure the dependency between the service chain and
its underlying node and also between the chain interconnection and its underlying node. So, it is

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 124

Table 7.24: Guard expressions for the All-In-One baseline model

Transition Guard Expressions Mean time (h)
c1F, c2F - chainMTTF
cic1F, cic2F - 3000
c1R, cic1R #Nd1up > 0 chainMTTR, 2
c2R, cic2R #Nd2up > 0 chainMTTR, 2
ndc1F,ndi1F #Nd1Mnt > 0 -
ndc2F,ndi2F #Nd2Mnt > 0 -
rst1,rst2 - -
nd1F #N1Mnt > 0 allMTTF
nd2F #N2Mnt > 0 allMTTF
nd1SR, nd2SR - 0.1166666667
sR1, lR1, sR2, lR2 - -
nd1LR, nd2LR - 8

not required to consider them to state the system working state.
The Equation

SSAscn1 = P{((#C1s1 = 1)AND(#Cic1up = 1))OR((#C2s1 = 1)AND(#Cic2up = 1))}�
 �	7.15
computes the SSA for scenario 1. Regarding COA, the Equation

COAscn1 = (2∗ (P(#C1s1 = 1)AND(#Cic1up = 1)AND(#C2s1 = 1)AND(#Cic2up = 1))

+1∗ ((P(#C1s1 = 1)AND(#Cic1up = 1)AND(#C2s1 = 0)AND(#Cic2up = 0))

+(P(#C2s1 = 1)AND(#Cic2up = 1)AND(#C1s1 = 0)AND(#Cic1up = 0))))/2 �
 �	7.16
was adopted to compute it.

Figure 7.25 depicts the baseline SPN model for scenario 2. The places Ndiup represent
Compute nodes. The place CNup represents nodes with the joint controller and neutron deploy-
ment modes. The system is working when at least: (i) one compute node (Nd1up or Nd2up)
and their associated service chain (C1s1 or C2s1) and chain interconnection (Cic1up or Cic2up),
respectively, are working; (ii) one controller/neutron node (CNup) is working. The working
condition is represented in the model by the concomitant presence of tokens at these places.

There were no guard expressions in Controller/Neutron sub-net. Table 7.25 presents the
mean times adopted in the timed transitions of the Controller/Neutron sub-net.

Table 7.25: Mean times of timed transitions in scenario 2

Transition Mean time (h)
cnF cnMTTF
cnSR 0.1166666667
cnLR 8

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 125

Scenario 2

Nd1up

nd1LR

nd1F

Nd1Mnt

Nd1dn

sR1

lR1

nd1SR

Nd1SM

cic1R cic1F

ndi1F

Cic1dn

Cic1up

c1R c1F

ndc1F

C1s0

C1s1

Nd1Rst rst1

Nd2up

nd2LR

nd2F

Nd2Mnt

Nd2dn

sR2

lR2

nd2SR

Nd2SM

cic2R cic2F

ndi2F

Cic2dn

Cic2up

c2R c2F

ndc2F

C2s0

C2s1

Nd2Rst rst2

CNup

cnLR cnF

CNMnt

CNdn

sR

lR

cnSR

CNSM

Figure 7.25: SPNs for baseline scenario 2

The Equation

SSAscn2 = P{(#CNup > 0)AND(((#C1s1 = 1)AND(#Cic1up = 1))

OR((#C2s1 = 1)AND(#Cic2up = 1)))}

�
 �	7.17

computes the SSA for scenario 2. Regarding COA, the Equation

COAscn2 = (2∗ (P{(#C1s1 = 1)AND(#Cic1up = 1)AND(#C2s1 = 1)

AND(#Cic2up = 1)AND(#CN1up > 0)})

+1∗ ((P{(#C1s1 = 1)AND(#Cic1up = 1)AND(#C2s1 = 0)AND(#Cic2up = 0)

AND(#CN1up > 0)})

+(P{(#C2s1 = 1)AND(#Cic2up = 1)AND(#C1s1 = 0)AND(#Cic1up = 0)

AND(#CN1up > 0)})))/2

�
 �	7.18

was adopted to compute it.
Figure 7.26 depicts the baseline SPN model for scenario 3. The system is working when

at least: (i) one compute node (Nd1up or Nd2up) and their associated service chain (C1s1 or
C2s1) and chain interconnection (Cic1up or Cic2up) are working; (ii) one controller node is
working (Cup); and (iii) one neutron node (Nup) is working.

There were no guard expressions in both Controller and Neutron sub-nets. Table 7.26
presents the mean times adopted in the timed transitions of the Controller and Neutron sub-nets.

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 126

Scenario 3

Nd1up

nd1LR

nd1F

Nd1Mnt

Nd1dn

sR1

lR1

nd1SR

Nd1SM

cic1R cic1F

ndi1F

Cic1dn

Cic1up

c1R c1F

ndc1F

C1s0

C1s1

Nd1Rst rst1

Nd2up

nd2LR

nd2F

Nd2Mnt

Nd2dn

sR2

lR2

nd2SR

Nd2SM

cic2R cic2F

ndi2F

Cic2dn

Cic2up

c2R c2F

ndc2F

C2s0

C2s1

Nd2Rst rst2

Cup

cLR cF

CMnt

Cdn

sRc

lRc

cSR

CSM

Nup

nLR nF

NMnt

Ndn

sRn

lRn

nSR

NSM

Figure 7.26: SPNs for baseline scenario 3

Table 7.26: Mean times of timed transitions in scenario 3

Transition Mean time (h)
cF cMTTF
nF nMTTF
cSR, nSR 0.1166666667
cLR, nLR 8

The Equation

SSAscn3 = P{(#Cup > 0)AND(#Nup > 0)AND(((#C1s1 = 1)AND(#Cic1up = 1))OR

((#C2s1 = 1)AND(#Cic2up = 1)))}

�
 �	7.19

computes the SSA for scenario 3. Regarding COA, the Equation

COAscn3 = (2∗ (P{(#C1s1 = 1)AND(#Cic1up = 1)AND(#C2s1 = 1)AND(#Cic2up = 1)

AND(#Cup > 0)AND(#Nup > 0)})

+1∗ ((P{(#C1s1 = 1)AND(#Cic1up = 1)AND(#C2s1 = 0)AND(#Cic2up = 0)

AND(#Cup > 0)AND(#Nup > 0)})

+(P{(#C2s1 = 1)AND(#Cic2up = 1)AND(#C1s1 = 0)AND(#Cic1up = 0)

AND(#Cup > 0)AND(#Nup > 0)})))/2 �
 �	7.20

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 127

was adopted to compute it.
The numerical results of SSA and COA for scenarios 1, 2, and 3 are presented in

Table 7.27.

Table 7.27: SSA and COA for 2N baseline scenarios

Scenario SSA COA
1 99.99676967% 98.92080977%
2 99.99747647% 99.04539234%
3 99.99739319% 99.04530916%

These values will be used as a comparison basis to the results considering rejuvenation,
presented in the next section.

7.7.2 Rejuvenation models

The models exhibited in Figure 7.27 represent the scenarios 4, 5, and 6. These models
adopt VM live migration as rejuvenation technique. The goal is to improve the Steady-State
Availability and Capacity Oriented Availability of the 2N redundant openstack infrastructure
providing a Service Function Chain.

Scenario 4, 5 and 6

Scenario 6

#C1s1

#C1s1

C1s1

C1s0

Ag1C1
#Ag1C1

Ag2C1
#Ag2C1

rjv1C1

rjv2C1

c1Ag1

c1R c1Ag2

d1C

c1F

Ag3C1
#Ag3C1

Ag4C1
#Ag4C1

rjv3C1

rjv4C1

c1Ag3

c1Ag4

#C2s1

#C2s1

C2s1

C2s0

Ag1C2
#Ag1C2

Ag2C2
#Ag2C2

rjv1C2

rjv2C2

c2Ag1

c2Rc2Ag2

d2C

c2F

Ag3C2
#Ag3C2

Ag4C2
#Ag4C2

rjv3C2

rjv4C2

c2Ag3

c2Ag4

mC2C1r

ch1m2 m12 mC1C2

mC2C1 m21 ch2m1

mC1C2r

k-1

k-1

Cic1up

Cic1dn

Ag1cic1
#Ag1cic1

Ag2cic1
#Ag2cic1

rjvAg1cic1

rjvAg2cic1

cic1Ag1

cic1D

cic1Ag2

d1Cic

n1F

Cic1Mnt

cic1R

cic1C

n1Rn1FM

k-1

k-1

Cic2up

Cic2dn

Ag1cic2
#Ag1cic2

Ag2cic2
#Ag2cic2

rjvAg1cic2

rjvAg2cic2

cic2Ag1

cic2D

cic2Ag2

d2Cic

n2F

Cic2Mnt

cic2R

cic2C

n2Rn2FM

k-1

k-1

Nd1up

Nd1dn

Ag2nd1
#Ag2nd1

#Ag1nd1
Ag1nd1

rjv1nd1

rjv2nd1
nd1Ag2 nd1R

nd1Ag1

dNd1 rNd1

Nd1Rst

k-1

k-1

Ag1nd2
#Ag1nd2

Ag2nd2
#Ag2nd2

Nd2up

Nd2dn

rjv2nd2

rjv1nd2

nd2R

nd2Ag1

nd2Ag2

dNd2
Nd2Rst

rNd2

Cup

cLR cF

CMnt

Cdn

sR

lR

cSR

CSM

Nup

nLR nF

NMnt

Ndn

sR

lR

nSR

NSM

m1F m2F

CNup

cnLR cnF

CNMnt

CNdn

sR

lR

cnSR

CNSM

Scenario 5

Chain Interconnection 2Chain Interconnection 1

Chain 2Chain 1

Figure 7.27: SPN Model with Rejuvenation technique

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 128

We now consider the SAR of chain interconnections. The sub-model of Figure 6.14 was
adopted to represent the Open vSwitch.

During any chain migration, if the source node fails, the transition miF fires and any
token at places m12 or m21 is deposited at places C1s0 or C2s0, respectively. After some
migration, the places Cis1 will contain two tokes. So, we isolate aging places, Ag1C1, Ag2C1,
Ag3C1, and Ag4C1, for chain provided in node 1, and Ag1C2, Ag2C2, Ag3C2, and Ag4C2 for
chain provided in node 2, enabling the aging detection of the distinct service chains.

The requirements that must be accomplished to allow preventive maintenance through
VM live migration in 2N scenarios are identical for those required in 3N scenarios. The list
below describes the requirements for a SFC live migration from Node 02 to Node 01:

i. the destination Node 01 is working (#N1up>0);
ii. there is no other migration between these Nodes in process ((#m21=0)AND(#m12=0));

iii. the destination chain interconnection is working (#Cic1up=1);
iv. there are no failure chains is the destination Node (#C1s0=0);
v. there is only one chain in Node 02 (#C2s1<2);

vi. there are no failure chains in the source Node (#C2s0=0).

Senario 4 represents the All-In-One deployment mode. The tokens in places Nd1up and
Nd2up represent the two physical servers and all the associated required softwares, as depicted
in RBD of Figure 6.6e.

Scenario 5 represents the Controller + Neutron and Compute deployment mode. For this
scenario, the tokens in the place CNup represent the two controller+neutron servers and all the
associated required softwares, as depicted in RBD of Figure 6.6d, while the tokens in places
Nd1up and Nd2up represent the two compute servers and all the associated required softwares,
as depicted in Figure 6.6c.

Finally, scenario 6 represents the Controller, Neutron, and Compute deployment mode.
The tokens presented in the place Cup represent the two controller servers and all the associated
required softwares, as depicted in RBD of Figure 6.6a, whereas he tokens presented in the place
Nup represent the two neutron servers and all the associated required softwares, as depicted in
RBD of Figure 6.6b. The tokens in places Nd1up and Nd2up have an equivalent meaning of
scenario 5.

Table 7.28 summarizes the guard expressions and the mean time of the transitions present
in the rejuvenation models.

Table 7.28: Guard expressions for rejuvenation models

Transition Guard Expression Mean time (h)
nd1Ag1 (#C2s1+#C2s0 < 2) {nd,all}MTTF/k

nd1Ag2 - {nd,all}MTTF/k

Continued on next page

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 129

Table 7.28 – Continued from previous page

Transition Guard Expression Mean time (h)
nd1R - {nd,all}MTTR

rjv1nd1 (#Ag1Nd1 > 0)AND(#C2s1 > 1) -

rjv2nd1 (#Ag2Nd1 > 0)AND(#C2s1 > 1) -

dNd1 - -

c1Ag1

((#C1s1+#C1s0 == 1)AND
(#Ag1C1+#Ag2C1+#Ag3C1+#Ag4C1 == 0))OR

((#C1s1+#C1s0 == 2)AND
(#Ag1C1+#Ag2C1+#Ag3C1+#Ag4C1 < 2)

AND(#C1s0 == 0))
((k-1)*

chainMTTF)/k

c1Ag(2<=i<=4) - chainMTTF/k

c1R #Nd1up > 0 chainMTTR

c1F (#Nd1dn = 1)AND(#Cic1up = 0)AND(#C1s1 > 0) -

d1C - -

rjviC1

(#AgiC1 > 0)AND((#C2s1 > 1)OR
((#C1s1+#C1s0 > 0)AND(#Nd1dn > 0))OR
((#C2s1+#C2s0 = 2)AND(#Nd2dn > 0))) -

cic1Agj - chainMTTF/k

rjvAgjcic1

(#Ag jcic1 > 0)AND((#C2s1 > 1)OR
((#C1s1+#C1s0 > 0)AND(#Nd1dn > 0))OR
((#C2s1+#C2s0 = 2)AND(#Nd2dn > 0))) -

d1Cic - -

cic1D (#m12 = 1)OR(#C2s1 > 1) 0.0017075

cic1C, cic1R, n1R
((#C1s1+#C1s0 > 0)AND(#Nd1up > 0))OR
((#C2s1+#C2s0 = 2)AND(#Nd2up > 0)) 0.00335805556

n1F, n1FM
((#C1s1+#C1s0 > 0)AND(#Nd1dn > 0))OR
((#C2s1+#C2s0 = 2)AND(#Nd2dn > 0)) cicMTTF

nd2Ag1 (#C1s1+#C1s0 < 2) {nd,all}MTTF/k

nd2Ag2 - {nd,all}MTTF/k

nd2R - {nd,all}MTTR

rjv1nd2 (#Ag1Nd2 > 0)AND(#C1s1 > 1) -

rjv2nd2 (#Ag2Nd2 > 0)AND(#C1s1 > 1) -

dNd2 - -

c2Ag1

((#C2s1+#C2s0 == 1)AND
(#Ag1C2+#Ag2C2+#Ag3C2+#Ag4C2 == 0))OR

((#C2s1+#C2s0 == 2)AND
(#Ag1C2+#Ag2C2+#Ag3C2+#Ag4C2 < 2)

AND(#C2s0 == 0))
((k-1)*

chainMTTF)/k

c2Ag(2<=i<=4) - chainMTTF/k

c2R #Nd2up > 0 chainMTTR

Continued on next page

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 130

Table 7.28 – Continued from previous page

Transition Guard Expression Mean time (h)
c2F (#Nd2dn = 1)AND(#Cic2up = 0)AND(#C2s1 > 0) -

d2C - -

rjv(1<=i<=4)C1

(#AgiC2 > 0)AND((#C1s1 > 1)OR
((#C2s1+#C2s0 > 0)AND(#Nd2dn > 0))

OR((#C1s1+#C1s0 = 2)AND(#Nd1dn > 0))) -

cic2Agj - chainMTTF/k

rjvAgjcic2

(#Ag1cic2 > 0)AND((#C1s1 > 1)OR
((#C2s1+#C2s0 > 0)AND(#Nd2dn > 0))
OR((#C1s1+#C1s0 = 2)AND(#Nd1dn > 0))) -

d2Cic - -

cic2D (#m21 = 1)OR(#C1s1 > 1) 0.0017075

cic2C, cic2R, n2R
((#C2s1+#C2s0 > 0)AND(#Nd2up > 0))OR
((#C1s1+#C1s0 = 2)AND(#Nd1up > 0)) 0.00335805556

n2F, n2FM
((#C2s1+#C2s0 > 0)AND(#Nd2dn > 0))OR
((#C1s1+#C1s0 = 2)AND(#Nd1dn > 0)) cicMTTF

ch1m2
(#Nd2up > 0)AND(#m21 = 0)AND(#m12 = 0)AND
(#Cic2up = 1)AND(#C1s1 < 2)AND(#C1s0 = 0) MTBPM

mC1C2 (#Nd2up > 0)AND(#Cic1up = 0) 0.1484863888

mC2C1r (#Cic1up = 0)AND(#Nd1up > 0)AND(#C2s1 > 1) 0.0318197222

ch2m1

(#Nd1up > 0)AND(#m12 = 0)AND
(#m21 = 0)AND(#Cic1up = 1)

AND(#C2s1 < 2)AND(#C2s0 = 0) MTBPM

mC2C1 (#CMP1up > 0)AND(#Cic2up = 0) 0.1484863888

mC1C2r (#Cic2up = 0)AND(#CMP2up > 0)AND(#C1s1 > 1) 0.0318197222

Table 7.29 presents the SSA and COA equations of the analyzed aging/rejuvenation
configurations.

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 131

Table 7.29: SSA e COA equations for rejuvenation models

Scn. Mtr. Equation

4

SSA

P{((#C1s1=2)AND((#Cic1up=1)OR(#Cic2up=1)))OR((#C2s1=2)
AND((#Cic1up=1)OR(#Cic2up=1)))
OR((#C1s1=1)AND(#Cic1up=1))OR((#C2s1=1)AND(#Cic2up=1))}

5

P{(((#C1s1=2)AND((#Cic1up=1)OR(#Cic2up=1)))OR ((#C2s1=2)
AND((#Cic1up=1)OR(#Cic2up=1)))
OR((#C1s1=1)AND(#Cic1up=1))
OR ((#C2s1=1)AND(#Cic2up=1)))AND(#CNup>0)}

6

P{(((#C1s1=2)AND((#Cic1up=1)OR(#Cic2up=1)))OR((#C2s1=2)
AND((#Cic1up=1)OR(#Cic2up=1))
OR((#C1s1=1)AND(#Cic1up=1)) OR((#C2s1=1)AND(#Cic2up=1)))
AND(#Cup>0)AND(#Nup>0)}

4

COA

(2*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=1)AND(#Cic2up=1)})
+(P{(#C1s1=2)AND(#Cic1up=1)AND(#Cic2up=1)})+(P{(#C2s1=2)
AND(#Cic1up=1)AND(#Cic2up=1)})

+1*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=0)AND(#Cic2up=0)})
+(P{(#C2s1=1)AND(#Cic2up=1)AND(#C1s1=0)AND(#Cic1up=0)})))/2

5

(2*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=1)AND(#Cic2up=1)
AND(#CNup>0)})
+(P{(#C1s1=2)AND(#Cic1up=1)AND(#Cic2up=1)AND(#CNup>0)})
+(P{(#C2s1=2)AND(#Cic1up=1)AND(#Cic2up=1)AND(#CNup>0)}))
+1*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=0)AND(#Cic2up=0)
AND(#CNup>0)})
+(P{(#C1s1=0)AND(#Cic1up=0)AND(#C2s1=1)AND(#Cic2up=1)
AND(#CNup>0)})))/2

6

(2*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=1)AND(#Cic2up=1)
AND(#Cup>0)AND(#Nup>0)})
+(P{(#C1s1=2)AND(#Cic1up=1)AND(#Cic2up=1)
AND(#Cup>0)AND(#Nup>0)})
+(P{(#C2s1=2)AND(#Cic1up=1)AND(#Cic2up=1)
AND(#Cup>0)AND(#Nup>0)}))
+1*((P{(#C1s1=1)AND(#Cic1up=1)AND(#C2s1=0)AND(#Cic2up=0)
AND(#Cup>0)AND(#Nup>0)})
+(P{(#C1s1=0)AND(#Cic1up=0)AND(#C2s1=1)AND(#Cic2up=1)
AND(#Cup>0)AND(#Nup>0)})))/2

7.7.3 Experimental results

This section presents the results regarding the scenarios defined previously in Table
7.23. The main goal is to identify and measure how a rejuvenation technique can improve the
availability of service chains and understand how the variation of the MTBPM helps to achieve
high availability.

Figure 7.28 shows the SSA of All-In-One configuration. In this case, the high availability
(five 9’s) is reached when the preventive maintenance occurs at intervals of 3 hours at maximum.
When using the baseline approach, the configuration did not achieve high availability, but reached
a good availability (about 99.9967696%), whereas with rejuvenation, adopting MTBPM = 3

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 132

99.999%

99.9900

99.9925

99.9950

99.9975

100.0000

1 2 3 4 5 6 7 8 BL 9 10 11 12 13 14 15
MTBPM(h)

S
te

ad
y−

S
ta

te
 A

va
ila

bi
lit

y(
%

)

Figure 7.28: SSA for All-In-One configuration (scenarios 3 and 6)

hours, the SSA reaches 99.9994627%. The goal of high availability is reached with the adoption
of VM live migration rejuvenation.

Figure 7.29 illustrates the COA for All-In-One configuration.

●

●

●

●

●

●
●

●
●● ●●

95

96

97

98

99

100

10 20 30 40 50 60 70 80 90 100 110 120
MTBPM(h)

C
ap

ac
ity

 O
rie

nt
ed

 A
va

ila
bi

lit
y(

%
)

Scenarios
● Rejuvenation

Baseline

Figure 7.29: COA for All-In-One Configuration (scenarios 3 and 6)

In this case, the baseline approach achieves a COA close to 98.92080977% (see Ta-

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 133

ble 7.27), and the preventive maintenance produces better results than the baseline when the
MTBPM is greater than 11 hours. This way, if the service provider prioritizes the high availability,
the COA will be closed to 97.9314570%.

The SSA and COA results of scenarios 2 and 5 are depicted in Figs. 7.30 and 7.31.

●●●
●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●
●

●●●●
●

●●
●

●
●●●●

●

99.999%

99.9900

99.9925

99.9950

99.9975

100.0000

10 20 30 40 50 60 70 80 90
MTBPM(h)

S
te

ad
y−

S
ta

te
 A

va
ila

bi
lit

y(
%

)

Scenarios
● Rejuvenation

Baseline

Figure 7.30: SSA for Controller/Neutron Configuration (scenarios 2 and 5)

●

●

●

●

●

●
●

●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

70

80

90

100

10 20 30 40 50 60 70 80 90
MTBPM(h)

C
ap

ac
ity

 O
rie

nt
ed

 A
va

ila
bi

lit
y(

%
)

Scenarios
● Rejuvenation

Baseline

Figure 7.31: COA for Controller/Neutron Configuration (scenarios 2 and 5)

When deploying the controller and the neutron at the same server, the primary benefit is
the great improvement of the maximum MTBPM to achieve high availability, increasing from 3
hours in the scenario 4 to 60 hours in the scenario 5. This represents a good achievement from the
provider perspective because as more as one can prolong the next maintenance, fewer resources
are wasted. On the other hand, when using this configuration (MT BPM = 60hours), the baseline

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 134

approach obtained better COA (99.04539234%) result than the preventive maintenance approach,
and if the provider focus on high availability, the COA will be 98.7542228%.

Finally, Figs. 7.32 and 7.33 depict the results of scenarios 3 and 6. In this case, when six
servers are adopted in a 2N redundancy for each openstack deployment mode, the maximum
MTBPM to provide high availability was 78 hours. Compared to scenario 5, the improvement in
the MTBPM was 18 hours.

Different from the other previous scenarios, any MTBPM in a time interval from 1 to
120 hours produces better COA results than baseline, as depicted in Figure 7.33.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●
●●●

●●●●●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●
●

●●●●●●
●●●●

●●●
●

●●●●●●●●●●●
●●

99.999%

99.9900

99.9925

99.9950

99.9975

100.0000

10 20 30 40 50 60 70 80 90 100 110 120
MTBPM(h)

S
te

ad
y−

S
ta

te
 A

va
ila

bi
lit

y(
%

)

Scenarios
● Rejuvenation

Baseline

Figure 7.32: SSA for Controller/Neutron/Compute Configuration (Scenarios 3 and 6)

●●●●●●●●●●
●

●●●
●

●
●●●●●●●●●●

●●●●
●●●●●●●●●●●

●
●

●●●●●●●●●●
●

●●●
●●●●

●●●●●●●●●●
●●

●●
●●●●●●

●
●●●●●●

●●●●●
●

●●●
●●

●●●●●●●
●

●●●
●●●

●●
●●●

●
●

99.00

99.25

99.50

99.75

100.00

10 20 30 40 50 60 70 80 90 100 110 120
MTBPM(h)

C
ap

ac
ity

 O
rie

nt
ed

 A
va

ila
bi

lit
y(

%
)

Scenarios
● Rejuvenation

Baseline

Figure 7.33: COA for Controller/Neutron/Compute Configuration (Scenarios 3 and 6)

The results of this final case study demonstrate the effectiveness in the adoption of

7.7. 2N REDUNDANT SERVICE FUNCTION CHAIN 135

VM live migration rejuvenation technique for achieving high availability, i.e., a Steady-State
Availability greater than 99.999%.

136136136

8
Conclusion

The changes in the communication networks coming from virtualization enable the
replacement of static equipment and interconnections by dynamic virtualized components. The
traditional appliances have been replaced by Virtual Network Functions, decoupling the network
functions from their underlying hardware. Virtualized networks represent additional obstacles
to high availability because it results in more layers of software: the increasing number of
software components required to run virtualized systems also increases the number of possible
failures. A widely used design principle in fault tolerance is to introduce redundancy to enhance
systems availability. Thus, the modeling and analysis of redundant mechanisms in virtualized
environments, as cloud computing infrastructures, is relevant to enable high availability and
business continuity in concomitance with resources wastage reduction or elimination.

In this work, we analyzed the steady-state availability and capacity oriented availability
metrics of Virtual Network Functions using dependability modeling, with the adoption of
hierarchical and heterogeneous modeling.

Testbeds are designed and assembled with the primary purpose of understanding the op-
eration of high availability infrastructures. After, they also were used to enable the measurement
of parameters used as inputs into the proposed models. We have argued that these measures can
be used by specialists with the aim of improving the precision of models related to the focus of
this thesis.

We presented 5 case studies in which the models’ applicability can be observed. The first
case study focuses on the analysis of server virtualization environments to investigate the benefits
in the adoption of active/active redundancy in a cluster of video caches. The second analyzes the
joint operation of virtualized network function and a traditional appliance. Sensitivity analysis
was adopted in these two case studies to state the most impactful parameters regarding the
evaluated metrics.

The third case study aims at analyzing how reasonable is our proposed modeling approach
regarding Service Function Chains through a comparison with previous literature. The fourth
case study analyzes the benefits in tackling the aging phenomenon presented in an HA cloud
infrastructure adopting rejuvenation through VM live migration in a 3N redundant SFC. Finally,
the fifth case study analyzes the behavior of the metrics of interest facing a reduction for a 2N

8.1. CONTRIBUTIONS 137

redundant environment in the cloud infrastructure.
The following sections describe the main contributions of this thesis, the limitations, and

proposes possible extensions as future directions.

8.1 Contributions

As the main contributions of this thesis, we can highlight:

� a hierarchical and heterogeneous stochastic set of models to represent Virtual Network Function
and Service Function Chains, including redundancy for high available services provision, as
well as the aging phenomenon analysis and the adoption of its countermeasure rejuvenation
mechanism based on SFCs live migration;

� a High Available (HA) private cloud computing was assembled using openstack, enabling
the measurement of Mean Time To Chain Live Migration (MTTCLM) parameter in Service
Function Chains experiments. The main goal was to feed the presented stochastic models also
with real measured values;

� the analysis of the proposed VNF and SFC models, improving the previously known results
regarding the number of physical servers required to provide an HA VNF chain.

Also, we extend the Tuning Infrastructure for Server Virtualization Experiment Proto-
col (TISVEP) with messages specifications (reported in Appendix B), as well as with its coding,
automating the experiments execution of Service Function Chains live migration.

8.2 Limitations

During the period of this work, some limitations were identified. They are reported
below.

� Models growth: even with the division of modeled systems in sub-models, the models tend
to grow in the analysis of distinct scenarios, making it difficult to generate results due to
processing times;

� HA Cloud management: the cost of assembling the HA cloud computing infrastructure,
comprises the training regarding installation, configuration, and operation of openstack cloud,
results in a high time-consuming task. The storage and network hardware assembling comprised
the acquisition of equipment, their subsequent installation, configuration, and test together
with the server hardware, the operating system, and the openstack software. Updates in the
infrastructure, even performed automatically, resulted in re-configuration efforts. So, after the
deployment of Ocata version of openstack software, no updates were implemented;

8.3. FUTURE WORK 138

� Adopted models and techniques: the user must have basic knowledge regarding the parameteri-
zation of the system variables. The users must receive proper training or a system that aids the
users should be created.

8.3 Future Work

Although this thesis tackles some issues regarding dependability regarding the provision
of VNFs and SFCs, there are possibilities to improve and extend the current work. The following
items summarize some possible improvements:

� Explore parallel live migration techniques: the migration between source and destination server
was performed in series. The adoption of parallel live migration is a potential source to reach
lower MTTCLM values. The models can be adjusted to cover parallel migration updating the
firing semantics of the involved transitions from Single Server to Infinite Server;

� Explore alternative virtualization approaches, such as: para-virtualization (with Xen) and
Container-based virtualization (with LXC). It is also a potential source to reduce MTTCLM
values.

Regarding extensions, we can cite:

� Analyze different sizes of Service Function Chains, aiming to establish an upper boundary
in the number of chain services that do not violate the high availability feature (five 9’s of
availability).

139139139
References

[1] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and L. Veltri. Implementa-
tion of virtual network function chaining through segment routing in a linux-based nfv
infrastructure. In 2017 IEEE Conference on Network Softwarization (NetSoft), pages 1–5,
July 2017.

[2] A. Abhari and M. Soraya. Workload generation for youtube. Multimedia Tools and

Applications, 46(1):91–118, 2010.

[3] L. A. Adamic and B. A. Huberman. Zipf’s law and the internet. Glottometrics, 3:143–150,
2002.

[4] W. Ahmad, O. Hasan, and S. Tahar. Formal dependability modeling and analysis: A
survey. CoRR, abs/1606.06877, 2016.

[5] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalized stochastic petri nets
for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst.,
2(2):93–122, May 1984.

[6] J. Alonso, R. Matias, E. Vicente, A. Maria, and K. S. Trivedi. A comparative experimental
study of software rejuvenation overhead. Performance Evaluation, 70(3):231–250, 2013.

[7] J. Alonso and K. S. Trivedi. Software Rejuvenation And Its Application In Distributed
Systems, 2015.

[8] I. Amazon Web Services. About aws, 2017.

[9] I. Amazon Web Services. Summary of the amazon s3 service disruption in the northern
virginia (us-east-1) region, 2017.

[10] I. Amazon Web Services. What is cloud computing?, 2017.

[11] S. Andriole, M. Conrad, P. Cosi, R. Debons, D. Heimann, N. Mittal, M. Palakal, and
K. Trivedi. Advances in Computers, volume 31. Academic Press, 1990.

[12] J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker. Experimental evaluation of
software aging effects on the eucalyptus cloud computing infrastructure. pages 1–7, 2012.

[13] J. Araujo, R. Matos, P. Maciel, F. Vieira, R. Matias, and K. S. Trivedi. Software reju-
venation in eucalyptus cloud computing infrastructure: A method based on time series
forecasting and multiple thresholds. In 2011 IEEE Third International Workshop on

Software Aging and Rejuvenation, pages 38–43, Nov 2011.

REFERENCES 140

[14] J. Arlat, K. Kanoun, and J. C. Laprie. Dependability modeling and evaluation of software
fault-tolerant systems. IEEE Transactions on Computers, 39(4):504–513, Apr 1990.

[15] S. Ballmer. Steve ballmer: Worldwide partner conference 2013 keynote, 2013.

[16] K. Benz and T. M. Bohnert. Impact of pacemaker failover configuration on mean time to
recovery for small cloud clusters. IEEE International Conference on Cloud Computing,

CLOUD, pages 384–392, 2014.

[17] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and Markov

Chains: Modeling and Performance Evaluation with Computer Science Applications.
Wiley-Interscience, New York, NY, USA, 1998.

[18] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and zipf-like
distributions: evidence and implications. In INFOCOM ’99. Eighteenth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 1, pages 126–134 vol.1, Mar 1999.

[19] F. Callegati, W. Cerroni, and C. Contoli. Virtual networking performance in openstack plat-
form for network function virtualization. Journal of Electrical and Computer Engineering,
2016, 2016.

[20] V. Cardellini, E. Casalicchio, J. C. Estrella, and K. R. Lucas Jaquie Cast Branco. Per-

formance and Dependability in Service Computing: Concepts, Techniques and Research

Directions. Information Science Reference - Imprint of: IGI Publishing, Hershey, PA,
2011.

[21] F. Carpio and A. Jukan. Improving reliability of service function chains with combined
vnf migrations and replications. arXiv preprint arXiv:1711.08965, 2017.

[22] R. Chayapathi, S. Hassan, and P. Shah. Network Functions Virtualization (NFV) with a

Touch of SDN. Pearson Education, 2016.

[23] H. Chirammal, P. Mukhedkar, and A. Vettathu. Mastering KVM Virtualization. Packt
Publishing, 2016.

[24] L.-D. Chou, C.-W. Tseng, H.-Y. Chou, and Y.-T. Yang. A sfc network management system
in sdn. Mobile and Wireless Technologies 2017, pages 360–369, 06 2018.

[25] Cisco. Cisco visual networking index: Forecast and methodology, 2015-2020 white paper,
2016.

[26] I. Citrix Systems. Citrix xen server. https://www.citrix.com/products/

xenserver/, 2017.

https://www.citrix.com/products/xenserver/
https://www.citrix.com/products/xenserver/

REFERENCES 141

[27] J. claude Laprie and B. Randell. Fundamental concepts of computer systems dependability.
In Proc. of the Workshop on Robot Dep. , Seoul, Korea, pages 21–22, 2001.

[28] CloudStack. Apache cloudstack. https://cloudstack.apache.org/, 2017.

[29] I. Costa, J. Araujo, J. Dantas, E. Campos, F. A. Silva, and P. Maciel. Availability evaluation
and sensitivity analysis of a mobile backend-as-a-service platform. Quality and Reliability

Engineering International, 32(7):2191–2205, 2016. qre.1927.

[30] D. Cotroneo, L. De Simone, A. K. Iannillo, A. Lanzaro, and R. Natella. Dependability
evaluation and benchmarking of Network Function Virtualization Infrastructures. 1st IEEE

Conference on Network Softwarization: Software-Defined Infrastructures for Networks,

Clouds, IoT and Services, NETSOFT 2015, pages 1–9, 2015.

[31] R. d. S. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, and K. S. Trivedi. Sensitivity
analysis of server virtualized system availability. IEEE Transactions on Reliability,
61(4):994–1006, Dec 2012.

[32] J. Dantas, R. Matos, J. Araujo, and P. Maciel. Eucalyptus-based private clouds: availability
modeling and comparison to the cost of a public cloud. Computing, 97(11):1121–1140,
Nov 2015.

[33] M. Di Mauro, M. Longo, F. Postiglione, and M. Tambasco. Availability Modeling and

Evaluation of a Network Service Deployed via NFV, pages 31–44. Springer International
Publishing, Cham, 2017.

[34] R. Dittner and D. Rule. The Best Damn Server Virtualization Book Period: Including

Vmware, Xen, and Microsoft Virtual Server. Syngress Publishing, 2007.

[35] P. T. Endo, M. Rodrigues, G. E. Gonçalves, J. Kelner, D. H. Sadok, and C. Curescu. High
availability in clouds: Systematic review and research challenges. J. Cloud Comput.,
5(1):66:1–66:15, Dec. 2016.

[36] ETSI. Network functions virtualisation (nfv); architectural framework, 2014.

[37] ETSI. Network functions virtualisation (nfv); resiliency requirements, 2015.

[38] E. T. S. I. ETSI. Network functions virtualisation – introductory white paper. Technical
report, ETSI, 2012.

[39] I. F5 Networks. The mean time between failures for f5 hardware platforms, July 2016.

[40] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. Generic routing encapsulation (gre).
RFC 2784, RFC Editor, March 2000. https://www.ietf.org/rfc/rfc2784.
txt.

https://cloudstack.apache.org/
https://www.ietf.org/rfc/rfc2784.txt
https://www.ietf.org/rfc/rfc2784.txt

REFERENCES 142

[41] N. Feamster, J. Rexford, and E. Zegura. The road to sdn: An intellectual history of
programmable networks. SIGCOMM Comput. Commun. Rev., 44(2):87–98, Apr. 2014.

[42] S. Fernandes, E. Tavares, M. Santos, V. Lira, and P. Maciel. Dependability assessment of
virtualized networks. In 2012 IEEE International Conference on Communications (ICC),
pages 2711–2716, June 2012.

[43] L. Foundation. Open vswitch. http://openvswitch.org/, 2017.

[44] O. Foundation. Accelerating nfv delivery with openstack. Technical report, 2016.

[45] O. N. Foundation. Openflow specifications. https://www.opennetworking.

org/software-defined-standards/specifications/, 2017.

[46] H. Fujita, Y. Matsuno, T. Hanawa, M. Sato, S. Kato, and Y. Ishikawa. Ds-bench toolset:
Tools for dependability benchmarking with simulation and assurance. In IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN 2012), pages 1–8,
June 2012.

[47] R. Fundation. The r project for statistical computing, 2016.

[48] M. Gagnaire, F. Diaz, C. Coti, C. Cerin, K. Shiozaki, Y. Xu, P. Delort, J.-P. Smets, J. L.
Lous, S. Lubiarz, and P. Leclerc. Downtime statistics of current cloud solutions. Technical
report, International Working Group on Cloud Computing Resiliency, 2013.

[49] R. German. Performance Analysis of Communication Systems with Non-Markovian

Stochastic Petri Nets. John Wiley & Sons, Inc., New York, NY, USA, 2000.

[50] R. P. Goldberg. Architectural Principles for Virtual Computer Systems. PhD thesis,
Harvard University - Cambridge, MA US, 1973.

[51] A. Gonzalez, P. Gronsund, K. Mahmood, B. Helvik, P. Heegaard, and G. Nencioni.
Service availability in the nfv virtualized evolved packet core. In 2015 IEEE Global

Communications Conference (GLOBECOM), pages 1–6, Dec 2015.

[52] E. Guedes, L. Silva, and P. Maciel. Performability analysis of i/o bound application on
container-based server virtualization cluster. In Computers and Communication (ISCC),

2014 IEEE Symposium on, pages 1–7, June 2014.

[53] E. A. C. Guedes. Performability Analysis of Web Cache Server Clusters Applied to Server
Virtualization. Master’s thesis, Federal University of Pernambuco, Brazil, 2015. [Online].
Available: http://www.modcs.org/wp-content/uploads/thesis/Dissertation-Erico.pdf.

[54] J. Halpern and C. Pignataro. Service function chaining (sfc) architecture. RFC 7665, RFC
Editor, October 2015.

http://openvswitch.org/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/

REFERENCES 143

[55] D. M. Hamby. A review of techniques for parameter sensitivity analysis of environmental
models. Environmental Monitoring and Assessment, 32(2):135–154, 1994.

[56] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualization: Challenges
and opportunities for innovations. IEEE Communications Magazine, 53(2):90–97, 2015.

[57] D. Heimann, N. Mittal, and K. Trivedi. Dependability modeling for computer systems.
pages 120 – 128, 03 1991.

[58] S. Herker, X. An, W. Kiess, S. Beker, and A. Kirstaedter. Data-center architecture
impacts on virtualized network functions service chain embedding with high availability
requirements. In 2015 IEEE Globecom Workshops (GC Wkshps), pages 1–7, Dec 2015.

[59] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software rejuvenation: analysis, module
and applications. Twenty-Fifth International Symposium on Fault-Tolerant Computing.

Digest of Papers, pages 381–390, 1995.

[60] D. Inc. Get started, part 1: Orientation and setup. https://docs.docker.com/get-started/,
2019.

[61] V. Inc. Vmware vsphere. https://www.vmware.com/products/vsphere.

html, 2017.

[62] R. Jain and S. Paul. Network virtualization and software defined networking for cloud
computing: a survey. IEEE Communications Magazine, 51(11):24–31, November 2013.

[63] W. Keesee. A method of determining a confidence interval for availability. 1965.

[64] D. S. Kim, F. Machida, and K. Trivedi. Availability modeling and analysis of a virtualized
system. In Dependable Computing, 2009. PRDC ’09. 15th IEEE Pacific Rim International

Symposium on, pages 365–371, Nov 2009.

[65] H. Kim and N. Feamster. Improving network management with software defined network-
ing. IEEE Communications Magazine, 51(2):114–119, February 2013.

[66] D. Kusnetzky. Virtualization: A Manager’s Guide. O’Reilly Media, 2011.

[67] KVM. Kvm - kernel-based virtual machine. http://www.linux-kvm.org/page/
Main_Page, 2017.

[68] C. Labs. Pacemaker cluster resource manager. https://www.clusterlabs.org/
pacemaker.html, 2017.

[69] J.-C. Laprie. Dependability Computing And fault tolerance : concepts and terminology.
III:2–11, 1996.

https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsphere.html
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
https://www.clusterlabs.org/pacemaker.html
https://www.clusterlabs.org/pacemaker.html

REFERENCES 144

[70] Y. Liu and K. S. Trivedi. A general framework for network survivability quantification.
pages 369–378, 2004.

[71] C. J. Lu and W. Q. Meeker. Using degradation measures to estimate a time-to-failure
distribution. Technometrics, 1993.

[72] W. Luis, C. Jonatas, and A. Marques. Data Plane Programmability Beyond OpenFlow
: Opportunities and Challenges for Network and Service Operations and Management.
Journal of Network and Systems Management, 2017.

[73] LXC. Lxc - linux containers. https://linuxcontainers.org/, 2017.

[74] F. Machida, D. S. Kim, and K. S. Trivedi. Modeling and Analysis of Software Rejuvenation
in Server Virtualized System. pages 5–10, 2011.

[75] P. R. M. Maciel, R. Matias, J. Dong, and S. Kim. Dependability Modeling. Number 3.
2012.

[76] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and
C. Wright. Virtual extensible local area network (vxlan): A framework for overlaying
virtualized layer 2 networks over layer 3 networks. RFC 7348, RFC Editor, August 2014.
https://www.rfc-editor.org/rfc/rfc7348.txt.

[77] M. Malhotra and K. S. Trivedi. Dependability modeling using petri-nets. IEEE Transac-

tions on Reliability, 44(3):428–440, Sep 1995.

[78] H. Masutani, Y. Nakajima, T. Kinoshita, T. Hibi, H. Takahashi, K. Obana, K. Shimano,
and M. Fukui. Requirements and design of flexible nfv network infrastructure node
leveraging sdn/openflow. In Optical Network Design and Modeling, 2014 International

Conference on, pages 258–263, May 2014.

[79] R. Matos, J. Araujo, P. Maciel, F. Vieira, R. Matias, and K. S. Trivedi. Software reju-
venation in eucalyptus cloud computing infrastructure: A method based on time series
forecasting and multiple thresholds. Proceedings - 2011 3rd International Workshop on

Software Aging and Rejuvenation, WoSAR 2011, 7(3):38–43, 2011.

[80] R. Matos, J. Dantas, J. Araujo, K. S. Trivedi, and P. Maciel. Redundant eucalyptus
private clouds: Availability modeling and sensitivity analysis. Journal of Grid Computing,
15(1):1–22, 2017.

[81] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Openflow: Enabling innovation in campus networks. SIG-

COMM Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

https://linuxcontainers.org/
https://www.rfc-editor.org/rfc/rfc7348.txt

REFERENCES 145

[82] P. M. Mell and T. Grance. Sp 800-145. the nist definition of cloud computing. Technical
report, Gaithersburg, MD, United States, 2011.

[83] C. Melo, J. Araujo, V. Alves, and P. Maciel. Investigation of software aging effects on the
OpenStack cloud computing platform. Journal of Software, 12(2):125–138, 2017.

[84] C. Melo, R. Matos, J. Dantas, and P. Maciel. Capacity-oriented availability model for
resources estimation on private cloud infrastructure. In 2017 IEEE 22nd Pacific Rim

International Symposium on Dependable Computing (PRDC), pages 255–260, Jan 2017.

[85] M. Melo, J. Araujo, R. Matos, J. Menezes, and P. Maciel. Comparative analysis of
migration-based rejuvenation schedules on cloud availability. Proceedings - 2013 IEEE

International Conference on Systems, Man, and Cybernetics, SMC 2013, pages 4110–
4115, 2013.

[86] Microsoft. Windows hyper-v server. https://docs.microsoft.com/en-us/
windows-server/virtualization/hyper-v/hyper-v-server-2016,
2017.

[87] D. C. Montgomery and G. C. Runger. Applied Statistics and Probability for Engineers.
John Wiley and Sons, 2003.

[88] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, Apr 1989.

[89] N. Naksinehaboon, N. Taerat, C. Leangsuksun, C. F. Chandler, and S. L. Scott. Benefits
of software rejuvenation on hpc systems. In International Symposium on Parallel and

Distributed Processing with Applications, pages 499–506, Sep. 2010.

[90] S. Nandwani. Managing kubernetes on openstack at scale. https://www.youtube.
com/watch?v=3OuyLlPrpy0, May 2017.

[91] T. A. Nguyen, D. S. Kim, and J. S. Park. A Comprehensive Availability Modeling and
Analysis of a Virtualized Servers System Using Stochastic Reward Nets. Scientific World

Journal, 2014, 2014.

[92] T. A. Nguyen, D. Min, and E. Choi. A comprehensive evaluation of availability and
operational cost for a virtualized server system using stochastic reward nets. The Journal

of Supercomputing, Aug 2017.

[93] T. A. Nguyen, D. Min, and J. S. Park. A comprehensive sensitivity analysis of a data
center network with server virtualization for business continuity. Mathematical Problems

in Engineering, 2015.

https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-server-2016
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-server-2016
https://www.youtube.com/watch?v=3OuyLlPrpy0
https://www.youtube.com/watch?v=3OuyLlPrpy0

REFERENCES 146

[94] F. M. D. Nitto, J. Friesse, and S. Dake. Corosync cluster engine. http://corosync.
github.io/corosync/, 2017.

[95] A. S. Oliveira. SIMF: Um Framework de Injeção e Monitoração de Falhas de Nuvens
Computacionais Utilizando SPN, 2017. Dissertação de Mestrado, UFPE (Universidade
Federal de Pernambuco, Recife, Brazil.

[96] ONF. Software-defined networking: The new norm for networks. Technical report, Open
Networking Foundation, April 2012.

[97] OpenNebula. About opennebula. https://opennebula.org/about, 2017.

[98] OpenStack. What is openstack? https://www.openstack.org/software/,
2017.

[99] OpenVZ. Openvz linux containers. http://openvz.org, 2017.

[100] Oracle. Oracle virtual box. https://www.virtualbox.org, 2017.

[101] L. Perkov, N. Pavkovic, and J. Petrovic. High-availability using open source software.
In 2011 Proceedings of the 34th International Convention MIPRO, pages 167–170, May
2011.

[102] W. Polygraph. Web polygraph: a benchmarking tool for caching proxies and other web
intermediaries., 2016.

[103] Qemu. Qemu - quick emulator. http://www.qemu.org, 2017.

[104] P. Quinn and T. Nadeau. Problem statement for service function chaining. RFC 7498,
RFC Editor, April 2015. http://www.rfc-editor.org/rfc/rfc7498.txt.

[105] J. Riley, J. Noss, W. Dillingham, J. Cuff, and I. M. Llorente. A high-availability cloud for
research computing. Computer, 50(6):92–95, 2017.

[106] A. Rugina, K. Kanoun, and M. Kaâniche. An architecture-based dependability modeling
framework using AADL. CoRR, abs/0704.0865, 2007.

[107] R. Russell. Netfilter: firewalling, nat, and packet mangling for linux, 2018.
http://netfilter.org/.

[108] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and
G. Parulkar. Flowvisor: A network virtualization layer. OpenFlow Switch Consortium,

Tech. Rep, 1:132, 2009.

[109] B. Silva, R. Matos, G. Callou, J. Figueiredo, D. Oliveira, J. Ferreira, J. Dantas, A. L.
Junior, V. Alves, and P. Maciel. Mercury : An Integrated Environment for Performance
and Dependability Evaluation of General Systems.

http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
https://opennebula.org/about
https://www.openstack.org/software/
http://openvz.org
https://www.virtualbox.org
http://www.qemu.org
http://www.rfc-editor.org/rfc/rfc7498.txt

REFERENCES 147

[110] P. S. Solutions. Proxmox virtual environment. https://www.proxmox.com/en/
proxmox-ve, 2017.

[111] C. Strachey. Time sharing in large, fast computers. In IFIP Congress, pages 336–341,
1959.

[112] D. Sun, G. Chang, Q. Guo, C. Wang, and X. Wang. A dependability model to enhance
security of cloud environment using system-level virtualization techniques. In 2010 First

International Conference on Pervasive Computing, Signal Processing and Applications,
pages 305–310, Sep. 2010.

[113] A. T. Tai, L. Alkalai, and S. N. Chau. On-board preventive maintenance: A design-oriented
analytic study for long-life applications. Performance Evaluation, 35(3):215–232, 1999.

[114] W. Tarreau. Ha proxy tcp/http load balancer. http://www.haproxy.org/, 2017.

[115] Telcordia. Generic requirements for operations systems platform reliability. Technical
report, Telcordia Technologies, June 1994.

[116] M. Torquato and I. M. U. P. Maciel. Models for availability and power consumption
evaluation of a private cloud with VMM rejuvenation enabled by VM Live Migration.
Journal of Supercomputing, 74(9):4817–4841, 2018.

[117] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science

Applications. John Wiley and Sons Ltd., Chichester, UK, 2nd edition edition, 2002.

[118] K. S. Trivedi. What is sharpe? https://sharpe.pratt.duke.edu/, 2019.

[119] K. S. Trivedi and M. Malhotra. Reliability and Performability Techniques and Tools: A

Survey, pages 27–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[120] A. A. Ucla, A. Avizienis, J. claude Laprie, and B. Randell. Fundamental concepts of
dependability, 2001.

[121] J. F. Vilas, J. P. Arias, and A. F. Vilas. High Availability with Clusters of Web Services,
pages 644–653. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[122] VMWare. Vmware virtualization software for desktops, servers and virtual machines for
public and private cloud solutions. http://www.vmware.com, 2017.

[123] W. von Hagen. Professional Xen Virtualization. Wrox Press Ltd., 2008.

[124] S. v. Vugt. Pro Linux High Availability Clustering. Apress, Berkely, CA, USA, 1st edition,
2014.

https://www.proxmox.com/en/proxmox-ve
https://www.proxmox.com/en/proxmox-ve
http://www.haproxy.org/
http://www.vmware.com

REFERENCES 148

[125] B. Wei, C. Lin, and X. Kong. Dependability modeling and analysis for the virtual clusters.
In Proceedings of 2011 International Conference on Computer Science and Network

Technology, volume 4, pages 2316–2320, Dec 2011.

[126] T. S. J. H. William Gropp, Ewing Lusk. Beowulf cluster computing with Linux. Scientific
and Engineering Computation. The MIT Press, 2 edition, 2003.

[127] M. Williams. Linux ethernet bonding driver howto, April 2011.

[128] Wolfram Research Inc. Mathematica 10.0, 2015.

[129] Xen. Xen hypervisor. http://xen.org, 2017.

[130] W. Xie, Y. Hong, and K. Trivedi. Analysis of a two-level software rejuvenation policy.
Reliability Engineering and System Safety, 87(1):13 – 22, 2005.

[131] S. Yoon, T. Na, H. Yoon, and H.-Y. Ryu. An implementation of network computing
testbed system on open source virtualized cloud. In 2017 IEEE International Conference

on Consumer Electronics (ICCE), pages 156–157, Jan 2017.

[132] C. Zhang, L. Fourie, P. Carver, V. Choudhary, R. Fei, X. Wang, R. P. S. Wong, I. Car-
doso, A. Motoki, S. Vasudevan, A. Migliaccio, and K. Mestery. Service function
chaining extension for openstack networking. https://docs.openstack.org/
networking-sfc/latest/index.html, 2017.

[133] H. Ziade, R. Ayoubi, and R. Velazco. A survey on fault injection techniques. International

Arab Journal of Information Technology, Vol. 1, No. 2, July:171–186, 2004.

http://xen.org
https://docs.openstack.org/networking-sfc/latest/index.html
https://docs.openstack.org/networking-sfc/latest/index.html

Appendix

150150150

A
HA OpenStack Implementation

Table A.1 presents the status of HA deployment of adopted OpenStack components
regarding installation, the necessity of RA customization, and whether the component is already
managed by Pacemaker.

Table A.1: OpenStack Components Status

customized
RA

HA by
Pacemaker

apache
keystone NO YES
horizon NO YES
glance
glance-api NO YES
glance-registry NO YES
nova
nova-api YES YES
nova-conductor NO YES
nova-scheduler NO YES
nova-novncproxy NO YES
nova-consoleauth NO YES
nova-compute NO YES
neutron
neutron-server YES YES
neutron-agent-dhcp NO YES
neutron-agent-l3 NO YES

Table 2 lists all additional OpenStack required softwares for deployment of HA Solution.

151

Table A.2: OpenStack: Additional Required Softwares

installed
available

RA
HA

Solution

MariaDB YES NO Galera

Galera YES YES Pacemaker

HAProxy YES YES Pacemaker

RabbitMQ YES YES native

memcached YES NO none

152152152

B
Specification of TISVEP Extension Messages

The Tuning Infrastructure for Server Virtualization Experiment Protocol (TISVEP) [53]
messages, that extend the original protocol, are presented below. Each transmitted message has
the MSG_ID parameter in the first field. Each message is easily identified by a bold Message
Code and name.

312: createChain: the processing of this message results in the execution of openstack
SFC API commands that create the service function chain.
Example:

MSG_ID=312:SRC_IP=192.168.99.10:DST_IP=192.168.99.16

In the above example, the VM source IP 192.168.99.10, in which the Web-Polygraph client-
side will be executed, and the VM destination IP 192.168.99.16, in which the Web-Polygraph
server-side will be executed, are stated. They are the source and the destination of the service
function chain traffic. The result is the creation of the Open vSwitch rules that will forward the
traffic throughout the chain. The message is transmitted to the controller cluster IP. Any node
belonging to the cluster is able to process the chain creation.

313: deleteChain: the processing of this message results in the execution of openstack
SFC API commands that delete the service function chain. This results in the deletion of the
Open vSwitch rules that were forwarding the traffic throughout the chain.
Example:

MSG_ID=313

In the above example, the message identification is transmitted for the controller cluster
IP. Any node belonging to the cluster is able to process the chain deletion.

314: detectMigration: the processing of this message is performed by the compute node

MSG_ID=312:SRC_IP=192.168.99.10:DST_IP=192.168.99.16
MSG_ID=313

153

receiving the chain migration. The VMs migration is completed when their processes are created
in the receiving computer node. We monitor the Process Identification (PID) created by the
hypervisor for each VM. When all the PIDs were created, the TISVEP informs the experimenter
node, and the chain creation can continue.
Example:

MSG_ID=314

In the above example, the message identification is transmitted for the compute node
receiving the chain migration and the VMs’ PIDs monitoring can start.

315: fwRulesInjection: insert missing rules in linux netfilter, that should be inserted by
openstack SFC API does.
Example:

MSG_ID=315:SRC_IP=192.168.99.10

In the above example, the compute node receiving the message will add rules to the linux
netfilter firewall, allowing the traffic from Web-Polygraph server-side machine (192.168.99.10)
to be forward in the chain.

316: migrateChain: the processing of this message results in the initiation of SFC
migration process. The message is transmitted to the controller cluster IP. Any node belonging
to this cluster is able to process the chain creation.
Example:

MSG_ID=316:DST_CMP_HN=192.168.99.62

In the above example, the 316 message ID and the 192.168.99.62 (the IP address of ha-compute02
openstack node) was passed to the controller cluster IP. Any node belonging to the controller
cluster is able to process the chain migration.

MSG_ID=314
MSG_ID=315:SRC_IP=192.168.99.10
MSG_ID=316:DST_CMP_HN=192.168.99.62

	Introduction
	Motivation and Justification
	Objectives
	Thesis Organization

	Background
	Server Virtualization
	Proxmox VE

	Network Virtualization
	Network Function Virtualization
	Service Function Chaining
	Software-Defined Networking

	Cloud Computing
	Openstack
	The Openstack SFC API

	Clusters and High Availability
	Redundancy Strategies

	Dependability
	Reliability
	Availability
	Maintainability

	Dependability Modeling
	Reliability Block Diagrams
	Continuous Time Markov Chains
	Stochastic Petri Nets
	Capacity Oriented Availability
	Hierarchical Modeling

	Software Aging and Rejuvenation
	Sensitivity Analysis

	Related Works
	Hierarchical Modeling of Virtual Environments
	Software Aging and Rejuvenation of Server Virtualized Systems

	A Methodology for Provisioning of High Available VNF Chains
	Methodology Overview
	Methodology Activities
	System Understanding
	Environment Conception
	Definition of Parameters and Metrics
	Models Design
	State Input Parameters Sources
	Evaluation
	Yield Recommendations

	Measurement Experiments
	Workload for User Generated Content
	Proxmox Server Virtualization Testbed
	HA Openstack Cloud Testbed
	Time To Failure Measurements in Proxmox Server Virtualization Testbed
	Service Function Chain Migration Experiments in HA Cloud Testbed
	Experiments execution

	Availability Models
	Introduction
	Models for VNFs in Proxmox server virtualization infrastructure
	Model for VNF Cache Cluster
	Model for Cache VNF and Load Balancer
	Model for Cache VNF and Load Balancer without SPOFs

	Models for SFCs in openstack cloud infrastructure
	Low-level RBDs for openstack deployment modes
	Low-level RBDs for service function chains
	Top-level SPN sub-models for openstack nodes
	SPN sub-model for openstack nodes without rejuvenation
	SPN sub-model for openstack nodes with rejuvenation

	Top-level SPN sub-models for service chain
	Top-level SPN sub-model for service chain live migration
	Top-level SPN sub-models for chains interconnection

	Case Studies
	Introduction
	VNF Cache Clusters
	Non-redundant VNF Cache Cluster
	Redundant VNF Cache Cluster

	Redundant VNF Caches and Load Balancers
	Redundant VNF Cache and Load Balancer
	No Load Balancer SPOF

	Comparison with Reference Work
	3N Redundant Baseline Model
	Reference Work for Comparison

	Rejuvenation of Service Function Chains
	3N Redundant Service Function Chain
	Baseline model
	Rejuvenation model
	Experimental Results

	2N Redundant Service Function Chain
	Baseline models
	Rejuvenation models
	Experimental results

	Conclusion
	Contributions
	Limitations
	Future Work

	References
	Appendix
	HA OpenStack Implementation
	Specification of TISVEP Extension Messages

