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Abstract

Nowadays, embedded systems are present in almost any human intacting
environment and activities. The crescent adoption of embedded-sgtem-
controlled machines is direct related to the decreasing costs ofsuch sys-
tems.

Due to the cost and the complexity of an embedded system architeaire,
it is essential high-level system design tools and methods, whee functional
and architectural description validation and veri cation mig ht be carried
out.

A more recent way to specify requirements, which is popular in the
realm of object-oriented systems, is to use Message Sequence Qs
(MSC). Both MSC and UML's sequence diagrams specify scenarios &e-
guences of message interactions between object instances. Scemas cap-
ture the desired relationships among the processes, tasks, or obg in-
stances. Such models are applied for describing what the systenshould
execute, but they do not allow designers specifying what must notbe car-
ried out (anti-scenarios).

Live Sequence Chart (LSC) is an MSC extension that allows the gzi -
cation of anti-scenarios as well as activities that must occur. ISC IIs out
the gaps of the previous models, distinguishing things that canhappen of
things that must happen, through the use of some types of diagrams

Nowadays, no tool and method is available for LSC properties' veri -
cation. Therefore, this works proposes a PN model for LSC language as a
mean for allowing veri cation and analysis of system's properties.

Keywords: Petri Net, Coloured Petri Net, Modeling, Speci cation Lan-
guages, LSC, Properties Analysis.
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Resumo

Atualmente, os sistemas embarcados eab presentes em quase todas as
atividades e ambientes do homem. A crecente addo dos sistemas embar-
cados esh diretamente relacionado com a queda do custo de tais sistemas

Devido ao custo e complexidade da arquitetura de um sistema erbar-
cado, e essencial ferramentas e retodos de alto rivel que permitam a
validagao e veri cagcao dos requisitos funcionais e arquiteturais do sistema.

A forma mais recente de especi car requisitos, quee popular no ambito
dos sistemas orientados a objetosge 0 Message Sequence Chart (MSC)
ou diagrama de seqiencias (UML). Ambos especi cam 0s ce@rios com
uma seqencia de interagbes de mensagens entre ingtncias de objetos. Os
cenarios capturam a relagao desejada entre processos, tarefas e inghcias
de objetos. Tais modelos &o utilizados para descrever o que o sistema
pode fazer, mas rao permitem especi car o que deve ocorrer, assim como
tambem nao permite a modelagem dos anti-cerarios.

A linguagem Live Sequence Chart (LSCe uma extengo da MSC que
permite especi car anti-cenarios, assim como tamlem permite modelar o
que deve ocorrer. A linguagem LSC preenche a lacuna dos modelos an-
teriores, distinguindo as coisas que podem ocorrer das coisas queeyem
ocorrer atraves da utilizacao de alguns tipos de diagrama.

Atualmente, nao existe uma ferramenta ou netodo que permita veri-
car propriedade para um cenario LSC. En&o, este trabalho proge um
modelo de Rede de Petri para a linguagem LSC, atraas do qual pro-
priedades do cerario LSC podem ser analisadas e veri cadas.

Palavras chaves: Redes de Petri, Redes de Petri Coloridas, Modelagem,
Linguagem de Especi ca@o, LSC, Aralise e Veri cacao de Propriedades.
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Chapter 1

Introduction

This chapter presents an introduction to embedded systems,
highlighting the importance of the speci cation in the inital phase
of a embedded system project, where several speci cation eisd
are presented revealing their advantages and disadvantagas
well as presenting some methods that allows to verify if a spea-
tion is according to the functional and nonfunctional requements
imposed by speci ed system.

1.1 Context

Embedded systems are present in practically all human activies, and due
to low technological costs, they tend to increase their presence Examples
of such systems are cellular telephones with camera and calenak, cars and
buses system controls, portable computers, microwave ovens with anntel-
ligent control of temperature, washing machines and other appliances.

An embedded system project is a complex activity, because it invales
concepts such as portability, energy consumption constraints, pgormance,
low memory availability, safety and reliability.

Embedded systems projects face several challenges, becauseetk is a
vast design space to be explored. The hardware architecture of arem-
bedded system may contain one or more processors, memories, interfas
for peripherals and dedicated blocks. These components are linkedy a
communication structure that can vary from a bus to a complex net [37].
The processors can be of several types (RISC, VLIW, DSP) according t
the application. In the case of systems containing programmable ompo-
nents, the software application may be composed of multiple processs,
distributed among different processors and communicating through var-

1



2 CHAPTER 1. INTRODUCTION

ied mechanisms. A real time operating system (RTOS) offering serices as
communication and processes stagger may be necessary [13]. Bases the
precious time that can be spent with a systematic exploration of ths project
space, it should be considered the necessary time for designingrad validat-

ing all dedicated components of the system, processors, hardwardlocks,
software routines, RTOS, as well as the time for validating the whole sys-
tem.

Another problem of an embedded system project is the cost. The project
of an embedded system of great complexity is quite expensive for a am-
pany, involving different teams (digital hardware, analogic al hardware,
software, test) and usually demands specialized tools often of vey high
costs. The production cost of integrated systems in a tablet is highso the
companies are pushed to implement components that have a high poduc-
tion volume, in order to reduce the production costs.

Starting from a high level speci cation, the design space should be ex-
ploited for possible architectural solutions, taking into account the impact
of different hardware and software solutions. After or while de n ing the
architecture, the communication should be considered for the synhesis in-
tegrating the hardware components [36].

Due to the complexity of embedded system architectures, contaiimg
multiple hardware and software components, sophisticated communication
structure, the variety of possible solutions, performance, eneryy consump-
tion constraints, correctness and robustness, it is essential te adoption of
tools to automate design phases and supporting designers in desion mak-
ing.

An embedded system project usually begins with a speci cation of each
desired functionality, done through a language or an appropriate formal-
ism. Ideally, this speci cation should have a high abstraction level, which
is independent of implementation, hardware components or software. This
speci cation should be preferably executable, for validation ends.

Design methodologies should provide means for functional and archit
tectural validation. Improving system reliability can be carri ed out by sim-
ulation or through formal analysis/veri cation that is quite att ractive be-
cause they spare exhausting simulations.

The initial system speci cation is usually a functional description, in
which no structural information or architecture dependent fea tures is con-
sidered. This description should be neutral in relation to possible imple-
mentations of software functions or hardware platforms, and usually does
not contain detailed information on how to implement the timing req uire-
ments. The system is described as a group of functions (tasks or objest
depending on the adopted language), that communicate through high-level
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communication primitives, for instance in the form of messages or ®rvices
requests. Each request may transport several items of data siaitaneously.
This abstraction level allows the validation of the functional speci cation

of the system and serves as input for the architectural exploraton process.

Over the last decades, the main approaches to high-level syste mod-
eling have been structured-analysis/structured-design (SA/SD) and object-
oriented analysis and design (OOAD). Both approaches have yielde visual
formalisms for capturing the various parts of a system model. The Inking
of structure and behavior is crucial and by no means a straightforward is-
sue. In SA/SD, for example, each system function or activity is &sociated
with a state machine or a state chart [22] that describes its behavior. In
OOAD, as Uni ed Modeling Language (UML) [40, 18] and the XUML [23] ,
each class is associated with a state chart, which describes ghbehavior of
every instance object.

When developing a complex system, it is very important to be able to
test and debug the model before investing extensively in implementation
[21].

Requirements are the basis for testing and debugging models. They
constitute the constraints, desires, and hopes we entertain conerning the
system under development. We want to make sure, both during devéop-
ment and when we feel development is over, that the system does, omill
do, what we intend or hope for it to do.

A more recent way of specifying requirements, which is popular in
the realm of object-oriented systems, is to use Message Sequendgharts
(MSCs) [14]. The International Telecommunication Union (ITU) adop ted
this visual language as a standard.

Both MSCs and UML's sequence diagrams specify scenarios as seques
of message interactions between object instances. In the early siges of sys-
tem development, engineers typically come up with use cases [Z] and then
specify the scenarios that instantiate them. Scenarios captte the desired
relationships among the processes, tasks, or object instances. Thaodeler
uses MSCs to specify the scenarios, that the nal system hopefily will sat-
isfy and support, and these scenarios are instantiations of the nore abstract
and generic use cases.

As a requirement language, all known versions of MSCs, including the
ITU standard and the sequence diagrams adopted in the UML, are wak
in expressive power. Their semantics are little more than a set ofsimple
constraints on the partial order of possible events in a system exeation.
Nothing can be said in MSCs about what the system will actually do when
it runs. These diagrams can state what might possibly occur, not what must
occur. Another drawback of MSCs is their inability to specify unwanted
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scenarios (anti-scenarios). We want to forbid the occurrence of these anti-
scenarios, and they are crucial in setting up safety requirenents.

Due to the weakness of the previous models, a new language for sys-
tem speci cation, called Live Sequence Chart (LSC) was proposeé in 1998
by Damm and Harel [17]. Later, in another work of Harel together wit h
Marelly [24], the Play-Enginetool was presented allowing the modeling of
LSC scenarios and also permitting the simulation of these scengos through
an executable model that does not need the source code. As the name gd
gests, LSCs specify liveness, things that must occur. They lehodelers dis-
tinguish between possible and necessary behavior and also make pstle
to specify anti-scenarios.

LSC language lIs out the gaps of the previous models, distinguising
things that can happen from those that must happen, through the use of
some types of diagrams. Sequence of events that can happen in anxecu-
tion of the system can be speci ed using existential chart that srves as a
system test case. On the other hand, sequence of events that shalihappen
for all and any execution of the system should be modeled using univesal
charts. Each universal chart possesses a pre-condition (prednt) that, if
successfully executed, forces the execution of the scenario ggi ed in the
chart body, that if not satis ed, indicates a requirement violat ion.

Besides the simulation, the requirements validation process an be
made by formal speci cation methods, which allow the development of
systems without ambiguities, through well de ned syntaxes and semantics.
With such formal models, it could:

2 accomplish mathematical veri cation that guarantee that mode Is pos-
sess the requested properties;

2 analyze if the proposed solution is acceptable under the performarce
point of view, indicating best strategies for implementation;

2 accomplish the software development and improve the reliability
about correct implementations (generation of correct code).

Several class of formal speci cation models have been proposed, amog
them algebraic methods, process algebras, logic based methods andeRi
Nets.

CSP [25], CCS [38] and LOTOS [9, 54] are examples of process al-
gebras used to model concurrent processes. They are languages fohe
speci cation of processes and the formulation of statements about them,
together with calculations for the veri cation of these statemen ts.

Petri Net (PN) [39, 41] is a family of formal models suit for repres ent-
ing synchronization, concurrency or resource sharing. Actually Petri Nets
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was the rst model for formally describing concurrent systems [46]. The
graphic representation of a PN structure consists of elements conected by
directed arcs. There are two types of elements vertexes, placerepresented
by circles and transitions (rectangles). An arc connects place to transitions
or transitions to places. A PN is a multi-graph, since it allows nultiple arcs
from an element to another.

Coloured Petri Nets (CPNs) [28, 29] are high-level PNs that support
complex data types and hierarchy. CPNs combine the strengths of a@li-
nary PNs with the strengths of a high-level programming language. PNs
provide the primitives for process interaction, while the programming lan-
guage provides the primitives for the de nition of data types and the ma-
nipulations of data values.

1.2 Our Approach

Early system design modeling allows error detection due to impeifection in
the design process as well as those related to requirement angkis phase.
Therefore, preventing larger and costly problems due to late detection, es-
pecially with those embedded systems that must be correct, robust ad
ef cient (critical embedded systems).

Modeling processes of real time systems must take into account both
functional and nonfunctional requirements. Some models, as MSC ad
UML Sequence Diagram, seemed to supply such needs, howeverély pos-
sess some de ciencies:

2 they are unable to verify critical properties of a system;
2 they do not allow performance evaluation to be accomplished;

2 they do not allow specify scenarios that should happen for all sysem
run (liveness);

2 they do not allow the modeling of anti-scenarios.

Due to the costs and the complexity of embedded systems, it is es-
sential a system speci cation in a high-level of abstraction, where func-
tional and architectural descriptions validation are necessay. Validation
can be carried out by simulation or complemented through formal analy-
sis/veri cation that is quite attractive because they spare exhausting simu-
lations.

Live Sequence Chart (LSC), reduces some shortcomings inhererb
MSC based models, such as allowing the possibility of specifying lieness
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and anti-scenarios. LSC allows modelers distinguish between pasble and
necessary behavior and specify anti-scenarios.

As well as the previous models (MSC and UML), LSC language poss&ss
some de ciencies. It is not possible to verify system properties ad to ac-
complish any system performance evaluation. So, if one wants to deect
and reduce some risks that may lead to project failure, a formal goproach,
like PNs, could be used to allow execute such tasks.

As LSC language uses object oriented notions, in order to provide a
faithful representation of LSC charts, this work uses a PN variat, called
Coloured Petri Nets (CPNSs), due to the possibility of representirg complex
data types. Besides this advantage, CPN models can be evaluatén many
different ways.

The rst evaluation method is interactive simulation. Itis very similar to
debugging and prototyping. This means that we can execute a CPN moel,
to make a detailed investigation of the behavior of the modeled sysem.

The second method is automatic simulation which is similar to program
execution. It allows a fast execution of thousands or millions of transitions.
The purpose is to investigate the functional correctness of the sgtem or to
investigate the performance of the system, e.g. to identify botlenecks, to
predict the use of buffer space or the mean/maximal service time

The third method is based on the analysis of reachability graphs. The
reachability graph is a directed graph which has a node for each eachable
system state and an arc for each possible state change. Obviouslyush a
graph may become very large, even for small CPNs. However, it can be
constructed and analyzed totally automatically, and there exist techniques
which makes it possible to work with condensed occurrence graphs vithout
losing analytic power.

The fourth analysis method is place invariants. This method is vey sim-
ilar to the use of invariants in ordinary program veri cation. The user con-
structs a set of equations which is veri ed for all reachable sysem states.
The equations are used to verify properties of the modeled systeme.g.,
absence of deadlock.

1.3 Goals

The goal of this work is to aid the development process of embedded sys-
tems, through an approach that allows to verify the correctness and robust-
ness of such systems, through an analysis and veri cation of propeties of
the modeled system.
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Due to embedded system characteristics, its functional and achitectural
descriptions should be validated, reducing risks that may leadthe design of
an embedded system to failure. So, in order to provide a validation mech-
anism, this work presents a methodology for mapping the Live Sequece
Chart (LSC) language to an equivalent Coloured Petri Net (CPN)model
as an approach for analysis and veri cation of embedded systems' poper-
ties. As LSC language has data-types and adopts high-level coapts such
as method invocation, Coloured Petri Nets have been adopted as a suPetri
net variant since it supports complex data-types, annotations,hierarchy as
well as have an associated programming language (CPN-ML) thatmproves
value's handling. Therefore, the proposition of a CPN model for LSC albws
veri cation and analysis of systems described in LSC, hence, camibuting
for increasing designers' con dence on the system development pocess
and reducing risks that may lead to project failure.

1.4 Related Works

Some works have been published as an approach to properties analysiand
performance evaluation of system's speci cations, starting from scenarios,
which are described using a requirement speci cation language, such as
UML, MSC, LSC and so on. Some related works are presented next.

The growing popularity of sequence charts, rst of all Message Se-
quence Charts and UML Sequence Diagrams, for the description ofom-
munication behavior has evoked criticism regarding the semantcs of the
charts which led to extensions of these standardized visual fomalisms.
One such extension are Live Sequence Charts which allow to distiguish
mandatory and possible behavior in protocol speci cations. In the original
language de nition for LSCs the semantics are only described inbrmally,
although a sketch for a possible formalization has been provided as wé.
Klose and Wittke [31] intend to Il in the semantic blanks of the or iginal
LSC de nition. Following the sketched path they de ne the semantics of
an LSC by deriving a Timed Buchi Automata from it. They also conside
qualitative and quantitative timing aspects. They nally sh ow how LSCs
are integrated into a veri cation tool set for Statematedesigns.

Merseguer [26] proposes an approach to analyze performance for mo-
bile agents systems, in which security and performance are thenost critical
aspects. This approach maps Message Sequence Charts (MSC) t@&aner-
alized Stochastic Petri Nets (GSPN) model, through which, perbrmance
indexes may be computed by applying quantitative analysis techiques al-
ready developed in the literature. This approach proposes a UML wih
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performance annotation (pa-UML) to model performance on these kind of
systems. The problem domain is modeled using pa-UML, describing stic
and dynamic views when necessary. Through pa-UML, it is obtainedthe
corresponding formal model expressed as Petri Nets.

Baresi [8] proposes High-Level Timed Petri Nets (HLTPN) for UML /-
namic models in order to obtain a exible and customizable representation
to dynamic aspects of object-oriented models, in order to simulatepartic-
ular parts of these models and if necessary analyze them. The propsal
describes the main UML elements with formal semantics in termsof func-
tionally equivalent to HLTPNs and shows results from execution ard anal-
ysis as decorations to UML symbols.

Live Sequence Charts (LSCs) are a promising graphical speatation for-
malism, usually applied to software systems. Bunker and Slil [12] adapt
LSCs for the purpose of hardware requirements speci cation and \eri ca-
tion. The main contribution of their work is an algorithm for generatin g
temporal logic formulas from an LSC. The generated formulas are usd as
speci cations for a model checker to verify compliance of hardware imple-
mentations.

The problem of relating state-based intra-agent (or intra-object) behav-
ioral descriptions with scenario-based inter-agent (inter-object) descrip-
tions has recently focused much interest among the software engieering
community. Bomtemps and Heymans [55] investigate this problem. As
inter-agent formalism, they adopt a simple variant of Live Sequence Charts.
For the intra-agent perspective, they consider a game-theordt foundation,
looking at agents as “strategies” which encompasses the populafstate-
based” paradigm. Three classes of relationships between models arstud-
ied: scenario checking (called eLSC checking), synthesisand veri cation.
They set a formally de ned theoretical stage that allows to express these
three problems very simply, to discuss their complexity, and to describe
optimal solutions. Their study reveals the intrinsic high computational dif-
culty of these tasks. Consequently, many related problems and slutions
are surveyed, some of which can be the basis for practical solutionsin this,
we also offer a panorama of current research and directions for thefuture.

Bontemps [10] proposes an approach to obtain an automata represen-
tation from High-Level Live Sequence Charts (HLSC). This work buids au-
tomata from HLSC scenarios and show that standard algorithms on ths
(low-level) formalism can be used to check consistency and re nement,
and to synthesize a state-based speci cation from a set of consignt re-
quirements. The disadvantage of this approach is the descriptin of the
system that is given as an automata, which is dif cult to read, and thus, of
little interest for the later stages of development.
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Kluge [32] focuses on Petri Nets as a formal model for analysis and
simulation of Message Sequence Charts (MSC). Additionally, itproposes
to use this Petri Net based formal model as a formal semantics for M§.
This approach provides a formally precise as well as an intuitivesemantics
for MSC. A further advantage of this approach is, that existing dgorithms,
methods and tools for analysing and simulating Petri nets can be enployed
for the analysis and simulation of MSCs. A drawback of this approachis
that it is necessary changes of an MSC speci cation in order to deive a
low-level Petri Net with the correct behavior.

Kugler and Harel [20] provide semantics for the powerful scenario-
based language of live sequence charts (LSCs). They show how the se
mantics of live sequence charts can be captured using temporaldgic. This
is done by studying various subsets of the LSC language and providig an
explicit translation into temporal logic. They show how a kernel subset of
the LSC language (which omits variables, for example) can be embeded
within the temporal logic CTL. For this kernel subset the embeddingis a
strict inclusion. They show that existential charts can be expressed using
the branching temporal logic CTL, while universal charts are in the inter-
section of linear temporal logic and branching temporal logic.

Sun and Dong [52] investigate theoretical relations between LSG and
CSP LSCs are formalized using trace and failure semantics s&s to facilitate
the semantic transformation from LSCs to CSP. The practical imptation is
that mature tool supports for CSP can be reused to validate LSCs.

Veri cation and validation are critical and costly for high-ass urance sys-
tems. Even though many formal speci cation techniques are avalable to
verify various properties for embedded systems, it takes much dbrt to de-
velop the state model and specify properties using temporal logic Tsai and
Yu [53] present a process to rapidly generate the state model by snulat-
ing system scenarios, and formal model checking techniques canhen be
applied to the state model to verify various properties. Becau® system
scenarios are widely used during embedded system developmentthe ef-
fort needed to develop the state model for the embedded system is ths
greatly reduced. Their work present how informal system scenarps can be
formalized and used in simulation to generate the state model. The simu-
lation tool developed is also capable of performing runtime checking such
as completeness and consistency checking, and timing analysi The state
model generated can be mapped to UML's state chart. Furthermorethey
use a pattern based approach to specify properties to be checkedapidly. In
this way, various formal model checking techniques can be appli@ to the
embedded system development.
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1.5 Dissertation Structure

This dissertation presents a methodology for representing LSC digrams by
a Coloured Petri Net (CPN). The CPN model is considered for analysiand
veri cation of qualitative properties. Thus, taking an importan t concern in
embedded system design process.

Chapter 2 addresses some speci cation models and a formal approdt
that can be used to analyze and verify the behavior of a speci ed sygtem. In
Chapter 3, the mapping of the LSC language to an equivalent CPNnodel
are presented. Chapter 4 presents two case studies, on whichhie map-
ping is applied in order to analyse and verify some properties. Fnally, a
conclusion and future works are presented in Chapter 5.



Chapter 2

Basic Concepts

This chapter presents some details on object-oriented gnal
sis and design, mentioning some speci cation models witheiin
advantages and disadvantages in the system modeling process
nally, in order to allow properties analysis and veri cation PNs
are presented as a possible approach to formal veri cation.

2.1 Object-Oriented Analysis and Design

The late 1980s saw the rst proposals for object-oriented analysis and de-
sign (OOAD). As in structured analysis/structured design (SASD), the
basic idea in modeling system structure was to lift concepts up fom the
programming to the modeling level and to use visual formalisms. Inspired
by entity-relationship diagrams [15], several methodology teams recom-
mended various forms of class and object diagrams for modeling systa
[11, 16, 51]. To model behavior, most object-oriented modeling approaches
adopted state charts [22]. Each class has an associated statehart, which
describes the behavior of any object instance.

The issue of connecting structure and behavior is subtler and more com
plicated in the OOAD world than in the SA/SD world. Classes repreent
dynamically changing collections of concrete objects. Behavioraimodeling
must thus address issues related to object creation and destru@n, mes-
sage delegation, relationship modi cation and maintenance, aggregation,
inheritance, and so on.

The links between behavior and structure must be de ned in suf cie nt
detail and with enough rigor to support the construction of tools that en-
able model execution and full code generation. Only a few tools have be@
able to do this. One is Object-Time, which is based on the Real-Time Olgict-

11
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Oriented Modeling method [7] and is now part of the Rational RealTim e
tool [6].

Another tool is Rhapsody [5], which is based on the work of Gery and
Harel of executable object modeling with state charts [23]. This work cen-
ters on a carefully constructed language set that includes clas/object di-
agrams adapted from the Booch method [11] and the OMT method [51],
driven by state charts for behavior.

This pair of languages also serves as the executable heart of the i+
ed Modeling Language (UML) [18], put together by a team led by Gra dy
Booch, James Rumbaugh, and Ivar Jacobson, which the Object Manage-
ment Group (OMG) adopted as a standard in 1997 [40]. The class/objed
diagrams and the state charts part of the UML is often called XUML Thus,
XUML is the part of UML that speci es unambiguous, executable, and
therefore implementable, models.

2.2 Message Sequence Chart (MSC)

The language of message sequence charts (MSCs) is a popular meatism
for specifying scenarios that describe possible interactions betwen pro-
cesses or objects. MSCs are particularly useful in the early sgges of system
development. The language has found into many design methodologis,
and a variant of it has been made part of UML, where it is called segence
diagrams. There is also a standard syntax for MSCs that appearas a rec-
ommendation of the ITU [14].

In many object-oriented system development methodologies, the use
rst speci es the system's use cases and some speci ¢ instanttions of each
use case are then described using sequence diagrams (MSCs)n & later
modeling step, the behavior of a class is described by a state diagra [22]
that prescribes a behavior for each of the instances of the class. Rally, the
objects are implemented as code in a speci ¢ programming langua@. Parts
of this design ow can be automated, such as the generation of code from
object model diagrams and state charts, as exempli ed in ObjecTine [42]
and Rhapsody [23, 5].

In such design ows, the main role of MSCs is to capture system re-
guirements in the form of “good” scenarios that the implemented system
should exhibit. Sometimes an MSC is prepared for a “bad” scenariohat the
implementation should not allow. System requirements captured in this in-
tuitive fashion can serve as a useful interface between the eneusers of the
system and the system designer. They can also serve as a test fealidating
some aspects of the implementation. A substantial portion of reseach on
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MSCs has been driven by this way of using MSCs, with the focus on mech
nisms for describing collections of scenarios, techniques for analzing such
collections and relating them to a state-based executable speaation.

Figure 2.1 depicts a simple MSC chart. This chart captures a ®mario
in which a user (U) sends a request to an interface (I) to gain access to
a resource (R). The interface in turn sends a request to the resotce, and
receives “grant” as a response, after which it sends “yes” tohe user. The
vertical lines represent the life-lines of the processes takng part in the sce-
nario . As usual, time is assumed to ow downwards along each life-line.
The directed arrows going across the life-lines represent the casal link
from a send event (the source of the arrow) to the corresponding receve
event (the target of the arrow), with the label on the arrow denoting the
message being transmitted.

Figure 2.1: Simple MSC chart

An MSC chart is guided by the following rules:

2 all the events that a process takes part in are linearly ordered each
process is a sequential agent;

2 messages must be sent before they can be received;

2 there are no dangling communication edges in an MSC, therefore d
sent messages have also been received,

2 the causality relation between the events in an MSC is completey de-
termined by the order in which the events occur within each process
and communication relation relating a send-receive pairs.
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2.3 Live Sequence Chart (LSC)

LSC [17] is a system speci cation language based on scenarios thiaallows
to specify anti-scenarios as well as it permits specify what Bould happen for
all system runs. LSC language lIs out the gaps of the previous moels, dis-
tinguishing things that can happen of things that must happen, through the
use of some types of diagrams. Sequence of events that can happen an
execution of the system can be speci ed using existential chartthat serves
as a system test case. On the other hand, sequence of events thahauld
happen for all and any execution of the system should be modeled usig
universal charts. Each universal chart possesses a pre-cortatin (prechart)
that, if successfully executed, forces the execution of the sceario speci ed
in the chart body. Otherwise it indicates a requirement violation .

An LSC speci cation is formed by many scenarios, that can be specied
using universal charts or existential charts.

De nition 2.3.1. (Speci cation) An LSC speci cationS for a systemSysis
de ned as a disjoint unionS = Sy [ Sg, whereSy is a set of universal charts
and Sg is a set of existential charts.

Figure 2.2 depicts an LSC universal chart that contains thrednstances,
User MainSwitch and MainLight. This diagram speci es that every time the
Usermodi es MainSwitchto On, then the instance MainLight should sets it-
self to On. Userand MainSwitch participate in prechart (denoted by dashed
lines) and chart body (denoted by solid lines) scenarios. MainLight partici-
pates in chart body scenario only. An instance is participatingin a scenario,
when its instance line (vertical line) is present inside the scenario’'s scope.

il
C Loemn,

MainSwitch tain Light ‘

'
-----

Figure 2.2: Simple LSC chart

LSC language possesses a vast number of constructions that can beaas
inside a chart, such as messages, conditions, assignments, losgf-then-else
construction, forbidden elements, time restrictions.



2.3. LIVE SEQUENCE CHART (LSC) 15

De nition 2.3.2. An LSC chartlL isdenedtobe: L=(l_, V_, M_, [Pch ],
A.,C.,SUB, ITE_, LOOP,, M, &, Strict, event, subchart, temp), where
I is the set of LSC instanced/ is the set of variables used ih, M is
the set of messages in. A messagéM; 2 M_ is represented by a directed
“arrow” (graph), with a location point on an instance line that represents the
sending event and other location point on an instance linege be the same
instance line) that represents the receiving evemtch, is the prechart ofL (in
universal charts), which is optional,A_ is the set of assignments ih, C, is
the set of conditions irL, SUB, is the set of subcharts i, ITE | is the set of
if-then-else constructions i, LOOP_ is the set of loops i, I\}1L is the set of
forbidden messages ih, (’:L is the set of forbidden conditions i, , Strict is
a boolean ag indicating whether the LSC is strict or toleran temp function
assigns temperature to locations, messages, conditiorshbidden messages
and forbidden conditions, event function maps a location tthe event it is
associated with, and subchart is a function that returns theorresponding
subchart for a particular location.

Despite the visual, LSCs constitute a formal language, which Wl not
always be appropriate for the people involved in the early stages ofre-
quirement capturing. So, a higher-level approach to the problem of speci-
fying scenario-based behavior, termedplay-in scenarios, was proposed and
brie y sketched, together with the Play-Enginetool [24] that supports it.

The main idea of the play-in process is to raise the level of abstraction
in requirements engineering, and to work with a look-alike version of the
system under development. This enables people who are unfamilia with
LSCs, or who do not want to work with such formal languages directly,
to specify the behavioral requirements of systems using a higHevel, intu-
itive and user friendly mechanism. These could include domain eperts,
application engineers, requirements engineers, and even pantial users.

What play-in means is that the system's developer rst builds the GUI
(interface) of the system, with no behavior built into it. In syst ems for
which there is a meaning to the layout of hidden objects, the user may
build the graphical representation of these objects as well. In fact, for GUI-
less systems, or for sets of internal objects, we simply use the objéenodel
diagram as a GUI. In any case, the user “plays” the GUI by clickig but-
tons, sending messages (calling functions) to hidden objects inan intuitive
drag & drop manner. With an object model diagram as the interface, the
user clicks the objects and/or the methods and the parameters. Bysimilarly
playing the GUI, the user describes the desired reactions of thesystem and
the conditions that may or must hold. As this is being done, the Play-Engine
continuously constructs LSCs automatically. It queries the apfication GUI



16 CHAPTER 2. BASIC CONCEPTS

(that was built by the user) for its structure, and interacts wit h it, thus ma-
nipulating the information entered by the user and building and e xhibiting
the appropriate LSCs.

After playing in the speci cation, the natural thing to do is to verify
that it re ects what the user intended to say, and here is where the play-
out mechanism enters, allowing to test and validate the requirements as
well. In play-out, the user simply plays the GUI application as he/she would
have done when executing a system model, or the nal system, but limiting
him/herself to “end-user” and external environment actions only. While do-
ing this, the Play-Enginekeeps track of the actions and causes other actions
and events to occur as dictated by the universal charts in the spci cation.
Here, the engine interacts with the GUI application and usest to re ect the
system state at any given moment, with no intra-object model having to be
built or synthesized. This makes it very easy to let all kinds of people partic-
ipate in the process of debugging the speci cation, since they donot need
to know anything about the speci cation or the language used. It yields a
speci cation that is well tested and which has a lower probability of errors
in later phases, which are a lot more expensive to detect and elininate.

In the LSC language, the system is modeled using object oriented or
tions and terminologies. So, a system is composed of objects that repient
instances of a given class, which are formed by properties based onmsne
application data type. These objects can be created in an indepenent way
or they can be based on another existent object, inheriting their chaacter-
istics and methods.

A property has a name. It is identi ed by a unique ID and it is based on
a data type with a certain domain, starting from the value for the property
is chosen.

In order to provide an intuitive and user-friendly support, Play-Engine
tool [24] requires object properties to also have the following char acteris-
tics:

2 Prex - Itis a verb used to describe the action of changing the prop-
erty's value;

2 |sDefault- If a property is default, its name is not shown in the LSC
message;

2 InOnly - Object properties are usually changed by either operating
the object, or by right-clicking the object and choosing a value to an
object's property. An InOnly property can be changed only by using
the rst of these;
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2 Can be changed externallfExtChg - This indicates that the property
can be changed by the system's environment;

2 Affects- When the value of an object's property is changed, a message
is drawn (a directed arrow as seen in De nition 2.3.2) in the LSC
chart. The value of the Affects ag shows how this arrow is drawn and
the possibilities are User Envand Self and the arrow is drawn toward
the user, toward the environment, or as a self arrow, respectivey;

2 Synchronougq Syng - A synchronous message may be propagated only
if both the sender and receiver are ready.

De nition 2.3.3.  (Property) An object property P is de ned as P = (Name, D,
InOnly, ExtChg, Affects, Sync, Pre x, IsDefault), where Namethe property

name, D is a nite set of possible property's values and Pre x isvarb used to

describe the action of changing the property's value. InOnlyktEhg, Sync and
IsDefault range ovef true, falseg and Affects ranges ovdrUser, Env, Setf.

De nition 2.3.4. (Class) A class C is de ned as C = (Name, CP, SM), where
Name is the class name, CP is the set of class properties andsStkle set of
class methods.

Each object may be an instance of some de ned class. An object that is
not explicitly associated with a class is considered to be the sigle object.

De nition 2.3.5. (Object) Let O be the set of concrete objects. An object
o 2 O is a concrete object of some class and is therefore de nedoas
(Name, C, PV), where Name is the object's name, C is its class @amd PV is

a function that assigns a value to each of object's property.

Application data types can be created starting from primitive types, such
as:

Enumerated de nes a nite group of values. For example, Week = Sun,
Mon, Tue Wed Thu, Fri, Sat,

Discrete de nes a minimum value, a maximum value and a step that de-
termines the interval between consecutive values. For exampleByte
can be represented by a discrete type ranging from 0 to 127 with a
step of 1;

String de ned by a maximum length.
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A LSC system speci cation de nes the set of application types, he set
of classes and the set of externally implemented functions thatcan be used
in any scenario of the speci cation. Coupled to this system speccation a
global clock is used to check time restrictions that can be imposednside a
LSC scenario.

De nition 2.3.6. (LSC model) An LSC model is de ned &ys = (AT, C;
O; F; Clock), where AT is the set of application data typesC is the set of
classesQ is the set of objects; is the set of externally implemented functions
and Clock is the system global clock.

Inside of an LSC speci cation two types of charts can be used: uniersal
and existential. The rst is denoted by a solid border line and it is u sed to
specify restrictions that are applied for all system runs. The kst is denoted
by a dashed border line and it can be used to specify system tests, ch
are applied to at least one system's execution.

Each universal chart has a pre-condition, calledprechart If this pre-
condition is successfully executed then the chart body should be stis ed
by the system. In that way, an universal chart establishes an aiton-reaction
relationship between the prechartand the chart body.

% bain Light ‘
S
{a :

b ainSwitch

'
.....

Figure 2.3: An universal chart

Figure 2.3 shows an universal chart. This chart says that wheneer the
instance User sets State property (IsDefaultis true) of MainSwitch to On,
then MainLight must set its State property (IsDefaultproperty is con gured
as true) to On.

Figure 2.4 shows an existential chart. It is necessary to obser that
there is no execution order between events, therefore, it is posdile a sce-
nario in which MainLight is turned on (Turn(On)), and then the Usersets
MainSwitch to On (Click(On)).

A system speci cation has many LSC charts, which represent LS sce-
narios where some system's functionalities are modeled using a lege num-
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Figure 2.4: An existential chart

ber of available LSC constructions, such as messages, conditionsssign-
ments, loops, if-then-elseconstructions, forbidden elements, time restric-
tions. Some of these constructions will be shown later.

An LSC chart has several instances attached to it, which arehte repre-
sentation of a concrete object (De nition 2.3.5). Every instance line (ver-
tical line starting from the rectangle that represents the instance) contains
locations. An instance progresses from one location to the next by patic-
ipating in some activity associated with the location. Such activity could,
for example, be the sending or receiving of a message. Every instace has
also an initial location and a nal location, in which the instanc e begins
and terminates, respectively.

Each location has a “temperature” that can behot or cold. A hot location
forces the instance to progress throughout its instance line, whle a cold
location allows the instance to stay in this location without violat ing the
chart.

An LSC event is an action that occurred inside of a chart, which comsists
of two disjoint sets. An LSC event can be an actual system event ofesding
or receiving a message, or it can be one of the acts of entering the prehart,
exiting it, entering the chart body or reaching its end. The rst k ind of
event is called a visible event and the second is called a hidderevent.

De nition 2.3.7. (Events) LetE, be the set of LSC events. An LSC ewgr

E. is an action that occurred inside of a chait, such as messages, conditions,
assignments and synchronization points, described as a ®ifi? os; Location],
where P os may represent the scenario (prechart, chart body or subclain
which the event occurred or it may represent a message indide chart L,

and Location represents the event's location, which can Beéart; End; Send

and Recv. Start and End are used wherP osrepresents a scenario, and they
denote beginning and ending of the scenario, respectivégndand Recvare
used whenP os represents a message, and they denote sending and receiving
event of the message, respectively.
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De nition 2.3.8.  (Functions loc and evnt) Let, be the set of locations of a
chartL. An LSC event may have cold or hot locations, therefore it camme a
functionevnt: I 7! E_ that maps each location into the event it is associated
with, as well as its inverseloc: E, 7! 2't = evnti ! that maps an event into
the set of locations associated with i2'- is applied because a location can be
cold or hot.

A LSC event may be visible or hidden, with locations associated with
it. A hidden event may be entering or exiting a prechart, a chart body
or a subchart. So by applying the function loc for the events [P ch; Start],
[Pch; End], [CB;Start], [CB; End], [Sub; Start], [Sub; End, it returns, re-
spectively, the locations associated with the beginning of the pechart, the
locations associated with the ending of the prechart, the locations associ-
ated with the beginning of the chart body, the locations associated with the
ending of the chart body, the locations associated with the beginning of a
subchart, and the locations associated with the ending of a subchatr.

An object instance is a representation of a concrete object of a certai
class. Each instance has a set of locations, which indicate evés in which
the instance is participating in the scenario. Besides this,an instance has
a set of bind expressions that compare their properties' values, aeference
for the chart's type and a set of prohibited elements which the instance is
not allowed to bind to.

De nition 2.3.9.  (Instance) An instancd is de ned asl = (I;0;A; Mode; A
wherel is the set of instance locations) is the concrete object represented by
I, A=fAg A = f(p;o;rjp2 P;02 Oper;r 2 RHSg is a binding
expression of the set of binding expressioAs where P is a set of instance
properties,Oper is a set of relational operators andRHS can be a constant
value, a variable or a function callMode 2 f Existential; Universal g, and A

is a set of forbidden objects, which the instance is not alledto bind to. We
denote byl! the x" location of instancei;, and by i;:l the set of locations of
instancei;.

Inside a LSC chart, it is possible to delimit scenarios usingsubcharts A
subchart is a chart's fragment, denoted by a rectangle with a solidborder
line, which encloses all the participant instances.

Figure 2.5 shows a subchart with two constructions, the condition
TermSelect. Therm=1and the assignmentTc:=Thermol.Temp These con-
structions will be presented later in this work. Only instances TermSelect
and Thermo1lare participating in the scenario of the presented subchart.

Alike prechart and chart body, the beginning and ending of a subchat
are synchronization points. Hence, every participant instan@ of a subchart



2.3. LIVE SEQUENCE CHART (LSC) 21

% ‘ Frobe ‘ Thermal
SR S
< ok N ‘

TermSelect

TenSecTronrT)

Tc:=herm01.Temp .

Figure 2.5: An LSC subchart

enter and exit its scenario simultaneously. Besides, it can beattached any
of the construction that can be inserted in the prechart or chart body, such
as messages, conditions, assignments, loops, if-then-else.

Let M| be the set of messages in chart., A_ be the set of assignments
in chart L, C_ be the set of conditions in chartL, |, be the set of instances
inchart L, 1o 1 I be the set of instances involved in some activity with
an assignmenta 2 A_, I¢c 1 1. be the set of instances involved in some
activity with a condition ¢ 2 C_, SUB, be the set of subcharts,subchart :
M. [ AL [ C.! SUB, be afunction that returns for each construction
the subchart to which it belongs, and Suh 2 SUB_ be a subchart in chart
L. The set of instances,| s,y , participating in a subchart Sub is de ned as
the set of all instances that are involved in some activity in Sub: sy, =
fij 2 Ij9m; 2 M s.t. (subchar(m;) = Sul * (ij = Mjlisee _ i) =
Miiipst)) 9 & 2 AL s.t. (subchart(a)) = Suh " i; 2 1,) _9 ¢ 2 C_ s.t.
(subchart(c) = Suh * i; 2 I¢)g, where m;:is, IS the object sending the
message andm;:ips; iS the object receiving the message.

Alike locations, messages in the LSC can bhot or cold A hot message
must be received after sent and thecold one can be sent and not received.
Hot messages are denoted by red solid lines, whilecold messages are de-
noted by blue dashed lines. Through this work, we consider that acold
message eventually arrive after it is sent. Figure 2.6 depits somehot and
coldmessages.

Besides the “temperature” that can be applied to messages, nssages
can represent a synchronous or asynchronous communication. A syn-
chronous message is denoted by an arrow with a closed triangle and tk
asynchronous message is represented by an arrow with an open triagle.
The messagesThermol.Change(30)and Console.Show(Cold Oven!)pre-
sented in Figure 2.6, are asynchronous and synchronous, respestely.

A message can have as sender or receiver, thgser the Environment
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Figure 2.6: Hot and cold messages

other objects or the Clockobject that represents the global clock, which has
the Time property that returns the current time and the Tick method that
increments a time unit in the current time. When the sender and receiver
are the same, it is called aself message .

Every message has two locations, one for the sender and other for the
receiver, therefore the steps to obtain the CPN model should be appéd for
both. Let m; 2 M be an LSC message, so by applying the functiotoc for
the events[m;; Send and [m;; Rcv], it returns, respectively, the location at
the sending point of messagem; and the location at the receiving point of
messagem,;.

A system message can set a property value of an object or just passeh
value ahead, as a method call. Each system message has a sendand
receiver. If the message represents a modi cation of property vdue, then
the property that has its value modi ed belongs to the receiver instance.
Those messages can inform the values through constants (exact) ohrough
variables (symbolic) that allows the construction of more general seenarios.

The Play-Enginetool [24] allows that applications with graphical inter-
face supply external functions, which are identi ed by a name, name and
type of the parameters and the type of the result. Play-Enginetool can inter-
act with a GUI application and request a function by passing the epected
parameters and receiving the returned value.

De nition 2.3.10. (External function) Let AT be the set of LSC application
types (domains),D 2 AT be a nite set of values. An external function is
denedasName:d:£ do £ ;£ d, ! de, whereName is the function name,
di 2 D is the type of itsi™™ formal parameter, andde: 2 D is the type of its
returned value.

De nition 2.3.11. (Function information structure) LetF be the set of exter-
nal functions. A function information structure, [ is de ned forf 2 F [f?g
as follows:



2.3. LIVE SEQUENCE CHART (LSC) 23

1
2(v12f:d1;:::;v,12f:dn); iff 2 F;
?; iff =72:"

2 F =
s f

where vq; ::i; v, are variables which represent formal parameters of a
external function and? represents an absence of information.

De nition 2.3.12. (Object method) LetAT be the set of LSC application types
(domains), D 2 AT be a nite set of values. An object methoM is de ned
as(Name(dy; dy; :::; dy); Syno, whereName is the method namep; 2 AT is
the type ofi™ formal parameter, andSync 2 f True; F alseg indicates whether
calling this method is a synchronous operation.

De nition 2.3.13. (Method information structure) Let C be a class and
C:SM be the set of class methods. A method information structuré is
de ned form 2 C:SM [f?g as follows:
7
, M —  Vi2mdg vy 2 midy; ifm2 C:SM;

smoT 9 ifm=72: ’

where vy;:::; v, are variables which represent formal parameters of a

method call and? represents an absence of information.

De nition 2.3.14. (System message) Given a system mo@&ls (De ni-
tion 2.3.6), a system messages is de ned asms = (P; V; f;  F;m; M,
Symbolig, where P is the property changedy is a variable holding a new
value for the propertyP, f is a function describing a new value foP, , F is
a function information structure, m is the method ofDst called bySrc, , M
is a method information structure, andSymbolicis a boolean ag indicating
whether the message is symbolic, wheile 6 ?) _(m 6 ?) represents either

a property change or a method call.

A LSC message is a system message with two instances, one repeat-
ing the sender and other representing the receiver.

The system message represents how the message is formed and pre-
sented inside the scenario, and the LSC message representsalevent, indi-
cating the sender and receiver of the message.

De nition 2.3.15. (Message) Let, be the set of instances of chatt and
Mms be a system message. A message2 M, is de ned asm; = (lisrc; ipst;
Ms), whereis,c 2 I, is the instance representing the sendégs; 2 1. is the
instance representing the receiver, ands is the system message represented
by m;.

In LSC scenarios the events are executed top-down. Each event kawo
locations, sending and receiving locations. At the synchronizaton points,
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instances' locations are executed at the same time. For the syrhoonous
messages, sending and receiving locations are executed at theame, on
the other hand at asynchronous messages the sending location hasarece-
dence over the receiving location.

Leti;;i; 2 I be instances of chartL, x;y 2 N be natural numbers, Ij( and
I; be locations of an instancei;, I{, be a location of an instanceij, MLS H M
be the set of synchronous messagesvi* © M be the set of asynchronous
messages. The functiorfirst checks if it is the rst occurrence of a variable
in a chart. The function affects checks if a variable is modi ed, and uses
is a function that checks if a variable is used but not modi ed. - L I‘y
denotesl; precedesly, and I, = L1} denotesl; and || are executed at the
same time. The execution order is de ned as follows:

2 the locations along a single instance line are ordered top-down. Thts,
things higher up are carried out earlier x <y ) I, <LI{;

2 for an asynchronous messagem 2 M, the location of ([m; Send)
event precedes the location of the([m; Rcv]) event. For synchronous
messages, two events take place simultaneously:
8m; 2 M2 :m;) loc([m;;Send) < L loc ([m;; Rev])
8my 2 M3 :my) loc([my; Send) = L loc([my; Rcv))

2 all instances patrticipating in the prechart and the chart body are syn-
chronized at the beginning and at its end.
[ J . P — J
Sl 2ol sl
8l -1l 2 Ioc([CB"Start]).' =Ll
8l -1 2 log[CB:End]) : Il = L1
xly ’ - Ix y

2 all instances that participate in a subchart are synchronizedat start
and end.
8Suh 2 SUB, _ _
8I,; 1, 2 log([Sub; Start]) 1 1, = LI
8I5; 14 2 loc([Sub; End]) : I, = LI}

2 the rst location that affects a variable precedes all other locations
that affect or use the variable.
8l;1°2 1, :first (I;X )" (affects (1% X) _useqI”;X))) I<LI".

2 allinstances that participate in an assignment are synchromzed there.
8a; 2 AL; 8l 1} 2 loc(ay) 1 I, = L 1.

2 allinstances that participate in a condition are synchronized there.
8¢ 2 CL;8I§(;IJy 2 loc(g): I, =L IJy.



2.3. LIVE SEQUENCE CHART (LSC) 25

When a diagram becomes active, the instances begin in their ini@al lo-
cations and progress in their instance lines while the executon continues
until they reach their nal locations. A cut contains the next location to
be executed for each instance inside a chart. Acut is hot if at least one of
the instances is in ahot location, and it is coldif every instance is in acold
location. Figure 2.7 presents acut which is denoted by a hatched line.

For severalcutsthat exist during the execution of a diagram, there are
events that can happen and events that if happen will cause a iolation.
An event that appears in a diagram is said enabled &) if it appears im-
mediately after the cut, in other words, all of the events that should have
happened before, already have successfully happened. For exgore, in
Figure 2.7, the event Switch2.Change(Med)appears immediately after the
cut (hatched line), so it is enabled. If an event does not appear immedi-
ately after the cut it is violating event( e,). If a violating event happens in
the prechart scenario then the diagram is interrupted without causing er-
rors. It just indicates that the scenario was not successfullycontemplated.
The same happens with a violating event if it happens in the chat body
while the cut is cold, because acold location does not force an instance to
progress. However, if this violating event happens in the chartbody while
the cut is hot, then the diagram is aborted indicating a violation. In Fig-
ure 2.7, the event Switch1l.Change(Meddoes not appear immediately after
the cut, so it is a violating event at this point.

Console

% ‘ Switch3 | ‘ Switch2 ‘ ‘ Switchl ‘

,__L__J___l___L S —
/ F_C_ha_ng@LM@@p | :
( T T iy 5 \,
r_c_ha_n_ @LM@d_l ____________________________ ; /
\ g )

G- 15howlMASTER)

Figure 2.7: Usersending a message

The Play-Enginetool [24] allows applications with graphical interface
supply external functions, which are identi ed by a nhame, name and type
of the parameters and the type of the result. Play-Enginetool can inter-
act with a GUI application and request a function by passing the epected
parameters and receiving the returned value.
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The intention of this work is not to consider an equivalent model for
the source code of these external functions. The code that will be exe
cuted must be considered as a “black box”, where it is enough to know ttat
parameters will be passed and a value will be returned.

Figure 2.8 presents an example of an external function invocaton. The
messageDisplay.Show(X174 + X176) makes a function call (Show) which
uses the variablesX174 and X176 as parameters.

% | Feyp ‘ ‘ Plus ‘ | Eq ‘ ‘Displa_l,l
e B I

L Clckpst7) )
/ . b

\

__________

——
H
[wi
5
=
X
| 1
Loy} 1
=
Bora A
:
.
'
.
:
!
:
v d
—e

-----

Figure 2.8: External function call

An assignment is an LSC construction that allows storing propertes’
values, constant values or a result of a external function, for a subsequent
use inside the chart. The expression that is on the right side of thke operator
“:=" can be any of these mentioned values. On the left side of the operator,
those values are stored in variables. Variables that are on the opetor's
left side are said affected by the assignment, while the ones tlat are on the
right side are used variables.

An assignment may have several instances that synchronize #ir activ-
ities with it. None of these instances can continue beyond the asginment,
until all of them have successfully executed their previous tasks. Synchro-
nization points are represented by semi-circles that link the assignment to
the participant instance line (see Figure 2.9).

Additionally, an assignment can be used to construct a time restiction
that is a feature available in the LSC language, which permitsto de ne time
restrictions for real-time system's events.

De nition 2.3.16. (Assignment) An assignmenty;, 2 A, is dened as
a = (V;1a;C;P:f;, £ Timed), whereV is the variable,l» g I is the set of
instances that are synchronized with the assignmer@, 2 ( ,,r D) [f?9

is a constant of some type in case the assignment stores a @nsnd ? if
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,% ‘ Display | Flus ‘ ‘ Eq ‘
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Figure 2.9: LSC scenario with assignments

not, P 2 (SI2IA I:O0:P) [f?g is the property stored in case this assignment
stores a property value an® if not, f 2 F [f?g is a function in case the
assignment stores some function arfl if not, , F is a function information
structure in casef 6 ?, and Timed 2 f True;Falseg is a ag indicating
whether g is a timed assignment.

A condition represents a decision structure that can be composed of a
conjunction of expressions and can be evaluated as true or false.

A “temperature” can also be applied to conditions. A cold condition is
denoted by a hexagon with a blue dashed lines. If acold condition eval-
uates to true, then the execution of the diagram progresses to the next
location after the condition, otherwise the diagram or the underly ing sub-
chart is abandoned. Ahot condition is denoted by a hexagon with red solid
lines. A hot condition should be evaluated to true, otherwise indicates a
requirement violation. Figure 2.10 depicts cold and hot conditions.

Like assignments, a condition can be considered to synchronize seral
instances, i.e., a synchronized instance can not progress beyonthe con-
dition until all participating instances have reached the condition location.
The instances that are synchronized with the condition have a semcircle
that links the condition to the participant instance line.

Figure 2.10 depicts two conditions, the hot condition Light 1 <> Green ,
which is synchronized with the Lightl instance and the cold condition
Lightl=Green, which is synchronized with instancesLightl and Console

A condition is composed of one or more of the following expressions:

2 abasic expression that constrains a property or a variable, using@me
operator, with a constant value, another variable or with a function ;
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‘ Switchl ‘ | Light1 ‘ Canzolz

< Light1<>Green

—————

K- _-Ehange[Gn'een]
“lgniGreen >
{_ lahsGreen o

—————

Figure 2.10: Cold and hot conditions

2 a basic expression that consists of the reserved wordSYNC TRUE
FALSE or the SELECTstatement with probability;

2 a basic expression that is a timing constraint, which constrainsthe
current time with respect to a time value stored in some variable and
a delay that can be a constant value, another variable or a function.

De nition 2.3.17. (Condition) A condition ¢ 2 C_ in an LSC chartL is
dened as¢ = (l¢;";Timed ), wherelc n I, is the set of instances that
are synchronized with the condition,’ is the set of basic expressions and
Timed 2 f True; Falseg is a ag indicating whether ¢ is a timed condition.

A condition uses all variables appearing in its expressions. Thezfore, a
condition can be executed whenever assigning values to all usedariables.
Besides the variables, the temperature of a condition may alter he moment
in which this condition can be executed. In the case of acoldcondition, it is
immediately executed and may produce a true or false value. On tte other
hand, a hot condition is evaluated until having a true value. The execution
will be stopped at this point if the speci cation is incorrect, beca use the
value will never become true.

The if-then-elseconstruction allows different scenarios to be executed
depending on a condition. This construction consists of two adjacentsub-
charts, one that represents thethen part and other that represents the else
one, surrounding by a controlling condition at the top of the rst subcha rt.
The elsepart is not mandatory.

Figure 2.11 presents an example of anif-then-elseconstruction. In this
construction, the condition Prb-Ctrl.Probing=True de nes which scenario
should be executed. If this condition is true, then the scenario ofthen part
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Figure 2.11: An if-then-elseconstruction

is executed, so the messagé&et Probing(False)must occur. Otherwise, the
messageSet Probing(True)of elsescenario is executed.

De nition 2.3.18. (If-then-else construction) LelSUB_ be the set of sub-
charts of a chartL. An if-then-else constructiodTE in a chart L is de ned
asITE =(l7g;C;Subr;Sulx), whereltg = Ic [ Isup [ Isune IS the set of
instances participating in the if-then-else constructionC is the main condi-
tion of the if-then-else constructionSuby 2 SUB, is the subchart containing
the then part, Suk: 2 SUB, [f?g s the subchart containing the else part
(if there is no such part,Suk:x = ?), I¢ is the set of instances that synchro-
nizes with the conditionC, |s,,, is the set of instances that participates in
the scenario ofSuby, and I sy, is the set of instances that participates in the
scenario ofSuh:.

A peculiar case of anif-then-elseconstruction is the non-deterministic
choice, which uses the reserved wordSELECThat de nes probabilities for
the condition to be evaluated as true or false values. Figure 2.12shows a
non-deterministic choice example, which indicates a probability of 50% for
the messageAcceptto occur and other 50% for the messageReject

A loop construction allows the execution of a scenario several times.
LSC language offers three types of loops:xed, dynamicand unbound.

A xed loop executes a determined number of iterations, depicted at the
left corner of the loop's subchart, which can be indicated by a constantor
a variable, as shown in Figure 2.13(a).

Alike xed loops, dynamic loops have a determined number of itera-
tions, which is de ned by the user at execution time in the Play-Engine
tool. Figure 2.13(b) shows a dynamicloop. Such loop is denoted by “?” at
the left corner of the loop's subchart.
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Figure 2.12: A non-deterministic choice

Unboundloops, on the other hand, execute in nitely often until a cold
condition, presented inside of the loop's scenario, is evaluated adalse,
forcing the loop's scenario to be abandoned, and the execution contings
in the next location after the loop. These loops are denoted by “*” at the
left corner of the loop's subchart, as shown in Figure 2.13(c).

It is worth pointing out that dynamicand xed loops can also be aban-
doned when a condition inside loop's scenario is evaluated as false

De nition 2.3.19. (Loop construction) A loop constructiorioop in a chart

L is de ned asLoop = (Kind; *; Sub ), whereKind 2 f Fixed; Unbound;
Dynamicg is the loop's kind,* 2 N[flg is the loop's number of itera-
tions, and Suhoop 2 SUB, is the subchart containing the loop events to be
iterated. | oop IS the set of instances participating in the loop's scenario.

LSC language allows to establish time restrictions for real-time systems.
The Play-Enginetool has a clock (an instance with a property called time
and a method called tick), which is associated to the internal clock of the
computer host, so that the time can be manipulated inside of the LS sce-
narios. The value of the property time informs the current time in time
units and the method tick increases the current time by a time unit.

A time restriction is basically formed by a combination of assignment
and conditions, which can be cold or hot. Several types of time restrictions
can be built inside of a LSC scenario: Vertical Delay Message Delaynd
Timer.

Vertical Delay indicates a minimum and maximum time allowed be-
tween two consecutive events in an instance line. This restrition has an as-
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Figure 2.13: Fixed dynamicand unbound loops

signment and two hot conditions. The assignment is used to store the time
after the occurrence of the rst event. The allowed minimum time i s spec-
i ed with a hot condition in the form “ Time Oper Time-Var + Min-Delay,

before the second event, whereTimeis the property of Clockinstance, Oper
IS a relational operator (> or >=), Time-Varis the variable that stores the
time and Min-Delay is an integer number. In agreement with the seman-
tic of a hot condition (Section 3.6), the execution moves forward when

the established period of time have passed. The allowed maximum tine
is speci ed with a hot condition in the form “ Time Oper Team-Var + Max-
Delay, after the second event, whereTimeis the property of Clockinstance,
Operis a relational operator (< or <=), Time-Varis the variable that stores
the time and Max-Delayis an integer number. If this condition is reached

after the established maximum time has expired, the condition is evaluated
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to false, causing a requirement violation.
Figure 2.14 shows a Vertical Delay time restriction, where message

0O1.M1() must be sent between two and three time units after receiving
messageO02.M2().

KRy

S S P
I : : by
< er[lD \
EECxi)
hY :
M1-

Figure 2.14: A Vertical Delaytime restriction

Message Delayndicates the minimum and maximum delay between
sending and receiving a message. This restriction is speci edike a Ver-
tical Delay, with the exception that the time is stored in an instance line
and veri ed in another instance line, as displayed in Figure 2.15. The sce-
nario of Figure 2.15 speci es that after messageO1.M1() is sent, it must be
received between three and four time units after.

NN
S I
< ey \

Figure 2.15: A Message Delatime restriction

Through timers, the LSC language allows to express a minimum time
between two consecutive events or a maximum time between two or more
consecutive events. Thosdimers cannot be shared by different instances,
in other words, just events in the same instance line can be resticted.
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A Timer is formed starting from a Vertical Delaytime restriction. When-
ever the intention is expressing the minimum delay between two consec-
utive events, an assignment is used after receiving the rstevent and a
condition is inserted before calling the second event. But if the intention
is expressing the maximum delay, the condition should be inserta after
calling the second event.

Figure 2.16 shows two examples oftimers. The rst establishes a max-
imum delay between two consecutive events, in which the eventO1.M1()
and the second call ofO2.M2() must be executed at most three time units
after the rst call of 02.M2(). The second scenario de nes a minimum de-
lay between two consecutive events, in which the eventO1.M1() must be
executed at least two time units after the event 02.M2().
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Figure 2.16: Timers

2.4 Petri Nets (PNs)

PN is a family of formal modeling techniques that allows the modeling of
parallel, concurrent, asynchronous and non-deterministic sysems.

PNs have an origin dating back to 1962, when Carl Adam Petri [46]
wrote his PhD thesis on the subject. Since that time, PNs have beeac-
cepted as a powerful formal speci cation tool. PNs also have applcations
in a number of different disciplines including engineering, m anufacturing,
business, chemistry, mathematics, and even within the judigcal system.

There are many extensions to PNs. Some of them are completely back-
wards compatible (e.g. coloured Petri nets) with the original PN, some
add properties that cannot be modeled in the original PN (e.g. timed Petri
nets). If they can be modeled in the original PN, they are not real exten-
sions, instead are convenient ways of showing the same thing, andcan be
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transformed with mathematical formulas back to the original PN, without

loosing any meaning. Extensions that cannot be transformed are some
times very powerful, but usually lack the amount of mathematical tools
available to analyse normal PNs.

The term high-level PN is used for many PN formalisms that extendthe
basic place/transition one. This includes coloured PNs, hierarchcal PNs,
and all other extensions sketched below.

In a standard PN, tokens are indistinguishable. In a coloured PN,the
values of tokens are typed, and can be tested and manipulated wih a func-
tional programming language. A subsidiary of coloured PNs are the vell-
formed PNs, where the arc and guard expressions are restrictedo make it
easier to analyse the net.

Another popular extension of PNs is hierarchy, which supports diferent
levels of re nement and abstraction.

Prioritized PNs add priorities to transitions, whereby a transition cannot
re, if a higher-priority transition is enabled (i.e. can re). Thus, transitions
are in priority groups, and e.g. priority group 3 canonly reifall transitions
are disabled in groups 1 and 2. Within a priority group, ring is st ill non-
deterministic.

In certain cases, however, the need arises to also model the tinmg, not
only the structure of a model. For these cases, timed PNs have evoéd,
where there are timed and immediate transitions. A subsidiary of timed
petri nets are the stochastic PNs that add non-deterministic ime to transi-
tions.

There are other extensions to PNs, however, it is important to keepin
mind, that as the complexity of the net increases in terms of extended prop-
erties, the harder it is to use standard tools to evaluate certan properties
of the net. For this reason, it is a good idea to use the most simple netype
possible for a given modeling task.

Place/Transition net (PT-PN, for short called hereafter PN) isthe most
wide spread PN variant [45, 39]. Its structure consists of nodes connected
by directed segments called arcs. There is two types of nodes, ptaes (P)
represented by circles and transitions (T) represented by bars. Acs connect
places to transitions or transitions to places. Figure 2.17 dejicts the basic
elements of a simple PN.

PN is a multi graph, since it allows multiple arcs from a node to another,
it is bi-parted, since the graph elements are parted in two set (places and
transitions) and the arcs connect elements of different groups and it is di-
rected, since the arcs have source and target nodes.

De nition 2.4.1. A PN structure can be formally de ned as a quadruple
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Place P, Place P,

O—1—0

Transition t,

Figure 2.17: PN basic elements

(P;T;I1;0), where:

2 P = fp1;p2 i png is a set of places, wheren 2 N is the number of
places in the net;

2 T = fty;ty; 5, tsg is a set of transitions, wheres 2 N is the number of
transitions in the net;

2 1:PE£T! N isthe function that de nes the input arcs to the transi-
tions. If I (p;; t;) = K, then there isk 2 N arcs from placep; to transition
ti, and in the case of (p;; t;) = 0, there is no arc from placey to tran-
sition t;;

2 0:TE£ P! N isthe function that de nes the output arcs to the
transitions. If O(ti; py) = k, then there isk 2 N arcs from transition
ti to placepq, and in the case ofO(ti;p;) = O, there is no arc from
transition t; to placepy;

Usually, in the graphic representation, multiple arcs conneding places
and transitions are represented in a compact way by a single arcdbeling it
with its weight or multiplicity k (see Figure 2.18).

Figure 2.18: Compact representation of a PN
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A PN with tokensassociated to its places is called a marked Petri Net
PN = (P;T;1;0; M), where My is the initial marking. A peculiar dis-
tribution (M) of the tokensin the places, represents a speci c state of the
system. Theseokensare denoted by black dots inside the places.

2 M =(M(p);M(p2);::5;M(pm)), where M (p;) 2 N is the marking of
place p;, that is the number of of tokensin place p;, and m 2 N is the
number of places in the net.

A transition ring represents the occurrence of an event that modi es
the state of a system, modifying the current marking (M;) to a new one
(Mi+1). A transition t; 2 T is said to be enabled to re if for each input
place pj, 1 (p;ti) > O, the number of tokensis at least equal to the arc
weight (1 (gj;t)), SOM (p) , 1(p;;t) for any placep 2 P.

A ring of an enabled transition t; removes, from each input placep;,
a number of tokens equal to the arc weight | (p;;t;) that connects place
p; to transition t;, and adds, to each output placepy, a number of tokens
equal to the arc weight O(t;; py) that connects the transition t; to place
Py Figure 2.19 depicts an enabled transitiont; and Figure 2.20 shows the
marking after ring this transition.

Figure 2.19: Enabled transition t;

The introduction of the concept of inhibitor arc, originally not presen t
in PN, increases the modeling power of PN, adding the ability of teging
if a place does not havetokens[56]. Figure 2.21 illustrates an inhibitor
arc connecting the input place p, to the transition t;, which is denoted by
an arc nished with a small circle. In the presence of an inhibit or arc, a
transition is enabled to re if each input place connected by a normal arc
has a number of tokensequal to the arc weight, and if each input place
connected by an inhibitor arc has notokens In Figure 2.21, the transition
t; is enabled to re.

1The term PN is adopted for representing both Place/Transition nd structure and
marked Place/Transition nets whenever is avoided.
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Figure 2.20: Marking after the ring event of transition t;

Figure 2.21: PN with an inhibitor arc

Petri Net modeling has some basic net structures from which more com
plex constructions are accomplished. These basic models are prested
below:

Sequence represents an execution of an action, since a certain condition is
satis ed. After the execution of an action (transition to ring) , other
action (transition t;) can be red, since a certain condition (m(P,) =
1) is satis ed (see Figure 2.22).

P &P tI: p: & p

Figure 2.22: Sequence net

Distribution is used to create parallel processes starting from parent pro-
cess. The child processes are created through the distribution of gar-
ent's tokens A distribution net is presented in Figure 2.23. It is im-
portant to note that if there was a token in p,, this token would be
“propagated” to p, and ps.
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Figure 2.23: Distribution net

Junction synchronizes concurrent activities. In Figure 2.24, the transition
t, only res when p, and p, havetokens establishing the synchronism.

v
@

Figure 2.24: Junction net

Non-deterministic Choice is specied by a set of con icting transitions,
where choosing which should re is carried out in non-determinist ic
manner (see Figure 2.25). The conict can be classi ed as structural
or effective. Both con icts are associated to the fact of two transitions
possess the same set of places as input. However, if the net does not
have tokens the conict is said to be structural. If there is a single
tokenin the common input place to the transitions, the con ict is said
to be effective. Figure 2.26 illustrates both con icts.

The study of PN properties allows a detailed analysis of the modeled
system. Two types of PN properties can be distinguished:

Behavioral Properties depend on both the state (or on initial marking)
and on PN's structure;

Structural Properties depend on PN's structure.
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P: P

Figure 2.25: Non-deterministic Choice net

P1

Figure 2.26: Structural and Effective con icts

Among behavioral properties, we can highlight:

Reachability refers to the possibility of a system to reach a certain state.
A marking M; is reachable starting from marking My, if there is a
transition ring sequence that takes the net with marking Mg to
the marking M;. A ring or occurrence sequence is denoted by
Ya= Mgty My t; My oty My or simply %= t; t, i tj. In this case,
M; is reachable from M, by % so Mo[% > M;. The set of all possible
reachable markings fromMg in a net (N; M) is denoted by R(N; M)
or simply R(My). The set of all possible ring sequences fromMg in
anet (N; M) is denoted by L(N; M) or simply L(My);

Boundedness A PN is said to bek-boundedif the number of tokensin each
place does not exceed a nite number k for any reachable marking
from Mo, i.e., M, - k for every place p and every marking M 2
R(My). A PN is said to besafeif it is 1-bounded Figure 2.27 depicts a
boundedPN and Figure 2.28 depicts asafePN;
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Figure 2.28: A safePN

Deadlock Freedom A PN is said to be deadlock free if there is no reachable

marking such that no transition is enabled;

Liveness A PN (N;My) is said to be live if, no matter what marking has

been reached fromMy, it is possible to re any transition of the net
by progressing through some further ring sequence. This means
that a live PN guarantees deadlock-free operation, no matter what
ring sequence is chosen. Figure 2.29 depicts alive PN. However, a
deadlock free PN might not belive, if a transition does not belong to
a rable transition sequence in any reachable marking;

Reversibility A PN is said to bereversibleif, for each marking M 2 R(My),

Mg is reachable from M. Thus, in a reversiblenet, one can always
get back to the initial state. In many applications, it is not necessary
to get back to the initial state as long as one can get back to some
(home state. A marking M° is said to be ahome state if, for each

marking M 2 R(M,), M " is reachable from M . Figure 2.30 depicts a
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Figure 2.29: A live PN

reversiblePN;

Figure 2.30: A reversiblePN

Coverability A marking M in a PN (N;My) is said to be coverableif there

is a marking M° 2 R(Mg) such that M °(p) , M (p) for each p in the
net;

Persistence A PN (N;My) is said to be persistentif, for any two enabled
transitions, the ring of one transition will not disable the other. A
transition in a persistentnet, once it is enabled, will stay enabled until
it res. The net presented in Figure 2.29 is persistent

Fairness Many different notions of fairness have been proposed in the lit-
erature on PN. We present here two basic fairness conceptdounded-
fairnessand unconditional fairness Two transitions t; and t, are said
to be in a bounded-faiB-fair) relation if the maximum number of
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times that either one can re while the other is not ring is bounded
A PN (N;My) is said to be aB-fair net if every pair of transitions in
the net are in B-fair relation. A ring sequence %is said to be un-
conditionally fair if it is nite or every transition in the net appears
in nitely oftenin % A PN(N; My) is said to be anunconditionally fair
net if every ring sequence %from M 2 R(My) is unconditionally fair.
Figure 2.31 depicts aB-fair PN, while the net presented in Figure 2.29
is unconditionally fair.

Figure 2.31: A B-fair PN

Structural properties, include:

Structural Liveness A PNN is said to be structurally live if there is a live
initial marking for N. Figure 2.32 depicts astructurally live PN;

Figure 2.32: A structurally live PN

Structural Boundedness A PN N is said to be structurally boundedif it
is bounded for any nite initial marking M,. Figure 2.33 depicts a
structurally boundedPN;

Conservativeness A PN N is said to be conservativelf there is a positive
integer y for every place p such that the weighted sum of tokens
MTY = MJY = aconstant, whereY = [yi];y; 2 N, for every M 2
R(My) and for any xed initial marking My. Figure 2.34 depicts a
conservativePN;
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i e

Figure 2.33: A structurally boundedPN

P.

t, t;
1 < p. 2

Figure 2.34: A conservativeand consistentPN

Repetitiveness A PN is said to berepetitive if there is a marking M, and a
ring sequence ¥from Mg such that every transition occurs in nitely
often in % Figure 2.35 depicts arepetitive PN;

Figure 2.35: A repetitiveand consistentPN

Consistency A PN is said to beconsistentif there is a marking M, and
a ring sequence ¥from Mg back to My such that every transition
occurs at least once in% The nets presented in Figure 2.34 and
Figure 2.35 are consistent

PNs can be grouped in two classes: Ordinary and Non-Ordinary (high
level). Ordinary nets use a basic type oftokens the non-negative integer
type. Making an analogy to programming languages, high level rets [19]
can possess more sophisticatetbkens as data types de ned by the user or
composed types that are formed by several elementary types. The oldary
nets are subdivided in:
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Condition event and Elementary nets are the most elementary [48, 49].
This kind of net allows, at most, one tokenin each place and all arcs
have an unitary value;

Place-Transition net allows the accumulation of tokensin the same place,
as well as natural numbers value in its arcs.

The high level nets differ from the ordinary ones, because they ind-
vidualize the tokens This individualization can be realized through several
arti ces, for instance, tokens'scolor or objects representing thetokens High
level nets allows a higher modeling abstraction. Coloured Petri Nés (CPNSs)
[28], presented in the next section, is an example of a high levd PN.

2.5 Coloured Petri Nets (CPNSs)

Coloured Petri Nets (CPNs) [29, 28] use the power of the programming lan-
guages providing compact descriptions of concurrent systems by ioluding
abstract data types within the basic Petri net framework.

Each place in a CPN model has an associated type which is de nechia
set of declarations in a language called CPN ML, a variant of Stadard ML
[44].

A marking of a place de nes a collection of data values, known asto-
kens that are associated with that place. Thetoken'svalue ranges over the
type of the place. This collection of tokensis a multi-set, since it may con-
tain several tokensof the same value. CPNs also include the initial state of
the system, called the initial marking.

Transitions in a CPN model may also have guards associated withhiem,
which are included in square brackets. Guards are boolean expresons
which are important for describing CPN dynamics.

Arcs in a CPN model have expressions associated with them. The ex-
pressions are built from constants, variables and functions and ae written
next to their associated arcs using CPN ML language. The funabins are
de ned, and constants and variables declared, in a set of CPN ML dclara-
tions.

Inscriptions are associated to CPN net components, i.e. placesrcs,
and transitions. Some inscriptions are CPN ML constructs that dect the
behavior of a net, while other inscriptions do not affect the behavior of
nets. Inscriptions vary in their syntactic requirements depending on the
type of inscriptions. There are three types of inscriptions: place inscriptions
arc inscriptionsand transition inscriptions.
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There are three inscriptions that may be associated with a place.Two
are optional and one is required:

Colour set inscription It determines the colour set, i.e. the type, of all
places;

Initial marking inscription It is a multi-set expression that speci es the
initial tokens for each place. The initial marking inscription i s op-
tional;

Place name inscription Itis an optional label that identi es the place, and
it may contain any sequence of characters.

Arcs have only one inscription — the arc inscription. An arc insciption
is a CPN ML expression that evaluates to a multi-set or a singlelement.

There are four inscriptions that may be associated with a transition. All
are optional:

Transition name inscription  Itis an optional label that identi es the tran-
sition, and it may contain any sequence of characters;

Guard inscription A guard is a CPN ML boolean expression that evaluates
to true or false;

Time inscription A transition delay must be a positive integer expression.
The expression is preceded by @+, and this means that the time in-
scription has the form @+ delay-expr

Code segment inscription Each transition may have an attached code
segment which contains ML code. Code segments are executed when
their parent transition occurs.

Types, variables and functions are de ned in what is called the declara-
tions of a CPN. They are written in the functional programming language
ML [44]. The variant, known as CPN ML, has some special key words.
Coloris used to denote a type.

Types can be simple colour sets adoolean integer, string and enumer-
ated, as well as they can be compound colour sets asecord list and union.
Besides, types can bdimed. A colour set is timed by appending the key-
word timed to the end of its declaration.

CPN variables are used in CPN inscriptionsBinding is the association of
a value with a variable. A binding has both scope and content.Scopes the
locations in a model in which a particular binding can be referred. Extentis
the interval during which a particular binding is in effect. A CPN variable
has the following characteristics:
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2 they are declared using the reserved wordvar and the name of a
previously declared colour set;

2 they are bound to a variety of different values (from their colour set)
when evaluates if a transition is enabled;

2 avariable is bound to a value, the scope of a variable is local to the
transition;

2 there can be multiple bindings simultaneously active on different
transitions. These bindings can exist simultaneously because thy
have different scopes;

2 the extent of a CPN variable binding is the ring of a particular tr an-
sition;

2 they provide arc inscriptions with the ability to refer differe nt values.

The CPN ML identi ers are alphanumeric sequences of letters, ayits,
primes/apostrophes ('), and underscores () — starting with a letter. They
are used for: colour sets, record colour set eld labels, value constuctors,
variables, operators and function symbols, pre xes of place, transtion, and
page names.

Transitions can be enabled and can then occur (re). A transition is
enabled if its input places have the requiredtokensand its guard is evalu-
ated as true. These enabling requirements are determined by binthg the
transition's variables to values taken from their types. The requred tokens
are de ned by evaluating the input arc expressions for a particular binding
of the variables. The same binding is used for evaluating the guard The
occurrence of a transition removes tokens from its input places andadds
tokensto its output places. The removed tokens are de ned by the eval-
uated expressions on the corresponding incoming arcs for this bindng of
variables, while the values of the added tokens are determined byevalu-
ating the arc expressions on the corresponding outgoing arcs for thesame
binding. Hence, transitions can occur in different modes, deperding on the
bindings of the variables.

CPN models can be created using hierarchical constructs. Hierahies
are built using the notion of a substitution transition, which may be ¢ onsid-
ered a macro expansion. The model starts with a top-level CPN diagam,
which provides an overview of the system being modeled and its envion-
ment. In hierarchical CPNs, the top-level diagram contains a mumber of
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substitution transitions. Each of these substitution transitions is then re-
ned by another CPN diagram, which may also contain substitution tran-
sitions. The top-level diagram and each of the substitution transtions are
de ned by a module, called a page. The relationships between the differ-
ent pages are de ned by a page hierarchy. The page hierarchy alg includes
the name of the page that de nes the declarations required for the CPN in-
scriptions, called the Global Declaration node.

De nition 2.5.1. A CPN model is a nine-tupl€yer = (8, P, T, A, N,
C, G, E, ), where 8§ is a nite set of non-empty types, called color sets,
P is a nite set of places,T is a nite set of transitions, A is a nite set
of arcs, N : A! PE£T[ TE£ P is anode function,C : P ! 8§ is
a color function, G is a guard function. It is de ned from T into expres-
sions such that8t 2 T : [Tp(G(t)) = Bool™ Tp(V ar(G(t))) 1 8], E is an
arc function. It is de ned from A into expressions such thaBa 2 A :
[TP(E(a)) = C(p(a))ms ™ Tp(Var(E(a))) u 8], where p(a) is the place of
N (a) and Cys denotes the set of all multi-sets oveZ, | is an initializa-
tion function. It is de ned from P into expressions such tha8p 2 P :
[Tp(l(p) = C(pms ™ Var(l (p)) = ®], where Tp(expr) denotes the type of
an expressiony ar(expr) denotes the set of variables in an expressi@(p)vs
denotes a multi-set ove€(p).

A small example [1] of a CPN is shown in Figure 2.36. It describes a
simple transport protocol transferring a number of packets over a urreli-
able network from a sender to a receiver. The ellipses and circlesre called
places. They describe the local states of the system. The rectangg are
called transitions. They describe the actions. The arrows are ca#d arcs.
The arc expressions describe how the state of the CPN changes whehe
transitions occur. Each place contains a set of marks calledokens In con-
trast to low-level PNs (such as Place/Transition Nets), each othese tokens
carries a data value, which belongs to a given type. As an examg, place
Sendhas seventokensin the initial state. All the token values belong to
the type INTXDATAand they represent seven packets which are ready to be
sent. Each of the placesNextSendand NextRecstarts with a single token
with value 1 (belonging to type INT). Place Receivedstarts with a token
which contains the empty string “” (belonging to type DATA). To be able to
occur, a transition must have suf cient tokenson its input places, and these
tokensmust have token values that match the arc expressions. As an exa-
ple, let us consider transition SendPacketIt has three surrounding arcs of
which two are double arcs. The three arc expressions involve the vaable
n of type INT and the variable p of type DATA In order to re transition
SendPacketwe must bind these two variables to values in their types, in
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such a way that the arc expression of each incoming arc evaluate$o a to-
kenvalue that is present on the corresponding input place. SinceNextSend
only contains one token with value 1, it is obvious that n must be bound to
1. Next we see thatp must be bound to “Modellin”, since Sendonly has one
token in which the rst element of the pair is 1. With the binding <n=1,
p=“Modellin” > transition SendPackeis enabled, because there is a Token
on place NextSendand a (1,“Modellin”) token on place Send When the
transition occurs, it removes the two speci ed tokensfrom the input places,
but it immediately puts two other with the same values back, due to the
two double arcs. Simultaneously, it produces a copy of the(1,“Modellin”)
token on place A. When the (1,“Modellin”) token is put on place A, transi-
tion TransmitPacketbecomes enabled with two different bindings: <n=1,
p=“Modellin”, ok=true > and <n=1, p="Modellin”, ok=false >. If the rst
binding is chosen, the packet is transferred from placeA to place B. If the
second binding is chosen, the packet is lost on the network.
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Dedarations:
type INT = integer;

type DATA = sting;

ype BEOOL = boolean;

type INTxDATA = product INT * DATA,
warn, ko INT,

val p, st DATA,

war ok ;. BOOL;

Figure 2.36: A Simple CPN

CPNs are used to three different purposes.

First of all, a CPN model is a description of the modeled system, andt

can be used as a speci cation (of a system to be bu

ilt) or as a presentaon
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of a system to be explained to other people, or ourselves. By creatig a
model, we can investigate a new system before we construct it. Thigs an
obvious advantage, in particular for systems where design errorsmay harm
security or be expensive to correct.

Secondly, the behavior of a CPN model can be evaluated, either by simu
lation (which is equivalent to program execution and program debugging)
or by means of more formal analysis methods (which are equivalent to
program veri cation).

Finally, it should be understood that the process of creating the descrip-
tion and performing the analysis usually gives the modeler a dramatically
improved understanding of the modeled system — and it is often the case
that this is more valid than the description and the analysis results them-
selves.

CPN models can be evaluated in many different ways, similar to baic
Petri Nets, in which the same properties can be analysed and verd, but
using different techniques.

The rst method is the interactive simulation. It is very simila r to de-
bugging and prototyping. This means that we can execute a CPN modelto
make a detailed investigation of the behavior of the modeled system

The second method is the automatic simulation which is similar to pro-
gram execution. It allows a fast execution of thousands or millions of transi-
tions. The purpose is to investigate the functional correctness othe system
or to investigate the performance of the system, e.g. to identify bottlenecks,
to predict the use of buffer space or the mean/maximal service time.

The third approach is based on the analysis of occurrence graphs (ab
called state spaces or reachability graphs). The basic idea behoh occur-
rence graphs is the construction of a directed graph which has a wde for
each reachable system state and an arc for each possible state ahge. Obvi-
ously, such a graph may become very large, even for small CPNs. Hower,
it can be constructed and analysed totally automatically, and there exist
techniques which makes it possible to work with condensed occurrece
graphs without losing analytic power.

The fourth method is based on place invariants. This method is very
similar to the use of invariants in ordinary program veri cation . The user
constructs a set of equations which is veri ed to be satis ed for all reach-
able system states. The equations are used to verify properties adhe mod-
eled system, e.g., absence of deadlock.
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2.6 Concluding Remarks

This chapter presented some details on object-oriented analysisiad design,
and described a formal approach to properties veri cation.

MSCs and UML sequence diagram are a popular mechanisms for spec
fying scenarios that describe possible interactions between procgses or ob-
jects. However these speci cation languages possess some disadntages:
they can not specify what must occur for all system run and they can not
specify anti-scenarios.

LSC is a system speci cation language based on scenarios that alvs to
specify anti-scenarios as well as it permits specify what shold happen for
all system runs. However, analysis and veri cation is not possibke.

As the mentioned speci cation languages do not handle properties anal-
ysis and veri cation, a formal approach should be used in order to provide
such tasks, hence permitting to verify some properties at the bginning of
the project contributing to reduce some risks that may lead to project fail-
ure.

PN is a family of formal modeling techniques that allows the modeling
of parallel, concurrent, asynchronous and non-deterministic systems. They
are presented as a possible approach to formal veri cation.

CPN is a class of PNs that use the power of the programming language
providing compact descriptions of concurrent systems by including abstract
data types within the basic Petri net framework.



Chapter 3
Mapping LSC to CPN

This chapter describes how to obtain the corresponding CPN
models for the LSC constructions presented in the previola g
ter. Once the individual models were obtained, a joining pcess
composes those individual models and provides a nal modbht
represents the LSC scenarios. Finally, the semantics of 8@
CPN models are compared.

3.1 Object Properties, Types and Variables

In the LSC language, the system is modeled using object oriented otions
and terminologies, in which, a system is composed of objects that repesent
instances of a given class, which are formed by properties based onsne
application data type that can be Enumerated Discrete String.

In order to obtain a CPN type that represents the data type used inan
LSC speci cation, the following steps should be followed:

1. for mapping an enumerated type, it is necessary to create a €N
type declared like color enum-name = with id1j::;jidn, where color
and with are CPN ML reserved words,enum-nameis the type name
and id1jid2j::;jidn are items of the enumerated set. For examplecolor
week = with SunjMonjTugW edT hujFrijSat;

2. for mapping a discrete type, a CPN type likecolor type-name = int
with min::max or color type-name = real with min::max should be
created, wheretype-nameis the type's name,int and real are CPN ML
primitive types. For example, color byte = int with 0..127 ;

3. The String type is represented bycolor type-name = string where

51
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type-nameis the type's name, string is a CPN ML primitive type. For
example, color name = string.

De nition 3.1.1.  (Function for mapping application types) LeAT be the set
of LSC application types (domains)D 2 AT be a nite set of values, andg
be a nite set of non-empty CPN types. A functioMpt : D 7! § that maps
an LSC type to a CPN type must be de ned as:

2 Mpr (d) = “color D = with id,j::;jid;”, id; 2 D, if D is an enumerated
type;
2 Mpt (d) = “color D =intwith min::max”, if D

di; dnax 2 Ni is an ordered set of valuegDj
discrete type;

Mmin 5 di; Omax jAmin ;
n2N,and D is a

2 Mprt (d) = “color D =real with min::max”, if D =
di; dnax 2 Qi is an ordered set of valuegpDj =
discrete type;

I"‘jmin ; di; Clmaxjdmin ;
n2N, andD is a

2 Mpr (d) = “color D = string”, if D is a string type.

A LSC object has several properties which are of a certain type. lorder
to represent an LSC object in a CPN manner, it must be declared a Q¥
type which encapsulates object's properties, as color TypeName=record
id1:Typel*...*idn:Typen’, where color and record are CPN ML reserved
words, TypeNameis the object name, id1...idn are the properties names,
“*” |s a symbol used to separate property's de nition and Typel...Typerare
the properties types which must be created following the rules for mapping
a LSC application data type.

De nition 3.1.2.  (Function for representing an object) LeD be the set of con-
crete objectsg 2 O be a concrete object of some class. A functiddpr, : O 7!

8 that maps each LSC object into a CPN type which represents teeuictures
must be de ned as: Mpt, () = colorg:Name = recordo:C:p;:Name :
Mpr (0:C:p1:D) m:imo:C:pg:Name: Mpr (6:C:p:D), whereg;:C is the ob-
ject's classp :Name is the object's nameg;:C:p is a property of the object;,
0,:C:p :Name is the name of propertyp; of the objecto and 0,:C:p :D is the
domain of propertyp;.

In order to enable the modeling of more general scenarios, the LSC
language allows the use of variables instead of using constant vales. The
variable's type is one of the application data types and its value § picked
up from the type's domain.
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De nition 3.1.3. (Variable) Let AT be the set of LSC application typeg, =
fvig be the set of variables of a chatt, Type: V. 7! AT be a function that
returns the variable's type. A variable; 2 V, is represented by its value, sg
is a value within the domainTypgV;).

De nition 3.1.4. (Function for mapping an LSC variable) Le¥ S= fvs;g be
a set of CPN variables and 2 V| be an LSC variable. A functioMV :V, !

V Smaps each LSC variable to CPN variable, wherg should be declared as:
var Nm(L) © “.” © v; : Mpt(Vvi), whereNm is a function that returns the
chart's name and®© represents a concatenation operation.

After mapping LSC application data types, it is necessary to ieate CPN
variables, based on CPN created types in order to represent the stances
that are used in LSC charts:

2 if the instance is the Useror the Environment that are mere actors
and do not have properties, the variable should be ofint type, and the
names should be composed of the chart's name, followed by ‘User”
or “_Env” depending on the instance;

2 for other instances, the variable should be of type that representsthe
structure of the object. The name of the variable is formed by the
chart's name, followed by “_”, accompanied by the instance's name.

De nition 3.1.5. (Function for mapping LSC instances) Ldt be an LSC
chart, I, = fi;g be the set of instances df, i;:0 be the concrete object of
instancei;, 1;:0:Name be the name of concrete objeitO, V S be the set of
CPN variables andrs; 2 V S be a CPN variable. A functioMg : 1, 7' VS
maps each LSC instance to a CPN variable, whegse should be declared as:
var vs; : Mpr (ii:0), wherevar is a CPN ML reserved word. The label o
must be created in the following way:

2 Nm(L) ©“_User”, ifi; = User,
2 Nm(L) ©“_Env”, ifi; = Env;
2 Nm(L) ©i;:O:Name, if i; 6 User”™ i; 6 Env.

3.2 Charts

The beginning and ending of prechart and chart body of a scenario are
considered synchronization points for the participant instances. Every par-
ticipant instance of the prechart enter in this scenario simultaneously, while
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the chart body can only be reached after all these instances have»ecuted
their activities successfully. The CPN models which represeinthe synchro-
nization points at the beginning and ending of prechart and chart body are
described in the following way:

1. observe each instance separately and for each synchronizatiopoint
this instance participates, create a transition, whose label § de ned
by the following rules:

2 “chart-namePch.Start” to the beginning of prechart;
2 “chart-name Pch.End” to the ending of prechart;
2 “chart-name CB_Start” to the beginning of chart body;

2 “chart-name CB End” to the ending of chart body,
where chart-nameis the name of the diagram.

2. create one input and one output place for each transition created in
the previous step. These places should be of the type that was creatl
to represent the instance;

3. the CPN variable that represents the instance should be assiged to
the inscriptions of the input and output arcs of the transition cre ated
in Step 1.

When mapping the events inside of a chart, the mapping processdkes
each event from up to bottom and generates their corresponding CPN rod-
els. These CPN models are joined in order to obtain a nal CPN model,
which represents the whole speci cation. So, N can be de ned as the set
composed of all individuals CPN models.N; 2 N is de ned as a tuple (§;
P; T; A;C; G; E; ), where 8§ is a nite set of non-empty types, which is
formed by applying the steps presented earlier,P is the set of places,T is
the set of transitions, A is a set of arcs,C is a color function that assigns
a color to a place, G is a guard function, E is an arc function that assigns
inscriptions to arcs and | is an initialization function, which picks up a
random value for each type used in the CPN model. When describinglie
mapping process, if an element of this tuple is not presented in he formed
net structure, it is because there is no need to specify this edment at that
point.

Lett; 2 T be a transition, we denote °t; as the set of inputs to transition
t; and t; as the set of outputs to transition t;.

When mapping the synchronization points at the beginning and endng
of a prechart and chart body, the mapping process must be applied taeach
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instance participating in each corresponding scenario (pretart or chart
body).

De nition 3.2.1. (Function for mapping synchronization points at charts)
Leti; 2 1. be aninstance of chart_, |; 2 |_ be a location of chartL and LAB
be a function that assigns a label to a transition. A functioBP : 1, 7! N, that
maps each location that represents a synchronization point e beginning
or ending of a prechart or a chart body to a CPN structure, muselapplied,
wherel; 2 loc([Pch; Start])_I; 2 loc([Pch; End]) _I; 2 lo¢([CB; Start])_I; 2
loc([CB; End]). N; 2 N is de ned as follows:

2 T=ftg,

2 P =1piipiwg;

2 A= f(pisti); (tis piva)g;

2 C(pi) = C(pi+1) = Mopr (ii:0);
E((pi;ti)) = E((ti;pi+1)) = Mo(ii);

g Nm(L) © “_PchStart”; iff I; 2 loc([P ch; Start]);
Nm(L) © “_PchEnd" iff I; 2 loc([P ch; End]);

2 Nm(L) ©“_CBStart”; iff l; 2 loc([CB; Start]);
Nm(L) ©“_CBEnNd”, iff I; 2 log(JCB; End]).

N

2 LAB (i) =

Figure 3.1 shows how the CPN model for MainSwitch instance, pre-
sented in Figure 2.3, was obtained by applying the rules for mapping the
synchronization points. Figure 2.3 shows that MainSwitch instance partic-
ipates in prechart and chart body sections, therefore four transtions must
be created, according to the presented steps.

Inside a LSC chart, it is possible to delimit scenarios usingsubcharts

Alike prechart and chart body, the beginning and ending of a subchat
are synchronization points. In order to mapping the synchronization points
of a subchart, the following steps must be followed:

1. observe each instance and create a transition for each synchrama-
tion point this instance participates, whose label is de ned by the
following rules:

2 “chart-name Sub_ID_Start” to the beginning of subchart;

2 “chart-name Sub_ID_End” to the ending of subchart,

where chart-name is the chart's name andID is an unique se-
guential number greater than zero.
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MainSwitch (P 1) MainSwitch
POR_MainSwitch POM_MainSwitch
FOn_MainSwitch FOn_MainSwitch

Maingwitch (P2) Mainswitch (P3)

wainsuitch (P3) mainswitch (P7)
FOn_Mainguwitch POn_nainSwitch
FOn_MainSwitch FOn_MainSwitch

M ainSwitch @ MainSwitch

Figure 3.1: Representation of synchronization points for the MainSwitch
instance

2. create one input and one output places for each transition creaed in
the previous step. These places should be of the type that was creatl
to represent the instance;

3. the CPN variable that represents the instance should be assiged to
the inscriptions of the input and output arcs of the transition cre ated
in Step 1.

De nition 3.2.2. (Function for mapping synchronization points at sub-
charts) LetSub 2 SUB, be a subchart in chartL, and N* be the set of
natural numbers excluding zero. A functiolsPS: . 7! N, that maps each
location that represents a synchronization point at the begiing or end of a
subchart to a CPN structure, must be applied, wheke2 loc([Sub; Start]) _
li 2 loc([Sub;End). N; 2 N is de ned as follows:

2 T=ft0

2 P=1fpi;piaaG

2 A= f(pisti); (tisPiv1)0;

2 C(pi) = C(pi+1) = Mot (i;:0);

2 E((pi;ti)) = E((ti;pi+1)) = Mo(ii);

1
2 LAB (t;) = ’ Nm(L) © “_SubID_Start”; iff I; 2 loc([Sub; Start]);
i) — Nm(L) © “_SubID_End~ iff I; 2 loc([Sub; End) )

wherelD 2 N*.

Figure 3.2 shows how the synchronization points of the subchart pre-
sented in Figure 2.5 are mapped.
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) ] Termselect
CTherm o @ TermSelect CTherm e
FProheCncg’ TermSelect
Frobednce ThermnF]

ProheCnce_Theymol

| ProbeCnce_Sub_1 _Sta|1|

. e Cnce_TermSelect
ProbeCnee_TheyMol progeonce_TermSelect Probeonce Ahermiot
CTherm @ o TermSelect  CTherm e TermSelect

Figure 3.2: Representation of synchronization points for the Thermol in-
stance

3.3 Messages

A message may represent a minimum event, i.e. event responsiblfor en-
abling a chart. The following steps should be taken to obtain a CPN model
of a message that is a minimum event and modi es a property value of
some instance.

For the sender instance, it should:

1. create a transition, whose label is formed by the name of the recever
instance followed by “_” accompanied by the property's name that is
being modi ed, followed by “ _”, accompanied by the value that is
being assigned to the property;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creat
to represent the sender instance;

3. assign the CPN variable that identi es the instance to the inscriptions
of the input and output arcs of the transition.

De nition 3.3.1. (Function for mapping a minimum event for sender in-
stance) Letl; 2 |_ be a location of chartL, m; 2 M_ be an LSC message,
m;:isc IS the instance sending the messag®e,:ips IS the instance receiv-
ing the messagem;:ips; :O is the concrete object that represents the instance
M;:ipst, Miiisrc:O is the concrete object that represents the instantgis,c,
m;:ipst :O:Name is the name of the concrete object of receiving instance,
m;:ms:P:Name is the name of the property been altered, anoh;:ms:V is
the value assigned to the propertm;:ms:P. A functionME s : I 7! N maps
an instance's localization for sending event of a minimum eweto a CPN
structure, must be applied, wherg 2 loc([Mi; Send). N; 2 N is de ned as
follows:
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2 T="1tg;

2 P=1pi;pi«g;

2 A= f(pi;ti); (tisPi+)g

2 C(pi) = C(pi+1) = Mpti (Milisrc:O);

2 E((pisti)) = E((tispi+1)) = Mo(miise);

2 LAB (tj) = mj:ipst:O:Name© “_” © m;:ms:P:Name®© “_” © m;:ms:V.
For the receiver instance, it should:

1. create a transition, whose label is formed by the name of the recever
instance, followed by “_”, accompanied by the property's name that
is being modi ed, followed by “ ", accompanied by the value that is
being assigned to the property;

2. create an input and an output places for the transition created in the
previous step. The type of these places should be the type createdt
represent the receiver instance;

3. assign the CPN variable that identi es the instance to the inscription
of the input arc of the transition;

4. assign the expression ¢s.setidi ¢ v’ to the inscription of the output
arc of the transition, where csis the type that represents the instance,
idi is the property's name that is being modi ed, cis the variable that
represents the instance andv is the value that is being assigned to the

property.

De nition 3.3.2.  (Function for mapping a minimum event for receiver in-
stance) A functionMERg : I. 7! N, that maps an instance's localization for
receiving event of a minimum event to a CPN structure, must qgpéied, where
li 2 loc([m;j; Rcv]). Nij 2 N is de ned as follows:

2 T="ftig;

2 P =1pi;pi+g;

2 A= f(pisti); (tis piv)g;

2 C(pi) = C(pi+1) = Mpri (Mjtipst :0);
2 E((pi;ti)) = Mo(mitipst);
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2 E((t“;pi_iﬂ)) = Mpt (Miipst:0) © “set” © mi:ms:P:Name ©
Mo(miiipst) © “” © mj:ms:V;

2 LAB (tj) = m;:ipg:O:Name© “_” © mi:ms:P:Name®© “.” © m;:ms:V.

In Figure 2.3, the messageClick(On) is a minimum event, so by ap-
plying the above steps for the sender and receiver instances, webtain
the corresponding CPN models shown in Figure 3.3(a) and Figure 33(b),
respectively. The transition MainSwitch_PowerOn is created by applying
the rst step for sender instance and the corresponding input and out-
put places are created following the second step for the same insince.
The variable POnUserthat represents the User must be assigned to the
arc inscriptions of those places. The main difference noted in reeiver in-
stance model is the arc inscription that was applied. The inscrption Main-
Switch.setPower POnMainSwitch On assignsOn to Powerproperty for the
variable POnMainSwitch that represents the instanceMainSwitch. This is
achieved by applying the fourth step of the receiver instance.

INT @ MainSwitch @
Fon_User FOr_ainSwitch

FOn_Pch_Start I MainSwitch_Puwer_Onl
Pon_User MainSwitch.set] Power POn_MainSwitch On
IMNT
@ MainSwitch (74)
(a) (b}

Figure 3.3: Representation of a minimum event

Among possible senders of a message, some possess a predictable be-
havior and others are unpredictable. The Userand the Environment are
actors that generate an unpredictable sequence of actions. Thesean exe-
cute enabled actions, actions that violate the scenario, as well a operations
that were not speci ed in the current scenario. According to thi s, the steps
presented below are needed to map this kind of message.

For the sender instance, which is theUseror the Environment it should:

1. create a transition to represent the enabled event, whose labé&should
be formed by the name of the receiver instance, followed by the con-
stant “_", accompanied by the name of the property that is being mod-

i ed, followed by the constant “ _”, accompanied by the value that is
being attributed to the property;
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. Create one input and one output places for the transition created in

the previous step. The type of these places should be the type creat
to represent the sender instance;

assign the CPN variable that identi es the instance to the ac inscrip-
tions of the transition created in Step 1;

create a transition for each violating event, whose label should be
formed by the name of the receiver instance, followed by the constant
“_”, accompanied by the name of the property that is being modi ed,
followed by the constant “_NE” (not enabled. The input place of this

transition is the same input place created in the second step;

create an output place for each transition created in the prevous step,
whose label should be composed by the name of the diagram, accom-
panied by the constant “_Stop” if the message iscold (the chart is
stopped without a violation) or by the constant “ _Abort” if the mes-
sage ishot (the chart is aborted indicating a violation on the require-
ments);

assign the CPN variable that identi es the instance to the ac inscrip-
tions of each transition created in Step 4.

De nition 3.3.3.  (Function for mapping an event for sender instance) Let
LABP be a function that assigns a label to a plac&yS! 2 N be the CPN
model for enabled event, an8lS? 2 N be the CPN model for violating event
if exists. A functionMUEgs : I 7! N, that maps instance's localizations to
a CPN structure of enabled and violating events for sendingtance with the
User or the Environment as sender, must be applied, whengSrc = User

A m;:Src = Env, and evnt(loc([m;; Send) is an enabled eveng, or is a
violating evente, .

NSt is de ned as follows:

2

2

2

T="ftig;

P=1fpi;ping

A= f(pi;ti); (ti;piv)g

C(pi) = C(pi+1) = Mpri (Mitisc:0);

E((pi;ti)) = E((ti;pi+1)) = Mo(Mitisc);

LAB (tj) = mj:ipst :O:Name®© “.” © m;:mg:P:Name®© “_” © m;:ms:V.
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And N S? is de ned as follows:

2

2

T= ftiig;
P=1fpi:pi«10;

A = f(pi;ti); (tispi+1)0;

2 C(pi) = C(pi+1) = Mpr (Mjligc:O);

E((pi;ti)) = E((ti;pi+1)) = Mo(Milisk);

LAB (tj) = m;:ipg:O:Name © “” © m;:ms:P:Name © “_NE”;

1

2 . . .
LABP (pis1) = Nm(L) © “_Stop” if m; is cold;

Nm(L) © “_Abort”; if m; is hot.

For receiver instances, it should:

1.

create a transition to represent the enabled event, whose labgis
formed by the name of the receiver instance, followed by “”, accom-
panied by the property's name that is being modi ed, followed by “ ",
accompanied by the value that is being assigned to the property;

create one input and one output places for the transition created in
the previous step. The type of these places should be the type creat
to represent the receiver instance;

assign the CPN variable that identi es the instance to the inscription
of the input arc of the transition created in Step 1,

assign the expressioncs.setidi ¢ v to the inscription of the output arc
of the transition, where csis the type that represents the instance,idi
is the property's name that is being modi ed, cis the variable that
represents the instance andv is the value that is being assigned to the

property;

create a transition for each violating event, whose label should be
formed by the name of the receiver instance, followed by the constant
“_” accompanied by the name of the property that is being modi ed,

followed by the constant “_NE” (not enabled. The input place of this

transition is the same input place created in Step 2;
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6. create an output place for each transition created in the previous step,
whose label should be composed by the name of the diagram, accom-
panied by the constant “_Stop” if the message iscold (the chart is
stopped without a violation) or by the constant “ _Abort” if the mes-
sage ishot (the chart is aborted indicating a violation on the require-
ments);

7. assign to the arc inscriptions of each transition created in $ep 5, the
CPN variable that identi es the instance.

De nition 3.3.4. (Function for mapping an event for receiver instance) Let
NR! 2 N be the CPN model for enabled eveMR? 2 N be the CPN model
for violating event if exists. A functiorMUER : I, 7! N, that maps instance's
localizations to a CPN structure of enabled and violating ets for receiving
instance with the User or the Environment as sender, must bephed, where
m;:Src = User”™ m;:Src = Env, and evnt(loc([m;; Rcv]) is an enabled event
€. Or is a violating evente,.
NR? is de ned as follows:

2 T="1tg;

2 P=1pi;pi«g;

2 A= f(pisti); (tispiv)g;

2 C(pi) = C(pi+1) = Mpri (Mjtips :0);
2 E((pi;ti)) = Mo(mitipst);

2 E((tj; pi+1)) = Mpr (Mjiips:0O) © “set” © mi:mg:P:Name © “” ©
Mo(miiipst) © “” © mi:ms:V;

2 LAB (tj) = m;:ipgt:O:Name© “ " © m;:ms:P:Name®© “_” © m;:ms:V.
And NR? is de ned as follows:

2 T=1tg;

2 P=1pi;pi«g;

2 A= f(pi;ti); (tisPi+1)g

2 C(pi) = C(pi+1) = Mpri (Mjlipst :0);

2 E((pisti)) = E((ti;pi+r)) = Mo(miipst);
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2 LAB (tj) = mjiipst:O:Name © “” © mj:ms:P:Name © “_NE”;
Yo
Nm(L) © “_Stop”, if m;is cold;

2 " =
LABP (pi+1) Nm(L) © “_Abort”; if m; is hot.

Figure 2.7 presents an LSC scenario, in which, according to thecur-
rent cut (hatched line), the event Switch2.Change(Med)is enabled and
the event Switchl.Change(Med)causes a violation if it occurs before
Switch2.Change(Med) Figure 3.4 shows, respectively, the CPN model of
User Switch2, Switchl for the message Switch2.Change(Med) With this
current cut, the messageSwitch2.Change(Med)s enabled (appears imme-
diately after this cut) and the message Switchl.Change(Med)s a violating
event (does not appear immediately after this cut), according to the de ni-
tions presented early. In Figure 3.4, ring the transition Switchl State NE
indicates that the violating event occurs. The enabled event, in this
case the messageSwitch2.Change(Med) is represented by the transition
Switch2 State Med

Masterode) User Mastermode User

| Switch2_State_Med | Switch1_State_h E|

MasterMode | User Mastertode] User

4
INT ‘ .
asterMode_Stog) INT Switch @
Switch °

MasterMaode | Switch1

Switch1_State_RE

Switch.set_State|Mastertode_Switch1 Med

h 4

Switch (Masteriode_5Sto

Figure 3.4: CPN model for the messageSwitch2.Change(Med)

BesidesUserand Environment a message has system objects that could
be a message sender. Those objects have a certain behavior that can begp
dictable, so the process to obtain the corresponding CPN model is sipler
than Userand Environmentmodels. The steps that should be taken are the
same as those applied when modeling the receiver instance of a n&sage
that represents a minimum event.
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A LSC message represents a synchronous or an asynchronous commu-
nication. Both possess sending and receiving locations, howeverttere is a
difference in the execution order of these locations between thesdwo types
of messages. In the synchronous message, sending and receivithgcations
have the same execution order, i.e., the sending action and recption of the
message happen at the same time. On the other hand, in the case ohe
asynchronous messages, the sending location has a precedence ovbe re-
ceiving location, indicating that the message is received afer it is sent. In
order to nd a CPN model that represents an asynchronous messagethe
steps described next must be followed.

For the sender instance, it should:

1. create a transition, whose label is formed by the constant “SND”,
accompanied by the name of the receiver instance, followed by the
constant “_”, accompanied by the name of the property that is being
modi ed, followed by the constant “ _”, accompanied by the value that
should be assigned to the property;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creat
to represent the sender instance,;

3. assign to the arc inscriptions of the transition created in Stp 1, the
variable that identi es the instance.

De nition 3.3.5.  (Function for mapping an asynchronous message for sender
instance) Letl, be the set of locations of a chatt, |; 2 |, be a location of
chart L, M be the set of asynchronous message of a cHarand m; 2 M2

be an asynchronous message. A functidhASs : I, 7! N that maps an
instance's localization for sending event of an asynchronaugssage to a CPN
structure must be applied, wheré 2 loc([m;; Send). N; 2 N is de ned as
follows:

2 T="1t0;

2 P=1piipi+0;

2 A= f(pisti); (tispiv)g;

2 C(pi) = C(pi+1) = Mpri (Milisc:O);

2 E((pisti)) = E((ti;pi+1)) = Mo(Mitiskc);

2 LAB (tj) = “SND.” © mj:ipg:O:Name © “_” © m;:mg:P:Name © “_”
© mi:mg:V.
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For the receiver instance, it should:

1.

create a transition, whose label is formed by the constant “RC\”,
accompanied by the name of the receiver instance, followed by *”,
accompanied by the property's name that is being modi ed, followed
by the constant “_.”, accompanied by the value that is being assigned
to the property;

. Create one input and one output places for the transition created in

the previous step. The type of these places should be the type creatl
to represent the receiver instance;

assign the CPN variable that identi es the instance to the inscription
of the input arc of the transition;

. assign the expressioncs.setidi ¢ v to the inscription of the output arc

of the transition, where csis the type that represents the instance,idi
is the property's name that is being modi ed, cis the variable that
represents the instance andv is the value that is being assigned to the

property.

De nition 3.3.6. (Function for mapping an asynchronous message for re-
ceiver instance) Lel, be the set of locations of a chatt, |; 2 I, be a location
of chartL, M be the set of asynchronous message of a chagnd m; 2 M

be an asynchronous message. A functihASr : I 7! N that maps an in-
stance's localization for receiving event of an asynchronausssage to a CPN
structure must be applied, wherg 2 loc([m;; RecV]). N; 2 N is de ned as

follows:
2 T="1tog;
2 P=1fpi;pinag

2

A= f(pisti); (tisPiv)0;
C(pi) = C(pi+1) = Mpr (Mj:ips:0);
E((pi;ti)) = Mo(m;lipst);

E((tii;pi_i +1)) = Mp (mi:iDst:O) © “set” © m;:mg:P:Name®© “” ©
Mo(miiipst) © “” © mj:ms:V;

LAB (tj) = “RCV” © mj:ips:O:Name © “_” © mj:mg:P:Name®© “_”
© mi:mg:V.
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The CPN models for sender and receiver of an asynchronous message
must be linked by a place, that acts like abuffer, whose label is formed by
the constant “BUF.”, accompanied by the name of the receiving instance,

followed by the constant “_”, accompanied by the name of the property
that is being modi ed, followed by the constant “ _”, accompanied by the
value that should be assigned to the property. This place must be ofint
type, where the input arc, that comes from the transition responsble for
the sending event, has the constant value “1” in its inscription, to denote
that a resource is being passed. The output arc of this place has theame

inscription of the input arc.

@LU (F3) CTherm
ColdOven_Eny ’ | CaldCven_Thermaot
| SHD_Thermol_Temp_30 BUF_Thermol_Temp_30 RCY_Thermol_Temp_30 |

ColdOven_Eny T CTherm.set Temp|ColdCyven_Thermot 30
(P2) NT
(P4) CTherm

Figure 3.5: CPNmodel of an asynchronous message

Figure 3.5 shows the CPN model of the asynchronous message pre-
sented in Figure 2.6. One should observe that theEnvironment instance
sends the messag&ND. Thermol Temp 30 and continues its execution, and
the ThermoZlinstance waits for a resource in thebuffer and continues its ex-
ecution after receiving the messageRCV Thermol Temp30.

Usually, it is natural to specify more general scenarios. LSCdnguage
has symbolic messages to allow the modeling of such scenarios. When
the scenario is in symbolic mode, the values shown in messages lalteare
replaced by variables. The rst occurrence of a variable affects is value
while the subsequent occurrences use the value that was assigl. There
are two situations to concern on, when modeling this type of messag. The
steps to model a symbolic message are presented next.

For the sender instance, it should:

1. create a transition, whose label is formed by the name of the recever
instance, followed by “_”, accompanied by the property's name that is
being modi ed, followed by “ _”, accompanied by the LSC variable;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creatl
to represent the sender instance;
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3. assign the CPN variable that identi es the instance to the inscriptions
of the input and the output arcs of the transition.

De nition 3.3.7.  (Function for mapping a symbolic message for sender in-
stance) A functionMSs : I, 7! N that maps an instance's localization for
the sending event of a symbolic message to a CPN structure masagplied,
wherel; 2 loc([m;; Send) » mj:ms:Symbolic= True. N; 2 N is de ned as
follows:

2 T="1t0;

2 P=1fpi;pinag

2 A= f(piti); (ti;Ri+1)0;

2 C(pi) = C(pi+1) = Mot (Milisrc:0);

2 E((pi;ti)) = E((ti;pi+1)) = Mo(Mitiskc);

2 LAB (tj) = mjiips:O:Name© “ " © mij:mg:P:Name®© “_” © m;:ms:V.
For the receiver instance, it should:

1. create a CPN variable to represent the LSC variable, whose lalbés
formed by the name of the receiver instance, followed by “.”, accom-
panied by the LSC variable label,

2. create a transition, whose label is formed by the name of the recever

instance followed by “_”, accompanied by the property's name that is
being modi ed, followed by “ _”, accompanied by the LSC variable;

3. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creatl
to represent the receiver instance;

4. assign the CPN variable that identi es the instance to the inscription
of the input arc for the transition created on Step 2;

5. assign the expressioncs.setidi ¢ v to the inscription of the output arc
of the transition, where csis the type that represents the instance,idi
is the property's name that is being modi ed, cis the variable that
represents the instance andv is the variable name;

6. for the rst occurrence of a variable:
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2 create one output place for the transition created in Step 2. The
type of this place should be the type created to represent the LSC
variable, whose label is the variable name created in Step 1;

2 assign the variable created in the rst step to the inscription of
the output arc of the place created in previous step.

for subsequent occurrences of a variable:

2 create a place that is an output and an input for the transition
created in Step 2. The type of this place should be the type
created to represent the LSC variable, whose label is the variald
name created in Step 1;

2 assign the variable created in Step 1 to the inscription of the
output arc and input arc of the place created in previous step.

De nition 3.3.8. (Function for mapping a symbolic message for receiver
instance) Letv; 2 V. be an LSC variable. A functiorMSgr : I, 7! N
that maps an instance's localization for the receiving eveof a symbolic
message to a CPN structure must be applied, whére2 loc([m;; Rcv])
m;:ms:Symbolic= True. N; 2 N is de ned as follows:

2

2

2

T= ftiig;
P = fpi;pi+1;Pi+20;

A = f(pi;ti); (ti;pi+1); (ti; pi+2)0, if it is the rst occurrence of the
variable, otherwiseA = f (pi ; tii ); (tii ; Pi+1); (ti; Pi+2); (Pi+25 ti ) G;

C(pi) = C(pi+1) = Mpri (M;:ips:0);
C(pi+2) = Mpr (mi:ms:V);
E((pi;ti)) = Mo(m;:ipst);

E((ti;pi+1)) = Mori (Mitips::0) © “set” © mi:ms:P:Name © “” ©
Mo(Milipst) © “” © Mo(m;:ipst);

E((ti;pi+2)) = MV (vi);
E((pi+2;ti)) = MV (v), ifitis not the rst occurrence of the variable;
LAB (tj) = mjiipgt:O:Name©*“_"©m;:ms:P:Name®© “” © m;:ms:V;

LABP (pii+2): Nm(l_) © “” © mimg:V.
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Take a look at the example of symbolic messages presented in Fig-
ure 3.6. The goal of this scenario is to assign the same state thatvas
applied to the instance MainSwitch for the instance MainLight, i.e., when
the user activatesMainSwitch, then MainLight is also activated. When the
user disablesMainSwitch, then MainLight is also disabled. In this scenario,
it is possible to represent two situations in just one LSC diagram Figure 3.7
depicts the CPN model obtained for the rst occurrence of the variable Xs
in the messageClick(Xs) by applying the aforementioned steps.

% ain Light ‘
< L___C_h_CBP_<§]__

L_szs_t_a_te&isJ{; :
' : SetState%sj_D’:

_________

M ainSwitch

‘ Sw-Chil ‘

-----

<]_ STumlxs]

Figure 3.6: LSC chart with symbolic messages

Figure 3.7: CPN model for the rst occurrence of the variable Xsfor sender
and receiver instances

The messages seen up to now modify the property value of an object,
but other message type allows to transfer data or control signs betwen
objects. Such message is related with method calls. Figure 3.6 ggsents
a scenario with two method calls. MainSwitch invokes the method Set-
State(Xs)of Sw-Crtl, that passes the information ahead calling the method
SetState(Xs)f MainLight.

In order to obtain the CPN model for method calls, the steps described
next must be followed.

For the sender instance, it should:

1. create a transition, whose label is formed by the name of the recever
instance, followed by “_", accompanied by the method's name;
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2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creat
to represent the sender instance;

3. assign the CPN variable that identi es the instance to the inscriptions
of the input and the output arcs of the transition.

De nition 3.3.9. (Function for mapping a method call for sender instance)
Letl; 2 I, be a location of chartL, m; 2 M be an LSC message of a chart
L, mi:ms:m be a method andm;:ms:m:Name be the method's hame. The
functon MFMC s : I 7! N maps an instance's localization for sending event
of a method call to a CPN structure, wherg 2 loc([m;; Send) » m;:ms:m 6
?.N; 2 N is de ned as follows:

2 T="ftig;

2 P=1pi;pi«g;

2 A= f(pisti); (tispiv)0;

2 C(pi) = C(pi+1) = Mpti (Milisrc:O);

2 E((pisti)) = E((tispi+1)) = Mo(miisec);

2 LAB (tj) = mjiipg:O:Name © “” © m;:ms:m:Name.
For the receiver instance, it should:

1. create a transition, whose label is formed by the name of the recever

instance, followed by “_", accompanied by the method's name;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creatl
to represent the sender instance;

3. assign the CPN variable that identi es the instance to the inscriptions
of the input and the output arcs of the transition;

4. create one input place to the transition created in Step 1 for repre-
senting each parameter used in the method call. The type of these
places should be the type of the parameter;

5. in the case of an exact message (message that uses a constardlue
instead of a variable), assign the constant value to the inscrigions of
the input and the output arcs of the places created in the previous
step. Otherwise applies the steps applied to a symbolic message
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De nition 3.3.10.  (Function for mapping a method call for receiver instance)
Letl; 2 I, be a location of chartL, m; 2 M| be an LSC message of a chart
andv; 2 V be the parameter of methoan;:ms:m. The functionMFMC R :
. 7! N maps an instance's localization for receiving event of a methcall
to a CPN structure, wherd; 2 loc([m;;Rec]) ® mimsm 6 ?. N; 2 N is
de ned as follows:

2 T= ftiig;
2 P =fpi;pi+i;Pi+20;

2 A = f(pi;ti); (tispi+1); (Pi+2;ti)g, if mi:ms:Symbolic = False or
f(pi s ti); (tis Pi+1)s (Pii+25 i ); (tii s Pii +2) 9, if mi:ms:Symbolic= True;

2 C(pi) = C(pi+1) = Mpr (Milipst :0);

2 C(pi+2) = Mpr (vi);

2 E((pi;ti)) = E((ti;pi+1)) = Mo(mi:ips);

2 E((tji; pi+2)) = MV (v)), if mj:ms:Symbolic= True;

2 E((pi+2;ti)) = MV (v), if mims:Symbolic = True or v;, if
m;:ms:Symbolic= False;

2 LAB (tj) = mjiipst:O:Name © “” © mj:ms:m:Name.

Figure 3.8 shows the CPN models ofSwCtrl.SetState(Xs)method call,
for sender and receiver instances (see Figure 3.6) obtained by aplying the
steps described earlier.

MainSwitc b

Figure 3.8: CPN model of SwCtrl.SetState(Xsmethod call for sender and
receiver instances
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3.4 External Functions

The Play-Enginetool [24] allows applications with graphical interface sup-
ply external functions.

In order to obtain a CPN model that represents an external functioncall,
the next steps must be followed.

If sender and receiver are different instances, it should:

1. create a transition, whose label is formed by the chart's name, fol

lowed by “_", accompanied by the function's name;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creatl
to represent the sender instance;

3. assign the CPN variable that identi es the instance to the inscriptions
of the input and the output arcs of the transition.

De nition 3.4.1. (Function for mapping a external function call for sender
instance) Letl; 2 |. be a location of chartL, m; 2 M_ be an LSC mes-
sage of a chartl, v; 2 V, be a parameter of external functioom;:ms:f and
m;:mg:f:Name the external function's name. The functioMFEF s : I, 7! N
maps an instance's localization for sending event of an extal function call
to a CPN structure, wherd; 2 loc([m;; Send) » mi:ms:f 6 ?. N; 2 N is
de ned as follows:

2 T="1tig;

2 P=1pi;pi«ag;

2 A= f(pisti); (tispiv1)0;

2 C(pi) = C(pi+1) = Mpri (Mjlisrc:O);

2 E((pisti)) = E((tispi+1)) = Mo(miisec);

2 LAB (tj) = miiipgt:O:Name © “” © m;:mg:f:Name.

The steps below must be executed for the receiver instance or when ta
sender and receiver are the same instance:

1. create a transition, whose label is formed by the chart's name, fol

lowed by “_", accompanied by the function's name;
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2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creatl
to represent the sender instance;

3. assign the CPN variable that identi es the instance to the inscriptions
of the input and the output arcs of the transition;

4. if the function has a variable as parameter, create a CPN vasble,
whose name is composed of the chart's name, followed by *, ac-
companied by the name of the LSC variable;

5. create a place to represent the function parameter. If thisparameter
is a variable, then the label of the place must be composed of the
chart's name, followed by the constant “ ", accompanied by the name
of the variable created in the previous step. These places are ingt
and output to the transition created in Step 1;

6. if the function has a variable as parameter, assign the correponding
variable created in Step 4 to the inscriptions of the arcs that arive
and leave the places created in the previous step. If the fundbn
has constants values as parameters, these values are assight the
inscriptions of these arcs;

7. create a variable to represent the result of the function. The rame of
this variable must be formed by “RST", followed by the chart's name,

accompanied by “”, followed by the function's name. The type of this
variable must be equivalent to the result type of the function;

8. create one output place for the transition created in Step 1, whose
label must be formed by “RST.”, followed by the chart's name, ac-
companied by “_", followed by the function's name. The type of this
place must be equivalent to the result type of the function;

9. assign the variable created in Step 7 to the inscription of thearc that
arrive in the place created in the previous step.

De nition 3.4.2.  (Function for mapping a external function call for receiver
instance) Letl; 2 I, be a location of chartL, m; 2 M_ be an LSC message
of the chartL, vi 2 V be a parameter of external functiorm;:ms:f. The
function MFEF r : I 7! N maps an instance's localization for receiving event
of of an external function call to a CPN structure, wherg 2 loc([m;; Rec\)

N mi:ms:f 6 2. N; 2 N is de ned as follows:

2 T= ftiig;
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2 P = fpi;pi+1;Pi+20;

2 A = f(pi:ti); (ti:pisa); (Bi+2:ti)g, if mi:ms:Symbolic = False or
(i s ti); (ti s Pi+n); (Pi+2 i ); (tii s Pi+2)9, If miims:Symbolic= True;

2 C(pi) = C(pi+1) = Mpri (Mitipst :0);

2 C(pi+2) = Mpr (vi);

2 E((pisti)) = E((ti;pi+1)) = Mo(Mitipg);

2 E((ti;pi+2)) = MV (v), if m;:mg:Symbolic= True;

2 E((pi+2;ti)) = MV (v, if mi:ms:Symbolic = True or v, if
m;:ms:Symbolic= False;

2 LAB (tj) = miiipg:O:Name © “” © m;:mg:f:Name;
2 LABP (pi+2) = "RST” © Nm(L) © “" © m;:mg:f:Name.

Figure 3.9 shows the CPN model that represents the external funtion
presented in Figure 2.8. PlacesShowSumX174 and ShowSumX176 repre-
sent the variables X174 and X176, respectively. One should observe that
these places are input and output for the transition ShowSumSum. There-
fore they represent the second occurrence of the respective vaables. Ato-
kenin place RSTShowSumSum, after ring the transition ShowSumSum,
represents the returned value of the external function.

Murher Display Mumber

Display

Mumber

Figure 3.9: CPN model that represents an external function



3.5. ASSIGNMENTS 75

3.5 Assignments

An assignment is an LSC construction that allows storing propertes' values,
constant values or a result of a external function, for a subsequentuse
inside the chart.

In order to obtain the CPN model for an assignment that allows stor-
ing properties' values, the steps below should be executed for all ofthe
instances that are synchronizing their activities with the assignment:

1.

create a CPN variable of the same type of the property that is beig
stored, whose name is composed of the chart's name, followed by *,
accompanied by LSC variable;

create a transition, whose label is formed by the chart's name, fot
lowed by “_AS.ID”, where ID is a integer sequential number, larger
than zero;

create one input and one output places for the transition created in
the previous step. The type of these places should be the type creat
to represent the instance;

. assign the CPN variable that identi es the instance to the inscriptions

of the input and the output arcs of the transition;

. for the instance whose property is been saved, create an output [ace

for the transition created in Step 2, whose type is the type of the

property that is being saved. The label of this place is composed by
the chart's name, followed by “_", accompanied by the name of the

variable that is saving the value;

assign#id VarName to the inscription of the arc that arrives in the
place created in the previous step, whereid is the property that been
saved andVarNameis the variable that represents the instance.

De nition 3.5.1.  (Function for mapping an assignment that stores a property
value) Letp!, be a property of an instance; 2 |, which is synchronized with
an assignmenta, and a:P be the property that should be stored. A function
MASP : I 7! N must be applied to instances that synchronizes with an
assignment that stores a property value in order to obtain &A% model, where
9p. : pl = a:P. N; 2 N is de ned as follows:

2 T= ftiig;

2 P=1fpi;pi+1:Pi+«20;
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2 A= f(pisti); (tis pien)s (Gis Pi+2)G;

2 C(pi) = C(pi+1) = Mpr (i:0);

2 C(pi+2) = Mot (p:D);

2 E((pi;ti)) = E((ti;pi+1)) = Mo(ii);

2 E((ti; pi+2)) = #a:P:Name Mpr (&:P:D);
2 LABP (pi+2) = Nm(L) © “” © a:V;

2 LAB (tj) = Nm(L) © “_ASID’,

wherelD 2 N*, p,:D represents the domain of a property of a synchro-
nized instance,;:P is the stored propertya;:P:Name is the property's
name, a;:P:D represents the domain of the stored property, arslV is
the variable which contains the assigned value.

Figure 3.10 depicts the CPN model obtained for the assignmeniN1 :=
Display.Valuepresented in Figure 2.9. The rst model on the left hand
side represents instanceDisplay and the second one depicts the model of
instance Plus One should observe the difference between these models. In
the rst model ( Display), there is a place SSN1 of the type STRINGthat
represents the variable N1, which contains the property value of Display
instance. In the second model Plug there is no such place, because the
instance Plusis just synchronizing its activities with the assignment.

#faling S5 _Display

S5 Display

Figure 3.10: CPN model of an assignment that stores an object propdy
value

When the expression on the right side of the assignment operator isa
function result, the place that represents the function result (Section 3.4)
must be an input place of the transition created to represent theassignment
construction, so the following steps should be taken:
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1. create a CPN variable of the same type of the function result, wlose
name is composed by the chart's name, followed by *’, accompanied
by LSC variable;

2. create a transition, whose label is formed by the chart's name, fol
lowed by “_AS.ID”, where ID is a integer sequential number, larger
than zero;

3. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creat
to represent the instance;

4. assign the CPN variable that identi es the instance to the inscriptions
of the input and the output arcs of the transition;

5. the place that represents the function result must be an inpu place of
the transition created in Step 2;

6. create an output place for the transition created in Step 2, whose
type is the type of the function result. The label of this place should
be composed by the chart's name, followed by *”, accompanied by
the name of the variable that is saving the value;

7. assign the variable created in Step 1 to the inscription of thearc that
arrives in the place created in the previous step.

De nition 3.5.2.  (Function for mapping an assignment that stores a function
result) Leta; 2 A, be an assignment of chart, i; 2 | o be an instance that is
synchronized with the assignmerd;, a;:f is an external function used in the
assignmenty; and a;:f:d; is the result value of the external functiom;:f . The
function MAFR : 15 7! N maps each of the instances that synchronizes with
an assignment that stores a function result to a CPN model, whe,;:f 6 ?.

N; 2 N is de ned as follows:

2 T="fto0;

2 P =1fpiipi+1;Pi+29;

2 A= f(pisti); (tis piea)s (i Pi2) 0
2 C(pi) = C(pi+1) = Mo, (ii:0);

2 C(pi+2) = Mor (a:f:dt);

2 E((pi;ti)) = E((ti;pi+1)) = Mo(ii);
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2 E((tispi+2)) = MV (g:V);
2 LABP (pis2)= Nm(L) © “’ © a:V;
2 LAB (t;) = Nm(L) © *ASID",

And if the expression on the right side of the assignment is a constnt,
then it should:

1. create a transition, whose label is formed by the chart's name, fol
lowed by “_AS. ID”, where ID is an unique sequential number;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creat
to represent the instance;

3. assign the CPN variable that identi es the instance to the inscriptions
of the input and the output arcs of the transition;

4. create an output place for the transition created in Step 1, whose
type is the type of the value that is being saved. The label of this

place should be composed by the chart's name, followed by *, ac-
companied by the name of the variable that is saving the value;

5. assign the constant value, presented on the right side of the asign-
ment, to the inscription of the arc that arrives in the place created in
the previous step.

De nition 3.5.3.  (Function for mapping an assignment that stores a constant
value) Leta; 2 A be an assignment of chart, i; 2 1, be an instance that

is synchronized with the assignmers#; and &:C is the constant used in the

assignmenta;. The function MACV : 15 7! N maps each instance that
synchronizes with an assignment that stores a constant vatieea CPN model,

wherea:C 6 ?. N; 2 N is de ned as follows:

2 T="ft0

2 P =1fpi;pi+;Pie2;

2 A = f(pisti); (tis piea); (ti s Pi+2) G
2 C(pi) = C(pi+1) = Mo (ii:0);
C(pi+2) = Mpr (a:C);

2 E((pisti)) = E((ti;pi+)) = Mo(ii);

N
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2 E((ti;pi+2)) = &:C;
2 LABP (pis2) = Nm(L) © “” © a:V:

2 LAB (t;) = Nm(L) © “_ASID".

3.6 Conditions

A condition represents a decision structure that can be composed of @on-
junction of expressions and can be evaluated as true or false.

In order to obtain the CPN model for each instance that synchronizes
with a condition, the following steps must be taken:

1. create a transition, whose label is composed by the chart's name,di-
lowed by “_CD_ID_SYNC”, wherelD is an unique sequential number;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type creatl
to represent the instance;

3. assign the CPN variable that identi es the instance to the inscriptions
of the input and the output arcs of the transition.

De nition 3.6.1. (Function for mapping synchronization points at a con-
dition) Let i; 2 Ic be an instance that synchronizes with the condition
and i;:O be the concrete object of the synchronized instanceThe function
MCSP :I¢c 7! N must be applied to each instance that synchronizes with a
condition in order to obtain a CPN model, wherdl; 2 N is de ned as follows:

2 T = ftyg

2 P=1piiping

2 A= f(pisti); (ti; Pia)g;

2 C(pi) = C(pi+1) = Mor (ii:0);
E((pi;ti)) = E((ti;piva)) = Mo(ii);

2 LAB (tj)= Nm(L) © “_.CD.ID_SYNC”
, WherelD 2 N*.

N
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Figure 3.11: CPN model for synchronization point of a condition

Figure 3.11 shows the CPN models of the instancesightl and Console
for the condition Lightl=Green presented in Figure 2.10, respectively. As
condition Lightl=Green has two instances synchronizing their activities,
then it is necessary to model the synchronization point.

In order to obtain the CPN model of an instance which has a property
constrained by a condition using some comparison operator with a constat
value, another variable or a function result, the following steps must be
taken:

1. create a transition to represent the true value, whose label 5 com-
posed by the chart's name, followed by “CD_ID_TRUE”, where ID is
an unique sequential number;

2. assign the guard condition “#id VarName oper valué to the transition
created on the previous step, whereid is the property that is being
compared, VarNameis the variable that represents the instance,oper
is the relational operator used in the condition expression, and value
is the value that is being compared, which can be a constant value,
another variable or a function result;

3. create a transition to represent the false value, whose labelis com-
posed by the chart's name, followed by “CD_ID_FALSE”, wherelD is
the same used in Step 1;

4. assign the guard condition “#id VarName oper valué to the transition
created on the previous step, whereid is the property that is being
compared, VarNameis the variable that represents the instance,oper
is the opposite relational operator used in the condition expression
and valueis the value that is being compared, which can be a constant
value, another variable or a function result;
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5.

create a common input place for the transitions created in the previ-
ous steps. The type of this place should be the type created to repre
sent the instance;

create an output place for the transition created in Step 1. Thetype
of this place should be the type created to represent the instane;

create an output place for the transition created in Step 3. Thetype of
this place should be the type created to represent the instance This
place is not the same as the input place for this transition if it is a
cold condition, or if it is a FALSE condition, or still if it is a hot condi-
tion used at the end of Vertical Delay Message Delagnd Timer time
restrictions, presented later. This step is necessary in ordeto guaran-
tee that a hot condition should be tested until evaluates to true, so it
can be executed. The cases de ned above are exceptional situations
of a hot condition that produce a false value when the condition will
never be able to be evaluated to true;

assign the CPN variable that identi es the instance to the inscriptions
of the input and the output arcs of the transitions created in Steps 1
and 3.

De nition 3.6.2. (Function for mapping a cold condition) Let ; 2 ¢:" be
a basic expression of an instandg 2 |c, which is synchronized with the
condition ¢. The function MCCegxp : ¢:" 7! N must be applied to an
expression of a cold condition in order to obtain a CPN modelhareN; 2 N
is de ned as follows:

2

2

T="1ti;ti10;
P = fpi,pi+1;Pi+0;
A= f(pisti); (Pisticn); (i Pi+n)s (tiiea s Pii+2)0;

2 C(pi) = C(pi+1) = Mopr (i;:0);

N

N

N

E((pi;ti)) = E((ti;piva)) = E((tivaipis2)) = Mo(ii);
G(ti) ="#1;:0:p Mpr, (i;:0) Oper(" i) RHS(" i),
G(ti+1) =“#1;:0:p Mpr (ii:0) NOper(* i) RHS( )",

LAB (t;) = Nm(L) © “.CD.ID_TRUE”;
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LAB (ti+1) = Nm(L) © “_.CDID_FALSE’,

wherei;:O:p is a property of the constrained instance;:O represents
the concrete object of the constrained instand®, 2 N*, Operis a func-
tion that returns the relational operator of a basic expregm, NOper is
a function that returns the opposite relational operator usd in the basic
expression, andRHS is a function that returns the binding expression
of a basic expression.

De nition 3.6.3. (Function for mapping a hot condition) A function
MCHexp :G:" 7! N must be applied to an expression of a hot condition, in
order to obtain a CPN model, wherdl; 2 N is de ned as follows:

2

2

2

2

T = ft;ti10;

P=1fpi:pi«10;

A= (i ti); (i tiva); (ti s Pii+a ) (tiiea; P ) G;

C(pi) = C(pi+1) = Mpr (ii:0);

E((pi;ti)) = E((ti;pi+1)) = E((tiva;pi)) = Mo(ii);
G(ti) = “#1;:0:p Mpr (i;:0) Oper(’ ;) RHS(" 1),
G(tii+1) ="#1;:0:p Mpr, (i;:0) NOper(' ;) RHS(" )"
LAB (tj) = Nm(L) © “_CDID_TRUE";

LAB (ti.1) = Nm(L) © “_CDID_FALSE”,
wherelD 2 N*.

Figure 3.12 shows the CPN model that represents the expression
Lightl=Green of the cold condition presented in Figure 2.10. First, the
steps to represent the synchronization point are applied. The tansition
LSC1CD._1_SYNCrepresents this synchronization point. PlacesP1 and P3
are, respectively, input and output for Lightl instance of WarnLight type,
and places P2 and P4 are, respectively, input and output for Consolein-
stance. After mapping synchronization points, condition expressions must
be modeled. Each transition has a guard condition that controls which
transition should re. One should observe that the guard conditions d eny
each other, so just one transition can re.

Other condition expressions can be formed by the reserved word§ RUE
SYNCor FALSE These expressions have a de ned value, so only synchro-
nization points need to be modeled, as the condition does not need to be
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warnLight Cansale

LSC1_Lightt LSC‘I‘iLight'l

[5C1_Stop

WarmnLight Console warmnLight

Figure 3.12: CPN model that represents acold condition that constrains an
object's property

evaluated. Therefore the steps that should be taken to obtain the CR
model are the same used to map the synchronization point of a conditon.

Conditions expressions can also use variables. Those expressions-a
complish comparison between variables or still between variable anda
value, which can be a constant value or an evaluation result of a furction
call. As it was seen, functions are always modeled before the unddying
element in which they are used (i.e. inside a message call, iside an assign-
ment expression or as part of a condition expression). The steps adod to
obtain the CPN model that represents these types of expressions arsimilar
to the steps considered to obtain the model that represents an expession
that constrains a property's value of a certain object, in which the variable
usage should be mapped according to the steps presented in Sect 3.3,
where symbolic messages are presented.

Figure 3.13 shows an LSC scenario with the conditionT < 30, which
uses the variable T, and the corresponding CPN model. The place
ColdOvenT represents the variableT in the expressionT < 30. One should
observe that guard conditions re ect the constrains on ColdOvenT variable.

3.7 If-then-else Construction

The if-then-elseconstruction allows different scenarios to be executed de-
pending on a condition.
An if-then-elseconstruction is formed by basic constructions (messages,
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_L__JL_
- 4 Charge(T)__! i \‘
< CE> /

-----

ColdOven_T ) Mumber

ColdOven_T

ColdOven_Thermao

[CaldCwven_T=30]

ColdOven_CD_1_TRUE | ColdOven_cD_1_FALSE | [CaldOwven_T=30]

CaldOven) Thermat ColdCven| Thermat
Y
@ CTherm ColdOven_Stop) CTherm

Figure 3.13: Condition using a variable and its corresponding CPNmodel

assignments, conditions, subcharts) inside speci ¢ scenariogthen or elsg,
e., it does not involve any new construction, therefore the steps below
should be followed in order to obtain the equivalent CPN model:

1.

model the synchronization point of the beginning of then subchart
(loc([Subr; Start])), according to rules presented in Section 3.2;

model the controlling condition, according to rules presented in Sec-
tion 3.6;

. model the construction of then scenario, according to the rules pre-

sented for each construction. The last construction is the synchro-
nization point of the ending of then subchart (loc([Subr; End]));

if there is an else scenario, the synchronization point of the be-
ginning of this subchart (loc([Suk:; Start])) must be modeled rst.
After that, the constructions inside the scenario must be modelel,
and nally, the synchronization point of the ending of elsesubchart

(loc([Suk; End]));

. the output places corresponding to the ending of each scenario

(loc([Subr; End]) and loc([Sulx ; End])) should be united.
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De nition 3.7.1. (Function for mapping an if-then-else construction) Let
ITE be an if-then-else construction of chait, i;;ij+1;:5im 2 liTe be in-
stances that participate in the scenario ofTE construction, I/; 11, ;:::; 1,
be locations of instance;, N;;Nj.1;::; N, be the corresponding CPN mod-
els obtained for the locationd;;Ii,; ;:::; I}, of instancei;, loc([Subr; Start]),
loc([Subr; End]), loc([Sulx; Start]) and loc([Sukx;End]) be the locations
that represent, respectively, the beginning of then subchahe ending of then
subchart, the beginning of else subchart and the ending o$eelsubchart. A
function MITE that maps an if-then-else construction, should:

2 apply the mapping rules for each locatioff; Ii,; ; ::;; I}, wherel! is the
rst location to be mapped andl;, is the last, according to the execution
order described in Section 3.3;

2 apply the joining process described in Section 3.11;

2 consider two CPN modelsl; and Ny, where N, is the obtained model
for the location loc([Suby; End]) and Ny, is the obtained model for the
location loc([Subk:; End]). Letps be an output place for the transition
created in the CPN modeW, and p, be an output place for the transi-
tion created in the CPN modeN;,, so renamep, to p, by applying the
corresponding steps described in Section 3.11.

By applying the above steps, Figure 3.14 depicts the CPN model
of the if-then-else construction presented in Figure 2.11. The transi-
tion TP_Suh1 Start represents the synchronization point of the then sub-
chart, which must be modeled rst. After that, the condition Prb-
Ctrl.Probing=True is modeled, and it decides which scenario should exe-
cute, the then subchart or the elseone. After modeling all constructions
inside each scenario, transitionsTP.Subh.1 End and TP_.Sub 2 _End are cre-
ated to represent the synchronization point of the ending of then and else
scenarios, respectively.

3.8 Loops

A loop construction allows the execution of a scenario several times.

A loop's scenario may have several constructions, so in order to nda
CPN model that represents a loop construction, the mapping rules nust be
followed for each construction inside the loop's scenario, according b the
execution order. After mapping all constructions, the last obtained place
of the CPN model must be linked with the rst obtained place of this CPN
model in order to represent a loop iteration, as presented next.
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Figure 3.14: CPN model of anif-then-elseconstruction

In order to obtain the CPN model for a xed loop, the following steps
should be taken:

1. create an INT variable to represent the loop's index. The name of
this variable should be composed by the chart's name, followed by
“_IND_ID”, where ID uniquely identi es a subchart;

2. map the synchronization point of the beginning of the subchart
(loc([Sub oop ; Start]), as it was presented in the Section 3.2. The
transition created in this step must have the following segment code:

2 output(variable) action(0) , where variable is the variable created
in the previous step;

3. create anINT place, whose label is composed by the variable's name,
created in Step 1,

4. assign the variable created in Step 1 to the arc inscription, which
comes from the transition created in the Step 2 to the place creaed
in the previous step;
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5. model the LSC constructions presented inside loop's scenario aord-
ing to their mapping rules presented earlier;

6. assign the following guard condition to transition which repre sents
the entry point (loc([Suh oop ; Start]) for each participating instance;

2 [variable < max], where variable is the variable created in Step
1 and max is the number of iterations.

7. assign the following guard condition to the transition which re pre-
sents the synchronization point at the ending of the loop's scenario
(loc([Suhoop ; End]):

2 |variable = max] , where variable is the variable created in Step
1 and max is the number of iterations.

8. the transition created in the previous step is an input of the
place created in Step 3 and the place generated when mapping
the synchronization point at the beginning of the loop's scenario
(loc([Suh oop ; Start]);

9. after modeling all constructions, create a transition, which returns to
the beginning of the loop's scenario (a new iteration). The label of
this transition is formed by the chart's name, followed by “_LOOP.ID”,
where ID is equals to the subchartID.

De nition 3.8.1. (Function for mapping a loop construction) Let.oop be a
loop construction of chartL, ii;ii+1; 5 im 2 | L00p D€ iNStances that participate

in the scenario ofLoop construction, I/ 11, ; ::;; I}, be locations of instancé;,
N;j;Nj+1;::55 N, be the corresponding CPN models obtained for the locations
Iji , Ij‘+1 ;1L of instancei;, v be a CPN variable created to represent the loop's
index, loc([Suh oep; Start]) and loc([Suh oop; ENd]) be the locations that rep-
resent, respectively, the beginning and ending of loop shiét. A function

MLOOP that maps a loop construction, should:

oy s

Iji is the rst location to be mapped and!, is the last, according to the
execution order described in Section 3.3;

2 8ii 2 | 00p apply the mapping rules for each locatiolj; Il ., ; :::; I}, where

2 LABV (v;)= Nm(L) © “JIND.ID";

2 let p, be a place created to represent the index variable LsBP (p,) =
Nm(L);
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2 let N, be the CPN model obtained for the locatidoc([Sul oop ; Start])
and t, be the transition created when mapping this location, so
SC(ty) = output(v;) action(0) and N4:E(t«;p,) = Vi, whereSC is a
function that assigns a segment code to a transition amdl:E is the arc
function;

2 let Np be the CPN model obtained for the locatidoc([Sul oop ; Start])
and t; be the transition created when mapping this location, so
Np:G(ts) =[Vvi <idx ], where Ny:G is the function that assigns a guard
to the transition and idx 2 N*;

2 let N, be the CPN model obtained for the locatidoc([Suh oop ; End])
and ty, be the transition created when mapping this location, so
Nc:G(tg) =[vi = idx] and N¢:A = NgA [ f (tg;py); (tg; p2)9, Where
N..G is the function that assigns a guard to the transitionN¢:A is
the set of arcsp, 2 N,:P (set of places oN,) be the input place for
the transition created while mapping the locatiohoc([Suhk oop ; Start])
andidx 2 N*;

2 let Ng be a CPN model created to represent a new loop iteration andbe
a transition of this model. ApplyLABT (t,) = Nm(L) © “_LOOPRID",
wherelID is the ID for Suhoop subchart. Ng:A = f(pm;t2); (t2; py)0,
wherepn, 2 NP (set of places oN.) be an output place of the transi-
tion created when mapping the locatiotoc([Sub oop ; ENnd]) and Ng4:A
be the set of arcs dfl4;

2 apply the joining process described in Section 3.11,

wherelD 2 N* and LABV is a function that assigns a label for a CPN
variable.

As a loop construction is formed by basic constructions, the formalism
behind this construction is not presented. It can be easily mappedoy apply-
ing the steps for each construction inside the scenario of the consuction,
following the execution order presented earlier.

By applying the above steps, Figure 3.15 shows the CPN model ob-
tained for the xed loop presented in Figure 2.13(a). When the transi-
tion LSC1Sub 1 _Start res, the variable LSCLIND_1(represents the index
of the loop) is initialized and a token with the initial value is deposited
in place LSC1IND_1. This value is considered in the guard conditions
of transitions Lightl Color Redand LSC1Sub 1 End, in order to decide if
the loop should be iterated. This value is increased by ring transition
LSC1LOOR1. This transition represents a loop iteration, where atokenis
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deposited in place P2, which is an input of the rst event of the scenario,

the messageChange(Red) The loop scenario is executed until variable
LSC1IND_1 reaches the value 3, where transition LSC1Suh 1 End res,

leading the execution to the next location after the loop.

output (LSC1_IND_1)
action{dy;

@ WarnLight

L3C1_INDT

LSC1_LOOP_1

o

Figure 3.15: CPN model for a xed loop

If a xed loop uses a variable to determine the numbers of iterations,
the steps to be followed in order to obtain the CPN model are similar to
the steps applied to a xed loop, which uses a constant to determine the
number of iterations, except:

2 at guard conditions, max is the variable used to determine the number
of iterations;

2 transitions are input and output of the place created to represent the
variable, as described in Section 3.3, when dealing with symbolic
messages.

The mapping process for adynamic loop is the same applied to a xed
loop, but the number of iterations is unde ned.
In a case of anunboundedloop, it should:

2 model all constructions presented in the loop's scenario, accordingo
their mapping rules presented earlier;

2 after modeling all constructions, create a transition, which represents
returning to the beginning of the loop's scenario (a new iteration) .
The label of this transition is formed by the chart's name, followed by
“_LOOPID”, where ID is equals to the subchartID.
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As an example, Figure 3.16 shows the CPN model obtained for the
unboundedloop presented in Figure 2.13(c). The process is similar to a
xed loop. In this case, a controlling condition, represented by transitions
LSC2CD.1_TRUEand LSC2CD.1_FALSE decides if the loop should be it-

erated. Loop's scenario is abandoned when transitionLSC2CD_1_FALSE
res.

Goz Dy

LSC2_ES
LSC2_ES
#Speed LSC2_CruiseUnit<=LSC2_ES] zelinit [#Speed LSC2_CruiselUnit=LEC2_ES]

Cruiselnitset Speed LEC2_CruisdUnit (#5peed LSC2 [ Cruisellnit +1)

@ Cruiselnit

LSCZ_Cruiselnit

Figure 3.16: CPN model for anunboundedloop

3.9 Time Restrictions

LSC language allows to establish time restrictions for real-time systems.

In order to obtain the CPN model for a time restriction, the following
steps must be taken:

1. map the constructions (assignments and conditions), which awe par-
ticipating in the time restriction, according to the rules pre sented ear-
lier (Section 3.5 and Section 3.6);

2. create atimed type instead of untimed one to represent the instance
(Section 3.1). This type allows to apply a time stamp for a token,
i.e., eachtoken can have a time associated with it. Thistime stamp
indicates when the token is available;
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3. assign to the arc inscription that leaves the transition that represents
the assignment to the place that represents the affected vaable in
the assignment, the expressionintinf.toint(time()) , where Intinf.tolnt
is a CPN ML function for converting the time to an integer number
and time() returns the actual time (global time);

4. if there is a minimum delay, then after modeling the rst cond i-
tion, assign the following guard conditions [IntInftoInt(time()) >
VarAsg+Min-Delay] and [Intinf.toInt(time()) <= VarAsg+Min-Delay]
to the transitions that represents a true and false value, repectively,
where Intinf.tolnt(time()) returns an integer that represents the ac-
tual time, VarAsgis the variable that stores the time in the assignment
and Min-Delay is the minimum delay. Assign to the arc inscription
that leaves the transition that represents the false value, he expres-
sion InstVar @+1, where InstVar is the variable that represents the
instance;

5. if there is a maximum delay, then after modeling the second cordi-
tion, assign the following guard conditions [IntInf.toInt(time()) <=
VarAsg+Max-Delay] and [IntIinf.tolnt(time()) > VarAsg+Max-Delay]
to the transitions that represents a true and false value, repectively,
where Intinf.tolnt(time()) returns an integer that represents the ac-
tual time, VarAsgis the variable that stores the time in the assignment
construction and Max-Delayis the maximum delay.

As a time restriction is formed by assignments and conditions, thefor-
malism behind that is the same presented when mapping assignrants and
conditions, with the addition of the following formal de nition.

De nition 3.9.1.  (Function for mapping a time restriction construction) Let
a 2 AL be an assignment of chart, ¢;¢+; 2 C_ be conditions of chart,
I, U 1L be asetofinstances that synchronizes with the conditionl,, W1 I_
be a set of instances that synchronizes with the conditi@n,, i; 2 | be
an instance that synchronizes with the conditiom; and ij«; 2 lg,, be an
instance that synchronizes with the conditiog,;; . The functionMTS : A, £
C. 7! N maps a time restriction to a CPN model, wher®:Timed = True
G:Timed= True _ ¢+ :Timed = True. N; 2 N is de ned as follows:

2 if exists a condition that establishes a minimal delay, then

— G(tj) =“IntInf:tolnt (time()) Oper MV (a:V) + MinDelay (¢)”,
Oper can be> or >=;
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— G(tji+1) = “Intinf:toInt (time()) Oper MV(ay:V) +
MinDelay (c)”, Oper can be< or <=;

— E((ti+1;pi)) = “Mo(i))@ + 17

2 if exists a condition that establishes a maximal delay, then

— G(tii+2) = “IntInf:tolnt (time()) Oper MV(a:V) +
MaxDelay (G.1)”, Oper can be< or <=;
— G(tii+3) = “Intinf:tolnt (time()) Oper MV (g:V) +

MaxDelay (G+1)”, Oper can be> or >=,

whereMinDelay and MaxDelay are functions that return the minimal
delay and the maximal delay of the timed condition, respeetily.

Figure 3.17 shows the CPN model for instanceD2, considering the time
restriction imposed between eventsM1() and M2() presented in scenario of
Figure 2.14. Transitions VertDelCD.1_TRUEand VertDelCD_1_FALSErep-
resent the rst condition of the time restriction, which imposes t he mini-
mum delay. In this case the transition VertDelCD.1_FALSE res until the
guard condition assigned to transition VertDelCD_1_TRUEis not satis ed.
This represents the semantics of ahot condition that should be continu-
ally evaluated until returns true. Transitions VertDelCD 2 TRUEand Vert-
Del CD 2 _FALSEepresent the second condition of the time restriction. One
of the two transitions should re, when the execution arrives at t his point.
If the transition VertDelCD_2_TRUE res, then the time restriction imposed
between the events was satis ed. On the other hand, if transition Vert-
DelCD 2 _FALSErTes, then this indicates that the time restriction was not
respected, indicating a requirement violation.

3.10 Time Events

Reactive real-time systems are often required to react to thepassage of
time, and not only to refer to it when constraining the timing of oth er
events of interest. In order to express such requirements, gearally termed
time events a special object instance representing the clock is available
(Clock Instance), and it can be added to the LSC scenarios. Wit this in-
stance one can refer to theTick event, which represents an actual clock, i.e.,
the passage of a single time unit. This event can be placed in a prehart to
trigger desired actions, or in the main chart, thus explicitly forcing delays.
When a Tick event occurs, it is fully uni ed when it is enabled in all
charts it is available, in other case these events are seen asffierent events,
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Figure 3.17: CPN model for aVertical Delaytime restriction

so thesetime eventswill take place at different time, in an appropriate
moment.

When obtaining the corresponding CPN model of aTick event, it should
be seen as a simple LSC message with an internal object as sendaiith the
following additional steps:

2 the label of the obtained transition is formed by “TICK_ID”, where 1D
Is a unique integer number;

2 assign to the arc inscription that leaves the transition, the expres-
sion InstVar @+1, where InstVar is the variable that represents the
instance Clock This step represents the passage of one time unit.

3.11 Joining LSC Constructions

In the previous sections, it was presented some steps on how to obtaira
CPN model which represents individual LSC constructions. Afte mapping
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these individual constructions, the obtained CPN models must be janed in
order to nd a nal CPN model that represent the LSC speci cation . So,
the following steps must be applied to map an LSC chart:

2 obtain an individual model for each instance inside a chart, where the
constructions available in the instance line should be mapped from
top to bottom, following the corresponding rules that were presented.

Letl, be the set of instances of chart_, i;;i;+1;:::im 2 | be instances
of chart L, I];I!,;;:::; I}, be locations of instancei;, where I/ precedes
lj+1, and so on, thereforel; <L I;,,;::50, ; <LIj, as denedinthe

execution order statement described in Section 3.3. Fori;; i+ im,

apply the mapping rules for each location I}; 1}, ;:::; 1}, where I} is
the rst location to be mapped and |}, is the last, according to the
execution order described in Section 3.3;

2 the output place of a transition of a CPN model that represents an
LSC construction, must be the input place of the transition of the
CPN model that represents the next construction to be mapped.

LetN;; Nj.1;:::; N, be the corresponding CPN models obtained for the
locations If; I/, ; :::; 1}, of instance ij, Nj:P be the set of places ofNj,

N;:T be the set of transitions of N;, N;:A be the set of arcs,N;:E be

an arc function that assigns inscriptions to arcs.px 2 N;:P is a place
and t; 2 N;:T is a transition, where there is an arc (t;;pc) 2 N;j:A

and N;j:E(t;;pc) is equals to Mo(ii). pr 2 Nj.i:P is a place and
ts 2 Nj4+1:T is a transition, where there is an arc (pr; ts) 2 Nj.1:A and

N;+1:E(pr;ts) is equals toMq(ii). Placespx and p, must be united ac-
cording to these conditions, by applying the label function to a place

(LABP ), to rename p; to py, therefore, Nj:A = Nj:A[f (pr;ts)g and

Nj+1:A = Njs:Aif (prits)g. Nj;Nji1; i Ny models must be joined
according to these rules;

2 after all individual models (instances inside of a chart) were found,
transitions of same label should be merged, as well as the places tt
possess the same label. The inputs and outputs of these transitions
and places that should be merged, are joined in the nal obtained
model (CPN model that represents the chart).

A system speci cation contains more than one chart, and some mes-
sages may be speci ed in more than one chart. In order to join the CPN
models that represent each individual chart, all transitions with same label
and all places with same labels must be merged, as described eaer.
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3.12 Comparing Petri Net and LSC Semantics

This section considers a small example in which some of LSC constrtions
are adopted, to compare the labeled transition system directly generated
from LSC speci cations and the occurrence graph generated from he re-
spective CPN models. Therefore, this section shows that both modelsLSC
and the respective CPN) lead to bisimilar [43] transition systems. It is im-
portant to stress, however, that these transition systems are ot isomorphic,
since the transformation of LSC to CPN inserts transitions that @ not corre-
spond to LSC visible events (messages), but are necessary for regsenting
the correct net's structure.
The adopted approach consists of four phases, as depicted in Fig-

ure 3.18.

Figure 3.18: Validation phases

Initially, the adopted methodology considers the CPN model that rep-
resents an LSC chart, obtained by executing LSC2CPN engine in oed to
obtain the corresponding state space §Scpn ) Of @ Coloured Petri Net. This
process SSGcpn ) can be automatically achieved in many available CPN
tools.

The LSC State Space Generation§SG_sc ) obtains a state space of an
LSC chart, in which, each state presents the current con guraion of all
instances inside an LSC chart and the enabled events at this pat.

In order to check if the methodology presented in this work generates
faithful models, the comparison process should verify whether the obtained
LSC State Space $S.sc) and the obtained CPN State Space $Scpn ) are
equivalent or not.

Next, it is presented a toy example, in order to demonstrate how this
comparison process should be applied. Take a look at the LSC scenario
shown in Figure 3.19, in which it is presented a receiving calling scenario.
In this scenario, whenever Chanl (Channell) sends a calling request to
the Switch, then the Switch forwards this request to Chan2 (Channel2). If
Chan2is not in order (ready), then it informs the Switch that the calling
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Figure 3.19: LSC scenario

can not be made, and theSwitchtells Chanlthat the calling was canceled.
If Chan2is in order but it is allocated, then the calling is denied and Chanl
is informed that Chan2is busy, otherwise (not allocated) Chan2is allocated
and the communication is established betweenPhoneland Phone2

When applying SSG sc phase, an LSC state is represented by the cur-
rent value of all instances' properties, variables values, andenabled events
at this point. A state changing takes place whenever ring one of these
enabled events. Figure 3.20 presents the reachability graph othe LSC sce-
nario presented in Figure 3.19, which it is obtained through an exhaustive
simulation in the Play-Enginetool.

By applying the corresponding mapping steps in the LSC scenaoi pre-
sented in Figure 3.19 as described in Chapter 3, Figure 3.21, [gure 3.22,
Figure 3.23, Figure 3.24 and Figure 3.25 depict the obtained CIN model
for Chanl, Phonel Switch, Chan2 and Phone2 respectively. In order to
obtain the nal CPN model, these individuals CPN model must be joined,
where transitions with same label must be merged, in which, input and
output places of one transition are joined with input and output pla ces of
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Figure 3.20: Reachability graph of the LSC scenario presentedn Fig-
ure 3.19
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Figure 3.21: CPN model for Chanlinstance

Figure 3.22: CPN model for Phonelinstance
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Figure 3.23: CPN model for Switch instance

the other transition. The same is valid to places with same label.

The CPN Tools is adopted for creating the CPN model, as well as, for
nding the corresponding reachability graph. The reachability g raph of the
CPN model is shown in Figure 3.26. Each state is represented by ptes
which have at least one token.

The mapping process takes into account “visible” events (messagg) and
“hidden” events (synchronization points, assignments, condiions), there-
fore the reachability graph of the CPN model presents “visible” sates (states
that represent “visible” events) and “hidden” states (states that represent
“hidden” events). Figure 3.27 presents the reachability grgph of the CPN
model highlighting the “hidden” states.

The reachability graph of the LSC scenario does not take into accoun
“hidden” events, because until nowadays there is no tool to geneate the
reachability graph of a LSC scenario, so we built the reachabilitygraph of
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Figure 3.24: CPN model for Chan2instance
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Figure 3.25: CPN model for Phone2instance

the presented LSC scenario through simulation atPlay-Enginetool. There-
fore, if we suppress the “hidden” states from the reachability graph of the
CPN model, it is obtain the reachability graph presented in Figure 3.28.
As we can see, the reachability graph of the CPN model presentechi Fig-
ure 3.28 is bisimilar to the reachability graph of the LSC scenaro presented
in Figure 3.20, therefore, the semantics of the LSC scenario pgsented in
Figure 3.19 and of the obtained CPN model are equivalent, i.e., eah state
transition on the LSC reachability graph (represented by messag invoca-
tion) has its equivalent state transition on the CPN reachability graph (rep-
resented by transition ring).

This simple example shows how CPN models can be compared to LSC
scenarios in order to check if they are equivalents. However, tle adopted
method does not aim, at this point of our research, being complete or even
validating the mapping method. Nevertheless, this approach ras been ap-
plied in many other case studies, in order to check if LSC and CPMNauto-
matic generated labeled transition systems are equivalent or rot.
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Figure 3.26: Reachability graph of the CPN model
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Figure 3.27: “Hidden” states of reachability graph of the CPN mockl

Figure 3.28: Reachability graph of the CPN model without the “hidden”
states
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3.13 Concluding Remarks

In this chapter we presented the mapping process, describing bw to obtain
an equivalent CPN model for each LSC construction presented in ta previ-
ous chapter. The mapping process was explained in the following wg: the
steps that must be followed are described, then it is presented tke formal-
ism and the corresponding CPN model, and nally an example is shown.

Once the individual CPN models were obtained, we described the stps
that must be followed in order to obtain a nal CPN, formed by joining
these individual models, in which transitions and places with same label
must be joined where their inputs and output are united.

At the end of the chapter we presented an approach to compare the 5C
and CPN semantics, which was applied in a speci c example. Ths approach
can not be considered as a general validation process, however we gpied
the described approach in few case studies to verify if the obtaired CPN
model is equivalent to the mapped LSC speci cation.



Chapter 4

Case Studies

This chapter presents two case studies, in which the map-
ping process is applied and some interesting properties &ezi-
ed through custom queries. Also it is made an analysis of the
obtained CPN models.

4.1 Pulse Oximeter

In order to show the practical usability of the proposed mapping process,
a pulse-oximeter [30] has been considered as a case study. This ettronic
equipment is responsible for measuring the blood oxygen saturation wsing
a non-invasive method. This equipment is widely used in critica care units
(CCuL).

The pulse-oximeter was described using the following scenariosExcite-
ment, Cross-sectiomnd Management

The Excitementscenario (see Figure 4.1) speci es that if aCross-section
operation is taking place, then the channel is read from digital-analogic
conversor (DACony, the data is processed by the processor RProg and it
is sent to Managementmodule to present the information at the interface
(Display), otherwise the sign is adjusted.

The Cross-sectiorscenario (see Figure 4.2) speci es that whenever the
sigh calibration takes place, then the processor should emit red ad infrared
pulses interchanged.

The Managementscenario (see Figure 4.3) starts theCross-sectiompro-
cess and presents the obtained information on the interface Display).

This work presents some results related to properties analysis iad veri-
cation.

105
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Figure 4.1: Excitement scenario

In order to obtain the CPN model that represents the scenarios pre-
sented in Figure 4.1, Figure 4.2 and Figure 4.3, we follow the seps pre-
sented next.

We obtain the individual model for each one of the instances in the
chart, then for each instance line, the elements should be mappd from
top to bottom, following the corresponding rules that were presented. The
transition that represents the beginning of a chart must be an input of each
place that represents a variable used in the LSC chart, wherehe formed
arc inscriptions initialize each place with one token. The output place of
a transition, that represents an LSC construction (message, cadition, as-
signment, etc), must be the input place for the transition that r epresents
the next element to be mapped. After all individual models were found,
transitions with same label should be put upon, as well as the places that
possess the same label. The inputs and outputs of these transitionand
places that should be put upon, will be joined in the nal model. Plac es
representing each refereed variable in the chart should be an iput to the
transition that represents the chart body ending.

When LSC2CPN engine nishes translating the LSC scenarios, RN
Tools [1] could be used to analyse and verify properties of the specied
system.

After a basic analysis of the obtained CPN model, it is observed thatte
speci ed system has the following properties:
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Figure 4.2: Cross-section scenario

Deadlock Freedom The analysis of pulse-oximeter system indicates that
the system is not deadlock free, due to the presence of “good” dead-
locks, which is not bad because there are some pre-conditions that
should be satis ed in order to blood measure takes place by the pulse-
oximeter equipment. Therefore, the pulse-oximeter system exeates
on expected conditions, as it was described at the LSC speci catn.
On the other hand, if the time stamp (time constraint) of the transi-
tion that represents “set redPulse() message (Cross-section scenario)
is modi ed to be larger than 40 time units, then when analysing t he
CPN model it is found a reachable deadlock state (“bad” deadlock),
since a time restriction is not respected, as it was speci ed (®e Fig-
ure 4.2), the “set redPulse() message can not take more than 40 time
units to execute, so in this case as it was expected, the syste is not
deadlock free;

Liveness The CPN model of pulse-oximeter system is notlive, because
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Figure 4.3: Management scenario

there are situations, in which the system is lead to a “good” dead
lock state. If these situations are unconsidered as well as a seof
transitions representing activities that are only executed during start-
up phase, the pulse-oximeter system can be considered éve one.
Through livenessproperty, it can be veried if the pulse-oximeter
equipment is prepared to measure the blood oxygen, once a pre-
condition have been satis ed, until the system is shut down;

Boudedness The pulse-oximeter system is asafe system, because for all

reachable markings the places have at most one token. So, none of
the possible sequence of events can lead the pulse-oximeter sy&h to
an unpredictable state;

Reversible The system is not reversible to its initial state, but there are

home states The pulse-oximeter system can not returns to its initial
state after starting, so the initial state can only be reached f the sys-
tem is shut down and restarted, however there are some markings
(states) that can be reached again by ring a sequence of transitons
(events);
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Bounded-Fairness Once the execution of pulse-oximeter is inside char
body scenarios, the ring sequence (sequence of events) isuncon-
ditionally fair. So, as it is expected, every time the pulse-oximeter
system enters inside char body scenarios, it will always execud the
same sequence of steps;

Conservativeness A Petri net covered by place invariants isconservative
that is, the CPN model for pulse-oximeter system is notconserva-
tive, since places describing pre-conditions within precharts arenot
covered by place invariants. However, if the precharts are uncosid-
ered, the CPN model isconservative which is an interesting property
for embedded system design. Therefore, besideboundednesswhich
depicted that analysed system does not generate an in nite nunber
of states, conservativenesshows that the respective speci cation also
does not consume resources without further liberating them.

Besides the basic analysis, some speci ¢ properties can be vered, as it
is shown next.

In the Excitement scenario (see Figure 4.1), the two underlying sub-
charts, with a guard condition ( Proc.crossSection=Trueat the top of the
rst one, represent an if-then-elseconstruction. The events in the scope of
the rst subchart are executed if the guard condition is evaluated to a true
value. If this condition is evaluated to false, the events of the second sub-
charts are executed. If this condition changes its value when &ecuting the
events in the rst subchart, then occurs a requirement violation and this
subchart must be aborted. Therefore, it can be veri ed if it is possible that
some event of this rst subchart can be executed when the user preses the
adjust button (see Figure 4.1). This property can be veri ed by using the
query language ASK-CTL [1]. The following formula checks this property:
FORALLUNTIL (TT, AND ( AF( “Events”, AreEventsEnabled), NF(“Cross-
Section”, IsCrossSection))). AreEventsEnabled and IsCrossSian are CPN
ML [1] functions that check if any event of the rst subchart is en abled and
if the device is in cross-section mode, respectively. Applyinghis formula, a
false value is returned, so it indicates that it is not possible © execute some
event of the rst subchart (Management scenario), when the user presses
the adjust button. NFis a node function, where its arguments are a string
and a function which takes a state space node and returns a booleanThe
string is used when an ASK-CTL formula evaluates as false in thenodel
checker. In this case the model checker shows a diagnostic mesga ex-
plaining why the formula is false, using the string in the message. AFis the
arc function and is analogous to NF, only that it is a transition formula and
thus only makes sense to use as a transition sub-formula.
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As described in [30], the excitement scenario has a priority ove cross-
section scenario, so when executing the events in excitement cenario,
none of the events of cross-section scenario can be executed. This @perty
can be checked through the following formula: FORALLUNTIL (TT, AND(
AF(“Excitement”, AreExcitementEventsEnabled), AF(“Crosssection”, Are-
CrossSectionEventsEnabled))). This formula asks if there is a nod in the
state space where some event of excitement scenario is enabledtre at
the same time that some event of cross-section scenario can be exeted.
Applying this formula, a true value is returned, hence there is a require-
ment violation in this speci cation, since the speci cation was built in an
incorrect way and this is veri ed when evaluating this formula .

State space queries [1] can be used as another approach to prop-
erties verication. The state space query SearchNodes( Entir&raph,
CanSendRedPulse, NoLimitfn n => n,[],op::) veri es if a red pulse event
(see Figure 4.1) can be sent before setting the calibration to on (se Fig-
ure 4.2). CanSendRedPuldgs a CPN ML function that checks if the transi-
tion that represents the event “set redPulse()” is enabled to re when the
calibration is off (before ring the transition that represents th e event “set
calibration(True)”). When applying this state space query in the obtained
CPN model, it returns nothing, so it is guaranteed that the red pulse is
always sent after setting the calibration to on.

4.2 ConnectOK

ConnectOKis a portable and mobile data terminal with an internal
GSM/GPRS communication module, which can be considered for sevela
tasks, such as reading water, energy and gas consumption. Thisealice
is composed by a terminal for reading consumption data and a server o
process received data, and and is divided in four management modles:

Con guration Module  de nes some parameters for the terminal data ap-
plication;

Communication Module interacts with a server using a proprietary com-
munication protocol;

Battery Manager controls the battery consumption;

Interface Module interacts with the user.

This case study applies to Battery Manager module.
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The battery management module was speci ed and its LSC scenarios
are presented from Figure 4.4 to Figure 4.10. Next a brief desciption is
presented detailing what each of these scenarios performs.

Scenario 1 Whenever the menu options is presented (Interface Module), if
more than ten time unit have been passed without an user interacion,
then the micro-controller sounds a beep and shuts down the terminal

Figure 4.4: Battery Manager Scenario 1

Scenario 2 If the user presses F2 key, then the micro-controller veri es the
battery level and its status is presented in the screen for thre time
units and then the content menu is presented (Interface Module);

Scenario 3 If the user presses F3 key, the micro-controller must shut down
the terminal,

Scenario 4 F4 key activates battery loader process. If the loader is not con-
nected, then the terminal must shut down, otherwise battery status is
presented while charging;

Scenario 5 This scenario speci es that whenever the user pushes a key dif
ferent from a function key (F2,F3,F4), the battery manager modules
executes the following procedure. First, the micro-controller checks
the battery level, and if it has the minimal level to execute the task
or if the loader is connected, then it proceeds. Otherwise, the sceen
presenting “Turning off...” is shown and the terminal is shut d own;
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Figure 4.5: Battery Manager Scenario 2

Figure 4.6: Battery Manager Scenario 3

Scenario 6 If someone connects the battery loader, then the micro-
controller is activated and the loader starts charging the battery;

Scenario 7 Whenever the battery loader is instructed to charge the battery
then the micro-controller continuously checks the battery level until
the battery is full, when the battery loader should be turned off.

The procedure described in Section 3.11 should be adopted in order to
obtain the CPN model that represents the scenarios presented fronfig-
ure 4.4 to Figure 4.10.

After translating the LSC scenarios described previously by aplying the
LSC2CPN engine, the designer can analyse and verify prope#s taking into
account the obtained CPN model.

After analysing the obtained CPN model, it is observed that the spei ed
system has the following properties:
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Figure 4.7: Battery Manager Scenario 4

Deadlock Freedom The analysis of ConnectOK system indicates that the
system is not deadlock free due to the presence of “good” deadlocks,
which is not bad because there are some pre-conditions that should
be satis ed. Therefore, the ConnectOK system executes on expected
conditions;

Liveness The CPN model of ConnectOK system is nolive, because there
are situations, in which the system is lead to a “good” deadlock sate
or the system executes its tasks and nalize;

Boudedness The boudednessproperty indicates if the system has pre-
dictable states. The ConnectOk system is @afesystem, because for
all reachable markings the places have at most one token. So, none
of the possible sequence of events can lead the ConnectOk system to
an unpredictable state;

Reversible The system is notreversibleand there is no home statg once it
is started. The system receives a request from the environment rad
then executes its tasks and nishes;

Bounded-Fairness The ConnectOkis not B-fair, but it is unconditionally
fair. It is not B-fair since inside chart body scenarios the number of
times that a condition is evaluated as true is not bounded compar-
ing to the number of times that a condition is evaluated as false, ie.
the scenario presented in Figure 4.10. And it isunconditionally fair
because all ring sequences are nite, since the system exectes its
tasks and terminates;
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Figure 4.8: Battery Manager Scenario 5

Conservativeness The CPN model for ConnectOk system is nhotonserva-
tive, since places describing pre-conditions within precharts arenot
covered by place invariants. However, if the precharts are uncosid-
ered, the CPN model isconservativewhich is an interesting property
for embedded system design. Therefore, besideboundednesswhich
depicted that analysed system does not generate an in nite nurmber
of states, conservativenesshows that the respective speci cation also
does not consume resources without further liberating them.

After the analysis phase, some system's properties can be veri@ by
constructing queries using the ASKCTL model checking languageas ap-
plied in the previous case study. Next, it is presented some ingresting
requirements of ConnectOKsystem and it is explained how these properties
can be veri ed using model checking formulas.

One important requirement says that the loader must stop battery load-
ing when the battery reaches its maximum charging level (levd 5). In
order to check this requirement, it must be veri ed if it is possi ble to reach
a state, in which the BatLevelproperty of MC (Micro-controller) has value
5 and the boolean property loading of Loaderhas a true value. This prop-
erty can be checked through the following formula: FORALLUNTIL (TT,
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Figure 4.9: Battery Manager Scenario 6

AND( NF(“BatteryFull”, IsBatteryFull), NF(“Loading”, IsL oading))), where

IsBatteryFull and IsLoadingare functions created using the CPN ML func-
tional language. NF is a node function, where its arguments are a string
and a function which takes a state space node and returns a booleanThe
string is used when an ASK-CTL formula evaluates as false in thenodel

checker. In this case the model checker will print a diagnostic message
explaining why the formula is false, using the string in the message. The
function IsBatteryFull checks if the BatLevelproperty of MC has a value 5
(indicates a full battery). If a node satis es this function, th en when apply-
ing NF(“BatteryFull”, IsBatteryFull), it returns true, oth erwise returns false.
The function IsLoadingchecks if the loading property of Loaderhas aTrue
value. If a node satis es this function, then when applying NF(“Loading”,

IsLoading), it returns true, otherwise returns false. The formula, described
above, searches all state space for a node, in which NF(“Battery#!”, Is-

BatteryFull) and NF(“Loading”, IsLoading) return true. By ap plying this

formula in the obtained CPN model, it returns a false value. Therebre it

is guaranteed, according to what was speci ed in the LSC scendos, that

when the battery reaches its maximum charging level, then theloader stops
charging the battery. This requirement can be visualized in thescenario of
Figure 4.10. Observe the subchart with “*” at the top left corner, w hich

represents anunboundloop construction. In this scenario, the battery level

is repeatedly checked until reaching level 5 (the condition MC.BatLevet 5

evaluates as false), when this scenario is abandoned and the né action

takes place (set loading(false), which disables the loader charging. It is
important to point out that different formulas can be made with the same
purpose.
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Figure 4.10: Battery Manager Scenario 7

Another important requirement states that the options menu can not
be presented if the battery level is lower than the minimum level (level 1)
to execute this function (showConMenu(). When mapping the presented
LSC speci cation, the obtained CPN model ofshowConMenu()message has
one transition and two places (obtained by applying the rules presented
earlier). In order to check this requirement, it must be verie d if it is
possible to reach a state, in which the transition of the CPN model hat
represents the eventshowConMenu()is enabled to re while there is a
place with a token of the MC type, in which the value of BatLevelprop-
erty of MCis lower than 1 (minimum level). The following formula checks
this property: FORALLUNTIL (TT, AND( AF(“ShowConMenu”, Show-
ConMenuEnabled), NF(“BelowMinimumLevel”, isBelowMinimumLevel))),
where ShowConMenuEnablednd isBelowMinimumLevebre CPN ML func-
tions. AFis the arc function and is analogous toNF, only that it is a transi-
tion formula and thus only makes sense to use as a transition sub-famula.
The function ShowConMenuEnablederi es if the transition that represents
the event showConMenu()is enabled. If a node satis es this function,
then when applying AF(“ShowConMenu”, ShowConMenuEnabled), it re-
turns true, otherwise it returns false. The function isBelowMinimumLevel
checks if the BatLevelproperty of MC has a value lower than 1. If a node
satis es this function, then when applying NF(“BelowMinimum Level”, is-
BelowMinimumLevel), it returns true, otherwise it returns fa Ise. When the
formula FORALLUNTIL (TT, AND( AF(“ShowConMenu”, ShowConMenu-
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Enabled), NF(“BelowMinimumLevel”, isBelowMinimumLevel))) is applied
to the obtained CPN model, a false value is returned, so this requement
was correctly speci ed in the system's speci cation, as can be vewed in
the scenario of Figure 4.8. In this scenario, there is anif-then-else(see Sec-
tion 3.7) construction, in which, if the controlling condition, att he top of
the rst subchart evaluates as true, then, if the loader is not connected,
the device is shut down. On the other hand, if this condition evaluates as
false (there is not a minimum battery level to execute the function), so the
options menu can be presented showConMenu()is executed).

4.3 Concluding Remarks

In this chapter we applied the mapping process presented in Chpter 3 in
two case studies: Pulse Oximeter and ConnectOK.

The Pulse Oximeter is an equipment used inside Critical Care Uits for
measuring the blood oxygen saturation of patients.

The ConnectOK is a mobile device used to reading water, energy and
gas consumption.

We applied the mapping process in these two case studies in ordeto
analyse and verify some interesting properties of that systems First, we
obtained the CPN model and then open this model in CPN Tools to anal-
yse and verify some properties. At the analysis phase we invegate some
common properties, such as liveness, boudedness, repetitivengs fairness
and conservativeness. After analysing this properties, we costructed some
speci ¢ queries to verify some properties. These queries are bui based
on model checking language (CPN-ML) and State Space Queries. Tlse
gueries analyse the state space to verify if a condition is sa8 ed.
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Chapter 5

Conclusion

This chapter brings a summary of the presented work and men-
tions some future works.

Nowadays, embedded systems are present in almost any human inte
acting environment and activities. The crescent adoption of embedled-
system-controlled machines is direct related to the decreasig costs of such
systems.

Due to the cost and the complexity of embedded systems, containing
multiple hardware and software components, sophisticated communication
structure, the variety of possible solutions, performance, energy consump-
tion constraints, correctness and robustness, it is essential lgh-level system
design tools and methods, where functional and architectural description
validation and veri cation might be carried out. Improving syste m reliabil-
ity can be carried out by simulation or through formal analysis/veri cation
that is quite attractive because they spare exhausting simutions.

Over the last years, scenario based mechanisms have been adopted
an interesting alternative for specifying system's requirenents. A more re-
cent way to specify requirements, which is popular in the realm of object-
oriented systems, is the adoption of Message Sequence Charts (N(3).
However, MSCs have some drawbacks, since it can not specify what ost
occur for all system executions, as well as it is unable of specifyig anti-
scenarios.

The LSC language reduces some shortcomings inherent to MSC based
models, such as allowing the possibility of specifying liveness ad anti-
scenarios. LSC allows modelers distinguishing between possibleral neces-
sary behavior both globally (existential and universal charts), on the level
of an entire chart, and locally, when specifying events, conditons, and
progress over time within a chart. The Play-Engineis a powerful tool, in
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which LSC scenarios can be described and simulated. However, itaes not
allow an analysis and veri cation of system's properties.

Petri Net (PN) is, nowadays, a general tool for specifying a family of for-
mal speci cation models suit for representing synchronization, concurrency
or resource sharing. Therefore, PN could be used as a possible approach
analysis and veri cation of system's properties.

This work presented how to mapping the Live Sequence Chart (LSC)
language into an equivalent Coloured Petri Net (CPN) model [33, 34], in
which the obtained CPN model could be analysed and veried. As LSC
language has data-types and adopts high-level concepts suchsanethod in-
vocation, Coloured Petri Nets have been adopted as a suit Petri netariant
since it supports complex data-types and a programming languag (CPN-
ML) that improves value's handling. Therefore, the proposition of a CPN
model for LSC allows veri cation and analysis of systems describedn LSC,
hence, contributing for increasing designers' con dence on the s/stem de-
velopment process and reducing risks that may lead to project faure.

Throughout Chapter 3, the steps that must be applied in order to obtain
the corresponding CPN model (for each individual construction) have been
described. At the end of Chapter 3, we compared LSC and CPN seman-
tics by considering an example, which contains some of the preserdd LSC
constructions. This comparison method does not aim, at this point of our
research, being complete or even validating the mapping method.

After describing the steps to obtain a corresponding CPN model for
an LSC chart, we applied the proposed methodology in two case stud-
ies, presented in Chapter 4. In these case studies, the CPN metk were
obtained through LSC2CPN engine, which automates the LSC tranation.
After translating the LSC speci cations, the obtained CPN modes are anal-
ysed, in which some interesting properties are discussed. Bades analysis,
some speci ¢ properties were veri ed using ASKCTL formulas as a nodel
checking language and using state space queries.

This work brings an important contribution since it describes how to
mapping Live Sequence Chart into Coloured Petri Nets for properies anal-
ysis and veri cation of speci cations based on LSC language, whid may
be useful in the early stages of an embedded system project, redung risks
that may lead to a project failure. However, there are some enharcements
that should be considered.

The proposed methodology does not map the whole set of LSC con-
structions, classes, symbolic instances and forbidden elementare not dis-
cussed. Classes and symbolic instances permit to specify moremplicated
and more powerful scenarios. Through forbidden elements it is possibé to
specify a more direct and exible means for anti-scenarios.
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Another drawback takes respect to the comparison process for LSC a@h
CPN semantics, presented in Chapter 3, that should be applieddr more
examples, however, the presented example contains a represéeative set of
the LSC constructions explored in this work.

The veri cation process adopted in the case studies can be improved
by supplying an interface, in which the user could construct the queries
without the need to know the model checking language syntactic. The user
could de ne some parameters, then submits the veri cation request and
waits for the result, that could be presented as more detailed andexplained
message.

In order to validate the correctness of the proposed methodology, a
more general validation process should be considered. A process aépra
semantics for the LSC language may help in the establishment ofttis vali-
dation process.

Additional work is necessary on the LSC2CPN engine for improving he
automation of the mapping process. Actually, the engine supplies the CPN
model as a CPN Tool [1] format. So the compatibility could be improved
to supply the CPN model as a more general format in order to permit that
the CPN model can be treated in different tools.

Embedded software has become much harder to design due to the di-
versity of requirements and high complexity. In such systems,correctness
and timeliness veri cation is an issue to be concerned. If we ally to this
mapping process, the capability to synthesize code to automatially gener-
ates a “safe” program source code [35], the risks of an embedded pragct
could be reduced.

Nowadays, time constraints can not be attached to individual LSC
events. Once an enhanced version of LSC language with support of e
constraints for events, the presented methodology could be improvedto
deal with these time constraints and provide a way to execute a gerfor-
mance evaluation of an embedded system described using this enheced
LSC language.
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Appendix A

Support Engine

This appendix presents the LSC2CPN support engine, which is agied to
automatize the process of CPN model generation from LSC inscriptios.

The goal of this support engine is not carry through analysis and ver-
cation of properties of the speci ed system. This engine applies the pre-
sented mapping methodology, in which, a CPN model is obtained for eab
LSC construction. Later, this individuals CPN models are joinedn order to
provide a nal CPN model, which can be analysed and veri ed with t he aid
of a tool that offers such support, in this case the CPN Tools [1].

The LSC2CPN engine was built using JAVA [3] technology together wih
JDOM [4], which is an additional library that allows manipulate XM L [2]
les in an easy way. The input to this mapping engine is a XML le g ener-
ated by Play-Engine, which contains the whole system speci caton, mod-
eled through LSC scenarios. After processing this input le, the LSC2CPN
engine applies the mapping process and generates a XML le as apbutput,
which contains the nal CPN model that can be loaded into a speci c tool
(CPN Tools) in order to execute properties' analysis and verifyng of the
modeled system.

The LSC2CPN operation ow can be summarized as follows:

1. Load the XML le provided by Play-Engine;

2. Create the corresponding CPN structure to represent LSC tygs and
classes de ned by the user;

3. Create CPN variables to represent each instance inside ead.SC chart
available in the speci cation;

4. Obtain the individual CPN model for each LSC construction insidea
LSC chart;
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5. Join the CPN models obtained in the previous step, in order to nd a
CPN model that represents a LSC chatrt;

6. Join all CPN models that represents an LSC chart;

7. Generate a XML le with the nal CPN model that represents the LSC
speci cation passed as an input.

This support engine assists the process of properties’ analysisna veri-
cation of the modeled system, but does not automate the whole process
since each system has its particularities, becoming essentidhe availability
of a professional who knows CPN in order to realize the custom veri cation
of the modeled system.



Appendix B

Basic Theory

In this appendix it is presented the basic concepts on logic, theoy of sets
and functions. Many of the de nitions presented here can be found in
[47, 50].

B.1 Logic

A sentence (or proposition) is an expression which is either true orfalse.
The sentence “2 + 2 = 4”7 is true, while the sentence “| is rational” is
false. It is, however, not the task of logic to decide whether any particular
sentence is true or false. In fact, there are many sentences wbse truth
or falsity nobody has yet managed to establish; for example, the fanous
Goldbach conjecture that “every even number greater than 2 is a sm of
two primes”.

Since there are expressions which are sentences under our de iion,
we proceed to discuss ways of connecting sentences to form new sé@nces.

Let p and q denote sentences.

De nition.  (Conjunctions) We say that the sentencep” g (p and q) is
true if the two sentencesp, g are both true, and is false otherwise.

De nition. (Disjunction) We say that the sentencep _ g (p or g) is true
if at least one of two sentencesp, qis true, and is false otherwise.

Remark. To prove that a sentencep__ qis true, we may assume that the
sentencep is false and use this to deduce that the sentence is true in this
case. For if the sentencep is true, our argument is already complete, never
mind the truth or falsity of the sentence q.

De nition. (Negation) We say that the sentencep (not p) is true if the
sentencep is false, and is false if the sentencep is true.

De nition. (Conditional) We say that the sentencep! q(if p, then q)
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is true if the sentence p is false or if the sentenceq is true or both, and is
false otherwise.

Remark. It is convenient to realize that the sentencep! qis false pre-
cisely when the sentencep is true and the sentenceqis false. To understand
this, note that if we draw a false conclusion from a true assumption, then
our argument must be faulty. On the other hand, if our assumption is false
or if our conclusion is true, then our argument may still be acceptable.

De nition. (Double Conditional) We say that the sentencep $ q (p if
and only if g) is true if the two sentences p, q are both true or both false,
and is false otherwise.

B.2 Functions

Let A and B be sets. A function (or mapping) f from A to B assigns to
eachx 2 A an elementf (x) in B. Wewritef : Al B :x 7! f(x) or simply
f :A! B. Ais called the domain of f, and B is called the co-domain of
f . The elementf (x) is called the image ofx under f . Furthermore, the set
f(B)=fy2 B :y=f(x) forsomex 2 Agis called the range or image of
f.

Two functions f : A! :Bandg:A! :B are said to be equal, denoted
byf = g, if f(x) = g(x) for every x 2 A.

It is sometimes convenient to express a function by its graphG. This is
de ned by

G=(xf(X):x2A=(x;y):x2 Aandy = f(x) 2 B:

De nition. We say that a functionf : A! B is one-to-one if x1 = x2
whenever f (x1) = f (x2).

De nition. We say that a functionf : A! B isonto if foreveryy 2 B,
there existsx 2 A such thatf (x) = v.

Remarks. If a function f : A'! B is one-to-one and onto, then an
inverse function exists. To see this, take anyy 2 B. Since the function
f : Al B isonto, it follows that there exists x 2 A such thatf (x) = .
Suppose now thatz 2 A satises f(z) = y. Then since the function f :
A'! B is one-to-one, it follows that we must have z = x. In other words,
there is precisely onex 2 A such thatf (x) = y. We can therefore de ne an
inverse function fit: B ! A by writing fi(y) = x, where x 2 A is the
unique solution of f (x) = vy.

Remarks. Consider a functionf : A! B. Thenf is onto if and only
if for every y 2 B, there is at least onex 2 A such that f (x) = y. On the
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other hand, f is one-to-one if and only if for every y 2 B, there is at most
one x 2 A such thatf (x) = v.

Suppose thatA, B and C are sets and thatf : A! Bandg:B! C
are functions. We de ne the composition function g+f : A! C by writing
(gxf)(x) = g(f (x)) for every x 2 A.

Associative law. Suppose thatA, B, C and D are sets, and thatf : A !
B;g:B! Candh:C! D arefunctions. Thenhx(g+f)=(hzxg) £f.

B.3 Sets

A set is usually described in one of the two following ways:

2 By enumeration, e.g. 1, 2, 3 denotes the set consisting of the numbes
1, 2, 3 and nothing else;

2 By a de ning property (sentential function) p(x). Here it is important
to de ne a universe U to which all the x have to belong. We then
write P = fx : x 2 U and p(x)istrue g or, simply, P = fx : p(x)g.

Suppose that the sentential functionsp(x) and g(x) are related to setsP,

Q with respect to a given universe, i.e. P = fx : p(x)gand Q = fx : q(x)g.
It is de ned:

2 The intersectionP \ Q= fx:p(xX) * qX)g;

2 TheunionP [ Q= 1fx:p(x) _ q(X)o;

2 The complementP = fx : p(x)g;

2 The difference P=Q= fx : p(x) * q(x)g.

The above are also sets. It is not dif cult to see that:

2P\ Q=fx:x2Pandx 2 Qqg;

2P [ Q=1fx:x2Porx2Qg;

2 P=fx:x2Pg;

2 P=Q=fx:x2 P andx 2 Qg.
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The setP is a subset of setQ, denoted by P 4 Qorby Q T P, if every
element of P is an element of Q. In other words, if we have P = fx : p(x)g
and Q = fx : q(x)g with respect to some universeU, then we haveP p Q
if and only if the sentence p(x) ! q(x) is true for all x 2 U.

Two setsP and Q are equal, denoted byP = Q, if they contain the same
elements, i.e. if each is a subset of the other, i.e. ifP p Qand Q u P.

Furthermore, P is a proper subset ofQ, denoted by P %2Q or by Q %P,
ifPpuQandP 6 Q.

The following results on set functions can be deduced from their ana-
logues in logic.

Distributive Law. If P, Q, R are sets, then:

@ P\ (QI R)=(P\ Q[ (P\ R);
(b) PL (Q\R)=(P[ Q\ (P[R).
De Morgan Law. If P,Q are sets, then with respect to a universeU:
@ P\ Q=P[Q
() (P[ Q=P\ Q.

In general, consider a sentential function of the form p(x), where the
variable x lies in some clearly stated set. It can be consider the following
two sentences:

2 8x;p(x) (for all x, p(x) is true);
2 9x; p(x) (for some x, p(x) is true).

De nition.  The symbols 8 (for all) and 9 (for some) are called the
universal quanti er and the existential quanti er respect ively.

Note that the variable x is a “dummy variable”. There is no difference
between writing 8x; p(x) or writing 8y; p(y).
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Glossary

FIFO —First in, rst out. An asset-management and valuation method in
which the assets produced or acquired rst are sold, used or dispogd of
rst.

Java — A programming language introduced by Sun Microsystems. Java
is a multi-platform, platform-independent, object oriented prog ramming
language. Java programs are not compiled, but rather interpreted as run.

GSM - Global System for Mobile communications, the most widely used
digital mobile phone system and the de facto wireless telephone sandard
in Europe. Originally de ned as a pan-European open standard for a
digital cellular telephone network to support voice, data, text messaging
and cross-border roaming. GSM is now one of the world's main 2G digital
wireless standards.

GPRS - A packet switching technology for GSM networks. It's an advanced
data transmission mode that does not require a continuous connectionto
the Internet, as with a standard home modem. Instead, GPRS useshe
network only when there is data to be sent, which is more ef cient.

ITU — International Telecommunication Union, an intergovernmental

organization through which public and private organizations develop

telecommunications. The ITU was founded in 1865 and became a United
Nations agency in 1947. It is responsible for adopting international
treaties, regulations and standards governing telecommunicdions. The
standardization functions were formerly performed by a group with in the

ITU called CCITT, but after a 1992 reorganization the CCITT no longer
exists as a separate entity.
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