
Mercury: An Integrated Environment for
Performance and Dependability Evaluation of

General Systems

Bruno Silva∗, Rubens Matos†, Gustavo Callou‡, Jair Figueiredo†, Danilo Oliveira†,
Joao Ferreira†, Jamilson Dantas†, Aleciano Lobo†, Vandi Alves† and Paulo Maciel†

∗Academic Unit of Serra Talhada, Federal Rural University of Pernambuco,
Serra Talhada, Brazil, Email: bs@cin.ufpe.br

‡Informatics Center, Federal University of Pernambuco, Recife, Brazil
{rsmj, jjcf, dmo4, jfsj3, jrd, aflj, valn, prmm}@cin.ufpe.br

†Department of Statistics and Informatics, Federal Rural University of Pernambuco,
Recife, Brazil, Email: gustavo@deinfo.ufrpe.br

Abstract—The evaluation of dependability or performance of
general systems is not a trivial task. Therefore, the assistance of
software tools to obtain the wanted metrics is of utmost impor-
tance. This paper introduces the Mercury environment, which
is an integrated software that enables creating and evaluating
Reliability Block Diagrams, Stochastic Petri Nets, Continuous
Time Markov Chains, and Energy Flow Models. Mercury pro-
vides graphical user interface for these modeling formalisms and
a script language that allows using it through command-line
interface and also integration with external applications. The set
of features available in the Mercury tool make it helpful for
dependability and performance evaluation of various systems in
both academy and industry scenarios.

I. INTRODUCTION

Software packages for creation and evaluation of depend-
ability and performance models are essential tools for infras-
tructure designers, since they provide support to dealing with
the complexity of each formalism. Generally they provide a
user-friendly graphical user interface (GUI), and an evaluation
engine to obtain metrics from the model. Each software has its
strengths and drawbacks, and can be specialized in a specific
formalism, or support different types of models.

Mercury tool [1] was developed by MODCS research
group to allow the creation and evaluation of performance
and dependability models. The proposed environment can be
adopted as a modeling tool for the following formalisms:
Continuous Time Markov Chains (CTMC) [2], Reliability
Block Diagrams (RBD) [3], Energy Flow Models (EFM) [4],
and Stochastic Petri Nets (SPN) [5]. Mercury offers useful
features that are not easily found in other tools, such as: more
than 25 probability distributions supported in SPN simulation,
sensitivity analysis of CTMC and RBD models, computation
of reliability importance indices, and moment matching of
empirical data. The proposed environment has been adopted by
MODCS Research Group. The tool’s web [1] page presents the
papers (e.g., [6]) that adopted Mercury as evaluation engine.

There are many academic and commercial software tools
for dependability and performance evaluation of general sys-
tems. BlockSim [7] allows system modeling by using RBD
and Fault Trees [2], or even combination of both modeling

techniques, but do not use state-based models (e.g. SPNs)
which makes it harder to deal with dependencies. Relex [8] and
Sharpe [9] provide dependability and performance evaluation
through the adoption of RBD, SPN, and CTMC models,
just like the proposed tool. However, the later tool obtains
SPN metrics only by numerical analysis. This method is
unsuitable when the modeled system is too complex and
large [10]. The proposed solution also provides simulation as
a more comprehensive technique for finding metrics of SPNs.
Different from previous works, Mercury presents RBD, SPN,
CTMC, and EFM modelling for calculation of dependability
and performance in a single environment.

This paper explores the characteristics of Mercury tool,
and is organized as follows. Section II describes the features
for each modeling formalism supported by Mercury. Section
III presents the scripting language which enable textual rep-
resentation and evaluation of models as well as interaction
through command-line interface (CLI). Section IV describes
a case study that uses Mercury tool to solve an availability
model for a cloud system. Section V draws the final remarks
on this tool.

II. TOOL OVERVIEW

This section presents the main features available on Mer-
cury for all supported modeling formalisms.

SPN editor and evaluator.

Regarding SPN models, Mercury environment allows de-
pendability/performance evaluation utilizing simulation and
numerical analysis techniques [10], [11]. Time-dependent met-
rics are obtained through transient evaluation, while steady-
state metrics are result of stationary evaluation. Figure 1
depicts the SPN editor. To assist the validation of SPN models,
the editor has a feature, namely, token game, which makes
possible the firing of transitions graphically and interactively
according to the current net marking. By adopting Mercury
tool, users can evaluate structural properties of the adopted
stochastic Petri net through the analysis of place invariants,
siphons and traps [12].

CTMC editor and evaluator.

Paulo
Typewriter
In: Proceedings of Industrial Track at 45th Dependable Systems and Networks Conference (DSN-2015). June 22 – 25, 2015. Rio de Janeiro, RJ, Brazil.

Fig. 1. Mercury environment - SPN editor and evaluator

Mercury provides a panel in which users can create, edit,
and evaluate CTMC models (Figure 2). Representative numer-
ical techniques are available for stationary analysis: GTH [13]
and Gauss-Seidel [2]) as well as transient analysis (i.e., Uni-
formization, Runge-kutta and Trapezoid-Euler [2]). For models
that have absorbing states, Mercury also enables computing
probability of absorption and mean time to absorption. The
user may create custom metrics with expressions that include
state probabilities. Transition rates can be defined by means of
algebraic expressions using symbolic parameters. Parameter
names can include greek letters. Parameters and metrics are
easily viewed and modified in the CTMC editor. Mercury is
also able to compute the sensitivity of state probabilities to
each input parameter.

Fig. 2. Mercury environment - CTMC editor and evaluator

RBD editor and evaluator.

The Mercury tool RBD editor and evaluator allows relia-
bility and availability analysis using block diagrams. The types
of reliability configurations supported by the RBD editor and
evaluator are: Series, Parallel, K out of N, and Bridge. In
this editor, a diagram contains only one input and one output
node. RBDs provide closed-form equations, so the results
are usually obtained faster than using other methods, such
as SPN simulation. However, there are many situations (e.g.,
dependency among components) in which modelling using
RBD is harder than adopting SPN. Figure 3 shows an RBD
view of the tool, in this configuration some components are in
series and parallel arrangement.

Additionally, the RBD evaluator allows the calculation of
reliability importance, structural and logical functions as well
as bounds of dependability measures. Reliability Importance
(RI) is a technique that allows to quantify the improvement in
system reliability due to a component, when the respective reli-
ability is increased by one unit. Structural and logical functions

Fig. 3. Mercury enviroment - RBD editor and evaluator

are alternative ways of representing the system mathematically,
in which the former adopts algebraic function and the latter
adopts logical expression. RBD evaluation of dependability
bounds [14] is a method to calculate dependability metrics
(e.g., reliability) when the RBD model is too large. In this case,
such a technique can provide approximations for the exact
metric faster than solving all closed-form equations precisely.
As the bounds are calculated iteratively, Mercury environment
shows the estimated bounds according to the user parameters
and, also, all intermediate computed values.

EFM Editor.

The Energy Flow Model (EFM) is proposed to evaluate the
cost, sustainability and availability of datacenter (or clouds)
power and cooling infrastructures, respecting the power con-
strains of each device.

Figure 4 depicts the EFM editor and evaluator. The high-
lighted rectangle shows the set of evaluations available in the
Mercury tool, where:

• Cost Evaluation allows designers to evaluate acqui-
sition, operational and total costs;

• Exergy Evaluation represents the sustainability eval-
uation through the exergy metric. Exergy enables one
to estimate energetic efficiency of a system;

• Energy Flow Evaluation Computes the energy that
flows through each device respecting the power con-
straints of each device;

• Combined Evaluation provides an integrated quan-
tification of sustainability impact, cost and depend-
ability of data center (or cloud) power and cooling
infrastructures [4];

• Flow Optimization (GRASP, PLDA, PLDAD) is
able to evaluate RBD, SPN, CTMC and EFM models
by calling the Mercury engine. A GRASP [15] based
algorithm, a power load distribution algorithm (PLDA)
[16] and a power load distribution algorithm depth
(PLDAD) represent three optimization techniques
that were implemented in that module.

Figure 4 shows an example of the EFM. The rectangles
equates to the type of equipment, and the labels represent each
device name. The edges have weights that are used to direct
the energy flow between the components. The EFM computes

Paulo
Typewriter
In: Proceedings of Industrial Track at 45th Dependable Systems and Networks Conference (DSN-2015). June 22 – 25, 2015. Rio de Janeiro, RJ, Brazil.

the overall energy required to provide the necessary energy at
the target point.

Fig. 4. EFM Editor and Evaluator

Auxiliary Tools.

Mercury environment has an additional tool responsible for
generating random numbers, namely, random variate generator,
which contemplates several probability distributions. Statistical
summaries are also provided for the generated numbers (e.g.,
standard deviation) and the data can be exported to files in
order to be utilized for external applications. Moreover, the
generator is utilized by the SPN simulation, in which the
user can choose different probability distributions associated
to transitions.

Another important auxiliary tool presented in Mercury
environment is the moment matching [17] wizard. By adopting
this tool, users can estimate what exponential-based probability
distribution best fits the mean (first moment) and standard
deviation (second moment) of user data for a given model
parameter.

III. MERCURY LANGUAGE

One feature introduced on version 4.4 of Mercury tool is
a scripting language for creating and evaluating models. The
scripts can be executed by command line interface (CLI) or
via graphical interface. The main objective of the scripting
language is to allow the use of Mercury evaluation engine
with greater flexibility than the GUI provides. The scripting
language enables, for example, using shell scripts to automate
an evaluation workflow. The scripting language offers an ad-
ditional advantage that is the increased support to hierarchical
evaluation [18] [19]. Input parameters of any model can be
defined as function of an output metric defined by another
model, independent of the modeling formalism. The Mercury
scripting language currently supports SPN, RBD, and CTMC
models.

In the Listing 1, we show an example of script in Mercury
language. A script has the following structure: first, we define
a set of models, each one with its parameters and metrics, and
after the models we declare a main section. In the main section
we can set the input parameter values, evaluate the models
and print the results. The example of listing 1 shows a CTMC
definition and evaluation. This model was originally presented
in [18], and represents a cluster controller for a private cloud
platform with active/passive redundancy scheme. Inside the

model we declare a set of states, with the reserved word state
followed by the state name, plus an optional up keyword. The
up keyword denotes a state of the system when it is functioning
normally, for availability evaluation. Next, we declare the set of
transitions between the states, with the transition keyword. For
the transition rate, we can set a fixed value, use an algebraic
expression or use variables that can be assigned when the
model is evaluated. Next, we define the metrics of the model,
that are the results that we want to compute. The scripting
language allows computing the following metrics for CTMCs:
stationary availability, stationary probability for a state, and
steady-sate reward rate, through explicit assignment of rewards
to specific states 1. Finally, we define the main section, where
we set the input parameters values, evaluate the model, and
write the results on screen.

Listing 1. Mercury script for a CTMC model
markov RedundantGC{

s t a t e fu up ;
s t a t e fw ;
s t a t e f f ;
s t a t e u f up ;
s t a t e uw up ;

t r a n s i t i o n fw −> fu (r a t e = s a s 2) ;
t r a n s i t i o n fu −> f f (r a t e = lambda s2) ;
t r a n s i t i o n f f −> uf (r a t e = mu s1) ;
t r a n s i t i o n u f −> uw (r a t e = mu s2) ;
t r a n s i t i o n uw −> fw (r a t e = lambda s1) ;

t r a n s i t i o n fw −> uw (r a t e = mu s1) ;
t r a n s i t i o n uw −> uf (r a t e = l a m b d a i s 2) ;
t r a n s i t i o n u f −> f f (r a t e = lambda s1) ;

t r a n s i t i o n fw −> f f (r a t e = l a m b d a i s 2) ;
t r a n s i t i o n fu −> uw (r a t e = mu s1) ;

m e t r i c a v a l = a v a i l a b i l i t y ;
m e t r i c a v a l 2 = reward (fu = 1 , u f = 1 , uw = 1) ;
m e t r i c p1 = s t a t i o n a r y P r o b a b i l i t y (s t = fw) ;
m e t r i c p2 = s t a t i o n a r y P r o b a b i l i t y (s t = f f) ;

}

main{
lambda s1 = 1 / 1 8 0 . 7 2 ;
mu s1 = 1 / 0 . 9 6 6 9 0 2 ;
mu s2 = 1 / 0 . 9 6 6 9 0 2 ;
l a m b d a i s 2 = 1 / 2 1 6 . 8 6 5 ;
lambda s2 = 1 / 1 8 0 . 7 2 1 ;
s a s 2 = 1 / 0 . 0 0 5 5 5 5 5 5 5 ;

a1 = s o l v e (model = RedundantGC , m e t r i c = a v a l) ;
p r i n t l n (a1) ;

a2 = s o l v e (model = RedundantGC , m e t r i c = a v a l 2) ;
p r i n t l n (a2) ;

}

IV. CASE STUDY

This section presents a case study to demonstrate the
feasibility of adopting the Mercury tool to create and evaluate
models for some proposed architectures. We evaluate a simple
cloud computing architecture originally presented in [18]. The
architecture implements a redundant mechanism in the main
component following a warm-standby strategy.

The hierarchical heterogeneous model [18] of this study
comprises RBDs and a CTMC. The RBD describes the high-
level components, whereas the CTMC represents the compo-
nents involved in the redundancy mechanism. This case study

1It is important to stress that other metrics (e.g., state probabilities at a
given point in time) can be computed via GUI

Paulo
Typewriter
In: Proceedings of Industrial Track at 45th Dependable Systems and Networks Conference (DSN-2015). June 22 – 25, 2015. Rio de Janeiro, RJ, Brazil.

considers the example of an architecture with five nodes, where
at least one node must be available for the cloud to work
properly. Therefore the Nodes subsystem is represented by a
set of five node blocks in parallel.

Fig. 5. RBD model for the non-redundant cloud system [18]

Figure 5 shows the complete RBD model with one (non-
redundant) General Controller and its five nodes. It is important
to stress that a warm-standby replication strategy cannot be
properly represented by RBD models, due to dependency
between states of components, therefore another model is
used to represent a redundant architecture, with one General
Controller active and one replicated GC host in warm-standby.
So the redundant General Controller subsystem is represented
by a CTMC, shown in Figure 6.

Fig. 6. CTMC Model to redundant system with two hosts [18]

Mercury tool was used to create the models and compute
the availability measures of cloud system with and without
redundant general controller. Table I presents the measures
obtained with Mercury.

TABLE I. AVAILABILITY MEASURES OF THE SYSTEM WITH AND
WITHOUT REDUNDANCY

Measure GC without redundancy GC with redundancy
Steady-state availability 0.9946782 0.9999179
Number of 9’s 2.27394 4.08581
Annual downtime 46.66 h 0.72 h

V. FINAL REMARKS

This paper presented the main features of Mercury tool
and demonstrated the feasibility of using it for analyzing
a cloud computing system. Mercury tool has been used in
several research projects which had the results published in

peer-reviewed journals and conferences. The MODCS research
group is constantly improving the tool, by adding new features
and updating existing functions. New versions are released
every six months approximately, but this is a flexible policy
adjusted according to some variables. This modeling tool is
helpful for academy and industry efforts on capacity planning
of many kinds of systems through performance evaluation,
dependability prediction through reliability and availability
evaluation, and data-center energy flow planning.

REFERENCES

[1] B. Silva, “Mercury tool,” http://www.modcs.org/?page id=1397, ac-
cessed: 2015-01-05.

[2] K. Trivedi, Probability and Statistics with Reliability, Queueing, and
Computer Science Applications, 2nd ed. Wiley Interscience Publica-
tion, 2002.

[3] P. Maciel, K. S. Trivedi, R. Matias, and D. S. Kim, Performance
and Dependability in Service Computing: Concepts, Techniques and
Research Directions, ser. Premier Reference Source. Igi Global, 2011,
ch. Dependability Modeling.

[4] G. Callou, P. Maciel, D. Tutsch, J. Ferreira, J. Araújo, and R. Souza,
“Estimating sustainability impact of high dependable data centers: A
comparative study between brazilian and us energy mixes,” Computing,
vol. 95, no. 12, pp. 1137–1170, 2013.

[5] M. Molloy, “Performance Evaluation Using Stochastic Petri Nets,”
IEEE Trans. Comput, vol. 31, no. 9, pp. 913–17, 1982.

[6] B. Silva, P. Maciel, J. Brilhante, and A. Zimmermann, “Geoclouds
modcs: A perfomability evaluation tool for disaster tolerant iaas clouds,”
in Systems Conference (SysCon), 2014 8th Annual IEEE. IEEE, 2014,
pp. 116–122.

[7] “Blocksim tool,” http://www.reliasoft.com/BlockSim.
[8] “Relex tool,” http://www.relex.com.
[9] A. R. Sahner and S. K. Trivedi, “Reliability modeling using sharpe,”

Durham, NC, USA, Tech. Rep., 1986.
[10] G. Balbo and G. Chiola, “Stochastic petri net simulation,” in WSC ’89:

Proceedings of the 21st conference on Winter simulation. New York,
NY, USA: ACM, 1989, pp. 266–276.

[11] G. Balbo, “Introduction to stochastic petri nets,” Lectures on Formal
Methods and Performance Analysis: First EEF/Euro Summer School
on Trends in Computer Science, Berg en Dal, The Netherlands, July
3-7, 2000: Revised Lectures, 2001.

[12] M. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
“Modelling with Generalized Stochastic Petri Nets,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 26, no. 2, 1998.

[13] W. K. Grassmann, M. I. Taksar, and D. P. Heyman, “Regenerative
analysis and steady state distributions for markov chains,” Operations
Research, vol. 33, no. 5, pp. 1107 – 1116, 1985.

[14] W. Kuo and M. J. Zuo, Optimal Reliability Modeling - Principles and
Applications. Wiley, 2003.

[15] G. Callou, J. Ferreira, P. Maciel, D. Tutsch, and R. Souza, “An integrated
modeling approach to evaluate and optimize data center sustainability,
dependability and cost,” Energies, vol. 7, no. 1, pp. 238–277, 2014.

[16] J. Ferreira, G. Callou, and P. Maciel, “A power load distribution
algorithm to optimize data center electrical flow,” Energies, vol. 6, no. 7,
pp. 3422–3443, 2013.

[17] A. Desrochers and R. Al-Jaar, Applications of Petri Nets in Manufac-
turing Systems: Modeling, Control, and Performance Analysis. IEEE
Press, 1995.

[18] J. Dantas, R. Matos, J. Araujo, and P. Maciel, “Eucalyptus-based private
clouds: availability modeling and comparison to the cost of a public
cloud,” Computing, pp. 1–20, 2015.

[19] R. Matos, J. Araujo, D. Oliveira, P. Maciel, and K. Trivedi, “Sensitivity
analysis of a hierarchical model of mobile cloud computing,” Simulation
Modelling Practice and Theory, vol. 50, no. 0, pp. 151 – 164, 2015,
special Issue on Resource Management in Mobile Clouds.

Paulo
Typewriter
In: Proceedings of Industrial Track at 45th Dependable Systems and Networks Conference (DSN-2015). June 22 – 25, 2015. Rio de Janeiro, RJ, Brazil.

