

An Integrated Modeling Approach for Analyzing Dependability, Cost and Sustainability of IT Data Center Systems

Gustavo Callou

gustavo@deinfo.ufrpe.br

Professor Paulo Maciel

prmm@cin.ufpe.br

- Introduction
- Objective
- Preliminaries
 - Data Center Infrastructure
 - Metrics
 - Exergy
 - Stochastic Petri Nets
 - Reliability Block Diagrams
- Models
- Mercury Environment
- Case Study
- Conclusion

Introduction

- Data centers are growing

- Fact (Considering U.S.)

• Data centers consume about 2 % of the whole power generated .

Concern about

- Energy Consumption,
- Environmental Sustainability.

- Sustainable data centers

- Least amount of materials,
- Least energy consumption.
- Availability
- Fault-Tolerance

3

Objective

- To provide:
 - a set of models for the integrated quantification of sustainability impact, cost and dependability of IT data center infrastructures.

Data Center Infrastructure

- IT infrastructure:
 - Servers,
 - Networking equipment,
 - Storage devices.
- Power infrastructure:
 - SDT \rightarrow transfer switches \rightarrow UPS \rightarrow PDUs \rightarrow rack
- Cooling infrastructure:
 - Extracts heat \rightarrow prevents overheating
 - CRAC, Cooling Tower, Chiller

Data Center Infrastructure

– IT infrastructure:

- Servers,
- Networking equipment,
- Storage devices.
- Power infrastructure:
 - SDT \rightarrow transfer switches \rightarrow UPS \rightarrow PDUs \rightarrow rack
- Cooling infrastructure:
 - Extracts heat \rightarrow prevents overheating
 - CRAC, Cooling Tower, Chiller

- Dependability
 - Availability
- Sustainability Impact
 - Exergy Consumption
 - Energy Consumption
- Cost
 - Acquisition cost
 - Operational cost

- Energy can never be destroyed (FLT).
- Exergy can be destroyed (SLT).
- The exergy destruction or consumption (irreversibility) must be appropriately minimized to obtain sustainable development.
- Exergy (available energy)
 - Represents the maximal theoretical portion of the energy that could be converted into work;
 - A system which consumes the least amount of exergy is often the most sustainable;
 - Exergy is useful when measuring the efficiency of an energy conversion process

- Graphical and Mathematical modeling tool
 For modeling:
 - concurrency,
 - synchronization,
 - communication mechanisms,
 - deterministic and probabilistic delays
- SPNs extend PNs.
- Each transition has a firing time assigned to it:
 - timed transitions (exponentially distributed)
 - immediate transitions

10

• Simple Component

11/17/2015 12:34 PM

MoDCS - Modelling of Distributed and Concurrent Systems <www.modcs.org>

11

Stochastic Petri Net (SPN)

Fig. 7. SPN model considering 3+1 servers redundancy behavior.

11/17/2015 12:34 PM

13

- A **Reliability Block Diagram** (RBD) is a non-state space model that enables analysis of **reliability** and **availability** of complex systems using block diagrams.
- In a block diagram model, components are combined into blocks in series, parallel, or *k-out-of-n*.
- The structure of RBD establishes the logical interaction among components

• Series
$$P_s = \prod_{i=1}^n P_i$$

• **Parallel**
$$P_p = 1 - \prod_{i=1}^{n} (1 - P_i)$$

nn

where P_i is the reliability - $R_i(t)$ (instantaneous availability $(A_i(t))$ or steady state availability (A_i)) of block b_i .

11/17/2015 12:34 PM

15

 The system under evaluation can be correctly arranged, but they may not be able to meet system demand for electrical energy.

Fig. 5. a) IT System example; b) Maximum Capacity; c) Successful Energy Flow; d) Failed Energy Flow.

- The main goal of this paper is to support data center designers in relation to metrics such as cost, availability and sustainability taking into account IT infrastructures.
- In order to illustrate this, we have been modeling a data center infrastructure that supports 60 racks of servers as well as other devices (routers and switches) to provide the necessary communication environment.

11/17/2015 12:34 PM

- Scenarios:
 - I: each rack is composed of 6 servers without redundancy.
 - II: racks composed of 8 servers with two subsystems of 3+1 redundancy, in which the time of 150 seconds is considered for activating a spare server.
 - III considers 10 servers into two groups of 3+2 redundancy also taking into account 150 seconds to activate the backup server.
 - IV: corresponds to the **second** one in **without activation time**
 - V: adopts the **third** scenario **without** assuming the activation **time**.

Dependability Models for IT RACKS

• Scenario II

11/17/2015 12:34 PM

Dependability Models for IT RACKS

MoDCS

Dependability Models for IT RACKS

- IT system
 - server racks,
 - switches and
 - routers.
- 20 switches of 48ports
 - two completely redundant paths
 - two subsystems of 10 switches each
- Two routers

System Dependability

17/11/2015 12:34

23

24

Each switch represents 10 switches

System Dependability

MoDCS - Modelling of Distributed and Concurrent Systems <www.modcs.org>

25

EFM Model

17/11/2015 12:34

26

Results

11/17/2015 12:34 PM

MoDCS - Modelling of Distributed and Concurrent Systems <www.modcs.org>

27

- Data center designers do not have many mechanisms to support the integrated sustainability, cost and dependability evaluation of IT data center infrastructures.
- This work aims at **reducing** this **gap** by proposing **models** (supported by the developed environment Mercury)
- As a future work, we intend to extend the EFM to support the verication of other IT metrics (e.g., maximum number of requests or packages).

An Integrated Modeling Approach for Analyzing Dependability, Cost and Sustainability of IT Data Center Systems

Gustavo Callou

gustavo@deinfo.ufrpe.br

Professor Paulo Maciel

prmm@cin.ufpe.br