

Pós-Graduação em Ciência da Computação

Tráfego em Rajada”

Por

Eduardo Antônio Guimarães Tavares

Tese de Doutorado

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, NOVEMBRO/2009

“Software Synthesis for Energy-Constrained

Hard Real-Time Embedded Systems”

 Universidade Federal de Pernambuco

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Eduardo Antônio Guimarães Tavares

“Software Synthesis for Energy-Constrained
Hard Real-Time Embedded Systems”

 ORIENTADOR: Prof. Dr. Paulo Romero Martins Maciel

RECIFE, NOVEMBRO/2009

Este trabalho foi apresentado à Pós-Graduação em Ciência da
Computação do Centro de Informática da Universidade Federal de
Pernambuco como requisito parcial para obtenção do grau de
Doutorado em Ciência da Computação.

This thesis is dedicated to my mother Fátima and my sister

Kátia

ACKNOWLEDGEMENTS

First of all, I would like to thank God for all the things I have conquered. Also, I am
very grateful to my mother, who has always encouraged me to do what I dreamed. Many
thanks to my sister, who has been at my side at all difficult moments. Thanks to my
father.

Many thanks to my advisor and friend professor Paulo Maciel. He gave me the
chance to be part of his research group, and has helped me at all moments. A special
thanks to professor Meuse Oliveira Jr. who provided the hardware implementation to
validate the case studies; to Bruno Silva and Pedro Dallegrave for implementing, testing
and validating the experiments; to professor Ricardo Massa who helped with valuable
reviews; to all members of our research group (MODCS - Modeling of Distributed and
Concurrent Systems); and to Raimundo Barreto who started the research about software
synthesis in our group.

Thanks to several colleagues I made at CIn/UFPE. Furthermore, I would like to
express my gratitude to all professors and staff in the Center for Informatics. Finally, I
would like to thank CNPq for the financial support provided in this thesis.

vii

RESUMO

A grande expansão do mercado de dispositivos digitais tem forçado empresas desen-
volvedoras de sistemas embarcados em lidar com diversos desafios para prover sistemas
complexos nesse nicho de mercado. Um dos desafios prominentes está relacionado ao
consumo de energia, principalmente, devido aos seguintes fatores: (i) mobilidade; (ii)
problemas ambientais; e (iii) o custo da energia. Como consequência, consideráveis es-
forços de pesquisa têm sido dedicados para a criação de técnicas voltadas para aumentar
a economia de energia.

Na última década, diversas técnicas foram desenvolvidas para reduzir o consumo de
energia em sistemas embarcados. Muitos métodos lidam com gerenciamento dinâmico de
energia (DPM), como, por exemplo, dynamic voltage scaling (DVS), cooperativamente
com sistemas operacionais especializados, a fim de controlar o consumo de energia durante
a execução do sistema. Entretanto, apesar da disponibilidade de muitos métodos de
redução de consumo de energia, diversas questões estão em aberto, principalmente, no
contexto de sistemas de tempo real cŕıtico.

Este trabalho propõe um método de śıntese de software, o qual leva em consideração
relação entre tarefas, overheads, restrições temporais e de energia. O método é composto
por diversas atividades, as quais incluem: (i) medição; (ii) especificação; (iii) modelagem
formal; (vi) escalonamento; e (v) geração de código. O método também é centrado no
formalismo redes de Petri, o qual define uma base para geração precisa de escalas em
tempo de projeto, adotando DVS para reduzir o consumo de energia. A partir de uma
escala viável, um código customizado é gerado satisfazendo as restrições especificadas,
e, dessa forma, garantindo previsibilidade em tempo de execução. Para lidar com a na-
tureza estática das escalas geradas em tempo de projeto, um escalonador simples em
tempo de execução é também proposto para melhorar o consumo de energia durante a
execução do sistema. Diversos experimentos foram conduzidos, os quais demonstram a
viabilidade da abordagem proposta para satisfazer restrições cŕıticas de tempo e ener-
gia. Adicionalmente, um conjunto integrado de ferramentas foram desenvolvidas para
automatizar algumas atividades do método de śıntese de software proposto.

Palavras-chave: sistemas de tempo real cŕıtico; śıntese de software; geração de código;
escalonamento; restrições de energia; dynamic voltage scaling (DVS); redes de Petri;

ix

ABSTRACT

The widespread expansion of digital device market has forced embedded system compa-
nies to deal with several additional challenges in order to provide complex systems in this
market niche. One of the most important challenges is related to energy consumption,
mainly, due to the following factors: (i) mobility issues; (ii) environmental problems and
(iii) energy costs. As a consequence, considerable researching efforts have been devoted
to create techniques for increasing energy saving.

Over the last decade, several techniques have been developed to reduce energy con-
sumption in embedded systems. Many of them deal with dynamic power management
(DPM), such as dynamic voltage scaling (DVS), cooperatively with specialized operating
systems in order to control energy consumption during system runtime. However, in spite
of the availability of many energy reduction methods, several issues are still open, mainly,
in the context of hard real-time systems.

This work proposes a software synthesis method for hard real-time systems, which
takes into account intertask relations, overheads, timing as well as energy constraints.
The method is composed of several activities, which include: (i) measurement; (ii) spec-
ification; (iii) formal modeling; (vi) scheduling; and (v) code generation. The method
is also centered on Petri net formalism, which lays down a basis for precise pre-runtime
schedule generation, adopting DVS for reducing energy consumption. From a feasible
schedule, a customized code is generated satisfying the specified constraints and, so,
assuring runtime predictability. To tackle the static nature of pre-runtime schedules,
a lightweight runtime scheduler is also proposed to improve energy consumption during
system execution. Several experiments were conducted, which demonstrate the feasibility
of the proposed approach to satisfy strigent timing constraints as well as reducing energy
consumption. Additionally, a set of integrated tools has been developed to automate
some activities of the proposed software synthesis method.

Keywords: hard real-time systems; software synthesis; code generation; scheduling;
energy constraints; dynamic voltage scaling; Petri nets;

xi

CONTENTS

Chapter 1—Introduction 1

1.1 Motivation . 2
1.2 Objectives . 3
1.3 Contributions . 4
1.4 Outline . 5

Chapter 2—Related Works 7

2.1 Scheduling . 7
2.2 Software Synthesis . 9
2.3 Summary . 12

Chapter 3—Background 13

3.1 Real-Time Systems . 13
3.1.1 Timing Constraints and Intertask Relations 14
3.1.2 Scheduling . 16
3.1.3 Runtime versus Pre-runtime Scheduling 16

3.2 Energy Consumption in Embedded Systems 18
3.2.1 Dynamic Power Management - DPM 19
3.2.2 Dynamic Voltage Scaling - DVS 20

Classification . 22
3.2.3 Hard Real-Time Systems Scheduling Considering DVS 22

3.3 Software Synthesis . 24
3.4 Discrete Event Models . 25

3.4.1 Models . 26
3.4.2 Formal Models . 26
3.4.3 Finite-State Machine . 28
3.4.4 Process Algebra . 32
3.4.5 Timed Models . 35

3.5 Petri Nets . 35
3.5.1 Transition Enabling and Firing 37
3.5.2 Reachability graph . 37
3.5.3 Examples . 38

Parallel Processes . 38
Mutual exclusion . 38
Dining Philosophers . 38

xiii

xiv CONTENTS

3.5.4 Petri nets Properties . 40

3.5.5 Behavioral Properties . 40

Reachability . 40

Boundedness . 40

Liveness . 40

Reversibility and Home State . 41

Coverability . 41

3.5.6 Structural Properties . 41

Structural Liveness . 41

Structural Boundedness . 41

Conservativeness . 41

Repetitiveness . 41

Consistency . 41

3.5.7 Incidence Matrix . 42

3.5.8 Invariants . 42

Juxtaposition of Invariants . 43

3.5.9 Time Petri Nets . 45

3.6 Summary . 48

Chapter 4—Software Synthesis Method 51

4.1 Overview . 51

4.2 Proposed Method . 53

4.3 Summary . 57

Chapter 5—Measurement and Specification 59

5.1 Measurement . 59

5.1.1 Tasks and Dispatcher WCEC . 59

5.1.2 Hardware Characterization . 61

5.1.3 Scheme and Equations . 62

5.1.4 Statistical Methods . 63

Bootstrap . 64

Parametric Method . 64

5.1.5 AMALGHMA Tool . 65

5.2 Non-Functional Specification . 67

5.2.1 Hard Real-Time Tasks . 67

Intertask Relations . 68

5.2.2 Runtime Support . 69

5.2.3 Scheduling Type . 70

5.2.4 Hardware Architecture . 70

5.2.5 Energy Constraint . 70

5.3 Summary . 71

CONTENTS xv

Chapter 6—Modeling - Building Blocks 73

6.1 Computational Model . 73
6.2 Scheduling Period . 76
6.3 Basic Building Blocks . 77

6.3.1 Fork Block . 78
6.3.2 Periodic Task Arrival Block . 79
6.3.3 Voltage Selection Block . 81
6.3.4 Non-Preemptive Task Structure Block 82
6.3.5 Preemptive Task Structure Block 84
6.3.6 Non-Preemptive and Preemptive Task Structure with 2 Voltages

Blocks . 86
6.3.7 Deadline Checking Block . 90
6.3.8 Task Instance Conclusion Block 96
6.3.9 Join Block . 97
6.3.10 Blocks for Modeling Overheads 99
6.3.11 Blocks for Modeling Intertask Relations 108

6.4 Summary . 113

Chapter 7—Modeling - Composition Rules and Examples 115

7.1 Composition Rules . 115
7.1.1 Place Renaming Operator . 115
7.1.2 Net Union Operator . 116

Properties . 117
7.2 Modeling Real-Time Tasks . 125

7.2.1 Modeling a Single Task . 125
7.2.2 Merging the Modeled Tasks . 132

7.3 Modeling Intertask Relations . 137
7.3.1 Modeling Precedence Relations 137
7.3.2 Modeling Exclusion Relations . 138

7.4 Modeling Overheads . 141
7.5 Analysis and Verification of Properties 142

7.5.1 Analysis . 146
7.5.2 Verification . 146

Processor Utilization . 146
Precedence Relation . 147
Exclusion Relation . 148

7.6 Summary . 148

Chapter 8—Scheduling and Code Generation 149

8.1 Scheduling . 149
8.1.1 Tackling State Space Size . 150

8.1.1.1 Modeling . 150

xvi CONTENTS

8.1.1.2 Preprocessing . 150

8.1.1.3 Partial-Order Reduction 152

8.1.1.4 Removing Undesirable States 153

8.1.2 Pre-Runtime Scheduling Algorithm 154

8.1.2.1 Tagging Scheme . 154

8.1.3 Algorithm Execution Example . 155

8.1.4 Complexity . 158

8.1.4.1 Petri Net Components 159

8.1.5 DENTES Tool . 160

8.2 Code Generation . 162

8.2.1 Traversing TLTS . 162

8.2.2 Dispatcher . 165

8.2.3 Example . 166

8.3 Handling Dynamic Slack Times . 167

8.4 Summary . 169

Chapter 9—Case Studies 171

9.1 Pre-Runtime Scheduling . 171

9.1.1 Motivational Example and Example 2 172

9.1.2 Example 3 . 172

9.1.3 Kwon’s Example . 173

9.1.4 CNC Control . 173

9.1.5 Pulse Oximeter . 174

9.1.6 MP3 & GSM . 175

9.1.7 Thermal Printer . 175

9.1.8 Analytical Comments . 175

9.1.9 Scalability . 177

9.2 Software Synthesis and Runtime Scheduler 179

9.2.1 Hardware Platform . 179

9.2.2 Validation . 180

9.2.3 Software Synthesis . 181

Example 2 . 182

Pulse Oximeter . 183

Thermal Printer . 184

9.2.4 Runtime Scheduler . 185

9.3 Summary . 187

Chapter 10—Conclusions 189

10.1 Contributions . 190

10.2 Future Works . 191

10.3 Final Remarks . 191

CONTENTS xvii

Appendix A— Basic Building Blocks: Juxtaposition of P-invariants 203

A.1 Fork Block and Periodic Task Arrival Block 203
A.2 Periodic Task Arrival Block and Deadline Checking Block 203
A.3 Periodic Task Arrival Block and Voltage Selection Block 204
A.4 Voltage Selection Block and Non-Preemptive Task Structure Block 204
A.5 Voltage Selection Block and Preemptive Task Structure Block . . 205
A.6 Voltage Selection Block and Non-Preemptive Task Structure with

2 Voltages Block . 205
A.7 Voltage Selection Block and Preemptive Task Structure with 2 Volt-

ages Block . 205
A.8 Non-Preemptive Task Structure Block and Non-Preemptive Task

Structure Block . 206
A.9 Non-Preemptive Task Structure Block and Non-Preemptive Task

Structure with 2 Voltages Block 206
A.10 Non-Preemptive Task Structure Block and Deadline Checking Block

207
A.11 Non-Preemptive Task Structure Block and Task Instance Conclu-

sion Block . 208
A.12 Preemptive Task Structure Block and Preemptive Task Structure

Block . 208
A.13 Preemptive Task Structure Block and Preemptive Task Structure

with 2 Voltages Block . 209
A.14 Preemptive Task Structure Block and Deadline Checking Block . 209
A.15 Preemptive Task Structure Block and Task Instance Conclusion

Block . 210
A.16 Non-Preemptive Task Structure with 2 Voltages Block and Non-

Preemptive Task Structure with 2 Voltages Block 210
A.17 Non-Preemptive Task Structure with 2 Voltages Block and Dead-

line Checking Block . 211
A.18 Non-Preemptive Task Structure with 2 Voltages Block and Task

Instance Conclusion Block . 212
A.19 Preemptive Task Structure with 2 Voltages Block and Preemptive

Task Structure with 2 Voltages Block 212
A.20 Preemptive Task Structure with 2 Voltages Block and Deadline

Checking Block . 213
A.21 Preemptive Task Structure with 2 Voltages Block and Task In-

stance Conclusion Block . 214
A.22 Deadline Checking Block and Task Instance Conclusion Block . . 215
A.23 Task Instance Conclusion Block and Join Block 215
A.24 Voltage Selection Block and Preemptive Task Structure with Over-

head Block . 215
A.25 Preemptive Task Structure with Overhead Block and Preemptive

Task Structure with Overhead Block 216

xviii CONTENTS

A.26 Preemptive Task Structure with Overhead Block and Preemptive
Task Structure with Overhead and 2 Voltages Block 217

A.27 Preemptive Task Structure with Overhead Block and Deadline
Checking Block . 218

A.28 Preemptive Task Structure with Overhead Block and Task In-
stance Conclusion Block . 219

A.29 Preemptive Task Structure with Overhead and 2 Voltages Block
and Task Instance Conclusion Block 220

A.30 Preemptive Task Structure with Overhead and 2 Voltages Block
and Preemptive Task Structure with Overhead and 2 Voltages Block221

A.31 Preemptive Task Structure with Overhead and 2 Voltages Block
and Deadline Checking Block . 222

A.32 Preemptive Task Structure with Overhead and 2 Voltages Block
and Task Instance Conclusion Block 224

A.33 Task Instance Conclusion with Inter-task Relations Block and Join
Block . 225

A.34 Task Instance Conclusion with Inter-task Relations Block and Non-
preemptive Task Structure Block 226

A.35 Task Instance Conclusion with Inter-task Relations Block and Pre-
emptive Task Structure Block . 226

A.36 Task Instance Conclusion with Inter-task Relations Block and Pre-
emptive Task Structure with Overhead Block 227

A.37 Task Instance Conclusion with Inter-task Relations Block and Pre-
emptive Task Structure with Overhead and 2 Voltages Block . . . 228

A.38 Task Instance Conclusion with Inter-task Relations Block and Non-
Preemptive Task Structure with 2 Voltages Block 229

A.39 Task Instance Conclusion with Inter-task Relations Block and Pre-
emptive Task Structure with 2 Voltages Block 229

A.40 Task Instance Conclusion with Inter-task Relations Block and Task
Instance Conclusion with Inter-task Relations Block 230

A.41 Task Instance Conclusion with Inter-task Relations Block and Ex-
clusion Pre-Condition Block . 231

A.42 Task Instance Conclusion with Inter-task Relations Block and
Precedence Pre-Condition Block 232

A.43 Task Instance Conclusion with Inter-task Relations Block and
Deadline Checking Block . 232

A.44 Exclusion Pre-Condition Block and Periodic Task Arrival Block . 233

A.45 Exclusion Pre-Condition Block and Voltage Selection Block . . . 234

A.46 Exclusion Pre-Condition Block and Precedence Pre-Condition Block234

A.47 Precedence Pre-Condition Block and Periodic Task Arrival Block 235

A.48 Precedence Pre-Condition Block and Voltage Selection Block . . 235

Appendix B—Model Checking 237

CONTENTS xix

B.1 Paths and Formulas . 238

Appendix C—List of Abbreviations 241

LIST OF FIGURES

3.1 Comparison between runtime and pre-runtime scheduling 17
3.2 Energy savings at different design levels 18
3.3 DVS example . 21
3.4 Schedules generated according to different scheduling methods 23
3.5 Software synthesis activities . 25
3.6 Modeling process . 27
3.7 Elevator controller model . 29
3.8 Moore FSM model for the elevator controller 30
3.9 Finite automaton . 30
3.10 Deterministic and nondeterministic finite automata 31
3.11 Finite-state machine of printer specification 33
3.12 Finite-state machines of client-server processes 34
3.13 Finite-state machine considering all possible interleavings 34
3.14 Basic components of a Petri net: (a) place, (b) arc, (c) transition, and (d)

token . 36
3.15 Petri net example . 37
3.16 Reachability graph . 38
3.17 Parallel processes . 38
3.18 Mutual exclusion . 39
3.19 Dining Philosophers . 39
3.20 Time Petri net example . 47
3.21 Reachability graph for Figure 3.20(a) . 49

4.1 MEMBROS activity diagram . 52
4.2 Software synthesis activity diagram . 54

5.1 Adjusting a task code to impose the WCET 60
5.2 Adjusting a task function to measure the WCET 60
5.3 A code example for hardware characterization 61
5.4 Measurement scheme . 62
5.5 Oscilloscope detecting a task execution and the voltage drop across a sense

resistor . 63
5.6 AMALGHMA tool . 66

6.1 TPNE example . 74
6.2 TPNE after firing t2 . 76
6.3 Fork block . 78

xxi

xxii LIST OF FIGURES

6.4 Arrival block . 79
6.5 Voltage selection block . 81
6.6 Non-preemptive task structure block . 82
6.7 Preemptive task structure block . 84
6.8 Non-preemptive task structure block with 2 voltages 86
6.9 Preemptive Task structure with 2 voltages block 88
6.10 Deadline checking block . 91
6.11 Task instance conclusion block . 96
6.12 Join block . 98
6.13 Preemptive task structure with overhead block 99
6.14 Preemptive task structure with overhead and 2 voltages block 100
6.15 Precedence pre-condition block . 108
6.16 Exclusion pre-condition block . 110
6.17 Task instance conclusion with intertask relations block 111

7.1 Place renaming example . 116
7.2 Net union example . 118
7.3 Basic building blocks for task τ1 . 125
7.4 Step 1 . 127
7.5 Step 2 . 128
7.6 Step 3 . 129
7.7 Step 4 . 129
7.8 Step 5 . 130
7.9 Task τ1 . 131
7.10 Task τ2 . 132
7.11 Fork and join blocks . 132
7.12 Joining two tasks . 133
7.13 Merging fork block . 134
7.14 Generated model . 136
7.15 Blocks for modeling task τ1 with precedence relation 138
7.16 Blocks for modeling task τ2 with precedence relation 139
7.17 Final model representing the precedence relation 140
7.18 Blocks for modeling Task τ1 with Exclusion Relation 141
7.19 Blocks for modeling Task τ2 with Exclusion Relation 142
7.20 Final model representing the Exclusion Relation between Tasks τ1 and τ2 143
7.21 Building blocks for composing task τ1 considering overheads 144
7.22 Building blocks for composing task τ2 considering overheads 144
7.23 Final model representing tasks τ1 and τ2 with overheads 145

8.1 LPEDF - low-power earliest-deadline first 151
8.2 Scheduling algorithm . 154
8.3 Generated model for tasks τ1 and τ2 . 156
8.4 DENTES tool - specification screen . 161
8.5 DENTES tool - feasible schedule . 161

LIST OF FIGURES xxiii

8.6 Algorithm for traversing the TLTS assuming non-preemptable tasks . . . 163
8.7 Algorithm for traversing the TLTS assuming preemptable tasks 164
8.8 Dispatcher . 165
8.9 Generated code example . 167
8.10 Runtime scheduler algorithm . 169
8.11 Runtime scheduler example . 169

9.1 CNC intertask relations . 174
9.2 Case studies: state space . 176
9.3 Case studies: execution time . 177
9.4 Case studies: energy consumption . 178
9.5 Scalability: state Spaces . 178
9.6 Scalability: execution times . 179
9.7 DVS platform . 180
9.8 Validation scheme . 181
9.9 Case study 2: feasible schedule . 182
9.10 Case study 2: generated code . 182
9.11 Case study 2: oscilloscope timing diagram 183
9.12 Pulse-oximeter code . 184
9.13 Pulse oximeter: oscilloscope timing diagram 185
9.14 Thermal printer: code . 185
9.15 Thermal printer: oscilloscope timing diagram 186
9.16 Runtime scheduler: feasible schedule . 186
9.17 Comparison runtime scheduler and other approaches 186

B.1 Pumping system . 237
B.2 Initial part of the execution tree for the pumping system 238
B.3 Initial part of the execution tree for the pumping system 238

LIST OF TABLES

3.1 Interpretation for places and transitions 36

6.1 Timing constraints for each task instance 77

8.1 Choice-priority levels . 153
8.2 Algorithm execution . 157

9.1 Experimental results summary . 171
9.2 Energy consumption values . 182

B.1 Some temporal connectives in CTL . 239

xxv

CHAPTER 1

INTRODUCTION

Embedded systems are present in most of our daily activities, ranging from simple house-
hold appliances (e.g., microwave ovens) to complex medical devices (e.g., pulse oximeter).
In other words, embedded systems are ubiquitous nowadays. Because of the varied ap-
plications that may be implemented as embedded systems, diverse constraints may have
to be taken into account in design-time for satisfying system requirements, such as reli-
ability, energy consumption, timing, and so on. Lately, considerable attention has been
devoted to energy consumption in embedded systems, mainly due to the following factors:� Advances in microelectronics have allowed the development of small-sized embed-

ded systems with several complex features, making possible the rapid emerging of
powerful mobile devices. These devices generally rely on constrained energy sources
(e.g., battery), in such a way that if the energy source is depleted, the system stops
functioning. Hence, energy saving becomes of utmost importance in order to pro-
long battery lifetime in such devices;� Energy costs have been rising through the years [1] due to the disproportional
increase of energy consumption and availability of new energy sources. Thus, energy
saving in embedded systems may provide less operational costs for the final users
of the respective systems;� Global warming has increased environmental concerns related to energy consump-
tion, since energy production is one of the greatest sources of air pollution [2]. As
embedded systems are ubiquitous, they have a considerable contribution in the uti-
lization of energy sources. Therefore, reducing energy consumption in such systems
may contribute to a lesser environmental pollution;� The reliability of integrated systems is somewhat impacted by the energy con-
sumption due to the influence on operational temperature [3]. Reducing energy
consumption in such systems may provide benefits in terms of heat dissipation and,
so, system reliability.

Since software accounts for more than 70% of system functionalities in many embedded
systems nowadays [4], several techniques have been developed to reduce energy consump-
tion at application and behavioral level. Many deal with dynamic power management
(DPM), such as dynamic voltage scaling (DVS), cooperatively with specialized operat-
ing systems to control energy consumption during system runtime. Nevertheless, the
indiscriminate use of DPM/DVS technologies may generate undesirable issues due to the
conflict with other non-functional requirements, more specifically, timing constraints [5].
For ordinary embedded systems, those techniques may be directly applied, as the issues

1

2 INTRODUCTION

do not provide major concerns. However, in real-time systems, such techniques need to
be adopted with caution, since responsiveness may be greatly affected. In the context of
hard real-time embedded systems, which have stringent timing constraints that must be
met, catastrophic issues may occur (e.g., loss of human life).

It is not an easy task to develop hard real-time software, even more when consid-
ering the minimization of energy consumption. Thus, appropriate methods and tools
are required, such that a project scheduling and, in consequence, the final budget are
not jeopardized. Several energy reduction methods, mostly based on runtime techniques
implemented as operating system services, have been developed in order to cope with
energy reduction in hard real-time systems. However, simplified system specifications are
generally considered, mainly, neglecting precedence and exclusion relations. Addition-
ally, there are situations in which finding a feasible schedule using runtime approaches
is not possible, even if such a schedule exists [6]. Furthermore, overheads, for instance,
preemptions and frequency/voltage switchings, are disregarded by most works. Indeed, if
overheads are neglected, tasks’ constraints may be affected and even the gains obtained
with such techniques may be significantly reduced [7]. In this context, it is worth stat-
ing that operating systems incorporate, during system execution, a significant amount
of overheads, which may impact timing as well as energy constraints. In addition to the
previous statements, it is important to point out that formal models are not adopted by
most energy saving methods, which may complicate, in some cases, the verification and
analysis of quantitative as well as qualitative properties.

Although diverse methods have been developed to deal with energy consumption in
embedded systems, several issues are still open, mainly, in context of hard real-time
systems. This thesis is related to embedded systems with stringent timing and energy
constraints, focusing on the software part. More specifically, this work is concerned with
the adoption of formal models for modeling hard real-time systems with energy constraints
as well as the utilization of energy saving technologies, such as DVS, for improving the
software energy consumption in such systems.

1.1 MOTIVATION

Hard real-time embedded systems have stringent timing constraints that must be met
for the correct functioning of the system. In other words, not only the result of the
computation is important to the correct system behavior, but also the time when such
result was acquired [8]. Thus, it is important to differentiate fast computing and real-time
computing. While real-time computing aims at providing results within the defined tim-
ing constraints, fast computing aims at getting results as quickly as possible. Therefore,
energy saving methods may be adopted in hard real-time systems, inasmuch as timing
constraints are met.

Despite the large availability of many energy reduction methods [9], previous section
described some open issues related to energy savings in hard real-time embedded sys-
tems. In other words, there is a lot of effort to be performed in order to properly deal
with energy constraints in those systems, opening several possibilities for new energy
reduction methods. For instance, a feasible alternative to operating system usage may

1.2 OBJECTIVES 3

be the adoption of automatic code generation (e.g., software synthesis), in such a way
that customized code is obtained only with the required services, providing considerably
less overheads than specialized operating systems. Additionally, system constraints, for
instance, intertask relations, time and energy, can be represented using formal models to
allow the verification/analysis of qualitative and quantitative properties [10] as well as to
provide a basis for precise schedule generation [11].

1.2 OBJECTIVES

Considering the problems stated previously, this thesis proposes a software synthesis
method for hard real-time systems [8] with energy constraints, adopting dynamic volt-
age scaling (DVS) [12] for reducing energy consumption as well as a formal model for
representing system constraints. The specific objectives are:

1. to create a specification model that captures system constraints [6]. Hard real-time
systems are composed of several concurrent tasks with stringent timing constraints
and intertask relations, in such a way that if these non-functional requirements [11]
are violated, catastrophic issues can occur. Besides, several time-critical systems [8]
are also subjected to energy constraints nowadays. Thus, a specification model plays
an important role in capturing all required system attributes that may affect system
behavior;

2. to provide a formal model based on time Petri net (TPN) [13] to represent hard
real-time systems with energy constraints. Formal models are of great importance
in hard real-time system design, since they can precisely model system constraints,
and also provide a basis for verification/analysis of quantitative and qualitative
properties [10]. Petri net is an appropriate family of formalisms very well suited
for modeling real-time embedded systems, since concurrency, synchronization and
communication mechanism - usual features of such systems - are naturally repre-
sented. The adoption of TPN also allows representing timing constraints, such as
deadline, release, as well as computation time;

3. to propose a scheduling approach that satisfies the specified requirements. Schedul-
ing is an important part of a hard real-time system, since this activity must guar-
antee that all tasks execute according to the respective constraints. This work
proposes a pre-runtime (off-line) [6] scheduling approach, which is more predictable
than runtime counterparts (see Chapter 3). In order to reduce energy consumption,
dynamic voltage scaling (DVS) is adopted, as it provides better results than other
DPM techniques [14];

4. to implement an automatic code generator, such that, from a feasible schedule,
customized code [15] is obtained. In other words, only the required services will be
present in the final code for a given application. The code generator considers a
runtime support, namely dispatcher, to control each task during system execution.
This approach together with a lightweight runtime [6] support decreases consider-

4 INTRODUCTION

ably the overheads that may be incurred during system runtime while guaranteeing
the specified constraints;

1.3 CONTRIBUTIONS

This work extends the method proposed by Barreto [16] to consider energy consump-
tion as well as dynamic voltage scaling. Besides, some issues not addressed in that work
are considered in this thesis, such as: (i) composition rules that assure some quantita-
tive/qualitative properties; (ii) algorithms for parsing the feasible schedule; (iii) measure-
ment techniques and tools; and (iv) hybrid scheduling. The following items summarize
the contributions:� Measurement Approach. To provide the required data for the system specifica-

tion concerning tasks’ timing information and the hardware energy consumption,
some measurements may be required in the hardware platform. This work adopts
a set of statistical techniques to obtain such values as well as an environment to
automate the measuring process;� Specification Model. This work proposes a specification model that considers a
set of concurrent tasks with timing constraints, intertask relations and behavioral
descriptions. In addition, information regarding the hardware platform as well as
the system energy constraint are also taken into account. These requirements are
adopted as an input to an environment that allows the automatic generation of
customized scheduled code;� Formal Modeling. The proposed software synthesis method adopts a bottom-
up approach, in which a set of composition rules are considered for combining
basic building block models. The building blocks are combined in such a way that
all generated models possess some fundamental qualitative/quantitative properties.
Such an approach allows the generation of TPN models from a system specification
using tools that automate the whole process;� Pre-runtime Scheduling. Scheduling plays an important role in the design of
hard real-time systems. This work adopts a pre-runtime scheduling approach, which
is a depth-first search algorithm that utilizes the TPN model to find a feasible sched-
ule that meets the specified constraints. The algorithm adopts a set of techniques
to generate a reduced state space of the Petri net model, in the sense that only the
states related to a feasible schedule should be reached;� Runtime Scheduling. In order to further improve energy consumption, a runtime
scheduler is proposed to take advantage of slack times that may occur at system
runtime. The scheduler overhead minimally impacts the system execution, as it
may contain a table with pre-calculated values for usual variations of some tasks’
execution cycles.

1.4 OUTLINE 5� Code Generation. To the best of the present author’s knowledge, there is no
similar work to date that generates customized code for hard real-time systems
considering energy constraints, intertask relations, runtime overheads and DVS.

Chapter 4 details the proposed software synthesis method and the methodology, in
which it is inserted.

The proposed software synthesis method has been published in some journals as well
as conference proceedings, and the reader is referred to [17, 18, 19, 20, 21, 22, 23, 24] for
such publications.

1.4 OUTLINE

This work is organized as follows. Chapter 2 describes some related works. Chapter 3
presents basic concepts for understanding this thesis. Afterwards, Chapter 4 describes
the proposed software synthesis method as well as the methodology, in which it is in-
serted. Next, Chapter 5 explains the proposed measurement activity and the adopted
specification model. Chapter 6 initiates the presentation of the formal modeling approach
adopted in this thesis, focusing on the adopted petri net extension and building block
models. Chapter 7 continues the presentation, focusing on the composition rules, some
examples, as well as the analysis and verification of prominent properties. After that,
Chapter 8 describes the pre-runtime scheduling approach, the code generation mecha-
nism, and the runtime scheduler. Finally, Chapter 9 presents some case studies and
Chapter 10 concludes this thesis, including a presentation of future works.

Since this work adopts some abbreviations in several chapters, Appendix C provides
a list of abbreviations to allow a more pleasant reading of this thesis.

CHAPTER 2

RELATED WORKS

This chapter presents related works in the context of the proposed software synthesis
method. Since scheduling is a critical activity in software synthesis methods that deal
with energy-constrained hard real-time systems, this chapter also describes scheduling
approaches that take into account stringent timing constraints as well as DVS for reducing
energy consumption.

Firstly, representative scheduling approaches are presented, followed by related works
concerning software synthesis methods.

2.1 SCHEDULING

Although DVS can provide considerable energy savings, this technology needs to be
adopted with caution in hard real-time systems due to the stringent timing constraints.
As a consequence, several scheduling approaches have been developed in order to cope
with DVS in hard real-time systems. Although intertask relations and runtime overheads
are usually disregarded in those approaches, the proposed software synthesis method takes
into account such constraints. Next paragraphs describe some representative scheduling
methods.

Yao et al. [25] propose an optimal off-line voltage allocation algorithm considering
continuously variable voltage and a set of independent tasks. The algorithm searches for
a critical interval, in which a subset of task instances are scheduled with highest speed
using EDF (Earliest-Deadline First) policy. The instances contained in such interval are
removed from the task instance set, and, similarly, the algorithm continues to search for
other critical intervals considering the remaining instances. The algorithm stops when all
task instances have been scheduled. Due to the adoption of EDF policy, Yao’s approach
is also called Low-Power Earliest-Deadline First (LPEDF). Despite the importance of
such an algorithm, precedence and exclusion relations are not taken into account.

In [12], Ishihara and Yasuura describe an optimal off-line voltage allocation approach
considering discrete set of voltages and assuming for single task problem. That work
provides an important theorem, which states that if an ideal voltage is unavailable, the two
immediately neighboring CPU voltages can be adopted to reduce energy consumption.
Although Ishihara’s work assumes a single task problem, the proposed software synthesis
method adopts the associated theorem to simulate unavailable voltage levels during the
modeling and scheduling activities.

LPEDF extensions have been proposed in order to consider new issues. In [26], Kwon
and Kim extend LPEDF to take into account CPUs with discrete voltage levels by adopt-
ing Ishihara’s theorem. Mochocki et al. [27] propose an extension that considers overheads
related to voltage/frequency switching. In [28], the authors adjust Yao’s algorithm to re-

7

8 RELATED WORKS

gard scheduling policies based on static priorities, such as rate-monotonic policy. In all
presented extensions, intertask relations are not considered.

In [29], Leung et al. present an off-line scheduling method that deals with dynamic
workload variation by taking into account the average-case execution cycles (ACEC)
of each task. The method aims at obtaining the best slack distribution to improve
energy consumption in the average scenario, and still guaranteeing no deadline violation
in the worst-case situation. The approach relies on rate monotonic scheduling policy and
assumes a CPU with continuously variable voltage. Besides, a set of independent tasks
is considered, in other words, precedence and exclusions are not taken into account.

Many other works are based on runtime scheduling policies, which can greatly improve
energy consumption, as shown by their experimental results. Some of them apply a
preprocessing for defining an initial voltage for each task before runtime. Somewhat, this
can be viewed as a hybrid approach, which mixes runtime and pre-runtime approaches.

Aydin et al. [30] propose a scheduling method composed of 3 components: (i) an off-
line mechanism to compute an optimal constant speed; (ii) an online technique to adjust
CPU speed according to the actual workload; and (iii) an online adaptive mechanism that
predict early completions in order to adjust CPU speed. Experimental results depict the
effectiveness of that method, in the sense that it outperforms other DVS algorithms.
However, that work does not take into account intertask relations, assumes continuously
variable voltage/frequency levels, and incorporates overheads into the work-case workload
of each system task. The latter assumption may be too pessimistic and may affect
schedule generation.

In [31], the authors describe a scheduling approach considering precedence relations,
assuming that all tasks are non-preemptable. Initially, a number of solutions are obtained
off-line and stored into lookup tables. At runtime, one of the pre-calculated solutions is
chosen taking into account the actual values of time and energy. Despite the feasibility
to reduce overheads due to pre-calculated solutions, only part of a task is guaranteed to
finish before the respective deadline and the method considers that the voltage level can
continuously be varied.

In [32], Jejurikar and Gupta present a non-preemptive scheduling method based on
Earliest-Deadline First (EDF) policy in order to deal with shared resources in hard real-
time systems with DVS. However, the strict adoption of non-preemptive scheduling re-
stricts the domain of applications that may adopt the approach.

Some of the presented works do not properly tackle runtime overheads related to volt-
age/frequency switching, preemption, and runtime calculations. A common approach in
dealing with runtime overheads is considering them in tasks’ worst-case execution cycles
(WCEC). Nevertheless, this approach may be too pessimistic, since the total overhead is
not known before schedule generation. In this context, [33] and [34] explicitly take into
account overheads related to voltage/frequency switching during scheduling generation
without relying on the previous statement. Nevertheless, dispatcher/scheduler and pre-
emption overheads are disregarded. In [35], the authors propose a technique for reducing
the impact of preemptions in system energy consumption. Although interesting results
are provided, the technique does not consider intertask relations and assumes CPUs with
continuously variable voltage.

2.2 SOFTWARE SYNTHESIS 9

Besides, although multiprocessor and distributed systems are not the focus of this
thesis, it is important to state that some scheduling approaches have been developed
considering stringent timing constraints and DVS for both systems. In [36], the au-
thors describe a DVS scheduling method for a distributed environment considering: (i)
precedence relations; and (ii) a technique to deal with the leakage power. Despite the
effectiveness of such a method, they ignore mutual exclusions and consider the scheduler
overhead in tasks’ worst-case execution time. [37] also takes into account precedence
relations in a distributed environment. However, that method adopts continuous voltage
variation and does not present details about tackling overheads (e.g., voltage/frequency
switching).

As an alternative, the proposed software synthesis method adopts a pre-runtime DVS
scheduling approach, which takes into account runtime overheads (preemptions and volt-
age/frequency switching), intertask relations (precedence and exclusion), and, also, uti-
lizes a formal model based on time Petri nets. The scheduling algorithm is a depth-first
search method, which seeks for a feasible schedule that satisfies stringent timing con-
straints and does not surpass an upper bound in terms of energy consumption. Different
from other approaches (e.g., [25]), the algorithm does not necessarily generate an optimal
solution due to the size of the state space (see Chapter 8), but it looks for a solution
that meets all non-functional requirements provided in the system specification. Be-
sides, the assumed constraints allow the practical utilization of feasible schedules in the
implementation of real systems. To take advantage of slack times that may occur at sys-
tem runtime, a lightweight runtime scheduler is adopted to improve energy consumption
without violating the constraints previously met by the pre-runtime schedule.

2.2 SOFTWARE SYNTHESIS

Several software synthesis methods have been proposed to address the problem of code
generation for real-time embedded systems. However, few works consider energy con-
straints.

Cornero et al. [15] present a software synthesis method for real-time information pro-
cessing systems. As stated by the authors, such systems have the distinct characteristic
of the coexistence of two different types of functionalities: digital signal processing and
control functions. In that work, the specification is composed of concurrent processes
with their respective timing constraints, data dependencies and communications. Such
specification is translated into a set of program threads, which may or may not start
with a non-deterministic operation. A constraint graph models the program threads, in
which the nodes represent the threads and the edges capture data dependency, control
precedence and timing constraints between threads. Initially, constraint graphs are par-
titioned into disjoint clusters, called thread frames. Next, a static scheduling is carried
out for indicating the relative arranging of threads in the same thread frame. Lastly, the
static information is adopted at runtime by the dynamic scheduler, which combine dis-
tinct thread frames based on runtime system evolution. Although Cornero’s work seems
an interesting approach, the method can not be adopted to hard real-time systems, since
it considers non-deterministic delays. In safety time-critical systems, predictability is

10 RELATED WORKS

essential.

Balarin and Chiodo [38] present the software synthesis approach adopted in POLIS
co-design framework [39], which focuses on reactive embedded systems. In that work,
systems are specified as networks of communicating processes, called Codesign Finite
State Machines (CFMS), which are finite state machines with arithmetic and relational
operators. Moreover, an intermediary data structure, namely, s-graph (software graph),
is adopted to describe the reactive behavior. Such structure is translated into a C code
jointly with a Real-Time Operating System (RTOS), which is responsible for performing
the runtime scheduling (e.g., Rate-Monotonic or Deadline-Monotonic). Although the
approach seems to be very interesting, the authors do not show how intertask relations
are handled, and no code example is shown.

Bokhnoven et al. [40] propose a software synthesis method for system level design
using process execution trees. The approach aims to translate a specification described
in a process algebra language, namely, Parallel Object-Oriented Specification Language
(POOSL), into an imperative programming language (C++). Besides, the process exe-
cution trees are adopted to capture the real-time and concurrent behaviour of processes.
Nevertheless, the work proposed by Bokhoven et al. has some drawbacks: (i) it does not
describe how mutual exclusions are tackled; and (ii) nothing is stated about preemptions.

Sgroi et. al. [41] propose a software synthesis method based on a Petri net subclass,
namely, Free Choice Petri Nets (FCPN). The system specification is represented by a
FCPN model, which is taken as an input in a quasi-static scheduling algorithm for par-
titioning the model into a set of tasks. Basically, the algorithm decomposes the model
into a set of conflict-free nets with the purpose of finding possible solutions for each non-
deterministic choice. Each solution is represented by a cyclic firing sequence, which is
utilized to compose a feasible schedule, in a such way that memory constraints are met.
After obtaining a feasible schedule, a C code is synthesized by traversing the schedule
and replacing transitions with the corresponding code. Although the approach seems
very promising, it does not directly deal with real-time constraints, which are left to a
real-time operating system (RTOS).

Hsiung [42] proposes an extension of Sgroi’s work [41] in order to take into account
timing constraints. The new approach adopts a formal model, namely, Time Free-Choice
Petri Net (TFCPN), which is a Free-Choice Petri Net extended with time. As described
by the author, the TFCPN time semantics is equal to time Petri nets [13]. In that work,
two scheduling are carried out: (i) quasi-static scheduling (for coping with task generation
with limited memory), and (ii) dynamic fixed-priority scheduling (for meeting stringent
timing constraints). Firstly, the quasi-static scheduling is performed, which is the same
as in [41]. For each finite complete cycle of the conflict-free subnets, the execution time
interval is calculated by summing up all earliest firing time and latest firing time values,
respectively, of each transition in the sequence. Among all the execution time intervals
of conflict-free subnets, the maximum latest firing time is selected as the worst-case
execution time of the TFCPN. In this way, a real-time scheduling algorithm, such as
rate monotonic or deadline monotonic, may be utilized to schedule the TFCPN. Lastly,
the code generation is performed. For each TFCPN, a real-time process is generated,
and, in each process, a task is created for each transition with independent firing rate.

2.2 SOFTWARE SYNTHESIS 11

Although the approach deals with stringent timing constraints, there are drawbacks: (i)
no real-world experiments are presented; and (ii) it is not shown how to add preemption
in the proposed method.

Amnell et al. [43] propose a framework for the development of real-time embedded
systems based on timed automata extended with a notion of real-time tasks. The authors
detail the translation process from the design model to executable programs, such that
predictability is taken into account. In addition, the approach relies on a real-time op-
erating system for controlling task executions during system runtime. More specifically,
the framework utilizes a fixed-priority scheduling, which is appropriate for independent
tasks. However, this scheduling policy may not provide feasible schedules when consid-
ering intertask relations, for instance, precedence and exclusion.

In [26], the authors describe a code generation approach for multitasking embedded
systems with real-time characteristics. Tasks are modeled considering extended dataflow
models as well as finite-state machines, and operating systems are in charge of control-
ling tasks during system execution. That work does not present how stringent timing
constraints are guaranteed, and may incur considerable overheads due to the usage of
operating systems.

Nácul and Givargis [44] present a technique for embedded software synthesis consider-
ing time-constrained applications . Such an approach adopts a specialized compiler that
generates a monolithic code from a multitasking C application, in such a way that the
utilization of an operating system is discarded. In spite of presenting interesting results,
the authors do not give details how precedence and exclusion relations are handled.

Previous works propose methods that regard (stringent) timing constraints, but noth-
ing is stated about energy consumption. As follows, some works are presented in the
context of energy utilization.

Wang et al. [45] propose a software synthesis method that receives as input an em-
bedded program to be optimized and generates improved code in terms of performance
and energy consumption. The approach assumes that the computational complexity of a
program is related to the values of input and intermediate program variables. Thus, for a
given program, program parts (e.g., subprogram) are optimized for some input subspaces
and the final code is augmented with such optimizations. Experimental results demon-
strate that such method significantly reduces energy consumption as well as enhancing
runtime performance. Nevertheless, nothing is stated about how timing constraints are
considered in such method.

In [46], the authors describe a code generation method for a specific processor (Mo-
torola DSP56K) in order to provide energy-efficient code. The approach packs a set of
specific data transfer instructions into a single instruction word for simultaneous execu-
tion in order to provide less energy consumption than the equivalent sequential execution.
Besides, address generation instructions are reduced as minimal as possible for shrinking
the code size, and hence the energy consumption. Despite the efficiency of the method
in terms of energy savings, the approach does not tackle timing constraints.

Sober et al. [47] propose a programming language as well as a runtime environment
to allow the development of energy constrained applications. The language provides
several features, for instance, it allows a programmer to specify program parts that are

12 RELATED WORKS

eligible for energy reduction in order to provide different functionality or data quality
considering the energy availability. Besides, the approach may generate code to several
hardware platforms as well as operating systems. However, the authors do not present
how time-critical applications can benefit from the method in terms of meeting stringent
timing constraints.

Instead of what has been previously considered, this thesis proposes a software syn-
thesis method for energy-constrained hard real-time systems, such that, from a feasible
schedule, customized predictable code is obtained satisfying stringent timing constraints
as well as an energy consumption upper bound enforced by the designer. More specif-
ically, a pre-runtime scheduling is responsible for dealing with intertask relations, over-
heads, timing and energy constraints, while the code generation mechanism provides a
customized runtime support to assure that all tasks are executed in accord with the
pre-runtime schedule.

2.3 SUMMARY

This chapter summarized the representative works related with the proposed scheduling
approach as well as the software synthesis method. Many works address the problem of
scheduling hard real-time systems in conjunction with DVS for reducing energy consump-
tion. Nevertheless, as presented, intertask relations and runtime overheads are usually
disregarded. In the context of software synthesis, the scientific community has developed
prominent methods for generating predictable code for real-time systems. However, not
all methods consider stringent timing constraints and intertask relations. On the other
hand, few works take into account energy constraints, but they do not deal with real-time
systems. As a conclusion, there are several open issues in the research area of software
synthesis (including scheduling), mainly, regarding hard real-time systems with energy
constraints.

CHAPTER 3

BACKGROUND

This chapter aims at presenting fundamental concepts for a better understanding of the
proposed software synthesis method. Firstly, real-time systems and the representative
scheduling policies (in the context of time-critical systems) are presented. Afterward,
this chapter describes some concepts regarding energy consumption in embedded sys-
tems, focusing on DVS (Dynamic Voltage Scaling). As demonstrated further, DVS pro-
vides interesting results in comparison to other power-aware technologies. Next, software
synthesis concepts are presented. Software synthesis is an interesting alternative to spe-
cialized operating systems concerning hard real-time applications, since such method
provides customized code as well as services with lower overheads. Finally, discrete event
models are introduced and the adopted formal model is detailed, namely, Petri nets.

Petri nets [10] are a family of formal models very well suited for modeling real-time
embedded systems, since concurrency, synchronization and communication mechanisms
- usual features of such systems - are naturally represented. More specifically, the pro-
posed method adopts a Petri net extension, namely, time Petri net (TPN), which allows
representing timing constraints such as deadline, release, as well as computation time.
Besides, TPN provides a mathematical basis for precise development of scheduling meth-
ods, and also contains a set of well-established methods for structural and behavioral
property analysis and verification. In comparison with other formal models, Petri nets
may be classified as hybrid models, since they take into account states as well as actions,
allowing the capture of causality relations, concurrent events and conflict conditions in
an explicit manner. On the other hand, state-based models (e.g., finite-state machines),
capture such information implicitly [48], in such a way that a complex system may lead to
an explosion in the number of possible states that can be represented using such models.
Causality relations, concurrent events and conflict conditions are useful for the design-
ers, and, in some systems, the explicit representation can not be discarded. In relation
to event-based models (e.g., process algebras), states are represented implicitly or even
suppressed, leading to several difficulties for properly representing system resources (e.g.,
the number of CPUs). The explicit representation is mandatory in several situations in
order, for instance, to simulate system behavior considering the reduction or increasing
of available resources. Besides, in [49], the author provides a concrete example demon-
strating that Petri nets can easily model the problem, whereas process algebras may not
represent the same example easily.

3.1 REAL-TIME SYSTEMS

Real-time applications are presented in most of our daily activities, ranging from MP3
players to complex medical devices. These applications are a special class of systems in
which not only the result of the computation is important to the correct system behavior,

13

14 BACKGROUND

but also the time when such result was acquired [8]. Another way to conceptualize such
systems is the capability to react to external stimuli in a timely manner. Based on such
concepts, it is worth explaining that real-time computing is not fast computing. Fast
computing aims at getting the results as fast as possible, while real-time computing aims
at obtaining the results within prescribed timing constraints. In general, these systems
group many common characteristics, which are described as follows [8]:� Timely Response. Real-time systems must respond to some external stimuli within

prescribed time constraints.� Predictability. Each system execution should run in a more or less similar manner,
and the users should be able to deterministically say when each of the tasks is going
to be executed.� Robustness. The system should be immune to minor changes in its state and should
be able to run without degradation as when it was originally designed.� Accuracy. The system should provide accurate results. Sometimes it is impossible
to compute accurate results in the given timing constraints. In this way, a trade-off
between computation time and accuracy results is very important.� Concurrency. Real-time systems should be distributed and provide parallel pro-
cessing, since a system may have multiple independent sensors, providing stimuli
to the system and requiring response from the system within a given time frame.

Real-time systems can be classified into two categories: hard real-time systems and
soft real-time systems. Basically, the difference lies in the stringency of the predictability
requirements of each class. Hard real-time systems require guaranteed predictable re-
sponses and behaviors. In these systems, if timing constraints are not met, catastrophic
issues may occur, such as loss of human life. Examples of hard real-time systems are
aircraft navigation, medical devices, and so on. Differently, soft real-time systems have
a trade-off between computation time and the accuracy of the desired results. In such
systems, if a timing constraint is not met, nothing critical happens, the system may
only have its performance degraded. Examples of soft real-time systems are multimedia
applications, electronic games, and so on.

Whenever designing real-time systems, two different design approaches can be adopted:
event-triggered and time-triggered. In event-triggered, an activity (e.g., communication)
is initiated whenever a significant change of state occurs. In time-triggered, all activities
are initiated at predetermined points in time, in other words, they are synchronized with
a periodic clock interrupt.

The focus of this thesis is on hard real-time systems, therefore, next subsections are
devoted to this particular category.

3.1.1 Timing Constraints and Intertask Relations

Hard real-time systems are composed of a set of concurrent real-time tasks that must
execute their respective activities before or at the specified deadlines. According to [6],

3.1 REAL-TIME SYSTEMS 15

in order to provide predictability in hard-real-time systems, the major characteristics
of the tasks must be known beforehand, otherwise it would be impossible to assure
that all timing constraints will be satisfied during system execution. Therefore, the
timing constraints presented in this section are only related to tasks that can provide
the timing characteristics previously. As follows, timing constraints are presented using
a task classification:� Periodic Task. A periodic task performs a computation that it is repeated after

a fixed period of time. This task is defined by a tuple τi = (phi, ri, ci, di, pi), in
which:

– phi is the initial phase (delay related to the first request after the start of the
system);

– ri is the release time (interval between the beginning of a period and the
earliest time that an execution of task τi can be started in each period);

– ci is the worst-case execution time (WCET) required for executing task τi. In
some works, ci is the worst-case execution cycles (WCEC) of task τi. Con-
sidering a cpu speed f (in terms of frequency) and a task WCEC, WCET =
WCEC/f ;

– di is the deadline (interval between the beginning of a period and the time by
which an execution of task τi must be completed in each period);

– and pi is the period;� Sporadic Task. A sporadic task is executed randomly, but the minimum interval
between two consecutive activations is known beforehand. This task is defined by
a tuple τk = (ck, dk, mink), in which:

– ck is the worst-case execution time (WCET) (or WCEC) required for execution
of task τk;

– dk is the deadline;

– and mink is the minimum period between two activations of task τk.

In addition to timing constraints, tasks may have relations with other tasks, more
specifically, intertask relations, such as precedence and exclusion relations. A task τi
precedes task τj , if τj can only start executing after τi has finished. Precedence relations
may exist when a task requires the information produced by another task. A task τi
excludes task τj , if no execution of τj can start while task τi is executing. If a single
processor is considered, then task τi could not be preempted by task τj . Exclusion
relations may exist when some tasks must prevent simultaneous access to shared resources,
such as I/O devices.

16 BACKGROUND

3.1.2 Scheduling

Scheduling is one of the most active research areas in real-time systems and it is related
with policies by which tasks are given access to resources, most notably, CPU time.
Considering hard real-time systems, scheduling policies play an important role, since
stringent timing constraints must be met, otherwise catastrophic issues may occur. As
consequence, several scheduling policies for hard real-time systems have been developed
over the years, each one providing a particular advantage. These policies can be broadly
classified as runtime (dynamic) or pre-runtime (static) approaches, and they are described
as follows:.� Runtime approaches. Runtime approaches make decisions at run time by selecting

one of the current ready tasks for execution. The selection is based on priorities, in
such a way that the task with highest priority is selected. In general, a schedulability
analysis is performed before runtime using certain equations. If the equations are
satisfied, it is assumed that all timing constraints will be met at runtime. Several
runtime scheduling methods have been developed over the years. Some representa-
tives are: (i) Rate Monotonic Scheduling [50], (ii) Earliest-Deadline First [50] and
(iii) Priority Ceiling Protocol [51];� Pre-runtime approaches. Pre-runtime approaches perform scheduling decisions off-
line, in other words, before runtime. It aims at generating a schedule table for
a runtime component, namely, dispatcher, which is responsible for controlling the
tasks during system execution. In order to adopt such approach, the major char-
acteristics of the tasks must be known in advance. In general, this approach only
consider periodic tasks. Nevertheless, it is possible to translate a sporadic task into
a periodic task using the technique described in [52, 53]. In pre-runtime approaches,
tasks are scheduled considering a schedule period (PS) that corresponds to the least
common multiple (LCM) between all periods in the task set. Within this new pe-
riod, there are several task instances of the same task, in which S(τi) =PS/pi gives
the number of instances of each task τi. For the nth task execution τin correspond-
ing to the nth period, the release time is rin = ri + pi × (n− 1) and the respective
deadline is din = di + pi × (n− 1). Several pre-runtime algorithms and techniques
have been proposed. Some representatives are Xu and Parnas’ algorithm [54], and
Barreto’s approach [16].

Besides, a scheduling approach can also be characterized whether an executing task may
be interrupted (preemptive scheduling) or not (non-preemptive scheduling).

3.1.3 Runtime versus Pre-runtime Scheduling

Runtime as well as pre-runtime approaches have advantages and disadvantages. However,
pre-runtime approaches have become more suitable for embedded hard real-time systems,
since these approaches provide more predictable behavior than runtime counterparts.
This section aims at providing a brief comparison between both scheduling classes. For
more details, the reader should refer to [6].

3.1 REAL-TIME SYSTEMS 17

When adopting a runtime approach, the amount of system resources required (e.g.,
memory) is greater than a pre-runtime approach, since a schedule is computed entirely
online. Moreover, the runtime scheduling takes time, which leads to overheads that
directly affect the system predictability. In other words, tasks may miss their respective
deadlines. On the other hand, pre-runtime approaches compute the schedule in advance.
When using this approach, overheads are greatly reduced, since just a tiny dispatcher
will be executing in addition to the real-time tasks.

Real-world time-critical applications are composed of several tasks with their respec-
tive timing constraints and intertask relations (e.g., precedence and exclusion relations).
In a runtime approach, it is usually difficult to extend schedulability analysis to con-
sider additional constraints, such as intertask relations, because additional application
constraints are likely to conflict with existing priorities. In general, it may be unfea-
sible to map application constraints into a fixed hierarchy of priorities. In contrast, a
pre-runtime approach can compute an off-line schedule considering additional constraints
without being restricted by any priority scheme.

The runtime scheduling approach requires complex mechanisms for providing task
synchronization and prevent simultaneous access to shared resources. In addition to the
overheads, such mechanisms may conduct the system to a deadlock state. In contrast, in
pre-runtime scheduling, there is no concern related to deadlocks, since a feasible schedule
is guaranteed to be deadlock-free whenever it is found.

Another drawback of runtime approaches is that they have less chance of finding a
feasible schedule than a pre-runtime scheduling algorithm. For instance, let us consider
the task set consisting of two tasks, A, B, and the respective timing constraints (release,
computation, and deadline): A = (0, 10, 12); B = (1, 1, 2). This specification also con-
siders that B can not preempt A. Figure 3.1(a) shows that a runtime approach could
not find a feasible schedule, since task B misses its deadline. However, a pre-runtime ap-
proach finds a feasible schedule (Figure 3.1(b)). It is worth observing that the processor
must be left idle between time 0 and 1, even though A’s release time is 0.

A

A

B

B

0 10 11

01 2 12

a)

b)

12

db da

db da

2

Figure 3.1 Comparison between runtime and pre-runtime scheduling

Although pre-runtime approaches can provide more predictability than runtime coun-
terparts, the former also have drawbacks. The main drawback is the static nature of

18 BACKGROUND

schedules, which can not be changed during system execution. However, some flexibil-
ity may be obtained by mixing runtime and pre-runtime approaches. Such technique is
usually denominated as hybrid approach. For instance, some alternative schedules may
be generated off-line, and, during system execution, a small scheduler can be adopted
to switch schedules according to changes in the environment [55]. Another alternative is
related to sporadic tasks. A runtime scheduler can be adopted to allocate resources for
sporadic tasks in a dynamic manner [56, 57], instead of relying only on the pre-runtime
way.

3.2 ENERGY CONSUMPTION IN EMBEDDED SYSTEMS

Several factors have propelled researching efforts for increasing energy saving in embedded
systems. One of the major factors is the widespread expansion of mobile devices market,
which has forced embedded systems companies to deal with several additional challenges
in order to provide complex systems in this market niche. As portable devices generally
rely on constrained energy sources (e.g., battery), energy consumption is an important
challenge that needs to be tackled.

System

 Behavioural

Logic

Physical

G
re

a
te

r
S

a
v
in

g
s

Application

 Hardware/Software

Figure 3.2 Energy savings at different design levels

Considering the design levels of embedded systems [58] (Figure 3.2), techniques for
reducing energy consumption can be applied from physical to application level. Without
loss of generality, techniques at application level concern in providing functionalities with
different modes, such that each mode performs the same job with a lower energy cost.
For instance, a portable MP3 player may provide a playback mode with lower quality

3.2 ENERGY CONSUMPTION IN EMBEDDED SYSTEMS 19

(due to the reduced precision of the decompression technique) to provide better energy
savings. At the system level, designers analyze the trade-off between hardware and soft-
ware implementations not only considering energy savings, but also flexibility. Regarding
behavioral level, application specific computational kernels, such as algorithms, are opti-
mized in the context of power efficiency. The hardware design also plays an important
role in determining how power efficient an algorithm implementation will be, for instance,
the trade-off between parallelism against the core size. At the structural hardware-design
and physical levels, various techniques can be used to reduce energy consumption. Al-
though energy savings at such levels do not seem significant in comparison with other
abstraction levels, if careful design is not taken into account in those lower levels, the
benefits at higher ones can be destroyed.

It is important to bear in mind the impact of software in energy consumption, since, in
many embedded systems, more than 70% of functionalities are implemented as software
nowadays [4]. Thus, this section focuses on a well-established technique for reducing
energy consumption from application to behavioral level, namely, dynamic voltage scaling
(DVS). Firstly, dynamic power management (DPM) is explained, which is the category
the DVS technology is inserted.

3.2.1 Dynamic Power Management - DPM

In recent years, dynamic power management (DPM) mechanisms have been extensively
adopted in the context of managing energy consumption in embedded devices. As stated
in [59], DPM is a design methodology that focuses on runtime reconfiguration of elec-
tronic systems in order to provide a minimum number of active components or reduce the
performance of such components for increasing energy savings. DPM mechanisms rely on
the basic assumption that systems have nonuniform workload during execution. There-
fore, these methods can manage system components for increasing energy savings, in such
a way that system constraints are still met. Usually, DPM mechanisms are implemented
as part of a service in operating systems.

DPM mechanisms are broadly classified in two groups [60]. The first group is related
to shut-off system components, such as hard disks, displays, and even CPUs, when they
are idle or underutilized. This group is also termed as DPM. The second group refers
to the dynamic control of supply voltage level of system components, in such a way
that the performance as well as the energy consumption are decreased. This group is
denominated as dynamic voltage scaling (DVS), and it has been adopted, most notably,
to reduce energy consumption in CPUs. Indeed, several DVS-capable processors are
available on the market nowadays, such as Intel XScale [61], AMD Mobile Athlon [62]
and Transmeta Crusoe processor [63]. Additionally, some research groups have developed
their own DVS platforms, such as the platform based on Philips LPC2106 described
in [64]. Ideally, a DVS CPU would operate at any supply voltage level considering
a specific range and switch from one voltage to another without incurring overheads.
Nevertheless, overheads (time as well as energy) always occur during a voltage switching
in DVS-capable processors [27]. Besides, the DVS CPUs available on the market operate
at discrete voltage levels [27].

20 BACKGROUND

When considering ordinary mobile embedded systems, DVS and DPM techniques
may be directly applied without arising important issues. Nevertheless, in real-time
systems, such techniques need to be adopted with caution, since responsiveness may be
greatly affected. In hard real-time systems, catastrophic issues may occur due to timing
constraint violations, which can lead to equipment damage or even loss of human life.
Thus, several scheduling approaches have been developed in order to cope with DVS and
DPM in time-critical systems.

For the rest of this work, the focus is the adoption of DVS technologies for reducing
CPU energy consumption in the context of hard real-time systems. CPU is a major source
of energy consumption [30], and, when both DVS and DPM are available for CPUs, it
is always advantageous to exploit DVS first [14]. Next section describes how DVS works
and, afterwards, a comparison between approaches for hard real-time systems scheduling,
taking into account DVS, is presented.

3.2.2 Dynamic Voltage Scaling - DVS

As aforementioned, CPUs significantly impact the energy consumption of several sys-
tems and dynamic voltage scaling can provide meaningful energy savings during system
runtime. The following paragraphs explain the rationale behind DVS technology.

The energy consumption of MOS microprocessors (in active status) can be described
as [65, 66]

Pactive = Pdynamic + Pstatic (3.1)
in which Pdynamic and Pstatic are the dynamic and static power consumption, respectively.
Pdynamic is defined as[2, 67]

Pdynamic = A.V 2.fclk (3.2)
in which A is the average switched capacitance per clock cycle, V is the voltage supplied,
and fclk is the clock frequency. Additionally, Pstatic is represented as [65, 68]

Pstatic = Ileak.V (3.3)
where Ileak is the leakage current.

DVS relies on the premise that power consumption in MOS microprocessors is most in-
fluenced by the dynamic power, in other words, the dynamic power is dominant (Pactive ∝
Pdynamic). As dynamic power consumption has a quadratic dependence on voltage, lower-
ing the supply voltage is the most effective way to reduce power consumption. Considering
energy, equation 3.2 can be expressed as [69]

Edynamic = A.V 2.N (3.4)
in which N is the number of cycles for the execution of a given task.

However, lowering the supply voltage increases circuit delay, as described in the fol-
lowing equation [12]

Td =
kV

(V − Vt)2
∝ V

(V − Vt)2
(3.5)

3.2 ENERGY CONSUMPTION IN EMBEDDED SYSTEMS 21

where Td is the delay, V is the supply voltage, Vt is the threshold voltage and k is a con-
stant related to the technology. Considering previous equation, the maximum operating
frequency is linearly proportional to the supply voltage (f ∝ V). Therefore, DVS may be
seen as a technique for trading off energy consumption and performance. It is important
to state that concerns have emerged in the context of leakage current, but this thesis
assumes the dynamic power is a major source of energy consumption.

For a better visualization about the gains that can be obtained using DVS, consider
the following example, which was extracted from [12]. In this example, it is assumed
a CPU that consumes 10nJ/cycle, 25nJ/cycle and 40nJ/cycle at 2.5V, 4.0V and 5.0V,
respectively. Additionally, the maximum clock frequencies are 50MHz at 5.0V, 40MHz
at 4.0V, and 25MHz at 2.5V. These assumptions are based on equations (3.4) and (3.5).
Figure 3.3 [12] shows three kinds of voltage schedules for a given program whose worst-
case execution cycles are 1000× 106 cycles and the deadline constraint is 25 seconds.

Figure 3.3 DVS example

In Figure 3.3(A) [12], the total energy consumption is 40J at 5.0V, even if the power
supply is turned off after finishing the program. Figure 3.3(B) depicts an alternative
schedule combining 2.5V and 5.0V, in such a way the program execution is stretched to
the deadline. In this case, energy consumption is reduced from 40J to 32.5J. Figure 3.3(C)

22 BACKGROUND

shows the ideal case for this example. If the processor uses a single supply voltage in
which the program execution time is equal to the deadline, the total energy consumption
is minimized.

Classification Several DVS algorithms have been proposed over the last decade, in
such a way that categories are necessary to classify those algorithms. According to [30],
DVS algorithms may fall into two categories:� Intertask DVS algorithms. Intertask DVS algorithms [19, 64] assign a CPU supply

voltage (and the respective maximum operating frequency) for a given task instance
at the task level. In other words, once a CPU voltage is assigned to a task instance,
the voltage is not changed until the instance is preempted or completed;� Intra-task DVS algorithms. Intra-task DVS algorithms [70, 71] adjust CPU voltage
(and the respective maximum frequency) within the boundaries of a task instance.
In this case, the CPU voltage is gradually increased, in such a way that the task
deadline is not violated.

Intra-task approaches commonly rely on compiler support to insert power manage-
ment points inside the application code for allowing voltage scaling. On the other hand,
intertask algorithms do not perform any intrusive modifications, since these algorithms
are usually implemented as part of an operating system service, such as scheduling ser-
vice. Since intertask DVS algorithms are more practical than intra-task algorithms due
to the absence of changes in the application code [30], next section describes a compari-
son between some intertask techniques for hard real-time systems scheduling considering
DVS.

3.2.3 Hard Real-Time Systems Scheduling Considering DVS

Although DVS can provide considerable energy savings, this technology needs to be
adopted with caution in hard real-time systems due to the stringent timing constraints.
As consequence, several (runtime and pre-runtime) scheduling approaches have been de-
veloped in order to cope with DVS in time-critical systems. As follows, a comparison is
provided only assuming the impact of dynamic power.

In real systems, tasks often need to communicate between themselves or access shared
resources in a mutual exclusive way. As shown in Section 3.1, the former is modeled as
precedence relations and the latter as exclusion relations. Ignoring such constraints can
lead to undesirable results during system execution, and, in the context of hard real-time
systems, catastrophic issues can occur. As far as the constraints are available, pre-
runtime approaches can provide feasible schedules, whereas runtime methods may fail.
Previous affirmation still holds for DVS-capable systems, as depicted by the following
example. Assume the following task set T = {τ1 = (0, 0, 150× 106, 6, 13), τ2 = (0, 2, 50×
106, 3, 13), τ3 = (0, 0, 100× 106, 13, 13), τ4 = (0, 7, 60× 106, 9, 13)}. In this example, each
task is represented by a tuple τi = (phi, ri, ci, di, pi), where phi is the initial phase; ri
is the release time; ci is the worst-case execution cycles (WCEC) required for executing

3.2 ENERGY CONSUMPTION IN EMBEDDED SYSTEMS 23

task τi; di is the deadline; and pi is the period. In addition to timing constraints, the
specification contains the following relations: τ1 excludes τ2, τ1 precedes τ3, τ2 excludes
τ1, and τ2 precedes τ4. For this example, a DVS platform based on [64] is adopted, taking
into account the following supply voltage/frequency levels: 1.21V/20MHz, 1.39V/30MHz

and 1.76V/50MHz. Moreover, considering an average switching capacitance of 0.28nF
per clock cycle [72], the energy consumption is 0.87nJ/cycle at 50MHz, 0.54nJ/cycle at
30Mhz, and 0.41nJ/cycle at 20MHz. These values were obtained from Equation 3.4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1.76V

1.39V

1.21V

-

-

-

 I I I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 11 12 13

-

-

-

 I I I I I I I I I I I I I

Not possible Deadline missing

0 1 2 3 4 5 6 7 8 9 10 11 12 13

-

-

-

 I I I I I I I I I I I I I

(a) (b)

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

-

-

-

 I I I I I I I I I I I I I

(d)

Deadline missing

0 1 2 3 4 5 6 7 8 9 10 11 12 13

-

-

-

 I I I I I I I I I I I I I

(e)

τ
1

τ
2

τ
1

τ
3

τ
3

τ
4

τ
2τ

1
τ
3

τ
3

τ
4

τ
1

τ
2

τ
3

τ
4

τ
1

τ
2

τ
3

τ
4

τ
3

τ
4

τ
3

τ
3

τ
1

τ
2

1.76V

1.39V

1.21V

1.76V

1.39V

1.21V

1.76V

1.39V

1.21V

1.76V

1.39V

1.21V

Figure 3.4 Schedules generated according to different scheduling methods

Figure 3.4(a) shows a schedule obtained by adopting the optimal off-line DVS algo-
rithm defined by [25], which relies on the optimal runtime scheduling method Earliest-
Deadline First(EDF). The schedule is invalid, since τ1 cannot be preempted by τ2. As
an alternative, Figure 3.4(b) shows a schedule obtained by blocking the execution of τ2
while τ1 is executing. Again, the schedule is infeasible, since τ2 misses its deadline due
to the earlier release of τ1. Even discarding DVS, in other words, running every task at
the maximal voltage/frequency level, a schedule could not be found if EDF is adopted
(or other runtime scheduling algorithm) (see Figure 3.4(c)). On the other hand, Fig-
ure 3.4(d) depicts a schedule found using the proposed pre-runtime scheduling algorithm.
All tasks meet their deadlines, and additional energy savings can be obtained comparing
to a pre-runtime schedule without DVS (Fig. 3.4(e)). Fig. 3.4(d) presents a schedule that
consumes 0.2474J, while the schedule depicted in Fig. 3.4(e) utilizes 0.3132J. Addition-
ally, note that the processor needed to be left idle to find a valid schedule [6]. For the
sake of simplicity, overheads have not been taken into account and the CPU was assumed
to have a halt instruction that avoids energy consumption on idle state.

24 BACKGROUND

3.3 SOFTWARE SYNTHESIS

An embedded system is a system whose principal function is not only computational,
but which is controlled by a computer embedded within it. Such computer may be a
microprocessor or microcontroller. The meaning of the word embedded implies that the
computer lies inside the overall system, hidden from view, forming an integral part of a
greater whole. As a result, the user may be unaware of the computer’s existence. Unlike
a general-purpose personal computer, embedded system computer is usually purpose
designed, or at least customized, for the single function of controlling its system. Besides,
embedded systems do not terminate, unless it fails [73].

In order to provide flexibility, lower costs as well as to reduce time-to-market, most
part of embedded system functionalities is implemented as software components nowa-
days. Nevertheless, the development of embedded softwares is not an ordinary activity.
For instance, some (non-functional) requirements, generally considered as secondary to
the functional correctness of PC-like software applications, are crucial for embedded soft-
ware correctness. Additionally, while conventional PC softwares generally abstract the
physical world, embedded software engage with it.

Taking into account the previous issues, correct-by-construction techniques play an
important role in embedded software development, as software can be partially or fully
generated satisfying several constraints and properties. In this context, software synthesis
methods are an feasible solution. According to Cornero et.al. [15], software synthesis is
the task of converting automatically a specification (typically composed of concurrent
and communicating tasks) into a software considering:� the specified functionalities;� the required runtime support;

In other words, software synthesis methods translate a high-level specification into
a program source code including the operational support code for allowing the software
execution.

Software synthesis is necessary since specifications have special characteristics which
are not found in traditional programming languages. For instance, specifications are
generally composed of several concurrent tasks, so, scheduling and synchronization of
multiple tasks are important issues. Considering multiple processors, additional issues
should be considered, such as inter-processor communications. In these particular situa-
tions, software synthesis should provide an appropriate scheduler, in such a way that all
specified constraints are satisfied. Thus, software synthesis consists of two main activi-
ties [15](see Figure 3.5):� task handling;� code generation.

Task handling takes into account tasks’ scheduling, resource management, and intertask
communication. Code generation is responsible for static generation of system source
code.

3.4 DISCRETE EVENT MODELS 25

Software Synthesis

Task Handling

Inter-task
Communication

Scheduling
Resource

Management

Code Generation

Source Code

Figure 3.5 Software synthesis activities

In general, complex systems adopt a specialized operating system in order to provide
a runtime support to the respective software application. However, operating systems
are very general and usually introduce overheads, mainly in execution time and memory
requirements. On the other hand, software synthesis methods are an alternative to oper-
ating system usage, since these methods automatically generate customized codes, in such
a way that all constraints are met and overheads are minimized. Considering embedded
applications, software synthesis is of great importance, since constrained resources can be
utilized in an efficient manner. Besides, due to greater overheads, operating systems may
consume more energy than software synthesis approaches. In the context of hard real-
time time systems with stringent energy requirements, the overheads related to operating
system usage may compromise system constraints.

Although software synthesis methods may provide better results than operating sys-
tems in the context of hard real-time systems, these methods also have drawbacks. Since
software synthesis methods are generally designed considering a specific type of applica-
tion, the adoption to other types may not be so straightforward as operating systems.
In relation to portability, operating systems may be more portable. However, techniques
such as retargetable compilers can solve the portability problem in software synthesis [74].

3.4 DISCRETE EVENT MODELS

Hard real-time systems require careful design in order to avoid (catastrophic) issues dur-
ing system execution. Regarding these systems, discrete event models provide several
benefits, in the sense that system behaviour (and properties) can be reasoned at design-
time. Prevalently, those models have been adopted to represent systems with the following

26 BACKGROUND

characteristics:

1. The state space is a discrete set;

2. The state transition mechanism is event-driven.

Systems with these characteristics are denominated as discrete event systems (DES), and
the hard real-time systems of interest belong to such category. As follows, the concept
of model is presented, and, next, representative formal models in the context of DES
systems are described. This section is based on [75] and [48].

3.4.1 Models

Scientists as well as engineers are usually concerned with the quantitative analysis of
systems, and the development of techniques for design, control, and the explicit measure-
ment of system performance based on well-defined criteria. As consequence, a model is
needed for assisting in such tasks. In general, a model may be viewed as a device that
simply duplicates the behavior of the system itself. In many cases, mathematical models
are adopted for representing such behavior.

In order to perform the modeling process, it is necessary to define a set of measurable
variables associated with a given system. By measuring such variables over a period of
time, data can be collected. Next, a subset of these variables is selected and it is assumed
that they can vary over time. This defines a set of time functions, which are called
input variables. Then, another set of variables, namely, output variables, is selected for
measurements, while varying the input variables. Output variables may be interpreted
as the response to the stimulus provided by the selected input functions. Additionally, it
is worth stating that not all system variables may be associated with either the input or
output. Such variables are generally identified as suppressed output variables.

Strictly speaking, system is the real thing, whereas model is an abstraction, such as a
set of mathematical equations. In other words, a model is an approximation of the real
behavior of the system. Nevertheless, once a good model is obtained, the terms system
and model may be used in an interchangeable manner. This situation is depicted on
Figure 3.6. Besides, it is worth pointing out that it is always possible (in principle) to
obtain a model from a system, but the converse is not true. As an analogy, since systems
may be modeled as mathematical functions, an inverse function is not always possible to
obtain.

Depending on the desired view of the system, several combinations of input and output
variables may be selected during the modeling process. It is up to the modeler to identify
the variables of interest and consider them in the final model. This flexibility may provide
several models with different aspects of the same system.

3.4.2 Formal Models

Whenever designing embedded real-time systems, models play an important role, since
system parts can be visualized together with their respective interactions. Nevertheless,
a model to be useful should possess certain qualities, which are discussed as follows. The

3.4 DISCRETE EVENT MODELS 27

SYSTEM

INPUT OUTPUT

MODEL

INPUT OUTPUT

Figure 3.6 Modeling process

model should be complete in the sense that it describes the parts of interest. Additionally,
the model should be comprehensible to the designers, in the sense that it should be easy
to understand. Finally, the most important characteristic is related to unambiguity.
The model must describe the system without ambiguity in order to capture precisely
the features of interest. Such characteristic is of utmost importance for hard real-time
systems, since if timing constraints are not properly represented, undesirable results may
occur with the final system, such as equipment damage or even loss of human lives (see
Section 3.1).

Taking into account the previous requirements, formal models can provide most of the
desired features, mainly the possibility of describing system functionalities precisely. In
fact, formal models are based on mathematical foundations, which allow the verification
and the analysis of qualitative as well as quantitative properties. Such characteristics are
of great importance for designing time-critical systems.

Due to the diversity of formal models, a classification is necessary for visualizing the
main ideas of each model class. Hence, this work adopts the classification described in [76],
which groups formal models as state-based models and event-based models. Besides, a
supplementary class is considered, namely, heterogeneous models. The classification is
described below:

1. State-based models. The model contemplates all possible states that the system
under review could be throughout execution. For instance, a state may include the
values of all program variables, e.g.: Automata and Finite-State Machines;

2. Event-based models. The model comprises all event sequences that can occur
during system execution. Such events represent system actions, where an action
can be, for instance, a variable assignment or a function call, e.g.: Process Algebras.

3. Heterogeneous models. The model considers states as well as events that can
occur in the system. Differently from previous models, a state actually represents
a local state (e.g., the value of a program variable), whereas an event represents

28 BACKGROUND

an action taking into account a specific local state(s) as precondition(s), e.g.: Petri
nets.

Although state-based models as well as event-based models have been adopted for
formal specification and verification of several systems, such models capture causality re-
lations, concurrent events and conflict conditions in an implicit manner [48]. Nevertheless,
such information is useful for the designers, and, in some systems, the explicit represen-
tation is desirable. Additionally, without explicit support for concurrency, a complex
system will lead to an explosion in the number of possible states that can be represented.
In the case of heterogeneous models (e.g., Petri nets), such information can be explicitly
described, since these formal models provide more structure than the other classes. On
the other hand, depending on the application, heterogeneous models may not possess the
same analytical power as state-based models [75]. Furthermore, although Petri nets (het-
erogeneous model) are usually adopted for purposes of system validation and simulation,
process algebras (event-based models) are often adopted in system verification [77].

In the beginning, this chapter explains the adoption of Petri nets in the proposed work,
however, it is important to provide more details regarding the representative models of
each class, for instance, to better visualize the benefits provided by Petri nets in the
modelling of real-time systems. As follows, the representative models of each class are
presented, more specifically, Finite-State Machines and Process Algebras. Petri nets are
detailed in Section 3.5

3.4.3 Finite-State Machine

A finite-state machine (FSM) is a good example of a state-based model that has been
largely adopted in the modeling of control systems. The suitability is based on the
behavior of control systems, which are naturally represented by states and the transitions
between states. Basically, a FSM model consists of a set of states, a set of transitions
between states, and a set of actions associated with these states or transitions. As follows,
a formal definition of FSM is presented.

Definition 3.1 (Finite-state Machine). A FSM is a tuple (S, I, O, f , g, s0), where
S is a finite set of states, I is a finite input alphabet, O is a finite output alphabet,
f : S × I → S is the transition function that assigns to each state and input pair a new
state, g : S × I → O is an output function that assigns to each state and input pair an
output, and s0 ∈ S is the initial state.

In addition to the formal definition, a FSM can be graphically represented using a state
diagram, which is a directed graph with labeled edges. In the graph, each node represents
a state, and each labeled edge depicts the input and output pair of a given transition. As
an example, Figure 3.7 [78] shows an elevator controller modeled using FSM. The respec-
tive algebraic representation is (S = {s1, s2, s3}, I = {r1, r2, r3}, O = {u1, u2, d1, d2, n},
f = {(s1, r1, s1),(s1, r2, s2),(s1, r3, s3),(s2, r1, s1),(s2, r2, s2),(s2, r3, s3),(s3, r1, s1),(s3, r2, s2),
(s3, r3, s3)},g = {(s1, r1, n),(s1, r2, u1),(s1, r3, u2),(s2, r1, d1),(s2, r2, n),(s2, r3, u1),(s3, r1, d2),
(s3, r2, d1),(s3, r3, n)},s1). It is worth noting that functions f and g are defined as rela-
tions. For a better comprehension, each state represents the floor where the elevator is

3.4 DISCRETE EVENT MODELS 29

located. The set of inputs I represents the floor desired. For instance, r2 means that
floor 2 is requested. The set of outputs O represents the direction as well as the number
of floors the elevator needs to move. More specifically, ux (e.g., u1) indicates that the
elevator needs to move up x floors, dx (e.g., d2) represents that the elevator needs to
move down x floors, and n represents that the elevator stays at same floor.

S1 S2

S3

start
r2/u1

r1/d1

r1/n

r3/n

r2/n

r3/u2

r1/d2

r2
/d

1
r3

/u
1

Figure 3.7 Elevator controller model

Over the years, finite-state machines have been extended to model different kinds
of systems. The type of FSM presented so far is named as transition-based or Mealy
machine, which is characterized by the output value be associated with the state and
input values (g : S × I → O). Another important type of finite-state machine is state-
based or Moore machine. In this case, the output value depends only on the state of
the FSM (g : S → O). In short, the main difference between both models is related to
the number of states. State-based FSM may require more states than transition-based
FSM, since the latter allows multiple arcs pointing to a single state, each arc having a
different output value. On the other hand, each output value would require its own state
in state-based FSM. In order to provide a better visualization, Figure 3.8 [78] depicts the
elevator controller model using Moore’s approach.

Besides system modeling, another fundamental application of FSM is in the construc-
tion of language recognizers. Such application have a prominent role in the design of
compilers for programming languages. For this case, there is a suitable type of finite-state
machine, namely, finite automata or finite-state automata. Without loss of generality,
instead of generating outputs, finite automata have final states, in such a way that a
string is recognized if it takes the starting state to one of these final states. Consider-
ing the behaviour of a system, strings may also be interpreted as event sequences (state
transitions) of the form e1e2...en, in such a way that they represent the evolution of the
respective system.

Definition 3.2 (Finite Automaton). A finite automaton is a tuple (S, I, f , s0, F), where

30 BACKGROUND

S11/d2

S12/d2

S13/n

S21/d1

S22/n

S23/u1

S31/n

S32/u1

S32/u2

start

r3

r3
r3

r1

r2

r1

r2

r2

r1

r1 r2

r3

r2

r2

r1 r3

r2 r3

r3
r2

r1

r3

r1
r1

r2
r3

r1

Figure 3.8 Moore FSM model for the elevator controller

S is a finite set of states, I is a finite input alphabet, f : S × I → S is the transition
function that assigns to each state and input pair a new state, s0 ∈ S is the initial state,
and F ⊆ S is the set of final states.

Definition 3.3 (Language). A language defined over an alphabet I is the set of finite-
length strings generated from the alphabet I.

As an example, take a look at the following tuple, which is a finite automaton:
(S = {s0, s1},I = {0, 1},f = {(s0, 1, s0), (s0, 0, s1), (s1, 0, s1), (s1, 1, s1)},F = {s0}). The
respective graphical representation is depicted in Figure 3.9. Before presenting the lan-
guage recognized by this automaton, the transition function f is extended to consider
all pairs of states and strings: f : S × I∗ → S, where I∗ represents all possible strings
generated from I. Considering x = x1x2...xk a string in I∗, f(s1, x) is the state obtained
by using each successive symbol of x as input, from left to right, starting from state s1.
For a better understanding, from s1, state s2 = f(s1, x1) is reached, then s3 = f(s2, x2),
and so on, with f(s1, x) = f(sk, xk)

Start

1

0
s0 s1

0,1

Figure 3.9 Finite automaton

3.4 DISCRETE EVENT MODELS 31

Definition 3.4 (Language accepted by an automaton). A language accepted or recog-
nized by an automaton is defined as L(M) = {x ∈ I∗|f(s0, x) ∈ F}, where M is an
automaton, x is a string, f : S × I∗ → S is the transition function of M , s0 is the initial
state of M , and F is the set of final states of M .

For the automaton depicted in Figure 3.9, the language recognized is L(M) = {1n|n ≥
0}. It is worth stating that if two finite-state automata recognize the same language, they
are considered equivalent.

The finite automata presented so far is defined as deterministic, since each pair of
state and input value has only one next state (f : S × I → S). Another important type
of FSM is nondeterministic finite automata, which may have for each pair of state and
input value more than one next state.

Definition 3.5 (Nondeterministic Finite Automaton). A nondeterministic finite automa-
ton is a tuple (S, I, f , s0, F), where S is a finite set of states, I is a finite input alphabet,
f : S × I → P (S) is the transition function that assigns to each state and input pair
a set of states, s0 ∈ S is the initial state, and F ⊆ S is the set of final states. In this
definition, P(S) means the power set of S.

A comparative example between deterministic and nondeterministic finite automata
is presented in Figure 3.10 [78]. The problem in question is related to the construc-
tion of a language recognizer that accepts all strings over {0,1} containing a 1 in the
third position from the end (e.g., 000100). Figure 3.10(a) depicts a nondeterministic
automaton, whereas Figure 3.10(b) shows an equivalent deterministic automaton. It is
worthwhile noting that Figure 3.10(a) is much smaller than its deterministic counterpart,
and the respective behaviour is easier to understand. To conclude, if a language L is
recognized by a nondeterministic finite automaton, the same language can be recognized
by a deterministic automaton.

Start
s0 s3

0,1

Start s0 s1

s5

s2

s6

0

0

1

(b)

s1 s2
1 0,1 0,1

(a)

s4

s3

s7

0

0

0

1
1

0

1

1

0

1

0

1

1

Figure 3.10 Deterministic and nondeterministic finite automata

32 BACKGROUND

3.4.4 Process Algebra

This section provides information about process algebras, and the respective content is
based on [79]. Process algebras have been adopted as a mathematical framework for
reasoning about the behavior as well as the structure of distributed and reactive systems.
The term process algebra denotes the adoption of an algebraic approach for describing
the behavior of a system. Indeed, the word process refers to the behavior, which is the
total of events and actions that a system can execute, the sequence in which they can
be performed, and, possibly, other characteristics, such as timing or probabilities. The
main idea of a process algebra model is to provide an observation of the behavior, where
an action is the unit of observation. Generally, the actions are considered discrete, in the
sense that they occur at some time instant, and different actions are separated in time.
Considering the previous statement, this is the reason that a process is also named as
discrete event system.

The simplest model of behavior is the function model, in the sense that a value
(input) is given at the beginning of the process, and at some moment a result (output)
is obtained. This model was adopted to model the behavior of a computer program from
the start of the subject in the middle of the twentieth century. Such approach was of great
help in the development of automata theory (presented in previous section). However,
this model lacks an important feature, namely, interaction. This concept is needed to
describe parallel or distributed systems, since a system may interact with another during
the execution from the initial state to the final state.

Process algebra is the study of parallel or distributed systems by algebraic methods.
Process algebra provides resources to describe or specify such systems, and, thus, it has
means to allow parallel composition, alternative composition and sequential composition.
Additionally, the system can be reasoned through equational reasoning, which can allow
verification.

Several process algebras have been developed over the years, each one providing some
differentiated features. The three most well-known process algebras are cited below [80]:� Calculus of Communicating Systems(CCS) [81];� Communicating Sequential Processes(CSP) [82];� Algebra of Communicating Processes(ACP) [79].

The basic rules of process algebras are usually named as structural or static laws,
since no action execution is explicitly described. From a given set of atomic actions,
basic operators are adopted to compose such actions into more complex processes. In
general, the basic operators [80] are + or | representing alternative composition, ; or →
representing sequential composition, and || representing parallel composition. The basic
rules are presented as follows (+ binding weakest, ; binding strongest).� x + y = y + x (commutativity of alternative composition)� x + (y + z) = (x + y) + z (associativity of alternative composition)

3.4 DISCRETE EVENT MODELS 33� x + x = x (idempotency of alternative composition)� (x + y); z = x; z + y; z (right distributivity of + over ;)� (x; y); z = x; (y; z) (associativity of sequential composition)� x || y = y || x (commutativity of parallel composition)� (x || y) || z = x || (y || z) (associativity of parallel composition)

The formal semantics of process algebras are defined in term of states. More specif-
ically, such algebras have a formally defined structured operational semantics that map
process algebra terms onto an automaton, called labeled transition system, in a compo-
sitional manner. While in the automata theory the equivalence is done through language
equivalence, in process algebras, the equivalence is generally related with bisimulation.

In order to demonstrate examples of process algebra models, let us initially consider
the behavior of a printer. The printer actions can be represented by accept, print and
shutdown. Using the syntax presented previously, the printer specification can be written
as follows:

PRINTER = (accept → print → PRINTER) | (shutdown → STOP)
Figure 3.11 depicts the respective FSM of the printer specification.

0 1

2

accept

print

shutdown

sta
rt

Figure 3.11 Finite-state machine of printer specification

For demonstrating the utilization of parallel composition, consider the following spec-
ification of a client-server application.

CLIENT = request → response → read → CLIENT
SERVER = request → process → response → SERVER
CLIENT SERVER = CLIENT || SERVER
In this specification, the client and the server processes need to synchronize in the

actions request and response, since they are common in both processes. For a better
visualization, Figure 3.12 depicts the FSM of each process and the parallel composition.

34 BACKGROUND

0 1 2

210

0 21 3

Client

Server

Client_Server

request response

read

request process

response

request process response

read

start

start
start

Figure 3.12 Finite-state machines of client-server processes

It is important to bear in mind that if the parallel composition is applied in processes
without common actions, all possible interleavings have to be taken into account. Such
situation is described by the following specification and depicted in Figure 3.13.

ITCH = scratch → STOP

SERVER = think → talk → STOP

CONVERSE ITCHR = ITCH || CONVERSE

0 1 2 3 4 5
think talk scratch talk think

scratch

scratch

start

Figure 3.13 Finite-state machine considering all possible interleavings

3.5 PETRI NETS 35

3.4.5 Timed Models

Whenever dealing with real-time systems, timing constraints are of utmost importance in
order to guarantee system responsiveness. In hard real-time systems, if timing constraints
are not met, catastrophic issues may occur. Therefore, in addition to model causalities
and concurrency, formal models must provide means to capture timing constraints. FSMs,
process algebras as well as Petri nets have extensions that deal with time. This section just
provides a brief overview how deterministic (not probabilistic) time may be considered in
those models. Next section details the model of interest, namely, Petri nets, with their
respective timed extensions. For now, the overview is presented below:� Timed FSMs or Automata. In those formal models, the underlying definition

is extended with a finite set of clocks, which are synchronized and can be reset
due to the transition from one state to another. Clocks are also adopted to guard
transitions, in such a way that a transition can not be performed before a specified
time. For more details, the reader should refer to [83, 84].� Timed Process Algebras. Over the years, process algebras with time have
been developed to allow the modeling of real-time distributed systems. A com-
mon approach associates actions with numbers that represent time stamps (i.e.,
labels indicating the time of execution). For more details, the reader should refer
to [85, 86, 87].� Petri Nets with Time. Several approaches have been developed to consider
time in Petri net models. Most of them [13, 88] associate transitions with timing
constraints, in such a way that a transition is firable if it stays enabled until the
time elapsed reaches the respective timing constraint. Next section provides the
details.

3.5 PETRI NETS

In the sixties, Carl Adams Petri proposed the Petri net theory in his Ph.D. thesis [89] at
Technical University of Darmstadt, Germany. In general, Petri net is a term adopted for
a whole class of net-based models, which provide a graphical and mathematical modeling
tool applicable to many systems, such as distributed systems, parallel systems, and so
on [10]. For a better understanding, the following definition describes Place/Transition
nets, which are usually called Petri nets [90].

Definition 3.6 (Petri net). A Place/Transition net (Petri net) is a bipartite directed
graph represented by a tuple (P , T , F , W , m0), where P (set of places) and T (set of
transitions) are non-empty disjoint sets of nodes (P ∩ T = ∅). The edges are represented
by F , where F ⊆ A = (P ×T)∪ (T ×P). W : A → N represents the weight of the edges,
such that

W (f) =

{

x ∈ N, if (f ∈ F)

0, if (f /∈ F)

A marking mi is a function (mi : P → N), and m0 is the initial marking.

36 BACKGROUND

Table 3.1 Interpretation for places and transitions

input places transitions output places

pre-conditions events post-conditions
input data computation step output data
input signals signal processor output signals
resource granting tasks resource releasing
conditions logical clauses conclusions
buffers processor buffers

Considering the previous definition, places represent local states and transitions de-
note local actions. The set of arcs F represents the relationships between places and
transitions, in such a way that arcs connect places to transitions and vice-versa. Func-
tion W assigns to each arc a natural number, which may be interpreted as the amount
of parallel arcs. A marking function mi associates to each place a natural number, which
represents the number of tokens in the respective place. Thus, the initial marking m0

defines the initial number of tokens in each place. Places and transitions may have sev-
eral interpretations [10], some of which are shown in Table 3.1. Typical interpretations
assume marked places as the truth of a condition or the availability of resources, and
transitions are considered events or computational steps.

Taking into account graphical representation, Figure 3.14 depicts the basic compo-
nents of a Petri Net. Places (a) are represented by circles, transitions (c) are depicted as
bars or rectangles, arcs (b) are represented by arrows, and (d) tokens - the marking - are
generally represented by filled small circles.

(a) (b) (c) (d)

Figure 3.14 Basic components of a Petri net: (a) place, (b) arc, (c) transition, and (d) token

There are other notations for representing elements of a Petri net. For instance, the
set of input transitions of a place pi ∈ P (pre-set) may be represented as:

•pi = {tj ∈ T | (tj, pi) ∈ F}
and the set of output transitions of a place pi ∈ P (post-set) may be denoted as:

pi• = {tj ∈ T | (pi, tj) ∈ F}
Likewise, the set of input places of a transition tj ∈ T may be described as :

•tj = {pi ∈ P | (pi, tj) ∈ F}
and the set of output places of a transition tj ∈ T may be represented as:

tj• = {pi ∈ P | (tj , pi) ∈ F}

3.5 PETRI NETS 37

3.5.1 Transition Enabling and Firing

In general, the behavior of systems can be described in terms of system states and their
changes. In Petri nets, a state is represented by a marking, and the change is performed
by transition firing rule.

Definition 3.7 (Enabled Transitions). A set of enabled transitions at marking mi is
denoted by: ET (mi) = {t ∈ T |mi(pj) ≥ W (pj , t)}, ∀pj ∈ P .

Definition 3.8 (Transition Firing Rule). The firing of transition t ∈ ET (mi) generates
a new marking (state) mj, which is obtained by applying the following formula: mj(p) =
mi(p)−W (p, t) +W (t, p), ∀p ∈ P .

Consider the following net N = (P = {p0, p1, p2}, T = {t0, t1}, F = {(p0, t0), (p1, t0),
(t0, p2), (p2, t1), (t1, p0), (t1, p1)},W = {(p0, t0, 2), (p1, t0, 1), (t0, p2, 1), (p2, t1, 1), (t1, p0, 2),
(t1, p1, 1)}, m0 = {(p0, 2), (p1, 1), (p2, 0)}), which is depicted in Figure 3.15(a). In order to
demonstrate the transition firing rule, assume the firing of transition t0 (Figure 3.15(b)).
A new marking m1 = {(p0, 0), (p1, 0), (p2, 1)} is reached, such that, m1(p0) = 2 − 2 + 0,
m1(p1) = 1− 1 + 0, and m1(p2) = 0− 0 + 1.

2

P1

P0

P2

2

T1
T0

2

P1

P0

P2

2

T1
T0

(a) (b)

Figure 3.15 Petri net example

3.5.2 Reachability graph

Generally, a labeled directed graph is adopted to represent all possible states (markings)
that a Petri net can reach. Such graph is named Reachability Graph.

Definition 3.9 (Reachability Graph). A reachability graph is defined by a tuple (V,E),
where V is the set of vertices represented by the reachable markings, and E ⊆ (V × V)
is the set of labeled edges.

As an example, consider M = {m0 = {(p0, 2), (p1, 1), (p2, 0)}, m1 = {(p0, 0), (p1, 0),
(p2, 1)}} the set of reachable markings of the net depicted in Figure 3.15(a). The respec-
tive reachability graph is depicted in Figure 3.16.

38 BACKGROUND

m0

m1

T0
T1

Figure 3.16 Reachability graph

T0

T1

T2

T3

T4

T5

P0

P1

P2

P3

P4

P5

P6

Figure 3.17 Parallel processes

3.5.3 Examples

This section presents some classical problems and their respective Petri net models.

Parallel Processes Figure 3.17 depicts a net composed of two independent processes.
As can been seen, both processes become eligible to execute their activities after fir-
ing transition t0. When both processes end their independent activities (transitions
t1, t2, t3, t4), they are synchronized (transition t5).

Mutual exclusion Sometimes, parallel processes need to cooperate in order to achieve
a joint solution. Therefore, shared resources may be required and accessed in a mutual
exclusive manner for avoiding undesirable results.

Figure 3.18 shows an example of two processes sharing a common resource in a mutual
exclusive manner. The resource is represented by a token in place p8, and it is accessed
by only one process at a time.

Dining Philosophers The dining philosophers is a classical problem that was pro-
posed by Dijsktra in [91]. Briefly, three philosophers are arranged in a ring with one

3.5 PETRI NETS 39

t0

t1

t2

t3

t4

t5

p0

p1

p2

t3

p4

p5

p6

p7

p8

Figure 3.18 Mutual exclusion

fork (resource) between each pair of neighbors, and for eating, a philosopher must have
exclusive access to both of its adjacent forks. If all philosophers take at the same the
right fork and wait the left fork to be freed, the system enters in a deadlock state.

Figure 3.19 [92] presents a solution for this problem. The resources (forks) are rep-
resented by tokens in places fork1, fork2, and fork3. The state of each philosopher is
represented by the places eating (pci), hungry (pcfi), and thinking (ppi). The event
start-to-eat is represented by transition tcci, and is-hungry as well as start-to-think are
represented by ttfi and tcpi, respectively.

Figure 3.19 Dining Philosophers

40 BACKGROUND

3.5.4 Petri nets Properties

Petri nets are not just a modeling tool for describing systems. A major strength of Petri
nets is their support for analysis of many interesting properties. In general, two types of
properties may be found in Petri net models: behavioral properties (those which depend
on the marking) and structural properties (those which do not depend on the marking).

3.5.5 Behavioral Properties

Behavioral properties are also known as quantitative properties. This section, based
on [10], describes the behavioral properties of interest.

Reachability Reachability property indicates the possibility of reaching a given mark-
ing through the finite firing of transitions from the initial marking. A marking mi is said
to be reachable from marking m0 (initial marking), if there exists a sequence of firings
that transforms m0 to mi. A firing (or occurrence) sequence is denoted by σ = t1t2 · · · ti.
In this case, mi is reachable from m0 by σ.

Boundedness A Petri net is considered bounded or k-bounded, if the number of tokens
in each place does not exceed a finite number k for any reachable marking. A Petri net
is said to be safe, if in each place the number of tokens does not surpass 1 (1-bounded).

Liveness A Petri net is denominated as live, if, no matter what marking has been
reached from m0, it is possible to fire any transition of the net by some firing sequence.
In other words, liveness is related to the concept of deadlock-free, a desirable property
for many systems, such as operating systems.

Although liveness is an ideal property for many real systems, it is impractical to
verify this property for some systems due to their size. Thus, different levels of liveness
are adopted [10], as described below:� A transition t is said to be dead (L0-Live), if it can never be fired in any firing

sequence.� L1-Live (potentially firable) is denoted to transitions that can be fired at least once
in some firing sequence.� A transition t is considered in the level L2-Live, if, given any positive integer k, t
can be fired at least k times in some firing sequence.� L3-Live is adopted to transitions that can infinitely fire, considering the existence
of an infinite-length firing sequence.� A transition is said to be L4-Live (or simply live), if it is L1-Live for every marking
m reachable from m0.

3.5 PETRI NETS 41

A Petri net is said to be at level i, if every transition is at the same level i. It is worth
noting that transition live at level 4, is also live at levels 3, 2, 1. Obviously, this principle
is not applied to level 0.

Reversibility and Home State A Petri net is said to be reversible, if, for each marking
m, m0 is reachable from m. Thus, in a reversible net one can always get back to the
initial marking. A marking mk is said to be a home state, if, for each marking m, mk is
reachable from m.

Coverability Coverability is strongly related to liveness and reachability. A marking
m in a Petri net is said to be coverable, if there exists a reachable marking mi, such that
mi(p) ≥ m(p), for each place p in the net. In order to see the relation with liveness,
consider m the minimum marking needed to enable a transition t. t is only firable (L1-
Live) if m is coverable.

3.5.6 Structural Properties

This section aims at describing structural properties, which provide characteristics inde-
pendent of the marking. It is worth stating that structural properties are also known as
qualitative properties.

The structural properties of interest are presented below. For more information, the
reader should refer to [10].

Structural Liveness A Petri net is considered structurally live, if there is a live initial
marking m0.

Structural Boundedness A net is structurally bounded, if it is bounded for any finite
initial marking m0.

Conservativeness A Petri net is said to be strictly conservative whether any transition
firing does not change the number of tokens. Nevertheless, there are nets that are not
classified as strictly conservative, but they can be converted into strictly conservative
nets. Such nets are said to be conservative.

Repetitiveness A net is classified as repetitive, if there is marking m0 and a firing
sequence from this marking, such that every transitions fires infinitely. If only some
of these transitions are fired infinitely often in the sequence, the net is called partially
repetitive.

Consistency A Petri net N has the consistency property, if there exists a marking
m0 as well as a firing sequence from m0 back to m0, such that every transition fires at
least once in the firing sequence. Consistency can also be partial, in the sense that some
transition occurs in the firing sequence.

42 BACKGROUND

3.5.7 Incidence Matrix

Assume a Petri net with m places and n transitions. Its incidence matrix A = [aij] is an
m× n matrix of integers such that aij = a+ij − a−ij . a

+
ij = W (tj, pi) is the weight of the arc

from transition tj to its output place pi and a−ij = W (pi, tj) is the weight of the arc to
transition tj from its input place pi. As an example, the incidence matrix for the model
depicted in Figure 3.15 is presented below:

A =

t0 t1

p0 −2 2
p1 −1 1
p2 1 −1

Although the incidence matrix allows the structural representation of Petri net models,
there are situations in which the matrix does not properly represent the structure. For
instance, this situation may occur when a Petri net model contains a self-loop, which
occurs when a place is pre-condition and post-condition of a transition. Nevertheless,
self-loops can be removed utilizing dummy pairs [10].

The incidence matrix is adopted in some analysis methods (e.g., fundamental equa-
tion [10]), which are very useful to indicate properties in Petri net models. In this work,
incidence matrixes are utilized in the context of invariants.

3.5.8 Invariants

In Petri nets, invariants are related to the conservative and repetitive stationary compo-
nents, which are denoted by place invariants and transition invariants, respectively. Both
invariants are defined below, but the focus is on places invariants.

Definition 3.10 (Place Invariant - P-semiflow or P-Invariant). Assume a Petri net N
with m places and its incidence matrix A. A vector of non-negative integers Ip =

[

p0 p1 ... pm

x0 x1 ... xm

]

T is a P-semiflow or place invariant (P-invariant), if and only if

Ip
T × A = 0. A value xm is the weight associated with place pm.

Definition 3.11 (Transition Invariant - T-semiflow or T-invariant). Assume a Petri net
N with n transitions and its incidence matrix A. A vector of non-negative integers

It =
[

t0 t1 ... tn

y0 y1 ... yn
]

T is a T-semiflow or transition invariant (T-invariant), if and
only if A× It = 0. A value yn is the weight associated with transition tn.

The support P (Ip) of an invariant Ip [93] is the set of places (or transitions for T (It))
whose values in the vector are not zero. The reader should observe that P (Ip) ⊆ P (and
T (It) ⊆ T). Throughout this work, only non-negative vectors are considered, namely,
P-semiflow or T-semiflow. In other words, all weights are equal to or greater than 0.
Besides, the terms P-semiflow (or T-semiflow) and P-invariant (or T-invariant) are used
interchangeably throughout this thesis.

If there is a P-invariant (or T-invariant) such that all weights are different from 0
(or equivalently |P (Ip)| = |P |), a Petri net is said to be covered with P-invariants (or

eagt
Typewriter
T

3.5 PETRI NETS 43

T-invariants). Besides, an invariant Ip1 is a minimal support invariant, if there is no
invariant Ip2 , in which P (Ip2) ⊂ P (Ip1) (or T (It2) ⊂ T (It1)). When there is no other
invariant I2 such that I1 ≥ I2, I1 is said to be minimal (≥ means for every i, a(i) ≥ b(i)
and at least one i such that a(i) > b(i)). In this work, a minimal invariant with minimal
support is denominated basic invariant. Moreover, new invariants can be generated from
the combination of others invariants, for instance: (i) I1’= αI1(α ∈ N

∗); or (ii) I3 =
αI1 + βI2(α, β ∈ N

∗).
For a better understanding, the basic P-invariants of the Petri net depicted in Fig-

ure 3.15 are:� Ip1 =
[

p0 p1 p2

0 1 1
]

T ;� Ip2 =
[

p0 p1 p2

1 0 2
]

T .

P (Ip1) = {p1, p2} and P (Ip2) = {p0, p2} are the respective supports. Additionally,
new invariants can be constructed using Ip1 and Ip2, for instance:� Ip3 = Ip1 + Ip2 =

[

p0 p1 p2

1 1 3
]

T ;� Ip4 = 5Ip1 =
[

p0 p1 p2

0 5 5
]

T ;� As well as using Ip3, Ip5 = 3Ip1 + 5Ip3 =
[

p0 p1 p2

5 8 18
]

T .

It is important to state that one prominent application of invariants is in the analysis
of structural properties [10, 93]. A Petri net N is conservative if only if there is a P-
invariant Ip, such that Ip > 0 (all elements are positive integers) and Ip

T × A = 0. If
there is a vector Ip > 0 and Ip

T × A ≤ 0, N is structurally bounded. As an example,
the net in Figure 3.15 is structurally bounded and conservative, since Ip3 × A = 0 (A is
the respective incidence matrix). Regarding T-invariants, a net is consistent if exists a
T-invariant It > 0 and A× It = 0. If there is a vector It > 0 and A× It ≥ 0, the net is
structurally repetitive.

Juxtaposition of Invariants The composition of Petri net models from basic build-
ing blocks is an efficient approach to tackle the issues involved in the representation of
complex and large-scale systems. For instance, tools may be adopted to automate the
modeling process, which may assure (by construction) that the generated models possess
some behavioral and structural properties.

As presented, invariants are a powerful analysis method that can reason about the
structural properties in Petri net models. The following definition presents a technique for
obtaining the P-invariants of a Petri net composed by merging places of basic models [94,
95, 92, 96]. Although attention is devoted to P-invariants, equivalent results may be
obtained with T-invariants [94, 95, 92].

44 BACKGROUND

Definition 3.12 (Juxtaposition of P-invariants - J). Let N1 and N2 be two Petri nets, as
well as P1 = P 1

not∪P 1
shared and P2 = P 2

not∪P 2
shared be the respective set of places, such that

P 1
not = {p10, ..., p1n}, P 1

shared = {pk0, ..., pkq}, P 2
not = {p20, ..., p2m}, P 2

shared = {pk0, ..., pkq},
P 1
not ∩ P 2

not = ∅, and P 1
shared = P 2

shared. Additionally, consider that

Ip(1) =
[

p1
0

... p1n pk0 ... pkq

x1
0 ... x1

n x1
k0

... x1
kq

]

T

is a P-invariant of net N1 and

Ip(2) =
[

pk0 ... pkq p2
0

... p2m

x2
k0

... x2
kq

x2
0 ... x2

m

]

T

is a P-invariant of net N2. Finally, assume a Petri net N3 generated by merging places
of subnets N1 and N2, more specifically, P 1

shared and P 2
shared. A P-invariant Ip(3) of

net N3 may be obtained from Ip(1) and Ip(2) via juxtaposition, Ip3 = J(Ip(1), Ip(2)),
if the following condition holds: ∀p ∈ P1 ∩ P2, Ip(1)(p) = Ip(2)(p). Thus, assuming
x1
k0

= x2
k0

= xk0 , ... ,x
1
kq

= x2
kq

= xkq ,

Ip3 =
[

p1
0

... p1n pk0 ... pkq p2
0

... p2m

x1
0 ... x1

n xk0 ... xkq x2
0 ... x2

m

]

T .

Note that, for the condition stated in Definition 3.12 be satisfied, there are cases the
invariants need to be multiplied by non-negative integers. For instance, assume a net N3

composed by merging places of subnets N1 andN2. Additionally, consider the P-invariant
Ip(1) = [x1 xk1] of net N1, in which xk1 represents the weights associated to the merged
places and x1 the weights associated to the untouched ones. Similarly, Ip(2) = [xk2 x2]
represents a P-invariant of net N2, in which xk2 represents the weights associated to the
merged places. If xk1 6= xk2 , it is necessary to find a, b ∈ N such that a.xk1 = b.xk2 , which
will result in Ip(3) = J(a.Ip(1), b.Ip(2)). If is not possible to find a, b ∈ N that satisfy the
condition, the juxtaposition of these P-invariants can not be performed.

To demonstrate the application of juxtaposition technique, assume a net Nc composed
by merging a common place of subnets Na and Nb (Pa ∩ Pb = {pshared}). Additionally,
consider the following basic P-invariants for each subnet:� Na: Ip(a)(1) =

[

p0 p1 pshared

1 1 0
]

T and Ip(a)(2) =
[

p0 p1 pshared

1 0 1
]

T ;� Nb: Ip(b)(1) =
[

pshared p2 p3 p4

5 1 1 0
]

T and Ip(b)(2) =
[

pshared p2 p3 p4

5 1 0 1
]

T .

The following lines demonstrate the P-invariants obtained through juxtaposition for
net Nc :� Ip(c)(1) = J(Ip(a)(1), 0.Ip(b)(1)) =

[

p0 p1 pshared p2 p3 p4

1 1 0 0 0 0
]

T ;

3.5 PETRI NETS 45� Ip(c)(2) = J(Ip(a)(1), 0.Ip(b)(2)) =
[

p0 p1 pshared p2 p3 p4

1 1 0 0 0 0
]

T ;� Ip(c)(3) = J(5.Ip(a)(2), Ip(b)(1)) =
[

p0 p1 pshared p2 p3 p4

5 0 5 1 1 0
]

T ;� Ip(c)(1) = J(5.Ip(a)(2), Ip(b)(2)) =
[

p0 p1 pshared p2 p3 p4

5 0 5 1 0 1
]

T .

A general P-invariant for Nc (as well as for Na and Nb) can be obtained as follows:� Ip(a) = α.Ip(a)(1) + β.Ip(a)(2) =
[

p0 p1 pshared

α + β α β
]

T , where α, β ∈ N;� Ip(b) = γ.Ip(b)(1) + δ.Ip(b)(2) =
[

pshared p2 p3 p4

5γ + 5δ γ + δ γ δ
]

T , where γ, δ ∈ N;� Assuming β = 5γ+5δ, Ip(c) = J(Ip(a), Ip(b)) =
[

p0 p1 pshared p2 p3 p4

α + 5γ + 5δ α 5γ + 5δ γ + δ γ δ
]

T .

Since ∃α, γ, δ ∈ N
∗, Ip(c)

T ×Ac = 0, in which Ac is the incidence matrix of net Nc , Nc

is conservative as well as structurally bounded, in other words, for any initial marking,
the state space size is finite.

3.5.9 Time Petri Nets

Several Petri net extensions have been proposed in order to consider timing information.
This section describes the extension of interest, namely, time Petri nets, which is a feasible
model for describing real-time systems with preemption mechanisms.

Time Petri nets were initially proposed by Melin and Faber in [13]. Nevertheless, for
the sake of this work, a definition based on [16] is adopted, which assumes a discrete time
domain.

Definition 3.13 (Time Petri net). A time Petri net is defined by a tuple (N , I), where
N is the underlying Petri net, and I : T → N×N represents the timing constraints, such
that I(t) = (EFT (t), LFT (t)) ∀t ∈ T , EFT (t) ≤ LFT (t). EFT (t) is the Earliest Firing
Time, and LFT (t) is the Latest Firing Time.

In the previous definition, each transition t has timing constraints represented by
I(t) = (EFT (t), LFT (t)). For a better understanding, an enabled transition t (see
Definition 3.7) can not fire before EFT (t), and must fire before or at its LFT (t). The time
elapsed, since the respective transition enabling, is represented by a clock vector c ∈ (N∪
{#})|T |, where # represents the undefined value for disabled transitions. Additionally,
it is worth stating that the situation related to LFT , in the sense that a transition must
fire before or at its LFT, is denominated strong firing mode [97]. Another alternative
is weak firing mode, which does not force any enabled transition to fire. Nevertheless,
strong firing mode is adopted in this work.

46 BACKGROUND

It is important to separate the definitions of enabled transitions from firable transi-
tions. Without loss of generality, enabled transitions are only related to the marking (Defi-
nition 3.7), and firable transitions take into account the marking and their respective clock
values (the time elapsed of each enabled transition). The following paragraphs lay the
groundwork for firable transitions. Firstly, the difference between static and dynamic fir-
ing intervals associated with transitions is required. The dynamic firing interval of transi-
tion t, ID(t) = (DLB(t), DUB(t)), is dynamically modified whenever the respective clock
variable c(t) is incremented, and t does not fire. DLB(t) is the Dynamic Lower Bound,
and DUB(t) is the Dynamic Upper Bound. The dynamic firing interval is computed in
the following way: ID(t) = (DLB(t), DUB(t)), where DLB(t) = max(0, EFT (t)− c(t)),
DUB(t) = LFT (t) − c(t). Whenever DLB(t) = 0, t can fire, and, when DUB(t) = 0,
t must fire, since strong firing mode is assumed. Initially, at the moment transition t
becomes enabled, I(t) = ID(t).

Definition 3.14 (States). Let NT be a time Petri net, M ⊆ P×N be the set of reachable
markings of NT , and C ⊆ (N∪ {#})|T | be the set of clock vectors. The set of states S of
NT is given by S ⊆ (M ×C), that is, a state is defined by a marking, and the respective
clock vector.

Different from Petri nets (Definition 3.6), the state of time Petri nets is composed of
a marking and the clocks of each enabled transition in that marking.

Definition 3.15 (Firable Transitions). LetNT be a time Petri net, the set of firable tran-
sitions at state s ∈ S is defined by: FT (s) = {ti ∈ ET (m)| DLB(ti) ≤ min (DUB(tk)),
∀tk ∈ ET (m)}.

This definition enforces the strong firing mode. Besides, FT ⊆ ET ⊆ T .

Definition 3.16 (Firing Domain). The firing domain for a transition t at state s, is
defined by the interval: FDs(t) = [DLB(t), min (DUB(tk))], ∀tk ∈ ET (m).

A transition t at state s is only fireable in the interval denoted by FDs(t).

Definition 3.17 (Reachable States). Let NT a time Petri net, and si = (mi, ci) a
reachable state. sj =fire(si, (t, θ)) denotes that firing a transition t ∈ FT (si) at time
θ ∈ FDsi(t) from the state si, the reached state sj = (mj , cj) is obtained from:� ∀p ∈ P, mj(p) = mi(p)−W (p, t) +W (t, p), as usual in Petri nets;� ∀tl /∈ ET (mj), cj(tl) = #;� ∀tk ∈ ET (mj), cj(tk) =

0, if(tk = t)

0, if(tk ∈ ET (mj)− ET (mi))

ci(tk) + θ, else

3.5 PETRI NETS 47

When changing from a state to another, the marking as well as the clocks need to be
updated. Firstly, the marking is changed using the transition firing rule (Definition 3.8),
and, next, the value # is assigned for disable transitions in the clock vector. After that,
the clocks for the enabled transitions are updated using enabling memory mechanism, in
the sense that if a transition was not fired in the previous state and continues enabled
in the new reached state, the respective clock value is incremented. However, when a
transition t is fired and its enabling degree is larger than one, single-server semantics is
adopted [98]. In other words, the clock value of transition t is set equal to zero when t
is first enabled, and the clock is again reset to zero after firing t, if t is still enabled in
the new marking. Additionally, the above definition does not consider the state change
only due to time elapsing, but also it takes into account a transition firing. Indeed, time
elapsing states increase the state space size, and they are not of interest for most real-time
systems.

p0

p1

p2

p3 p4 t0
[0,0]

 t1
[1,4]

 t2
[2,3]

 t3
[0,0]

p0

p1

p2

p3 p4 t0
[0,0]

 t1
[1,4]

 t2
[2,3]

 t3
[0,0]

p0

p1

p2

p3 p4 t0
[0,0]

 t1
[1,4]

 t2
[2,3]

 t3
[0,0]

p0

p1

p2

p3 p4 t0
[0,0]

 t1
[1,4]

 t2
[2,3]

 t3
[0,0]

p0

p1

p2

p3 p4 t0
[0,0]

 t1
[1,4]

 t2
[2,3]

 t3
[0,0]

(a)
(b)

(c) (d)

(e)

2

2

2

2

2

Figure 3.20 Time Petri net example

For a better comprehension of concepts related to time Petri nets, consider the net
NT = (P = {p0, p1, p2, p3, p4}, T = {t0, t1, t2, t3}, F = {(p0, t0), (t0, p1), (t0, p2), (p1, t1),
(p2, t2), (t1, p3), (t2, p3), (p3, t3), (t3, p4),W = {(p0, t0, 1), (t0, p1, 1), (t0, p2, 1), (p1, t1, 1),
(p2, t2, 1), (t1, p3, 1), (t2, p3, 1), (p3, t3, 2), (t3, p4, 1)}, m0 = {(p0, 1), (p1, 0), (p2, 0), (p3, 0),
(p4, 0)}, I = {(t0, 0, 0),(t1, 1, 4), (t2, 2, 3), (t3, 0, 0)}), which is depicted in Figure 3.20(a).
The initial state is represented by s0 = ({(p0, 1), (p1, 0), (p2, 0), (p3, 0), (p4, 0)},

48 BACKGROUND

[

t0 t1 t2 t3

0 # # #
]

T), which defines that transition t0 is the only enabled transition
(ET (m0)={t0}) due to the marking. The set of firable transitions is FT (s0) = {t0}.
Since ID(t0) = [0, 0], t0 must fire because of strong firing mode. Figure 3.20(b) shows

the new state s1 = ({(p0, 0), (p1, 1), (p2, 1), (p3, 0), (p4, 0)},
[

t0 t1 t2 t3

0 0
]

T) reached
due to the firing of t0 at θ = 0. The dynamic firing intervals of each enabled transi-
tions are ID(t1) = [1, 4] and ID(t2) = [2, 3], which imply that both transitions are firable
(FT (m1) = {t1, t2}). This can be easily seen, because the minimum dynamic upper
bound of all enabled transitions is DUB(t2) = 3, and DLB(t1) ≤ DUB(t2), DLB(t2) ≤
DUB(t2). Besides, the firing domains of each transition are FDs1(t0) = [1, 3] and
FDs1(t1) = [2, 3]. Let us consider two time units elapsed (θ = 2) without any transition
firing, the new values of the dynamic intervals are ID(t1) = [min(0, 1−2), 4−2] = [0, 2] and
ID(t2) = [min(0, 2−2), 3−2] = [0, 1]. At this moment, assume the firing of transition t2,

which leads to the state s7 = ({(p0, 0), (p1, 1), (p2, 0), (p3, 1), (p4, 0)},
[

t0 t1 t2 t3

2 #
]

T)
(Figure 3.20(c)). Although t1 had a lower DLB, any firable transition can fire, inasmuch
as the respective firing domain is respected. After that, considering the firing of transition

t1 at θ = 0 in s7, state s3 = ({(p0, 0), (p1, 0), (p2, 0), (p3, 2), (p4, 0)},
[

t0 t1 t2 t3

0
]

T)
is obtained (Figure 3.20(d)). Lastly, state s4 = ({(p0, 0), (p1, 0), (p2, 0), (p3, 0), (p4, 1)},
[

t0 t1 t2 t3

#
]

T) (Figure 3.20(e)) is reached due to the firing of transition t3 in s3 at
θ = 0.

It is important to bear in mind that other states may be reached by firing transitions
at other time instants in the respective firing domains. For instance, in state s1, t1 can be
fired at θ = 1 instead of firing t2 at θ = 2, reaching state s2. For a better visualization,
Figure 3.21 depicts the reachability graph for the net in question, generated using the
Integrated Net Analyzer (INA) [99]. In this graph, the nodes (states) are labeled with
the marking and the clock vector, whereas the edges are labeled with the fired transition
and the time elapsed (θ) in the previous state.

3.6 SUMMARY

This chapter presented concepts related to the proposed software synthesis method, rang-
ing from the definition of real-time systems to the Petri net formalism. Initially, real-
time systems were presented focusing on a specific class, namely, hard real-time systems.
Afterward, DPM (Dynamic Power Management) and DVS (Dynamic Voltage Scaling)
technologies were described, and an example was provided to show the feasibility of DVS
technology in hard real-time systems. Next, software synthesis was conceptualized in the
context of embedded systems. After that, attention was devoted to discrete-event models,
giving particular focus to Petri nets. Petri nets are a family of formalisms very suitable
for modeling real-time systems, and several techniques (as well as tools) are available for
analysis and verification of properties in Petri net models.

3.6 SUMMARY 49

s0

m0=

c0=[0 # # #]T
t0 t1 t2 t3

t0,0
t1,1

t1,2

t1,3t2,2

t2,3

t2,1

t2,2

t3,0

t2,0

t2,1

t2,0
t1,0

t1,1

t1,2

t1,0

t1,1

{(p0,1),(p1,0),
 (p2,0), (p3,0)
(p4,0)}

s8

m8=

c8=[# 3 # #]T
t0 t1 t2 t3

s1

m1=

c1=[# 0 0 #]T
t0 t1 t2 t3

s2

m2=

c2=[# # 1 #]T
t0 t1 t2 t3

s7

m7=

c7=[# 2 # #]T
t0 t1 t2 t3

s6

m6=

c6=[# # 3 #]T
t0 t1 t2 t3

s3

m3=

c3=[# # # 0]T
t0 t1 t2 t3

s4

m4=

c4=[# # # #]T
t0 t1 t2 t3

s5

m5=

c5=[# # 2 #]T
t0 t1 t2 t3

{(p0,0),(p1,1),
 (p2,1), (p3,0)
(p4,0)}

{(p0,0),(p1,0),
 (p2,1), (p3,1)
(p4,0)}

{(p0,0),(p1,0),
 (p2,0), (p3,2)
(p4,0)}

{(p0,0),(p1,1),
 (p2,0), (p3,1)
(p4,0)}

{(p0,0),(p1,1),
 (p2,0), (p3,1)
(p4,0)}

{(p0,0),(p1,0),
 (p2,1), (p3,1)
(p4,0)}

{(p0,0),(p1,0),
 (p2,0), (p3,0)
(p4,1)}

{(p0,0),(p1,0),
 (p2,1), (p3,1)
(p4,0)}

Figure 3.21 Reachability graph for Figure 3.20(a)

CHAPTER 4

SOFTWARE SYNTHESIS METHOD

The challenges of embedded software development have evolved through the years due to
the necessity of handling even more complex functional and non-functional requirements.
In this context, model-driven methods have been quite effective for reducing the intri-
cacies of software development, since they allow designers to reason about a system by
focusing on details of interest (and ignoring extraneous ones). Nevertheless, concerning
hard real-time embedded systems with energy constraints, few model-driven methods are
available, and, in general, most disregard formal models. It is important to bear in mind
the benefits that formal models can provide in embedded software development, in the
sense that they lay down a mathematical foundation for property analysis/verification as
well as correct-by-construction techniques (e.g., automatic generation of customized code
satisfying timing constraints).

This chapter describes the proposed software synthesis method for hard real-time
embedded systems with energy constraints and provides an overview of the methodology
in which the proposed method is inserted. The methodology is named MEMBROS - A
Methodology for EMBedded CRitical SOftware ConStruction, and it is centered on the
Petri net formalism, which is very suited for modeling energy constrained time-critical
systems. It should be emphasized that timing and energy predictability are fundamental
non-functional requirements of those systems, and Petri nets’ mathematical foundation
substantially helps in achieving these and other important goals.

The focus of this work is a software synthesis method for energy-constrained hard real-
time systems, which is depicted in Figure 4.1 (see the box with bold lines). Nevertheless,
an overview of MEMBROS methodology is presented firstly.

4.1 OVERVIEW

Figure 4.1 depicts the core activities of MEMBROS methodology, which organizes the
activities in three groups: (i) Requirements Validation; (ii) Performance Evaluatation;
and (iii) Software Synthesis. As follows, an overview of the methodology is provided.

Initially, the activities regarding requirements validation are performed. After car-
rying out the requirement analysis, the system requirements are modeled using a set of
SysML diagrams (SDs), which represent the functionalities of the embedded software to
be developed. The SDs provide to the designer an intuitive language for modeling the re-
quirements without knowing the details of the Petri net formalism, which will be utilized
in further activities for reasoning about quantitative/qualitative properties. SysML [100]
is an abbreviation for Systems Modeling Language, an extension of UML for systems
engineering. Since timing and energy constraints are of utmost importance in the sys-
tems of interest, the SDs are annotated with timing and energy consumption information
(e.g., initial estimates) using MARTE [101]. MARTE is an UML profile that stands

51

52 SOFTWARE SYNTHESIS METHOD

Requirement
Analysis

Creation of
SysML

Diagrams

Assigning
Information of

Energy Consum-
ption and

Execution Time
to the Diagrams
using MARTE

Analysis and
Verification

Evaluation

[Inconsistent
requirements]

[Inconsistent
diagrams]

Embedded
Software

Development

Annotated
Source Code
Compilation

Stochastic
Modeling

Simulation

Comparison
with

Requirement
Evaluation

Results

[Inconsistent
require-
ments]

Stringent
Constraints

Specification

Scheduling
Modeling

Scheduling

Code Generation

Validation

Deployment

Measurement

Property
Analysis/

Verification

[check
properties]

[properties
not found]

[properties ok]

[schedule not
found]

[inconsistent
constraints]

Requirements Validation Performance Evaluation Software Synthesis

MEMBROS

Code Analysis

[Inconsis-
tent code]

[inconsistent
behaviour]

Figure 4.1 MEMBROS activity diagram

for Modeling and Analysis of Real-Time and Embedded Systems. Next, the annotated
SDs are automatically mapped into time Petri net (TPN) models in order to lay down
a mathematical basis for analysis and verification of properties (e.g., absence of dead-
lock conditions between requirements). This activity also concerns to obtain best and
worst-case execution times and the respective energy consumptions, in such a way that
the requirements are also evaluated whether timing and energy constraints can be met.
As the SDs are constructed by the designer, undesirable results in the evaluation activity
may be not only related to inconsistent requirements, but also to inconsistent SDs.

Afterwards, the embedded software is implemented taking into account the results
obtained in previous activities. Once the source code implementation is concluded, the
designer analyzes the code in order to assign probability values to conditional and it-
erative structures. The probability annotations allow the compiled code be evaluated
in the context of time and energy consumption, in such a way that these costs may be
estimated before running the code on the hardware platform. Next, the compiled code is
automatically translated into a coloured Petri net (CPN) model [102], a high-level Petri
net extension, in order to provide a basis for the stochastic simulation of the embedded

4.2 PROPOSED METHOD 53

software. Although not depicted in Figure 4.1, an architecture characterization activity
is also considered to permit the construction of a library of CPN basic building blocks,
which provide the foundation for the automatic generation of CPN stochastic models.
From the CPN model (generated by the composition of basic blocks), a stochastic sim-
ulation of the compiled code is carried out considering the characteristics of the target
platform. If the simulation results are in agreement with the requirements, the software
synthesis is performed.

Software synthesis activities are concerned with the stringent constraints (e.g., time
and energy), and, in the general sense, it is composed of two subgroups of activities:
(i) tasks’ handling; and (ii) code generation. Tasks’ handling is responsible for tasks’
scheduling, resource management, and intertask communication, whereas code generation
deals with the static generation of the final source code, which includes a customized
runtime support, namely, dispatcher. It is important to state that the concept of task
is similar to process, in the sense that it is a concurrent unit activated during system
runtime. For the following activities, it is assumed that the embedded software has been
implemented as a set of concurrent hard real-time tasks.

Initially, a measurement activity is performed to obtain the tasks’ timing informa-
tion as well as the information regarding the hardware energy consumption. Next, the
designer defines the specification of system stringent constraints, which consists of a set
of concurrent tasks with their respective constraints, behavioral descriptions, informa-
tion related to the hardware platform (e.g., voltage levels and energy consumption) as
well as the energy constraint. Afterward, the specification is translated into an inter-
nal model able to represent concurrent activities, timing information, intertask relations,
such as precedence and mutual exclusion, as well as energy constraints. The adopted
internal model is a time Petri net extension (TPNE), labeled with energy consumption
values and code annotations. After generating the internal model (TPNE), the designer
may firstly choose to perform property analysis/verification or carry out the scheduling
activity. This work adopts a pre-runtime scheduling approach in order to find out a fea-
sible schedule that satisfies timing, intertask and energy constraints. Next, the feasible
schedule is adopted as an input to the automatic code generation mechanism, such that a
tailored code is obtained with the respective runtime control, namely, dispatcher. Finally,
the application is validated on a DVS platform in order to check system behaviour as
well as the respective constraints. Once the system is validated, it can be deployed to
the real environment.

Henceforward, the focus is on the software synthesis activities. For more informa-
tion about the requirements validation and performance evaluation activities, the reader
should refer to [103] and [104], respectively.

4.2 PROPOSED METHOD

Although the software synthesis activities have been presented in the context of MEM-
BROS methodology, the proposed method can be utilized in other methodologies as well
as a self-contained method. In the latter situation, the designer should provide all data re-
quired in the specification activity. The reader should bear in mind that the contribution

54 SOFTWARE SYNTHESIS METHOD

Modeling Scheduling Code Generation

Validation

Deployment

[schedule not
found]

[inconsis-
tent results]

Property
Analysis/Verification

[check pro-
perties]

[properties
not found]

[proper-
ties ok]

Measurement

Specification

Figure 4.2 Software synthesis activity diagram

of this thesis is the software synthesis method, thus, for a better visualization, Figure 4.2
depicts the proposed method activities detached from MEMBROS methodology.

The following items provide an overview of each activity, the associated artifacts and
roles, leaving for the forthcoming chapters the in-depth details:� Measurement. This activity concerns the measurement of each task and dis-

patcher (runtime support) worst-case execution cycles (WCEC) and the hardware
energy consumption. In the proposed method, the hardware energy consumption
is related with the mean value of the energy consumption per clock cycle in each
voltage level (and the respective maximum frequency) of a DVS processor. This
approach allows the calculation of a task worst-case execution time (WCET) as
well as the respective energy consumption when the task is executing in a specific
voltage level (and the associated maximum CPU frequency);
Artifacts : The worst-case execution cycles of each software component (i.e., tasks,
dispatcher and scheduler) and the energy per clock cycle of each voltage level (and
the respective maximum frequency)
Role: designer and software engineer� Specification. Using the information from previous activity, the non-functional
specification is carried out. The proposed method adopts a specification model that
contemplates:

1. Hard Real-Time Tasks. This work assumes an embedded software implemented
as a set of concurrent periodic time-critical tasks. Hence, the designer specifies
each task considering: (i) the stringent timing constraints, for instance, phase,
release, WCEC, deadline and period; (ii) the behavioral description, which is

4.2 PROPOSED METHOD 55

represented by a function implemented in C programming language; and (iii)
the intertask relations, such as precedence and exclusion relations. Although
this thesis assumes tasks implemented in C language, the method is not pro-
gramming language dependent. Moreover, it is possible to have situations that
the proposed method may receive as an input a monolithic embedded software
(for instance, when the method is adopted in a different methodology). In this
case, it is up to designer to split the software in concurrent tasks, being careful
in specifying the relations that may exist between them;

2. Runtime Support. The dispatcher execution may affect the time-critical tasks
during system runtime. Thus, the proposed specification model also takes into
account the overheads (e.g., time and energy) related with the dispatcher for
managing the tasks throughout system execution.

3. Scheduling Type. The scheduling type specifies whether the tasks are preempt-
able or non-preemptable;

4. Hardware Architecture. The hardware architecture is assumed to adopt a
DVS-capable processor, and the designer should provide a specification that
includes: (i) a discrete set of voltage/frequency levels; and (iii) the energy con-
sumption per clock cycle in each level (which was obtained in the measurement
activity);

5. Energy Constraint. The system energy constraint also needs to be defined,
which sets an upper bound in terms of energy consumption that a schedule
must not surpass;

Artifacts : a non-functional specification that includes stringent timing constraints,
intertask relations, the source code of each task, overheads and details about the
DVS platform
Role: designer� Modeling. From the non-functional specification, the system modeling can be
performed. This work adopts a bottom-up approach, in which a set of formal com-
position rules are considered for combining basic building block models. These
building blocks, represented as TPNE models, represent each aspect of a hard real-
time system, more specifically, the tasks’ timing constraints (e.g., release time),
intertask relations, overheads, the energy consumption during a task computation
as well as the processor availability. Such an approach generates a TPNE model
from the system specification, so that tools can be adopted to automate the mod-
eling and scheduling processes. Besides, the proposed modeling approach is also
adopted for analysis/verification of behavioral and structural properties;
Artifacts : a time Petri net model representing the system
Role: designer

56 SOFTWARE SYNTHESIS METHOD� Property Analysis/Verification. This activity allows the designer to reason
about a system by analyzing and verifying qualitative as well as quantitative prop-
erties in the TPNE models. It is worth mentioning that the generated models are
assured to contain some structural and behavioral properties, which are of utmost
importance, for instance, in the scheduling activity;
Artifacts : a report stating the qualitative and quantitative properties of the Petri
net model
Role: designer� Scheduling. Adopting the TPNE model, the scheduling activity provides the or-
dering of task executions at design-time, such that timing and energy constraints
are met as well as system resources are properly allocated before system execution.
More specifically, the proposed method adopts a pre-runtime scheduling approach,
which is a depth-first search method on the TPNE model. The result of the schedul-
ing activity is a feasible schedule represented as a time labeled transition system
(TLTS);
Artifacts : a feasible schedule that satisfies the specified constraints
Role: designer� Code Generation. In the proposed method, the code is generated by traversing
the TLTS (feasible schedule), and detecting the times when each task will exe-
cute, ensuring that the constraints are also met during system execution. The code
generation activity includes not only the code of each task, but also a customized
runtime support and a schedule table that contains all information about each task
execution;
Artifacts : a customized predictable code
Role: designer and software engineer� Validation Finally, the embedded software is validated. In this work, attention is
devoted to the verification of timing and energy constraints;
Artifacts : a report about the test procedure and bugs found
Role: test engineer� Deployment. Once all constraints are met, the system can be deployed to the
real environment. This activity concerns all steps required to the deployment of
the embedded system in the final environment.
Artifacts : a report about the deployment procedure
Role: deployment team

Some activities are automated by support tools, and, thus, those activities are only
performed by the designer. Next chapters present the activities and the associated tools.

4.3 SUMMARY 57

4.3 SUMMARY

Embedded software development provides several challenges that are not usually found
in traditional PC-like application construction, for instance, challenges related to strin-
gent timing and energy constraints. To cope with these and other issues, this chapter
presented the activities related with the proposed software synthesis method as well as
the methodology in which the software synthesis is inserted. The proposed method and
MEMBROS methodology are centered on the Petri net formalism, which substantially
helps in mitigating the intrinsic complexities of embedded software development as well
as in achieving the desired goals.

CHAPTER 5

MEASUREMENT AND SPECIFICATION

This chapter presents the measurement and specification activities, which are responsi-
ble for capturing and describing the characteristics of the hardware architecture and the
embedded software to be coped. More specifically, the measurement activity is respon-
sible for measuring the tasks’ worst-case execution cycles (WCEC), the runtime support
WCEC and the energy consumption at each voltage level of a DVS processor. The spec-
ification activity concerns the specification of each task constraints, timing information
and behavioral description as well as the information regarding the DVS hardware plat-
form (which includes the energy consumption values measured previously). As follows,
the activities are detailed.

5.1 MEASUREMENT

The proposed measurement activity contemplates two steps in order to provide the nec-
essary data for carrying out the specification activity: (i) the measurement of tasks and
dispatcher WCEC; and (ii) the hardware characterization, which concerns the measure-
ment of the energy consumption per clock cycle at each voltage level (and the associated
maximum CPU frequency). Firstly, the approach for measuring each task and dispatcher
WCEC is presented, and, next, details regarding the estimation of energy consumption
are provided. Afterwards, the measurement scheme and the adopted equations are de-
scribed, which supply the necessary foundation for obtaining the desired values using a
hardware platform and an oscilloscope. Finally, the statistical methods adopted in this
activity are presented as well as the software tool implemented to automate the measuring
process.

5.1.1 Tasks and Dispatcher WCEC

In order to obtain the tasks and dispatcher WCEC, this work assumes that the designer
(or developer) adjusts the source codes to always incur the worst-case execution times
(WCET) during the measurement activity. More specifically, the expressions, which
guard the execution of iterative and conditional commands (as well as recursive functions),
are tuned to always impose the worst-case situations. As an example, Figure 5.1 depicts
an iterative and a conditional command adjusted to force the WCET. In Figure 5.1(a),
variable n is set to an upper bound value, and, in Figure 5.1(b), the guard expression
is adjusted to be always true as the execution of then block provides the worst-case
situation. Additionally, the designer may provide input data representing the worst-case
scenario, whether the code requires some data to generate the WCET.

After adjusting each task and dispatcher code (assumed to be implemented as func-
tions in C language), the designer places each individual function between two commands,

59

60 MEASUREMENT AND SPECIFICATION

for(i = 0; i<= n; i++) {

 ...

}

if((guard expression) | TRUE) {

 //takes 100ms

 ...

} else {

 //takes 20ms

 ...

}

a)

b)

Figure 5.1 Adjusting a task code to impose the WCET

which manipulate the hardware I/O port to indicate the code start and end times. For
instance, Figure 5.2 depicts an example of a pseudocode for measuring a task T1. This
mechanism allows the measurement of a task WCET directly on the hardware platform
using an oscilloscope. More specifically, the oscilloscope detects a pulse from the hard-
ware I/O port and provides the data regarding the pulse length, which actually represents
the code execution time.

while(TRUE) {

 IOPort = IOPort | 0x1;

 codeT1();

 IOPort = IOPort & ~0x1;

 for(i = 0;i < 300;i++); //delay

}

Figure 5.2 Adjusting a task function to measure the WCET

The presented approach is plausible, since this work is concerned with hard real-time
embedded systems with energy constraints, in which timing and energy predictability are
of utmost importance. In this case, the code must be predictable, hence, the designer
(or developer) is assumed to have sufficient knowledge of the code structures that may
affect each task WCET. Although the code adjustment seems a burdensome activity, the
approach can be automatized by software tools. An alternative is the adoption of code
analyzers for estimating the tasks WCET/WCEC [105]. Nevertheless, those analyzers
also have drawbacks [105] (e.g., WCET overestimation) and a comparison between the
adopted approach and the analyzers is beyond the scope of this thesis.

5.1 MEASUREMENT 61

5.1.2 Hardware Characterization

Hardware characterization contemplates the measurement of the energy consumption
per clock cycle at each voltage level of a DVS processor, since the duration of a task
execution is specified as execution cycles in the proposed software synthesis method.
Thus, multiplying a task WCEC by the energy consumption per clock cycle at a voltage
level (and the associated maximum CPU frequency), results in the worst-case energy
consumption of this task at the selected level.

The energy consumption per clock cycle is not fixed for any embedded software, but
software dependent. Previous assertion is based on the intrinsic characteristics of an
embedded software, which may adopt instructions that utilize different CPU internal
components (e.g., multipliers). In other words, the energy consumption varies from one
software to another due to the different usage of the CPU core. Considering Equation 3.4
presented in Chapter 3 (Section 3.2.2), the characteristics of the instructions adopted by
an embedded software directly affect the average switched capacitance per clock cycle
(A) [26], which may increase or decrease the energy consumption.

void characterization(void){

 unsigned int d, i;

 float a;

 i++;

 for(d = 0; d < 0x9FFFF;d++){

 a = 50.3433/2424.22242 * 0.343;

 }

 i--;

}

Figure 5.3 A code example for hardware characterization

Taking into account the previous issues, the hardware characterization step focuses
on obtaining a mean value of the energy consumption per clock cycle at each voltage
level (and the associated maximum CPU frequency) considering the characteristics of
the embedded software. More specifically, a function in C language is implemented using
the set of instructions common in the software application as well as the number of
times that each instruction occurs. The power consumption of this C function is then
measured at each voltage level and, next, divided by the respective CPU frequency, such
that the energy consumption per clock cycle is obtained. For instance, Figure 5.3 depicts
a code adopted to perform the characterization of a DVS processor, assuming the bulk
of the software computation is related with FOR-loops and division of decimal numbers.
Besides, the same approach as the one depicted in Figure 5.2 is adopted to measure the
power consumption in this step.

62 MEASUREMENT AND SPECIFICATION

Oscilloscope

Channel 1

Channel 2

CPU

GND

I/O Port

System under
evaluation

PC with AMALGHMA

Sense

ResistorSerial Communication

Figure 5.4 Measurement scheme

5.1.3 Scheme and Equations

Figure 5.4 shows the adopted measurement scheme, which is based on the technique
described in [106]. To measure a task WCEC, a PC is connected to an oscilloscope
(Agilent DSO03202A), which captures the task start and end times by monitoring an
I/O port of the target CPU. As demonstrated previously in Section 5.1.1, the task code
is adjusted to indicate the respective execution, which is recognized by an oscilloscope as
a pulse (see Figure 5.5). The data acquired by the oscilloscope are then transmitted to a
PC, in such a way that a software tool calculates the task WCEC as follows

WCET = (xend − xstart)× TU (5.1)
WCEC = WCET × f (5.2)

xstart and xend are, respectively, the pulse start and end points, TU is the adopted time
unit in the oscilloscope, and f is the CPU clock frequency selected during the measuring
process.

Regarding the measurement of power consumption, a small sense resistor (1 Ohm)
is attached to the CPU GND pin, such that, in the interval of the task execution, the
oscilloscope captures the CPU current draw (I) by measuring the average voltage drop
(Vsr) across the sense resistor. Since the supply voltage (Vcc) and the resistance of the
sense resistor (Rsr) are known, the power consumption (P) in a voltage/frequency level
can be calculated using the following equations:

I = Vsr/Rsr (5.3)

5.1 MEASUREMENT 63

xstart xend

Task Execution

Voltage Vsr

Figure 5.5 Oscilloscope detecting a task execution and the voltage drop across a sense resistor

P = Vcc × I (5.4)
As the CPU clock frequency (f) is also known, the energy consumption per clock

cycle (E) is obtained as follows:

E = P/f (5.5)
5.1.4 Statistical Methods

This work adopts a set of statistical techniques to reduce the impact of errors (e.g.,
noise) in the measuring process, which is somehow affected by: (i) the resistor error; and
(ii) the oscilloscope resolution. Considering the metrics of interest, execution time and
energy consumption, the impact of noises has influenced more the energy consumption
measurements, according to experiments conducted. Regarding execution times, the
noises are less perceptible, as a code behaviour does not vary (it was previously adjusted
to always generate the WCEC). Nevertheless, in both metrics, statical techniques are
applied to guarantee a proper treatment of the collected data. Besides, for the adopted
metrics, the desired statistic is the mean value.

In the proposed measurement activity, two statistical methods are available to the
designer, one based on bootstrap [107] and other based on parametric methods [108,
109]. More specifically, bootstrap may not assume previous knowledge of the population
distribution, whereas the parametric method assumes, in this work, a normally distributed
population and a relative precision given by the designer. Comparing both approaches,
bootstrap provides fast results, whilst parametric method provides flexibility in the sense
that the designer can specify some parameters regarding the population. These methods
are detailed below.

64 MEASUREMENT AND SPECIFICATION

Bootstrap Bootstrap is a resampling method, in the sense that obtains samples within
a previously measured sample. Since only one sample is performed on the real hardware,
bootstrap method generates rapid results. Details are presented as follows:

1. Initially, a random sample x = (x1, x2, ..., xn) with n measurements are obtained
from the DVS processor.

2. Next, B bootstrap samples (x∗1, x∗2, ..., x∗B) are generated. A bootstrap sample
x∗ = (x∗

1, x
∗
2, ..., x

∗
n), is obtained by randomly sampling n times, with replacement,

the original data contained in x. The star notation indicates that x∗ is a resampled
version of x. As an example, assuming n = 4, a typical bootstrap sample might be
x∗ = (x4, x2, x2, x3), in which x∗

1 = x4, x
∗
2 = x∗

3 = x2 and x∗
4 = x3. It is important

to state that each element in x has the same probability to be selected: 1/n.

3. For each bootstrap data set x∗b, b = 1, 2, ..., B, there is a bootstrap replication
θ̂∗(b) = s(x∗b), in which s is the statistic of interest, more specifically, the mean of
the bootstrap data set:

s(x∗b) = x∗b =
(
∑n

i=1 x
∗b
i)

n
(5.6)

4. Afterwards, the replications are ordered, such that θ̂∗(1) is the smallest replication

and θ̂∗(B) is the largest one. Considering a confidence degree of 1− α, in which α is

the significance level, the confidence interval is denoted by [θ̂∗(Bα/2),θ̂
∗
(B[1−α/2])]. For

a better understanding, assuming B = 1000 and a confidence degree of 95% or 0.95
(α = 0.05), the confidence interval is represented by [θ̂∗(25),θ̂

∗
(975)];

5. Finally, the midrange value is calculated, which represents the final estimated value:

mr =
θ̂∗(Bα/2) + θ̂∗(B[1−α/2])

2
(5.7)

The values for n and B are, respectively, 60 and 1000 in this work. Since these values are
considerably large and the adopted bootstrap method takes into account sample means,
central limit theorem [110] estimates the population mean.

Parametric Method Parametric method assumes a relative precision specified by the
designer as well as the collected data fit on the normal distribution. Since all the measure-
ments are directly performed on the DVS processor, this method is considerably slower
than bootstrap (despite the flexibility to indicate the desired precision). The parametric
method is detailed below:

1. Initially, a set of samples (or replications) are obtained from the DVS processor.
The amount of initial samples is denoted by B and each sample x = (x1, x2, ..., xn)
contains n measurements (or observations);

5.1 MEASUREMENT 65

2. For each sample xb, b = 1, 2, ..., B, the mean (xb) is calculated:

xb =
(
∑n

i=1 x
b
i)

n
(5.8)

3. Next, the mean of all samples (x) is obtained as well as the respective standard
deviation (s) and error (se):

x =
(
∑B

b=1 x
b)

B
(5.9)

s =

√

∑B
b=1(x

b − x)2

B − 1
(5.10)

se = t1−α/2,n−1 ×
s√
B

(5.11)
In previous equation, t1−α/2,n−1 is the critical value taken from student t distribution
for 1− α/2 and n− 1 degrees of freedom;

4. The relative precision is then calculated (rp). If the relative precision is equal to or
less than the precision specified by the designer (dp), the measuring process stops.
Otherwise, an additional number of samples is obtained (B′), and steps from 2 to
4 are repeated. It is important to state that, at step 3, previous samples are also
considered in the calculation. The equations are presented below:

rp =
se

x
(5.12)

B′ =

(

t1−α/2,n−1 × s

dp× x

)2

(5.13)
Although a normal distribution is assumed in this method for the adopted metrics,

in fact, this assumption is valid for any data set measured by the described method.
Previous assertion is grounded on: (i) the large values adopted for variables B and n (10
and 40, respectively); (ii) the distribution of sample means; and (iii) the central limit
theorem [110]. Besides, as this method provides the mean (x) of all sample means, x
estimates the population mean, according to the central limit theorem.

5.1.5 AMALGHMA Tool

It is important to highlight that AMALGHMA tool (Figure 5.6) -AdvancedMeasurement
Algorithms for Hardware Architectures - has been developed for automating the mea-
suring process. AMALGHMA [24] implements the described statistical methods, such
that the designer only needs to concern with the scheme (Figure 5.4) and the tasks’ code.
Besides, individuals not familiar with statistical techniques can take advantage of this
tool, since the details (e.g., equations) are hidden from non-specialized users. Indeed,
AMALGHMA tool is a contribution of this thesis. Besides, AMALGHMA provides the
following functionalities and features:

66 MEASUREMENT AND SPECIFICATION

Figure 5.6 AMALGHMA tool� Perform Calculation. In this functionality, AMALGHMA acquires a single mea-
surement in order to provide initial insights to the user about a metric of interest
(e.g., the energy consumption per clock cycle at a voltage/frequency level);� Perform Analysis. This functionality allows the execution of bootstrap or para-
metric method. Using the intuitive graphical interface of AMALGHMA, the user
may provide the desired number of samples (B) as well the respective amount of
measurements (n);� Graphical Interface. AMALGHMA allows the graphical visualization of the data
acquired by the oscilloscope as well as the execution of a measuring method, such
that the designer can supervise the measuring process.

AMALGHMA tool has been validated using a NXP LPC2106 processor [72], a 32-bit
microcontroller with ARM7 core [24, 104, 103]. Moreover, although AMALGHMA has

5.2 NON-FUNCTIONAL SPECIFICATION 67

been implemented for the proposed software synthesis method, the tool can be adopted in
any method or methodology, inasmuch as the scheme depicted in Figure 5.4 is provided.

5.2 NON-FUNCTIONAL SPECIFICATION

As described in Chapter 4, the proposed software synthesis method is responsible for
dealing with the stringent timing and energy constraints of an embedded software as
well as with the management of system resources utilized by it. Therefore, the proposed
method assumes the embedded software was implemented previously, more specifically,
as a set of concurrent tasks, which will have the respective constraints properly met after
the software synthesis process.

In this context, the specification activity plays an important role, since it provides all
information required for the realization of further activities, such as modeling, scheduling
and code generation. In the general sense, this activity is concerned with the specification
of system constraints and adopts a specification model that contemplates: (i) hard real-
time tasks with the corresponding constraints; (ii) the runtime support information; (iii)
the scheduling type; (iv) the information regarding the hardware platform; and (v) the
energy constraint. In the following sections, the specification model is detailed.

5.2.1 Hard Real-Time Tasks

This work assumes an embedded software implemented as a set of concurrent periodic
time-critical tasks, which perform a computation repeatedly, once in each fixed period of
time [6]. Assuming T is the set of all tasks in a system specification and ST the set of
task source codes, the definition of periodic task is presented as follows.

Definition 5.1 (Periodic Task). A periodic task τi ∈ T is defined by τi = (phi, ri, ci,
di,pi,codei), in which phi is the initial phase; ri is the release time; ci is the worst-case
execution cycles (WCEC) required for executing task τi; di is the deadline; pi is the
period; and codei ∈ ST is the task C code (behavioral description). Besides, phi, ri, ci,
di,pi ∈ N.

In previous definition, the timing constraints are denoted by some multiple of a specific
time unit, namely, task time unit (TTU). For instance, if one TTU corresponds to 100µs,
a task τi with a periodic execution of 3ms has a period of 30 TTU (pi = 30). Regarding
a task worst-case execution time (WCET), one TTU represents the smallest indivisible
granule, in the sense that a task cannot be preempted during the execution of one TTU.
In other words, a task can only be preempted between the occurrence of two TTUs.
Recalling that WCET = WCEC/f , in which f represents a CPU clock frequency (see
Chapter 3). As the reader should note, the selection of a TTU is a design decision, and it
is up to the designer to verify the best trade-off. For instance, a fine granularity implies
more possibilities to be analyzed during the scheduling activity (e.g., an increase of the
state space size), whereas a coarse granularity leads to less preemption points (which may
affect the possibility of finding a feasible schedule).

Furthermore, in many applications, there are tasks that are not periodic, but are
executed asynchronously as a response to internal or external events (e.g., a response

68 MEASUREMENT AND SPECIFICATION

to an operator request). Although the request times are not known beforehand, the
minimum interval between two consecutive requests can usually be obtained in advance.
These tasks are denominated sporadic tasks.

Definition 5.2 (Sporadic Task). A sporadic task τk ∈ T is defined by τk = (ck, dk, mink,
codek), in which ck is the worst-case execution cycles (WCEC) required for executing task
τk; dk is the deadline; mink is the minimum period between two activations of task τk;
and codek ∈ ST is the task C code (behavioral description);

To allow the scheduling of sporadic tasks, the proposed method translates these tasks
into equivalent periodic tasks using a small variation of the technique described in [111,
52, 53, 11] in order to consider the effects of DVS in the computation time. Since a
sporadic task is now executed periodically, the associated external or internal events
need to be buffered until the periodic task deals with the request. Assuming a sporadic
task τs =(cs, ds, mins), the respective periodic task τp = (php, rp, cp, dp, pp, codep) can be
obtained satisfying the following conditions:

1. php = 0;

2. cp = cs;

3. ds ≥ dp ≥ Cpmax
, in which Cpmax

= ⌈cp/fmax⌉ and fmax is the maximum operating
frequency available on the CPU;

4. Cpmax
≤ pp ≤ min(ds − dp + 1, mins);

5. rp = 0.

In the above technique, there is a range of possible values for dp and pp, and it is up to
designer to select the best trade-off for a given application. In [11], details are provided
about this technique and [53] depicts a thorough example.

Intertask Relations

The proposed software synthesis method consider two types of relations between tasks:
(i) precedence and (ii) exclusion relations.

Definition 5.3 (Precedence Relation). A task τi PRECEDES task τj , if τj can only start
executing after τi has finished.

Precedence relations may exist between tasks when a task requires information pro-
duced by other task.

Definition 5.4 (Exclusion Relation). A task τi EXCLUDES task τj , if no execution of
τj can start while task τi is executing. In other words, task τi can not be preempted by
task τj .

5.2 NON-FUNCTIONAL SPECIFICATION 69

In the proposed method, the exclusion relation is symmetric, more specifically, if τi
EXCLUDES task τj , then τj EXCLUDES task τi. Exclusion relations may occur between
tasks when concurrent access to shared resources must be avoided, such as access to data
and I/O devices.

There are situations that a task needs to be splited into smaller tasks in order to
separate the critical section from the rest of the task computation. In general, a critical
section is the task code responsible for accessing a shared resource and requires exclusion
relations with other tasks that utilize the same resource. Such an approach is not only
adopted to guarantee mutual exclusion to shared resources, but, also, to increase the
possibilities of finding a feasible schedule, since only the critical section will be executed
in a mutual exclusive way (not the whole task). Besides, the smaller tasks generated from
the split have precedence relations between them in order to ensure the proper execution
order.

For a better understanding, assume two tasks: A and B. Both have a critical section
and these sections access the same shared resource. Thus, A is divided into tasks A0,
A1, A2, and B into tasks B0, B1, B2, such that the critical section is isolated from
the rest of the code. For the sake of this example, the execution order of each subtask is
denoted by the number subscripted in the task name. Considering that A1 and B1 are the
critical sections, the relation A1 EXCLUDES B1 is defined. Additionally, for the proper
execution of both tasks A and B, the following relations are required: A0 PRECEDES
A1, A1 PRECEDES A2, B0 PRECEDES B1 and B1 PRECEDES B2. Considering the
specification of each subtask, the timing constraints are the same, except the WCEC.

5.2.2 Runtime Support

Overheads, such as context-switching and voltage/frequency tuning, take place during
system runtime and may affect the timing and energy constraints of a hard real-time
system. Indeed, if overheads are neglected, catastrophic issues may occur and even the
gains obtained with DVS may be significantly reduced [27].

The proposed method takes into account overheads by associating them with the
runtime support, since the dispatcher is the only responsible for adjusting the volt-
age/frequency level, managing context-switching and for starting each system task.

Definition 5.5 (Dispatcher - WCET). The dispatcher WCET is represented by variable
o and the respective energy consumption by variable oE .

It is important to state that the proposed method assumes the dispatcher execution
at a fixed voltage/frequency level, and it is up to the designer to select the appropriate
one.

Additionally, there are situations that the dispatcher only needs to perform a sim-
ple voltage/frequency switching, which is less costly than the dispatcher WCET. This
situation is required during the modeling and scheduling activity in order to improve
the estimation of the system energy consumption as well as to reduce the impact of the
dispatcher WCET in tasks’ executions.

70 MEASUREMENT AND SPECIFICATION

Definition 5.6 (Dispatcher - Voltage/Frequency Switching). When considering just a
voltage/frequency switching, the dispatcher execution is denoted by av and the associated
energy consumption by avE

5.2.3 Scheduling Type

Additionally, the designer needs to select the scheduling type in order to indicate whether
preemption is allowed or not. In a preemptive scheduling (P), a task can be preempted
by another task at any time, whereas a non-preemptive scheduling (NP) does not allow
a task be interrupted by other tasks. In other words, a new task can only run if there is
no task executing on the CPU.

5.2.4 Hardware Architecture

The proposed method considers a hardware architecture containing a DVS-capable pro-
cessor, which permits the concomitant tuning of the CPU supply voltage and clock fre-
quency for reducing energy consumption. Therefore, the designer must specify the avail-
able voltage/frequency levels on the DVS processor as well as the energy consumption
per clock cycle at each level. The model for specifying these parameters is presented as
follows.

Definition 5.7 (Voltage-Frequency Function - vff). Let Vcpu and Fcpu be two sets. Vcpu

is the discrete set of CPU supply voltage levels and Fcpu the respective discrete set of
CPU frequencies, such that |Vcpu| = |Fcpu|; and vff : Vcpu → Fcpu (voltage-frequency
function) an bijective function that maps each voltage level to one, and only one, processor
execution frequency, which is the maximum operating frequency in that voltage level.

Definition 5.8 (Voltage-Energy Function - vef). Let Vcpu be the discrete set of CPU
supply voltage levels. vef : Vcpu → R (voltage-energy function) is an function that maps
each voltage level to a real number, which represents the energy consumption per clock
cycle in that voltage level.

In the proposed method, voltage/frequency levels that do not provide energy saving
due to the leakage current are not considered in the specification.

5.2.5 Energy Constraint

The proposed software synthesis method is concerned with energy-constrained time-
critical systems, in which timing and energy constraints are of utmost importance. In
addition to timing constraints, the designer needs to specify the system energy constraint,
which defines the maximum energy consumption that a schedule cannot violate.

Definition 5.9 (System Energy Constraint - emax). The system energy constraint emax

is an upper bound in terms of energy consumption that a schedule must not surpass.

emax is adopted by the scheduling algorithm (Chapter 8) to search for a feasible
schedule, in which the energy consumption of all tasks executions (and the respective

5.3 SUMMARY 71

overheads) does not violate such an upper bound. Moreover, since the designer previously
knows the schedule period (Section 6.2) and, for instance, may have some insights about
the battery limitation in the final system, he can enforce a desired maximum energy
consumption related to the execution of all tasks in a feasible schedule.

5.3 SUMMARY

This chapter detailed the measurement and specification activities, which are, respec-
tively, responsible for capturing and describing the characteristics of a hard real-time
system. As presented, the measurement activity provides a set of steps to measure tasks’
WCEC and the hardware energy consumption as well as a software tool to automate the
process. Additionally, statistical techniques are taken into account in order to reduce the
impact of noises in the measuring process and, thus, to provide more accurate estimates
of the metrics of interest. Concerning the specification activity, several issues not usually
considered in similar works, for instance, overheads and intertask relations, are taken into
account in the proposed specification model, assuring that system constraints are met in
the final generated code.

CHAPTER 6

MODELING - BUILDING BLOCKS

Hard real-time systems (HRTS) have stringent timing constraints that must be met in
order to guarantee the correct system functioning. If these constraints are not met, catas-
trophic issues can occur, such as equipment damage or even loss of human lives. Consid-
ering energy-constrained HRTS, the challenges considerably increase in the development
of such systems, as timing and energy constraints are usually conflicting requirements.
In order to tackle those issues, model-driven methods seem a promising solution, since:
(i) they allow designers to reason about a system by focusing on details of interest (and
ignoring extraneous ones); and (ii) lay down a (mathematical) foundation for property
analysis/verification as well as correct-by-construction techniques (e.g., automatic gener-
ation of customized code satisfying timing constraints).

This chapter initiates the presentation of the modeling approach adopted for repre-
senting hard real-time systems with energy constraints, focusing on the adopted Petri
net extension and the proposed building block models. In short, from the non-functional
specification, the proposed software synthesis method adopts a bottom-up modeling ap-
proach, in which a set of composition rules are considered for combining basic building
block models. These basic blocks are modeled using a time Petri net extension and pro-
vide a basis for generating larger models that properly represent energy-constrained hard
real-time systems. The generated models are not only adopted for scheduling purposes,
but, also, for property analysis and verification. Firstly, this chapter presents the com-
putational model and comments about the scheduling period. Next, the building blocks
are detailed.

In this chapter, the bullet is replaced by an open diamond in the itemized lists to
avoid confusion with Petri net notation for post-sets and pre-sets (Section 3.5).

6.1 COMPUTATIONAL MODEL

The computational model syntax is given by a time Petri net extended with energy con-
sumption values and code annotations, and its semantics by a timed labeled transition
system. As presented in Chapter 3, Petri nets are a family of formalisms suitable for mod-
eling real-time systems, as concurrency, communication mechanism and synchronization
- usual features of such systems, are naturally represented. Since the adopted Petri net
extension is based on time Petri nets (TPN) and this formal model was presented in Chap-
ter 3 (Section 3.5.9), some common concepts are not detailed. However, all definitions
related to TPN is presented in order to provide a self-contained section.

A time Petri net (TPN) is a bipartite directed graph represented by a tuple NT =
(P, T, F,W,m0, I), in which P (set of places) and T (set of transitions) are non-empty
disjoint sets of nodes. The edges are represented by F , in which F ⊆ A = (P×T)∪(T×P).
W : A → N represents the weight of the edges, such that

73

74 MODELING - BUILDING BLOCKS

W (f) =

{

x ∈ N, if (f ∈ F)

0, if (f /∈ F)

A TPN marking mi is a function (mi : P → N), and m0 is the initial marking. I :
T → N×N represents the timing constraints, in which I(t) = [EFT (t), LFT (t)] ∀t ∈ T ,
EFT (t) ≤ LFT (t). EFT (t) is the Earliest Firing Time, and LFT (t) is the Latest Firing
Time.

Definition 6.1 (Time Petri Net with Energy Consumption and Code Annotations -
TPNE N E). An extended time Petri net with energy consumption values and code an-
notations is represented by N E = (NT , E , CS). N T is the underlying time Petri net and
E :T → R+ ∪ {0} is a function that assigns transitions to energy consumption values.
CS:T 9 ST is a partial function that assigns transitions to behavioral source code, in
which ST is a set of task source codes.

In the adopted computational model, time Petri net is extended with energy con-
sumption values and code annotations, in such a way that each transition t ∈ T has an
energy consumption value and may be associated with a task source code. Figure 6.1
depicts a TPNE model example.

p1

p2

t1
[1,3]

p3

t2
[1,5]

ε(t1)=3.0J

ε(t2)=2.0J

Figure 6.1 TPNE example

As usual in Petri nets, a set of enabled transitions, at marking mi, is denoted by:
ET (mi) = {t ∈ T | mi(pj) ≥ W (pj, t), ∀pj ∈ P}. The time elapsed, since the respec-
tive transition enabling, is represented by a clock vector c ∈ (N ∪ {#})|T |, in which #
represents the null value for disabled transitions. Besides, associated to each enabled
transition, there is a dynamic firing interval ID(t) = [DLB(t), DUB(t)], which is dy-
namically modified whenever the respective clock variable c(t) is incremented, and t
does not fire. DLB(t) is the Dynamic Lower Bound, and DUB(t) is the Dynamic Up-
per Bound. The dynamic firing interval is computed in the following way: DLB(t) =
max(0, EFT (t)− c(t)), DUB(t) = LFT (t)− c(t).

Definition 6.2 (States). Let NE be a time Petri net extended with energy consumption
values and code, M ⊆ P×N be the set of reachable markings (e.g., all possible markings)
of NE , C ⊆ (N ∪ {#})|T | be the set of clock vectors, and E ⊆ R+ ∪ {0} be the set of

6.1 COMPUTATIONAL MODEL 75

accumulated energy consumptions. The set of states S ofNE is given by S ⊆ (M×C×E),
that is, a state is defined by a marking, the respective clock vector, and the accumulated
energy consumption from the initial state up to this state.

In the adopted Petri net extension, a state (s ∈ S) is composed of a marking (m ∈ M),
the clocks of each transition (c ∈ C), and the accumulated energy consumption (e ∈ E)
from the initial state up to this state (s). Considering the TPNE model in Figure 6.2,
the initial state is s0 = (m0 = {(p1, 1),(p2, 0),(p3, 0)},c0 = [0, 0], e0 = 0).

Definition 6.3 (Firable Transitions). The set of firable transitions at state s ∈ S is de-
fined by: FT (s, emax) = {ti ∈ ET (m)| (e+E(ti) ≤ emax)∧(DLB(ti) ≤ min (DUB(tk))), ∀tk ∈
ET (m)}. emax is the system energy constraint (Chapter 5 - Section 5.2.5) and e is the
accumulated energy consumption from the initial state up to state s.

Note that, in addition to timing constraints, a transition is only firable if the respective
firing does not surpass the system energy constraint (emax). Assuming emax = 2.5J,
only t2 is firable in the net depicted in Figure 6.1. Moreover, a firable transition t
at state s can only fire in the firing domain, which is denoted by FDs(t) = [DLB(t),
min (DUB(tk))], ∀tk ∈ ET (m).

Definition 6.4 (Reachable States). Let NE be a TPNE and si = (mi, ci, ei) a reachable
state. sj =fire(si, (t, θ)) denotes that firing a transition t ∈ FT (si, emax) at time θ ∈
FDsi(t) from the state si, the reached state sj = (mj , cj, ej) is obtained from:

♦ ∀p ∈ P, mj(p) = mi(p)−W (p, t) +W (t, p), as usual in Petri nets;

♦ ej = ei + E(t);

♦ ∀tl /∈ ET (mj), cj(tl) = #;

♦ ∀tk ∈ ET (mj),

cj(tk) =

0, if(tk = t)

0, if(tk ∈ ET (mj)− ET (mi))

ci(tk) + θ, else

Differently from time Petri nets, TPNE considers the energy consumption due to the
firing of a transition for reaching a new state. For a better understanding, let us assume
the transition t2 firing at state s0, in which s0 = (m0 = {(p1, 1), (p2, 0)(p3, 0)}, c0 =
[0, 0], e0 = 0), θ=1 and emax = 2.5J. The new reached state is s1 = (m1 = {(p1, 0),(p2, 0),
(p3, 1)},c1 = [#,#], e1 = 2.0) (see Figure 6.2), such that: (i) m1(p1) = 1 − 1 + 0,
m1(p2) = 0− 0 + 0, m1(p3) = 0− 0 + 1; (ii) e1 = 0 + 2.5; and (iii) c1(t1) = c1(t2) = #.

Definition 6.5 (TLTS). A timed labeled transition system (TLTS) is a quadruple L= (S,
Σ, →, s0), where S is a finite set of discrete states, Σ is an alphabet of labels representing
actions, → ⊆ S × Σ× S is the transition relation, and s0 ∈ S is the initial state.

76 MODELING - BUILDING BLOCKS

p1

p2

t1
[1,3]

p3

t2
[1,5]

Figure 6.2 TPNE after firing t2

The TPNE semantics is defined by associating a TLTS LNE
= (S,Σ,→, s0), where (i)

S is the set of states of TPNE NE ; (ii) Σ ⊆ (T×N) is a set of labels (t, θ) corresponding to
the transition t firing at time θ in the firing interval FDs(t), ∀s ∈ S; (iii) → ⊆ S×Σ×S
is the state transition relation; and (iv) s0 is the initial state of NE . Considering the

firing of transition t2 in Figure 6.2, the TLTS is s0
(t1,1)−→ s1.

Definition 6.6 (Feasible Firing Schedule). Let LNE
be a timed labeled transition system

of a extended time Petri net NE , s0 its initial state, sn = (mn, cn, en) a final state, and
mn = MF is the desired final marking.

s0
(t0,θ0)−→ s1

(t1,θ1)−→ s2 → . . . → sn−1
(tk ,θn−1)−→ sn

is defined as a feasible firing schedule, such that si+1 = fire(si, (tk, θi)), i ≥ 0, tk ∈
FT (si, emax), and θi ∈ FDsi(tk).

The system modeling of the proposed methodology guarantees that the final marking
MF (see Section 6.3.9) is well-known since it is explicitly specified. Assuming that a

token in place p3 (Figure 6.2) represents the desired final marking, s0
(t1,1)−→ s1 is a feasible

firing schedule (or just feasible schedule).

6.2 SCHEDULING PERIOD

The proposed modeling approach has been conceived for automatic pre-runtime schedule
generation, where the schedule period (PS) corresponds to the least common multiple
(LCM) of all tasks’ periods. Within this period, several task instances (of the same
task) might be carried out, in which S(τi) =PS/pi gives the number of instances for each
task τi. For the nth instance of task τi (1 ≤ n ≤ S(τi)), the release time is defined by
rni = ri + pi × (n− 1) and the deadline is denoted by dni = di + pi × (n− 1).

For a better understanding, consider the following task set T = {τ1 = (0, 0, 100 ×
106, 3, 3), τ2 = (0, 2, 50× 106, 4, 4)}. As presented in Chapter 5, each task is represented
by a tuple τi = (phi, ri, ci, di, pi), in which phi is the initial phase; ri is the release time;

6.3 BASIC BUILDING BLOCKS 77

ci is the worst-case execution cycles (WCEC) required for executing task τi; di is the
deadline; and pi is the period. For this specification, the LCM is equal to 12, which
points out the existence of 7 task instances (S(τ1) = 4 and S(τ2) = 3). Thus, the timing
constraints of each instance need to be delineated and they are depicted in Table 6.1.

Table 6.1 Timing constraints for each task instance
τ 11 τ 21 τ 31 τ 41 τ 12 τ 22 τ 32

r 0 3 6 9 2 6 10
c 100× 106 100× 106 100× 106 100× 106 50× 106 50× 106 50× 106

d 3 6 9 12 4 8 12
p 12 12 12 12 12 12 12

6.3 BASIC BUILDING BLOCKS

The proposed method adopts a bottom-up approach, in which a set of composition rules
are considered for combining basic building block models. These building blocks represent
each aspect of a hard real-time system, more specifically, the tasks’ timing constraints
(e.g., release time), intertask relations, overheads, the energy consumption during a task
computation as well as the processor availability. Such approach generates a time Petri
net model from the system specification, so that tools can be adopted to automate the
modeling and scheduling activities.

In the proposed modeling process, the basic building blocks are: (i) Fork; (ii) Periodic
Task Arrival; (iii) Voltage Selection; (iv) Non-preemptive Task Structure; (v) Preemptive
Task Structure; (vi) Non-preemptive Task Structure with 2 Voltages; (vii) Preemptive
Task Structure with 2 Voltages; (viii) Deadline Checking; (ix) Task Instance Conclu-
sion; (x) Join; (xi) Preemptive Task Structure with Overheads; and (xii) Preemptive
Task Structure with 2 Voltages and Overheads. Without loss of generality, the building
blocks are combined via place merging and the places with dashed lines represent the
connections with other building blocks. Besides, since all basic building block models are
structurally conservative and structurally bounded, all generated models are also assured
to be bounded structurally conservative and structurally bounded (a proof is presented
in later sections).

Before presenting the building blocks, it is important to state that each place and
transition of each basic model have a suffix spec in the respective name in order to in-
dicate for which specification the block is being instantiated. This suffix is adopted to
avoid instances of building blocks of the same type with elements (e.g., transitions) hav-
ing equal names but with different constraints (e.g., computation time). This restriction
is of utmost importance during the generation of TPNE models using the proposed com-
position rules (Section 7.1). However, to avoid long names, the suffix is omitted in the
building blocks, except for the fork and join blocks. As follows, the building blocks are
presented.

78 MODELING - BUILDING BLOCKS

6.3.1 Fork Block

Supposing that the system has n tasks, the fork block (Figure 6.3) is responsible for
starting all tasks in the system. This block models the creation of n concurrent tasks
as well as it represents the initial marking. The fork block is modeled by a TPNE
Nf = (Pf , Tf , Ff ,Wf ,M0f , If , Ef , CSf), in which:

pstartspec

...

...

pst1

[0, 0]

tstartspec

psti

pstn

Figure 6.3 Fork block

♦ Pf = {pstartspec , pst1, · · · , psti , · · · , pstn}. These places model the following situations:

– pstartspec : waiting for the start of the system. spec is the specification name;

– psti : starting of the ith task, 1 ≤ i ≤ n.

♦ Tf = {tstartspec}. This transition models the following action:

tstartspec : starting of all tasks of the system. spec is the specification name.

♦ Pre and post-conditions of the transition are (flow relation Ff):

– •tstartspec = {pstartspec};
– tstartspec• = {pst1 , · · · , psti, · · · , pstn}.

♦ ∀(x, y) ∈ Ff ,Wf(x, y) = 1;

♦ M0f (px) = 0, ∀px ∈ P, px 6= pstartspec ;M0f (pstartspec) = 1;

♦ If(tstartspec) = [0, 0];

♦ Ef(tstartspec) = 0.0J;

♦ Representing CSf as a set, CSf = ∅.

The fork block is covered by n basic P-invariants, which are depicted as follows:

6.3 BASIC BUILDING BLOCKS 79

♦ I(f)(1) =
[

pstartspec pst1 ··· psti ··· pstn

st1 st1 · · · 0 · · · 0
]

T

...

♦ I(f)(i) =
[

pstartspec pst1 ··· psti ··· pstn

sti 0 · · · sti · · · 0
]

T

...

♦ I(f)(n) =
[

pstartspec pst1 ··· psti ··· pstn

stn 0 · · · 0 · · · stn
]

T

in which st1, · · · , sti · · · , stn ∈ N
∗. Using these basic invariants, a P-invariant covering

all places (I(f)) can be obtained:
I(f) = I(f)(1) + · · ·+ I(f)(i) + · · ·+ I(f)(n)

I(f) =
[

pstartspec pst1 ··· psti ··· pstn

st1 + · · ·+ sti + · · ·+ stn st1 · · · sti · · · stn
]

T

Since IT
(f) ×Af = 0, in which Af is the respective incidence matrix, and I(f) > 0, the

fork block is structurally conservative as well as structurally bounded.

6.3.2 Periodic Task Arrival Block

This block (Figure 6.4) models the periodic invocation for all task instances in the sched-
ule period (PS). A transition tphi

models the initial phase of the task first instance.
Similarly, transition tai models the periodic arrival (after the initial phase) for the re-
maining instances and transition tri represents a task instance release. The reader should
note the weight (αi = S(τi)−1) of the arc (tphi

, pwai), which models the invocation of all
remaining instances after the first task instance. The timing intervals of transitions tphi

and tai are the timing constraints depicted in the specification, in this case, phi (phase)
and pi (period). Considering transition tri , the timing interval is [ri, di − Cmin], where
ri is the release time, di is the deadline constraint, and Cmin is the computation time of
task τi at the highest voltage level (and the respective maximum CPU frequency).

pwai pwri

pwdipsi

tai

tphi

αi

[pi, pi]

[phi, phi]

tri
[ri, di - Cmin]

pwvsi

Figure 6.4 Arrival block

The building block periodic task arrival is a TPNNa = (Pa, Ta, Fa,Wa, M0a , Ia, Ea, CSa),
such that:

80 MODELING - BUILDING BLOCKS

♦ Pa = {psti, pwai, pwdi, pwri, pwvsi}. These places model the following conditions:

– psti : starting of task;

– pwai : waiting for the arrival of another task instance;

– pwdi : waiting for deadline missing;

– pwri: waiting for release time;

– pwri: waiting for voltage selection.

♦ Ta = {tai , tphi
, tri}. These transitions model the following actions:

– tai : arriving of a new task instance;

– tphi
: elapsing of the task initial phase; and

– tri : releasing of a new task instance for execution.

♦ Pre and post-conditions of the transitions are (flow relation Fa):

– •tai = {pwai};
– tai• = {pwri, pwdi};
– •tphi

= {psti};
– tphi

• = {pwai , pwri, pwdi};
– •tri = {pwri};
– tri• = {pwvsi}.

♦ ∀(x, y) ∈ Fa,Wa(x, y) =

{

αi ∈ N, if (x, y) = (tphi
, pwai)

1, otherwise.

♦ ∀p ∈ P,M0a(p) = 0

♦ Ia(tphi
) = [phi, phi]; Ia(tai) = [pi, pi]; and Ia(tri) = [ri, Cmin − di], such that Cmin =

⌈ci/fmax⌉ and fmax = max(vff(v)), ∀v ∈ Vcpu;

♦ ∀t ∈ Ta, Ea(t) = 0.0J;

♦ Representing CSa as a set, CSa = ∅.

The Periodic Task Arrival block is covered by 2 basic P-invariants, which are presented
as follows:

♦ I(a)(1) =
[

psti pwai
pwdi

pwri
pwvsi

(αi + 1)(wdi) wdi wdi 0 0
]

T ;

♦ I(a)(2) =
[

psti pwai
pwdi

pwri
pwvsi

(αi + 1)(wvsi) wvsi 0 wvsi wvsi
]

T .

6.3 BASIC BUILDING BLOCKS 81

in which wvsi, wdi ∈ N
∗. A P-invariant covering all places (I(a)) can be obtained in the

following way:
I(a) = I(a)(1) + I(a)(2)

I(a) =
[

psti pwai
pwdi

pwri
pwvsi

(αi + 1)(wvsi + wdi) wvsi + wdi wdi wvsi wvsi
]

T

Since IT
(a) ×Aa = 0, in which Aa is the respective incidence matrix, and I(a) > 0, the

periodic task arrival block is structurally conservative as well as structurally bounded.

6.3.3 Voltage Selection Block

For each available voltage level, this block (Figure 6.5) represents every possible voltage
selection for executing a task τi (Vtotali = VCPU ∪ Videali). More specifically, this block
includes not only the voltage levels (and the respective maximum frequencies) available
on the CPU (VCPU), but also other levels that can be simulated (Videali).

(c)

pwvsi

...

...

pvi1

pvim

[0, 0]
tvi1

[0, 0]
tvij

[0, 0]
tvim

pvij

Figure 6.5 Voltage selection block

The voltage selection block is modeled by a TPNNv = (Pv, Tv, Fv,Wv,M0v , Iv, Ev, CSv),
such that:

♦ Pv = {pwvsi, pvi1 , · · · , pvij , · · · , pvim}. These places model the following situations:

– pwvsi : waiting for voltage selection;

– pvij : voltage level vj selected, such that 1 ≤ j ≤ m and m = |Vtotali |.

♦ Tv = {tvi1 , · · · , tvij , · · · , tvim}. These transitions model the following action:

tvij : selection of voltage level vj , such that 1 ≤ j ≤ m and m = |Vtotali |.

♦ Pre and post-conditions of the transitions are (flow relation Fv):

– ∀tvij ∈ Tf , •tvij = {pwvsi};

82 MODELING - BUILDING BLOCKS

– tvi1• = {pvi1}; · · · ; tvij • = {pvij }; · · · ; tvim• = {pvim}.

♦ ∀(x, y) ∈ Fv,Wv(x, y) = 1;

♦ ∀p ∈ Pv,M0v(p) = 0;

♦ ∀t ∈ Tv, Iv(t) = [0, 0];

♦ ∀t ∈ Tv, Ev(t) = 0.0J;

♦ Representing CSv as a set, CSv = ∅.

The voltage selection block is covered by one basic P-invariant:

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvsi wvsi · · · wvsi · · · wvsi

]

T

in which wvsi ∈ N
∗. As I(v) covers all places (I(v) > 0), and IT

(v) × Av = 0 (Av is

the incidence matrix), the voltage selection block is structurally conservative as well as
structurally bounded.

6.3.4 Non-Preemptive Task Structure Block

Considering a non-preemptive scheduling method, the processor is just released after
the entire computation is finished. This block models (Figure 6.6) a non-preemptive
task computation adopting a specific voltage. In this block, processor granting and
task computation are represented by transition tgij and tcij , respectively. Only after the
entire task computation, the processor is released by transition tcij . Assuming a voltage

vj ∈ Vcpu and the respective maximum frequency fj = vff(vj), task computation time
(Cij) can be obtained by Cij = ⌈ci/fj⌉, where ci is the task (τi) WCEC. Figure 6.6 shows
that time interval of computation transition tcij has bounds equal to the task computation

time at a specific voltage ([Cij , Cij]). The timing intervals for transition tvsij , tgij and

tfvij are equal to [0,0]. Furthermore, computation transitions have energy consumption
values greater than zero.

[Cij, Cij]

pwcij pwfij pfvi

tgij tcij tfvij

pproc

[0, 0] [0, 0]

pvij pwgij

tvsij
[0, 0]

Figure 6.6 Non-preemptive task structure block

Formally, the building block non-preemptive task structure is a TPN Nnp = (Pnp, Tnp,
Fnp, Wnp, M0np

, Inp, Enp, CSnp), such that:

6.3 BASIC BUILDING BLOCKS 83

♦ Pnp = {pvij , pwgij
, pwcij

, pwfij
, pfvi , pproc}. These places model the following condi-

tions:

– pvij : voltage level vj selected;

– pwgij
: waiting for processor granting;

– pwcij
: waiting for task computation;

– pwfij
: waiting for task instance conclusion;

– pfvi : conclusion of a task instance;

– pproc: processor.

♦ Tnp = {tvij , tgij , tcij , tfvij }. These transitions model the following actions:

– tvsij : starting task execution at voltage vj ;

– tgij : processor granting;

– tcij : executing task;

– tfvij : finalizing task execution at voltage vj.

♦ Pre and post-conditions of the transitions are (flow relation Fnp):

– •tvij = {pvij }; tvij • = {pwgij
};

– •tgij = {pwgij
, pproc}; tgij• = {pwcij

};
– •tcij = {pwcij

}; tcij• = {pfwij
, pproc};

– •tfvij = {pwfij
}; tfvij • = {pfvi}.

♦ ∀(x, y) ∈ Fnp,Wnp(x, y) = 1;

♦ M0np
(px) = 0, ∀px ∈ Pnp, px 6= pproc; and M0np

(pproc) = 1;

♦ Inp(tx) = [0, 0], ∀tx ∈ Tnp, tx 6= tcij ; and Inp(tcij) = [Cij , Cij];

♦ Enp(tx) = 0.0J, ∀tx ∈ Tnp, tx 6= {tcij}; and Enp(tcij) = vef(vj) × ci (vef is the

voltage-energy function. See Chapter 5 - Section 5.2.4);

♦ CSnp(tcij) = codei, in which codei ∈ ST (ST is the set of task source codes. See

Chapter 5 - Section 5.2.1).

The non-preemptive task structure block is covered by 2 basic P-invariants:

♦ I(np)(1) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

0 0 proc 0 0 proc
]

T ;

♦ I(np)(2) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

wgij wgij wgij wgij wgij 0
]

T .

84 MODELING - BUILDING BLOCKS

where wgij , proc ∈ N
∗. A P-invariant covering all places is presented below:

I(np) = I(np)(1) + I(np)(2)

I(np) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

wgij wgij wgij + proc wgij wgij proc
]

T

As IT
(np) × Anp = 0, in which Anp is the respective incidence matrix, and I(np) >

0, the non-preemptive task structure block is structurally conservative and structurally
bounded.

6.3.5 Preemptive Task Structure Block

pvij
pwgij pwcij pwfij pfvi

tvsij tgij tcij tfvij

Cij Cij

[0, 0] [1, 1] [0, 0][0, 0]

pproc

Figure 6.7 Preemptive task structure block

In this particular scheduling method (Figure 6.7), tasks are implicitly split into sub-
tasks, in which the computation time of each subtask is exactly equal to one task time
unit (TTU). This method allows running other conflicting tasks, in this case, meaning
that one task may preempt another task. This is modeled by the time interval of compu-
tation transitions ([1,1]), and the entire computation is modeled through the arc weights.
Considering Cij the task computation time at a specific voltage, Cij tokens are stored in
place pwgij

, and the same amount of tokens in place pwfij
is needed for firing transition

tfvij . In the same way as the non-preemptive task structure block, processor granting
and task computation are represented by transition tgij and tcij , respectively. However,
the processor is released by transition tcij just after the execution of one task time unit
related to the computation time.

The preemptive task structure block is a TPN Np = (Pp, Tp, Fp, Wp, M0p , Ip, Ep,
CSp) such that:

♦ Pp = {pvij , pwgij
, pwcij

, pwfij
, pfij , pproc}. These places model the following condi-

tions:

– pvij : voltage level vj selected;

– pwgi: waiting for processor granting;

– pwci: waiting for task computation;

– pwfi: waiting for task instance conclusion;

– pfvi : conclusion of a task instance;

– pproc: processor.

6.3 BASIC BUILDING BLOCKS 85

♦ Tp = {tvij , tgij , tcij , tfvij }. These transitions model the following actions:

– tvsij : starting task execution at voltage vj ;

– tgij : processor granting;

– tcij : executing one TTU; and

– tfvij : finalizing task execution at voltage vj.

♦ Pre and post-conditions of the transitions are (flow relation Fp):

– •tvsij = {pvij }; tvsij • = {pwgij
};

– •tgij = {pwgi, pproc}; tgij • = {pwcij
};

– •tcij = {pwci}; tcij • = {pwfi, pproc};
– •tfvij = {pwfij

}; tfvij • = {pfvi}.

♦ ∀(x, y) ∈ Fp,Wp(x, y) =

{

Cij if (x, y) = (tcij , pwfij
) ∨ (x, y) = (tvsij , pwgij

)

1 otherwise

♦ M0p(px) = 0, ∀px ∈ Pp, px 6= {pproc}; and M0p(pproc) = 1;

♦ Ip(tx) = [0, 0], ∀tx ∈ Tp, tx 6= {tcij }; and Ip(tcij) = [1, 1];

♦ Ep(tx) = 0.0J, ∀tx ∈ Tp, tx 6= {tcij }; and Ep(tcij) = (vef(vj) × ci)/Cij . vef is the
voltage-energy function. See Chapter 5 - Section 5.2.4;

♦ CSp(tcij) = codei, in which codei ∈ ST .

The preemptive task structure block is covered by 2 basic P-invariants, which are
described as follows:

♦ I(p)(1) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

0 0 proc 0 0 proc
]

T ;

♦ I(p)(2) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

(Cij)wgij wgij wgij wgij (Cij)wgij 0
]

T .

in which proc, wgij ∈ N
∗. Using these basic invariants, a P-invariant covering all places

(I(p)) can be obtained in the following way:
I(p) = I(p)(1) + I(p)(2)

I(p) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

(Cij)wgij wgij wgij + proc wgij (Cij)wgij proc
]

T

Since I(p) > 0 and IT
(p) × Ap = 0 (Ap is the incidence matrix), the preemptive task

structure block is structurally conservative as well as structurally bounded.

86 MODELING - BUILDING BLOCKS

[C1ij, C1ij]

pwc1ij

tg1ij tc1ij

pproc

[0, 0] [C2ij, C2ij]

pwgij pwcij pwfij pfvi

tfv1ij
tcij tfvij

[0, 0] [0, 0]

pvij pwg1ij

tvsij
[0, 0]

Figure 6.8 Non-preemptive task structure block with 2 voltages

6.3.6 Non-Preemptive and Preemptive Task Structure with 2 Voltages Blocks

If the CPU provides a small number of discrete voltage levels (and the respective maxi-
mum frequencies) and an ideal voltage is not available (videal /∈ Vcpu ∧ videal ∈ Videali), the
two immediate neighbor voltages (videalL ,videalH ∈ Vcpu) to the ideal one can be adopted
for reducing energy consumption [12]. For a better understanding, a task may be divided
in two parts. The first part is executed at the immediate higher voltage in relation to
the ideal one (videalH = min{v ∈ Vcpu|videal < v}), and the second part is executed at the
immediate lower voltage (videalL = max{v ∈ Vcpu|v < videal}). When the ideal voltage is
smaller than any available voltage level, the smallest CPU voltage level is adopted. How-
ever, when the ideal voltage is higher than any available voltage level, the task instance
cannot be scheduled.

The proposed modeling approach allows the modeling of a task instance executing at
two different voltage levels (and the respective maximum CPU frequencies) considering
non-preemptive (Figure 6.8) and preemptive (Figure 6.9) executions. Assume that fideal
is the maximum operating frequency related to the ideal voltage videal. C1ij

= c1/fidealH
represents the computation time of the first part of the task executing at videalH , and
C2ij

= c2/fidealL represents the computation time of the second part of the task executing

at videalL , such that: (i) ci = c1 + c2; and (ii) ci/fideal = C1ij
+ C2ij

. Without loss of
generality, these block resemble the task structure blocks presented previously and the
formal definitions are presented as follows.

The building block non-preemptive task structure with 2 voltages is a TPN Nnp2v =
(Pnp2v, Tnp2v, Fnp2v, Wnp2v, M0np2v

, Inp2v, Enp2v, CSnp2v), such that:

♦ Pnp2v = {pvij , pwg1ij
, pwc1ij

, pwgij
, pwcij

, pwfij
, pfvi , pproc}. These places model the

following conditions:

– pvsij : voltage level vj selected;

– pwg1ij
: waiting for the processor granting considering the execution of the first

part;

– pwc1ij
: waiting for task computation considering the execution of the first part;

– pwgij
: waiting for the processor granting considering the execution of the sec-

ond part. Indeed, this a virtual situation, since the processor was already

6.3 BASIC BUILDING BLOCKS 87

granted. Besides, this place has an additional purpose when modeling over-
heads that may occur during system execution. Section 6.3.10 provides the
details;

– pwcij
: waiting for task computation considering the execution of the second

part;

– pwfij
: waiting for task instance conclusion;

– pfvi : conclusion of a task instance;

– pproc: processor.

♦ Tnp2v = {tvij , tg1ij , tc1ij , tfv1ij , tcij , tfvij }. These transitions model the following ac-
tions:

– tvsij : starting task execution at voltage vj ;

– tg1ij : processor granting;

– tc1ij : executing task first part;

– tfv1ij : finalizing first part execution at voltage videalH ;

– tcij : executing task second part ;

– tfvij : finalizing second part execution at voltage videalL .

♦ Pre and post-conditions of the transitions are (flow relation Fnp2v):

– •tvij = {pvij }; tvij • = {pwg1ij
}

– •tg1ij = {pwg1ij
, pproc}; tg1ij • = {pwc1ij

};
– •tc1ij = {pwc1ij

}; tc1ij • = {pwgij
};

– •tfv1ij = {pwgij
}; tfv1ij • = {pwcij

};
– •tcij = {pwcij

}; tc1ij • = {pwfij ,pproc
};

– •tfvij = {pwfij
}; tfvij • = {pfvi}.

♦ ∀(x, y) ∈ Fnp2v,Wnp2v(x, y) = 1;

♦ M0np2v
(px) = 0, ∀px ∈ Pnp2v, px 6= pproc; and M0np2v

(pproc) = 1;

♦ Inp2v(tx) = [0, 0], ∀tx ∈ Tnp2v, tx /∈ {tc1ij , tcij };
Inp2v(tc1ij) = [C1ij

, C1ij
];

and Inp2v(tcij) = [C2ij
, C2ij

];

♦ Enp2v(tx) = 0.0J, ∀tx ∈ Tnp2v, tx /∈ {tc1ij , tcij}; Enp2v(tc1ij) = (vef(videalH)× c1)/C1ij
;

and Enp2v(tcij) = (vef(videalL) × c2)/C2ij
. vef is the voltage-energy function. See

Chapter 5 - Section 5.2.4;

♦ CSnp2v(tc1ij) = CSnp2v(tcij) = codei, in which codei ∈ ST .

88 MODELING - BUILDING BLOCKS

Additionally, the non-preemptive task structure block with 2 voltages is covered by 2
basic P-invariants, which are depicted as follows:

♦ I(np2v)(1) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi pproc

0 0 proc proc proc 0 0 proc
]

T ;

♦ I(np2v)(2) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi pproc

wg1ij wg1ij wg1ij wg1ij wg1ij wg1ij wg1ij 0
]

T .

in which proc, wg1ij ∈ N
∗. A P-invariant covering all places (I(f)) is presented as follows:

I(np2v) = I(np2v)(1) + I(np2v)(2)

I(np2v) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi

wg1ij wg1ij wg1ij + proc wg1ij + proc wg1ij + proc wg1ij wg1ij
pproc

proc
]

T

As I(np2v) > 0 and IT
(np2v) × Anp2v = 0 (Anp2v is the incidence matrix), N(np2v) is

structurally conservative as well as structurally bounded.

pvij pwg1ij pwc1ij pwfv1ij pfvi

tvsij tg1ij tc1ij
tfv1ij

C1ij

[0, 0] [1, 1] [0, 0][0, 0]

pwgij pwcij

tgij tcij

pproc

[0, 0] [1, 1]

tfvij
[0, 0]

pwfijC1ij C2ij C2ij

Figure 6.9 Preemptive Task structure with 2 voltages block

The building block preemptive task structure with 2 voltages is a TPN Np2v = (Pp2v,
Tp2v, Fp2v, Wp2v, M0p2v , Ip2v, Ep2v, CSp2v), such that:

♦ Pp2v = {pvij , pwg1ij
, pwc1ij

, pwfv1ij
, pwgij

, pwcij
, pwfij

, pfvi , pproc}. These places model
the following conditions:

– pvij : voltage level vj selected;

– pwg1ij
: waiting for the processor granting considering the execution of the first

part;

– pwc1ij
: waiting for task computation considering the execution of the first part;

– pwfv1ij
: waiting for the conclusion of the first part;

– pwgij
: waiting for the processor granting considering the execution of the sec-

ond part;

– pwcij
: waiting for task computation considering the execution of the second

part;

6.3 BASIC BUILDING BLOCKS 89

– pwfij
: waiting for task instance conclusion;

– pfvi : task instance conclusion;

– pproc: processor.

♦ Tp2v = {tvsij , tg1ij , tc1ij , tfv1ij , tgij , tcij , tfvij }. These transitions model the following
actions:

– tvsij : starting task execution at voltage vj ;

– tg1ij : processor granting;

– tc1ij : executing the task first part;

– tfv1ij : finalizing the first part execution at voltage videalH ;

– tgij : processor granting;

– tcij : executing the task second part;

– tfvij : finalizing the second part execution at voltage videalL .

♦ Pre and post-conditions of the transitions are (flow relation Fp2v):

– •tvsij = {pvij }; tvij = {pwg1ij
};

– •tg1ij = {pwg1ij
, pproc}; tg1ij • = {pwc1ij

};
– •tc1ij = {pwc1ij

}; tc1ij • = {pwfv1ij
, pproc};

– •tfv1ij = {pwfv1ij
}; tfv1ij • = {pwgij

};
– •tgij = {pwgij

, pproc}; tgij• = {pwc1ij
};

– •tcij = {pwcij
}; tc1ij • = {pwfij ,pproc

};
– •tfvij = {pwfij

}; tfvij • = {pfvi}.

♦ ∀(x, y) ∈ Fp2v,Wp2v(x, y) =

C1ij
if (x, y) = (tvsij , pwg1ij

) ∨ (x, y) = (pwfv1ij
, tfv1ij)

C2ij
if (x, y) = (tfv1ij , pwgij

) ∨ (x, y) = (pwfij
, tfvij)

1 otherwise

♦ M0p2v(px) = 0, ∀px ∈ P, px 6= pproc; and M0p2v (pproc) = 1;

♦ Ip2v(tx) = [0, 0], ∀tx ∈ Tp2v, tx /∈ {tc1ij , tcij}; and Ip2v(tc1ij) = Ip2v(tcij) = [1, 1];

♦ Ep2v(tx) = 0.0J, ∀tx ∈ Tp2v, tx /∈ {tc1ij , tcij}; Ep2v(tc1ij) = (vef(videalH) × c1)/C1ij
;

and Ep2v(tcij) = (vef(videalL) × c2)/C2ij
. vef is the voltage-energy function. See

Chapter 5 - Section 5.2.4;

♦ CSp2v(tc1ij) = CSp2v(tcij) = codei, in which codei ∈ ST .

The preemptive task structure block with 2 voltages is covered by 2 basic P-invariants:

90 MODELING - BUILDING BLOCKS

♦ I(p2v)(1) =
[

pvij
pwg1ij

pwc1ij
pwf1ij

pwgij
pwcij

pwfij
pfvi pproc

0 0 proc 0 0 proc 0 0 proc
]

T ;

♦ I(p2v)(2) =

[

pvij
pwg1ij

pwc1ij

(
C1ij

C2ij

gcf(C1ij
,C2ij

)
)wg1ij (

C2ij

gcf(C1ij
,C2ij

)
)wg1ij (

C2ij

gcf(C1ij
,C2ij

)
)wg1ij

pwf1ij
pwgij

pwcij
pwfij

(
C2ij

gcf(C1ij
,C2ij

)
)wg1ij (

C1ij

gcf(C1ij
,C2ij

)
)wg1ij (

C1ij

gcf(C1ij
,C2ij

)
)wg1ij (

C1ij

gcf(C1ij
,C2ij

)
)wg1ij

pfvi pproc

(
C1ij

C2ij

gcf(C1ij
,C2ij

)
)wg1ij 0

]

T .

where wg1ij , proc ∈ N
∗. In the previous basic P-invariants, gcf is a function that com-

putes the greatest common factor of two integer numbers. A P-invariant covering all
places is presented below:

I(p2v) = I(p2v)(1) + gcf(C1ij
, C2ij

)× I(p2v)(2)

I(p2v) =
[

pvij
pwg1ij

pwc1ij
pwf1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij (C2ij

)wg1ij + proc (C2ij
)wg1ij

pwgij
pwcij

pwfij
pfvi pproc

(C1ij
)wg1ij (C1ij

)wg1ij + proc (C1ij
)wg1ij (C1ij

C2ij
)wg1ij proc

]

T

The preemptive task structure block with 2 voltages is structurally conservative and
structurally bounded, because I(p2v) > 0 and IT

(p2v) × Ap2v = 0, in which Ap2v is the
respective incidence matrix.

6.3.7 Deadline Checking Block

Deadline missing (Figure 6.10) is an undesirable situation when considering hard real-
time systems. Therefore, the scheduling algorithm (Chapter 8) should not reach deadline
missing states, since those states do not allow finding out feasible schedules. The proposed
block checks the occurrence of a deadline missing through transition tdi , which is enabled
at the moment a task instance is ready for execution. For each place pwcij

and pwc1ij
in each task structure block related to task τi, a transition tpcij is connected as post-

condition. Whenever a task instance is executing and a deadline missing occurs (e.g.,
tdi fires), the token is removed from place pwcij

(or pwc1ij
) such that it is not possible to

fire any other computation transition (e.g., tcij) in the model. In other words, the model
enters in a deadlock state, since the processor is not released. In this case, during schedule
generation, the proposed scheduling algorithm backtracks and selects other voltage level
(and the respective maximum frequency) or task for execution. Besides, the timing
interval for each transition tpcij is [0,0], and for transition tdi is the deadline constraint di
([di,di]) of task τi.

6.3 BASIC BUILDING BLOCKS 91

tdi
[di,di]

tpcij
[0, 0]

pdmi

pwdi

pwcij

pwpcij

 pwc1ij

pwpc1ij

...

tpc1ij
[0, 0]

... ...

Figure 6.10 Deadline checking block

The building block deadline-checking is a TPN Nd = (Pd, Td, Fd,Wd,M0d , Id, Ed, CSd),
such that:

♦ Pd = {pwdi, pdmi
} ∪ Pwpc ∪ Pwpc1 ∪ Pwplc ∪ Pwplc1 ∪ Pwc ∪ Pwc1 ∪ Pwlc ∪ Pwlc1. These

places model the following situations:

– pwdi : waiting for deadline missing;

– pdmi
: deadline missed;

– pwpcij
∈ Pwpc: waiting for computation removing (or waiting for computation

removing of task second part when considering task structures with 2 voltages),
such that |Pwpc| = |Pwc| ∧ ∃pwcih

∈ Pwc, h = j;

– pwpc1ij
∈ Pwpc1: waiting for computation removing of task first part when con-

sidering task structures with 2 voltages, such that |Pwpc1| = |Pwc1| ∧ ∃pwc1ih
∈

Pwc1, h = j ∧ ∃pwpcih
∈ Pwpc, h = j;

– pwplcij
∈ Pwplc: waiting for computation removing of the last time unit (or

waiting for computation removing of the last time unit of task second part)
when considering overheads, such that |Pwplc| = |Pwlc| ∧ ∃pwlcih

∈ Pwlc, h = j;

– pwplc1ij
∈ Pwplc1: waiting for computation removing of the last time unit of

task first part when considering overheads and 2 voltages, such that |Pwplc1| =
|Pwlc1| ∧ ∃pwlc1ih

∈ Pwlc1, h = j ∧ ∃pwplcih
∈ Pwplc, h = j;

– pwcij
∈ Pwc: waiting for task computation (or waiting for the computation of

task second part when taking into account task structures with 2 voltages),
such that |Pwc| = |Vtotali |, (Vtotali = VCPU∪ Videali). Vtotali is the set of available
voltage levels for executing a task τi;

– pwc1ij
∈ Pwc1: waiting for the computation of task first part when taking into

account task structures with 2 voltages, such that |Pwc1| = |Videali |. Videali is
the set of ideal voltage levels for executing a task τi;

92 MODELING - BUILDING BLOCKS

– pwlcij
∈ Pwlc: waiting for the computation of the last time unit (or waiting for

the computation of the last time unit of task second part) when taking into
account overheads, such that |Pwlc| = |Vtotali |, (Vtotali = VCPU ∪ Videali). Vtotali

is the set of available voltage levels for executing a task τi;

– pwlc1ij
∈ Pwlc1: waiting for the computation of the last time unit of task first

part when taking into account overheads and 2 voltages, such that |Pwlc1| =
|Videali |. Videali is the set of ideal voltage levels for executing a task τi.

♦ Td = {tdi} ∪ Tpc ∪ Tpc1 ∪ Tplc ∪ Tplc1. These transitions model the following actions:

– tdi : deadline missing;

– tpcij ∈ Tpc: computation removing (or computation removing of task second

part when considering task structures with 2 voltages), such that |Tpc| = |Pwc|;
– tpc1ij ∈ Tpc1: computation removing of task first part when considering task

structures with 2 voltages, such that |Tpc1| = |Pwc1|;
– tplcij ∈ Tplc: computation removing of the last time unit (or computation

removing of the last time unit of task second part) when considering overheads,
such that |Tplc| = |Pwlc|;

– tplc1ij ∈ Tplc1: computation removing of the last time unit of task first part

when considering overheads and 2 voltages, such that |Tplc1| = |Pwlc1|.

♦ Pre and post-conditions of the transitions are (flow relation Fd):

– •tdi = {pwdi}; tdi• = {pwpcij
|pwpcij

∈ (Pwpc ∪ Pwpc1 ∪ Pwplc ∪ Pwplc1)};
– ∀tpcij ∈ Tpc, •tpcij = {pwcih

∈ Pwc|h = j} ∪ {pwpcih
∈ Pwpc|h = j};tpcij• =

{pdmi
};

– ∀tpc1ij ∈ Tpc1, •tpc1ij = {pwc1ih
∈ Pwc1|h = j} ∪ {pwpc1ih

∈ Pwpc1|h = j};tpcij• =

{pdmi
};

– ∀tplcij ∈ Tplc, •tplcij = {pwlcih
∈ Pwlc|h = j} ∪ {pwplcih

∈ Pwplc|h = j}; tplcij • =

{pdmi
};

– ∀tplc1ij ∈ Tplc1, •tplc1ij = {pwlc1ih
∈ Pwlc1|h = j} ∪ {pwplc1ih

∈ Pwplc1|h =

j};tplcij • = {pdmi
}.

♦ ∀(x, y) ∈ Fd,Wd(x, y) = 1;

♦ ∀p ∈ Pd,M0d(p) = 0;

♦ Id(tx) = [0, 0], ∀tx ∈ Td, tx 6= tdi ; and Id(tdi) = [di, di];

♦ ∀t ∈ Td, Ed(t) = 0.0J;

♦ Representing CSd as a set, CSd = ∅.

6.3 BASIC BUILDING BLOCKS 93

The deadline checking block is covered by 2x basic P-invariants, such that x = |Pwc|+
|Pwc1|+ |Pwlc|+ |Pwlc1|. These P-invariants represents every possible coverage of waiting
for task computation places (e.g., pwcij

) . Additionally, when a place pwcij
∈ Pwc ∩ •tpcij

(or pwc1ij
∈ Pwc1 ∩ •tpc1ij) is covered by a basic P-invariant, a place pwpcij

∈ Pwpc ∩ •tpcij
(or pwpc1ij

∈ Pwpc1∩•tpc1ij) do not belong to the support of the same basic P-invariant.
The converse is also true and the same situation occurs when considering preemptive task
structure blocks with overheads.

As an example, assume x = 2 (|Pwc| = 1 and |Pwc1|=1). The respective basic P-
invariants are presented as follows (22 = 4):

♦ I(d)(0) =
[

pwdi
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

2d0 d0 0 d0 0 d0

]

T ;

♦ I(d)(1j) =
[

pwdi
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

d1j 0 d1j d1j 0 d1j

]

T ;

♦ I(d)(j) =
[

pwdi
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

dj dj 0 0 dj dj

]

T ;

♦ I(d)(1j ,j) =
[

pwdi
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

0 0 d1j ,j 0 d1j ,j d1j ,j

]

T .

in which d0, d1j , dj, d1j ,j ∈ N
∗. For the previous example, a P-invariant covering all places

can be obtained as follows:
I(d) = I(d)(0) + I(d)(1j) + I(j) + I(1j ,j)

I(d) =
[

pwdi
pwpc1ij

pwc1ij
pwpcij

pwcij

2d0 + d1j + dj d0 + dj d1j + d1j ,j d0 + d1j dj + d1j ,j

pdmi

d0 + d1j + dj + d1j ,j
]

T

Let us consider another example taking into account x = 3 (|Pwc| = 2 and |Pwc1|=1),
the basic P-invariants are presented as follows (2x = 23 = 8):

♦ I(d)(0) =
[

pwdi
pwpci1

pwci1
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

3d0 d0 0 d0 0 d0 0 d0

]

T ;

♦ I(d)(1) =
[

pwdi
pwpci1

pwci1
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

2d1 0 d1 d1 0 d1 0 d1

]

T ;

♦ I(d)(1j) =
[

pwdi
pwpci1

pwci1
pwpc1ij

pwc1i1
pwpcij

pwcij
pdmi

2d1j d1j 0 0 d1j d1j 0 d1j

]

T ;

94 MODELING - BUILDING BLOCKS

♦ I(d)(1,1j) =
[

pwdi
pwpci1

pwci1
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

d1,1j 0 d1,1j 0 d1,1j d1,1j 0 d1,1j

]

T .

♦ I(d)(j) =
[

pwdi
pwpci1

pwci1
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

2dj dj 0 dj 0 0 dj dj

]

T ;

♦ I(d)(1,j) =
[

pwdi
pwpci1

pwci1
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

d1,j 0 d1,j d1,j 0 0 d1,j d1,j

]

T ;

♦ I(d)(11 ,j) =
[

pwdi
pwpci1

pwci1
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

d1j ,j d1j ,j 0 0 d1j ,j 0 d1j ,j d1j ,j

]

T ;

♦ I(d)(1,1j ,j) =
[

pwdi
pwpci1

pwci1
pwpc1ij

pwc1ij
pwpcij

pwcij
pdmi

0 0 d1,1j ,j 0 d1,1j ,j 0 d1,1j ,j d1,1j ,j

]

T .

in which d0, d1, d1j , d1,1j , dj, d1,j, d1j ,j, d1,1j ,j ∈ N
∗. For this example, a P-invariant covering

all places is presented as follows:
I(d) = I(d)(0) + I(d)(1) + I(d)(1j) + I(d)(1,1j) + I(d)(j) + I(d)(1,j) + I(d)(11,j) + I(d)(1,1j ,j)

I(d) =
[

pwdi

3d0 + 2d1 + 2d1j + d1,1j + 2dj + d1,j + d1j ,j
pwpci1

pwci1

d0 + d1j + dj + d1j ,j d1 + d1,1j + d1,j + d1,1j ,j
pwpc1ij

pwc1ij

d0 + d1 + dj + d1,j d1j + d1,1j + d1j ,j + d1,1j ,j
pwpcij

pwcij

d0 + d1 + d1j + d1,1j dj + d1,j + d1j ,j + d1,1j ,j
pdmi

d0 + d1 + d1j + d1,1j + dj + d1,j + d1j ,j + d1,1j ,j
]

T

Thus, for any x value, the basic (2x) P-invariants are presented below, assuming that
m = |Vtotali | (i.e., the number of voltage levels available for task τi):

♦ I(d)(0) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
··· pwpcim−1

pwcim−1
pwpcim

pwcim

(x)d0 d0 0 d0 0 · · · d0 0 d0 0

pdmi

d0
]

T ;

♦ I(d)(1) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
··· pwpcim−1

pwcim−1
pwpcim

pwcim

(x− 1)d1 0 d1 d1 0 · · · d1 0 d1 0

pdmi

d1
]

T ;

6.3 BASIC BUILDING BLOCKS 95

♦ I(d)(2) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
··· pwpcim−1

pwcim−1
pwpcim

pwcim

(x− 1)d2 d2 0 0 d2 · · · d2 0 d2 0

pdmi

d2
]

T ;

...

♦ I(d)(m−1) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
··· pwpcim−1

pwcim−1

(x− 1)dm−1 dm−1 0 dm−1 0 · · · 0 dm−1

pwpcim
pwcim

pdmi

dm−1 0 dm−1

]

T ;

...

♦ I(d)(1,...,m−1) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
···

(x−m− 1)d1,...,m−1 0 d1,...,m−1 0 d1,...,m−1 · · ·
pwpcim−1

pwcim−1
pwpcim

pwcim
pdmi

0 d1,...,m−1 d1,...,m−1 0 d1,...,m−1

]

T ;

♦ I(d)(m) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
··· pwpcim−1

pwcim−1
pwpcim

(x− 1)dm dm 0 dm 0 · · · dm 0 0

pwcim
pdmi

dm dm
]

T ;

♦ I(d)(1,m) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
··· pwpcim−1

pwcim−1
pwpcim

(x− 2)d1,m 0 d1,m d1,m 0 · · · d1,m 0 0

pwcim
pdmi

d1,m d1,m
]

T ;

...

♦ I(d)(m−1,m) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
··· pwpcim−1

pwcim−1

(x− 2)dm−1,m dm−1,m 0 dm−1,m 0 · · · 0 dm−1,m

pwpcim
pwcim

pdmi

0 dm−1,m dm−1,m

]

T ;

...

♦ I(d)(2,...,m) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
··· pwpcim−1

pwcim−1
pwpcim

d2,...,m d2,...,m 0 0 d2,...,m · · · 0 d2,...,m 0

pwcim
pdmi

d2,...,m d2,...,m
]

T ;

♦ I(d)(1,...,m) =
[

pwdi
pwpci1

pwci1
pwpci2

pwci2
··· pwpcim−1

pwcim−1
pwpcim

0 0 d1,...,m 0 d1,...,m · · · 0 d1,...,m 0

96 MODELING - BUILDING BLOCKS

pwcim
pdmi

d1,...,m d1,...,m
]

T .

in which d0, d1, · · · , d2,...,m, d1,...,m ∈ N
∗.

For the sake of legibility, the P-invariant covering x places will be represented by the
following vector (note that pwcim is replaced by pwcij

)
I(d) = I(d)(0) + I(d)(1) + · · ·+ I(d)(1,...,j)

I(d) =
[

pwdi
pwpci1

pwci1
··· pwpcij

(x)d0 + ...+ d2,...,j d0 + ...+ d2,...,j d1 + · · ·+ d1,...,j · · · d0 + · · ·+ d1,j−1

pwcij
pdmi

dj + ... + d1,...,j d0 + · · ·+ d1,...,j

]

T

As I(d) covers all places (I(d) > 0), and IT
(d) × Ad = 0 (Ad is the incidence matrix),

the deadline checking block is structurally conservative as well as structurally bounded.

6.3.8 Task Instance Conclusion Block

This block (Figure 6.11) models the conclusion of a task instance. Transition tfi represents
this situation, such that, when it fires (e.g., task instance conclusion), a token is removed
from place pwdi (waiting for deadline missing).

pwdi

pfvi

tfi
[0, 0]

pfi

Figure 6.11 Task instance conclusion block

The task instance conclusion block is modeled by a TPN Ic = (Pc, Tc, Fc,Wc,M0c , Ic, Ec, CSc),
such that:

♦ Pc = {pfvi , pfi, pwdi}. These places model the following situations:

– pfvi : task instance conclusion;

– pfi : end of task execution;

– pwdi : waiting for deadline missing.

♦ Tc = {tfi}. This transition models the following action:

– tfi : concluding task instance execution.

♦ Pre and post-conditions of the transition are (flow relation Fc):

– •tfi = {pfvi , pwdi}; tfi• = {pfi}.

6.3 BASIC BUILDING BLOCKS 97

♦ ∀(x, y) ∈ Fc,Wc(x, y) = 1;

♦ ∀p ∈ Pc,M0c(p) = 0;

♦ Ic(tfi) = [0, 0];

♦ Ec(tfi) = 0.0J;

♦ Representing CSc as a set, CSc = ∅.

The task instance conclusion block is covered by 2 basic P-invariants, which are de-
picted below:

♦ I(c)(1) =
[

pfi pfvi pwdi

fvi fvi 0
]

T ;

♦ I(c)(2) =
[

pfi pfvi pwdi

wdi 0 wdi
]

T .

such thatfvi, wdi ∈ N
∗. Using these basic invariants, a P-invariant covering all places

(I(c)) can be obtained:
I(c) = I(c)(1) + I(c)(2)

I(c) =
[

pfi pfvi pwdi

fvi + wdi fvi wdi
]

T

As I(c) > 0 and IT
(c) × Ac = 0 (Ac is the incidence matrix), N(c) is structurally

conservative as well as structurally bounded.

6.3.9 Join Block

Usually, concurrent activities need to synchronize with each other. The join block exe-
cution states that all tasks in the system have concluded their execution in the schedule
period. Figure 6.12 depicts the join block.

This block is modeled by a TPN Nj = (Pj, Tj , Fj,Wj,M0j , Ij, Ej, CSj), in which:

♦ Pj = {pendspec} ∪ Pfinal. These places model the following situations:

– pendspec : end of the system. A marking in this place (M(pendspec) = 1) represents
the desired final marking (MF). Additionally, spec is the specification name;

– pfi ∈ Pfinal: end of the ith task, such that 1 ≤ i ≤ n (|Pf | = |T | = n). Note
that T is the set of all tasks in the system.

♦ Tj = {tendspec}. This transition model the following action:

– tendspec : end of tasks in the system. spec is the specification name.

♦ Pre and post-conditions of the transition are (flow relation Fj):

– •tendspec = {pfi|pfi ∈ Pf};

98 MODELING - BUILDING BLOCKS

pf1

pfi

pfn

tendspec
[0, 0]

... S(T1)

S(Ti)

S(Tn)

pendspec

...

Figure 6.12 Join block

– tendspec• = {pendspec}.

♦ Wj(pfi , tendspec) = S(τi), ∀pfi ∈ Pj, pfi 6= pendspec ; Wj(tendspec , pendspec) = 1;

♦ M0j (p) = 0, ∀p ∈ Pj ;

♦ Ij(tendspec) = [0, 0];

♦ ∀t ∈ Tj , Ej(t) = 0.0J;

♦ Representing CSj as a set, CSj = ∅.

In previous definition, S(τi) defines the number of instances for a task τi in a schedule
period (see Section 6.2).

The join block is covered by n basic P-invariants (n = |T |). See below:

♦ I(j)(1) =
[

pf1 ··· pfi ··· pfn pendspec

f1 · · · 0 · · · 0 f1
]

T ;
...

♦ I(j)(i) =
[

pf1 ··· pfi ··· pfn pendspec

0 · · · fi · · · 0 fi
]

T ;
...

♦ I(j)(n) =
[

pf1 ··· pfi ··· pfn pendspec

0 · · · 0 · · · fn fn
]

T .

in which f1, · · · , fi, · · ·fn ∈ N
∗ A P-invariant covering all places can be obtained in the

following way:
I(j) = I(j)(1) + · · ·+ I(j)(i) + · · ·+ I(j)(n)

6.3 BASIC BUILDING BLOCKS 99

I(j) =
[

pf1 ··· pfi ··· pfn pendspec

f1 · · · fi · · · fn f1 + · · ·+ fi + · · ·+ fn
]

T

As IT
(j) × Aj = 0, in which Aj is the respective incidence matrix, and I(j) > 0, the

join block is structurally conservative and structurally bounded.

6.3.10 Blocks for Modeling Overheads

Whenever designing hard real-time systems, overheads have to be taken into account for
guaranteeing system predictability. Assuming a DVS-capable system, additional time and
energy costs may occur and have to be considered in someway before runtime, such as: (i)
preemptions; (ii) dispatcher or runtime scheduler overhead; and (iii) voltage/frequency
switching. Several scheduling approaches disregard such overheads or include in tasks’
computation time. Nevertheless, neglecting overheads may lead to timing or energy
constraint violations, and the second alternative may be too pessimistic, since the total
overhead is not known before schedule generation.

Pvij Cij

tvsij tgij1

tgij0

...

...

[0,0] [0,0]

[0,0]

tgiji
[0,0]

tgijk
[0,0]

toij
[a,a]

Pproc_idle

PprocTi
...

...

PprocT1

Pwoij

Cij
- 1

tcij
[1,1]

tlij
[1,1]
tlcij

[0,0]
tfvij

[0,0]

Pwgij

Pwcij

PprocTk

Pacij

Pwlcij Pfvij Pfvi

Figure 6.13 Preemptive task structure with overhead block

This work explicitly models overheads and considers them during schedule generation,
hence providing a more realistic system behavior. The first model (Figure 6.13) is a
preemptive task structure with overhead block considering a single voltage. Assuming k
the number of tasks, places pprocTx, 1 ≤ x ≤ k, represent flags that indicate the current
task Tx executing on processor pproc. In a similar manner, place pproc idle represents
the idle state of processor pproc. Overheads are represented by transition toij , where its
timing interval is equal to [a, a], and an associated energy consumption value is assigned.
In this work, the transition overhead contemplates: (i) dispatcher overhead, including
context-switching; (ii) voltage/frequency related to the dispatcher execution; and (iii)
voltage/frequency switching for executing the respective task. The proposed approach
assumes the dispatcher execution at a fixed supply voltage, which is up to the designer
to select the appropriate one. Transitions tgijx, 0 ≤ x ≤ k, i 6= j, represent the processor
granting and takes into account overheads that may occur in task start-up, context-saving
or context-restoring. The overhead is not considered when the same task is executing
without interruption, which is represented by transition tgiji. As in preemptive task

100 MODELING - BUILDING BLOCKS

structure block without overhead, the computation time is modeled using arc weights.
Transition tcij represents the execution of one task time unit related to the computation
time (Cij) and notifies the execution of task τi through place pprocTi. After the last
computation time unit (tlcij), there is no need for indicating the task execution, and,
next, the processor goes to idle state (pproc idle). The processor pproc is not shown for
the sake of readability. However, each processor-granting transition has an incoming arc
from pproc, and each computation transition has an outgoing arc to pproc.

C2ij tgij1

tgij0

...

...

[0,0]

[0,0]

tgiji
[0,0]

tgijk
[0,0]

toij
[a,a]

Pproc_idle

PprocTi

...

...

PprocT1

Pwoij

C2ij
- 1

tcij
[1,1]

tlij
[1,1]
tlcij

[1,1]
tfvij

[0,0]

Pwgij Pwcij

PprocTk

Pacij

Pwlcij Pfvij

PprocTi_2volt

Pwovij

tovij
[av,av]

Pvij C1ij

tvsij
tg1ij1

tg1ij0

...

...

[0,0]
[0,0]

[0,0]

tg1iji
[0,0]

tg1ijk
[0,0]

to1ij
[a,a]

Pproc_idle

PprocTi

...

...

PprocT1

Pwo1ij

C1ij
- 1

tc1ij
[1,1]

tl1ij
[1,1]
tlc1ij

[0,0]
tfv1ij

[0,0]

Pwg1ij

Pwc1ij

PprocTk

Pac1ij

Pwlc1ij Pfv1ij Pfvi

tgovij
[0,0]

Figure 6.14 Preemptive task structure with overhead and 2 voltages block

Figure 6.14 shows a preemptive task structure considering two voltage levels. As
stated previously, this situation can occur when an ideal voltage is unavailable (videal /∈
Vcpu ∧ videal ∈ Videali) and the two immediate neighbor voltages can be adopted (videalL ,
videalH ∈ Vcpu). Without loss of generality, this block may be interpreted as two concate-
nated instances of the previous block, but with a slight difference. The difference lies on
the overhead after executing the first part of the task at the immediate higher voltage
(videalH). Since only a voltage/frequency switching is required to execute the second part
of the task (videalL), an additional overhead transition (tovij) and place (pprocT i 2volt)
are considered. The timing interval [av, av] and the energy consumption value associated
with this overhead transition are smaller than those assigned to transition toij due to the
absence of unnecessary services. Additionally, as a new place (pprocT i 2volt) is added,
other tasks have to consider, in each preemptive structure block, a new processor-granting
transition that has an incoming arc from pprocT i 2volt. Again, pproc is not shown due to
readability issues.

When considering non-preemptable tasks, the blocks presented in Figure 6.6 and
Figure 6.8 may be adopted with only two modifications. The dispatcher overhead is
associated with processor-granting transition (tgij) and, considering the block with two

voltages, the additional overhead related to voltage/frequency switching is assigned to
transition tfv1ij .

6.3 BASIC BUILDING BLOCKS 101

In the next paragraphs, the proposed overhead blocks are described algebraically.
The preemptive task structure block with overhead is a TPN No = (PoTo, Fo,Wo,M0o ,

Io, Eo, CSo), such that:

♦ Po = {pvij , pwgij
} ∪ PprocT ∪ PprocTideali

∪ {pwoij
, pwcij

, pacij , pwlcij
, pfvij ,pfvi

, pproc, pproc idle}. These places model the following situations:

– pvij : voltage level vj selected;

– pwgij
: waiting for processor granting;

– pprocTh ∈ PprocT : task τh executing, such that 1 ≤ h ≤ k and k = |PprocT | =
|T |. Note that T is the set of all tasks in the system;

– pprocTh 2volt ∈ PprocTideali
: task τh executing at a second voltage level, such that

(|PprocTideali
| = |{τh ∈ T − {τi}|Videalh 6= ∅}|) ∧ h 6= i ∧ ∃pprocTl ∈ PprocT , l = h.

In other words, PprocTideali
is the set of places indicating a task, different from

τi, executing at a second voltage level;

– pwoij
: waiting for overhead occurrence;

– pwcij
: waiting for task computation;

– pacij : accumulating computation time units;

– pwlcij
: waiting for the last computation time unit;

– pfvij : waiting for the conclusion of task execution at voltage vj ;

– pfvi : conclusion of a task instance;

– pproc: processor;

– pproc idle: processor in idle state .

♦ To = {tvsij }∪Tgij
∪Tgidealij

∪{tgij0 , toij , tcij , tlij , tlcij , tfvij }. These transitions model

the following actions:

– tvsij : starting task execution at voltage vj ;

– tgijh
∈ Tgij

: processor granting, such that 1 ≤ h ≤ k and k = |Tgij
| = |T |.

Note that T is the set of all tasks in the system;

– tg2vijh
∈ Tgidealij

: processor granting taking into account other task executing

at a second voltage level, such that |Tgidealij
| = |PprocTideali

| = |{τh ∈ T −
{τi}|Videalh 6= ∅}| ∧ ∃tgijl ∈ Tgij

, l = h 6= i. In other words, Tgidealij
is the set of

transitions indicating a processor granting that will incur overheads due to a
different task (than τi) executing at a second voltage level;

– tgij0
: processor granting taking into account the CPU in the idle state;

– toij : overhead occurrence;

– tcij : executing one TTU;

102 MODELING - BUILDING BLOCKS

– tlij : preparing last computation time unit;

– tlcij : executing last TTU;

– tfvij : finalizing task execution at voltage vj.

♦ Pre and post-conditions of the transitions are (flow relation Fo):

– •tvsij = {pvij }; tvsij • = {pwgij
};

– ∀tgijh ∈ Tgij
, h 6= i, •tgijh = {pwgij

, pproc} ∪ {pprocTl ∈ PprocT |l = h}; tgijh
• =

{pwoij
};

– ∃tgijh ∈ Tgij
, h = i, •tgijh = {pwgij

, pproc} ∪ {pprocTl ∈ PprocT |l = h = i}; tgijh • =

{pwcij
}

– ∀tg2vijh ∈ Tgidealij
, •tg2vijh = {pwgij

, pproc} ∪ {pprocTl 2volt ∈ PprocTideali
|l = h 6=

i}; tg2vijh • = {pwoij
};

– •tgij0 = {pwgij
, pproc, pproc idle}; tgij0

• = {pwoij
};

– •toij = {pwoij
}; toij • = {pwcij

};
– •tcij = {pwcij

}; tcij• = {pproc, pprocTi , pacij };
– •tlij = {pwcij

, pacij}; tlij • = {pwlcij
};

– •tlcij = {pwlcij
}; tlcij• = {pproc, pfvij };

– •tfvij = {pfvij }; tfvij • = {pproc idle, pfvi};

♦ ∀(x, y) ∈ Fo,Wo(x, y) =

Cij if (x, y) = (tvsij , pwgij
)

Cij − 1 if (x, y) = (pacij , tlij)

1 otherwise

♦ M0o(px) = 0, ∀px ∈ Po, px /∈ {pproc, pproch idle};M0o(pproc) = M0o(pproch idle) = 1;

♦ Io(tx) = [0, 0], ∀tx ∈ To, tx /∈ {toij , tcij , tlcij };Io(toij) = [o, o]. o is the dispatcher

WCET (see Chapter 5 Section 5.2.2); Io(tcij) = Io(tlcij) = [1, 1];

♦ Eo(tx) = 0.0J, ∀tx ∈ Tp, tx /∈ {toij , tcij , tlcij }; Eo(toij) = oE . oE is the dispatcher

energy consumption (Section 5.2.2); and Eo(tcij) = Eo(tlcij) = (vef(vj) × ci)/Cij .
vef is the voltage-energy function. See Chapter 5 - Section 5.2.4;

♦ CSo(tcij) = CSo(tlcij) = codei, in which codei ∈ ST .

The preemptive task structure with overhead block is covered by 3 basic P-invariants,
which are described as follows:

6.3 BASIC BUILDING BLOCKS 103

♦ I(o)(1) =
[

pvij
pwgij

pwoij
pwcij

pacij
pwlcij

pfvij
pfvi pprocT1

··· pprocTi
···

0 0 proc proc 0 proc 0 0 0 · · · 0 · · ·

pprocTk
pproc pproc idle

0 proc 0
]

T ;

♦ I(o)(2) =
[

pvij
pwgij

pwoij
pwcij

pacij
pwlcij

pfvij
pfvi

0 0 proc idle proc idle 0 proc idle proc idle 0

pprocT1
··· pprocTi

··· pprocTk
pproc pproc idle

proc idle · · · proc idle · · · proc idle 0 proc idle
]

T ;

♦ I(o)(3) =
[

pvij
pwgij

pwoij
pwcij

pacij
pwlcij

pfvij
pfvi

(Cij)wgij wgij wgij wgij wgij (Cij)wgij (Cij)wgij (Cij)wgij

pprocT1
··· pprocTi

··· pprocTk
pproc pproc idle

0 · · · 0 · · · 0 0 0
]

T .

in which proc, proc idle, wgij ∈ N
∗. Using these basic invariants, a P-invariant covering

all places (I(o)) can be obtained in the following way:

I(o) = I(o)(1) + I(o)(2) + I(o)(3)

I(o) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij proc+ proc idle + wgij proc+ proc idle+ wgij wgij

pwlcij
pfvij

pfvi pprocT1
···

proc+ proc idle + (Cij)wgij proc idle+ (Cij)wgij (Cij)wgij proc idle · · ·
pprocTi

··· pprocTk
pproc pproc idle

proc idle · · · proc idle proc proc idle
]

T

Since I(o) > 0 and IT
(o) × Ao = 0 (Ao is the incidence matrix), the preemptive task

structure block with overhead is structurally conservative as well as structurally bounded.

The preemptive task structure block with overhead and 2 voltages is a TPN No2v =
(Po2v, To2v, Fo2v,Wo2v,M0o2v , Io2v, Eo2v, CSo2v), such that:

♦ Po2v = {pvij , pwg1ij
} ∪ PprocT ∪ PprocTideali

∪ {pwo1ij
, pwc1ij

, pac1ij ,pwlc1ij
, pfv1ij , pproc,

pproc idle, pwgij
,pwovij

, pprocTi 2volt,pwoij
, pwcij

, pacij , pwlcij
, pfvij ,pfvi}. These places model

the following:

– pvij : voltage level vj selected;

– pwg1ij
: waiting for processor granting considering the execution of the first

part;

– pprocTh ∈ PprocT : task τh executing, such that 1 ≤ h ≤ k and k = |PprocT | =
|T |. Note that T is the set of all tasks in the system;

104 MODELING - BUILDING BLOCKS

– pprocTh 2volt ∈ PprocTideali
: task τh executing at a second voltage level, such that

(|PprocTideali
| =|{τh ∈ T − {τi}|Videalh 6= ∅}|) ∧ (∃pprocTl ∈ PprocT , l = h 6= i). In

other words, PprocTideali
is the set of places indicating a task, different from τi,

executing at a second voltage level;

– pwo1ij
: waiting for overhead occurrence considering the execution of the first

part;

– pwc1ij
: waiting for task computation considering the execution of the first part;

– pac1ij : accumulating computation time units considering the execution of the
first part;

– pwlc1ij
: waiting for the last computation time unit considering the execution

of the first part;

– pfv1ij : waiting for the conclusion of the first part ;

– pproc: processor;

– pproc idle: processor in idle state;

– pwgij
: waiting for processor granting considering the execution of the second

part;

– pwovij
: waiting for the voltage transition for executing the second part;

– pprocTi 2volt: task τi executing at a second voltage level;

– pwoij
: waiting for overhead occurrence considering the execution of the second

part;

– pwcij
: waiting for task computation considering the execution of the second

part;

– pacij : accumulating computation time units considering the execution of the
second part;

– pwlcij
: waiting for the last computation time unit considering the execution of

the second part;

– pfvij : waiting for the conclusion of task execution at voltage vj ;

– pfvi : conclusion of a task instance.

♦ To2v = {tvs1ij }∪Tg1ij
∪Tg1idealij

∪{tg1ij0 , to1ij , tc1ij , tl1ij , tlc1ij , tfv1ij }∪Tgij
∪Tgidealij

∪
{tgij0 , tgoij , tovij , toij , tcij , tlij , tlcij , tfvij }. These transitions model the following ac-

tions:

– tvsij : starting task execution at voltage vj ;

– tg1ijh
∈ Tg1ij

: processor granting considering the execution of the first part,

such that 1 ≤ h ≤ k and k = |Tg1ij
| = |T |. Note that T is the set of all tasks

in the system;

6.3 BASIC BUILDING BLOCKS 105

– tg2v1ijh
∈ Tg1idealij

: processor granting considering the execution of the first

part and taking into account other task execution at a second voltage level,
such that |Tg1idealij

| = |PprocTideali
| = |{τh ∈ T − {τi}|Videalh 6= ∅}|) ∧ h 6=

i ∧ (∃tgijl ∈ Tg1ij
, l = h). In other words, Tg1idealij

is the set of transitions

indicating a processor granting that will incur overheads due to a different
task (than τi) executing at a second voltage level;

– tg1ij0
: processor granting considering the execution of the first part taking into

account the CPU in the idle state;

– to1ij : overhead occurrence considering the execution of the first part;

– tc1ij : executing one TTU considering the execution of the first part;

– tl1ij : preparing last computation time unit considering the execution of the
first part;

– tlc1ij : executing last TTU considering the execution of the first part;

– tfv1ij : finalizing the first part execution at voltage videalH ;

– tgijh
∈ Tgij

: processor granting considering the execution of the second part,

such that 1 ≤ h ≤ k and k = |Tgij
| = |T |. Note that T is the set of all tasks

in the system;

– tg2vijh
∈ Tgidealij

: processor granting taking into account other task execution

at a second voltage level, such that (|Tgidealij
| = |PprocTideali

| = |{τh ∈ T −
{τi}|Videalh 6= ∅}|) ∧ h 6= i ∧ (∃tgijl ∈ Tgij

, l = h). In other words, Tgidealij
is

the set of transitions indicating a processor granting that will incur overheads
due to a different task (than τi) executing at a second voltage level. Note that
Tgidealij

is related to the execution of the second part of the task;

– tgij0
: processor granting considering the execution of the second part and

taking into account the CPU in the idle state;

– tgoij0
: processor granting considering the execution of the second part and

taking into account the voltage switching overhead;

– toij : overhead occurrence considering the execution of the second part;

– tovij : voltage switching overhead considering the execution of the second part;

– tcij : executing one TTU considering the execution of the second part;

– tlij : preparing last computation time unit considering the execution of the
second part;

– tlcij : executing last TTU considering the execution of the second part;

– tfvij : finalizing the second part execution at voltage videalL .

♦ Pre and post-conditions of the transitions are (flow relation Fo2v):

106 MODELING - BUILDING BLOCKS

– •tvsij = {pvij }; tvsij • = {pwg1ij
};

– ∀tg1ijh ∈ Tg1ij
, h 6= i, •tg1ijh = {pwg1ij

, pproc}∪{pprocTl ∈ PprocT |l = h}; tg1ijh
• =

{pwo1ij
};

– ∃tg1ijh ∈ Tg1ij
, h = i, •tgijh = {pwg1ij

, pproc} ∪ {pprocTl ∈ PprocT |l = h =

i}; tg1ijh • = {pwc1ij
};

– ∀tg2v1ijh ∈ Tg1idealij
, •tg2v1ijh = {pwgij

, pproc} ∪ {pprocTl 2volt ∈ PprocTideali
|l =

h}; tg2v1ijh • = {pwo1ij
};

– •tg1ij0 = {pwg1ij
, pproc, pproc idle}; tg1ij0

• = {pwo1ij
};

– •to1ij = {pwo1ij
}; to1ij • = {pwc1ij

};
– •tc1ij = {pwc1ij

}; tc1ij • = {pproc, pprocTi , pac1ij };
– •tl1ij = {pwc1ij

, pac1ij }; tl1ij • = {pwlc1ij
};

– •tlc1ij = {pwlc1ij
}; tlc1ij • = {pproc, pfv1ij };

– •tfv1ij = {pfv1ij }; tfv1ij • = {pprocTh 2volt, pwgij
};

– ∀tgijh ∈ Tgij
, h 6= i, •tgijh = {pwgij

, pproc} ∪ {pprocTl ∈ PprocT |l = h}; tgijh
• =

{pwoij
};

– ∃tgijh ∈ Tgij
, h = i, •tgijh = {pwgij

, pproc} ∪ {pprocTl ∈ PprocT |l = h = i}; tgijh • =

{pwcij
};

– ∀tg2vijh ∈ Tgidealij
, •tg2vijh = {pwgij

, pproc}∪{pprocTl 2volt ∈ PprocTideali
|l = h}; tg2vijh • =

{pwoij
};

– •tgij0 = {pwgij
, pproc, pproc idle}; tgij0

• = {pwoij
};

– •tgoij = {pwgij
, pproc, pprocTi 2volt}; tgij0

• = {pwovij
};

– •toij = {pwoij
}; toij • = {pwcij

};
– •tovij = {pwovij

}; toij • = {pwcij
};

– •tcij = {pwcij
}; tcij• = {pproc, pprocTi , pacij };

– •tlij = {pwcij
, pacij}; tlij • = {pwlcij

};
– •tlcij = {pwlcij

}; tlcij• = {pproc, pfvij };
– •tfvij = {pfvij }; tfvij • = {pproc idle, pfvi};

♦ ∀(x, y) ∈ Fo2v,Wo2v(x, y) =

C1ij if (x, y) = (tvsij , pwg1ij
)

C1ij − 1 if (x, y) = (pac1ij , tl1ij)

C2ij if (x, y) = (tfv1ij , pwgij
)

C2ij − 1 if (x, y) = (pacij , tlij)

1 otherwise

6.3 BASIC BUILDING BLOCKS 107

♦ M0o(px) = 0, ∀px ∈ Po2v, px /∈ {pproc, pproch idle};M0o(pproc) = M0o(pproch idle) = 1;

♦ Io2v(tx) = [0, 0], ∀tx ∈ To2v, tx /∈ {to1ij , tc1ij , tlc1ij , toij , tovij , tcij , tlcij};
Io2v(to1ij) = Io2v(toij) = [o, o]. o is the dispatcher WCET; Io2v(tovij) = [av, av]. av
is the dispatcher execution time to only adjust the voltage level and the respective
maximum CPU frequency (Section 5.2.2);
Io2v(tc1ij) = Io2v(tlc1ij) = Io2v(tcij) = Io2v(tlcij) = [1, 1];

♦ Eo2v(tx) = 0.0J, ∀tx ∈ Tp, tx /∈ {to1ij , tc1ij , tlc1ij , toij , tovij , tcij , tlcij};
Eo2v(to1ij) = Eo2v(toij) = oE . oE is the dispatcher energy consumption (Section 5.2.2);

Eo2v(tgovij) = avE . avE is the dispatcher energy consumption to just perform a volt-

age/frequency switching;
Eo2v(tc1ij) = Eo2v(tlc1ij) = (vef(videalH)× c1)/C1ij ;

Eo2v(tcij) = Eo2v(tlcij) = (vef(videalL)×c2)/C2ij . vef is the voltage-energy function.
See Section 5.2.4;

♦ CSo2v(tc1ij) = CSo2v(tcij) = CSo(tlc1ij) = CSo(tlcij) = codei, in which codei ∈ ST .

Additionally, the preemptive task structure with overhead and 2 voltages block is
covered by 3 basic P-invariants, which are depicted as follows:

♦ I(o2v)(1) =
[

pvij
pwg1ij

pwo1ij
pwc1ij

pac1ij
pwlc1ij

pfv1ij
pprocT1

··· pprocTi
···

0 0 proc proc 0 proc 0 0 0 0 0

pprocTk
pproc pproc idle pwgij

pwoij
pwcij

pacij
pwlcij

pfvij
pfvi pwovij

pprocTi 2volt

0 proc 0 0 proc proc 0 proc 0 0 proc 0
]

T ;

♦ I(o2v)(2) =
[

pvij
pwg1ij

pwo1ij
pwc1ij

pac1ij
pwlc1ij

pfv1ij

0 0 proc idle proc idle 0 proc idle proc idle

pprocT1
··· pprocTi

··· pprocTk
pproc pproc idle pwgij

pwoij

proc idle · · · proc idle · · · proc idle 0 proc idle 0 proc idle

pwcij
pacij

pwlcij
pfvij

pfvi pwovij
pprocTi 2volt

proc idle 0 proc idle proc idle 0 proc idle proc idle
]

T ;

♦ I(o2v)(3) =
[

pvij
pwg1ij

pwo1ij
pwc1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij (C2ij

)wg1ij (C2ij
)wg1ij

pac1ij
pwlc1ij

pfv1ij
pprocT1

··· pprocTi
···

(C2ij
)wg1ij (C1ij

C2ij
)wg1ij (C1ij

C2ij
)wg1ij 0 · · · 0 · · ·

pprocTk
pproc pproc idle pwgij

pwoij
pwcij

pacij

0 0 0 (C1ij
)wg1ij (C1ij

)wg1ij (C1ij
)wg1ij (C1ij

)wg1ij

108 MODELING - BUILDING BLOCKS

pwlcij
pfvij

pfvi pwovij
pprocTi 2volt

(C1ij
C2ij

)wg1ij (C1ij
C2ij

)wg1ij (C1ij
C2ij

)wg1ij (C1ij
)wg1ij 0

]

T .

in which proc, proc idle, wg1ij ∈ N
∗. For the sake of readability, all places in PprocTideali

are hidden in the basic P-invariants presented. Nevertheless, assume they are contained
in the set PprocT , since all places in PprocTideali

are covered by the same basic P-invariant
as the places in PprocT . A P-invariant covering all places (I(f)) is presented as follows:

I(o2v) = I(o2v)(1) + I(o2v)(2) + I(o2v)(3)

I(o2v) =
[

pvij
pwg1ij

pwo1ij

(C1ij
C2ij

)wgij (C2ij
)wgij proc+ proc idle+ (C2ij

)wg1ij

pwc1ij
pac1ij

pwlc1ij

proc+ proc idle + (C2ij
)wg1ij(C2ij

)wgij proc+ proc idle+ (C1ij
C2ij

)wgij
pfv1ij

pprocT1
··· pprocTi

··· pprocTk
pproc

proc idle+ (C1ij
C2ij

)wg1ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

pwcij

proc idle (C1ij
)wg1ij proc+ proc idle+ (C1ij

)wg1ij proc+ proc idle+ (C1ij
)wg1ij

pacij
pwlcij

pfvij

(C1ij
)wgij proc+ proc idle + (C1ij

C2ij
)wg1ij proc idle+ (C1ij

C2ij
)wg1ij

pfvi pwovij
pprocTi 2volt

(C1ij
C2ij

)wg1ij proc+ proc idle+ (C1ij
)wg1ij proc idle

]

T

As I(o2v) > 0 and IT
(o2v)×Ao2v = 0 (Ao2v is the incidence matrix), N(o2v) is structurally

conservative as well as structurally bounded.

6.3.11 Blocks for Modeling Intertask Relations

The proposed modeling approach adopts three building blocks for representing intertask
relations: (i) precedence pre-condition, (ii) exclusion pre-condition, and (iii) task instance
conclusion with intertask relations. The first two blocks model, respectively, the pre-
conditions of precedence and exclusion relations, whereas the new task instance conclusion
block represents the post-conditions. These blocks are presented as follows.

pwvsi

tpreci
[0, 0]

pwpreci

Pprec1 PprecxPprecp
... ...

Figure 6.15 Precedence pre-condition block

6.3 BASIC BUILDING BLOCKS 109

Precedence pre-condition block (Figure 6.15) is a TPN Niprep = (Piprep,Tiprep,
Fiprep,Wiprep,M0iprep ,Iiprep,Eiprep,CS iprep), such that:

♦ Piprep = {pwpreci, pwvsi} ∪ Ppre. These places model the following situations:

– pwpreci: waiting precedence pre-condition;

– pwvsi : waiting for voltage selection;

– pprep ∈ Ppre: precedence pre-condition, in which |Ppre| = x (x is the number of
tasks that precedes task τi).

♦ Tiprep = {tpreci}. This transition models the following action:

– tpreci: acknowledging precedence pre-condition.

♦ Pre and post-conditions of the transition are (flow relation Fiprep):

– •tpreci = {pwpreci} ∪ Ppre; tpreci• = {pwvsi}.

♦ ∀(x, y) ∈ Fiprep,Wiprep(x, y) = 1;

♦ ∀p ∈ Piprep,M0iprep(p) = 0;

♦ Iiprep(tpreci) = [0, 0];

♦ Eiprep(tpreci) = 0.0J;

♦ Representing CS iprep as a set, CS iprep = ∅.

Precedence pre-condition block is covered by x + 1 basic P-invariants (x = |Ppre|).
See below:

♦ I(iprep)(1) =
[

pwpreci
pwvsi

pprec1 ··· pprecp ··· pprecx

preci preci 0 · · · 0 · · · 0
]

T ;

♦ I(iprep)(2) =
[

pwpreci
pwvsi

pprec1 ··· pprecp ··· pprecx

0 prec1i prec1i · · · 0 · · · 0
]

T ;
...

♦ I(iprep)(p+1) =
[

pwpreci
pwvsi

pprec1 ··· pprecp ··· pprecx

0 precpi 0 · · · precpi · · · 0
]

T ;
...

♦ I(iprep)(x+1) =
[

pwpreci
pwvsi

pprec1 ··· pprecp ··· pprecx

0 precxi
0 · · · 0 · · · precxi

]

T .

110 MODELING - BUILDING BLOCKS

in which preci, prec1i, · · · , precpi, · · · , precxi
∈ N

∗ A P-invariant covering all places can
be obtained in the following way:

I(iprep) = I(iprep)(1) + I(iprep)(2) + · · ·+ I(iprep)(p+1) + · · ·+ I(iprep)(x+1)

I(iprep) =
[

pwpreci
pwvsi

pprec1

wpreci wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
prec1i

··· pprecp ··· pprecx

· · · precpi · · · precxi

]

T

As IT
(iprep) × Aiprep = 0, in which Aiprep is the respective incidence matrix, and

I(iprep) > 0, the precedence pre-condition block is structurally conservative and struc-
turally bounded.

pwvsi

texcli
[0, 0]

pwexcli

Pexc1 PexclyPexclp
... ...

Figure 6.16 Exclusion pre-condition block

Exclusion pre-condition block (Figure 6.16) is a TPNNipree = (Pipree,Tipree,Fipree,Wipree,
M0ipree ,Iipree,Eipree,CS ipree), such that:

♦ Pipree = {pwexcli, pwvsi} ∪ Pexcl. These places model the following situations:

– pwexcli: waiting exclusion pre-condition;

– pwvsi : waiting for voltage selection;

– pexclp ∈ Pexcl: exclusion pre-condition, in which |Pexcl| = y (y is the number of
tasks that excludes or excluded by task τi).

♦ Tipree = {texcli}. This transition models the following action:

– tpreci: acknowledging exclusion pre-condition.

♦ Pre and post-conditions of the transition are (flow relation Fipree):

– •texcli = {pwexcli} ∪ Pexcl; texcli• = {pwvsi};

♦ ∀(x, y) ∈ Fipree,Wipree(x, y) = 1;

♦ M0ipree(p) = 0, ∀p ∈ Pipree, p /∈ Pexcl,;∀p ∈ Pexcl,M0ipree(p) = 1;

♦ Iipree(texcli) = [0, 0];

♦ Eipree(texcli) = 0.0J;

6.3 BASIC BUILDING BLOCKS 111

♦ Representing CS ipree as a set, CS ipree = ∅.

Exclusion pre-condition block is covered by y + 1 basic P-invariants (y = |Pexcl|):

♦ I(ipree)(1) =
[

pwexcli
pwvsi

pexcl1 ··· pexclp ··· pexcly

wexcli wexcli 0 · · · 0 · · · 0
]

T ;

♦ I(ipree)(2) =
[

pwexcli
pwvsi

pexcl1 ··· pexclp ··· pexcly

0 excl1i excl1i · · · 0 · · · 0
]

T ;
...

♦ I(ipree)(p+1) =
[

pwexcli
pwvsi

pexcl1 ··· pexclp ··· pexcly

0 exclpi 0 · · · exclpi · · · 0
]

T ;
...

♦ I(ipree)(y+1) =
[

pwexcli
pwvsi

pexcl1 ··· pexclp ··· pexcly

0 exclyi 0 · · · 0 · · · exclyi
]

T .

in which excli, excl1i , · · · , exclpi, · · · , exclyi ∈ N
∗ A P-invariant covering all places can

be obtained in the following way:
I(ipree) = I(ipree)(1) + I(ipree)(2) + · · ·+ I(ipree)(p+1) + · · ·+ I(ipree)(y+1)

I(ipree) =
[

pwexcli
pwvsi

pexcl1

wexcli wexcli + excl1i + · · ·+ exclpi + · · ·+ exclyi excl1i
··· pexclp ··· pexcly

· · · exclpi · · · exclyi
]

T

As I(ipree) > 0 and IT
(ipree) × Aipree = 0, in which Aipree is the respective incidence

matrix, the exclusion pre-condition is structurally conservative and structurally bounded.

pf1
tf1

[0, 0]pfv1

pwd1

...

Prel1 Prelp Prelz

...

Figure 6.17 Task instance conclusion with intertask relations block

Task instance conclusion with intertask relations block (Figure 6.17) is a TPNNcinter =
(Pcinter,Tcinter, Fcinter,Wcinter,M0cinter

, Icinter, Ecinter, CScinter), such that:

♦ Pcinter = {pfvi, pfi, pwdi} ∪ Prel. These places model the following situations:

112 MODELING - BUILDING BLOCKS

– pfvi : task instance conclusion;

– pfi : end of task execution;

– pwdi : waiting for deadline missing;

– prelp ∈ Prel: intertask relation (exclusion or precedence) post-condition, in
which |Prel| = z (z is the number of tasks preceded and/or excluded by task
τi).

♦ Tcinter = {tfi}. This transition models the following action:

– tfi : concluding task instance execution.

♦ Pre and post-conditions of the transition are (flow relation Fcinter):

– •tfi = {pfvi , pwdi}; tfi• = {pfi} ∪ Prel;

♦ ∀(x, y) ∈ Fcinter,Wcinter(x, y) = 1;

♦ ∀p ∈ Pcinter,M0cinter
(p) = 0;

♦ Icinter(tfi) = [0, 0];

♦ Ecinter(tfi) = 0.0J;

♦ Representing CScinter as a set, CScinter = ∅.

The task instance conclusion with intertask relations block is covered by 2 × (z + 1)
basic P-invariants (z = |Prel|), which are described as follows:

♦ I(cinter)(pf1) =
[

pfvi pfi ppwdi
prel1 ··· prelp ··· prelz

pf1i pf1i 0 0 · · · 0 · · · 0
]

T ;

♦ I(cinter)(pf) =
[

pfvi pfi ppwdi
prel1 ··· prelp ··· prelz

0 pfi pfi 0 · · · 0 · · · 0
]

T ;

♦ I(cinter)(rel11) =
[

pfvi pfi ppwdi
prel1 ··· prelp ··· prelz

rel11 0 0 rel11 · · · 0 · · · 0
]

T ;

♦ I(cinter)(rel1) =
[

pfvi pfi ppwdi
prel1 ··· prelp ··· prelz

0 0 rel1 rel1 · · · 0 · · · 0
]

T ;
...

♦ I(cinter)(rel1p) =
[

pfvi pfi ppwdi
prel1 ··· prelp ··· prelz

rel1p 0 0 0 · · · rel1p · · · 0
]

T ;

♦ I(cinter)(relp) =
[

pfvi pfi ppwdi
prel1 ··· prelp ··· prelz

0 0 relp 0 · · · relp · · · 0
]

T ;
...

6.4 SUMMARY 113

♦ I(cinter)(rel1z) =
[

pfvi pfi ppwdi
prel1 ··· prelp ··· prelz

rel1z 0 0 0 · · · 0 · · · rel1z
]

T ;

♦ I(cinter)(relz) =
[

pfvi pfi ppwdi
prel1 ··· prelp ··· prelz

0 0 relz 0 · · · 0 · · · relz
]

T .

in which pf1i, pfi, · · · , rel1p, relp, · · · , rel1z, relz ∈ N
∗. Using these basic invariants, a

P-invariant covering all places (I(cinter)) can be obtained in the following way:
I(cinter) = I(cinter)(pf1) + I(cinter)(pf) + I(cinter)(rel11) + I(cinter)(rel1) + · · ·+ I(cinter)(rel1p) +

I(cinter)(relp) + · · ·+ I(cinter)(rel1z) + I(cinter)(relz)

I(cinter) =
[

pfvi pfi

pf1i + rel1i + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp
··· prelz

· · · rel1z + relz
]

T

Since I(cinter) > 0 and IT
(cinter) × Acinter = 0 (Acinter is the incidence matrix), the task

instance conclusion with intertask relations block is structurally conservative as well as
structurally bounded.

6.4 SUMMARY

This chapter initiated the presentation of the adopted formal approach for modeling hard
real-time systems with energy constraints. The proposed approach utilizes a formal model
based on a time Petri net extension, which allows the proper representation of intertask
relations as well as timing and energy constraints. Next chapter describes the adopted
composition rules for combining building block models and some modeling examples.

CHAPTER 7

MODELING - COMPOSITION RULES AND

EXAMPLES

This chapter describes the formal composition rules adopted in the modeling activity
as well as some modeling examples. In the presentation of the composition rules, the
respective properties are shown and proved. After that, modeling examples are presented
and, finally, this chapter discusses about the analysis and verification of properties related
to the generated models. Similar to previous chapter, the bullet is replaced by an open
diamond in the itemized lists.

7.1 COMPOSITION RULES

The proposed modeling approach adopts two composition operators: net union and place
renaming. Net union operator takes two TPNEs as input and generates a new one by
merging the common places (if exist) of the operand nets. Place renaming is an auxiliary
operator that takes a TPNE and renames a subset of its respective places in order to
allow, for specific cases, net unions. Firstly, place renaming is presented, and, next, net
union is detailed.

7.1.1 Place Renaming Operator

This section defines the place renaming operator (which is based on [112]) as well as
depicts an example.

Definition 7.1 (Place Renaming). Place renaming is a function denoted by ρ : P → P ′,
which renames the places of a TPNE N = (P, T, F, W, m0, I, E , CS), such that a new
isomorphic TPNE N ’ = (P’, T’, F’, W’, m0’, I’, E ’, CS’) is obtained:

♦ P’ = {ρ(p)|∀p ∈ P};

♦ T’ = T;

♦ |F ′| = |F |, such that

– ∀(p, t) ∈ F, (ρ(p), t) ∈ F ′, in which p ∈ P ∧ t ∈ T ∧ t ∈ T ′ ∧ ρ(p) ∈ P ′;

– ∀(t, p) ∈ F, (t, ρ(p)) ∈ F ′, in which p ∈ P ∧ t ∈ T ∧ t ∈ T ′ ∧ ρ(p) ∈ P ′;

♦ |W ′| = |W |, such that

– ∀(p, t) ∈ F,W ′(ρ(p), t) = W (p, t), in which p ∈ P ∧ t ∈ T ∧ t ∈ T ′ ∧ ρ(p) ∈ P ′;

– ∀(t, p) ∈ F,W ′(t, ρ(p)) = W (t, p), in which p ∈ P ∧ t ∈ T ∧ t ∈ T ′ ∧ ρ(p) ∈ P ′;

115

116 MODELING - COMPOSITION RULES AND EXAMPLES

♦ ∀p ∈ P,m′
0(ρ(p)) = m0(p);

♦ I’ = I

♦ E ′ = E

♦ CS ′ = CS

Notation N ’ = N /ρ is adopted to represent the application of function ρ in N ,
obtaining as result N ’.

In this work, ρ is a bijective function, allowing the construction of the respective
inverse operation. Besides, if function ρ is defined as ρ(p) = p, ∀p ∈ P , the result is N ’
= N .

p1 p2

t1
[1,3]

p1 p3

t1
[1,3]

(a) (b)

Figure 7.1 Place renaming example

Take as an example the TPNE N 1 presented in Figure 7.1(a). Additionally, consider:

ρ(p) =

{

p3, if (p = p2)

p, otherwise

The result of N 2 = N 1/ρ is depicted in Figure 7.1(b).

7.1.2 Net Union Operator

This section describes the net union operator, which performs the fusion of common
places (if exist) of the operand nets. The proposed operator is based on [113] and it has
been adjusted to consider the characteristics of the adopted building blocks. Besides,
properties related to the operator are presented as well as mathematically proved.

Initially, two sets are presented, which are adopted to define the domain and codomain
of net union operator.

Definition 7.2 (Set of all TPNEs - TPNESet). Let TPNESet = {N i|i ∈ N
∗}, in which

N i= (Pi, Ti, Fi,Wi, m0i , Ii, Ei, CS i) is a TPN with energy consumption values and code
annotations. TPNESet is the set of all TPNs with energy consumption values and code
annotations (TPNE).

Definition 7.3 (Restricted TPNESet - RTPNESet). Let RTPNESet ⊂ TPNESet be
a restricted set of TPNEs, such that ∀Ni,Nn ∈ RTPNESet, (Pi ∩ Pn = ∅ ∧ Ti ∩ Tn =
∅) ∨ (Pi ∩ Pn 6= ∅ ∧ Ti ∩ Tn = ∅) ∨ (Pi ∩ Pn 6= ∅ ∧ Ti ∩ Tn 6= ∅ ↔ ∀t ∈ Ti ∩ Tn, Ii(t) =

7.1 COMPOSITION RULES 117

In(t) ∧ Ei(t) = En(t) ∧ CS i(t) = CSn(t)), in which N i= (Pi, Ti, Fi,Wi, m0i , Ii,E i, CS i)
and N n= (Pn, Tn, Fn,Wn, m0n , In,En, CSn) are two TPNEs. RTPNESet is a subset of
TPNESet considering (i) disjoint nets, (2) nets with disjoint sets of transitions and (3)
nets with common places and common transitions with the same timing constraints,
energy consumption values and source codes.

In the following definition, functions W : A → N, I : T → N × N, E :T → R+ ∪ {0}
and CS:T → ST are represented as sets, more specifically, W ⊆ A× N, I ⊆ T × N× N,
E ⊆ T × R+ ∪ {0} and CS ⊆ T × ST .

Definition 7.4 (Net Union). Net union is a function represented by ⊔ : RTPNESet×
RTPNESet → RTPNESet that merges two TPNEs. LetN 1= (P1, T1, F1,W1, m01 , I1, E1,
CS1) andN 2= (P2, T2, F2,W2, m02 , I2, E2,CS2) be two TPNEs . N 3= (P3, T3, F3,W3, m03 , I3,
E3,CS3) is obtained by N 3 = N 1 ⊔ N 2, such that:

♦ P3 = P1 ∪ P2;

♦ T3 = T1 ∪ T2;

♦ F3 = F1 ∪ F2;

♦ W3 = W1 ∪W2;

♦ m03(p) =

m01(p), if (p ∈ P1 − P2)

m02(p), if (p ∈ P2 − P1)

max(m01(p), m02(p)), if (p ∈ P1 ∩ P2)

♦ I3 = I1 ∪ I2;

♦ E3 = E1∪E2;

♦ CS3 = CS1∪CS2.

As presented, ⊔ is adopted using infix notation for the sake of readability.

As an example, consider the TPNEs N 1 and N 2 presented in Figure 7.2(a). Net N 3

(Figure 7.2(b)) is generated by fusing the common places of N 1 and N 2 using net union
operator: N 3 = N 1 ⊔N 2.

Properties Net union operator is a commutative monoid, since the operator is as-
sociative, commutative and contains an identity element. The reader may envisage this
property, since all internal operations are also commutative monoids. Besides, considering
the proposed building blocks, all resultant nets are bounded (see Section 3.5). Previous
assertion is valid, since all building blocks are structurally bounded and conservative,
and the net union operator preserves the place invariants (P-invariants). The proofs are
presented as follows.

118 MODELING - COMPOSITION RULES AND EXAMPLES

p1 p2

t1
[1,3]

p2 p3

t2
[2,5]

(a) (b)

N1 N2

p1 p2

t1
[1,3]

p3

t2
[2,5]

N3

Figure 7.2 Net union example

Axiom 7.1.1 (Commutative Monoid). Let X be a binary operation defined for a domain
D (X : D×D → D). < D,X > is a commutative monoid if X is associative ((aXb)Xc =
aX(bXc), ∀a, b, c ∈ D), commutative (aXb = bXa, ∀a, b ∈ D) and contains an identity
element ∅ ∈ D (∅Xa = aX∅ = a, ∀a ∈ D).

Theorem 7.1.1 (Net Union - Associative Property). Net union operation is associative,
since its internal operations are associative.

Proof. Let N 1,N 2 and N 3 ∈ RTPNESet be three TPNs with energy consump-
tion values and code annotations, such that N 1 = (P1, T1, F1,W1, m01 , I1,E1), N 2 =
(P2, T2, F2,W2, m02 , I2,E2) and N 3 = (P3, T3, F3,W3, m03 , I3,E3). If N a = (Pa, Ta, Fa,Wa,
m0a , Ia,Ea) is a TPNE obtained by N a = N 1⊔ N 2, then:

♦ Pa = P1 ∪ P2;

♦ Ta = T1 ∪ T2;

♦ Fa = F1 ∪ F2;

♦ Wa = W1 ∪W2;

♦ m0a(p) =

m01(p), if (p ∈ P1 − P2)

m02(p), if (p ∈ P2 − P1)

max(m01(p), m02(p)), if (p ∈ P1 ∩ P2)

♦ Ia = I1 ∪ I2;

♦ Ea = E1 ∪ E2;

♦ CSa = CS1 ∪ CS2.

If N b = (Pb, Tb, Fb,Wb, m0b, Ib,E b) is a TPNE obtained by N b = N a⊔ N 3, then:

♦ Pb = Pa ∪ P3;

♦ Tb = Ta ∪ T3;

♦ Fb = Fa ∪ F3;

7.1 COMPOSITION RULES 119

♦ Wb = Wa ∪W3;

♦ m0b(p) =

m0a(p), if (p ∈ Pa − P3)

m03(p), if (p ∈ P3 − Pa)

max(m0a(p), m03(p)), if (p ∈ Pa ∩ P3)

♦ Ib = Ia ∪ I3;

♦ Eb = Ea ∪ E3;

♦ CSb = CSa ∪ CS3.

If N c = (Pc, Tc, Fc,Wc, m0c , Ic,E c) is a TPNE obtained by N c = N 2⊔ N 3, then:

♦ Pc = P2 ∪ P3;

♦ Tc = T2 ∪ T3;

♦ Fc = F2 ∪ F3;

♦ Wc = W2 ∪W3;

♦ m0c(p) =

m02(p), if (p ∈ P2 − P3)

m03(p), if (p ∈ P3 − P2)

max(m02(p), m03(p)), if (p ∈ P2 ∩ P3)

♦ Ic = I2 ∪ I3;

♦ Ec = E2 ∪ E3;

♦ CSc = CS2 ∪ CS3.

If N d = (Pd, Td, Fd,Wd, m0d, Id,Ed) is a TPNE obtained by N d = N 1⊔ N c, then:

♦ Pd = P1 ∪ Pc;

♦ Td = T1 ∪ Tc;

♦ Fd = F1 ∪ Fc;

♦ Wd = W1 ∪Wc;

♦ m0d(p) =

m01(p), if (p ∈ P1 − Pc)

m0c(p), if (p ∈ Pc − P1)

max(m01(p), m0c(p)), if (p ∈ P1 ∩ Pc)

♦ Id = I1 ∪ Ic;

♦ Ed = E1∪E c;

120 MODELING - COMPOSITION RULES AND EXAMPLES

♦ CSd = CS1∪CSc.

Therefore, N b = N a⊔ N 3 = (N 1⊔N 2)⊔ N 3 and N d = N 1⊔ N c =N 1 ⊔ (N2 ⊔ N3).
Net union operation is associative if Nb = Nd. Thus, replacing each occurrence of Na in
Nb:

♦ Pb = (P1 ∪ P2) ∪ P3;

♦ Tb = (T1 ∪ T2) ∪ T3;

♦ Fb = (F1 ∪ F2) ∪ F3;

♦ Wb = (W1 ∪W2) ∪W3;

♦ m0b(p) =

m01(p), if (p ∈ (P1 − P2)− P3)

m02(p), if (p ∈ (P2 − P1)− P3)

max(m01(p), m02(p)), if (p ∈ (P1 ∩ P2)− P3)

m03(p), if (p ∈ P3 − (P1 ∪ P2))

max(m01(p), m03(p)), if (p ∈ (P1 − P2) ∩ P3)

max(m02(p), m03(p)), if (p ∈ (P2 − P1) ∩ P3)

max(max(m01(p), m02(p)), m03(p)), if (p ∈ (P1 ∩ P2) ∩ P3)

♦ Ib = (I1 ∪ I2) ∪ I3;

♦ Eb = (E1 ∪ E2) ∪ E3;

♦ CSb = (CS1 ∪ CS2) ∪ CS3.

Replacing each occurrence of Nc in Nd:

♦ Pd = P1 ∪ (P2 ∪ P3);

♦ Td = T1 ∪ (T2 ∪ T3);

♦ Fd = F1 ∪ (F2 ∪ F3);

♦ Wd = W1 ∪ (W2 ∪W3);

♦ m0d(p) =

m01(p), if (p ∈ P1 − (P2 ∪ P3))

m02(p), if (p ∈ (P2 − P3)− P1)

m03(p), if (p ∈ (P3 − P2)− P1))

max(m02(p), m03(p)), if (p ∈ (P2 ∩ P3)− P1)

max(m01(p), m02(p)), if (p ∈ P1 ∩ (P2 − P3))

max(m01(p), m03(p)), if (p ∈ P1 ∩ (P3 − P2))

max(m01(p), max(m02(p), m03(p))), if (p ∈ P1 ∩ (P2 ∩ P3))

7.1 COMPOSITION RULES 121

♦ Id = I1 ∪ (I2 ∪ I3);

♦ Ed = E1 ∪ (E2 ∪ E3);

♦ CSd = CS1 ∪ (CS2 ∪ CS3).

Thus, net union operation is associative, since Nb = (N1 ⊔ N2) ⊔ N3 and Nd =
N1 ⊔ (N2 ⊔ N3), and Nb = Nd, in which:

♦ Pb = Pd = (P1 ∪ P2) ∪ P3 = P1 ∪ (P2 ∪ P3);

♦ Tb = Td = (T1 ∪ T2) ∪ T3 = T1 ∪ (T2 ∪ T3);

♦ Fb = Fd = (F1 ∪ F2) ∪ F3 = F1 ∪ (F2 ∪ F3);

♦ Wb = Wd = (W1 ∪W2) ∪W3 = W1 ∪ (W2 ∪W3);

♦ m0b(p) = m0d(p), ∀p ∈ (P1 ∪ P2 ∪ P3);

♦ Ib = Id = (I1 ∪ I2) ∪ I3 = I1 ∪ (I2 ∪ I3);

♦ Eb = Ed = (E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3);

♦ CSb = CSd = (CS1 ∪ CS2) ∪ CS3 = CS1 ∪ (CS2 ∪ CS3).

Theorem 7.1.2 (Net Union - Commutative Property). Net union operation is commu-
tative, since its internal operations are commutative.

Proof. Let N1 and N2 ∈ RTPNESet be two TPNEs, such that N1 = (P1, T1, F1,W1,
m01 , I1, E1, CS1) and N2 = (P2, T2, F2,W2, m02 , I2, E2, CS2). If Na = (Pa, Ta, Fa,Wa,
, m0a , Ia, Ea, CSa) is a TPNE obtained by Na = N1 ⊔ N2, then:

♦ Pa = P1 ∪ P2;

♦ Ta = T1 ∪ T2;

♦ Fa = F1 ∪ F2;

♦ Wa = W1 ∪W2;

♦ m0a(p) =

m01(p), if (p ∈ P1 − P2)

m02(p), if (p ∈ P2 − P1)

max(m01(p), m02(p)), if (p ∈ P1 ∩ P2)

♦ Ia = I1 ∪ I2;

♦ Ea = E1 ∪ E2;

♦ CSa = CS1 ∪ CS2.

122 MODELING - COMPOSITION RULES AND EXAMPLES

If Nb = (Pb, Tb, Fb,Wb, m0b, Ib, Eb, CSb) is a TPNE obtained by Nb = N2 ⊔ N1, then:

♦ Pb = P2 ∪ P1;

♦ Tb = T2 ∪ T1;

♦ Fb = F2 ∪ F1;

♦ Wb = W2 ∪W1;

♦ m0b(p) =

m02(p), if (p ∈ P2 − P1)

m01(p), if (p ∈ P1 − P2)

max(m02(p), m01(p)), if (p ∈ P2 ∩ P1)

♦ Ib = I2 ∪ I1;

♦ Eb = E2 ∪ E1;

♦ CSb = CS2 ∪ CS1.

Thus, net union operation is commutative, since Na = N1 ⊔ N2,Nb = N2 ⊔ N1, and
Na = Nb, in which:

♦ Pa = Pb = P1 ∪ P2 = P2 ∪ P1;

♦ Ta = Tb = T1 ∪ T2 = T2 ∪ T1;

♦ Fa = Fb = F1 ∪ F2 = F2 ∪ F1;

♦ Wa = Wb = W1 ∪W2 = W2 ∪W1;

♦ m0a(p) = m0b(p), ∀p ∈ (P1 ∪ P2);

♦ Ia(f) = Ib(t) = I1 ∪ I2 = I2 ∪ I1;

♦ Ea(t) = Eb(t) = E1 ∪ E2 = E2 ∪ E1;

♦ CSa(t) = CSb(t) = CS1 ∪ CS2 = CS2 ∪ CS1.

Theorem 7.1.3 (Net Union - Identity Element). Let N∅ ∈ RTPNESet be a time Petri
net with energy consumption values and code annotations (TPNE), such thatN∅ = (P∅ =
∅, T∅ = ∅, F∅ = ∅,W∅ = ∅, m0∅ = ∅, I∅ = ∅, E∅ = ∅). N∅ is the identity element of net union
operation, since the application of such operation between any net N ∈ RTPNESet and
N∅ results in N .

Proof. Let N1 and N∅ ∈ RTPNESet be two TPNEs, such that N1 = (P1, T1, F1,W1,
m01 , I1, E1, CS1) and N∅ is the identity element. If Na = (Pa, Ta, Fa,Wa, m0a , Ia, Ea,
CSa) is a TPNE obtained by Na = N1 ⊔N∅ or Na = N∅ ⊔ N1, then Na = N1:

7.1 COMPOSITION RULES 123

♦ Pa = P1 ∪ ∅ = ∅ ∪ P1 = P1;

♦ Ta = T1 ∪ ∅ = ∅ ∪ T1 = T1;

♦ Fa = F1 ∪ ∅ = ∅ ∪ F1 = F1;

♦ Wa = W1 ∪ ∅ = ∅ ∪W1 = W1;

♦ m0a(p) = m01(p), ∀p ∈ P1;

♦ Ia = I1 ∪ ∅ = ∅ ∪ I1 = I1;

♦ Ea = E1 ∪ ∅ = ∅ ∪ E1 = E1.

♦ CSa = CS1 ∪ ∅ = ∅ ∪ CS1 = CS1.

Collorary 7.1.1 (Net Union - Commutative Monoid). Let RTPNESet be the set of
restricted time Petri nets with energy consumption values and code annotations (TPNE)
and ⊔ is the net union operation. < RTPNESet,⊔ > is a commutative monoid and N∅

is the respective identity element.

The following lines demonstrate that all generated models, using net union operator
and the proposed building block models, are structurally bounded.

Definition 7.5 (Set of All TPNEs Generated from Building Block Models and Net Union
Operator - B∗). Let B ⊆ RTPNESet be the set of the proposed basic building block
models, in which ∀Ni,Nn ∈ B, Ti ∩ Tn 6= ∅ ↔ Ni = Nn (note that Ti and Tn are the
set of transitions of the respective nets), and N∅ be the identity element. B∗ is the set
of all time Petri nets with energy consumption values and code annotations generated
using net union operator and the proposed building blocks, such that: B∗ =

⋃

i∈N Bi =
B0 ∪ B1 ∪ B2 ∪ B3 ∪ ..., in which B0 = {N∅} and Bi+1 = {a ⊔ b|a ∈ Bi ∧ b ∈ B}, i ≥ 0.
Besides, B ⊆ B∗ ⊆ RTPNESet.

In previous definition, although there are other ways to compose the nets contained
in each subset Bi+1 using net union operator ⊔, the adopted approach is only to define
the set B∗ in a clear manner. Besides, the constraint assumed in the set B is assured by
the suffix spec, which is described in Section 6.3.

Theorem 7.1.4 (Net Union and Basic Building Blocks - Structurally Conservative and
Structurally Bounded Models). If N ∈ B∗, then N is structurally conservative as well as
structurally bounded.

Proof. Base Cases:

1. N ∈ B0. As B0 = {N∅}, N must be the identity element. Since the state space is
empty for N∅, assume Na is structurally conservative and structurally bounded;

124 MODELING - COMPOSITION RULES AND EXAMPLES

2. N ∈ B1. B1 = {Na ⊔ Nb|Na ∈ B0 ∧ Nb ∈ B} is the set of the proposed building
block models (B1 = B), since the net union of the identity element (B0 = {N∅})
and a building block results in the former building block model. Thus, Nb is struc-
turally conservative and structurally bounded, as all building blocks do contain
such properties (see Section 6.3);

3. Nc ∈ B2, and B2 = {Nd ⊔Ne|Nd ∈ B1 ∧ Ne ∈ B}
(a) Nc = Nd ⊔ Ne, in which d = e. Nc is structurally bounded as well as struc-

turally conservative , since the net union of a building block with itself results
in the same building block. As presented previously, all building blocks are
structurally bounded and conservative.

(b) Nc = Nd ⊔ Ne, in which d 6= e ∧ Pd ∩ Pe 6= ∅ ∧ Td ∩ Te = ∅. Nc is structurally
bounded and conservative, since all possible mergings of two building blocks
result in structurally bounded and conservative nets (see Appendix A). In
addition to the conservative components, the resultant net also preserves the
places that allow the fusion with other building blocks.

(c) Nc = Nd ⊔Ne, such that d 6= e∧ Pd ∩ Pe = ∅ ∧ Td ∩ Te = ∅. Nc is structurally
bounded and conservative, since the net union of disjoint nets preserves the
P-invariants of each subnet in the generated model.

(d) Nc = Nd ⊔ Ne, such that Td ∩ Te 6= ∅. Since Td ∩ Te 6= ∅, then Nd = Ne,
as demonstrated in the definition of B (remind B1 = B). Nc is structurally
conservative and structurally bounded, as the net union of a building block
with itself results in the same building block.

Inductive Step: Nx ∈ Bi+1 is structurally conservative and structurally bounded
(Ix

T × Ax = 0, in which Ax is the respective incidence matrix and Ix
T is a vector of

positive integers).
The recursive definition of B∗ indicates that each N ∈ Bi is composed using one or

more base cases presented previously: B∗ =
⋃

i∈N Bi = B0 ∪ B1 ∪ B2 ∪ B3 ∪ ..., such that

♦ B1 = {a ⊔ b|a ∈ B0 ∧ b ∈ B}
♦ B2 = {a ⊔ b|a ∈ B1 ∧ b ∈ B} = {(b0 ⊔ b1) ⊔ b|b0 ∈ B0 ∧ b1, b ∈ B}

...

♦ Bi = {a ⊔ b|a ∈ Bi ∧ b ∈ B} = {(((b0 ⊔ b1)...) ⊔ bi−1) ⊔ b|b0 ∈ B0 ∧ b1, ..., bi−1, b ∈ B}

As all base cases do generate structurally conservative as well as structurally bounded
nets (the conservative components are preserved and, also, the places that allow the fusion
with other building blocks); and (ii) net union operator is a commutative monoid (the
composition order does not matter), N is a structurally bounded net. Moreover, since
Bi+1 = {((((b0)⊔b1)...)⊔bi−1)⊔bi)⊔b|b0 ∈ B0∧b1, ..., bi−1, bi, b ∈ B}) also utilizes the base
cases and net union operator, Nx ∈ Bi+1 is structurally bounded as well as conservative.
Thus, for any Ny ∈ B∗, Ny is structurally bounded and conservative. This concludes the
proof �.

7.2 MODELING REAL-TIME TASKS 125

7.2 MODELING REAL-TIME TASKS

In order to enlighten the modeling process of real-time tasks, consider the following spec-
ification consisting of two preemptive tasks: τ1 = (0, 0, 240 × 106, 20, 20) and τ2 = (0,
5, 60× 106, 15, 20). In this specification, the task time unit is one second and the LCM
is equal to 20s, which points out the existence of two task instances (S(τ1) + S(τ2)= 2).
In addition, assume the following supply voltages and the respective maximum frequen-
cies vff = {(1V,10MHz),(2V,20MHz)}. Moreover, an unavailable voltage/frequency of
1.5V/15MHz is considered, which can be “simulated” using the 2 immediate neighboring
voltage levels (and the respective maximum CPU frequencies).

The TPNE model is composed by modeling each individual task and, next, making the
appropriate connections to represent the CPU sharing, the initial condition (fork block)
and the desired final marking (join block). In general, each task is modeled considering
a combination of arrival, voltage selection, (non-)preemptive task structure, deadline,
and conclusion blocks. Indeed, the combined blocks model the constraints as well as the
energy consumption of a hard real-time task. For a better understanding, the modeling
process is detailed into 2 subsections, which are presented as follows.

7.2.1 Modeling a Single Task

This section details the process for modeling a single task, more specifically, task τ1 (from
previous specification). Although the proposed example considers preemptive tasks, the
same approach is adopted for non-preemptive tasks. For task τ1, the following blocks
needs to be instantiated:

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0] pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

[0, 0] [1, 1] [0, 0][0, 0]

pwpc11

td1

tpc11

[20, 20]

[0, 0]

tpc13

tpc12
[0, 0]

tpc113
[0, 0]

[0, 0]

pdm1

pfv1

0

pwf13

pwd1

pv11

[0, 0]
tv11

pv13

pv12

tv12
[0, 0]

tv13
[0, 0]

pwvs1

pwc11

pwc113

pwc13

pf1

tf1
[0, 0]

pfv1

pwd1

pfv1

pfv1

(a)

(b)

(c)

(d)

(e)

(g)

(f)

pproc

pproc

pproc

pwc12

pwpc12

pwpc113

pwpc13

Figure 7.3 Basic building blocks for task τ1

126 MODELING - COMPOSITION RULES AND EXAMPLES

♦ One periodic task arrival block - Np1(Figure 7.3(a));

♦ One voltage selection block, considering three voltage/frequency levels -Nv1(Figure 7.3(b));

♦ Three preemptive task structure blocks (one for each voltage/frequency level): Np13
(Figure 7.3(c)) - 1V/10MHz,Np12

(Figure 7.3(d)) - 2V/20MHz, andNp13
(Figure 7.3(e))

- 1.5V/15MHz;

♦ One deadline block considering four waiting for task computation places (Fig-
ure 7.3(f))- Nd1 .

♦ One task instance conclusion block (Figure 7.3(g))- Nd1 .

As presented, the proposed modeling approach guarantees that the generated models are
bounded. Thus, for this example, the juxtaposition of the P-invariants (see Section 3.5)
are presented in order to demonstrate the preservation of boundness property during the
fusion of building blocks. For each basic Petri net presented previously, the P-invariants
are:

♦ Na1 : I(a1) =
[

pst1 pwa1
pwd1

pwr1
pwvs1

wvs1 + wd1 wvs1 + wd1 wd1 wvs1 wvs1
]

T ;

♦ Nv1 : I(v1) =
[

pwvs1
pv11

pv12
pv13

wvs′1 wvs′1 wvs′1 wvs′1
]

T ;

♦ Np11
: I(p11)

=
[

pv11
pwg11

pwc11
pwf11

pfv1 pproc

24wg11 wg11 wg11 + proc wg11 24wg11 proc
]

T ;

♦ Np12
: I(p11)

=
[

pv12
pwg12

pwc12
pwf12

pfv1 pproc

12wg12 wg12 wg12 + proc′ wg12 12wg12 proc′
]

T ;

♦ Np2v13
: I(p2v13)

=
[

pv13
pwg113

pwc113
pwf113

pwg13

64wg113 8wg113 8wg113 + proc′′ 8wg113 8wg113

pwc13
pwf13

pfv1 pproc

8wg113 + proc′′ 8wg113 64wg113 proc′′
]

T ;

♦ Nd1 : I(d1) =
[

pwd1

4d0 + 3d1 + 3d2 + 2d1,2 + 3d13 + 2d1,13 + 2d2,13 + d1,2,13

+3d3 + 2d1,3 + 2d2,3 + d1,2,3 + 2d13,3 + d1,13,3 + d2,13,3

pwpc11

d0 + d2 + d13 + d2,13 + d3 + d2,3 + d13,3 + d2,13,3

pwc11

d1 + d1,2 + d1,13 + d1,2,13 + d1,3 + d1,2,3 + d1,13,3 + d1,2,13,3

7.2 MODELING REAL-TIME TASKS 127

pwpc12

d0 + d1 + d1,3 + d1,13 + d3 + d13 + d13,3 + d1,13,3

pwc12

d2 + d1,2 + d2,13 + d1,2,13 + d2,3 + d1,2,3 + d2,13,3 + d1,2,13,3

pwpc113

d0 + d1 + d2 + d1,2 + d3 + d1,3 + d2,3 + d1,2,3

pwc113

d13 + d1,13 + d2,13 + d1,2,13 + d13,3 + d1,13,3 + d2,13,3 + d1,2,13,3

pwpc13

d0 + d1 + d1,2 + d2 + d13 + d1,13 + d2,13 + d1,2,13

pwc13

d3 + d1,3 + d2,3 + d1,2,3 + d13,3 + d1,13,3 + d2,13,3 + d1,2,13,3

pdm1

d0 + d1 + d1,2 + d2 + d13 + d1,13 + d2,13 + d1,2,13 + d3 + d1,3 + d2,3

+d1,2,3d13,3 + d1,13,3 + d2,13,3 + d1,2,13,3
]

T ;

♦ Nc1: I(c1) =
[

pf1 pfv1 pwd1

fv1 + wd1 fv1 wd1
]

T .

As follows, the composition is performed by adopting the net union operator (⊔):

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

pwvs10

pv11

[0, 0]
tv11

pv13

pv12

tv12
[0, 0]

tv13
[0, 0]

pwvs1

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

0

pv11

[0, 0]
tv11

pv13

pv12

tv12
[0, 0]

tv13
[0, 0]

pwvs1

Figure 7.4 Step 1

128 MODELING - COMPOSITION RULES AND EXAMPLES

1. N(a1⊔v1) = Np1 ⊔ Nv1(Figure 7.4). The following P-invariant is obtained by juxta-
position J (I(a1), I(v1))), in which wvs′1 = wvs1:

I(a1⊔v1) =
[

pst1 pwa1
pwd1

pwr1
pwvs1

pv11
pv12

pv13

wvs1 + wd1 wvs1 + wd1 wd1 wvs1 wvs1 wvs1 wvs1 wvs1
]

T ;

2. N(a1⊔v1⊔p11)
= N(a1⊔v1) ⊔Np11

(Figure 7.5). By juxtaposition (J (I(a1⊔v1), I(p11)
) and

wvs1 = 24wg11), the following P-invariant is obtained:

I(a1⊔v1⊔p11)
=

[

pst1 pwa1
pwd1

pwr1
pwvs1

pv11

24wg11 + wd1 24wg11 + wd1 wd1 24wg11 24wg11 24wg11

pv12
pv13

pwg11
pwc11

pwf11
pfv1 pproc

24wg11 24wg11 wg11 wg11 + pproc wg11 24wg11 proc
]

T ;

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

pv11

[0, 0]

pfv1

pproc
pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

0

pv11

[0, 0]
tv11

pv13

pv12

tv12
[0, 0]

tv13
[0, 0]

pwvs1

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

pv11

[0, 0]

pfv1

pproc
pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

0
[0, 0]
tv11

pv13

pv12

tv12
[0, 0]

tv13
[0, 0]

pwvs1

Figure 7.5 Step 2

3. N(a1⊔v1⊔p11⊔p12)
= N(a1⊔v1⊔p11)

⊔Np12
(Figure 7.6). By J (I(a1⊔v1⊔p11)

, I(p12)
) (assum-

ing wg11 = 12wg1, wg12 = 24wg1 and proc′ = proc), the P-invariant is:

I(a1⊔v1⊔p11⊔p12)
=

[

pst1 pwa1
pwd1

pwr1
pwvs1

288wg1 + wd1 288wg1 + wd1 wd1 288wg1 288wg1

pv11
pv12

pv13
pwg11

pwc11
pwf11

pfv1 pproc

288wg1 288wg1 288wg1 12wg1 12wg1 + proc 12wg1 288wg1 proc

pwg12
pwc12

pwf12

24wg1 24wg1 + proc 24wg1
]

T ;

4. N(a1⊔v1⊔p1x) = N(a1⊔v1⊔p11⊔p12)
⊔ Np13

(Figure 7.7). The following P-invariant is
obtained by juxtaposition (wg1 = 64wg′1, wg13 = 288wg′1 and proc” = proc):

7.2 MODELING REAL-TIME TASKS 129

pwg12
pwc12 pwf12

tvs12
tg12 tc12

tfv12

12 12
pv12

[0, 0] [1, 1]
[0, 0]

[0, 0]

pproc

pwg11 pwc11 pwf11

tvs11
tg11 tc11

tfv11

24 24

[0, 0] [1, 1]
[0, 0]

pv11

[0, 0]
pfv1

pproc

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

0
[0, 0]
tv11

pv13

tv12
[0, 0]

tv13
[0, 0]

pwvs1

pwg12
pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

[0, 0] [1, 1] [0, 0][0, 0]

pfv1

pproc

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

pv11

[0, 0]

pfv1

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

0
[0, 0]
tv11

pv13

tv12
[0, 0]

tv13

pwvs1 pv12

Figure 7.6 Step 3

pwg12
pwc12 pwf12

tvs12
tg12 tc12

tfv12

12 12
pv12

[0, 0] [1, 1]
[0, 0]

[0, 0]

pproc

pwg11 pwc11 pwf11

tvs11
tg11 tc11

tfv11

24 24

[0, 0] [1, 1]
[0, 0]

pv11

[0, 0]
pfv1

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

0
[0, 0]
tv11

pv13

tv12
[0, 0]

tv13
[0, 0]

pwvs1

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

pproc

pfv10

pwf13

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwf13
pfv1

pproc

Figure 7.7 Step 4

I(a1⊔v1⊔p1x) =
[

pst1 pwa1
pwd1

pwr1
pwvs1

18432wg′1 + wd1 18432wg′1 + wd1 wd1 18432wg′1 18432wg′1

130 MODELING - COMPOSITION RULES AND EXAMPLES

pv11
pv12

pv13
pwg11

pwc11
pwf11

pfv1

18432wg′1 18432wg′1 18432wg′1 768wg′1 768wg′1 + proc 768wg′1 18432wg1

pproc pwg12
pwc12

pwf12
pwg113

pwc113
pwf113

proc 1536wg′1 1536wg′1 + proc 1536wg′1 2304wg′1 2304wg′1 + proc 2304wg′1

pwg13
pwc13

pwf13

2304wg′1 2304wg′1 + proc 2304wg′1
]

T ;

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

pwpc11

td1
[20, 20]

tpc13

tpc12
[0, 0]

tpc113
[0, 0]

[0, 0]

pdm1

pfv10

pwf13

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

Figure 7.8 Step 5

5. N(a1⊔v1⊔p1x⊔d1) = N(a1⊔v1⊔p1x) ⊔ Nd1 (Figure 7.8). The following P-invariant is ob-
tained by juxtaposition (d1,2 = d1,13 = d1,3 = d1,2,13 = d1,2,3 = d1,13,3 = d1,2,13,3
= d2,13 = d2,3 = d2,13,3 = d13,3 = d0, d1 = 768wg′1, d2 = 1536wg′1, d13 = 2304wg′1,
d3 = 2304wg′1, wd1 = 20d0+2304wg′1+4608wg′1+6912wg′1+6912wg′1 = 20736wg′1+
20d0 and proc = 7d0):

I(a1⊔v1⊔p1x⊔d1) =
[

pst1 pa1 pwd1

39168wg′1 + 20d0 39168wg′1 + 20d0 20d0 + 20736wg′1

pwr1
pwvs1

pv11
pv12

pv13
pwg11

pwc11

18432wg′1 18432wg′1 18432wg′1 18432wg′1 18432wg′1 768wg′1 768wg′1 + 7d0

pwf11
pfv1 pproc pwg12

pwc12
pwf12

pwg113

768wg′1 18432wg1 7d0 1536wg′1 1536wg′1 + 7d0 1536wg′1 2304wg′1

pwc113
pwf113

pwg13
pwc13

pwf13
pwpc11

2304wg′1 + 7d0 2304wg′1 2304wg′1 2304wg′1 + 7d0 2304wg′1 5d0 + 6144wg′1

pwpc12
pwpc113

pwpc13
pdm1

5d0 + 5376wg′1 5d0 + 4608wg′1 5d0 + 4608wg′1 12d0 + 6912wg′1
]

T ;

7.2 MODELING REAL-TIME TASKS 131

pf1

tf1
[0, 0]

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

tpc11
[0, 0]

pproc

pdm1

pfv10

pwf13

pwpc11

td1
[20, 20]

tpc13

tpc12
[0, 0]

tpc113
[0, 0]

[0, 0]

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

Figure 7.9 Task τ1

6. Nτ1 = N(a1⊔v1⊔p1x⊔d1)⊔Nc1 (Figure 7.9). By juxtaposition, the P-invariant is (fv1 =
18432wg′1 and wd1 = 20d0 + 20736wg1):

Iτ1 =
[

pst1 pa1 pwd1
pwr1

39168wg′1 + 20d0 39168wg′1 + 20d0 20d0 + 20736wg′1 18432wg′1

pwvs1
pv11

pv12
pv13

pwg11
pwc11

pwf11

18432wg′1 18432wg′1 18432wg′1 18432wg′1 768wg′1 768wg′1 + 7d0 768wg′1

pfv1 pproc pwg12
pwc12

pwf12
pwg113

pwc113

18432wg1 7d0 1536wg′1 1536wg′1 + 7d0 1536wg′1 2304wg′1 2304wg′1 + 7d0

pwf113
pwg13

pwc13
pwf13

pwpc11
pwpc12

2304wg′1 2304wg′1 2304wg′1 + 7d0 2304wg′1 5d0 + 6144wg′1 5d0 + 5376wg′1

pwpc113
pwpc13

pdm1
pf1

5d0 + 4608wg′1 5d0 + 4608wg′1 12d0 + 6912wg′1 20d0 + 39168wg1
]

T ;

Task τ2 (Nτ2) (Figure 7.10) is composed similarly and the respective P-invariant is
likewise obtained:

♦ Iτ2 =
[

pst2 pa2 pwd2
pwr2

pwvs2
pv21

396wg′2 + 20d′0 396wg′2 + 20d′0 20d′0 + 324wg′2 72wg′2 72wg′2 72wg′2

pwg21
pwc21

pv22
pv23

pwf21
pfv2 pproc pwg22

pwc22

72wg′2 72wg2
′ 12wg′2 12wg′2 + 7d′0 12wg′2 72wg′2 7d′0 24wg′2 24wg′2 + 7d′0

pwf22
pwg123

pwc123
pwf123

pwg23
pwc23

pwf23
pwpc21

24wg′2 36wg′1 36wg′2 + 7d′0 36wg′2 36wg′2 36wg′2 + 7d′0 36wg′2 5d′0 + 96wg′2

132 MODELING - COMPOSITION RULES AND EXAMPLES

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pwpc21

pdm2
td2

tpc21

[15, 15]

[0, 0]

tr2
[5, 12]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pf2

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

tf2
[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc23
[0, 0]

tpc22
[0, 0]

tpc123
[0, 0]

pproc

pfv2

tv23

pwf23

pwpc22

pwpc123

pwpc23

Figure 7.10 Task τ2

pwpc22
pwpc123

pwpc23
pdm2

pf2

5d′0 + 84wg′2 5d′0 + 72wg′1 5d′0 + 72wg′1 12d′0 + 108wg′2 20d′0 + 396wg′2
]

T .

ps2

pf1

pf2

tendT1,T2
[0, 0]

pstartT1,T2

[0, 0]

ps1

tstartT1,T2

pendT1,T2

(a) (b)

Figure 7.11 Fork and join blocks

7.2.2 Merging the Modeled Tasks

After the composition of each individual task, the task models are merged and fused to
the fork and join blocks, which are instantiated considering the number of tasks defined
in the specification. Taking into account the adopted example, the fork and join blocks
are instantiated considering two real-time tasks (see Figure 7.11(a) and Figure 7.11(b)).
For these Petri net models, the respective P-invariants are:

♦ Nf : If =
[

pstartT1,T2
pst1 pst2

st1 + st2 st1 st2
]

T

7.2 MODELING REAL-TIME TASKS 133

♦ Nj: Ij =
[

pf1 pf2 pendT1,T2

f1 f2 f1 + f2
]

T

As follows, the last steps are presented, including, also, the juxtaposition of the P-
invariants:

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pdm2

tpc21
[0, 0]

tr2
[5, 12]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pf1

pf2

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

tf1
[0, 0]

tf2
[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc23
[0, 0]

tpc22
[0, 0]

tpc123
[0, 0]

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

tpc11
[0, 0]

pproc

pdm1

pfv1

pfv2

0

tv23

pwf23

pwf13

pwpc21

pwpc22

pwpc123

pwpc23

pwpc11

tpc13

tpc12
[0, 0]

tpc113
[0, 0]

[0, 0]

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

td1
[20,20]

td2
[15,15]

Figure 7.12 Joining two tasks

1. N(τ1⊔τ2) = Nτ1 ⊔ Nτ2(Figure 7.12). By juxtaposition (J (Iτ1 , Iτ2) = I(τ1⊔τ2) and
d′0 = d0):

I(τ1⊔τ2) =
[

pst1 pa1 pwd1
pwr1

39168wg′1 + 20d0 39168wg′1 + 20d0 20d0 + 20736wg′1 18432wg′1

pwvs1
pv11

pv12
pv13

pwg11
pwc11

pwf11

18432wg′1 18432wg′1 18432wg′1 18432wg′1 768wg′1 768wg′1 + 7d0 768wg′1

134 MODELING - COMPOSITION RULES AND EXAMPLES

pfv1 pproc pwg12
pwc12

pwf12
pwg113

pwc113

18432wg1 7d0 1536wg′1 1536wg′1 + 7d0 1536wg′1 2304wg′1 2304wg′1 + 7d0

pwf113
pwg13

pwc13
pwf13

pwpc11
pwpc12

2304wg′1 2304wg′1 2304wg′1 + 7d0 2304wg′1 5d0 + 6144wg′1 5d0 + 5376wg′1

pwpc113
pwpc13

pdm1
pf1

5d0 + 4608wg′1 5d0 + 4608wg′1 12d0 + 6912wg′1 20d0 + 39168wg1

pst2 pa2 pwd2
pwr2

pwvs2
pv21

pv22

396wg′2 + 20d0 396wg′2 + 20d0 20d0 + 324wg′2 72wg′2 72wg′2 72wg′2 72wg′2

pv23
pwg21

pwc21
pwf21

pfv2 pwg22
pwc22

pwf22

72wg2
′ 12wg′2 12wg′2 + 7d0 12wg′2 72wg′2 24wg′2 24wg′2 + 7d0 24wg′2

pwg123
pwc123

pwf123
pwg23

pwc23
pwf23

pwpc21

36wg′1 36wg′2 + 7d0 36wg′2 36wg′2 36wg′2 + 7d0 36wg′2 5d0 + 96wg′2

pwpc22
pwpc123

pwpc23
pdm2

pf2

5d0 + 84wg′2 5d0 + 72wg′1 5d0 + 72wg′1 12d0 + 108wg′2 20d0 + 396wg′2
]

T

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pdm2

tr2
[5, 12]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pf1

pf2

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

pstartT1,T2

[0, 0]

tf1
[0, 0]

tf2
[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc23
[0, 0]

tpc123
[0, 0]

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

tpc11

pproc

pdm1

pfv1

pfv2

0

tv23

pwf23

pwf13

tstartT1,T2

[0, 0]pwpc11

tpc13

tpc12
[0, 0]

tpc113
[0, 0]

[0, 0]

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

tpc21
[0, 0]

tpc22
[0, 0]

pwpc21

pwpc22

pwpc123

pwpc23

td1
[20, 20]

td2
[15, 15]

Figure 7.13 Merging fork block

7.2 MODELING REAL-TIME TASKS 135

2. N(τ1⊔τ2⊔f) = N(τ1⊔τ2) ⊔ Nf(Figure 7.13). Adjusting st1 = 39168wg′1 + 20d0 and
st2 = 396wg′2 + 20d0, the following P-invariant is obtained by juxtaposition:

I(τ1⊔τ2⊔f) =
[

pst1 pa1 pwd1
pwr1

39168wg′1 + 20d0 39168wg′1 + 20d0 20d0 + 20736wg′1 18432wg′1

pwvs1
pv11

pv12
pv13

pwg11
pwc11

pwf11

18432wg′1 18432wg′1 18432wg′1 18432wg′1 768wg′1 768wg′1 + 7d0 768wg′1

pfv1 pproc pwg12
pwc12

pwf12
pwg113

pwc113

18432wg1 7d0 1536wg′1 1536wg′1 + 7d0 1536wg′1 2304wg′1 2304wg′1 + 7d0

pwf113
pwg13

pwc13
pwf13

pwpc11
pwpc12

2304wg′1 2304wg′1 2304wg′1 + 7d0 2304wg′1 5d0 + 6144wg′1 5d0 + 5376wg′1

pwpc113
pwpc13

pdm1
pf1 pst2

5d0 + 4608wg′1 5d0 + 4608wg′1 12d0 + 6912wg′1 20d0 + 39168wg1 396wg′2 + 20d0

pa2 pwd2
pwr2

pwvs2
pv21

pv22
pv23

pwg21

396wg′2 + 20d0 20d0 + 324wg′2 72wg′2 72wg′2 72wg′2 72wg′2 72wg2
′ 12wg′2

pwc21
pwf21

pfv2 pwg22
pwc22

pwf22
pwg123

pwc123

12wg′2 + 7d0 12wg′2 72wg′2 24wg′2 24wg′2 + 7d0 24wg′2 36wg′1 36wg′2 + 7d0

pwf123
pwg23

pwc23
pwf23

pwpc21
pwpc22

pwpc123

36wg′2 36wg′2 36wg′2 + 7d0 36wg′2 5d0 + 96wg′2 5d0 + 84wg′2 5d0 + 72wg′1

pwpc23
pdm2

pf2 pstartT1,T2

5d0 + 72wg′1 12d0 + 108wg′2 20d0 + 396wg′2 39168wg′1 + 396wg′2 + 40d0
]

T

3. NT1,T2
= N(τ1⊔τ2⊔f)⊔Nj(Figure 7.14). By juxtaposition (f1 = 20d0+39168wg′1 and

f2 = 20d0 + 396wg′2), the following P-invariant is obtained:

I(T1,T2) =
[

pst1 pa1 pwd1
pwr1

39168wg′1 + 20d0 39168wg′1 + 20d0 20d0 + 20736wg′1 18432wg′1

pwvs1
pv11

pv12
pv13

pwg11
pwc11

18432wg′1 18432wg′1 18432wg′1 18432wg′1 768wg′1 768wg′1 + 7d0

pwf11
pfv1 pproc pwg12

pwc12
pwf12

pwg113

768wg′1 18432wg1 7d0 1536wg′1 1536wg′1 + 7d0 1536wg′1 2304wg′1

pwc113
pwf113

pwg13
pwc13

pwf13
pwpc11

2304wg′1 + 7d0 2304wg′1 2304wg′1 2304wg′1 + 7d0 2304wg′1 5d0 + 6144wg′1

pwpc12
pwpc113

pwpc13
pdm1

pf1

5d0 + 5376wg′1 5d0 + 4608wg′1 5d0 + 4608wg′1 12d0 + 6912wg′1 20d0 + 39168wg1

pst2 pa2 pwd2
pwr2

pwvs2
pv21

pv22

396wg′2 + 20d0 396wg′2 + 20d0 20d0 + 324wg′2 72wg′2 72wg′2 72wg′2 72wg′2

pv23
pwg21

pwc21
pwf21

pfv2 pwg22
pwc22

pwf22

72wg2
′ 12wg′2 12wg′2 + 7d0 12wg′2 72wg′2 24wg′2 24wg′2 + 7d0 24wg′2

136 MODELING - COMPOSITION RULES AND EXAMPLES

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pdm2

tr2
[5, 12]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pf1

pf2

tendT1,T2
[0, 0]

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

pstartT1,T2

[0, 0]

tf1
[0, 0]

tf2
[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc23
[0, 0]

tpc123
[0, 0]

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

pproc

pdm1

pfv1

pfv2

0

tv23

pwf23

pwf13

Arrival

Arrival

DeadLine

DeadLine

Join

Processor

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Voltage
Selection

Voltage
Selection

Fork

tstartT1,T2

pendT1,T2

pwpc11

tpc13

tpc12
[0, 0]

tpc113
[0, 0]

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

[0, 0]

tpc21
[0, 0]

tpc22
[0, 0]

pwpc21

pwpc22

pwpc123

pwpc23

td1
[20, 20]

td2
[15, 15]

Figure 7.14 Generated model

pwg123
pwc123

pwf123
pwg23

pwc23
pwf23

pwpc21

36wg′1 36wg′2 + 7d0 36wg′2 36wg′2 36wg′2 + 7d0 36wg′2 5d0 + 96wg′2

pwpc22
pwpc123

pwpc23
pdm2

pf2

5d0 + 84wg′2 5d0 + 72wg′1 5d0 + 72wg′1 12d0 + 108wg′2 20d0 + 396wg′2

pstartT1,T2
pendT1,T2

39168wg′1 + 396wg′2 + 40d0 39168wg1 + 396wg′2 + 40d0
]

T

As IT
(T1,T2)

× AT1,T2
= 0, in which AT1,T2

is the respective incidence matrix and

IT
(T1,T2)

> 0, the model representing the specification is structurally conservative as well as
structurally bounded. For a better understanding, the following lines explain the model
generated.

In Figure 7.14, the fork block is responsible for starting tasks τ1 and τ2, such that,
after the firing of transition tstartspec , both tasks become eligible for execution. For a
better visualization, the upper blocks model task τ1 and the lower blocks model task τ2,
in such a way that both tasks are assigned to the same processor (place Pproc). Ad-
ditionally, note that each voltage selection block takes into account 3 voltage/frequency

7.3 MODELING INTERTASK RELATIONS 137

levels for executing tasks τ1 and τ2. More specifically, transitions tv11 and tv21 repre-
sent the tasks executing at 1V/10MHz, transitions tv12 and tv22 depict the execution
at 2V/20MHz, and, similarly, transitions tv13 and tv23 represent the tasks’ execution at
1.5V/15MHz. For instance, the computation time of task τ1 at 1V/10MHz is 24s, since
C = ⌈240× 106, /10× 106⌉ = 24s. Furthermore, each task structure block (including the
block with 2 voltages) is connected to the deadline block of the respective task. These
connections are required, since, if a deadline occurs during a task computation, the execu-
tion is no longer possible (see Section 6.3.7). Finally, after evaluating each task, transition
tendspec is fired, so that a token is stored in place pendspec , reporting that a feasible schedule
has been found (desired final marking).

7.3 MODELING INTERTASK RELATIONS

This section provides the steps for modeling tasks with precedence and exclusion relations
using the building blocks presented in Section 6.3.

7.3.1 Modeling Precedence Relations

As presented in Chapter 5, precedence relations are defined between pairs of tasks. Sup-
pose that τi PRECEDES τj is specified, that is, one task can only start its execution after
finishing the other task’s execution. The adopted modeling approach adds a single place
(initially unmarked) shared by the two tasks’ models, such that this place is pre-condition
for task τj and post-condition for task τi. Only after the conclusion of task τi, a token is
made available in such place in order to allow the execution of task τj.

As an example, consider the same specification presented in Section 7.2 : τ1 = (0,
0, 240 × 106, 20, 20) and τ2 = (0, 5, 60 × 106, 15, 20). Besides, assume the following
CPU voltage levels vff = {(1V,10MHz),(2V,20MHz)}, and also the unavailable level of
1.5V/15MHz (which can be “simulated” using the 2 immediate neighboring voltage levels
and the respective maximum CPU frequencies). This specification is augmented with the
following intertask relation: τ1 PRECEDES τ2.

In addition to the conventional blocks, task τ1 requires the utilization of one task
instance conclusion with intertask relations block and task τ2 necessitates one precedence
pre-condition block. These blocks are instantiated considering one intertask relation and
one precedence relation, respectively. Figure 7.15 depicts the building blocks for modeling
task τ1 and Figure 7.16 for task τ2. For the sake of conciseness, these figures show each
task partially composed (N(v1⊔p1x⊔d1) and N(v2⊔p2x⊔d2)). In this particular specification,
place renaming operator must be applied in some building blocks before net union, so
that place merging can be properly performed. The place renaming functions adopted
are:

ρcinter1(p) =

{

pprec1, if (p = prel1)

p, else

ρa2(p) =

{

pwprec2, if (p = pwvs2)

p, else

The composition steps are presented below:

138 MODELING - COMPOSITION RULES AND EXAMPLES

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

tpc11
[0, 0]

pproc

pdm1

pfv1

pwf13

pwpc11

td1
[20, 20]

tpc13

tpc12
[0, 0]

tpc113
[0, 0]

[0, 0]

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

pwd1

pf1

tf1
[0, 0]

pfv1

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

pwvs10

(a) N(v1 p1x d1)

pwd1

prel1

(b) Na1 (c) Ncinter1

Figure 7.15 Blocks for modeling task τ1 with precedence relation

1. N ′
cinter1

= Ncinter1/ρcinter1(p);

2. N ′
a2 = Na2/ρa2(p);

3. Considering the instantiation of fork (Nf) and join blocks (Nj) with 2 tasks,
NT1,T2pre

= Nf ⊔ Nj ⊔ Na1 ⊔N ′
cinter1

⊔ N(v1⊔p1x⊔d1) ⊔N ′
a2
⊔Nc2 ⊔ N(v2⊔p2x⊔d2).

Figure 7.17 shows the TPNE model for tasks τ1 and τ2, in which τ1 PRECEDES τ2
and considering that both tasks are preemptive.

7.3.2 Modeling Exclusion Relations

Exclusion relations are also defined between pairs of tasks. Suppose that τi EXCLUDES
τj is specified. This relation models a situation that two tasks cannot be concurrently
executed. In other words, if task τi starts executing, task τj has to wait up to task τi
finishes its execution and vice-versa. The proposed modeling method adds a single place
shared by the two tasks’ models. This place must have one token (and only one) as
pre-condition for the exclusive execution of any of these two tasks. Therefore, just one
of them could be executing at a time.

7.3 MODELING INTERTASK RELATIONS 139

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pwpc21

pdm2

td2

tpc21

[15, 15]

[0, 0]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc23
[0, 0]

tpc22
[0, 0]

tpc123
[0, 0]

pproc

pfv2

tv23

pwf23

pwpc22

pwpc123

pwpc23

pwd2

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

tr2
[5, 12]

pwvs2

pwvs2

tprec2
[0, 0]

pwprecl2

Pprec1

(c) Niprep2(b) Na2

(a) N(v2 p2x d2)

pf2

tf2
[0, 0]

pfv2

pwd2

(d) Nc2

Figure 7.16 Blocks for modeling task τ2 with precedence relation

In order to demonstrate an example, consider the specification that has been adopted
in previous sections: τ1 = (0, 0, 240 × 106, 20, 20) and τ2 = (0, 5, 60 × 106, 15, 20).
Additionally, assume the same CPU voltage levels vff = {(1V,10MHz),(2V,20MHz)},
and also the unavailable level of 1.5V/15MHz (which can be “simulated” using the 2
immediate neighboring voltage levels and the respective maximum CPU frequencies).
In this section, the specification is augmented with the following intertask relation: τ1
EXCLUDES τ2.

In addition to the conventional blocks, each individual task requires the utilization
of one task instance conclusion with intertask relations block and one exclusion pre-
condition block, in such a way that these blocks are instantiated considering one intertask
relation and one exclusion relation, respectively. Figure 7.18 depicts the building blocks
for modeling task τ1 and Figure 7.19 for task τ2. For the sake of conciseness, these figures
show each task partially composed (N(v1⊔p1x⊔d1) and N(v2⊔p2x⊔d2)).

Similar to the modeling of precedence relations, place renaming operator must be
applied in some building blocks before net union, so that place merging is properly
performed. Below, the place renaming functions that are going to be adopted in the
composition:

ρa1(p) =

{

pwexcl1, if (p = pwvs1)

p, else

140 MODELING - COMPOSITION RULES AND EXAMPLES

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pdm2

tr2
[5, 12]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pf1

pf2

tendT1,T2pre
[0, 0]

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

pstartT1,T2pre

[0, 0]

tf1
[0, 0]

tf2
[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc24
[0, 0]

tpc23
[0, 0]

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

pproc

pdm1

pfv1

pfv2

0

tv23

pwf23

pwf13

Arrival

Arrival

DeadLine

DeadLine

Join

Processor

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Voltage
Selection

Voltage
Selection

Fork

tstartT1,T2pre

pendT1,T2pre

pwpc11

tpc14

tpc12
[0, 0]

tpc13
[0, 0]

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

[0, 0]

tpc21
[0, 0]

tpc22
[0, 0]

pwpc21

pwpc22

pwpc123

pwpc23

tprec2
[0, 0]

pwprec2

pprec1

Precedence
Pre-Condition

Precedence Pre-Condition/
Task I. Conclusion with Inter-task

td1
[20, 20]

td2
[15, 15]

Figure 7.17 Final model representing the precedence relation

ρcinter1(p) =

{

pexcl1, if (p = prel1)

p, else

ρa2(p) =

{

pwexcl2, if (p = pwvs2)

p, else

ρcinter2(p) =

{

pexcl1, if (p = prel1)

p, else

The composition steps are presented as follows:

1. N ′
a1

= Na1/ρa1(p);

2. N ′
cinter1

= Ncinter1/ρcinter1(p);

3. N ′
a2 = Na2/ρa2(p);

4. N ′
cinter2 = Ncinter2/ρcinter2(p);

5. Considering the instantiation of fork (Nf) and join blocks (Nj) with 2 tasks,
NT1,T2exc

= Nf ⊔ Nj ⊔ N ′
a1 ⊔N ′

cinter1 ⊔N(v1⊔p1x⊔d1) ⊔ N ′
a2 ⊔N ′

cinter2 ⊔ N(v2⊔p2x⊔d2).

7.4 MODELING OVERHEADS 141

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

tpc11
[0, 0]

pproc

pdm1

pfv1

pwf13

pwpc11

td1
[20, 20]

tpc14

tpc12
[0, 0]

tpc13
[0, 0]

[0, 0]

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

pwd1

pf1

tf1
[0, 0]

pfv1

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

pwvs10

(a) N(v1 p1x d1)

pwd1

prel1

(b) Na1 (d) Ncinter1

pwvs1

texcl1
[0, 0]

pwexcl1

Pexcl1

(c) Nipree1

Figure 7.18 Blocks for modeling Task τ1 with Exclusion Relation

Figure 7.20 shows the TPNE model for both tasks τ1 and τ2, in which the execution
of one excludes the possibility of concurrent execution of the other. This model considers
that both tasks are preemptive. When considering a task that is preceded by another
task as well as has an exclusion relation with other one, there is a slight difference in the
composition. The task’s periodic arrival block is merged with the respective precedence
pre-condition block, which is then merged with the exclusion pre-condition block.

7.4 MODELING OVERHEADS

As stated previously, runtime overheads may affect the timing and energy constraints of
a hard real-time system. Therefore, overheads must be taken into account during the
modeling and scheduling process in order to guarantee the predictability during system
runtime. As a modeling example, consider the following task specification, which has
been adopted as a standard example in this chapter: τ1 = (0, 0, 240 × 106, 20, 20)
and τ2 = (0, 5, 60 × 106, 15, 20). Additionally, assume the following supply voltages
(and the respective maximum CPU frequencies): vff = {(1V,10MHz),(2V,20MHz)}. An
unavailable level of 1.5V/15MHz is also considered, which can be “simulated” using the
2 immediate neighboring levels. For this example, the dispatcher WCET is 1 second
(o = 1) as well as the time to only adjust the voltage/frequency level (av = 1). As in

142 MODELING - COMPOSITION RULES AND EXAMPLES

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pwpc21

pdm2

td2

tpc21

[15, 15]

[0, 0]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc24
[0, 0]

tpc22
[0, 0]

tpc23
[0, 0]

pproc

pfv2

tv23

pwf23

pwpc22

pwpc123

pwpc23

pwd2

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

tr2
[5, 12]

pwvs2

pf2

tf2
[0, 0]

pfv2

pwd2

prel1

pwvs2

texcl2
[0, 0]

pwexcl2

Pexcl1

(c) Nipree2 (d) Ncinter2(b) Na2

(a) N(v2 p2x d2)

Figure 7.19 Blocks for modeling Task τ2 with Exclusion Relation

previous sections, energy consumption values are not taken into account for the sake of
simplicity.

For the purpose of demonstration as well as to reduce the dimensions of the final
model, task τ1 is assumed to only execute at levels 1V/10MHz and 2V/20MHz, and τ2 at
level 1.5V/15MHz. Figure 7.21 depicts the required building blocks for composing task
τ1 and Figure 7.22 the basic blocks for task τ2. The composition steps are presented as
follows:

1. Nτ1 = Na1 ⊔ Nv1 ⊔Nd1 ⊔ No11
⊔No12

;

2. Nτ2 = Na2 ⊔ Nv2 ⊔Nd2 ⊔ No2v2 ;

3. Considering the instantiation of fork (Nf) and join blocks (Nj) with 2 tasks,
NT1,T2o

= Nf ⊔Nj ⊔Nτ1 ⊔ Nτ2 .

Figure 7.23 shows the TPNE model for tasks τ1 and τ2, such that overheads are
explicitly modeled.

7.5 ANALYSIS AND VERIFICATION OF PROPERTIES

An important goal of the proposed modeling approach is to allow the analysis and verifi-
cation of properties. Depending on the context, these terms may have distinct meanings,

7.5 ANALYSIS AND VERIFICATION OF PROPERTIES 143

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pdm2

tr2
[5, 12]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pf1

pf2

tendT1,T2exc
[0, 0]

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

pstartT1,T2exc

[0, 0]

tf1
[0, 0]

tf2
[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc24
[0, 0]

tpc23
[0, 0]

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

pproc

pdm1

pfv1

pfv2

0

tv23

pwf23

pwf13

Arrival

Arrival

DeadLine

DeadLine

Join

Processor

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Voltage
Selection

Voltage
Selection

Fork

tstartT1,T2exc

pendT1,T2exc

pwpc11

tpc14

tpc12
[0, 0]

tpc13
[0, 0]

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

[0, 0]

tpc21
[0, 0]

tpc22
[0, 0]

pwpc21

pwpc22

pwpc123

pwpc23

texcl2
[0, 0]

pwexcl2

texcl1
[0, 0]

pwexcl1

pexcl1

Exclusion
Pre-Condition

Exclusion
Pre-Condition

Exclusion Pre-Condition/
Task I. Conclusion with Inter-task

td2
[15, 15]

td1
[20, 20]

Figure 7.20 Final model representing the Exclusion Relation between Tasks τ1 and τ2

but this work adopts the definition presented in [114]:

♦ “Verification is the act of proving or checking that a formal system has a formally
stated property . In the strictest interpretation of the word, the goal is just to find
rigorous evidence to the claim that the system is correct in the sense of having the
property.”;

♦ “Analysis means finding answers to formal questions about the behaviour of a sys-
tem”.

In some sense, the difference between both terms is a matter of point of view. Never-
theless, as described in [114], in analysis, most of the thinking is performed after running
a tool, which may provide some properties associated with a model as a basis for reason-
ing about the system. Whereas, in verification, most of the thinking is performed before
executing the tool, for instance, for the construction of a formulae in order to perform
some kind of model-checking. Taking into account these definitions, the analysis and
verification of properties is presented as follows.

144 MODELING - COMPOSITION RULES AND EXAMPLES

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

tr1
[0, 8]

pwvs1

pwpc11

td1

tpc11

[20, 20]

[0, 0]

tplc12

tplc11
[0, 0]

tpc12
[0, 0]

[0, 0]

pdm1

0

pwd1

pwc11

pwc12

pwlc12

pf1

tf1
[0, 0]

pfv1

pwd1

(a) Na1

(b) Nv1

(c) No11

(d) No12

(e) Nc1

(f) Nd1

pwlc11

pwplc11

pwpc12

pwplc12

pwvs1
[0, 0]
tv11

[0, 0]

tv12

pwg11

pwc11

pwlc11

tvs11
tg111 tl11 tfv11

24

23

[0, 0] [0, 0] [0, 0]

pv11

[0, 0]

tg110
[0, 0]

tg112
[0, 0]

tg112ideal

[0, 0]

to11

pwo11

[1, 1]

tc11
[1, 1]

pac11

tlc11
[1, 1]

pfv11

pproc

pfv1

pproc_idle

pprocT2

pprocT2_2volt

pprocT1

pv11

pv12

pwg12

pwc12

pwlc12

tvs12
tg121 tl12 tfv12

12

11

[0, 0] [0, 0] [0, 0]

pv12

[0, 0]

tg120
[0, 0]

tg122
[0, 0]

tg122ideal

[0, 0]

to12

pwo12

[1, 1]

tc12
[1, 1]

pac12

tlc12
[1, 1]

pfv12

pproc

pfv1

pproc_idle

pprocT2

pprocT2_2volt

pprocT1

Figure 7.21 Building blocks for composing task τ1 considering overheads

pwa2 pwr2

pwd2ps2

ta2

tph2

[20, 20]

[0, 0]

tr2
[5, 12]

pwvs2

pwpc121

td2

tpc121

[15, 15]

[0, 0]

tplc21

tplc121
[0, 0]

tpc21
[0, 0]

[0, 0]

pdm2

0

pwd2

pwc121

pwc21

pwlc21

pf2

tf2
[0, 0]

pfv2

pwd2

(a) Na2 (b) Nv2

(e) No2v2

(d) Nc2

(c) Nd2

pwlc121

pwplc121

pwpc21

pwplc21

pwvs2

[0, 0]
tv21

pv21

pproc

pproc_idle

pprocT2_2volt

pprocT2

pwg121

pwc121

pwlc121

tvs21 tg1212
tl121

tfv121

2

[0, 0]
[0, 0] [0, 0]

pv21

[0, 0]

tg1210
[0, 0]

tg1211
[0, 0]

to121

pwo121

[0, 0]

tc12
[1, 1]

pac121

tlc121
[1, 1]

pfv121 pwg21
pwc21

pwlc21

tl21
tfv21

2

[0, 0]
[0, 0] [0, 0]

[0, 0]

[0, 0]

to21

2

pwo21

[0, 0]

tc21
[1, 1]

tlc21
[1, 1]

pfv21

tg210

tg212

tg211

[0, 0]
tgov21 tov21

[0, 0]

pwov21

pprocT1

pfv2

Figure 7.22 Building blocks for composing task τ2 considering overheads

7.5 ANALYSIS AND VERIFICATION OF PROPERTIES 145

p
w

a
2

p
w

r2

p
w

d
2

p
s
2

ta
2

tp
h

2

0

[2
0

, 2
0

]

[0
, 0

]

p
d

m
2

tr2
[5

, 1
2

]

p
w

v
s
2

p
f1

p
f2

te
n

d
[0

, 0
]

p
s
ta

rt

[0
, 0

]

tf1
[0

, 0
]

tf2
[0

, 0
]

tv
2
1

[0
, 0

]

tp
lc

2
1

[0
, 0

]

tp
c
2
1

[0
, 0

]

p
w

a
1

p
w

r1

p
w

d
1

p
s
1

ta
1

tp
h
1

[2
0

, 2
0

]

[0
, 0

]

p
w

g
1

1

p
w

c
1
1

p
w

lc
1

1

tv
s
1
1

tg
1

1
1

tl1
1

tfv
1

1

2
4

2
3

[0
, 0

]
[0

, 0
]

[0
, 0

]

tr1
[0

, 8
]

p
w

v
s
1

p
v
1
1

[0
, 0

]
tv

1
1

[0
, 0

]

tv
1
2

[0
, 0

]

p
p

ro
c

p
d

m
1

p
fv

1

p
fv

2

0

A
rriv

a
l

D
e

a
d

L
in

e

D
e
a
d

L
in

e

J
o

in

P
ro

c
e

s
s

o
r/

P
re

e
m

p
tiv

e
 T

a
s

k

S
tru

c
tu

re
 w

ith

O
v

e
rh

e
a

d

P
re

e
m

p
tiv

e
 T

a
s

k
 S

tru
c

tu
re

 w
ith

 O
v

e
rh

e
a

d
V

o
lta

g
e

S

e
le

c
tio

n

V
o

lta
g

e

S
e

le
c

tio
n

F
o

rk

ts
ta

rt

p
e

n
d

p
w

p
c
1

1

tp
lc

1
2

tp
lc

1
1

[0
, 0

]

tp
c
1
2

[0
, 0

]

p
w

p
lc

1
1

p
w

p
c
1

2

p
w

p
lc

1
2

tp
c
1
1

[0
, 0

]

[0
, 0

]

tp
c
1

2
1

[0
, 0

]

tp
lc

1
2

1
[0

, 0
]

p
w

p
c
1
2

1

p
w

p
lc

1
2

1

p
w

p
c
2
1

p
w

p
lc

2
1

tg
1

1
0

[0
, 0

]

tg
1

1
2

[0
, 0

]

tg
1
1

2
_

2
v
o

lt
[0

, 0
]

to
1

1

p
w

o
1

1[1
, 1

]

tc
1

1
[1

, 1
]

p
a

c
1
1

tlc
1

1
[1

, 1
]

p
fv

1
1

p
w

g
1

2

p
w

c
1
2

p
w

lc
1

2

tv
s
1
2

tg
1

2
1

tl1
2

tfv
1

2

1
2

1
1

[0
, 0

]
[0

, 0
]

[0
, 0

]

p
v
1
2

[0
, 0

]

tg
1

2
0

[0
, 0

]

tg
1

2
2

[0
, 0

]

tg
1

2
2

_
2

v
o

lt
[0

,0
]

to
1

2

p
w

o
1

2[1
, 1

]

tc
1

2
[1

, 1
]

p
a

c
1
2

tlc
1

2
[1

, 1
]

p
fv

1
2

p
w

g
1

2
1

p
w

c
1

2
1

p
w

lc
1

2
1

tv
s
2
1

tg
1

2
1

2
tl1

2
1

tfv
1

2
1

2

[0
, 0

]
[0

, 0
]

[0
, 0

]

p
v
2
1

[0
, 0

]

tg
1

2
1

0
[0

, 0
]

tg
1

2
1

1
[0

, 0
]

to
1

2
1

p
w

o
1

2
1

[1
, 1

]

tc
1

2
[1

, 1
]

p
a

c
1

2
1tlc

1
2

1
[1

, 1
]

p
fv

1
2

1
p

w
g

2
1

p
w

c
2
1

p

w
lc

2
1

tl2
1

tfv
2

1

2

[0
, 0

]
[0

, 0
]

[0
, 0

]

[0
, 0

]

[0
, 0

]

to
2

1

p
w

o
2

1[1
, 1

]

tc
2
1

[1
, 1

]

tlc
2

1
[1

, 1
]

p
fv

2
1

tg
2

1
0

tg
2

1
2

tg
2

1
1

[0
, 0

]

tg
o

v
2

1
to

v
2

1
[1

, 1
]

p
w

o
v
2

1

p
p

ro
c
_

id
le

p

p
ro

c
T

2

p
p

ro
c
T

1
p

p
ro

c
T

2
_

2
v
o

lt

A
rriv

a
l

P
re

e
m

p
tiv

e
 T

a
s

k
 S

tru
c

tu
re

 w
ith

 O
v

e
rh

e
a

d

P
re

e
m

p
tiv

e
 T

a
s

k
 S

tru
c

tu
re

 w
ith

 O
v

e
rh

e
a

d

td
2

[1
5

,1
5

]

td
2

[2
0

,2
0

]

Figure 7.23 Final model representing tasks τ1 and τ2 with overheads

146 MODELING - COMPOSITION RULES AND EXAMPLES

7.5.1 Analysis

The Petri nets generated using the proposed modeling approach have some quantitative
and qualitative properties, which are of the most importance when design hard real-time
systems in the context of the proposed software synthesis method. Below, the properties
are listed and reasoned:

♦ Conservativeness and Boundness. Since conservativeness is a particular case of
boundness, attention is devoted to the latter. In short, boundness indicates that
the state space size of a Petri net model is finite. This property is essential in
the scheduling activity (see Chapter 8), as the pre-runtime scheduling algorithm
is guaranteed to always finish, providing as result either a feasible schedule or
none, in case no one exists. In Section 7.1, a proof is presented indicating that
all generated models are structurally bounded. Note that structural boundness
(qualitative property) is stronger than just boundness (quantitative property), since
the former assures that the state space size is finite for any initial marking;

♦ Deadlock. Another property intrinsic to the models is the absence of liveness (see
Section 3.5). In other words, the generated models contain deadlock states, which
do not allow any transition to be fired. Indeed, deadlock states are important and
necessary, since they represent the desired final marking (indication that a feasible
schedule has been found) or a deadline missing. Obviously, the latter is avoided by
the scheduling algorithm. Besides, deadlocks may occur due to bad specification
of intertask relations. For instance, a cyclic dependence on resources can lead to a
deadlock state, such that the execution of any task is no longer possible. In this
situation, the algorithm backtracks and tries to reach other states. Nevertheless, it
is possible not to find any feasible schedule due to the problems on the specification
provided by the designer.

7.5.2 Verification

This section provides the verification of some important properties in the generated mod-
els using model checking. To assist this activity, INA tool [99] has been adopted, since it
provides an infra-structure for performing model checking in time Petri nets using CTL
(Computation Tree Logic) [115]. As the reachability graphs of the generated models do
contain dead states (e.g., end vertexes), a loop is inserted in these states (e.g., an edge
to itself), such that the evaluation of formulas about infinite paths is allowed.

For information about model checking and CTL, the interested reader should refer
to [115] for a gentle introduction or may read Appendix B for an overview.

Processor Utilization

One important verification to be performed is to assure that only one task utilizes
the processor at a time. However, before showing the CTL formula for this verification,
it is important to first verify if a task running on the CPU is being executed at one and

7.5 ANALYSIS AND VERIFICATION OF PROPERTIES 147

only one voltage/frequency level. Obviously, there is no sense for a task running at two
or more voltage/frequency levels simultaneously on a hardware platform with a single
processor. The formula for this verification is presented as follows, taking into account
task τ1 from the model depicted in Figure 7.14:

AG((pwc11
∧ pwc12

∧ (pwc13
∨ pwc113

)) ∨ (¬pwc11
∧ pwc12

∧ (pwc13
∨ pwc113

)) ∨ (pwc11
∧

¬pwc12
∧ (pwc13

∨ pwc113
)) ∨ (pwc11

∧ pwc12
∧ ¬(pwc13

∨ pwc113
)))

Previous formula expresses that for all paths, the specified property is satisfied in all
states. More specifically, the property indicates that there are not two or more waiting
for computation places marked simultaneously for task τ1. For the state space of the the
model depicted in Figure 7.14, INA returned false considering the presented formula.
Furthermore, this formula can be extended to deal with more voltage/frequency levels as
well as to deal with other tasks. For instance, considering task τ2, the equivalent formula
is:

AG((pwc21
∧ pwc22

∧ (pwc23
∨ pwc123

)) ∨ (¬pwc21
∧ pwc22

∧ (pwc23
∨ pwc123

)) ∨ (pwc21
∧

¬pwc22
∧ (pwc23

∨ pwc123
)) ∨ (pwc21

∧ pwc22
∧ ¬(pwc23

∨ pwc123
)))

Regarding the processor utilization, the formula below verifies the possibility of two
tasks using the CPU at the same time for the model depicted in Figure 7.14:

AG((pwc11
∨ pwc12

∨ pwc13
∨ pwc113

) ∧ (pwc21
∨ pwc22

∨ pwc23
∨ pwc123

))

In other words, this formula verifies the absence of states with two waiting for com-
putation places marked for two different tasks. INA tool returned false for the previous
formula confirming the impossibility of two tasks using the processor simultaneously.
Similarly, this formula can be extended to consider Petri net models with more tasks.
For the Petri net model representing overheads (Figure 7.23), the following formula can
also verify the problem in question:

AG(pprocT1 ∧ (pprocT2 ∨ pprocT2 2volt))

Places pprocT1 , pprocT2 and pprocT2 2volt represent, respectively, task τ1 and τ2 in execution
as well as task τ2 executing on a second voltage/frequency level. Since it is not possible
for both tasks execute at the same moment on the CPU, INA also returned false for
previous formula and the respective state space.

Precedence Relation

As presented, a precedence relation τi PRECEDES τj states that task τj must await
task τi to finish before executing. To verify whether this relation is met, waiting for
processor granting places of both tasks cannot be marked at the same moment, since
the simultaneous marking indicates that both tasks can execute without respecting this
intertask relation. For the model depicted in Figure 7.17, the formula for this verification
is:

148 MODELING - COMPOSITION RULES AND EXAMPLES

AG((pwg11
∨ pwg12

∨ pwg13
∨ pwg113

) ∧ (pwg21
∨ pwg22

∨ pwg23
∨ pwg123

))

Taking into account this formula and the respective state space, INA returned false,
confirming that the proposed modeling approach satisfies the precedence relation.

Exclusion Relation

An intertask relation τi EXCLUDES τj states that no execution of τj can start while
task τi is executing (and vice-versa). Likewise, to verify whether this relation is met,
waiting for processor granting places of both tasks cannot be marked at the same moment,
since the simultaneous marking indicates that both tasks can preempt each other. For
the model depicted in Figure 7.20, the formula for this verification is:

AG((pwg11
∨ pwg12

∨ pwg13
∨ pwg113

) ∧ (pwg21
∨ pwg22

∨ pwg23
∨ pwg123

))

Taking into account this formula and the respective state space, INA returned false,
confirming that the proposed modeling approach satisfies the exclusion relation.

7.6 SUMMARY

This chapter detailed the adopted compositions rules for combining basic building block
models and it also presented some modeling examples. As demonstrated, the system
models are constructed in such a way that some quantitative/qualitative properties are
assured to be contained in all generated models. Besides, the generated Petri net models
provide a basis for carrying out other activities in the proposed method (e.g., scheduling).

CHAPTER 8

SCHEDULING AND CODE GENERATION

This chapter describes the scheduling and code generation activities of the proposed
software synthesis method. From the Petri net model, the pre-runtime scheduling is
performed and, next, the code generation is carried out. Scheduling has an prominent
role in the design of hard real-time systems, since this activity must guarantee that all
tasks meet the respective timing constraints, all intertask relations are satisfied, and the
system energy constraint is not surpassed. Taking into account these requirements, the
result of the scheduling activity is a feasible schedule, which defines the order of each task
execution during system runtime, including the voltage/frequency levels associated to
each task. From the feasible schedule, the code generation activity provides a predictable
C-code, which includes not only the code of each task, but, also, a customized runtime
support and a schedule table with the information about each task execution (e.g., the
start time).

Besides, a technique for dealing with dynamic slack times is proposed in order to
take advantage of new opportunities to further reduce energy consumption during sys-
tem execution. This technique in conjunction with the proposed pre-runtime scheduling
approach can be seen as a hybrid scheduling, since it mixes pre-runtime and runtime
scheduling methods.

8.1 SCHEDULING

The proposed scheduling activity adopts a pre-runtime scheduling approach, in which a
feasible schedule is generated at design-time. As described in Chapter 3, pre-runtime
scheduling approaches provide several benefits in comparison with runtime counterparts,
mainly, in the context of runtime predictability.

In this work, the pre-runtime scheduling is performed by a depth-first search algorithm
that generates a TLTS (see Definition 6.5, Chapter 6) from a Petri net model. More
specifically, the proposed algorithm performs a state space exploration [116], in the sense
that, starting from an initial state, the algorithm recursively explores all successor states,
by firing all firable transitions in each reached state. However, the state space exploration
(e.g., reachability graph exploration) suffers from the state space size explosion [114] (e.g.,
the size of the reachability graph).

In general, the state space size grows exponentially in the number of represented
objects. Assuming n non-interacting tasks, each one with k local states, the respective
state space size is O(kn) [114]. The explosion is mainly related to the representation
of concurrency using interleaving semantics. For instance, the analysis of n concurrent
actions has to tackle all n! action interleaving possibilities (e.g., the order of transition
firings), unless dependencies between these actions are considered. Nevertheless, not all
states need to be explored in order to find a feasible schedule.

149

150 SCHEDULING AND CODE GENERATION

Next section presents the techniques adopted to tackle the state space size. After that,
the proposed scheduling algorithm is presented, followed by an example and comments
about the complexity.

8.1.1 Tackling State Space Size

As the state space grows exponentially in the number of tasks, the proposed scheduling
activity adopts some techniques to tackle the state space size, more specifically: (i) the
modeling itself; (ii) a preprocessing; (iii) partial order reduction; and (iv) the removing
of undesirable states. As follows, each technique is described.

8.1.1.1 Modeling The proposed modeling approach (Chapter 6) explicitly represents
the dependencies between actions, for instance, resource granting/releasing, precedence
and exclusion relations between tasks. Therefore, the modeling itself may help in mini-
mizing the state space size, since the amount of concurrent actions is reduced providing
less interleaving possibilities.

8.1.1.2 Preprocessing The proposed modeling approach represents all voltage/fre-
quency levels that a task may adopt to its execution. These levels are related to the
DVS technology (Chapter 3), which provides a trade-off between energy consumption
and performance. During schedule generation, the proposed algorithm selects a task
for execution as well as one voltage/frequency level, which dictates the task execution
time and energy consumption. One simple criteria for selecting a voltage/frequency level
is the adoption of a greedy approach, in the sense that the minimum level available is
chosen. Although this criteria may considerably reduce the energy consumption of the
current task, it may affect the next task deadline, making the algorithm to perform
several backtracks and, consequently, exploring more states. Conversely, selecting the
maximum level available improves the current task execution time and minimally affects
the next task. However, the energy saving considerably diminishes, as the consumption
is proportional to the supply voltage squared. Another alternative is the selection of an
unique constant speed S [30], which maximizes the CPU utilization using the following

equation:
∑|T |

i=1
ci

S.pi
= 1. For a better understanding, T is the set of system tasks, ci

is the worst-case execution cycles of a task τi, and pi is the period. Nevertheless, such
equation generates interesting results when deadlines are equal to the periods, the release
times are 0, and intertask relations are not taken into account.

In this work, before applying the proposed scheduling and modeling activities, the sys-
tem specification is preprocessed considering an extension of Yao’s algorithm [25] (LPEDF
- Low-Power Earliest Deadline First), in which a set of discrete voltage/frequency levels
is taken into account [26]. Yao’s algorithm is adopted as a basis for resembling CPU’s
unavailable voltage/frequency levels by the nearest accessible levels as well as a guide
for selecting an initial voltage/frequency for each task instance during scheduling genera-
tion. This algorithm finds an optimal DVS schedule for a set of real-time tasks using EDF
scheduling policy, without constraining the release and deadline times of each task. How-
ever, LPEDF does not take into account intertask relations and overheads, but the latter

8.1 SCHEDULING 151

1 LPEDF(J)
2 {
3 R={};
4 i=0;
5 while (J is not empty) {
6 Find the critical interval Ii = [Ri,Di] with the highest intensity

(CPU speed), f(Ii) =
∑

cn
Di−Ri

, in which the sum is taken over all

task instances jn in Ji with [rn, dn] ⊆ [Ri,Di];
7 R=R∪ {(Ii, Ji, f(Ii))};
8 J = J - Ji;
9 for all jk in J {
10 if (dk ∈ [Ri,Di]) {
11 dk = Ri;
12 } else if (dk ≥ Di) {
13 dk = dk - (Di - Ri);
14 }
15 Adjust release times rk similarly;
16 }//end - for
17 i++;
18 }//end - while
19 return R;
20 }

Figure 8.1 LPEDF - low-power earliest-deadline first

is considered after carrying out this first phase. Figure 8.1 depicts the Yao’s algorithm.
For a better understanding, the following paragraph presents an explanation.

Assume a set of task instances J requires to be executed in a given time interval. A
critical interval Ii for J is an interval in which a subset of task instances must be scheduled
at maximum constant speed (or frequency) in any optimal schedule for J . The algorithm
schedules those task instances in that speed (lines 6-7), and constructs a subproblem for
the remaining instances and solves it recursively (lines 8-17). In the code, ci, ri and di are
the worst-case execution cycles, release time and deadline of a task instance, respectively.
Ri is equal to the smallest release time of a task instance contained in the interval, and
Di is equal to the largest deadline. The algorithm result is a set of intervals (R), in
which each interval Ii has a set of task instances and an associated voltage/frequency
level for executing those tasks. Note that all calculated speeds (frequencies) not available
on the CPU are replaced by the neighboring voltage/frequency levels using the technique
described in [12] (see also Section 6.3.6). Obviously, previous technique does not assume
the existence of a calculated speed that surpasses the maximum frequency available on
the processor.

After executing LPEDF algorithm, the overheads related to dispatcher callings, volt-
age/frequency switching, and preemptions are included in the interval Ii. As a conse-
quence, each task instance contained in the interval Ii has a new voltage/frequency level,
which is higher than the original one, in order to meet timing constraints. The new level
is obtained by associating a variable oi to each interval Ii (which represents the amount of

overheads in Ii) and redefining the intensity function f to consider oi: f
′(Ii) =

∑
jn∈Ji

cn

Di−Ri−oi
.

Depending on the result, the new level needs to be replaced by the neighboring volt-

152 SCHEDULING AND CODE GENERATION

age/frequency levels available on the CPU using the technique described in [12], if it does
not exist on the processor. As the final result, each task τk has a set of ideal voltages
and frequencies available for the respective instances during the schedule generation (in
addition to those available on the cpu), and they are represented by Videalk and Fidealk ,
respectively. The mapping is performed by function vff idealk : Videalk → Fidealk . Next, the
TPNE model is generated also taking into account these ideal levels, which are modeled
using the building blocks described in Chapter 6.

Depending on the task specification, previous technique for including overheads in
the intervals may lead to higher speeds not available on the CPU [27]. Instead of as-
suming the unavailability of a feasible schedule previously, this work leaves to the pre-
runtime scheduling algorithm the possibility to find other execution order (as well as volt-
age/frequency level) for task instances in intervals violating CPU maximum frequency.

As an example of Yao’s algorithm execution, assume the following task set: T = {τ1
= (0, 0, 240×106, 20, 20), τ2 = (0, 5, 60×106, 15, 20)}. As presented in Chapter 5, each
task is represented by a tuple τi = (phi, ri, ci, di, pi), in which phi is the initial phase; ri is
the release time; ci is the worst-case execution cycles (WCEC) required for executing task
τi; di is the deadline; and pi is the period. For this specification, the LCM is equal to 20,
which points out the existence of 2 task instances (S(τ1) = 1 and S(τ2) = 1). In addition,
assume the following supply voltages and the respective maximum frequencies vff =
{(1V,10MHz),(2V,20MHz)}. In the first (and only) iteration of the algorithm execution,
two intervals are obtained: I ′1 = [0, 20] with J ′

1 = {τ 11 , τ 12} and I ′′1 = [5, 15] with J ′′
1 = {τ 12 }.

As I ′1 has the highest intensity (f(I ′1) = 300 × 106/20 =15MHz), I ′1 is selected as the
critical interval (I1 = I ′1). Since there are no more task instances to be scheduled, the
algorithm stops. Although the CPU specification does not contain any voltage/frequency
level with 15MHz, this level can be “simulated” using the two neighboring levels available
on the processor. If overheads are taken into account and assuming o1 = 1 (one second),
the final level is (f ′(I1) = 300× 106/(20− 1) ≈15.789MHz).

In a suitable implementation, the time complexity of Yao’s algorithm [25] isO(Nlog2N)
- in which N is the number of tasks’ instances - whereas a scheduling problem with inter-
task relations is NP-hard [117]. Experiments have shown that the preprocessing greatly
improves scheduling generation processing time as well as the state space size by avoid-
ing inappropriate voltage/frequency levels. For a better understanding, when choosing a
voltage/frequency level for a task instance, the proposed scheduling algorithm first selects
a level taking into account the result obtained by the preprocessing phase, and prunes
transitions that represent lower levels. If the selected voltage/frequency always leads to
an undesirable state, such as deadline missing, the transition that represents this level is
disregarded and the immediate higher voltage/frequency level available on CPU, which
leads to a computation time less than or equal to the deadline, is selected.

8.1.1.3 Partial-Order Reduction One feasible approach to tackle the state space
size is minimizing the impact of interleaving on the state space exploration by exploit-
ing the independence of actions. More specifically, if actions can be executed in any
order, such that the model always reaches the same state, these actions are denomi-
nated independent. In other words, it does not matter in which order these actions

8.1 SCHEDULING 153

are executed [116, 118]. Previous characteristic is denominated diamond property and
techniques, that exploit the independence of actions, are usually named partial-order
reduction methods.

Partial-order reduction methods throw some interleaving possibilities away by execut-
ing just a subset of the firable actions, called persistent set, in each reached state. The
pruned states (resulted from the reduction of interleaving possibilities) are assumed to
not affect the property(ies) of interest due to the diamond property.

The partial-order reduction adopted in this work defines some classes of transitions,
in which the highest-choice priority levels are given to classes that represent independent
actions and the lowest ones to dependent actions. Independent actions are related to
transitions that do not disable other actions, such as arrival, precedence,and dependent
actions are related to processor granting and exclusion relations, for instance. When
changing from one state to another, the highest choice-priority class of transitions is
analyzed (resulting in the persistent set) whereas the other classes are pruned. As a
consequence, this technique decreases the state space size as well as allows checking
unavailability of feasible schedules more quickly.

Table 8.1 depicts the choice-priority levels of each transition class, where the lowest
number indicates the highest priority. In this table, transition tri (release) does not have
a specific choice-priority, since it is a special type of transition that, once it is firable,
may fire in any transition class. Considering the class that transition tri is firable, tri is
selected as the first option. Such mechanism allows tasks to be released for execution at
any moment according to the timing interval provided by tri.

Table 8.1 Choice-priority levels

Choice-Priority Type Transition

- Release tri
1 Final tfi, tfvin, tfv1in
2 Arrival tai, tphi
3 Voltage tvin
4 Others tvsin , tlin
5 Precedence tprecij
6 Overhead toin , to1in
7 Computation tcin , tc1in, tlcin
8 Exclusion texcij
9 ProcessorGranting tgin , tg1in

8.1.1.4 Removing Undesirable States Chapter 6 presents a building block able
to find out deadline missing, which is an undesirable reachable state. Since the proposed
method deals with hard real-time systems with energy constraints, only schedules, which
do not reach any of these undesirable states, are of interest. During the TLTS generation,
transitions leading to undesirable states are discarded by the scheduling algorithm, for
instance, deadline-checking transitions.

154 SCHEDULING AND CODE GENERATION

1 scheduling-synthesis(S,MF,TPNE, emax)
2 {
3 if (S.M = MF) return TRUE;
4 tag(S);
5 PT = pruning(firable(S));
6 if (|PT| = 0) return FALSE;
7 for each (〈t, θ〉 ∈ PT) {
8 S’= fire(S, t, θ, TPNE);
9 if (untagged(S’) ∧
10 scheduling-synthesis (S’,MF,TPNE, emax)){
11 add-in-trans-system (S,S’,t,θ);
12 return TRUE;
13 }
14 }
15 return FALSE;
16 }

Figure 8.2 Scheduling algorithm

8.1.2 Pre-Runtime Scheduling Algorithm

The proposed algorithm (Figure 8.2) is a depth-first search method for TLTS generation
that aims achieving the stop criterion (final marking MF reachability - see Section 6.3.7)
without generating the whole state space. Whenever the stop criterion is achieved, a
feasible schedule is generated. This algorithm is an extension of Barreto’s approach [16]
taking into account DVS as well as new techniques for dealing with the state space size
explosion. An explanation is presented as follows.

Considering that (i) the Petri net model is surely bounded, (ii) the timing constraints
are enclosed by finite intervals, and (iii) the algorithm strictly implements the transition
firing rule of the time Petri nets, the TLTS is finite and thus the proposed algorithm
always finishes, providing as result either a feasible schedule or none.

In this algorithm, S is the current state, MF is the desired final marking, TPNE is the
extended time Petri net model, and emax is the system energy constraint (Section 5.2).
The only way the algorithm returns TRUE is when it reaches the desired final marking
(MF , stop criterion), implying that a feasible schedule has been found (line 3). The
tagging scheme (lines 4 and 9) ensures that no state is visited more than once. The state
space generation algorithm incorporates the state space pruning (line 5), in which, for
the set of firable transitions (function firable), function pruning is executed according
to the rules described in Section 8.1.1 (including the preprocessing phase). PT is a set
of ordered pairs 〈t, θ〉 representing, for each firable transition (post-pruning), all possible
firing times in the firing domain. The function fire (line 8) returns a new generated state
(S ′) due to the transition t firing at time θ. The feasible schedule is represented by a
timed labeled transition system that is generated by the function add-in-trans-system

(line 11). Only when the system does not have a feasible schedule, the whole state space
is analyzed.

8.1.2.1 Tagging Scheme As explained previously, the tagging scheme is adopted to
avoid a state to be visited more than once. This process can be time consuming, since

8.1 SCHEDULING 155

each new reached state needs to be verified against all previously visited states. In order
to tackle such a problem, this work generated several experiments’ state space, which led
to the following solution. When a new state is reached, only visited states that occurred
at the same global time instant (assuming a global clock) need to be verified. Indeed,
besides the marking, a state also takes into account the time θ when the transition t,
in previous state, was fired. The proposed solution adopts a hash table for storing the
visited states, where the key for a state si is the global time when such a state was reached:
KEY (si) =

∑i−1
j=0 θj . Because each hash table entry may have several stored states, each

entry points to a binary tree in order to optimize even more the verification. Experiments
have demonstrated that this solution improves in 50 % the algorithm’s execution time.

8.1.3 Algorithm Execution Example

To demonstrate the execution of the scheduling algorithm, consider the following task
specification, which has been adopted as a standard example in thesis: T = {τ1 = (0, 0,
240×106, 20, 20), τ2 = (0, 5, 60×106, 15, 20)}. The reader should remind that each task
is represented by a tuple τi = (phi, ri, ci, di, pi), in which phi is the initial phase; ri is the
release time; ci is the worst-case execution cycles (WCEC) required for executing task τi;
di is the deadline; and pi is the period. For this specification, the time unit is equal to one
second and the LCM is equal to 20. In addition, assume the following supply voltages and
the respective maximum frequencies: vff = {(1V,10MHz),(2V,20MHz)}. Furthermore, for
the sake of this example, the energy consumption is 1nJ/cycle at 1V/10MHz, 2nJ/cycle
at 2V/20MHz, and overheads are not taken into account.

Firstly, the preprocessing is performed, which assigns 1.5V/15MHz as the initial volt-
age/frequency level for each task instance (Section 8.1.1.2). Next, the TPNE model
is generated (Figure 8.3) considering the voltage/frequency levels available on the CPU
(1V/10MHz,2V/20MHz) and the unavailable level obtained with the preprocessing (1.5V/
15MHz). After obtaining the TPNE model, the scheduling algorithm is executed (see Ta-
ble 8.2). In this table, visited represents the amount of visited states up to that point;
state shows the reached state identification; ET is the set of enabled transitions in that
state; C is the clock vector. For the sake of readability, the symbol # is not presented
in that vector. FT is the set of firable transitions; PT is the post-pruned set of firable
transitions; selected represents the fired transition in that state and the respective elapsed
time; and energy depicts the accumulated energy consumption (in joules) from the initial
state up to that point.

Initially, at state 0, only transition tstartT1,T2 is enabled, since the initial marking is
m(pstartT1,T2) = m(pproc) = 1. After the firing of tstartT1 ,T2 , both tasks T1 and T2 become
eligible for execution, but task T1 is released first (state 2) due to its timing constraints
(ri = 0). The reader should note the partial-order reduction at state 3, which has 4 firable
transitions. Only transition tph2 is not pruned, since it has the highest choice-priority
level (see Table 8.1). Similar circumstance occurs in further states (e.g., state 17 and
28). In relation to the preprocessing, state 4 depicts an interesting situation. Despite
the availability of 3 voltage/frequency levels for executing T1, transition tv11 is pruned,
since the respective voltage/frequency level of 1V/10MHz is below the level obtained by

156 SCHEDULING AND CODE GENERATION

pwa2 pwr2

pwd2ps2

ta2

tph2

0

[20, 20]

[0, 0]

pwg21 pwc21 pwf21

tvs21 tg21
tc21 tfv21

6 6

[0, 0] [1, 1] [0, 0]

pdm2

tr2
[5, 12]

pwvs2

pv21

[0, 0]

tv12 [0, 0]

pf1

pf2

tendT1,T2
[0, 0]

pv23 pwg123 pwc123 pwfv123

tvs23 tg123
tc123 tfv123

2 2

[0, 0] [1, 1] [0, 0][0, 0]

pwg23 pwc23

tg23 tc23

2

[0, 0] [1, 1]
tfv23

2

[0, 0]

pstartT1,T2

[0, 0]

tf1
[0, 0]

tf2
[0, 0]

pwg22 pwc22 pwf22

tvs22
tg22 tc22 tfv22

3 3
pv22

tv22 [0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

[0, 0]

tpc23
[0, 0]

tpc123
[0, 0]

pwa1 pwr1

pwd1ps1

ta1

tph1

[20, 20]

[0, 0]

pwg11 pwc11 pwf11

tvs11
tg11 tc11 tfv11

24 24

[0, 0] [1, 1] [0, 0]

tr1
[0, 8]

pwvs1

pv11

[0, 0]
tv11 [0, 0]

pv13 pwg113
pwc113 pwfv113

tvs13 tg113 tc113 tfv113

8 8

[0, 0] [1, 1] [0, 0][0, 0]

pwg13 pwc13

tg13 tc13

8

[0, 0] [1, 1]
tfv13

8

[0, 0]

pwg12 pwc12 pwf12

tvs12
tg12 tc12 tfv12

12 12
pv12

tv12
[0, 0] [1, 1] [0, 0]

[0, 0]
[0, 0]

tv13
[0, 0]

pproc

pdm1

pfv1

pfv2

0

tv23

pwf23

pwf13

Arrival

Arrival

DeadLine

DeadLine

Join

Processor

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Preemptive Task Structure

Preemptive Task Structure

Preemptive Task Structure with 2 Volt.

Voltage
Selection

Voltage
Selection

Fork

tstartT1,T2

pendT1,T2

pwpc11

tpc13

tpc12
[0, 0]

tpc113
[0, 0]

pwpc12

pwpc113

pwpc13

tpc11
[0, 0]

[0, 0]

tpc21
[0, 0]

tpc22
[0, 0]

pwpc21

pwpc22

pwpc123

pwpc23

td1
[20, 20]

td2
[15, 15]

Figure 8.3 Generated model for tasks τ1 and τ2

Yao’s algorithm (1.5V/15MHz - transition tv13). Thus, transition tv13 is selected and T1

acquires the processor granting in order to start its execution (state 6).

Observe that, after each time unit related to the computation time of task T1 (e.g.,
state 7), the processor is released, and task T1 needs to take the processor granting again
(e.g., state 8) for continuing its computation. Such approach is required to allow other
concurrent tasks to be assigned to the CPU, since the preemptive scheduling method
is adopted (Section 6.3.5). At state 16, task T2 is released for execution (r2 = 5), and
the voltage/frequency level of 1.5V/15MHz (transition tv23) is selected (state 17). As T2

has an earlier deadline, task T1 is preempted at state 19. Additionally, the reader should
notice that the voltage/frequency level is reduced from 2V/20MHz to 1V/10MHz at state
23, because 1.5V/15MHz is “simulated” using both voltage/frequency levels. At state
29, task T2 finishes its execution, and, consequently, T1 returns from preemption at state
30. From state 52 to 54, transition td1 is fireable. Nevertheless, since such transition
represents the occurrence of an undesirable state (deadline missing), the pruning is applied
(Section 8.1.1): td1 /∈ PT . Finally, after concluding all tasks’ execution, a token is stored
in place pendT1,T2 , indicating that a feasible schedule has been found. In this example, no
backtrack occurs, in other words, a schedule has been found in the first attempt, and the

8.1 SCHEDULING 157

Table 8.2 Algorithm execution
visited state ET C FT PT selected energy

1 0 {tstartT1,T2} [0] {tstart} {tstart} (tstart,0) 0.00
2 1 {tph1,tph2} [0,0] {tph1,tph2} {tph1,tph2} (tph1,0) 0.00
3 2 {td1,tr1,tph2} [0,0,0] {tr1,tph2} {tr1,tph2} (tr1,0) 0.00
4 3 {td1,tv11,tv12,tv13,tph2} [0,0,0,0,0] {tv11,tv12,tv13,tph2} {tph2} (tph2,0) 0.00
5 4 {td1,tv11,tv12,tv13,td2,tr2} [0,0,0,0,0,0] {tv11,tv12,tv13} {tv12,tv13} (tv13,0) 0.00
6 5 {td1,tvs13,td2,tr2} [0,0,0,0] {tvs13} {tvs13} (tvs13,0) 0.00
7 6 {td1,tg113,td2,tr2} [0,0,0,0] {tg113} {tg113} (tg113,0) 0.00
8 7 {td1,tc113,td2,tr2} [0,0,0,0] {tc113} {tc113} (tc113,1) 0.00
9 8 {td1,tg113,td2,tr2} [1,0,1,1] {tg113} {tg113} (tg113,0) 0.04
10 9 {td1,tc113,td2,tr2} [1,0,1,1] {tc113} {tc113} (tc113,1) 0.04
11 10 {td1,tg113,td2,tr2} [2,0,2,2] {tg113} {tg113} (tg113,0) 0.08
12 11 {td1,tc113,td2,tr2} [2,0,2,2] {tc113} {tc113} (tc113,1) 0.08
12 12 {td1,tg113,td2,tr2} [3,0,3,3] {tg113} {tg113} (tg113,0) 0.12
14 13 {td1,tc113,td2,tr2} [3,0,3,3] {tc113} {tc113} (tc113,1) 0.12
15 14 {td1,tg113,td2,tr2} [4,0,4,4] {tg113} {tg113} (tg113,0) 0.16
16 15 {td1,tc113,td2,tr2} [4,0,4,4] {tc113} {tc113} (tc113,1) 0.16
17 16 {td1,tg113,td2,tr2} [5,0,5,5] {tg113,tr2} {tr2,tg113} (tr2,0) 0.20
18 17 {td1,tg113,td2,tv21,tv22,tv23} [5,0,5,0,0,0] {tg113,tv21,tv22,tv23} {tv22,tv23} (tv23,0) 0.20
19 18 {td1,tg113,td2,tvs23} [5,0,5,0] {tg113,tvs23} {tvs23} (tvs23,0) 0.20
20 19 {td1,tg113,td2,tg123} [5,0,5,0] {tg113,tg123} {tg123,tg113} (tg123,0) 0.20
21 20 {td1,td2,tc123} [5,5,0] {tc123} {tc123} (tc123,1) 0.20
22 21 {td1,tg113,td2,tg123} [6,0,6,0] {tg113,tg123} {tg123,tg113} (tg123,0) 0.24
23 22 {td1,td2,tc123} [6,6,0] {tc123} {tc123} (tc123,1) 0.24
24 23 {td1,tg113,td2,tfv123} [7,0,7,0] {tg113,tfv123} {tfv123} (tfv123,0) 0.28
25 24 {td1,tg113,td2,tg23} [7,0,7,0] {tg113,tg23} {tg23,tg113} (tg23,0) 0.28
26 25 {td1,td2,tc23} [7,7,0] {tc23} {tc23} (tc23,1) 0.28
27 26 {td1,tg113,td2,tg23} [8,0,8,0] {tg113,tg23} {tg23,tg113} (tg23,0) 0.29
28 27 {td1,td2,tc23} [8,8,0] {tc23} {tc23} (tc23,1) 0.29
29 28 {td1,tg113,td2,tfv23} [9,0,9,0] {tg113,tfv23} {tfv23} (tfv23,0) 0.30
30 29 {td1,tg113,td2,tf2} [9,0,9,0] {tg113,tf2} {tf2} (tf2,0) 0.30
31 30 {td1,tg113} [9,0] {tg113} {tg113} (tg113,0) 0.30
32 31 {td1,tc113} [9,0] {tc113} {tc113} (tc113,1) 0.30
33 32 {td1,tg113} [10,0] {tg113} {tg113} (tg113,0) 0.34
34 33 {td1,tc113} [10,0] {tc113} {tc113} (tc113,1) 0.34
35 34 {td1,tg113} [11,0] {tg113} {tg113} (tg113,0) 0.38
36 35 {td1,tc113} [11,0] {tc113} {tc113} (tc113,1) 0.38
37 36 {td1,tfv113} [12,0] {tfv113} {tfv113} (tfv113,0) 0.38
38 37 {td1,tg13} [12,0] {tg13} {tg13} (tg13,0) 0.42
39 38 {td1,tc13} [12,0] {tc13} {tc13} (tc13,1) 0.42
40 39 {td1,tg13} [13,0] {tg13} {tg13} (tg13,0) 0.43
41 40 {td1,tc13} [13,0] {tc13} {tc13} (tc13,1) 0.43
42 41 {td1,tg13} [14,0] {tg13} {tg13} (tg13,0) 0.44
43 42 {td1,tc13} [14,0] {tc13} {tc13} (tc13,1) 0.44
44 43 {td1,tg13} [15,0] {tg13} {tg13} (tg13,0) 0.45
45 44 {td1,tc13} [15,0] {tc13} {tc13} (tc13,1) 0.45
46 45 {td1,tg13} [16,0] {tg13} {tg13} (tg13,0) 0.46
47 46 {td1,tc13} [16,0] {tc13} {tc13} (tc13,1) 0.46
48 47 {td1,tg13} [17,0] {tg13} {tg13} (tg13,0) 0.47
49 48 {td1,tc13} [17,0] {tc13} {tc13} (tc13,1) 0.47
50 49 {td1,tg13} [18,0] {tg13} {tg13} (tg13,0) 0.48
51 50 {td1,tc13} [18,0] {tc13} {tc13} (tc13,1) 0.48
52 51 {td1,tg13} [19,0] {tg13} {tg13} (tg13,0) 0.49
53 52 {td1,tc13} [19,0] {td1,tc13} {tc13} (tc13,1) 0.49
54 53 {td1,tfv13} [20,0] {td1,tfv13} {tfv13} (tfv13,0) 0.50
55 54 {td1,tf1} [20,0] {td1,tf1} {tf1} (tf1,0) 0.50
56 55 {tendT1,T2} [0] {tend} {tend} (tend,0) 0.50

respective TLTS (see Definition 6.5, Chapter 6) is:

s0
(tstartT1,T2

,0)

−→ s1
(tph1,0)−→ s2

(tr1,0)−→ s3
(tph2,0)−→ s4

(tv13,0)−→ s5
(tvs13,0)−→ s6

(tg113 ,0)−→ s7
(tc113,1)−→ s8

(tg113,0)−→
s9

(tc113,1)−→ s10
(tg113,0)−→ s11

(tc113 ,1)−→ s12
(tg113,0)−→ s13

(tc113 ,1)−→ s14
(tg113,0)−→ s15

(tc113,1)−→ s16
(tr2,0)−→ s17

(tv23,0)−→
s18

(tvs23,0)−→ s19
(tg123,0)−→ s20

(tc123,1)−→ s21
(tg123,0)−→ s22

(tc123,1)−→ s23
(tfv123,0)−→ s24

(tg23,0)−→ s25
(tc23,1)−→

s26
(tg23,0)−→ s27

(tc23,1)−→ s28
(tfv23,0)−→ s29

(tf2,0)−→ s30
(tg113 ,0)−→ s31

(tc113 ,1)−→ s32
(tg113 ,0)−→ s33

(tc113,1)−→ s34
(tg113,0)−→

s35
(tc113 ,1)−→ s36

(tfv113,0)−→ s37
(tg13,0)−→ s38

(tc13,1)−→ s39
(tg13,0)−→ s40

(tc13,1)−→ s41
(tg13,0)−→ s42

(tc13,1)−→ s43
(tg13,0)−→

158 SCHEDULING AND CODE GENERATION

s44
(tc13,1)−→ s45

(tg13,0)−→ s46
(tc13,1)−→ s47

(tg13,0)−→ s48
(tc13,1)−→ s49

(tg13,0)−→ s50
(tc13,1)−→ s51

(tg13,0)−→ s52
(tc13,1)−→

s53
(tfv13,0)−→ s54

(tf1,0)−→ s55
(tendT1 ,T2

,0)

−→ s56.

8.1.4 Complexity

As presented, the state space grows exponentially in the number of tasks, more specif-
ically, O(kn) [114], in which n is the amount of non-interacting tasks, each one with k
local states. Considering a Petri net model generated using the proposed method, O(kn)
provides an interesting upper bound estimation of the respective state space size.

In the adopted modeling approach, the number of local states (k) of each task is
somewhat affected by the following attributes: (i) the number of task instances; (ii)
the number of available voltage/frequency levels for the task; (iii) the respective release
interval; and (iv) when regarding preemptive tasks, the arc weights that represents the
computation time at a specific voltage (which is affected by the adopted task time unit).
Intertask relations and timing constraints, excluding release, have not been taken into
account in the state space size computation. Indeed, these are reasonable assumptions,
since: (i) when intertask relations are explicitly modeled, the model may generate fewer
reachable states; (ii) time elapsing states, which do not consider transition firing, are
discarded; (iii) the set of possible reachable markings generated from a TPNE model is
a subset of or equal to the marking reachability set of the respective untimed Petri net
model [119]; and (iv) undesirable states (e.g, deadline missing) are avoided.

Assume that the amount of local states k for a task τj is directly affected by the number
of states s in each voltage/frequeny level i: k = sj1 + sj2 + ...+ sji . Additionally, consider
that each task has the same amount of voltage/frequency levels for its execution (CPU
as well as ideal levels) and, for a specific level, the number of states are the same for all
tasks, i.e. for two tasks τ1 and τ2, s

1
1 = s21 = s1, s

1
2 = s22 = s2, and so on. Thus, assuming

i voltage/frequency levels and n tasks, O(kn) = O((s1+s2+ ...+si)
n). Regarding a lower

bound, each task (including the respective instances) needs to execute sequentially in the
maximum voltage/frequency level, which provides the minimum number of states for a
task execution (smin). Taking into account n tasks, the lower bound can be represented
by Ω(s1min + s2min + ...+ snmin) = Ω(smin + smin + ... + smin) = Ω(nsmin) = Ω(n).

The complexity of the state space is not only related to the adopted formalism, but,
primarily, due to the scheduling problem in question. For instance, other formal methods,
such as process algebras and automata, face similar complexity to tackle this scheduling
problem. In the case of automata, kn states may be required to model all possible
situations of a hard real-time system. Nevertheless, the proposed method only reaches
the states of interest in consequence of state space reduction techniques.

Regarding time complexity, the execution of a depth-first search method is gener-
ally bounded by O(e) = O(v2) [120], in which is e and v are the number of edges and
nodes of a graph, respectively. Since the state space of Petri nets is represented by a
reachability graph [10] and the estimated size of the proposed model’s state space is
O(kn), the execution time related to the pre-runtime scheduling algorithm is bounded by
O((kn)2) = O(k2n). However, this execution time would only occur if there is no feasible
schedule for a given specification, situation that would lead the algorithm to visit the

8.1 SCHEDULING 159

whole (reduced) state space. Additionally, the scheduling algorithm adopts some tech-
niques that also considerably improve the average execution time. Concerning a lower
bound, Ω(n) represents the minimal amount of time to find a feasible schedule. This
situation may occur when the scheduling algorithm finds a feasible schedule in the first
attempt due to the values obtained in the preprocessing.

Chapter 9 provides quantitative results regarding the execution time as well as the
number of states actually reached by the adopted scheduling algorithm.

8.1.4.1 Petri Net Components For Petri net practitioners, it is interesting to pro-
vide a closer relation between the state space and the components of the conceived model
(e.g., the number of places). This section provides an estimate of a state space size con-
sidering the number of states associated with the building blocks proposed. More specifi-
cally, this work has considered the following building blocks: (i) periodic task arrival; (ii)
non-preemptive task structure; (iii) preemptive task structure; (iv) non-preemptive task
structure with 2 voltages; and (v) preemptive task structure with 2 voltages.

Before presenting the state space for each block, remember that, for each task τi: ri is
the release time; di is the deadline; Cmini

is the computation time at the highest voltage
level; Cij is the computation time at a voltage level vj; C1ij and C2ij are the computation
times for simulating an unavailable voltage level vj; and S(τi) is the number of task
instances. Moreover, consider that: A is the set of all system tasks; Vcpu is the set of CPU
voltage levels; Videal is the set of ideal voltage levels, such that Videal ∩ Vcpu = ∅; Videali ⊆
Videal is the set of ideal voltage levels for a task τi (obtained with the preprocessing); and
rel inti is the number of possibilities for releasing a task τi (i.e., the possible firing times
of transition tri in periodic task arrival block), which is calculated in the following way:
rel inti = di − Cmini

− ri + 1.
The number of states regarding each building block is detailed as follows:

(i) Periodic task arrival. ARRIVAL: A → N, in which ARRIVAL(τi) = 3+ (rel inti ×
I(τi));

(ii) Non-preemptive task structure. NON PREEMP: A → N, such that NON PREEMP(τi)
= 5× rel inti × I(τi);

(iii) Preemptive task structure. PREEMP: A × Vcpu → N, where PREEMP(τi, vj) =
rel inti × I(τi)× (3 + 2Cij);

(iv) Non-preemptive task structure with 2 voltages. NON PREEMP 2V: A → N, in
which NON PREEMP 2V(τi)= 7× rel inti × I(τi);

(v) Preemptive task structure with 2 voltages. PREEMP 2V: A × Videal → N, such
that PREEMP 2V(τi, vj) = rel inti × I(τi)× (4 + 2C1ij + 2C2ij),

As presented, the number of local states of each building block is represented by a
function, which is further adopted to estimate the state space size of a specification. In
addition, consider the following auxiliary functions:

160 SCHEDULING AND CODE GENERATION

• NON PREEMPT SEL: A×Vcpu∪Videal → N, in which NON PREEMPT SEL(τi, vj)

=

{

NON PREEMP(τi), if (vj ∈ Vcpu)

NON PREEMP 2V(τi), if (vj ∈ Videali)

• PREEMPT SEL: A× Vcpu ∪ Videal → N, such that

PREEMPT SEL=

{

PREEMP(τi, vj), if (vj ∈ Vcpu)

PREEMP 2V(τi, vj), if (vj ∈ Videali)

The functions above calculate the state space size for a task structure block based on
whether a voltage level is available on the CPU (Vcpu) or it is an ideal (unavailable) level
obtained with the preprocessing (Videali). In the latter situation, the unavailable voltage is
simulated using the two neighboring voltage levels available on the processor. Taking into
account these auxiliar functions, the following items describe two functions for estimating
the number of states for a non-preemptable and a preemptable task, respectively:

• NON PREEMP TASK: A → N, where NON PREEMP TASK(τi) = ARRIVAL(τi)
+

∑

(v∈Vcpu∪Videali
) NON PREEMPT SEL(τi, v)

• PREEMP TASK: A → N, in which PREEMP TASK(τi) = ARRIVAL(τi)

+
∑

(v∈Vcpu∪Videali
)NON PREEMPT SEL (τi, v)

For a given task specification (T ⊆ A), the functions below estimate the state space
size:

• Considering non-preemptable tasks, NON PREEMP SPEC: P(A) → N, in which
NON PREEMP SPEC(T) =

∏

(τi∈T)NON PREEMP TASK(τi)

• Assuming preemptable tasks, PREEMP SPEC: P(A) → N, where PREEMP SPEC(T)
=

∏

(τi∈T) PREEMP TASK(τi)

The presented functions can also utilize the asymptotic notation adopted in previous
section. For instance. An upper bound for preemptable tasks can be represented by
O(PREEMP SPEC(T)). Regarding a lower bound, the sets of voltage levels in functions
NON PREEMP TASK and PREEMP TASK need to be replaced by a set containing
only the highest CPU voltage level. Assuming PREEMP SPEC’ utilizes the adjusted
function PREEMP TASK’ (which considers only the highest CPU level), the lower bound
for preemptable tasks is Ω(PREEMP SPEC’(T)). The same procedure is applied to non-
preemptable tasks,

8.1.5 DENTES Tool

The modeling and scheduling activites are automated by DENTES tool [121] -Development
Environment for Time-Critical Embedded Systems - such that, from a system specifica-
tion, the respective time Petri net model is automatically generated, and the pre-runtime

8.1 SCHEDULING 161

Figure 8.4 DENTES tool - specification screen

Figure 8.5 DENTES tool - feasible schedule

scheduling is performed, hiding the details for non-specialized users. Besides, DENTES
provides an interfacing mechanism that allow the analysis and verification of properties

162 SCHEDULING AND CODE GENERATION

using INA tool [99]. Figure 8.4 depicts a screenshot of DENTES tool regarding the spec-
ification screen and Figure 8.5 shows a screenshot of the feasible schedule presented in
Section 8.1.3 generated using this tool. It is important to state that DENTES tool is
another contribution of this thesis.

8.2 CODE GENERATION

This section aims at presenting the approach for C-code generation. In the proposed
method, the code is generated by traversing the TLTS (see Chapter 6, Definition 6.5)
(feasible firing schedule), and detecting the times when each task will execute, ensuring
that the constraints are also met during system execution. The code generation activity
includes not only the code of each task (implemented by C functions), but also a cus-
tomized small dispatcher. Firstly, the approach for traversing the TLTS is presented,
followed by an explanation of the dispatcher. Lastly, an example of code generation is
provided.

8.2.1 Traversing TLTS

For the sake of readability, two algorithms are presented for traversing TLTSs: (i) one
for non-preemptable tasks (Figure 8.6); and (ii) other assuming preemptable tasks (Fig-
ure 8.7). The basic idea is the same, but the algorithm for preemptable tasks has a small
difference, which is going to be explained further. In addition, both algorithms assume
overheads have been explicitly considered during schedule generation. As follows, the
focus is on the generation of a schedule table, which contains all information regarding
the task executions. More specifically, the schedule table contains for each task instance:
(i) the start time; (ii) a flag indicating if it is a new instance, a preemption resuming,
or a voltage/frequency switching; (iii) the task id; (iv) a voltage/frequency level; and (v)
a function pointer. Moreover, such table lays down a basis for customizing the runtime
support, namely, dispatcher.

Initially, consider the algorithm presented in Figure 8.6. The algorithm receives as
an input a TLTS and executes until a state with the final marking MF is reached (line
7). The reader should note that, as the TLTS is finite and do contain a state with the
desired final marking, the algorithm always stops assuming a valid input (i.e., a feasible
schedule).

In each iteration, variable globalClock is updated to keep the current global time
(line 9), which is calculated by summing the elapsed times in each previous state as well as
the time elapsed in the current one. Next, the algorithm checks if the transition (t) fired
in the current state represents a processor granting (tgij) or a voltage/frequency switching

(tfv1ij) (line 11). Both transitions are assumed to include the overheads for executing a

task instance (see Section 6.3.10), and, therefore, they are adopted to indicate the start
time or the time the voltage/frequency is switched for the same instance. Additionally, an
entry is created in the schedule table (itemi) when one of these transitions is encountered.

The start time (or the time for switching the voltage/frequency level) is obtained (line
12) from the subtraction between the global time (globalClock) and the time spent on
the current state (where the transition is fired). For a better understanding, consider a

8.2 CODE GENERATION 163

1 traverseTLTSNonPreemptive(L= (S,Σ,→, s0))
2 {
3 scheduleTable = ∅;
4 currentState = s0;
5 globalClock = 0;
6 i = 0;
7 while (currentState do not contain final marking MF) {
8 t = getTransition(currentState,→);
9 globalClock += getElapsedTime(currentState,→);
10
11 if(isGrantTrans(t) || isVoltageSwitchingTrans(t)) {
12 start = globalClock - getElapsedTime(currentState,→);
13
14 if(start < 0 ∧ i = 0) {
15 itemi.startTime = 0;
16 } else {
17 itemi.startTime = start;
18 }
19
20 if(isGrantTrans(t)) {
21 itemi.flag = INSTANCE;
22 } else {
23 itemi.flag = VOLT SWICTH;
24 }
25
26 itemi.taskID = getTask(t);
27 itemi.voltageFrequency = getVoltageFrequency(t);
28 itemi.functionPointer = getCodeFunction(t);
29 scheduleTable = scheduleTable ∪ itemi;
30 i++;
31 }// end - if
32 currentState = getNextState(currentState,→);
33 }// end - for
34
35 return scheduleTable;
36 }

Figure 8.6 Algorithm for traversing the TLTS assuming non-preemptable tasks

TLTS representing only one task execution with release time at 5 and overhead of 1 time
unit. Assuming that the processor-granting transition (tgij) fires in the current state, the

globalClock value is 6 (5 + 1 = 6), but the start time of the task instance is 5 (6 - 1 =
5). Also, the algorithm needs to check if the time obtained is a negative integer (line 14).
Such situation may occur when the first instance is being examined and the respective
release time is 0 (e.g., assuming the previous example, 0 - 1 = -1). In this case, the
start time is set to zero (line 15). Afterwards, variable itemi is filled with information
regarding the behaviour (line 20-24) (new instance or voltage/frequency switching), the
task ID (line 26), the voltage/frequency level (line 27), and a pointer to the task function
(line 28). Next, itemi is added into the table (line 29). After reaching the final state
(which contains the marking MF), the algorithm returns the schedule table (line 35) with
all entries itemi ordered in ascending order in accord with i.

Figure 8.7 shows the algorithm for traversing a TLTS taking into account preempt-
able tasks. The difference from previous algorithm is due to some checks that must

164 SCHEDULING AND CODE GENERATION

1 traverseTLTSPreemptive(L = (S,Σ,→, s0))
2 {
3 scheduleTable = ∅;
4 currentState = s0;
5 globalClock = 0;
6 i = 0;
7 while (currentState do not contain final marking MF) {
8 t = getTransition(currentState,→);
9 globalClock += getElapsedTime(currentState,→);
10
11 if(isOverheadTrans(t) || isVoltageSwitchingTrans(t)) {
12 start = globalClock - getElapsedTime(currentState,→);
13
14 if(start < 0 ∧ i = 0) {
15 itemi.startTime = 0;
16 } else {
17 itemi.startTime = start;
18 }
19
20 if(isOverheadTrans(t) ∧ isTaskConcluded(t)) {
21 itemi.flag = INSTANCE;
22 } else if(isOverheadTrans(t) ∧ ¬isTaskConcluded(t)) {
23 itemi.flag = RETURN;
24 } else if(isVoltageSwitchingTrans(t) ∧ isTaskLastCompTrans(t)) {
25 itemi.flag = VOLT SWITCH;
26 } else if(isVoltageSwitchingTrans(t) ∧ ¬isTaskLastCompTrans(t)) {
27 itemi.flag = RETURN;
28 }
29
30 itemi.taskID = getTask(t);
31 itemi.voltageFrequency = getVoltageFrequency(t);
32 itemi.functionPointer = getCodeFunction(t);
33 scheduleTable = scheduleTable ∪ itemi;
34 i++;
35 }// end - if

36 else if(isComputationTrans(t)) {
37 keepTrackTask(t);
38 }
39
40 currentState = getNextState(currentState,→);
41 }// end - for
42
43 return scheduleTable;
44 }

Figure 8.7 Algorithm for traversing the TLTS assuming preemptable tasks

be performed in order to capture the preemption points. Similarly, this algorithm cre-
ates an entry in the schedule table, if the transition fired in the current state represents
an overhead (toij or to1ij) or a voltage/frequency switching (tovij) (line 11). To assist

the verification of preemption points, 3 functions are adopted: (i) isTaskConcluded;
(ii) isTaskLastCompTrans; and (iii) keepTrackTask. Function isTaskConcluded(t)

returns a true value, when there is a finished task τ associated with transtion t. Func-
tion isTaskLastCompTrans(t) provides a true value only in situations where a task τ ,
associated with transtion t, fired the last computation transition. In order to support
previous functions, function keepTrackTask traces the execution of each task by verifying
the occurrences of all computation transitions (e.g., tcij and tlcij). From these transi-
tions, the function obtains the task as well as the associated voltage/frequency level, and,
therefore, it can keep track the number of firings required for concluding a task τ . Pre-
vious checking is not difficult to visualize, since dividing the worst-case execution cycles
by CPU frequency returns the amount of occurrences for the computation transitions
in a voltage/frequency level. Thus, when the number of firings (regarding computation
transitions) reaches the amount required for a task execution, function keepTrackTask

8.2 CODE GENERATION 165

considers the task concluded (i.e., resets the respective counter).
Taking into account the new functions, lines 22 and 26 show the verifications for the

preemption points. At line 22, if an overhead transition is fired and the task have not con-
cluded yet, this situation indicates that the task was preempted. The overhead transition
is mandatorily fired in the beginning of a task execution and function keepTrackTask

only assumes a running task after the first firing of a computation transition. More
specifically, when a task instance is starting the execution (i.e, the overhead transition
is fired for the first time), function isTaskConcluded returns false. Thus, more than
one occurrence of an overhead transition before the conclusion, indicates that a preemp-
tion has occurred. Line 26 checks if the transition fired represents a voltage/frequency
switching and the last computation transition is not associated with the same task. This
condition can happen when the task was preempted immediately before performing the
voltage/frequency switching.

8.2.2 Dispatcher

The dispatcher is responsible for providing runtime services, in such a way that it is
always activated when a timer interrupt occurs. In order to control the executions of
each task, this component utilizes the information provided in the schedule table.

1 void dispatcher()
2 {
3 struct SchItem item = sch[schIndex];
4 globalClock = item.starttime;
5
6 if(currentTaskPreempted) {
7 // context saving
8 }
9 if(item.flag == RETURN) {

10 // context restoring
11 }
12 else {
13 taskFunction = item.functionPointer;
14 }
15 schIndex = ((++schIndex)%SCHEDULE_SIZE);
16 progrTimer(sch[schIndex].starttime);
17 adjustVoltFreq(item.voltagefrequency);
18 restoreOrExecuteTask();
19 }

Figure 8.8 Dispatcher

The dispatcher (Figure 8.8) adopts a set of data structures, which includes the sched-
ule table that contains, as presented previously, the following information for each task
instance: (i) the start time; (ii) a flag indicating if it is a new instance, a preemption re-
suming, or a voltage/frequency switching; (iii) the task id; (iv) a voltage/frequency level;
and (v) a function pointer. Such table is stored in an array of type SchItem. Besides,
there are some shared variables that stores information about the size of the schedule
(SCHEDULE SIZE), information of the new task to be executed (struct SchItem item),
and a pointer to the task function (taskFunction). An explanation of the dispatcher is
as follows:

166 SCHEDULING AND CODE GENERATION

1, During the system initialization, the timer is programmed using the first entry in
the schedule table. Whenever a timer interrupt occurs, the control is transferred to
the dispatcher;

2, The dispatcher accesses the schedule table (line 3) to retrieve the information re-
garding the next task execution. Additionally, variable globalClock, which keeps
the current global time, is updated;

3, Before calling a task, the dispatcher checks if the current task has been preempted
(line 6). In this case, the task context is saved (line 7);

4, If the next task was preempted and now it is being resumed (line 9), the dispatcher
prepares the respective context to be restored (line 10);

5, If it is a new task instance (line 12), the dispatcher just stores the function pointer
(line 13) in the variable taskFunction (utilized by the dispatcher at line 18);

6, Next, variable schIndex is updated (line 15), such that it points to the task that
is going to be executed in the next dispatcher activation;

7, After that, the timer is programmed to generate an interrupt at the start time
provide by the next table entry (which is pointed by schIndex);

8, Lastly, the CPU voltage/frequency level is adjusted (line 17), and the dispatcher
restores the task context or creates a new instance (line 18).

It is worth stating that the proposed approach assumes the dispatcher execution at
a fixed voltage/frequency level, which is up to the designer to select the appropriate one
(see Section 6.3.10). Although not depicted in Figure 8.8, the CPU voltage/frequency
level is adjusted at the beginning of dispatcher code to consider the level defined by the
designer. Besides, since a TLTS provides information regarding the number of context-
switchings as well as if preemptions indeed occur, a customized dispatcher is generated
for each given specification.

8.2.3 Example

As an example, consider the specification presented in Section 8.1.3. Although the re-
spective Petri net model (Figure 8.3) does not take into account overheads (a requirement
for the algorithms presented in Section 8.2.1), an alternative TLTS considering such tran-
sitions is presented as follows (assuming the overhead cost is 0):

s0
(tstart,0)−→ s1

(tph1,0)−→ s2
(tr1,0)−→ s3

(tph2,0)−→ s4
(tv13,0)−→ s5

(tvs13,0)−→ s6
(tg1130 ,0)−→ s7

(to113,0)−→ s8
(tc113,1)−→

s9
(tg1131 ,0)−→ s10

(tc113 ,1)−→ s11
(tg1131 ,0)−→ s12

(tc113,1)−→ s13
(tg1131 ,0)−→ s14

(tc113,1)−→ s15
(tg1131 ,0)−→ s16

(tc113,1)−→
s17

(tr2,0)−→ s18
(tv23,0)−→ s19

(tvs23,0)−→ s20
(tg1231 ,0)−→ s21

(to123,0)−→ s22
(tc123 ,1)−→ s23

(tg1232 ,0)−→ s24
(tl123,0)−→

s25
(tlc123,1)−→ s26

(tfv123,0)−→ s27
(tgo23,0)−→ s28

(tov23,0)−→ s29
(tc23,1)−→ s30

(tg232,0)−→ s31
(tl23,0)−→ s32

(tlc23,1)−→
s33

(tfv23,0)−→ s34
(tf2,0)−→ s35

(tg1130 ,0)−→ s36
(to113,0)−→ s37

(tc113 ,1)−→ s38
(tg1131 ,0)−→ s39

(tc113,1)−→ s40
(tg1131 ,0)−→

8.3 HANDLING DYNAMIC SLACK TIMES 167

s41
(tl113,0)−→ s42

(tlc113,1)−→ s43
(tfv113,0)−→ s44

(tgo13,0)−→ s45
(tov13,0)−→ s46

(tc13,1)−→ s47
(tg131 ,0)−→ s48

(tc13,1)−→
s49

(tg131 ,0)−→ s50
(tc13,1)−→ s51

(tg131,0)−→ s52
(tc13,1)−→ s53

(tg131 ,0)−→ s54
(tc13,1)−→ s55

(tg131 ,0)−→ s56
(tc13,1)−→ s57

(tg131,0)−→
s58

(tc13,1)−→ s59
(tg131 ,0)−→ s60

(tl13,0)−→ s61
(tlc13,1)−→ s62

(tfv13,0)−→ s63
(tf1,0)−→ s64

(tend ,0)−→ s65.
Traversing the TLTS using the algorithm depicted in Figure 8.7, the code depicted in

Figure 8.9 is obtained. The algorithm found out that tasks τ1 and τ2 need to be executed
one time, τ1 for clock value equal to 0, and τ2 for clock value equal to 5. Since task τ1
is preempted at 5 by task τ2, τ1 is resumed from preemption at 9. Observe that, in this
example, each task instance is executed at two different voltage/frequency levels in order
to simulate the unavailable voltage/frequency of 1.5v/15MHz [12]. In this case, when the
dispatcher is called at clock values equal to 7 and 12, only a voltage/frequency tuning is
performed, incurring a minimal overhead during system execution. In other words, no
context-saving or restoring needs to be carried out. For this example, the task time unit
is equal to 1 second. Although this work considers C code as the behavioral description,
the method is programming language independent.

void codeT1() {...}
void codeT2() {...}

#define SCHEDULE_SIZE 5

struct SchItem sch[SCHEDULE_SIZE] =
{
{0, INSTANCE, 1, 2V/20MHz,(int *)codeT1},
{5, INSTANCE, 2, 2V/20MHz,(int *)codeT2},
{7, VOLT_SWITCH, 2, 1V/10MHz,(int *)codeT2},
{9, RETURN, 1, 2V/20MHz,(int *)codeT1},
{12, VOLT_SWITCH, 1, 1V/10MHz, (int *)codeT1},

};

Figure 8.9 Generated code example

8.3 HANDLING DYNAMIC SLACK TIMES

During system runtime, slack times (CPU idle times) may appear due to tasks’ early
completion. In order to take advantage of such slacks for reducing even more energy
consumption, a small runtime scheduler is proposed for adjusting the starting times as
well as the voltage/frequency levels associated to each task instance.

Initially, during system runtime, a dispatcher is adopted to execute tasks according
to the feasible schedule generated in design-time. If a task instance completes its exe-
cution earlier than the respective WCEC, the scheduler is executed to advance the next
task instance and to adjust the voltage/frequency to a lower level than the one defined
for such instance in the pre-runtime schedule. Nevertheless, only if the next task can
start its execution earlier and the energy saving compensates the overhead incurred by
the scheduling, the adjusting is performed. It is important to state that the scheduler
does not violate inter-task relations, since it follows the tasks’ order defined in the pre-
runtime schedule. Additionally, the scheduler overhead related to the feasibility test is
considered in the pre-runtime method, more specifically, in the overhead block presented
in Section 6.3.10.

168 SCHEDULING AND CODE GENERATION

Before presenting the runtime scheduler algorithm, some concepts are required firstly.
In the proposed pre-runtime scheduling, a set of concurrent tasks is scheduled considering
a given time unit (e.g., milliseconds), namely, task time unit. In consequence, the pre-
runtime schedule is partitioned in several time slices of the same size, in which each slice
corresponds to one task time unit, and the total amount is equal to the LCM. For instance,
Figure 8.11(a) depicts a feasible schedule, in which the total amount of time slices is
equal to 10. These slices can be grouped into segments in such a way that represent task
executions. Such segments are denominated task segments, and each one is represented by
an interval ([start,end]). When a task is not completely executed within a segment, the
task is preempted, in other words, it is carried out through more segments. Considering
Figure 8.11(a), the segments are: (i) τ1 = [1, 2]; (ii) τ 12 = [2, 4]; (iii) τ3 = [4, 6]; (iv)
τ 22 = [6, 9]; (v) τ4 = [9, 10]. These intervals resemble a pre-runtime schedule table, which
stores information about the execution of each task instance. Moreover, a global clock
(globalclock) is adopted for tracking the current time (e.g., the accumulated number of
time slices). Taking into account the previous concepts, the runtime schedule algorithm
is depicted in Fig.8.10 using a C syntax notation.

In order to check the early completion of a task instance, the runtime scheduler is
executed at the end of each segment, in such a way that its execution does not conflict
with the dispatcher execution. Firstly, the scheduler verifies which is the next segment
(line 2) in the pre-runtime schedule, since it is the candidate for adjusting the respective
voltage/frequency level as well as the start time. If there is no segment to be executed
- the remaining segments are returns from preemption of finished instances or the last
segment was already executed - the original pre-runtime schedule is kept (line 5). Also,
the pre-runtime schedule is not changed whether the start time of the next segment is
equal to the release time assigned to the respective task instance. Considering that there
is an available segment, the respective start time is set so that the release time is not
violated (line 8). If the next segment can be promptly started, the start time is tuned
for taking into account the scheduler WCET (worst-case execution time). It is worth
noting that the adjustment is only performed whenever the improvements compensate
the scheduling overhead (line 12). Regarding Ishihara’s theorem (line 13), the reader
should also refer to Section 6.3.6 for details.

For a better understanding, consider the schedule depicted in Figure 8.11(a). A DVS
platform based on [64] is adopted, considering the following voltage/frequency levels (vff)
and the respective energy consumptions (vef - Section 5.2.4): vff = {(1.21V,20MHz),
(1.39V,30MHz), (1.76V,50MHz), (1.95V,60MHz)} and vef = {(1.21V, 0.41nJ/cycle), (1.39V,
0.54nJ/cycle), (1.76V,0.87nJ/cycle), (1.95V,1.07nJ/cycle)}. In this example, if task τ2
completes its execution earlier at 7 (Figure 8.11(b)) , the proposed scheduler attempts
to adjust the voltage/frequency level as well as the start time of the next segment (τ4).
Considering that τ4 release time is equal to 6, τ4 can start its execution earlier and utilize
a lower voltage/frequency level (Figure 8.11(c)). Assuming that WCEC of each task are
c1 = 50 × 106, c2 = 150× 106, c3 = 100× 106, c4 = 60× 106, the energy consumption is
reduced from 0.2433J (Figure 8.11(b)) to 0.2037J (Figure 8.11(c)).

Although the runtime scheduler consumes a small amount of time and energy, the
overhead may be unbearable for some applications due to very tight constraints. Nev-

8.4 SUMMARY 169

1 scheduler() {
2 nextSegment = retriveNextSegment();
3 taskInstance = nextSegment.taskInstance;
4
5 if(nextSegment not exists || taskInstance.release == nextSegment.start)
6 {return; //keep the pre-runtime schedule}
7
8 if(taskInstance.release > globalClock)
9 {nextSegment.start = taskInstance.release}
10 else {nextSegment.start = globalClock + schedulerWCET }
11
12 if (energy saving compensates the overhead)
13 {adjust voltage according to Ishihara’s theorem [12]

and the new execution window (nextSegment.end - nextSegment.start);
14 Prepare dispatcher to execute at nextSegment.start;}
15 else {return; //keep the pre-runtime schedule}
16 }

Figure 8.10 Runtime scheduler algorithm

Return

0 1 2 3 4 5 6 7 8 9 10

Time Slices

Segments

a)

τ1
τ2

τ3
τ2

τ4

1.95V

1.76V

1.39V

1.21v

Ret.

0 1 2 3 4 5 6 7 8 9 10

b)

τ1
τ2

τ3 τ2

τ4

Ret.

0 1 2 3 4 5 6 7 8 9 10

c)

τ1
τ2

τ3 τ2
τ4

1.95V

1.76V

1.39V

1.21v

1.95V

1.76V

1.39V

1.21v

Figure 8.11 Runtime scheduler example

ertheless, the scheduler WCEC can be considerably improved by utilizing a table with
pre-calculated values [31] instead of computing the voltage/frequency levels at runtime
(line 13). Since predictability is one of the most important properties of hard real-time
systems, the designer can verify the situations in which the tasks terminate earlier and
store pre-calculated levels for such situations. In the experiments adopted in this work
(see next chapter), this approach has been adopted.

8.4 SUMMARY

This chapter described two important activities of the proposed software synthesis method:
scheduling and code generation. The scheduling activity adopts a pre-runtime scheduling
algorithm in order to find a feasible schedule that satisfies inter-task relations, timing and

170 SCHEDULING AND CODE GENERATION

energy constraints. Such algorithm performs a state space exploration, applying some
efficient techniques to avoid the state space size explosion. From a feasible schedule,
the code generation activity provides a predictable code with a customized runtime sup-
port, namely dispatcher. As the code is generated from a feasible schedule, all specified
constraints are met during system runtime. Besides, this chapter presented a runtime
scheduler for dealing with slack times that may appear due to the earlier completion of
tasks. The slack times provide interesting opportunities to further reduce even more the
energy consumption of a hard real-time system.

CHAPTER 9

CASE STUDIES

To evaluate the proposed software synthesis method, this work has adopted some case
studies, which are composed of real-world applications as well as custom-built examples
(that simulates real-world situations). The case studies provide interesting scenarios for
evaluating not only the software synthesis, but also the pre-runtime and runtime schedul-
ing algorithms. Firstly, case studies related to the pre-runtime scheduling algorithm are
presented, and, next, results concerning the runtime scheduler and the software synthesis
are described.

Regarding the software synthesis and the runtime scheduler, the cases studies have
been implemented in a real hardware platform, which was conceived to facilitate the mea-
surement and validation activities. Therefore, before presenting the results, the hardware
platform is described followed by the validation activity.

9.1 PRE-RUNTIME SCHEDULING

Table 9.1 summarizes the case studies adopted to evaluate the pre-runtime scheduling
algorithm. For all case studies, the timing constraints were met. Additionally, in that
table, column task represents the number of tasks; inst. represents the number of tasks’
instances; size depicts a state space size estimation; sch. is the number of states of the
feasible schedule; found counts the number of states actually verified for finding a feasible
schedule; w/DVS is the estimated energy consumed (in joules) by the found feasible
schedule using DVS; o/DVS is the estimated energy consumed in joules by an alternative
schedule that disregards DVS; lpedf is the energy consumed (in joules) by a schedule
generated using the optimal scheduling mechanism proposed by Yao et al., considering
discrete voltage/frequency levels [26]; and time expresses the algorithm execution time (in
seconds) for finding the feasible schedule. All experiments were performed on a Pentium
D 3GHz, 4Gb RAM, Linux, and compiler GCC 3.3.2.

Table 9.1 Experimental results summary

Case Study task inst. size sch. foundw/DVS(J) o/DVS(J) lpedf time(s)

1.Motiv. Example 4 4 7× 107 48 141 0.2474 0.3132 0.17090 0.001
2.Example 2 6 6 7× 1035 4377 518406 0.00069 0.00105 0.00048 35.200
3.Example 3 12 12 2× 1032 551 9906 267.84000 360.00000 254.11840 0.282
4.Kwon’s Example 4 4 5× 1014 246 246 279.0000 371.0000 279.0000 0.003
5.CNC Control 8 289 9× 1070 235852 1884381 0.11900 0.34500 0.09440 291.221
6.Pulse Oximeter 3 10 2× 108 83 4268 0.00021 0.00023 0.00014 0.234
7.MP3 & GSM 8 3604 3× 1068 381313 381313 3.86200 4.76600 3.85410 9.606
8. Thermal Printer 5 10 9× 1018 320 85085 0.01607 0.01682 0.01223 3.949

For a better comprehension, the following sections detail each case study. The reader
should remember that, as presented in Chapter 5, each task is represented by a tuple

171

172 CASE STUDIES

τi = (phi, ri, ci, di, pi, codei), in which phi is the initial phase; ri is the release time; ci is
the worst-case execution cycles (WCEC) required for executing task τi; di is the deadline;
and pi is the period; and codei is the task C code. Because not all case studies are
adopted in the code generation activity, assume codei is optional. Additionally, function
vff represents the voltage/frequency levels and vef the energy consumption per clock
cycle in each level. Moreover, it is important to state that some original specifications
do not provide the WCECs of each task, but the worst-case execution times (WCET).
In order to obtain the number of cycles, each WCET was multiplied by the maximum
frequency level available in the specification.

After presenting each case study, the results depicted in Table 9.1 are commented
analytically. Next, this section presents some data regarding the algorithm scalability.

9.1.1 Motivational Example and Example 2

Case studies 1 and 2 are based on example 2 presented in [6], which demonstrates condi-
tions in which pre-runtime approaches would be able to find feasible schedules, whereas
runtime methods may fail due to the exclusion relation between tasks. For a complete
explanation, Section 3.2.3 details the situation, which leads to occasions where the pro-
cessor need to be left idle to find a valid schedule. In this work, Xu’s example is extended
with additional tasks and intertask relations. Motivational example incorporates 2 addi-
tional tasks (see Section 3.2.3 for details) and Example 2 takes into account 4 new tasks
as well as overheads (voltage/frequency switching and dispatcher execution).

For Example 2, the task time unit is 1µs and the task set T is composed of 6 pre-
emptable tasks: τ1 = (0, 0, 147 × 103, 6, 26), τ2 = (0, 2, 47 × 103, 3, 26), τ3 = (0, 0,
976× 102, 13, 26), τ4 = (0, 7, 582× 102, 9, 26), τ5 = (0, 13, 2982× 102, 26, 26), and τ6
= (0, 14, 97 × 103, 16, 26). In addition to timing constraints, the specification contains
the following intertask relations: τ1 excludes τ2; τ1 precedes τ3; τ2 excludes τ1; τ2 precedes
τ4; τ5 excludes τ6; and τ6 excludes τ5. Moreover, the voltage/frequency levels are the
same as the platform described in [64], more specifically, vff = {(1.02V, 10MHz),(1.04V,
20MHz),(1.07V, 30MHz), (1.15V, 40MHz),(1.26V, 50MHz),(1.38V, 60MHz)}. Assuming an
average switching capacitance of 0.28nF/cycle [72], vef = {(1.02V, 0.3nJ/cycle),(1.04V,
0.31nJ/cycle),(1.07V, 0.34nJ/cycle), (1.15V, 0.38nJ/cycle),(1.26V, 0.45nJ/cycle),(1.38V,
0.54nJ/cycle}. Besides, the dispatcher overhead is o = 60µs at 60MHz and the time over-
head related to voltage/frequency switching is a = 10µs.

As depicted in Table 9.1, in addition to meet all timing constraints, the proposed
scheduling algorithm reduced energy consumption by adopting DVS.

9.1.2 Example 3

As in the previous cases, Case study 3 is based on Figure 2 of [11], which also depicts a
condition in which runtime scheduling methods may not work. Since tasks may finish their
executions earlier than their respective worst-case execution times, a runtime scheduler
may promptly start a task for execution due to the release time and postpone another task
with an earlier deadline. The generated schedule may be infeasible, because, assuming
an exclusion relation between these tasks, the task with the earlier deadline is forced to

9.1 PRE-RUNTIME SCHEDULING 173

wait for the other task’s execution, and so, its timing constraints may be violated. The
pre-runtime approach, however, avoids this undesirable situation, since the dispatcher
always starts tasks’ execution in accordance with the sequence defined in the feasible
schedule. To adopt the example, the computation times were tuned for allowing voltage
scaling.

The task set is presented as follows: τA0 = (0, 0, 500 × 103, 80, 120), τA1 = (0,
10, 1000 × 103, 100, 120), τA2 = (0, 30, 300 × 103, 120, 120), τB = (0, 20, 1000 ×
103, 120, 240), τC = (0, 30, 1000 × 103, 50, 120), and τD = (0, 90, 1000 × 103, 110,
240), τE = (0, 0, 400 × 103, 240, 240), and τF = (0, 0, 1000 × 103, 240, 240). The
intertask relations are: τA0 excludes τD; τD excludes τA0; τA1 excludes τD; τD excludes
τA1; τA2 excludes τD; τD excludes τA2; τD excludes τE ; τE excludes τD;τA0 excludes τF ;
τF excludes τA0; τA1 excludes τF ; τF excludes τA1; τA2 excludes τF ; τF excludes τA2;
τA1 excludes τC ; τC excludes τA1; τD excludes τF ; τF excludes τD; τE excludes τF ; τF
excludes τE ; τC excludes τF ; τF excludes τC ; τA0 precedes τC ; τA0 precedes τA1 and τA1

precedes τA2. Additionally, all tasks are preemptable and the processor model adopted
in this experiment is based on [12]. More specifically, the voltage/frequency levels are
vff = {(2V,20MHz),(3V,30MHz),(5V,50MHz)}, and the respective energy consumptions
are vff = {(2V,6.4nJ/cycle),(3V,14.4nJ/cycle),(5V,40nJ/cycle)}. Results are shown in
Table 9.1.

9.1.3 Kwon’s Example

Case study 4 is depicted on Table 1 in [26] and does not consider any intertask relation. In
this case, the proposed approach finds a feasible schedule that consumes the same amount
of energy as the approach described in [26] (see Table 9.1), which is the Yao’s algorithm
extended with discrete set of voltage levels. The task set T is composed of the following
preemptable tasks: τ1 = (0, 0, 150× 106, 11, 11), τ2 = (0, 3, 120× 106, 8, 11), τ3 = (0, 5,
180×106, 8, 11), and τ4 = (0, 9, 80×106, 11, 11). The voltage/frequency levels and the re-
spective energy consumption values are: vff = {(3V,30MHz),(5V,50MHz),(7V,70MHz)}
and vef = {(3V, 300nJ/cycle),(5V, 500nJ/cycle),(7V, 700nJ/cycle)}. Moreover, the
task time unit is 100 ms.

9.1.4 CNC Control

Case study 5 is the control software of a Computerized Numerical Control (CNC) ma-
chine [122], which is an automatic machining tool adopted for manufacturing user-
designed workpieces. The CNC Controller specification is composed of several concurrent
tasks with exclusion relations, which becomes an interesting case study for evaluating the
proposed pre-runtime scheduling algorithm. The task set T is composed of the following
preemptable tasks: τsampl = (0, 0, 2450, 2400, 2400), τcalv = (0, 0, 2800, 2400, 2400), τdist =
(0, 0, 12600, 4800, 4800), τstts = (0, 0, 50400, 4800, 4800), τxref = (0, 0, 11500, 2400, 2400),
τyref = (0, 0, 50400, 4800, 4800), τxctrl = (0, 0, 49900, 4000, 9600), and τyctrl = (0, 0, 39900,
4000, 7800). Regarding intertask relations, Figure 9.1 depicts the interactions between
the tasks in the specification. In that figure, ellipses represent the tasks and rectangles
correspond to the shared resources. Any incoming or outgoing arrow from a resource

174 CASE STUDIES

Figure 9.1 CNC intertask relations

points out the utilization of such resource by a task. Therefore, tasks utilizing the same
resource have exclusion relations between them.

For this case study, the processor model is based on [12], and the respective volt-
age/frequency levels are vff = {(3V,30MHz),(4V,40MHz),(5V,50MHz),(6V,60MHz),(7V,70
MHz)}. Concerning energy consumption, the values are vef = {(3V, 14.4nJ/cycle),(4V,
25.6nJ/cycle),(5V, 40nJ/cycle),(6V, 57.8nJ/cycle),(7V, 78.4nJ/cycle)}. Moreover, the
task time unit is 1µs.

As depicted in Table 9.1, in addition to meet all timing constraints, the proposed
scheduling algorithm reduced energy consumption by adopting DVS.

9.1.5 Pulse Oximeter

Case study 6 is a pulse oximeter [123], which is an electronic device responsible for
measuring the blood oxygen saturation using a non-invasive method. Originally, the
pulse oximeter specification is composed of several small tasks with precedence relations.
Nevertheless, these small tasks have been merged into three larger tasks due to limitations
(i.e., the dispatcher overhead) in the adopted hardware platform (see Section 9.2.1). As
will be presented, this case study is also adopted to evaluate the software synthesis
method.

The pulse-oximeter is represented by the following task set, which has a task time
unit of 1ms and all tasks are non-preemptable: (i) excitation Texc = (0, 0, 2100, 2, 2,

codeTExc{...}); (ii) acquisition Tacq = (0, 0, 2928, 16, 16, codeTAcq{...}); and (iii) control
Tctr = (0, 0, 102120, 16, 16, codeTCtr{...}). The specification also contains the intertask re-

9.1 PRE-RUNTIME SCHEDULING 175

lation Tacq precedes Tctr and adopts the hardware platform described in Section 9.2.1.
Additionally, the dispatcher worst-case execution time is o = 100µs at 1.95V/60MHz,
since there are no preemptions in such experiment. Table 9.1 presents the results.

9.1.6 MP3 & GSM

Case study 7 [124] is an application composed of a MP3 player and GSM decoder, in which
the respective specification contains several tasks (T = MP3 ∪ GSM) with precedence
relations. More specifically, regarding the MP3 player, the tasks are: MP3={τScaleFactor

= (0, 0, 407757, 200, 200), τHuffmanDecode = (0, 0, 752598, 200, 200), τDequantizeSample = (0,
0, 1823756, 200, 200), and τSubbandSynthesis = (0, 0, 1065185, 200, 200)}. For the GSM de-
coder, the following tasks are taken into account: τRPEDecoding = (0, 0, 366742200, 180000,
180000), τLTSynthesisF ilter = (0, 0, 827857800, 180000, 180000), τSTSynthesisF ilter = (0, 0,
274359800, 180000, 180000), and τPostProcessing = (0, 0, 123840200, 180000, 180000). Ad-
ditionally, the intertask relations are: τScaleFactor precedes τHuffmanDecode; τHuffmanDecode

precedes τDequantizeSample; τDequantizeSample precedes τSubbandSynthesis; τRPEDecoding precedes
τLTSynthesisF ilter; τLTSynthesisF ilter precedes τSTSynthesisF ilter; and τSTSynthesisF ilter precedes
τPostProcessing.

For this case study, the task time unit is 100ms and the Intel XScale PXA250 is
adopted as the processor model. Thus, the voltage/frequency levels are vff = {(0.9357V,
132.7MHz),(1.1V, 199.1MHz),(1.21V, 298.7MHz),(1.43V, 398.2MHz)} and the respective
energy consumptions are represented by vef = {(0.9357V, 0.49nJ/cycle), (1.1V, 0.66nJ/
cycle), (1.21V, 0.74nJ/cycle),(1.43V, 0.91nJ/cycle)}. Table 9.1 shows the energy savings
obtained using the proposed approach.

9.1.7 Thermal Printer

Case study 8 is a thermal printer, which generates a printed image by heating some areas
of a special paper. The respective specification are composed of time-critical tasks, in
the sense that if a constraint is violated, the equipment can be damaged (or the final
document can be malformed).

The thermal printer takes into account the following preemptable tasks: (i) sendData-
Head, TSDH = (0,0,17400,50,250, codeTSDH{...}), (ii) advanceMotor, TAM =(0,39,180,50,50,

codeTAM{...}); (iii) setStrobeOn, TSSO =(0,50,250,70,250, codeTSSO{...}); (iv) setStrobe-
Off, TSSF =(0,219,250,250,250, codeTSSF{...}); and (v) dotlineGenerator, TD =(0,0,18800,125,125,

codeTD{...}). In addition, the specification contains the following intertask relations: TD

excludes TSDH , TSDH excludes TD, and TSSO precedes TSSF . The hardware platform de-
scribed in Section 9.2.1 is taken into account, and the dispatcher worst-case execution
time is 100 µs at 1.95V/60MHz (a customized version has been generated for this case
study). Besides, the task time unit is 50 µs. Table 9.1 presents the results.

9.1.8 Analytical Comments

The presented case studies demonstrate that the pre-runtime scheduling algorithm has
provided meaningful results (Table 9.1), since it has significantly reduced the number of

176 CASE STUDIES

Figure 9.2 Case studies: state space

visited states, found feasible schedules in which runtime counterparts may not, and, also,
allowed energy saving by the adoption of DVS.

For a better visualization, Figure 9.2 depicts the lower and upper bounds for each
case study, regarding the state space size (see Section 8.1.4). Due to the large difference
of sizes, this figure represents all values as a power of ten (i.e., the figure depicts the
exponents). As the reader should note, the number of states visited by the scheduling
algorithm is several orders of magnitude less than the whole state space in most experi-
ments. Besides, the algorithm tends to visit a minimal number of states, mainly, due to
the techniques adopted to reduce the state space (e.g., preprocessing).

Taking account execution time, assume that, in a loose manner, 50µs is the average
time to reach a single state. Such time has been obtained considering the execution time
of each experiment as well as the number of visited states. Moreover, as explained in
Section 8.1.4, the time to visit the whole state space is related to the square of the space
size. Considering previous information, Figure 9.3 depicts the lower and upper bounds in
seconds for the algorithm execution in each case study. Again, the values are presented
as powers of ten. At first sight, the reader should observe that Figure 9.3 resembles
Figure 9.2. Indeed, the execution time is associated with the number of visit states, and
the time is also benefited by the techniques adopted to control the state space.

9.1 PRE-RUNTIME SCHEDULING 177

Figure 9.3 Case studies: execution time

In the context of energy consumption, Figure 9.4 depicts a comparison between fea-
sible schedules generated by the proposed approach (with DVS), alternative schedules
without DVS, and optimal solutions provided by Yao’s Algorithm (LPEDF). In this fig-
ure, the energy consumption is normalized considering the highest value in each case
study. Analyzing the results, the proposed approach generated feasible schedules that
consume only 30% more energy (in average) than Yao’s optimal solution and, in some
experiments, provided the same consumption. Besides, it is important to emphasize that
Yao’s method does not consider precedence and exclusion relations. In other words, the
values provided in column lpedf (Table 9.1) assume a set of independent tasks, thus, the
respective schedules are not feasible for most case studies. Nevertheless, those values still
serve as an interesting parameter for comparison purposes.

9.1.9 Scalability

To provide a better visualization of the scheduling algorithm scalability, this work ex-
tended case study 2 to incrementally accommodate two new tasks with exclusion relation
between them. Figure 9.5 and 9.6 depict the results related to the state space generation
and execution time, respectively. Although the state spaces grow exponentially with the
number of tasks (Section 8.1.4), the amount of reached states (dashed bar) is signifi-

178 CASE STUDIES

Figure 9.4 Case studies: energy consumption

Figure 9.5 Scalability: state Spaces

9.2 SOFTWARE SYNTHESIS AND RUNTIME SCHEDULER 179

cantly reduced due to state space reduction techniques. Nevertheless, the execution time
considerably increases, mainly, because of the tagging scheme adopted to keep track of
the visited states. However, in the proposed work, the major issue is the state space
explosion, which is substantially mitigated as described before. Besides, although the
algorithm execution time increases (e.g., in consequence of the tagging scheme), observe
that, for a system with a state space size of approximately 10120 states, the algorithm
found a feasible schedule in less than one hour.

Figure 9.6 Scalability: execution times

9.2 SOFTWARE SYNTHESIS AND RUNTIME SCHEDULER

This section presents results concerning the proposed software synthesis as well as the
runtime scheduler. Firstly, the adopted hardware platform is described followed by an
explanation about the validation activity.

9.2.1 Hardware Platform

This work adopts a hardware platform based on [64], which utilizes a Philips LPC2106
processor [72], an 32-bit microcontroller with ARM7 core (see Figure 9.7). This plat-
form has been devised to facilitate the instrumentation of hardware components for the
measurement and validation activities. In this work, the voltage levels have been ad-
justed, since the original levels provided in [64] caused some instability for the adopted
experiments. More specifically, the voltage/frequency levels have been tuned considering
the minimum level described in [64] and the maximum level detailed in the datasheet [72],
leading to the following relation: vff = {(1.02V, 10MHz), (1.21V, 20MHz), (1.39V,30MHz,
(1.58V,40MHz), (1.76V, 50MHz),(1.95V, 60MHz)}.

Although a specific DVS platform is considered, the proposed software synthesis
method can be utilized for other hardware platforms, for instance, Intel XScale.

180 CASE STUDIES

Figure 9.7 DVS platform

9.2.2 Validation

In this work, the validation activity concerns checking the schedule energy consumption
and tasks’ timing constraints related with a generated code as well as with the execution
of the runtime scheduler.

Initially, the generated code is adjusted, such that tasks’ WCEC always occur and the
dispatcher points out the schedule periodic executions. Such an approach is required to
allow the comparison between the estimated value for the pre-runtime schedule (worst-
case assumption) and the value measured in the real hardware. To provide a more
accurate result, the energy consumption related to the idle times of the pre-runtime
schedule is also taken into account in the estimated value. Regarding tasks’ timing
constraints, all dispatcher executions are captured in order to verify whether each task
executes in accordance with the feasible schedule.

The validation scheme is presented in Figure 9.8. In the same way as the measuring
approach, a PC is connected to an oscilloscope (Agilent DSO03202A) for capturing the
CPU current draw. However, to catch the voltage scaling, one oscilloscope channel, more
specifically, channel 1, is connected to the supply voltage pin (Vdd). The voltage scaling is
not only adopted to calculate the energy consumption in consequence of DVS technology,
but also to verify the schedule and dispatcher executions.

For indicating the schedule periodic execution, the dispatcher adjusts the CPU supply
voltage to 2.55V before executing the first task instance and keep it for a small amount
of time (sufficient to be detected by the oscilloscope). Using the interval between two
pulses of 2.55V, it is possible to calculate the schedule energy consumption as well as
the execution time (which must be equal to the LCM of the feasible schedule). Al-
though 2.55V surpasses the adopted platform voltage/frequency range (1.02V-1.95V), a
protection circuitry was developed to avoid damages. Basically, the protection circuitry
detects a prohibited level, and maintains the CPU supply voltage in a secure one until

9.2 SOFTWARE SYNTHESIS AND RUNTIME SCHEDULER 181

Agilent
DSO03202A

Channel 1

Channel 2

CPU

GND

Vdd

1 Ohm

Philips
LPC2106

PC with AMALGHMA/
Agilent Acquisiton Software

Serial Communication

Figure 9.8 Validation scheme

the unsupported level decreases to the allowed range.

To confirm that all tasks are meeting the respective timing constraints, the interval
between two consecutive dispatcher executions is verified, such that the relative start time
(or return from preemption) of each task can be calculated. Since this work assumes the
dispatcher execution at maximum voltage/frequency level to impact timing constraints
as minimum as possible, the oscilloscope timing diagram provides the required data to
track each task execution.

Concerning the runtime scheduler, similar approach is adopted, except for the ad-
justments to force each task WCEC. Besides, since the runtime scheduler also executes
in the maximum voltage/frequency available(1.95V/60MHz), the technique described for
the dispatcher can also be adopted for the scheduler to track each task execution.

Moreover, AMALGHMA tool [121] also comprises functionalities that permit the
measurement of schedules’ time and energy consumption using statistical techniques. In
relation to tasks’ timing constraints, this work has adopted Agilent Scope Connect soft-
ware [125] to verify the dispatcher executions. Although such tool does not provide a very
fine-grained resolution, it gives interesting insights about a software timing behaviour.
Detailed examples are presented in next section.

9.2.3 Software Synthesis

In order to demonstrate the software synthesis method in details, three experiments are
adopted, namely, example 2, pulse oximeter, and thermal printer. These experiments were
presented previously in order to provide quantitative results for the scheduling algorithm.
Therefore, the values depicted in Table 9.2 do not consider the energy consumption in
consequence of the idle times. However, for the following experiments, the idle times are
taken into account, such that a closer comparison with the energy consumption values
measured in the hardware platform can be performed. Besides, the pulse oximeter is
adopted to demonstrate step-by-step the sequence of activities related to the proposed
method.

182 CASE STUDIES

0 1 2 3 4 5 6 7 8 9 10 11 12 13

-

-

-

-

 I I I I I I I I I I I I I
τ
3

τ
3

τ
4

τ
1

τ
2

1.95V

1.76V
 ...
1.39V

1.21V
 ...

 14 15 16 17 ... 26
 I I I I I I I xxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx Dispatcher Overhead

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

x
x
x
x
x
x
x
x
x
x
x
x

τ
6

τ
5

Figure 9.9 Case study 2: feasible schedule

Example 2 Examples 2 is adopted to validate the proposed method in the DVS plat-
form described in Section 9.2.1. Taking into account the previous specification, 7 sched-
ules (Figure 9.9) have been generated to compare the estimated energy consumptions
with the respective values measured in the real hardware. More specifically, the differ-
ence lies on the energy consumption per clock cycle adopted for the voltage/frequency
levels in each schedule. Although the tasks’ timing constraints are the same, the code
of each task has been adjusted to consider different functionalities, such as arithmetic
division and logical operations, which incur distinct energy consumption values.

Table 9.2 Energy consumption values
Function scheduling. hard. w/ DVS hard. o/ DVS

Loop 737613 781361 2617 × 103

Division and Multiplication 830644 865065 2894 × 103

Multiplication 811771 831960 2884 × 103

Division 820540 856791 2823 × 103

Sum 820299 810230 2795 × 103

Subtraction 829049 820552 2757 × 103

Logical Operations 890922 900684 2771 × 103

void codeT1() {...} void codeT2() {...}
void codeT3() {...} void codeT4() {...}
void codeT5() {...} void codeT6() {...}
#define SCHEDULE_SIZE 7
struct SchItem sch[SCHEDULE_SIZE] =
{
{2, INSTANCE, 2, 1.76V/50MHz,(int *)codeT2},
{3, INSTANCE, 1, 1.76V/50MHz,(int *)codeT1},
{6, INSTANCE, 3, 1.21V/20MHz,(int *)codeT3},
{7, INSTANCE, 4, 1.39V/30MHz,(int *)codeT4},
{9, RETURN, 3, 1.21V/20MHz,(int *)codeT3},
{14, INSTANCE, 6, 1.76V/50MHz, (int *)codeT6},
{16, INSTANCE, 5, 1.39V/30MHz, (int *)codeT5},

};

Figure 9.10 Case study 2: generated code

Disregarding the tasks’ internal code, Figure 9.10 depicts the code generated for the
schedules. In relation to the estimated energy consumptions and the values measured in
the real hardware, Table 9.2 depicts the results. In this table, function represents the
tasks’ functionality; scheduling depicts an estimation of the energy consumption using

9.2 SOFTWARE SYNTHESIS AND RUNTIME SCHEDULER 183

the proposed scheduling mechanism (in nanojoules); hard. w/ DVS is the mean value
of the code energy consumption measured in the hardware platform adopting DVS (in
nanojoules); and hard. o/ DVS depicts the mean value of the code energy consumption
in the hardware platform without DVS (in nanojoules). It is worth stating that tasks’
WCEC always took place during the measuring process in the hardware platform. The
t-paired test [110] was conducted on data depicted on Table 9.2, considering a confi-
dence degree of 95%. Since 0 ∈ [−38051.85, 2107.561], there is no evidence to reject the
hypothesis of equivalence between the model and the system.

τ2τ1 τ3τ4 τ3 τ6 τ5

Start End
2.55V

1.95V
1.76V

1.39V
1.21V

Figure 9.11 Case study 2: oscilloscope timing diagram

Concerning tasks’ timing constraints, Figure 9.11 depicts the code execution captured
by the oscilloscope. In this figure, each task instance can be tracked using the first pulse
of 2.55V as reference and taking into account the time instants when the dispatcher was
running. More specifically, τ2 started at 0, τ1 at 1.02 and τ3 at 4.01. τ4 preempted τ3 at
5.01 and τ3 returned at 7.01. Lastly, τ6 started at 12 and τ5 at 14. The reader should
note that the idle time (from 0 to 2) at beginning of the feasible schedule is located at
the end of oscilloscope timing diagram, since the pulse of 2.55V is generated immediately
before the first task instance. Thus, for each value, 2 time units need to be added in
order to obtain the correct time instant (e.g., τ5 started at 16). Besides, some values are
not integer numbers (e.g. 1.02) due to the oscilloscope software resolution (as stated in
Chapter 5). According to the collected data, all tasks met the timing constraints and the
energy consumption was reduced.

Pulse Oximeter In order to demonstrate the utilization of the proposed software syn-
thesis method in a real-word application, the pulse oximeter case study is adopted (Sec-
tion 9.1.5). For this case study, the activities of the proposed method are explained
below:

• Measurement. Each task and the dispatcher are measured to obtain the respective
WCECs as well as the hardware characterization is performed. Remember that the
task codes are adjusted to force the worst-case situation in terms of execution time;

• Specification. The non-functional specification is composed of three non-preemptable
tasks (Texc, Tacq and Tctr) and the associated precedence relations (see Section 9.1.5).

184 CASE STUDIES

Besides, the hardware platform is described considering the voltage/frequency lev-
els and the respective energy consumption per clock cycle obtained in previous
activity;

• Modeling. From the non-functional specification, the TPNE model is generated
using the proposed building blocks and composition rules. Before performing the
scheduling activity, the designer may choose to carry out property analysis/verification,
such as model checking;

• Scheduling. Adopting the TPNE model, the scheduling activity generates an order-
ing of task executions at design-time, such that timing and energy constraints are
met. Table 9.1 provides results related to the scheduling algorithm;

void codeExc() {...} void codeAcq() {...}
void codeCtr() {...}
#define SCHEDULE_SIZE 10
struct SchItem sch[SCHEDULE_SIZE] =
{
{0, INSTANCE, 1, 1.02V/10MHz,(int *)codeTExc},
{1, INSTANCE, 2, 1.02V/10MHz,(int *)codeTAcq},
{2, INSTANCE, 1, 1.02V/10MHz,(int *)codeTExc},
{4, INSTANCE, 1, 1.02V/10MHz,(int *)codeTExc},
{6, RETURN, 1, 1.02V/10MHz,(int *)codeTExc},
{8, INSTANCE, 1, 1.02V/10MHz, (int *)codeTExc},
{10, INSTANCE, 1, 1.02V/10MHz, (int *)codeTExc},
{12, INSTANCE, 1, 1.02V/10MHz, (int *)codeTExc},
{13, INSTANCE, 3, 1.95V/60MHz, (int *)codeTCtr},
{15, INSTANCE, 1, 1.02V/10MHz, (int *)codeTExc}

};

Figure 9.12 Pulse-oximeter code

• Code Generation. Since a feasible schedule has been found, a customized predictable
code is automatically generated. Figure 9.12 depicts such a code, in which timing
and energy constraints are expected to be met;

• Validation. At last, the embedded software is validated. Figure 9.13 shows the
respective behaviour captured by the oscilloscope, in which indicates that all timing
constraints were satisfied. Taking into account the idle times of the feasible firing
schedule, the energy consumption estimate (309541 nJ) is only 17% higher than
the real measured value. The difference is mainly related to the unnecessity of
switching the voltage/frequency level for executing task Tctr and the dispatcher
before the last task instance, since the level of 1.95V/60MHz is already established
(ellipse at Figure 9.13).

Thermal Printer Regarding another real-world application, the thermal printer is
also taken into account in order to demonstrate the feasibility of the software synthesis
method. Figure 9.14 shows the generated code for the thermal printer and Figure 9.15
depicts the respective behaviour captured by the oscilloscope. Concerning energy con-
sumption, the estimated value (171486 nJ) is 27% higher than the value measured in the

9.2 SOFTWARE SYNTHESIS AND RUNTIME SCHEDULER 185

2.55v

1.95v

1.02v

Start End

Texc Texc Texc Texc Texc Texc Texc Tctr TexcTacq

Figure 9.13 Pulse oximeter: oscilloscope timing diagram

void codeTSDH() {...} void codeTAD() {...}
void codeTSSO() {...} void codeTD() {...}
void codeTSSF() {...}
#define SCHEDULE_SIZE 12
struct SchItem sch[SCHEDULE_SIZE] =
{
{0, INSTANCE, 1, 1.95V/60MHz,(int *)codeTSDH},
{39, INSTANCE, 2, 1.21V/20MHz,(int *)codeTAM},
{50, INSTANCE, 1, 1.21V/20MHz,(int *)codeTSSO},
{61, INSTANCE, 1, 1.95V/60MHz,(int *)codeTD},
{89, RETURN, 1, 1.21V/20MHz,(int *)codeTAM},
{100, RETURN, 1, 1.95V/60MHz, (int *)codeTD},
{139, INSTANCE, 1, 1.39V/30MHz, (int *)codeTAM},
{150, INSTANCE, 1, 1.58V/40MHz, (int *)codeTD},
{189, INSTANCE, 3, 1.39V/30MHz, (int *)codeTAM},
{200, RETURN, 1, 1.58V/40MHz, (int *)codeTD},
{228, INSTANCE, 1, 1.39V/30MHz, (int *)codeTSSF},
{239, INSTANCE, 1, 1.39V/30MHz, (int *)codeTAM}

};

Figure 9.14 Thermal printer: code

hardware platform, mainly, due to the unnecessity of switching the voltage/frequency
level for executing some tasks and the dispatcher (see ellipses at Figure 9.15). Neverthe-
less, the energy constraint (i.e, the upper bound) is not violated during system execution.

Previous experiments demonstrated the feasibility of the software synthesis method
described in this work, in the sense that, from a system specification, customized code was
generated with reduced energy consumption as well as satisfying all timing constraints.

9.2.4 Runtime Scheduler

An experiment based on case study 2 (Section 9.1.1) has been adopted to highlight some
features related to the proposed runtime scheduler. In this experiment, 7 concurrent
tasks with precedence and exclusion relations were taken into account. More specifically,
considering the feasible schedule generated for the original specification (Figure 9.9), a
new task (τ7) was added to fill the idle times (Figure 9.16). In order to evaluate the
runtime scheduler, tasks τ1,τ2,τ3 and τ4 varied the execution cycles at the same time from
100% to 10% in relation to each task WCEC. Figure 9.17 depicts quantitative data, in
which the energy consumption values are normalized.

Four techniques are compared. The first one adopts only the dispatcher (only dis-
patcher), in the sense that no action is performed when slack times occur. In other words,

186 CASE STUDIES

2.55V

1.95V

1.21V

Start End

TSDH

TSSO

1.39V

1.58V

TAM

TD TD

TAM TAM

TD TDTAM

TSSF TAM

Figure 9.15 Thermal printer: oscilloscope timing diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13

-
-
-
-
-

 I I I I I I I I I I I I I
τ
3

τ
3

τ
4

τ
1

τ
2

 14 15 16 17 ... 26
 I I I I I I I xxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx Dispatcher Overhead

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

x
x
x
x
x
x
x
x
x
x
x
x

τ
6

τ
5

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx1.95V

1.76V

1.58V

1.39V

1.21V
τ
7

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

τ
7

Figure 9.16 Runtime scheduler: feasible schedule

Figure 9.17 Comparison runtime scheduler and other approaches

9.3 SUMMARY 187

the pre-runtime schedule is followed without modification. idle 10MHz reduces the volt-
age/frequency level to the minimum level available during the slack times, whereas idle
DPM turns off the microcontroller. The technique idle DPM/10MHz reduces the volt-
age/frequency level to the minimum level as well as it turns off the microcontroller after
the voltage/frequency switching. scheduler is the adoption of the proposed lightweight
scheduler during slack times (see Chapter 8).

Comparing the runtime scheduler to an approach based only on the dispatcher, the
results show a significant reduction in the energy consumption with the former (more
than 40% in one scenario). The dispatcher only follows the schedule table and performs
no action to improve the consumption due to changes in the task executions. Additional
savings can be obtained adjusting the dispatcher to reduce the voltage/frequency level
to 1.02V/10MHz in the idle periods. Nevertheless, the runtime scheduler still provides
better results. Instead of switching to the minimum voltage/frequency level, consider
the dispatcher turns off the microcontroller in the idle periods (DPM). Reducing to the
minimum level seems more efficient, but the runtime scheduler provides greater savings.
Besides, mixing DPM and the minimum voltage/frequency level slightly improves the
consumption in some situations, regarding the idle periods. Nevertheless, for one scenario,
the runtime scheduler saved more than 10% in relation to previous approach. The reader
should note that when the execution cycles of each task approximate the WCEC, the
impact of each technique is diminished, since the amount of slack times is decreased.

9.3 SUMMARY

This chapter presented the case studies adopted to evaluate the software synthesis method
as well as the pre-runtime and runtime scheduling algorithms. Regarding the pre-runtime
scheduling, some case studies demonstrated the practicability of the proposed algorithm,
in the sense that the feasible schedules were found in situations that runtime counter-
parts may fail, tiny subsets of the corresponding state spaces were visited, and energy
consumption was reduced due to the adoption of DVS technology. Concerning the soft-
ware synthesis, experiments corroborated the effectiveness of the proposed method, since
predictable codes were generated satisfying intertask relations, timing and energy con-
straints. In the context of the runtime scheduler, some scenarios were considered in
order to provide a comparison between the scheduler and other approaches. The runtime
scheduler provided better results in all situations when the execution cycles of some tasks
varied below the respective WCEC.

CHAPTER 10

CONCLUSIONS

Over the last years, energy consumption has been a great concern in embedded systems’
design due to many factors, for instance: (i) mobility issues; (ii) environmental problems
and (iii) energy costs. As software account for the majority of embedded system func-
tionalities, attention has been devoted to improve energy utilization at application and
behavioral level. Most methods available in the literature adopt dynamic power manage-
ment techniques (DPM), more specifically, dynamic voltage scaling (DVS), cooperatively
with specialized operating systems to control energy consumption during system run-
time. However, DVS technology must be adopted with caution in hard real-time systems
in order not to violate stringent timing constraints. Although several methods have been
developed to deal with DPM techniques in time-critical systems, many issues are still
open as described below:

• Most works neglect intertask relations, for instance, precedence and exclusion rela-
tions, such that the respective methods may produce infeasible results when con-
sidering real-world applications;

• Overheads, such as dispatcher and frequency/voltage switchings, are generally dis-
regarded. Indeed, if overheads are neglected, tasks’ constraints may be affected and
even the benefits acquired with such energy saving methods may be significantly
reduced;

• In general, formal models are not taken into account by most energy reduction
methods which may hinder the verification and analysis of quantitative as well as
qualitative properties;

• Several techniques are implemented as operating system services, which can incur
considerable overheads during system execution, affecting timing as well as energy
constraints. Usually, operating systems provide several services for an application,
but, in many situations, not all services are utilized.

In order to tackle the issues presented previously, this work described a software
synthesis method for hard real-time embedded systems with energy constraints. The
proposed method contemplates a set of activities as well as integrated tools, such that,
from a system specification, a customized code is generated satisfying timing as well as
energy constraints. Additionally, the method is based on a formal model, namely, time
Petri net, which allows the verification and analysis of several properties. Among the
techniques for reducing energy consumption, dynamic voltage scaling (DVS) has been
adopted, which provides interesting results comparing to other DPM techniques.

The following sections describe the principal contributions of the proposed method as
well as the future works.

189

190 CONCLUSIONS

10.1 CONTRIBUTIONS

This thesis presented a novel approach for synthesizing customized embedded software
in the context of hard real-time systems with energy constraints. The method is an
important part of MEMBROS methodology, which is also composed of other methods,
such as requirement validation and performance evaluation. Nevertheless, the reader
should note that the software synthesis method is the contribution of this thesis. For a
better visualization, the contributions are detailed below according to each activity:

• Measurement. Statistical techniques have been adopted to estimate the energy
consumption in each voltage/frequency level of a DVS platform as well as theWCEC
of each software component (e.g., dispatcher). In the proposed work, two techniques
are available to perform the measurement activity, more specifically, adopting boot-
strap or a parametric method. The former assumes no previous information about
the population, whereas the latter allows the designer to indicate a relative pre-
cision. Besides, the validation activity also takes into account these statistical
techniques, which allow to quantify the system behavior in the context of energy
consumption and execution time. Moreover, a tool, namely, AMALGHMA, has
been implemented to support and automate the measuring process. The tool is
also a contribution;

• Modeling. This work proposes a formal model based on time Petri nets in or-
der to represent real-time systems with intertask relations, overheads and energy
constraints. A bottom-up approach is adopted, in which composition rules are con-
sidered for combining building block models. By construction, the generated models
are assured to be bounded and conservative, in the sense that the respective state
spaces are finite. Besides, some verifications based on CTL (Computational Tree
Logic) have been taken into account to check the availability of undesirable condi-
tions in the models (which were not detected). Moreover, DENTES tool has been
devised to automate the modeling and scheduling activities, in the sense that from
a non-functional specification, the TPNE model is generated, and the scheduling
activity can be carried out. DENTES tool is also another contribution;

• Scheduling. The adopted scheduling approach is a pre-runtime scheduling, which
performs a depth-first search on the state space of a Petri net model in order to
find a feasible schedule. Although the state space exploration suffers from the
state space size explosion, several techniques are proposed to tackle the space size.
Additionally, since the pre-runtime scheduling cannot benefit from the slack times
that occur during system runtime, a lightweight runtime scheduler is also proposed
to improve energy consumption in such situations. This mixture of pre-runtime and
runtime scheduling can be visualized as a hybrid scheduling approach;

• Code Generation. From a feasible schedule, a predictable customized code is
generated satisfying the specified constraints. More specifically, the TLTS is tra-
versed to detect the times when each task will execute, obtaining as a result a
schedule table. From such table, the dispatcher is customized in order to provide

10.2 FUTURE WORKS 191

only the required services at system runtime. Since the schedule is already defined,
the generated code incurs minimal overheads during system execution.

As far as the authors are aware, there is no similar method for time-critical systems
that, from a system specification, customized code is generated meeting intertask rela-
tions, timing and energy constraints as well as adopting dynamic voltage scaling.

10.2 FUTURE WORKS

Although this thesis tackles some issues regarding embedded software development for
energy-constrained hard real-time systems, there are many possibilities to improve and
extend the current work. The following items summarize some possibilities:

• This work has focused on single-processor architectures with DVS technology. Nev-
ertheless, there is an increasing requirement for multiprocessor and distributed ar-
chitectures in order to deal with more complex specifications that may be infeasible
to implement in a single processor. Considering the Petri net model, an extension
may consider a new building block for representing inter-processor communications
and the renaming function may be adopted to indicate the CPU associated with
each task structure block;

• The effectiveness of the runtime scheduler is somewhat limited by the arrangement
of each task in the feasible schedule. In order to improve the arrangement, the
pre-runtime scheduling algorithm may be modified to organize the tasks, which are
supposed to execute less than the WCEC (most of the time), in such a way that
the scheduler can better stretch the executions of other tasks;

• In the past few years, some approaches have come to light to deal with fault-
tolerance in real-time systems that adopt DVS for reducing energy consumption.
Indeed, some embedded systems are deployed in hostile environments, in which
repair and maintenance are not easily performed. Perhaps, an extension of the
proposed runtime scheduler may consider fault-tolerant techniques to cope with
unexpected situations during system runtime;

• Reduction techniques [10] are available for Petri nets in order to facilitate property
analysis in large models. Although the proposed modeling approach assures the
generated models have important properties by construction, those reduction tech-
niques may be an interesting approach for providing insights about a specification
schedulability.

10.3 FINAL REMARKS

This work proposed a software synthesis method for hard real-time systems with energy
constraints, taking into account some issues not considered in similar works (e.g., formal
models). Despite the results presented in this thesis, the research area related to software
construction for energy-constrained time-critical systems has other open issues, which lay
down several possibilities for further development of new techniques.

BIBLIOGRAPHY

[1] N. Velázquez. Impact of rising energy costs on small business. Technical report,
House Small Business Committee. United States of House of Representatives, Au-
gust 2006.

[2] G. Yeap. Practical low power digital VLSI design. Kluwer Academic Publishers,
1998.

[3] K. Mihic and et al. Reliability and power management of integrated systems. In
Euromicro Symposium on Digital System Design (DSD’04). IEEE Society, 2004.

[4] T. Lee and P. Hsiung. Embedded software synthesis and prototyping. IEEE Trans-
actions on Consumer Electronics, 50:386–392, 2004.

[5] M. Pedram. Power optimization and management in embedded systems. In Asia
and South Pacific Design Automation Conference (ASP-DAC’01), pages 239–244,
2001.

[6] J. Xu and D. Parnas. Priority scheduling versus pre-run-time scheduling. Real-Time
Systems, 18:7–23, January 2000.

[7] X. Hu, G. Quan, and B. Mochocki. A realistic variable voltage scheduling model
for real-time applications. International Conference on Computer-Aided Design
(ICCAD’02), 00:726–731, 2002.

[8] A. Singhal. Real time systems: A survey. Technical report, Computer Science
Department. University of Rochester, December 1996.

[9] N. Min-allah and et al. Towards dynamic voltage scaling in real-time systems- a
survey. International Journal of Computer Sciences and Engineering Systems, 1(2),
2007.

[10] T. Murata. Petri nets: Properties, analysis and applications. Proc. IEEE,
77(4):541–580, April 1989.

[11] J. Xu. On inspection and verification of software with timing requirements. IEEE
Transactions on Software Engineering, 29(8):705–720, August 2003.

[12] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable
voltage processors. In International Symposium on Low Power Electronics and
Design (ISLPED’98), pages 197–202, 1998.

193

194 BIBLIOGRAPHY

[13] P. Merlin and D. J. Faber. Recoverability of communication protocols: Implicatons
of a theoretical study. IEEE Transactions on Communications, 24(9):1036–1043,
Sept. 1976.

[14] N. Jha. Low-power system scheduling, synthesis and displays. IEE Proceedings
Computers and Digital Techniques, 152:344–352, 2005.

[15] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli. Software synthesis for real-
time information processing systems. Code Generation for Embedded Processors,
pages 260–279, 1995.

[16] R. Barreto. A Time Petri Net-Based Methodology for Embedded Hard Real-Time
Systems Software Synthesis. PhD Thesis, Centro de Informática. Universidade
Federal de Pernambuco, April 2005.

[17] E. Tavares and et al. Hard real-time tasks’ scheduling considering voltage scaling,
precedence and exclusion relations. Information Processing Letters, 108(2):50–59,
2008.

[18] E. Tavares and et al. Modeling hard real-time systems considering inter-task rela-
tions, dynamic voltage scaling and overheads. Microprocessor and Microsystems,
32(8):460–473, 2008.

[19] E. Tavares and et al. A time petri net-based approach for hard real-time systems
scheduling considering dynamic voltage scaling, overheads, precedence and exclu-
sion relations. Symposium on Integrated Circuits and Systems Design (SBCCI’07),
2007.

[20] E. Tavares, P. Maciel, B. Silva, M. Oliveira Jr., R. Rodrigues, and R. Marques.
Dynamic voltage scaling in hard real-time systems considering precedence and
exclusion relations. International Conference on Systems, Man, and Cybernetics
(SMC’07), 2007.

[21] E. Tavares, P. Maciel, B. Silva, M. Oliveira Jr., and R.Rodrigues. Modeling and
scheduling hard real-time biomedical systems with timing and energy constraints.
Electronic Letters, (19), September 2007.

[22] E. Tavares and et al. A hybrid dvs scheduling approach for hard real-time systems.
International Conference on Systems, Man, and Cybernetics (SMC’09), 2009.

[23] E. Tavares and et al. Software synthesis for hard real-time embedded systems with
energy constraints. International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD’08), 2008.

[24] E. Tavares and et al. An environment for measuring and scheduling time-critical
embedded systems with energy constraints. International Conferences on Software
Engineering and Formal Methods (SEFM’08), 2008.

BIBLIOGRAPHY 195

[25] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
36th Annual Symposium on Foundations of Computer Science, 00:374, 1995.

[26] W. Kwon and T. Kim. Optimal voltage allocation techniques for dynamically
variable voltage processors. ACM Transactions in Embedded Computing Systems
(TECS), 4(1):211–230, 2005.

[27] B. Mochocki, X. Sharon Hu, and G. Quan. A unified approach to variable voltage
scheduling for nonideal dvs processors. IEEE Trans. on CAD of Integrated Circuits
and Systems, 23(9):1370–1377, 2004.

[28] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time systems
on variable voltage processors. In Proceedings of the 38th conference on Design
automation, pages 828–833, 2001.

[29] L. Leung, C. Tsui, and X. Hu. Exploiting dynamic workload variation in low energy
preemptive task scheduling. In Design, Automation and Test in Europe’05, pages
634–639, 2005.

[30] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-aware scheduling for
periodic real-time tasks. IEEE Trans. on Comp., 53(5):584–600, 2004.

[31] L. Cortés, P. Eles, and Z. Peng. Quasi-static assignment of voltages and optional
cycles for maximizing rewards in real-time systems with energy constraints. In
Design Automation Conference (DAC’05), pages 889–894, 2005.

[32] R. Jejurikar and R. Gupta. Energy aware non-preemptive scheduling for hard real-
time systems. In Euromicro Conference on Real-Time Systems (ECRTS’05).

[33] B. Mochocki and et al. Transition-overhead-aware voltage scheduling for fixed-
priority real-time systems. ACM Transactions on Design Automation of Electronic
Systems, 12:1084–4309, 2007.

[34] A. Andrei and et al. Overhead-conscious voltage selection for dynamic and leakage
energy reduction of time-constrained systems. IEE Proc. Comp. and Digital Tech.,
152:28–35, 2005.

[35] W. Kim and et al. Preemption-aware dynamic voltage scaling in hard real-
time systems. International Symposium on Low Power Electronics and Design
(ISLPED’04), pages 393–398, 2004.

[36] Y. Cai et al. Workload-ahead-driven online energy minimization techniques for
battery-powered embedded systems with time-constraints. ACM Trans. Des. Au-
tom. Electron. Syst., 12(1):5, 2007.

[37] D. Shin and J. Kim. Power-aware scheduling of conditional task graphs in real-
time multiprocessor systems. In Proceedings of the 2003 international symposium
on Low power electronics and design, pages 408–413, 2003.

196 BIBLIOGRAPHY

[38] F. Balarin and et al. Synthesis of software programs for embedded control appli-
cations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 18(6):834–849, June 1999.

[39] F. Balarin and et al. Hardware-software Co-design of Embedded Systems: the POLIS
approach. Kluwer Academic Publishers, 1997.

[40] L.J. Van Bokhoven, J.P.M. Voeten, and M.C.W. Geilen. Software synthesis for
system level design using process execution trees. 25th Euromicro Conference (EU-
ROMICRO ’99), 1:1463, 1999.

[41] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Synthesis
of embedded software using free-choice petri nets. Design Automation Conference
(DAC’99), 1999.

[42] P.-A. Hsiung. Formal synthesis and code generation of embedded real-time software.
9th Int. Symp. Hw/Sw Codesign (CODES’01), pages 208–213, April 2001.

[43] T. Amnell et al. Code synthesis for timed automata. Nordic Journal of Computing,
2003.

[44] A. Nácul and T.Givargis. Synthesis of time-constrained multitasking embed-
ded software. ACM Transactions on Design Automation of Electronic Systems,
11(4):822–847, 2006.

[45] W. Wang, A. Raghunathan, G. Lakshminarayana, and N. Jha. Input space adaptive
embedded software synthesis. In ASP-DAC, pages 711–718. ACM, 2002.

[46] S. Udayanarayanan and C. Chakrabarti. Energy-efficient code generation for
dsp56000 family. International Symposium on Low Power Electronics and Design
(ISLPED ’00), pages 247– 249, 2000.

[47] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. Corner, and E. Berger. Eon:
a language and runtime system for perpetual systems. In SenSys ’07: Proceedings
of the 5th international conference on Embedded networked sensor systems, pages
161–174. ACM, 2007.

[48] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and Design of Embedded
Systems. Prentice-Hall, New Jersey, 1994.

[49] W.M.P. van der Aalst. Pi calculus versus Petri nets: Let us eat humble pie rather
than further inflate the Pi hype. In Business Process Trends (BPTrends’05), 2005.

[50] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. ACM Journal, 20(1):46–61, January 1973.

[51] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. IEEE Transactions on Computers, 39(9):1175–1185,
September 1990.

BIBLIOGRAPHY 197

[52] A. K. Mok. The design of real-time programming systems based on process models.
IEEE Real-Time Systems Symposium, pages 5–17, 1984.

[53] J. Xu and D. Parnas. On satisfying timing constraints in hard real-time systems.
IEEE Trans. Soft. Engineering, 19(1):70–84, January 1993.

[54] J. Xu and D. Parnas. Scheduling processes with release times, deadlines, precedence,
and exclusion relations. IEEE Trans. Soft. Engineering, 16(3):360–369, March 1990.

[55] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems. PhD thesis,
Technische Universität Wien, Institut für Technische Informatik, Treitlstr. Vienna,
Austria, 1994.

[56] J. Xu and K. Lam. Integrating run-time scheduling and pre-run-time scheduling
of real-time processes. In 23rd IFAC/IFIP Workshop on Real-Time Programming.
Shantou, China, june 1998.

[57] W. Wang, A. Mok, and G. Fohler. Pre-scheduling. In IEEE Transactions on
Computers. IEEE, 2004.

[58] L. Mazzoni. Power-aware design for embedded systems. Electronics Systems and
Software, 1:12–17, 2003.

[59] L. Benini, A. Bogliolo, and G. Micheli. A survey of design techniques for system-
level dynamic power management. IEEE Transactions on VLSI Systems., 2000.

[60] Y. Zhang and K. Chakrabarty. A unified approach for fault tolerance and dynamic
power management in fixed-priority real-time embedded systems. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 2006.

[61] Intel Corporation. The intel xscale microarchitecture. Technical report, 2000.

[62] Advanced Micro Devices. Mobile amd athlon4 processor model 6 cpga data sheet
rev:e. Technical report.

[63] M. Fleischmann. Longrun power management: Dynamic power management for
crusoe processors. Technical report, Transmeta Corporation.

[64] T. Phatrapornnant and M. Pont. Reducing jitter in embedded systems employing
a time-triggered software architecture and dynamic voltage scaling. IEEE Trans.
on Comp., 55(2):113–124, 2006.

[65] L. Niu and G. Quan. Reducing both dynamic and leakage energy consumption for
hard real-time systems. In International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, pages 140–148, 2004.

[66] J. M. Rabaey and M. Pedram. Low Power Design Methodologies. Kluwer Academic
Publishers, 1996.

198 BIBLIOGRAPHY

[67] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power cmos digital design.
IEEE Journal of Solid-State Circuits, 27(4):473–484, 1992.

[68] R. Jejurikar and et al. Leakage aware dynamic voltage scaling for real-time embed-
ded systems. In Design Automation Conference (DAC’04), pages 275–280, 2004.

[69] M. Liebelt et al. An energy efficient rate selection algorithm for voltage quantized
dynamic voltage scaling. International Symposium on Systems Synthesis (ISSS
’01).

[70] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for low-energy, hard
real-time applications. IEEE Design and Test, 18(2):20–30, 2001.

[71] J. Seo, T. Kim, and K. Chung. Profile-based optimal intra-task voltage scheduling
for hard real-time applications. Design Automation Conference, 00:87–92, 2004.

[72] Philips Semiconductors. Lpc2104/2105/2106; single-chip 32-bit microcontrollers.
data sheet. Technical report.

[73] E. A. Lee. Embedded software. In M. Zelkowitz, editor, Advances in Computers,
volume 56. 2002.

[74] D. Lanneer, J. Van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen, and
G. Goossens. Chess: retargetable code generation for embedded dsp processors.
In Code Generation for Embedded Processors, pages 85–102, 1994.

[75] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic Publishers, 1999.

[76] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving petri nets
from finite transition systems. IEEE Transactions on Computers, 47(8):859–882,
1998.

[77] C. Girault and R. Valk. Petri Nets for System Engineering: A Guide to Modeling,
Verification, and Applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2001.

[78] M. Sipser. Introduction to the theory of computation. PWS Publishing Company,
1996.

[79] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37(1):77–121, January 1985.

[80] J. C. M. Baeten. A brief history of process algebra. Theor. Comput. Sci., 335(2-
3):131–146, 2005.

[81] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1982.

[82] C. Hoare. Communicating Sequential Process. Prentice-Hall, 1985.

BIBLIOGRAPHY 199

[83] R. Alur and D. Dill. Automata for modeling real-time systems. In Proceedings of
the seventeenth international colloquium on Automata, languages and programming,
pages 322–335, 1990.

[84] R. Alur and D. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–
235, 1994.

[85] J. Baeten and J. Bergstra. Real time process algebra. Formal Aspects of Computing,
3(2):142–188, 1991.

[86] J. Baeten and J. Bergstra. Real time process algebra with infinitesimals. page 167,
1995.

[87] J. Baeten and J. Bergstra. Discrete time process algebra. Formal Aspects of Com-
puting, 8(2):188–208, 1996.

[88] W. Zuberek. Timed petri nets - definitions, properties and applications. Micro-
electronics and Reliability (Special Issue on Petri Nets and Related Graph Models),
31:627–644, 1991.

[89] C. A. Petri. Kommunikation mit Automaten. PhD Dissertation, Darmstadt Uni-
versity, Germany, 1962.

[90] J. Desel and W. Reisig. Place/transition nets. Lectures on Petri Nets I: Basic
Models, LNCS 1491, pages 122–173, June 1998.

[91] E. W. Dijsktra. Hierarchical ordering of sequential processes, volume 1. Acta
Informatzca, 1971.

[92] P. Maciel and et al. Introdução às Redes de Petri e Aplicações. X Escola de
Computação, 1996.

[93] M. Silva and et al. Linear algebraic and linear programming techniques for the
analysis of place or transition net systems. In Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, pages 309–373. Springer-Verlag, 1998.

[94] A. Perkusich and et al. Putting petri nets to work for controlling flexible manufac-
turing systems. In Annual Conference of the IEEE Industrial Electronics Society
(IECON’91), pages 1631–1636, 1991.

[95] T. Barros. Uma Técnica de Modelagem por Redes de Petri Voltada a Automação
da Manufatura. Msc Thesis, Universidade Federal de Pernambuco, 1990.

[96] R. Valette and et al. Putting petri nets to work for controlling flexible manufac-
turing systems. In IEEE International Symposium on Circuits and Systems, pages
929–932, 1985.

200 BIBLIOGRAPHY

[97] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzé. A unified high-level Petri net
formalism for time-critical systems. IEEE Trans Soft Engineering, 17(2):160–172,
Feb 1991.

[98] G. Balbo. Introduction to stochastic petri nets. In European Educational Forum:
School on Formal Methods and Performance Analysis, pages 84–155, 2000.

[99] P. Starke and S. Roch. INA - Integrated Net Analyzer - Version 2.2. Humbolt
Universität zu Berlin - Institut für Informatik, 1999.

[100] Object Management Group. Omg systems modeling language (omg sysml), v1.0”.
Technical report, 2007.

[101] Object Management Group. A uml profile for marte, beta 1. Technical report,
2007.

[102] K. Jensen. Coloured petri nets and the invariant method. Theoretical Computer
Science, 1:317–336, 1981.

[103] E. Carneiro and et al. Mapping sysml state machine diagram to time petri net for
analysis and verification of embedded real-time systems with energy constraints. In
ENICS, 2008.

[104] G. Callou and et al. A coloured petri net based approach for estimating execution
time and energy consumption in embedded systems. In Symposium on Integrated
Circuits and Systems Design (SBCCI’08), 2008.

[105] R. Wilhelm and et al. The worst-case execution-time problem-overview of methods
and survey of tools. ACM Transactions in Embedded Computing Systems (TECS),
7, 2008.

[106] M. Oliveira Jr. Estimativa do Consumo de Energia devido ao Software: Uma
Abordagem Baseada em Redes de Petri Coloridas (in portuguese). PhD Thesis,
Centro de Informática, Universidade Federal de Pernambuco, Outubro 2006.

[107] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall,
1993.

[108] C. Chung. Simulation Modeling Handbook: A Practical Approach. CRC, 2003.

[109] G. Bolch and et al. Queueing Networks and Markov Chains: Modeling and Perfor-
mance Evaluation with Computer Science Applications. Wiley-Interscience, 2006.

[110] M. Triola. Elementary Statistics. Addison Wesley, 9 edition, 2004.

[111] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-
Real-Time Environment. PhD Thesis, Dept Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, May 1983.

BIBLIOGRAPHY 201

[112] K. van Hee and et al. Architecture of information systems using the theory of petri
nets. Lecture notes for Systeemmodelleren 1 (2M310), 2004.

[113] G. Albuquerque Jr. Avaliação de Desempenho de Cadeias de Suprimentos Uti-
lizando Componentes GSPN (in portuguese). MSc Thesis, Centro de Informática,
Universidade Federal de Pernambuco, August 2007.

[114] A. Valmari. The state explosion problem. LNCS: Lectures on Petri Nets I: Basic
Models, 1491:429–528, June 1998.

[115] M. Muller-Olm, D. Schmidt, and B. Steffen. Model checking: a tutorial introduc-
tion. In SAS’99, 1999.

[116] P. Godefroid. Partial Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. PhD Thesis, University of Liege,
Nov. 1994.

[117] M. Garey and D. Johnson. Computer and Intractability: a Guide to the Theory of
the NP-Completeness. W. H. Freeman and Company, 1979.

[118] J. Lilius. Efficient state space search for time petri nets. In Electronic Notes in
Theoretical Computer Science, volume 18. Elsevier Science, 1998.

[119] N. Leveson and J. Stolzy. Safety analysis using petri nets. IEEE Trans. Softw.
Eng., 13:386–397, 1987.

[120] K. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 2007.

[121] Amalghma and dentes tools. http://www.cin.ufpe.br/˜eagt/tools. 2008.

[122] N. Kim and et al. Visual assessment of a real-time systems design: A case study
on a CNC controller. Real-Time Systems Symposium (RTSS’96), pages 300–310,
1996.

[123] M. Oliveira Jr. Desenvolvimento de Um Protótipo para a Medida Não Invasiva da
Saturação Arterial de Oxigênio em Humanos - Ox́ımetro de Pulso (in portuguese).
MSc Thesis, Departamento de Biof́ısica e Radiobiologia, Universidade Federal de
Pernambuco, August 1998.

[124] R. Prathipati. Energy Efficient Scheduling Techniques for Real-Time Embedded
Systems. MSc Thesis, Texas A&M University, USA, 2004.

[125] Agilent Technologies. Scope connect software. Technical report.

[126] G. Palshikar. An introduction to model-checking.
Embedded Systems Programming, December 2004.
http://www.embedded.com/columns/technicalinsights/17603352? requestid=94440.

APPENDIX A

BASIC BUILDING BLOCKS: JUXTAPOSITION OF
P-INVARIANTS

The adopted modeling approach assures that the generated models are structurally
bounded and structurally conservative. In order to prove previous assertion, an important
step is to demonstrate that the allowed fusions of basic building block models generate
structurally conservative as well as structurally bounded models (e.g., the conservative
components are preserved). As follows, the preservation of boundness property is demon-
strated using the juxtaposition of P-invariants. Assume that the variables in each vector
belongs to the set of positive integers.

A.1 Fork Block and Periodic Task Arrival Block

I(f) =
[

pstartspec pst1 ··· psti ··· pstn

st1 + · · ·+ sti + · · ·+ stn st1 · · · sti · · · stn
]

T

I(a) =
[

psti pwai
pwdi

pwri
pwvsi

(αi + 1)(wvsi + wdi) wvsi + wdi wdi wvsi wvsi
]

T

N(f⊔a) = N(f)⊔N(a). By juxtaposition I(f⊔a) = J (I(f), I(a)) and sti = (αi+1)(wvsi+
wdi):

I(f⊔a) =
[

pstartspec pst1 ··· psti

st1 + · · ·+ (αi + 1)(wvsi + wdi) + · · ·+ stn st1 · · · (αi + 1)(wvsi + wdi)

··· pstn pwai
pwdi

pwri
pwvsi

· · · stn wvsi + wdi wdi wvsi wvsi
]

T

Since I(f⊔a) > 0 and IT
(f⊔a) × A(f⊔a) = 0, in which A(f⊔a) is the incidence matrix,

N(f⊔a) is structurally conservative as well as structurally bounded.

A.2 Periodic Task Arrival Block and Deadline Checking Block

I(a) =
[

psti pwai
pwdi

pwri
pwvsi

(αi + 1)(wvsi + wdi) wvsi + wdi wdi wvsi wvsi
]

T

I(d) =
[

pwdi
pwpci1

pwci1
··· pwpcij

(x)d0 + ... + d2,...,x d0 + ...+ d2,...,x d1 + · · ·+ d1,...,x · · · d0 + · · ·+ d1,l

pwcij
pdmi

dx + ... + d1,...,x d0 + · · ·+ d1,...,x

]

T

N(a⊔d) = N(a) ⊔N(d). By juxtaposition I(a⊔d) = J (I(a), I(d)), such that wdi = (x)d0 +
...+ d2,...,x:

203

204 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

I(a⊔d) =
[

psti pwai

(αi + 1)(wvsi + ((x)d0 + ...+ d2,...,x) wvsi + ((x)d0 + ...+ d2,...,x)

pwdi
pwri

pwvsi
pwpci1

pwci1
···

(x)d0 + ... + d2,...,x wvsi wvsi d0 + ...+ d2,...,x d1 + · · ·+ d1,...,x · · ·
pwpcij

pwcij
pdmi

d0 + · · ·+ d1,l dx + ...+ d1,...,x d0 + · · ·+ d1,...,x

]

T

N(a⊔d) is structurally conservative as well as structurally bounded, as IT
(f⊔a) × A(a⊔d)

= 0, in which A(a⊔d) is the respective incidence matrix, and I(f⊔a) > 0.

A.3 Periodic Task Arrival Block and Voltage Selection Block

I(a) =
[

psti pwai
pwdi

pwri
pwvsi

(αi + 1)(wvsi + wdi) wvsi + wdi wdi wvsi wvsi
]

T

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvs′i wvs′i · · · wvs′i · · · wvs′i

]

T

N(a⊔v) = N(a) ⊔ N(v). By juxtaposition I(a⊔v) = J (I(a), I(v)) and wvs′i = wvsi:

I(a⊔v) =
[

psti pwai
pwdi

pwri
pwvsi

pvi1
··· pvij

(αi + 1)(wvsi + wdi) wvsi + wdi wdi wvsi wvsi wvsi · · · wvsi

··· pvim

· · · wvsi
]

T

N(a⊔v) is structurally conservative as well as structurally bounded, since IT
(f⊔a)×A(a⊔d)

= 0 and I(f⊔a) > 0.

A.4 Voltage Selection Block and Non-Preemptive Task Structure Block

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvs′i wvs′i · · · wvs′i · · · wvs′i

]

T

I(np) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

wgij wgij wgij + proc wgij wgij proc
]

T

N(v⊔np) = Nv ⊔Nnp. By juxtaposition I(v⊔np) = J (I(v), I(np)), such that wvs′i = wgij :

I(v⊔np) =
[

pwvsi
pvi1

··· pvij
··· pvim pwgij

pwcij
pwfij

pfvi pproc

wgij wgij · · · wgij · · · wgij wgij wgij + proc wgij wgij proc
]

T

As IT
(v⊔np) × A(v⊔np) = 0, in which A(v⊔np) is the incidence matrix, and I(v⊔np) > 0,

N(v⊔np) is structurally conservative as well as structurally bounded.

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 205

A.5 Voltage Selection Block and Preemptive Task Structure Block

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvs′i wvs′i · · · wvs′i · · · wvs′i

]

T

I(p) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

(C)wgij wgij wgij + proc wgij (C)wgij proc
]

T

N(v⊔p) = Nv ⊔ Np . By juxtaposition I(v⊔p) = J (I(v), I(p)), such that wvs′i = wgij :

I(v⊔p) =
[

pwvsi
pvi1

··· pvij
··· pvim pwgij

pwcij
pwfij

(C)wgij (C)wgij · · · (C)wgij · · · (C)wgij wgij wgij + proc wgij

pfvi pproc

(C)wgij proc
]

T

N(v⊔p) is structurally conservative as well as structurally bounded, as IT
(v⊔p) × A(v⊔p)

= 0, in which A(v⊔p) is the respective incidence matrix, and I(v⊔p) > 0.

A.6 Voltage Selection Block and Non-Preemptive Task Structure with 2 Voltages
Block

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvs′i wvs′i · · · wvs′i · · · wvs′i

]

T

I(np2v) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi pproc

wg1ij wg1ij wg1ij + proc wg1ij + proc wg1ij + proc wg1ij wg1ij proc
]

T

N(v⊔np2v) = Nv ⊔ Nnp2v. By juxtaposition I(v⊔p) = J (I(v), I(np2v)), such that wvs′i =
wgij :

I(v⊔np2v) =
[

pwvsi
pvi1

··· pvij
··· pvim pwg1ij

pwc1ij

wg1ij wg1ij · · · wg1ij · · · wg1ij wg1ij wg1ij + proc

pwgij
pwcij

pwfij
pfvi pproc

wg1ij + proc wg1ij + proc wg1ij wg1ij proc
]

T

Since I(v⊔np2v) > 0 and IT
(v⊔np2v) × A(v⊔np2v) = 0, in which A(v⊔np2v) is the incidence

matrix, N(v⊔np2v) is structurally conservative as well as structurally bounded.

A.7 Voltage Selection Block and Preemptive Task Structure with 2 Voltages Block

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvs′i wvs′i · · · wvs′i · · · wvs′i

]

T

I(p2v) =
[

pvij
pwg1ij

pwc1ij
pwf1ij

pwgij

(C1C2)wg1ij (C2)wg1ij (C2)wg1ij + proc (C2)wg1ij (C1)wg1ij

206 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

pwcij
pwfij

pfvi pproc

(C1)wg1ij + proc (C1)wg1ij (C1C2)wg1ij proc
]

T

N(v⊔p2v) = Nv ⊔ Np2v. By juxtaposition I(v⊔p2p) = J (I(v), I(p2v)), such that wvs′i =
wgij :

I(v⊔p2v) =
[

pwvsi
pvi1

··· pvij
··· pvim

(C1C2)wg1ij (C1C2)wg1ij · · · (C1C2)wg1ij · · · (C1C2)wg1ij

pwg1ij
pwc1ij

pwf1ij
pwgij

pwcij
pwfij

(C2)wg1ij (C2)wg1ij + proc (C2)wg1ij (C1)wg1ij (C1)wg1ij + proc (C1)wg1ij
pfvi pproc

(C1C2)wg1ij proc
]

T

As I(v⊔p2v) > 0 and IT
(v⊔p2v) × A(v⊔p2v) = 0, in which A(v⊔p2v) is the incidence matrix,

N(v⊔p2v) is structurally conservative as well as structurally bounded.

A.8 Non-Preemptive Task Structure Block and Non-Preemptive Task Structure
Block

I(npj) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

wgij wgij wgij + proc wgij wgij proc
]

T

I(nps) =
[

pvis pwgis
pwcis

pwfis
pfvi pproc

wgis wgis wgis + proc′ wgis wgis proc′
]

T

N(npj⊔nps = Nnpj ⊔ Nnps. By juxtaposition I(npj⊔nps) = J (I(npj), I(nps)), such that
wgis = wgij and proc′ = proc:

I(npj⊔nps) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc pvis pwgis
pwcis

wgij wgij wgij + proc wgij wgij proc wgij wgij wgij + proc

pwfis

wgis
]

T

N(nps⊔npj) is structurally conservative as well as structurally bounded, as I(nps⊔npj) > 0
and IT

(nps⊔npj)
×A(nps⊔npj) = 0, in which A(nps⊔npj) is the respective incidence matrix.

A.9 Non-Preemptive Task Structure Block and Non-Preemptive Task Structure
with 2 Voltages Block

I(npj) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

wgij wgij wgij + proc wgij wgij proc
]

T

I(np2vs) =
[

pvis pwg1is
pwc1is

pwgis
pwcis

pwfis
pfvi

wg1is wg1is wg1is + proc′ wg1is + proc wg1is + proc′ wg1is wg1is
pproc

proc′
]

T

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 207

N(npj⊔np2vs) = Nnpj ⊔ Nnp2vs. By juxtaposition I(npj⊔np2vs) = J (I(npj), I(np2vs)), such
that wgis = wgij and proc′ = proc:

I(npj⊔np2vs) =
[

pvij
pwgij

pwcij
pwfij

pfvi proc pvis pwg1is
pwc1is

wgij wgij wgij + proc wgij wgij proc wgij wgij wgij + proc

pwgis
pwcis

pwfis

wgis + proc wgis + proc wgis
]

T

Since I(npj⊔np2vs) > 0 and IT
(npj⊔np2vs)

× A(npj⊔np2vs) = 0, in which A(npj⊔np2vs) is the
incidence matrix, N(npj⊔np2vs) is structurally conservative as well as structurally bounded.

A.10 Non-Preemptive Task Structure Block and Deadline Checking Block

For the sake of understandability, the deadline checking block considers three waiting for
task computation places in this composition. Nevertheless, the approach is the same for
deadline checking blocks containing any number (x) of such places.

I(np) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

wgij wgij wgij + proc wgij wgij proc
]

T

I(d) =
[

pwdi

3d0 + 2d1 + 2d1j + d1,1j + 2dj + d1,j + d1j,j

pwpci1
pwci1

d0 + d1j + dj + d1j,j d1 + d1,1j + d1,j + d1,1j,j

pwpc1ij
pwc1ij

d0 + d1 + d3 + d1,j d1j + d1,1j + d1j,j + d1,1j,j

pwpcij
pwcij

d0 + d1 + d1j + d1,1j dj + d1,j + d1j,j + d1,1j,j

pdmi

d0 + d1 + d1j + dj + d1,1j + d1,j + d1j,j + d1,1j,j
]

T

In order to allow the juxtaposition, variable proc is replaced by (2x/2 − 1)d0, and
all variables in I(d) that cover more than one waiting for task computation place (e.g.,
d1j,j) are substituted by d0 . Additionally, variable dj is replaced by wgij , since such
variable covers only one waiting for task computation place in I(d), more specifically,
pwcij

∈ Pnp ∩ Pd.

The composition is demonstrated as follows. N(np⊔d) = Nnp ⊔Nd. Thus, by juxtapo-
sition I(np⊔d) = J (I(np), I(d)), such that proc = 3d0, d1,1j = d1,j = d1j,j = d1,1j,j = d0 and
dj = wgij :

I(np⊔d) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc pwdi

wgij wgij wgij + 3d0 wgij wgij 3d0 6d0 + 2d1 + 2d1j + 2wg1ij

pwpci1
pwci1

pwpc1ij
pwc1ij

pwpcij

2d0 + d1j + wg1ij d1 + 3d0 2d0 + d1 + wg1ij d1j + 3d0 2d0 + d1 + d1j

208 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

pdmi

5d0 + d1 + d1j + wg1ij
]

T

As I(np⊔d) > 0 and IT
(np⊔d) × A(np⊔d) = 0, in which A(np⊔d) is the incidence matrix,

N(np⊔d) is structurally conservative as well as structurally bounded.

A.11 Non-Preemptive Task Structure Block and Task Instance Conclusion Block

I(np) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

wgij wgij wgij + proc wgij wgij proc
]

T

I(c) =
[

pfi pfvi pwdi

fvi + wdi fvi wdi
]

T

N(np⊔c) = Nnp ⊔Nc. By juxtaposition I(np⊔c) = J (I(np), I(c)), such that fvi = wgij :

I(np⊔c) =
[

pvij
pwgij

pwcij
pwfij

pfvi proc pfi pwdi

wgij wgij wgij + proc wgij wgij proc wgij + wdi wdi

]

T

N(np⊔c) is structurally conservative as well as structurally bounded, as I(np⊔d) > 0 and
IT
(np⊔c) × A(np⊔c) = 0, in which A(np⊔c) is the respective incidence matrix.

A.12 Preemptive Task Structure Block and Preemptive Task Structure Block

I(pj) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

(Cij)wgij wgij wgij + proc wgij (Cij)wgij proc
]

T

I(ps) =
[

pvis pwgis
pwcis

pwfis
pfvi pproc

(Cis)wgis wgis wgis + proc′ wgis (Cis)wgis proc′
]

T

N(pj⊔ps) = Npj ⊔ Nps. By juxtaposition I(pj⊔ps) = J (I(pj), I(ps)), such that wgij =
(Cis)wg

′
ij
, wgis = (Cij)wg

′
ij
and proc′ = proc:

I(pj⊔ps) =
[

pvij
pwgij

pwcij
pwfij

pfvi

(CijCis)wg
′
ij

(Cis)wg
′
ij

(Cis)wg
′
ij
+ proc (Cis)wg

′
ij

(CijCis)wg
′
ij

proc pvis pwgis
pwcis

pwfis

proc (CisCij)wg
′
ij

(Cij)wg
′
ij

(Cij)wg
′
ij
+ proc (Cij)wg

′
ij

]

T

Since I(pj⊔ps) > 0 and IT
(pj⊔ps)

×A(pj⊔ps) = 0, in which A(pj⊔ps) is the incidence matrix,
N(pj⊔ps) is structurally conservative as well as structurally bounded.

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 209

A.13 Preemptive Task Structure Block and Preemptive Task Structure with 2
Voltages Block

I(pj) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

(Cij)wgij wgij wgij + proc wgij (Cij)wgij proc
]

T

I(p2vs) =
[

pvis pwg1is
pwc1is

pwf1is
pwgis

(C1isC2is)wg1is (C2is)wg1is (C2is)wg1is + proc′ (C2is)wg1is (C1is)wg1is
pwcis

pwfis
pfvi pproc

(C1is)wg1is + proc (C1is)wg1is (C1isC2is)wg1is proc′
]

T

N(pj⊔p2vs) = Npj ⊔ Np2vs . By juxtaposition I(pj⊔p2vs) = J (I(pj), I(p2vs)) , such that
wgij = (C1isC2is)wg

′
ij
, wg1is = (Cij)wg

′
ij
and proc′ = proc:

I(pj⊔pv2s) =
[

pvij
pwgij

pwcij
pwfij

(CijC1isC2is)wg
′
ij

(C1isC2is)wg
′
ij

(C1isC2is)wg
′
ij
+ proc (C1isC2is)wg

′
ij

pfvi pproc pvis pwg1is
pwc1is

(CijC1isC2is)wg
′
ij

proc (C1isC2isCij)wg
′
ij

(C2isCij)wg
′
ij

(C2isCij)wg
′
ij
+ proc

pwf1is
pwgis

pwcis
pwfis

(C2isCij)wg
′
ij

(C1isCij)wg
′
ij

(C1isCij)wg
′
ij
+ proc (C1isCij)wg

′
ij

]

T

As I(pj⊔pv2s) > 0 and IT
(pj⊔pv2s)

× A(pj⊔pv2s) = 0, in which A(pj⊔pv2s) is the respective
incidence matrix, N(pj⊔pv2s) is structurally conservative as well as structurally bounded.

A.14 Preemptive Task Structure Block and Deadline Checking Block

For the sake of understandability, the deadline checking block considers three waiting for
task computation places in this composition. Nevertheless, the approach is the same for
deadline checking blocks containing any number (x) of such places.

I(p) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

(Cij)wgij wgij wgij + proc wgij (Cij)wgij proc
]

T

I(d) =
[

pwdi

3d0 + 2d1 + 2d1j + d1,1j + 2dj + d1,j + d1j,j
pwpci1

pwci1

d0 + d1j + dj + d1j,j d1 + d1,1j + d1,j + d1,1j,j
pwpc1ij

pwc1ij

d0 + d1 + d3 + d1,j d1j + d1,1j + d1j,j + d1,1j,j
pwpcij

pwcij

d0 + d1 + d1j + d1,1j dj + d1,j + d1j,j + d1,1j,j
pdmi

d0 + d1 + d1j + dj + d1,1j + d1,j + d1j,j + d1,1j,j
]

T

210 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

In order to allow the juxtaposition, variable proc is replaced by (2x/2 − 1)d0, and
all variables in I(d) that cover more than one waiting for task computation place (e.g.,
d1j,j) are substituted by d0 . Additionally, variable dj is replaced by wgij , since such
variable covers only one waiting for task computation place in I(d), more specifically,
pwcij

∈ Pp ∩ Pd.

The composition is demonstrated as follows. N(p⊔d) = Np⊔Nd. Thus, by juxtaposition
I(p⊔d) = J (I(p), I(d)), such that proc = 3d0, d1,1j = d1,j = d1j,j = d1,1j,j = d0 and
dj = wgij :

I(p⊔d) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

(Cij)wgij wgij wgij + 3d0 wgij (Cij)wgij 3d0

pwdi
pwpci1

pwci1
pwpc1ij

pwc1ij

6d0 + 2d1 + 2d1j + 2wg1ij 2d0 + d1j + wg1ij d1 + 3d0 2d0 + d1 + wg1ij d1j + 3d0

pwpcij
pdmi

pdmi

2d0 + d1 + d1j 5d0 + d1 + d1j + wg1ij 5d0 + d1 + d1j + wg1ij

]

T

As I(p⊔d) > 0 and IT
(p⊔d) × A(p⊔d) = 0, in which A(p⊔d) is the incidence matrix, N(p⊔d)

is structurally conservative as well as structurally bounded.

A.15 Preemptive Task Structure Block and Task Instance Conclusion Block

I(p) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

(Cij)wgij wgij wgij + proc wgij (Cij)wgij proc
]

T

I(c) =
[

pfi pfvi pwdi

fvi + wdi fvi wdi
]

T

N(p⊔c) = Np ⊔ Nv. By juxtaposition I(p⊔c) = J (I(p), I(c)), such that fvi = wgij :

I(p⊔c) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc pfi

(Cij)wgij wgij wgij + proc wgij (Cij)wgij proc (Cij)wgij + wdi

pwdi

wdi
]

T

N(p⊔c) is structurally conservative as well as structurally bounded, as I(np⊔c) > 0 and
IT
(np⊔c) × A(p⊔c) = 0, in which A(p⊔c) is the respective incidence matrix.

A.16 Non-Preemptive Task Structure with 2 Voltages Block and Non-Preemptive
Task Structure with 2 Voltages Block

I(np2vj) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi

wg1ij wg1ij wg1ij + proc wg1ij + proc wg1ij + proc wg1ij wg1ij

pproc

proc
]

T

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 211

I(np2vs) =
[

pvis pwg1is
pwc1is

pwgis
pwcis

pwfis
pfvi

wg1is wg1is wg1is + proc wg1is + proc′ wg1is + proc wg1is wg1is
pproc

proc′
]

T

N(np2vj⊔np2vs) = Nnp2vj ⊔Nnp2vs. By juxtaposition I(np2vj⊔np2vs) = J (I(np2vj), I(np2vs)),
such that wg1is = wg1ij and proc′ = proc:

I(np2vj⊔np2vs) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

wg1ij wg1ij wg1ij + proc wg1ij + proc wg1ij + proc wg1ij
pfvi pproc pvis pwg1is

pwc1is
pwgis

pwcis
pwfis

wg1ij proc wg1ij wg1ij wg1ij + proc wg1ij + proc wg1ij + proc wg1ij
]

T

Since I(np⊔c) > 0 and IT
(np2vj⊔np2vs)

× A(np2vj⊔np2vs) = 0, in which A(np2vj⊔np2vs) is
the incidence matrix, N(np2vj⊔np2vs) is structurally conservative as well as structurally
bounded.

A.17 Non-Preemptive Task Structure with 2 Voltages Block and Deadline Check-
ing Block

For the sake of understandability, the deadline checking block considers four waiting for
task computation places in this composition. Nevertheless, the approach is the same for
deadline checking blocks containing any number (x) of such places.

I(np2v) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi

wg1ij wg1ij wg1ij + proc wg1ij + proc wg1ij + proc wg1ij wg1ij

pproc

proc
]

T

I(d) =
[

pwdi

3d0 + 2d1 + 2d1j + d1,1j + 2dj + d1,j + d1j,j
pwpci1

pwci1

d0 + d1j + dj + d1j,j d1 + d1,1j + d1,j + d1,1j,j
pwpc1ij

pwc1ij

d0 + d1 + dj + d1,j d1j + d1,1j + d1j,j + d1,1j,j
pwpcij

pwcij

d0 + d1 + d1j + d1,1j dj + d1,j + d1j,j + d1,1j,j
pdmi

d0 + d1 + d1j + dj + d1,1j + d1,j + d1j,j + d1,1j,j
]

T

In order to allow the juxtaposition, variable proc is replaced by (2x/2− 1)d0, and all
variables in I(d) that cover more than one waiting for task computation place (e.g., d1j,j)
are substituted by d0 . Additionally, variable dj and d1j, which cover only one waiting
for task computation place in I(d) (pwcij

and pwc1ij
, respectively) are replaced by wg1ij .

212 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

Besides, {pwcij
, pwc1ij

} ⊆ Pnp2v ∩ Pd.

The composition is demonstrated as follows. N(np2v⊔d) = Nnp2v ⊔ Nd. Thus, by
juxtaposition I(np2v⊔d) = J (I(np2v), I(d)), such that d1,1j = d1,j = d1j,j = d1,1j,j = d0,
d1j = dj = wg1ij and proc = 3d0:

I(np2v⊔d) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi

wg1ij wg1ij wg1ij + 3d0 wg1ij + 3d0 wg1ij + 3d0 wg1ij wg1ij

pproc pwdi
pwpci1

pwci1
pwpc1ij

pwpcij

3d0 6d0 + 2d1 + 4wg1ij 2d0 + 2wg1ij d1 + 3d0 2d0 + d1 + wg1ij 2d0 + d1 + wg1ij
pdmi

5d0 + d1 + 2wg1ij
]

T

As I(np2v⊔d) > 0 and IT
(np2v⊔d) × A(np2v⊔d) = 0, in which A(np2v⊔d) is the incidence

matrix, N(np2v⊔d) is structurally conservative as well as structurally bounded.

A.18 Non-Preemptive Task Structure with 2 Voltages Block and Task Instance
Conclusion Block

I(np2v) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi

wg1ij wg1ij wg1ij + proc wg1ij + proc wg1ij + proc wg1ij wg1ij

pproc

proc
]

T

I(c) =
[

pfi pfvi pwdi

fvi + wdi fvi wdi
]

T

N(np2v⊔c) = Nnp2v ⊔ Nc. By juxtaposition I(np2v⊔c) = J (I(np2v), I(c)), such that fvi =
wg1ij :

I(np2v⊔c) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi

wg1ij wg1ij wg1ij + proc wg1ij + proc wg1ij + proc wg1ij wg1ij

pproc pfi pwdi

proc wg1ij + wdi wdi wdi
]

T

N(np2v⊔c) is structurally conservative as well as structurally bounded, as I(np2v⊔c) > 0
and IT

(np2v⊔c) × A(np2v⊔c) = 0, in which A(np2v⊔c) is the respective incidence matrix.

A.19 Preemptive Task Structure with 2 Voltages Block and Preemptive Task
Structure with 2 Voltages Block

I(p2vj) =
[

pvij
pwg1ij

pwc1ij
pwf1ij

pwgij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij (C2ij

)wg1ij + proc (C2ij
)wg1ij (C1ij

)wg1ij

pwcij
pwfij

pfvi pproc

(C1ij
)wg1ij + proc (C1ij

)wg1ij (C1ij
C2ij

)wg1ij proc
]

T

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 213

I(p2vs) =
[

pvis pwg1is
pwc1is

pwf1is
pwgis

(C1isC2is)wg1ij (C2is)wg1ij (C2is)wg1ij + proc′ (C2is)wg1ij (C1is)wg1ij
pwcis

pwfis
pfvi pproc

(C1is)wg1ij + proc′ (C1is)wg1ij (C1isC2is)wg1ij proc′
]

T

N(p2vj⊔p2vs) = Np2vj ⊔ Np2vs . By juxtaposition I(p2vj⊔p2vs) = J (I(p2vj), I(p2vs)), such
that wg1ij = (C1isC2is)wg1

′
ij
, wg1is = (C1ij

C2ij
)wg1′ij and proc′ = proc:

I(p2vj⊔p2vs) =
[

pvij
pwg1ij

pwc1ij

(C1ij
C2ij

C1isC2is)wg1
′
ij

(C2ij
C1isC2is)wg1

′
ij

(C2ij
C1isC2is)wg1

′
ij
+ proc

pwf1ij
pwgij

pwcij

(C2ij
C1isC2is)wg1

′
ij

(C1ij
C1isC2is)wg1

′
ij

(C1ij
C1isC2is)wg1

′
ij
+ proc

pwfij
pfvi pproc pvis

(C1ij
C1isC2is)wg1

′
ij

(C1ij
C2ij

C1isC2is)wg1
′
ij

proc (C1isC2isC1ij
C2ij

)wg1′ij
pwg1is

pwc1is
pwf1is

pwgis

(C2isC1ij
C2ij

)wg1′ij (C2isC1ij
C2ij

)wg1′ij + proc (C2isC1ij
C2ij

)wg1′ij (C1isC1ij
C2ij

)wg1′ij

pwcis
pwfis

(C1isC1ij
C2ij

)wg1′ij + proc (C1isC1ij
C2ij

)wg1′ij

]

T

Since I(np2v⊔c) > 0 and IT
(p2vj⊔p2vs)

× A(p2vj⊔p2vs) = 0, in which A(p2vj⊔p2vs) is the
incidence matrix, N(p2vj⊔p2vs) is structurally conservative as well as structurally bounded.

A.20 Preemptive Task Structure with 2 Voltages Block and Deadline Checking
Block

For the sake of understandability, the deadline checking block considers three waiting for
task computation places in this composition. Nevertheless, the approach is the same for
deadline checking blocks containing any number (x) of such places.

I(p2v) =
[

pvij
pwg1ij

pwc1ij
pwf1ij

pwgij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij (C2ij

)wg1ij + proc (C2ij
)wg1ij (C1ij

)wg1ij

pwcij
pwfij

pfvi pproc

(C1ij
)wg1ij + proc (C1ij

)wg1ij (C1ij
C2ij

)wg1ij proc
]

T

I(d) =
[

pwdi

3d0 + 2d1 + 2dj + d1,1j + 2dj + d1,j + d1j,j
pwpci1

pwci1

d0 + d1j + dj + d1j,j d1 + d1,1j + d1,j + d1,1j,j
pwpc1ij

pwc1ij

d0 + d1 + dj + d1,j d1j + d1,1j + d1j,j + d1,1j,j
pwpcij

pwcij

d0 + d1 + dj + d1,1j dj + d1,j + d1j,j + d1,1j,j

214 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

pdmi

d0 + d1 + d1j + dj + d1,1j + d1,j + d1j,j + d1,1j,j
]

T

In order to allow the juxtaposition, variable proc is replaced by (2x/2− 1)d0, and all
variables in I(d) that cover more than one waiting for task computation place (e.g., d1j,j)
are substituted by d0 . Additionally, variable dj and d1j are replaced by (C1ij

)wg1ij and

(C2ij
)wg1ij , respectively. It is assumed that dj and d1j cover only one waiting for task

computation place in I(d) (pwcij
and pwc1ij

, respectively), and {pwcij
, pwc1ij

} ⊆ Pp ∩ Pd.
The composition is demonstrated as follows. N(p2v⊔d) = Np2v ⊔ Nd. Thus, by juxta-

position I(p2v⊔d) = J (I(p2v), I(d)), such that d1,1j = d1,j = d1j,j = d1,1j,j = d0, proc = 3d0,
d1j = (C2ij

)wg1ij and dj = (C1ij
)wg1ij :

I(p2v⊔d) =
[

pvij
pwg1ij

pwc1ij
pwf1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij (C2ij

)wg1ij + 3d0 (C2ij
)wg1ij

pwgij
pwcij

pwfij
pfvi pproc

(C1ij
)wg1ij (C1ij

)wg1ij + 3d0 (C1ij
)wg1ij (C1ij

C2ij
)wg1ij 3d0

pwdi
pwpci1

6d0 + 2d1 + 2(C2ij
)wg1ij + 2(C1ij

)wg1ij 2d0 + (C2ij
)wg1ij + (C1ij

)wg1ij
pwci1

pwpc1ij
pwpcij

d1 + 3d0 2d0 + d1 + (C1ij
)wg1ij 2d0 + d1 + (C2ij

)wg1ij

pdmi

5d0 + d1 + (C2ij
)wg1ij + (C1ij

)wg1ij

]

T

As I(p2v⊔d) > 0 and IT
(p2v⊔d) × A(p2v⊔d) = 0, in which A(p2v⊔d) is the incidence matrix,

N(p2v⊔d) is structurally conservative as well as structurally bounded.

A.21 Preemptive Task Structure with 2 Voltages Block and Task Instance Con-
clusion Block

I(p2v) =
[

pvij
pwg1ij

pwc1ij
pwf1ij

pwgij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij (C2ij

)wg1ij + proc (C2ij
)wg1ij (C1ij

)wg1ij

pwcij
pwfij

pfvi pproc

(C1ij
)wg1ij + proc (C1ij

)wg1ij (C1ij
C2ij

)wg1ij proc
]

T

I(c) =
[

pfi pfvi pwdi

fvi + wdi fvi wdi
]

T

N(p2v⊔c) = Np2v ⊔ Nc. By juxtaposition I(p2v⊔c) = J (I(p2v), I(c)), such that fvi =
(C1ij

C2ij
)wg1ij :

I(p2v⊔c) =
[

pvij
pwg1ij

pwc1ij
pwf1ij

pwgij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij (C2ij

)wg1ij + proc (C2ij
)wg1ij (C1ij

)wg1ij

pwcij
pwfij

pfvi pproc pfi pwdi

(C1ij
)wg1ij + proc (C1ij

)wg1ij (C1ij
C2ij

)wg1ij proc (C1ij
C2ij

)wg1ij + wdi wdi

]

T

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 215

Since I(p2v⊔c) > 0 and IT
(p2v⊔c)×A(p2v⊔c) = 0, in which A(p2v⊔c) is the incidence matrix,

N(p2v⊔c) is structurally conservative as well as structurally bounded.

A.22 Deadline Checking Block and Task Instance Conclusion Block

I(d) =
[

pwdi
pwpci1

pwci1
··· pwpcij

(x)d0 + ... + d2,...,x d0 + ...+ d2,...,x d1 + · · ·+ d1,...,x · · · d0 + · · ·+ d1,l

pwcij
pdmi

dx + ... + d1,...,x d0 + · · ·+ d1,...,x

]

T

I(c) =
[

pfi pfvi pwdi

fvi + wdi fvi wdi
]

T

N(d⊔c) = Nd ⊔ Nc. By juxtaposition I(d⊔c) = J (I(d), I(c)), such that wdi = (x)d0 +
...+ d2,...,x:

I(d⊔c) =
[

pwdi
pwpci1

pwci1
··· pwpcij

(x)d0 + ... + d2,...,x d0 + ...+ d2,...,x d1 + · · ·+ d1,...,x · · · d0 + · · ·+ d1,l

pwcij
pdmi

pfi pfvi

dx + ...+ d1,...,x d0 + · · ·+ d1,...,x fvi + (x)d0 + ... + d2,...,x fvi

]

T

N(d⊔c) is structurally conservative as well as structurally bounded, as I(p2v⊔c) > 0 and
IT
(d⊔c) × A(d⊔c) = 0, in which A(d⊔c) is the respective incidence matrix.

A.23 Task Instance Conclusion Block and Join Block

I(c) =
[

pfi pfvi pwdi

fvi + wdi fvi wdi
]

T

I(j) =
[

pf1 ··· pfi ··· pfn pendspec

f1 · · · fi · · · fn f1 · · ·+ fi + · · ·+ fn
]

T

N(c⊔j) = Nc ⊔Nj . By juxtaposition I(c⊔j) = J (I(c), I(j)), such that fi = fvi + wdi:

I(c⊔j) =
[

pf1 ··· pfi ··· pfn pendspec pfvi pwdi

f1 · · · fvi + wdi · · · fn f1 + · · ·+ (fvi + wdi) + · · ·+ fn fvi wdi
]

T

As I(c⊔j) > 0 and IT
(c⊔j) ×A(c⊔j) = 0, in which A(c⊔j) is the incidence matrix, N(c⊔j) is

structurally conservative as well as structurally bounded.

A.24 Voltage Selection Block and Preemptive Task Structure with Overhead
Block

I(o) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij proc+ proc idle+ wgij proc+ proc idle + wgij wgij

216 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

pwlcij
pfvij

pfvi pprocT1
···

proc+ proc idle + (Cij)wgij proc idle+ (Cij)wgij (Cij)wgij proc idle · · ·
pprocTi

··· pprocTk
pproc pproc idle

proc idle · · · proc idle proc proc idle
]

T

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvsi wvsi · · · wvsi · · · wvsi

]

T

N(o⊔v = No ⊔Nv. By juxtaposition I(o⊔v) = J (I(o), I(v)), such that wvsi = (Cij)wgij :

I(o⊔v) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij proc+ proc idle+ wgij proc+ proc idle+ wgij wgij

pwlcij
pfvij

pfvi pprocT1
···

proc+ proc idle + (Cij)wgij proc idle+ (Cij)wgij (Cij)wgij proc idle · · ·
pprocTi

··· pprocTk
pproc pproc idle pwvsi

pvi1
··· pvim

proc idle · · · proc idle proc proc idle (Cij)wgij (Cij)wgij · · · (Cij)wgij
]

T

N(o⊔v) is structurally conservative as well as structurally bounded, as I(o⊔v) > 0 and
IT
(o⊔v) × A(o⊔v) = 0, in which A(o⊔v) is the respective incidence matrix.

A.25 Preemptive Task Structure with Overhead Block and Preemptive Task
Structure with Overhead Block

I(oj) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij proc+ proc idle + wgij proc+ proc idle + wgij wgij

pwlcij
pfvij

pfvi pprocT1
···

proc+ proc idle + (Cij)wgij proc idle + (Cij)wgij (Cij)wgij proc idle · · ·
pprocTi

··· pprocTk
pproc pproc idle

proc idle · · · proc idle proc proc idle
]

T

I(ol) =
[

pvil
pwgil

pwoil
pwcil

pacil

(Cil)wgil wgil proc+ proc idle + wgil proc+ proc idle+ wgil wgil
pwlcil

pfvil
pfvi pprocT1

···

proc+ proc idle + (Cil)wgil proc idle+ (Cil)wgil (Cil)wgil proc idle · · ·
pprocTi

··· pprocTk
pproc pproc idle

proc idle · · · proc idle proc proc idle
]

T

N(oj⊔ol) = Noj ⊔ Nol. By juxtaposition I(ok⊔oj) = J (I(oj), I(oj)), such that wgij =
(Cil)wg

′
ij
and wgil = (Cij)wg

′
ij
:

I(oj⊔ol) =
[

pvij
pwgij

pwoij

(CijCil)wg
′
ij

(Cil)wg
′
ij

proc+ proc idle + (Cil)wg
′
ij

pwcij
pacij

pwlcij

proc+ proc idle + (Cil)wg
′
ij

(Cil)wg
′
ij

proc+ proc idle+ (CijCil)wg
′
ij

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 217

pfvij
pfvi pprocT1

··· pprocTi
··· pprocTk

proc idle+ (CijCil)wg
′
ij

(CijCil)wg
′
ij

proc idle · · · proc idle · · · proc idle

pproc pproc idle pvil
pwgil

pwoil

proc proc idle (CilCij)wg
′
ij

(Cij)wg
′
il

proc+ proc idle + (Cij)wg
′
ij

pwcil
pacil

pwlcil

proc+ proc idle + (Cij)wg
′
ij

(Cij)wg
′
ij

proc+ proc idle+ (CilCij)wg
′
ij

pfvil

proc idle+ (CilCij)wg
′
ij

]

T

Since I(oj⊔ol) > 0 and IT
(oj⊔ol)

×A(oj⊔ol) = 0, in which A(oj⊔ol) is the incidence matrix,
N(oj⊔ol) is structurally conservative as well as structurally bounded.

A.26 Preemptive Task Structure with Overhead Block and Preemptive Task
Structure with Overhead and 2 Voltages Block

I(oj) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij proc+ proc idle + wgij proc+ proc idle + wgij wgij

pwlcij
pfvij

pfvi pprocT1
···

proc+ proc idle + (Cij)wgij proc idle + (Cij)wgij (Cij)wgij proc idle · · ·
pprocTi

··· pprocTk
pproc pproc idle

proc idle · · · proc idle proc proc idle
]

T

I(o2vl) =
[

pvil
pwg1il

pwo1il

(C1il
C2il

)wg1il (C2il
)wg1ij proc+ proc idle + (C2ij

)wg1il

pwc1il
pac1il

pwlc1il

proc+ proc idle + (C2il
)wg1il (C2il

)wg1il proc+ proc idle + (C1il
C2il

)wg1il
pfv1il

pprocT1
··· pprocTi

··· pprocTk
pproc pproc idle

proc idle + (C1il
C2il

)wg1il proc idle · · · proc idle · · · proc idle proc proc idle

pwgil
pwoil

pwcil
pacil

(C1il
)wgil proc+ proc idle + (C1il

)wg1il proc+ proc idle + (C1il
)wg1il (C1il

)wg1il
pwlcil

pfvil
pfvi

proc+ proc idle + (C1il
C2il

)wg1il proc idle + (C1il
C2il

)wg1il (C1il
C2il

)wg1il

pwovil
pprocTi 2volt

proc+ proc idle + (C1il
)wg1ij proc idle

]

T

N(oj⊔o2vl) = Noj ⊔ No2vl . By juxtaposition I(oj⊔o2vl) = J (I(oj), I(o2vl)), such that
wgij = (C1il

C2il
)wg′ij and wg1il = (Cij)wg

′
ij
:

I(oj⊔o2vl) =
[

pvij
pwgij

pwoij

(CijC1il
C2il

)wg′ij (C1il
C2il

)wg′ij proc+ proc idle + (C1il
C2il

)wg′ij

218 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

pwcij
pacij

pwlcij

proc+ proc idle + (C1il
C2il

)wg′ij (C1il
C2il

)wg′ij proc+ proc idle + (CijC1il
C2il

)wg′ij
pfvij

pfvi pprocT1
··· pprocTi

···

proc idle + (CijC1il
C2il

)wg′ij (CijC1il
C2il

)wg′ij proc idle · · · proc idle · · ·
pprocTk

pproc pproc idle pvil
pwg1il

proc idle proc proc idle (C1il
C2il

Cij)wg
′
ij

(C2il
Cij)wg

′
ij

pwo1ij
pwc1ij

pac1il

proc+ proc idle + (C2ij
Cij)wg

′
ij

proc+ proc idle+ (C2il
Cij)wg

′
ij

(C2il
Cij)wg

′
ij

pwlc1il
pfv1il

pwgil

proc+ proc idle + (C1il
C2il

Cij)wg
′
ij

proc idle + (C1il
C2il

Cij)wg
′
ij

(C1il
Cij)wg

′
ij

pwoil
pwcil

pacil

proc+ proc idle + (C1il
Cij)wg

′
ij

proc+ proc idle+ (C1il
Cij)wg

′
ij

(C1il
Cij)wg

′
ij

pwlcil
pfvil

proc+ proc idle + (C1il
C2il

Cij)wg
′
ij

proc idle+ (C1il
C2il

Cij)wg
′
ij

pwovil
pprocTi 2volt

proc+ proc idle + (C1il
Cij)wg

′
ij

proc idle
]

T

Since I(oj⊔o2vl) > 0 and IT
(oj⊔o2vl)

× A(oj⊔o2vl) = 0, in which A(oj⊔o2vl) is the incidence
matrix, N(oj⊔o2vl) is structurally conservative as well as structurally bounded.

A.27 Preemptive Task Structure with Overhead Block and Deadline Checking
Block

For the sake of understandability, the deadline checking block considers three waiting for
task computation places in this composition. Nevertheless, the approach is the same for
deadline checking blocks containing any number (x) of such places.

I(o) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij proc+ proc idle + wgij proc+ proc idle+ wgij wgij

pwlcij
pfvij

pfvi pprocT1
···

proc+ proc idle + (Cij)wgij proc idle + (Cij)wgij (Cij)wgij proc idle · · ·
pprocTi

··· pprocTk
pproc pproc idle

proc idle · · · proc idle proc proc idle
]

T

I(d) =
[

pwdi

3d0 + 2d1 + 2dlj + d1,lj + 2dj + d1,j + dlj,j
pwpci1

pwci1

d0 + dlj + dj + dlj,j d1 + d1,lj + d1,j + d1,lj,j
pwplcij

pwlcij

d0 + d1 + d3 + d1,j dlj + d1,lj + dlj,j + d1,lj,j
pwpcij

pwcij

d0 + d1 + dlj + d1,lj dj + d1,j + dlj,j + d1,lj,j

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 219

pdmi

d0 + d1 + dlj + dj + d1,lj + d1,j + dlj,j + d1,lj,j
]

T

In order to allow the juxtaposition, variable proc is replaced by (2 × (2x/2 − 1) −
1)d0, proc idle by d0, and all variables in I(d) that cover more than one waiting for task
computation place (e.g., d1j,j) are substituted by 2d0 . Additionally, variable dj and dlj
are replaced by wgij , since such variables cover only one waiting for task computation
place in I(d) (pwcij

and pwlcij
, respectively), and {pwcij

, pwlcij
} ⊆ Po ∩ Pd.

The composition is demonstrated as follows. N(o⊔d) = No⊔Nd. Thus, by juxtaposition
I(o⊔d) = J (I(o), I(d)), such that proc = 5d0,proc idle = d0 d1,1j = d1,j = d1j,j = d1,1j,j =
2d0 and dlj = dj = wgij :

I(o⊔d) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij 6d0 + wgij 6d0 + wgij wgij

pwlcij
pfvij

pfvi pprocT1
··· pprocTi

···

6d0 + (Cij)wgij d0 + (Cij)wgij (Cij)wgij d0 · · · d0 · · ·
pprocTk

pproc pproc idle pwdi
pwpci1

pwci1
pwplcij

d0 5d0 d0 9d0 + 4wgij + 2d1 3d0 + 2wgij d1 + 6d0 3d0 + d1 + wgij

pwpcij
pdmi

3d0 + d1 + wgij 9d0 + d1 + 2wgij

]

T

As I(o⊔d) > 0 and IT
(o⊔d) × A(o⊔d) = 0, in which A(o⊔d) is the incidence matrix, N(o⊔d)

is structurally conservative as well as structurally bounded.

A.28 Preemptive Task Structure with Overhead Block and Task Instance Con-
clusion Block

I(o) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij proc+ proc idle+ wgij proc+ proc idle + wgij wgij

pwlcij
pfvij

pfvi pprocT1
···

proc+ proc idle + (Cij)wgij proc idle + (Cij)wgij (Cij)wgij proc idle · · ·
pprocTi

··· pprocTk
pproc pproc idle

proc idle · · · proc idle proc proc idle
]

T

I(c) =
[

pfi pfvi pwdi

fvi + wdi fvi wdi
]

T

N(o⊔c) = No ⊔ Nc. By juxtaposition I(o⊔c) = J (I(o), I(c)), such that fvi = (Cij)wgij :

I(o⊔c) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij proc+ proc idle+ wgij proc+ proc idle + wgij wgij

pwlcij
pfvij

pfvi pprocT1
···

proc+ proc idle + (Cij)wgij proc idle+ (Cij)wgij (Cij)wgij proc idle · · ·

220 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

pprocTi
··· pprocTk

pproc pproc idle pfi pwdi

proc idle · · · proc idle proc proc idle (Cij)wgij + wdi wdi
]

T

N(o⊔c) is structurally conservative as well as structurally bounded, as I(o⊔d) > 0 and
IT
(o⊔c) × A(o⊔c) = 0, in which A(o⊔c) is the respective incidence matrix.

A.29 Preemptive Task Structure with Overhead and 2 Voltages Block and Task
Instance Conclusion Block

I(o2v) =
[

pvij
pwg1ij

pwo1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij proc+ proc idle + (C2ij

)wg1ij

pwc1ij
pac1ij

pwlc1ij

proc+ proc idle + (C2ij
)wg1ij (C2ij

)wgij proc+ proc idle+ (C1ij
C2ij

)wgij
pfv1ij

pprocT1
··· pprocTi

··· pprocTk
pproc

proc idle + (C1ij
C2ij

)wg1ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

pwcij

proc idle (C1ij
)wg1ij proc+ proc idle + (C1ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij

pacij
pwlcij

pfvij

(C1ij
)wgij proc+ proc idle+ (C1ij

C2ij
)wg1ij proc idle + (C1ij

C2ij
)wg1ij

pfvi pwovij
pprocTi 2volt

(C1ij
C2ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij proc idle

]

T

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvsi wvsi · · · wvsi · · · wvsi

]

T

N(o2v⊔v) = No2v ⊔ Nv. By juxtaposition I(o2v⊔v) = J (I(o2v), I(v)), such that wvsi =
(C1ij

C2ij
)wg1ij :

I(o2v⊔v) =
[

pvij
pwg1ij

pwo1ij

(C1ij
C2ij

)wgij (C2ij
)wgij proc+ proc idle+ (C2ij

)wg1ij

pwc1ij
pac1ij

pwlc1ij

proc+ proc idle + (C2ij
)wg1ij (C2ij

)wgij proc+ proc idle + (C1ij
C2ij

)wgij

pfv1ij
pprocT1

··· pprocTi
··· pprocTk

pproc

proc idle+ (C1ij
C2ij

)wg1ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

pwcij

proc idle (C1ij
)wg1ij proc+ proc idle+ (C1ij

)wg1ij proc+ proc idle+ (C1ij
)wg1ij

pacij
pwlcij

pfvij

(C1ij
)wgij proc+ proc idle+ (C1ij

C2ij
)wg1ij proc idle + (C1ij

C2ij
)wg1ij

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 221

pfvi pwovij
pprocTi 2volt

pwvsi

(C1ij
C2ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij proc idle (C1ij

C2ij
)wg1ij

pvi1
··· pvim

(C1ij
C2ij

)wg1ij · · · (C1ij
C2ij

)wg1ij

]

T

Since I(o2v⊔v) > 0 and IT
(o2v⊔v)×A(o2v⊔v) = 0, in which A(o2v⊔v) is the incidence matrix,

N(o2v⊔v) is structurally conservative as well as structurally bounded.

A.30 Preemptive Task Structure with Overhead and 2 Voltages Block and Pre-
emptive Task Structure with Overhead and 2 Voltages Block

I(o2vj) =
[

pvij
pwg1ij

pwo1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij proc+ proc idle + (C2ij

)wg1ij

pwc1ij
pac1ij

pwlc1ij

proc+ proc idle + (C2ij
)wg1ij (C2ij

)wgij proc+ proc idle+ (C1ij
C2ij

)wgij
pfv1ij

pprocT1
··· pprocTi

··· pprocTk
pproc

proc idle + (C1ij
C2ij

)wg1ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

pwcij

proc idle (C1ij
)wg1ij proc+ proc idle + (C1ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij

pacij
pwlcij

pfvij

(C1ij
)wgij proc+ proc idle+ (C1ij

C2ij
)wg1ij proc idle + (C1ij

C2ij
)wg1ij

pfvi pwovij
pprocTi 2volt

(C1ij
C2ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij proc idle

]

T

I(o2vl) =
[

pvil
pwg1il

pwo1il

(C1il
C2il

)wg1il (C2il
)wg1ij proc+ proc idle + (C2ij

)wg1il

pwc1il
pac1il

pwlc1il

proc+ proc idle + (C2il
)wg1il (C2il

)wg1il proc+ proc idle + (C1il
C2il

)wg1il
pfv1il

pprocT1
··· pprocTi

··· pprocTk
pproc pproc idle

proc idle + (C1il
C2il

)wg1il proc idle · · · proc idle · · · proc idle proc proc idle

pwgil
pwoil

pwcil
pacil

(C1il
)wgil proc+ proc idle + (C1il

)wg1il proc+ proc idle + (C1il
)wg1il (C1il

)wg1il
pwlcil

pfvil
pfvi

proc+ proc idle + (C1il
C2il

)wg1il proc idle + (C1il
C2il

)wg1il (C1il
C2il

)wg1il

pwovil
pprocTi 2volt

proc+ proc idle + (C1il
)wg1ij proc idle

]

T

N(o2vj⊔o2vl) = No2vj ⊔No2vl By juxtaposition I(o2vj⊔o2vl) = J (I(o2vj), I(o2vl)), such that
wgij = (C1il

C2il
)wg′ij and wgil = (C1ij

C2ij
)wg′ij :

222 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

I(o2vj⊔o2vl) =
[

pvij
pwg1ij

(C1ij
C2ij

C1il
C2il

)wg′ij (C2ij
C1il

C2il
)wg′ij

pwo1ij
pwc1ij

proc+ proc idle + (C2ij
C1il

C2il
)wg′ij proc+ proc idle + (C2ij

C1il
C2il

)wg′ij
pac1ij

pwlc1ij

(C2ij
C1il

C2il
)wg′ij proc+ proc idle + (C1ij

C2ij
C1il

C2il
)wg′ij

pfv1ij
pprocT1

··· pprocTi
··· pprocTk

pproc

proc idle + (C1ij
C2ij

C1il
C2il

)wg′ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

proc idle (C1ij
C1il

C2il
)wg′ij proc+ proc idle + (C1ij

C1il
C2il

)wg′ij
pwcij

pacij

proc+ proc idle + (C1ij
C1il

C2il
)wg′ij (C1ij

C1il
C2il

)wg′ij
pwlcij

pfvij

proc+ proc idle + (C1ij
C2ij

C1il
C2il

)wg′ij proc idle+ (C1ij
C2ij

C1il
C2il

)wg′ij
pfvi pwovij

pprocTi 2volt

(C1ij
C2ij

C1il
C2il

)wg′ij proc+ proc idle + (C1ij
C1il

C2il
)wg′ij proc idle

pvil
pwg1il

pwo1il

(C1il
C2il

C1ij
C2ij

)wg′ij (C2il
C1ij

C2ij
)wg′ij proc+ proc idle + (C2il

C1ij
C2ij

)wg′ij
pwc1il

pac1il

proc+ proc idle + (C2il
C1ij

C2ij
)wg′ij (C2il

C1ij
C2ij

)wg′ij
pwlc1il

pfv1il

proc+ proc idle + (C1il
C2il

C1ij
C2ij

)wg′ij proc idle+ (C1il
C2il

C1ij
C2ij

)wg′ij
pwgil

pwoil

(C1il
C1ij

C2ij
)wg′ij proc+ proc idle+ (C1il

C1ij
C2ij

)wg′ij
pwcil

pacil

proc+ proc idle + (C1il
C1ij

C2ij
)wg′ij (C1il

C1ij
C2ij

)wg′ij
pwlcil

pfvil

proc+ proc idle + (C1il
C2il

C1ij
C2ij

)wg′ij proc idle+ (C1il
C2il

C1ij
C2ij

)wg′ij

pwovil
pprocTi 2volt

proc+ proc idle + (C1il
C1ij

C2ij
)wg′ij proc idle

]

T

N(o2vj⊔o2vl) is structurally conservative as well as structurally bounded, as I(o2vj⊔o2vl) >
0 and IT

(o2vj⊔o2vl)
×A(o2vj⊔o2vl) = 0, in which A(o2vj⊔o2vl) is the respective incidence matrix.

A.31 Preemptive Task Structure with Overhead and 2 Voltages Block and Dead-
line Checking Block

For the sake of understandability, the deadline checking block considers three waiting for
task computation places in this composition. Nevertheless, the approach is the same for
deadline checking blocks containing any number (x) of such places.

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 223

I(o2v) =
[

pvij
pwg1ij

pwo1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij proc+ proc idle+ (C2ij

)wg1ij

pwc1ij
pac1ij

pwlc1ij

proc+ proc idle + (C2ij
)wg1ij (C2ij

)wgij proc+ proc idle+ (C1ij
C2ij

)wgij
pfv1ij

pprocT1
··· pprocTi

··· pprocTk
pproc

proc idle + (C1ij
C2ij

)wg1ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

pwcij

proc idle (C1ij
)wg1ij proc+ proc idle + (C1ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij

pacij
pwlcij

pfvij

(C1ij
)wgij proc+ proc idle+ (C1ij

C2ij
)wg1ij proc idle + (C1ij

C2ij
)wg1ij

pfvi pwovij
pprocTi 2volt

(C1ij
C2ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij proc idle

]

T

I(d) =
[

pwdi

4d0 + 3dl1j + 3d1j + 2dl1j,1j + 3dlj + 2dl1j,lj + 2d1j,lj + dl1j,1j,lj + 3dj

+2dl1j,j + 2d1j,j + dl1j,1j,j + 2dlj,j + dl1j,lj,j + d1j,lj,j
pwplc1ij

d0 + d1j + dlj + d1j,lj + dj + d1j,j + dlj,j + d1j,lj,j
pwlc1ij

dl1j + dl1j,1j + dl1j,lj + dl1j,1j,lj + dl1j,j + dl1j,1j,j + dl1j,lj,j + dl1j,1j,lj,j
pwpc1ij

d1j + dl1j,1j + d1j,lj + dl1j,1j,lj + d1j,j + dl1j,1j,j + d1j,lj,j + dl1j,1j,lj,j
pwc1ij

d1j + dl1j,1j + d1j,lj + dl1j,1j,lj + d1j,j + dl1j,1j,j + d1j,lj,j + dl1j,1j,lj,j
pwplcij

d0 + dl1j + d1j + dl1j,1j + dj + dl1j,j + d1j,j + dl1j,1j,j
pwlcij

dlj + dl1j,lj + d1j,lj + dl1j,1j,lj + dlj,j + dl1j,lj,j + d1j,lj,j + dl1j,1j,lj,j
pwpcij

d0 + dl1j + dl1j,1j + d1j + dlj + dl1j,lj + d1j,lj + dl1j,1j,lj
pwcij

dj + dl1j,j + d1j,j + dl1j,1j,j + dlj,j + dl1j,lj,j + d1j,lj,j + dl1j,1j,lj,j
pdmi

d0 + dl1j + dl1j,1j + d1j + dlj + dl1j,lj + d1j,lj + dl1j,1j,lj + dj + dl1j,j + d1j,j + dl1j,1j,j

+dlj,j + dl1j,lj,j + d1j,lj,j + dl1j,1j,lj,j
]

T

In order to allow the juxtaposition, variable proc is replaced by (2 × (2x/2 − 1) −

224 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

1)d0, proc idle by d0, and all variables in I(d) that cover more than one waiting for task
computation place (e.g., d1j,j) are substituted by 2d0 . Additionally, variable dl1j, dlj ,
dj and dlj are replaced by (C1ij

C2ij
)wg1ij ,(C2ij

)wg1ij ,(C1ij
C2ij

)wg1ij , and (C1ij
)wg1ij ,

respectively, since such variables cover only one waiting for task computation place in I(d)

(pwc1ij
,pwlc1ij

,pwcij
and pwlcij

), and {pwc1ij
, pwlc1ij

, pwcij
, pwlcij

} ⊆ Po2v ∩ Pd.
The composition is demonstrated as follows. N(o2v⊔d) = No2v⊔Nd. Thus, by juxtapo-

sition = I(o2v⊔d) = J (I(o2v), I(d)), such that proc = 13d0,proc idle = d0,dl1j,1j = dl1j,lj =
d1j,lj = dl1j,1j,lj = dl1j,j = d1j,j = dl1j,1j,jdlj,j = dl1j,lj,j = d1j,lj,j = dl1j,1j,lj,j = 2d0,dl1j =
(C1ij

C2ij
)wg1ij , d1j = (C2ij

)wg1ij , dlj = (C1ij
C2ij

)wg1ij ,dj = (C1ij
)wg1ij :

I(o2v⊔d) =
[

pvij
pwg1ij

pwo1ij
pwc1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij 14d0 + (C2ij

)wg1ij 14d0 + (C2ij
)wg1ij

pac1ij
pwlc1ij

pfv1ij
pprocT1

··· pprocTi

(C2ij
)wgij 14d0 + (C1ij

C2ij
)wgij d0 + (C1ij

C2ij
)wg1ij d0 · · · d0

··· pprocTk
pproc pproc idle pwgij

pwoij

· · · d0 13d0 d0 (C1ij
)wg1ij 14d0 + (C1ij

)wg1ij
pwcij

pacij
pwlcij

pfvij

14d0 + (C1ij
)wg1ij (C1ij

)wgij 14d0 + (C1ij
C2ij

)wg1ij d0 + (C1ij
C2ij

)wg1ij
pfvi pwovij

pprocTi 2volt

(C1ij
C2ij

)wg1ij 14d0 + (C1ij
)wg1ij d0

pwdi

36d0 + 3(2C1ij
C2ij

+ C2ij
+ C1ij

)wg1ij
pwplc1ij

pwpc1ij
pwplcij

pwpcij

9d0 + 3wg1ij 9d0 + 3wg1ij 9d0 + 3wg1ij 9d0 + 3wg1ij

pdmi

23d0 + (2C1ij
C2ij

+ C2ij
+ C1ij

)wg1ij

]

T

As I(o2v⊔d) > 0 and IT
(o2v⊔d) × A(o2v⊔d) = 0, in which A(o2v⊔d) is the incidence matrix,

N(o2v⊔d) is structurally conservative as well as structurally bounded.

A.32 Preemptive Task Structure with Overhead and 2 Voltages Block and Task
Instance Conclusion Block

I(o2v) =
[

pvij
pwg1ij

pwo1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij proc+ proc idle + (C2ij

)wg1ij

pwc1ij
pac1ij

pwlc1ij

proc+ proc idle + (C2ij
)wg1ij (C2ij

)wgij proc+ proc idle+ (C1ij
C2ij

)wgij
pfv1ij

pprocT1
··· pprocTi

··· pprocTk
pproc

proc idle + (C1ij
C2ij

)wg1ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

pwcij

proc idle (C1ij
)wg1ij proc+ proc idle + (C1ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 225

pacij
pwlcij

pfvij

(C1ij
)wgij proc+ proc idle+ (C1ij

C2ij
)wg1ij proc idle + (C1ij

C2ij
)wg1ij

pfvi pwovij
pprocTi 2volt

(C1ij
C2ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij proc idle

]

T

I(c) =
[

pfi pfvi pwdi

fvi + wdi fvi wdi
]

T

N(o2v⊔c) = No2v ⊔ Nc. By juxtaposition I(o2v⊔c) = J (I(o2v), I(c)), such that fvi =
(C1ij

C2ij
)wg1ij :

I(o2v⊔c) =
[

pvij
pwg1ij

pwo1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij proc+ proc idle + (C2ij

)wg1ij

pwc1ij
pac1ij

pwlc1ij

proc+ proc idle + (C2ij
)wg1ij (C2ij

)wgij proc+ proc idle+ (C1ij
C2ij

)wgij
pfv1ij

pprocT1
··· pprocTi

··· pprocTk
pproc

proc idle + (C1ij
C2ij

)wg1ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

pwcij

proc idle (C1ij
)wg1ij proc+ proc idle + (C1ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij

pacij
pwlcij

pfvij

(C1ij
)wgij proc+ proc idle+ (C1ij

C2ij
)wg1ij proc idle + (C1ij

C2ij
)wg1ij

pfvi pwovij
pprocTi 2volt

pfi pwdi

(C1ij
C2ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij proc idle (C1ij

C2ij
)wg1ij + wdi wdi

]

T

N(o2v⊔c) is structurally conservative as well as structurally bounded, as I(o2v⊔c) > 0
and IT

(o2v⊔c) ×A(o2v⊔c) = 0, in which A(o2v⊔c) is the respective incidence matrix.

A.33 Task Instance Conclusion with Inter-task Relations Block and Join Block

I(cinter) =
[

pfvi pfi

pf1i + rel1i + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(j) =
[

pf1 ··· pfi ··· pfn pendspec

f1 · · · fi · · · fn f1 · · ·+ fi + · · ·+ fn
]

T

N(cinter⊔j) = Ncinter ⊔ Nj. By juxtaposition I(cinter⊔j) = J (I(cinter), I(j)), such that
fi = pf1i + pfi:

I(cinter⊔j) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz

226 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

pf1 ··· pfn pendspec

f1 · · · fn f1 · · ·+ pf1i + pfi + · · ·+ fn
]

T

N(cinter⊔j) is structurally conservative as well as structurally bounded, as I(cinter⊔j) > 0
and IT

(cinter⊔j) × A(cinter⊔j) = 0, in which A(cinter⊔j) is the respective incidence matrix.

A.34 Task Instance Conclusion with Inter-task Relations Block and Non-preemptive
Task Structure Block

I(cinter) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(np) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

wgij wgij wgij + proc wgij wgij proc
]

T

N(cinter⊔np) = Ncinter ⊔ Nnp. By juxtaposition I(cinter⊔np) = J (I(cinter), I(np)) and
assuming x is the number of inter-task relations in N(cinter), such that wgij = (z+1)wg′ij
and pf11 = rel11 = · · · = rel1p = · · · = rel1z = wg′ij :

I(cinter⊔np) =
[

pfvi pfi ppwdi

(z + 1)wg′ij wg′ij + pfi pfi + rel1 + · · ·+ relp + · · ·+ relz
prel1 ··· prelp ··· prelz pvij

pwgij

wg′ij + rel1 · · · wg′ij + relp · · · wg′ij + relz (z + 1)wg′ij (z + 1)wg′ij
pwcij

pwfij
pproc

(z + 1)wg′ij + proc (z + 1)wg′ij proc
]

T

As I(cinter⊔np) > 0 and IT
(cinter⊔np)×A(cinter⊔np) = 0, in which A(cinter⊔np) is the incidence

matrix, N(cinter⊔np) is structurally conservative as well as structurally bounded.

A.35 Task Instance Conclusion with Inter-task Relations Block and Preemptive
Task Structure Block

I(cinter) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(p) =
[

pvij
pwgij

pwcij
pwfij

pfvi pproc

(Cij)wgij wgij wgij + proc wgij (Cij)wgij proc
]

T

N(cinter⊔p) = Ncinter⊔Nnp. By juxtaposition I(cinter⊔p) = J (I(cinter), I(p)) and assuming
z is the number of inter-task relations in N(cinter), such that wgij = (z + 1)wg′ij and
pf1i = rel11 = · · · = rel1p = · · · = rel1z = (Cij)wg

′
ij
:

I(cinter⊔p) =
[

pfvi pfi ppwdi

(z + 1)(Cij)wgij (Cij)wgij + pfi pfi + rel1 + · · ·+ relp + · · ·+ relz

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 227

prel1 ··· prelp ··· prelz

(Cij)wgij + rel1 · · · (Cij)wgij + relp · · · (Cij)wgij + relz

pvij
pwgij

pwcij
pwfij

pproc

(Cij)(z + 1)wg′ij (z + 1)wg′ij (z + 1)wg′ij + proc (z + 1)wg′ij proc
]

T

Since I(cinter⊔np) > 0 and IT
(cinter⊔p)×A(cinter⊔p) = 0, in which A(cinter⊔p) is the incidence

matrix, N(cinter⊔p) is structurally conservative as well as structurally bounded.

A.36 Task Instance Conclusion with Inter-task Relations Block and Preemptive
Task Structure with Overhead Block

I(cinter) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(o) =
[

pvij
pwgij

pwoij
pwcij

pacij

(Cij)wgij wgij proc+ proc idle+ wgij proc+ proc idle + wgij wgij

pwlcij
pfvij

pfvi pprocT1
···

proc+ proc idle + (Cij)wgij proc idle + (Cij)wgij (Cij)wgij proc idle · · ·
]

T

pprocTi
··· pprocTk

pproc pproc idle

proc idle · · · proc idle proc proc idle
]

T

N(cinter⊔o) = Ncinter⊔Nnp. By juxtaposition I(cinter⊔o) = J (I(cinter), I(o)) and assuming
z is the number of inter-task relations in N(cinter), such that wgij = (z + 1)wg′ij and
pf1i = rel11 = · · · = rel1p = · · · = rel1z = (Cij)wg

′
ij
:

I(cinter⊔o) =
[

pfvi pfi ppwdi

(z + 1)(Cij)wg
′
ij

(Cij)wg
′
ij
+ pfi pfi + rel1 + · · ·+ relp + · · ·+ relz

prel1 ··· prelp ··· prelz pvij

(Cij)wg
′
ij
+ rel1 · · · (Cij)wg

′
ij
+ relp · · · (Cij)wg

′
ij
+ relz (Cij)(z + 1)wg′ij

pwgij
pwoij

pwcij

(z + 1)wg′ij proc+ proc idle + (z + 1)wg′ij proc+ proc idle+ (z + 1)wg′ij

pacij
pwlcij

pfvij

(z + 1)wg′ij proc+ proc idle+ (Cij)(z + 1)wg′ij proc idle+ (Cij)wg(x+ 1)wg′ij

pprocT1
··· pprocTi

··· pprocTk
pproc pproc idle

proc idle · · · proc idle · · · proc idle proc proc idle
]

T

N(cinter⊔o) is structurally conservative as well as structurally bounded, as I(cinter⊔o) > 0
and IT

(cinter⊔o) ×A(cinter⊔o) = 0, in which A(cinter⊔o) is the respective incidence matrix.

228 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

A.37 Task Instance Conclusion with Inter-task Relations Block and Preemptive
Task Structure with Overhead and 2 Voltages Block

I(cinter) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(o2v) =
[

pvij
pwg1ij

pwo1ij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij proc+ proc idle + (C2ij

)wg1ij

pwc1ij
pac1ij

pwlc1ij

proc+ proc idle + (C2ij
)wg1ij (C2ij

)wgij proc+ proc idle+ (C1ij
C2ij

)wgij
pfv1ij

pprocT1
··· pprocTi

··· pprocTk
pproc

proc idle + (C1ij
C2ij

)wg1ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

pwcij

proc idle (C1ij
)wg1ij proc+ proc idle + (C1ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij

pacij
pwlcij

pfvij

(C1ij
)wgij proc+ proc idle+ (C1ij

C2ij
)wg1ij proc idle + (C1ij

C2ij
)wg1ij

pfvi pwovij
pprocTi 2volt

(C1ij
C2ij

)wg1ij proc+ proc idle + (C1ij
)wg1ij proc idle

]

T

N(cinter⊔o2v) = Ncinter ⊔ No2v. By juxtaposition I(cinter⊔o) = J (I(cinter), I(o)) and as-
suming z is the number of inter-task relations in N(cinter), such that wgij = (z + 1)wg1′ij
and pf1i = rel11 = · · · = rel1p = · · · = rel1z = (C1ij

C2ij
)wg1′ij :

I(cinter⊔o2v) =
[

pfvi pfi

(C1ij
C2ij

)(z + 1)wg1′ij (C1ij
C2ij

)wg1′ij + pfi

ppwdi
prel1 ··· prelp

pfi + rel1 + · · ·+ relp + · · ·+ relz (C1ij
C2ij

)wg1′ij + rel1 · · · (C1ij
C2ij

)wg1′ij + relp

··· prelz pvij
pwg1ij

· · · (C1ij
C2ij

)wg1′ij + relz (C1ij
C2ij

)(z + 1)wg1′ij (C2ij
)(z + 1)wg1′ij

pwo1ij
pwc1ij

proc+ proc idle + (C2ij
)(z + 1)wg1′ij proc+ proc idle+ (C2ij

)(z + 1)wg1′ij
pac1ij

pwlc1ij

(C2ij
)(z + 1)wg1′ij proc+ proc idle+ (C1ij

C2ij
)(z + 1)wg1′ij

pfv1ij
pprocT1

··· pprocTi
··· pprocTk

pproc

proc idle + (C1ij
C2ij

)(z + 1)wg1′ij proc idle · · · proc idle · · · proc idle proc

pproc idle pwgij
pwoij

proc idle (C1ij
)(z + 1)wg1′ij proc+ proc idle+ (C1ij

)(z + 1)wg1′ij

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 229

pwcij
pacij

proc+ proc idle + (C1ij
)(z + 1)wg1′ij (C1ij

)wgij
pwlcij

pfvij

proc+ proc idle + (C1ij
C2ij

)(z + 1)wg1′ij proc idle + (C1ij
C2ij

)(z + 1)wg1′ij
pwovij

pprocTi 2volt

proc+ proc idle + (C1ij
)(z + 1)wg1′ij proc idle

]

T

As I(cinter⊔o2v) > 0 and IT
(cinter⊔o2v) × A(cinter⊔o2v) = 0, in which A(cinter⊔o2v) is the

incidence matrix, N(cinter⊔o2v) is structurally conservative as well as structurally bounded.

A.38 Task Instance Conclusion with Inter-task Relations Block and Non-Preemptive
Task Structure with 2 Voltages Block

I(cinter) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(np2v) =
[

pvij
pwg1ij

pwc1ij
pwgij

pwcij
pwfij

pfvi pproc

wg1ij wg1ij wg1ij + proc wg1ij + proc wg1ij + proc wg1ij wg1ij proc
]

T

N(cinter⊔np2v) = Ncinter⊔Nnp2v. By juxtaposition I(cinter⊔np2v) = J (I(cinter), I(np2v)) and
assuming x is the number of inter-task relations inN(cinter), such that wg1ij = (z+1)wg1′ij
and pf1i = rel11 = · · · = rel1p = · · · = rel1z = wg1′ij :

I(cinter⊔np2v) =
[

pfvi pfi ppwdi

(z + 1)wg1′ij wg1′ij + pfi pfi + rel1 + · · ·+ relp + · · ·+ relz

prel1 ··· prelp ··· prelz pvij
pwg1ij

wg1′ij + rel1 · · · wg1′ij + relp · · · wg1′ij + relz (z + 1)wg1′ij (z + 1)wg1′ij

pwc1ij
pwgij

pwcij
pwfij

pproc

(z + 1)wg1′ij + proc (z + 1)wg1′ij + proc (z + 1)wg1′ij + proc (z + 1)wg1′ij proc
]

T

Since I(cinter⊔np2v) > 0 and IT
(cinter⊔np2v) × A(cinter⊔np2v) = 0, in which A(cinter⊔np2v)

is the incidence matrix, N(cinter⊔np2v) is structurally conservative as well as structurally
bounded.

A.39 Task Instance Conclusion with Inter-task Relations Block and Preemptive
Task Structure with 2 Voltages Block

I(cinter) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

230 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

I(p2v) =
[

pvij
pwg1ij

pwc1ij
pwf1ij

pwgij

(C1ij
C2ij

)wg1ij (C2ij
)wg1ij (C2ij

)wg1ij + proc (C2ij
)wg1ij (C1ij

)wg1ij

pwcij
pwfij

pfvi pproc

(C1ij
)wg1ij + proc (C1ij

)wg1ij (C1ij
C2ij

)wg1ij proc
]

T

N(cinter⊔p2v) = Ncinter⊔Np2v. By juxtaposition I(cinter⊔p2v) = J (I(cinter), I(p2v)) and as-
suming z is the number of inter-task relations in N(cinter), such that wg1ij = (z+1)wg1′ij
and pf1i = rel11 = · · · = rel1p = · · · = rel1z = (C1ij

C2ij
)wg1′ij :

I(cinter⊔p2v) =
[

pfvi pfi

(C1ij
C2ij

)(z + 1)wg1′ij (C1ij
C2ij

)wg1′ij + pfi

ppwdi
prel1 ··· prelp

pfi + rel1 + · · ·+ relp + · · ·+ relz (C1ij
C2ij

)wg1′ij + rel1 · · · (C1ij
C2ij

)wg1′ij + relp

··· prelz pvij
pwg1ij

· · · (C1ij
C2ij

)wg1′ij + relz (C1ij
C2ij

)(z + 1)wg1′ij (C2ij
)(z + 1)wg1′ij

pwc1ij
pwf1ij

pwgij

(C2ij
)(z + 1)wg1′ij + proc (C2ij

)(z + 1)wg1′ij (C1ij
)(z + 1)wg1′ij

T

pwcij
pwfij

pfvi pproc

(C1ij
)(z + 1)wg1′ij + proc (C1ij

)(z + 1)wg1′ij (C1ij
C2ij

)(z + 1)wg1′ij proc
]

T

N(cinter⊔p2v) is structurally conservative as well as structurally bounded, as I(cinter⊔np2v) >
0 and IT

(cinter⊔p2v) ×A(cinter⊔p2v) = 0, in which A(cinter⊔p2v) is the respective incidence ma-
trix.

A.40 Task Instance Conclusion with Inter-task Relations Block and Task Instance
Conclusion with Inter-task Relations Block

I(cinteri) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(cinterj) =
[

pfvj pfj

pf1i + rel1j + · · ·+ rel1pj + · · ·+ rel1zj pf1j + pfj
ppwdj

prel1j
··· prelpi

···

pfj + rel1j + · · ·+ relpj + · · ·+ relzj rel1j + relj · · · rel1pj + relpj · · ·
prelzj

rel1zj + relzj
]

T

Assume that place renaming function has been applied in net Ncinterj , renaming place
prelpj to prelpi . N(cinteri⊔cinterj) = Ncinteri ⊔ Ncinterj . By juxtaposition I(cinteri⊔cinterj) =

J (I(cinteri), I(cinterj)), such that rel1pj = rel1pi and relpj = relpi:

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 231

I(cinteri⊔cinterj) =
[

pfvi pfi

pf1i + rel1i + · · ·+ rel1pi + · · ·+ rel1zi pf1i + pfi

ppwdi
prel1i

··· prelpi
···

pfi + rel1i + · · ·+ relpi + · · ·+ relzi rel1i + reli · · · rel1pi + relpi · · ·
prelzi

pfvj pfj

rel1zi + relzi pf1i + rel1j + · · ·+ rel1pi + · · ·+ rel1zj pf1j + pfj

ppwdj
prel1j

··· prelzj

pfj + rel1j + · · ·+ relpi + · · ·+ relzj rel1j + relj · · · rel1zj + relzj

]

T

As I(cinteri⊔cinterj) > 0 and IT
(cinteri⊔cinterj)

×A(cinteri⊔cinterj) = 0, in which A(cinteri⊔cinterj)

is the incidence matrix, N(cinteri⊔cinterj) is structurally conservative as well as structurally
bounded.

A.41 Task Instance Conclusion with Inter-task Relations Block and Exclusion
Pre-Condition Block

I(cinter) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· pexclp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(ipree) =
[

pwexcli
pwvsi

pexcl1i
··· pexclpi

···

wexcli wexcli + excl1i + · · ·+ exclpi + · · ·+ exclyi excl1i · · · exclpi · · ·
pexclyi

exclyi
]

T

Assume that place renaming function has been applied in net Ncinter, renaming
place prelpi to pexclpi . N(cinter⊔ipree) = Ncinter ⊔ Nipree. By juxtaposition I(cinter⊔ipree) =
J (I(cinter), I(ipree)), such that exclpi = rel1i + reli:

I(cinter⊔ipree) =
[

pfvi pfi

pf1i + rel1i + · · ·+ rel1pi + · · ·+ rel1zi pf1i + pfi
ppwdi

prel1i
··· pexclpi

··· prelzi

pfi + rel1i + · · ·+ relpi + · · ·+ relzi rel1i + reli · · · rel1pi + relpi · · · rel1zi + rezi
pwexcli

pwvsi
pexcl1i

··· pexclyi

wexcli wexcli + excl1i + · · ·+ rel1i + reli + · · ·+ exclyi excl1i · · · exclyi
]

T

Since I(cinter⊔ipree) > 0 and IT
(cinter⊔ipree) × A(cinter⊔ipree) = 0, in which A(cinter⊔ipree)

is the incidence matrix, N(cinter⊔ipree) is structurally conservative as well as structurally
bounded.

232 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

A.42 Task Instance Conclusion with Inter-task Relations Block and Precedence
Pre-Condition Block

I(cinter) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· pprecp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(iprep) =
[

pwpreci
pwexcli

pprec1i
··· pprecpi ···

wpreci wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
prec1i · · · precpi · · ·

pprecxi

precxi

]

T

Assume that place renaming function has been applied in net Ncinter, renaming
place prelpi to pprecpi . N(cinter⊔iprep) = Ncinter ⊔ Niprep. By juxtaposition I(cinter⊔iprep) =
J (I(cinter), I(iprep)), such that precpi = rel1i + reli:

I(cinter⊔iprep) =
[

pfvi pfi

pf1i + rel1i + · · ·+ rel1pi + · · ·+ rel1zi pf1i + pfi
ppwdi

prel1i
··· pprecpi ··· prelzi

pfi + rel1 + · · ·+ relpi + · · ·+ relzi rel1i + reli · · · rel1pi + relpi · · · rel1xi + relxi

pwpreci
pwvsi

pprec1i
··· pprecxi

wpreci wpreci + prec1i + · · ·+ rel1i + reli + · · ·+ precxi
prec1i · · · precxi

]

T

As I(cinter⊔ipree) > 0 and IT
(cinteri⊔iprep)

× A(cinteri⊔iprep) = 0, in which A(cinteri⊔iprep)

is the incidence matrix, N(cinteri⊔iprep) is structurally conservative as well as structurally
bounded.

A.43 Task Instance Conclusion with Inter-task Relations Block and Deadline
Checking Block

For the sake of understandability, the deadline checking block considers three waiting for
task computation places in this composition. Nevertheless, the approach is the same for
deadline checking blocks containing any number (x) of such places.

I(cinter) =
[

pfvi pfi

pf1i + rel11 + · · ·+ rel1p + · · ·+ rel1z pf1i + pfi
ppwdi

prel1 ··· prelp ··· prelz

pfi + rel1 + · · ·+ relp + · · ·+ relz rel11 + rel1 · · · rel1p + relp · · · rel1z + relz
]

T

I(d) =
[

pwdi

3d0 + 2d1 + 2dlj + d1,lj + 2dj + d1,j + dlj,j
pwpci1

pwci1

d0 + dlj + dj + dlj,j d1 + d1,lj + d1,j + d1,lj,j
pwplcij

pwlcij

d0 + d1 + d3 + d1,j dlj + d1,lj + dlj,j + d1,lj,j
pwpcij

pwcij

d0 + d1 + dlj + d1,lj dj + d1,j + dlj,j + d1,lj,j

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 233

pdmi

d0 + d1 + dlj + dj + d1,lj + d1,j + dlj,j + d1,lj,j
]

T

Since Pcinter ∩ Pd = {ppwdi}, in which Pcinter and Pd are the set of places of the
respective Petri nets, only the weight associated with place ppwdi needs to be adjusted in
the P-invariants I(d) and I(cinter) (in order to allow the juxtaposition). Firstly, in I(cinter),
pfi is replaced by the sum of all variables in I(d)(ppwdi) (with the respective coefficients),
which are different from d0 and contains a coefficient greater than 1. Besides, each variable
from rel1 to relz is replaced by the sum of d′′0 (with the same coefficient as d0 in I(d)(ppwdi))
and all variables in I(d)(ppwdi) whose coefficient is equal to 1. The latter variables are also
represented by d′′0 in I(cinter). Additionally, in this composition, z represents the number
of inter-task relations in net Ncinter. After the summation (rel1+ ...+ relp+ ...+ relz), all
variables in I(d)(ppwdi) whose coefficient is equal to 1 are replaced by d0, d0 is substituted
by zd′0, and d′′0 by d′0.

The composition is demonstrated as follows. N(cinter⊔d) = Ncinter ⊔Nd. Thus, by jux-
taposition I(cinter⊔d) = J (I(cinter), I(d)), such that pfi = 2d1 +2dlj +2dj and rel1 = · · · =
relp = · · · = relz = (3d′′0+d′′0+d′′0+d′′0). After the summation (rel1+ ...+relp+ ...+relz =
6zd′′0), d1,lj = d1,j = dlj,j = d0, d0 = zd′0, and d′′0 is replaced by d′0.

I(cinter⊔d) =
[

pfvi pfi

pf1i + rel1i + · · ·+ rel1p + · · ·+ rel1z pf1i + 2d1 + 2dlj + 2dj
ppwdi

prel1 ··· prelp ··· prelz pwpci1

2d1 + 2dlj + 2dj + z6d′0 rel11 + 6d′0 · · · rel1p + 6d′0 · · · rel1z + 6d′0 2zd′0 + dlj + dj

pwci1
pwplcij

pwlcij
pwpcij

pwcij
pdmi

d1 + 3zd′0 2zd′0 + d1 + d3 dlj + 3zd′0 2zd′0 + d1 + dlj dj + 3zd′0 4zd′0 + d1 + dlj + dj

]

T

N(cinter⊔d) is structurally conservative as well as structurally bounded, as I(cinter⊔p2v) >
0 andIT

(cinter⊔p2v) × A(cinter⊔d) = 0, in which A(cinter⊔d) is the respective incidence matrix.

A.44 Exclusion Pre-Condition Block and Periodic Task Arrival Block

I(ipree) =
[

pwexcli
pwvsi

pexcl1i
··· pexclpi

wexcli wexcli + excl1i + · · ·+ exclpi + · · ·+ exclyi excl1i · · · exclpi
··· pexclyi

· · · exclyi
]

T

I(a) =
[

psti pwai
pwdi

pwri
pwexcli

(αi + 1)(wvsi + wdi) wvsi + wdi wdi wvsi wvsi
]

T ;

Assume that a place renaming function has been applied in net Na, renaming place
pwvsi to pwexcli. N(ipree⊔a) = Nipree ⊔ Na. By juxtaposition I(ipree⊔a) = J (I(ipree), I(a)),
such that wvsi = wexcli:

I(ipree⊔a) =
[

pwexcli
pwvsi

pexcl1i
··· pexclpi

wexcli wexcli + excl1i + · · ·+ exclpi + · · ·+ exclyi excl1i · · · exclpi

234 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

··· pexclyi
psti pwai

pwdi
pwri

· · · exclyi (αi + 1)(wexcli + wdi) wexcli + wdi wdi wexcli
]

Since I(ipree⊔a) > 0 and IT
(ipree⊔a) × A(ipree⊔a) = 0, in which A(ipree⊔a) is the incidence

matrix, N(ipree⊔a) is structurally conservative as well as structurally bounded.

A.45 Exclusion Pre-Condition Block and Voltage Selection Block

I(ipree) =
[

pwexcli
pwvsi

pexcl1i
··· pexclpi

wexcli wexcli + excl1i + · · ·+ exclpi + · · ·+ exclyi excl1i · · · exclpi
··· pexclyi

· · · exclyi
]

T

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvsi wvsi · · · wvsi · · · wvsi

]

T

N(ipree⊔v) = Nipree ⊔ Nv. By juxtaposition I(ipree⊔v) = J (I(ipree), I(v)), such that
wvsi = wexcli + excl1i + · · ·+ exclpi + · · ·+ exclxi

:

I(ipree⊔v) =
[

pwexcli
pwvsi

pexcl1i
···

wexcli wexcli + excl1i + · · ·+ exclpi + · · ·+ exclxi
excl1i · · ·

pexclpi
··· pexclxi

pvi1
···

exclpi · · · exclxi
wexcli + excl1i + · · ·+ exclpi + · · ·+ exclxi

· · ·
pvij

···

wexcli + excl1i + · · ·+ exclpi + · · ·+ exclxi
· · ·

pvim

wexcli + excl1i + · · ·+ exclpi + · · ·+ exclxi

]

T

As I(ipree⊔v) > 0 and IT
(ipree⊔v) × A(ipree⊔v) = 0, in which A(ipree⊔v) is the incidence

matrix, N(ipree⊔v) is structurally conservative as well as structurally bounded.

A.46 Exclusion Pre-Condition Block and Precedence Pre-Condition Block

I(ipree) =
[

pwexcli
pwvsi

pexcl1i
··· pexclpi

wexcli wexcli + excl1i + · · ·+ exclpi + · · ·+ exclyi excl1i · · · exclpi
··· pexclyi

· · · exclyi
]

T

I(iprep) =
[

pwpreci
pwexcli

pprec1i
··· pprecpi

wpreci wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
prec1i · · · precpi

··· pprecxi

· · · precxi

]

T

Assume that a place renaming function has been applied in net Nipree, renaming
place pwvsi to pwexcli. N(ipree⊔iprep) = Nipree ⊔ Niprep. By juxtaposition I(ipree⊔iprep) =

BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS 235

J (I(ipree), I(iprep)), such that wexcli = wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
:

I(ipree⊔iprep) =
[

pwexcli

wpreci + prec1i + · · ·+ precpi + · · ·+ precxi

pwvsi
pexcl1i

wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
+ excl1i + · · ·+ exclpi + · · ·+ exclyi excl1i

··· pexclpi
··· pexclyi

pwpreci
pwvsi

pprec1i

· · · exclpi · · · exclyi wpreci wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
prec1i

··· pprecpi ··· pprecxi

· · · precpi · · · precxi

]

T

N(ipree⊔iprep) is structurally conservative as well as structurally bounded, as I(ipree⊔v) >
0 and IT

(ipree⊔iprep) × A(ipree⊔iprep) = 0, in which A(ipree⊔iprep) is the respective incidence
matrix.

A.47 Precedence Pre-Condition Block and Periodic Task Arrival Block

I(iprep) =
[

pwpreci
pwvsi

pprec1i
··· pprecpi

wpreci wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
prec1i · · · precpi

··· pprecxi

· · · precxi

]

T

I(a) =
[

psti pwai
pwdi

pwri
pwpreci

(αi + 1)(wvsi + wdi) wvsi + wdi wdi wvsi wvsi
]

T ;

Assume that a place renaming function has been applied in net Na, renaming place
pwvsi to pwpreci. N(iprep⊔a)=Niprep⊔Na. By juxtaposition I(iprep⊔a) = J (I(iprep), I(a)), such
that wvsi = wpreci:

I(iprep⊔a) =
[

pwpreci
pwvsi

pprec1i
··· pprecpi

wpreci wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
prec1i · · · precpi

··· pprecxi psti pwai
pwdi

pwri

· · · precxi
(αi + 1)(wpreci + wdi) wpreci + wdi wdi wpreci

]

Since I(iprep⊔a) > 0 and IT
(iprep⊔a) × A(iprep⊔a) = 0, in which A(iprep⊔a) is the incidence

matrix, N(iprep⊔a) is structurally conservative as well as structurally bounded.

A.48 Precedence Pre-Condition Block and Voltage Selection Block

I(iprep) =
[

pwpreci
pwvsi

pprec1i
··· pprecpi

wpreci wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
prec1i · · · precpi

··· pprecxi

· · · precxi

]

T

I(v) =
[

pwvsi
pvi1

··· pvij
··· pvim

wvsi wvsi · · · wvsi · · · wvsi

]

T

236 BASIC BUILDING BLOCKS: JUXTAPOSITION OF P-INVARIANTS

N(iprep⊔v) = Niprep ⊔ Nv. By juxtaposition I(iprep⊔v) = J (I(iprep), I(v)), such that
wvsi = wpreci + prec1i + · · ·+ precpi + · · ·+ precxi

:

I(iprep⊔v) =
[

pwpreci
pwvsi

pprec1i
···

wpreci wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
prec1i · · ·

pprecpi ··· pprecxi pvi1
···

precpi · · · precxi
wpreci + prec1i + · · ·+ precpi + · · ·+ precxi

· · ·

pvij
···

wpreci + prec1i + · · ·+ precpi + · · ·+ precxi
· · ·

pvim

wpreci + prec1i + · · ·+ precpi + · · ·+ precxi

]

T

As I(iprep⊔a) > 0 and IT
(iprep⊔v) × A(iprep⊔v) = 0, in which A(iprep⊔v) is the incidence

matrix, N(iprep⊔v) is structurally conservative as well as structurally bounded.

APPENDIX B

MODEL CHECKING

Model checking [115] is a prominent collection of techniques that automatically allow
the formal verification of finite-state systems. Such techniques have an important contri-
bution in hard real-time system design, since a system model can be verified for errors
and inconsistencies related to the specification. Model checking relies on a tool, namely,
model checker, which receives as input a model and a property expected to be satisfied.
The tool outputs true or false, but, in the latter case, the model checker usually provides
a counterexample. This appendix is based on [126].

As an example, consider the system depicted in Figure B.1, which transfers water
from a tank A into a tank B adopting a pump P. Each tank has two sensors: one to
detect if there is no water (Empty) and other one to detect if the tanks is totally filled
(Full). The tank level is ok whether it is neither empty nor full. Initially, tanks A and B
are empty, and the pump is switched on as soon as tank A has water and tank B is not
full. The pump stays on while tank A is not empty and tank B is not full. Similarly, the
pump is switched off as soon as tank A becomes empty or tank B becomes full. Adopting
such a specification, the system needs to be modeled using a representation compatible
with the model checker to allow property verification.

Figure B.1 Pumping system

Many model-checking tools unfold an input model into a transition system called
Kripke structure, and a given property is actually checked against it. However, for the
purposes of understanding what a property statement means, a Kripke structure is further
unfolded into an infinite tree, in which each path in the tree indicates a possible execution
or behavior of the system.

237

238 MODEL CHECKING

B.1 PATHS AND FORMULAS

Consider that a state is denoted by an ordered tuple <A,B,P>, where A and B denote the
current water level in tank A and B, and P denotes the current pump status. For the sake
of illustration, assume the initial state to be <empty,empty,off>. The next state from
the initial state could be <empty,empty,off> or <ok,empty,on>. From <ok,empty,on>,
the next state could be <ok,empty,on>, <ok,ok,on>, <full,empty,on>, <full,ok,on>,
<empty,empty,off>, or <empty,ok,off>. For each of these states, the next possible states
could be further calculated.

Figure B.2 Initial part of the execution tree for the pumping system

The states can be arranged in the form of an infinite execution (or computation) tree,
in which the root is labeled with the chosen initial state and the children of any state
denote the next possible states (see Figure B.2). A system execution is a path in this
execution tree, and, indeed, the system may have infinitely many execution paths. The
objective of model checking is to examine whether or not the execution tree satisfies a
user-given property specification.

A question arises about how someone may specify properties of paths (and their states)
in an execution tree. Computation tree logic (CTL) - a branching time temporal logic -
is an intuitive notation suitable for this purpose. Without loss of generality, CTL is an
extension of the usual Boolean propositional logic (which includes the logical connectives
such as and, or, not, implies), where additional temporal connectives are available.

Figure B.3 Initial part of the execution tree for the pumping system

Table B.1 and Figure B.3 illustrate the intuitive meaning of some of the basic temporal
connectives in CTL. In short, E (for some path) and A (for all paths) are path quantifiers
for paths beginning from a state. F (for some state) and G (for all states) are state
quantifiers for states in a path.

B.1 PATHS AND FORMULAS 239

Table B.1 Some temporal connectives in CTL

EX ϕ true in current state if formula ϕ is true in at least one of the next states
EF ϕ true in current state if there exists some state in some path beginning

in current state that satisfies the formula ϕ
EG ϕ true in current state if every state in some path beginning in current state

satisfies the formula ϕ
AX ϕ true in current state if formula ϕ is true in every one of the next states
AF ϕ true in current state if there exists some state in every path beginning in current

state that satisfies the formula ϕ
AG ϕ true in current state if every state in every path beginning in current

state satisfies the formula ϕ

From a given property and a (possibly infinite) computation tree T (related to the
system model), a model-checking algorithm examines T to verify if the property is sat-
isfied. For instance, consider a property AF g, in which g is a propositional formula not
involving any CTL connectives. Figure B.3(b) shows an example of a computation tree
T . The property AF g is true for this tree, if there is some state in every path in T
starting at s0, such that the formula g is true in that state.

Figure B.3(b) shows that g is true at the root of the left subtree (indicated by the filled
circle). Thus, all paths from s0 to the left child (and further down in the left subtree)
satisfy the property. Additionally, Figure B.3(b) depicts g is true at all children of the
right child of s0 (also indicated by filled circles). Therefore, the property is true for all
subtrees of s0 and, so, it’s also true at s0.

Figure B.3 summarizes the similar reasoning adopted to check properties stated in
other forms, such as EG g and AG g. Of course, in practice, the model-checking algo-
rithms are really far more complex than this; they use sophisticated tricks to prune the
state space to avoid checking those parts where the property is guaranteed to be true.

Regarding the pump system, the designer may want to check AF (P = off), which
states that, for every path beginning at the initial state, there is a state in that path at
which the pump is off. This property is trivially true, since, in the initial state, P = off
is true.

APPENDIX C

LIST OF ABBREVIATIONS

CPN Coloured Petri Net
DPM Dynamic Power Management
DVS Dynamic Voltage Scaling
EDF Earliest-Deadline First
FCPN Free Choice Petri Net
FSM Finite-State Machine
HRTS Hard Real-Time Systems
I/O Input/Output
LCM Least Common Multiple
LPEDF Low Power Earliest-Deadline First
MOS Metal Oxide Semiconductor
RTOS Real-Time Operating System
TFCPN Time Free-Choice Petri Net
TLTS Time Labeled Transition System
TPN Time Petri Net
TPNE Time Petri Net Extension with Energy Consumption Values

and Code Annotations
WCEC Worst-Case Execution Cycles
WCET Worst-Case Execution Time

241

