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Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers 

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up

How to handle design complexity?

• For how long Moore’s law will stand?
… forever?

– Gordon Moore, "Cramming more components onto integrated 
circuits", Electronics Magazine 19 April 1965:

• Sustained increase in the transistors/chip 
doubling every ~1 ½ years since 1959
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Design complexity 
versus designer productivity

• Design Complexity  � Moore’s law
– Transistors/chip doubling every 18 months

• Designer Productivity
– Methodology

– Modularity and Reusability

– Model-based design

– Top-down model-based approach versus bottom-up

– Handling different abstraction levels

– Interoperability

– Tool dependent

– …

Design complexity 
versus designer productivity

• Top-down versus bottom-up approaches
– To handle complexity, it is normally assumed that 

analysis needs to be hierarchical and top-down.
– However, reuse of modules is fundamental.

• Pragmatic approach (mostly followed):
– Primarily follow top-down approach (system-level) 
– Complemented with bottom-up attitude (to 

support reusability)
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The productivity gap

Design Complexity

Designer Productivity

Reducing the 
productivity gap:

One major challenge 
in current design of 
embedded systems

The verification gap

Designer Productivity

Verification Capability

Another major 
concern in current 

design of embedded 
systems
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Needs to improve the design…

• If one looks into ways for:
– improving performance, 
– reducing power consumption, 
– reducing costs, 
– reducing time-to-market,
– reducing…
– Improving…

• Concurrent and distributed computing and control
is one major option to support improvement on 
several aspects.

Academic example on a 
concurrency class

process P1; 
var I: Integer; 
begin

for I := 1 to 10 do 
N := N + 1

end;

From: The Concorde Doesn’t Fly Anymore; Moti Ben-Ari
Keynote Talk, SIGCSE 2005, St. Louis, MO

process P2; 
var I: Integer; 
begin

for I := 1 to 10 do 
N := N + 1

end;

var N: Integer := 0; Proc. Instr. Reg. Reg. N

P1 P2

P1 Load N 0 0 0

P2 Load N 0 0 0

P1 Increm 0 0 0

P2 Increm 1 0 0

P1 Store N 1 1 0

P2 Store N 1 1 1

1 1 1“perfect” interleaving �
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Open issues and challenges

• How to reduce the productivity gap?
• How to reduce the verification gap?
• How to support reliable distributed

execution?
• Contribution to the answers:

– Relying more and more on Model-based
Development

– Increasing usage of design automation tools
(including specification, simulation/validation, 
verification, code generation, and test)

Moving to model-based 
development

• Models are used not only for describing specifications of 
the system at earlier phases of development, but also 
intended to be used along the whole development 
process, including automatic code generation (verification 
and implementation).

• Start with platform independent specification, “easily” 
supporting porting/implementation into specific platforms.

• For that end, an operational model having a precise 
execution semantics needs to be selected, allowing usage 
of the model at the different stages of the development 
process.
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Model-based 
development :

from partial 
models to 

deployment into 
implementation 

platforms

Selection of model formalism

• Several modeling formalisms already proved 
their adequacy fully supporting this model-based 
development flow strategy 

• Considering controller design, it is common to 
give preference to state-based modeling 
formalisms due to its expressiveness 
capabilities. 

• Also selecting an operational formalism will 
support the whole development cycle, including 
automatic code generation.



14

Selection of model formalism
• Among those eligible formalisms, it is worth 

to mention state diagrams, hierarchical and 
concurrent state diagrams, statecharts, and 
Petri nets.

• It is not a surprise that the selected 
formalism for this presentation is Petri nets:
– Rigorous computational model
– Precise execution semantics
– Graphical representation
– Formal representation

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers 

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up
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Petri nets for controller modeling

• Starting with autonomous classes of Petri nets…
• Extremely important to have the possibility to add 

dependencies to the environment under control, namely 
input and output signals and events. 

• In those cases, those Petri nets classes become non-
autonomous.

• Several classes of non-autonomous Petri nets have 
been referred in the literature (some having strong links 
with automation systems) ((Silva 1985) (David & Alla 
1992) (Venkatesh, Zhou & Caudill 1994) (Hanisch & 
Lüder 2000) (Frey 2000) (Frey & Wagner 2006)).

The Input-Output Place-Transition 
Petri net class (IOPT nets)

• Extended from the Place/Transition net class (and 
benefiting from interpreted and synchronous net cla sses)

• Non-autonomous dependencies:
� Input and output signals Input and output events
� Transition firing conditioned by input events and guard functions referencing 

input signals
� Transition firing can generate output events
� Output signals can be associated with places

• Allows Deterministic execution: Maximal step execution semantics

� Includes Transition priorities and Test arcs
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Application example 
(from automation area)

• Controller for a 
transportation 
system composed 
by three cars

• Cars move 
asynchronously but 
start synchronizely 
at both ends.

GO

BACK

A1 B1

A2 B2

A3 B3

M1

Dir1

M2

Dir2

M3

Dir3

From: M. Silva, Las Redes de Petri: en la Automática y 
la Informática. Madrid: Editorial AC, 1985

Application example

• Goal 1: to obtain a controller 
for one car

• Goal 2: to obtain a controller 
for the whole system 
composed by three cars

• Goal 3: to obtain a distributed 
controller composed by 3 
controllers, one per car
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Goal 1: to obtain a controller for 
one car

A1 B1

GO BACK
�M1
�DIR1

One car
controller

GO

BACK

A1

B1
M1

DIR1

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers 

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up



18

Distributed 
Embedded 
Controllers 

Development 
Flow
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System model
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Distributed components

Platform components
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System model

Composition
(through 
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Distribution

Mapping

Construction of 
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Decomposition
(through 
splitting)

Concurrent 
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Distributed
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Platform
components

Automatic 
code

generation
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Mapping

Construction of 
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(through 
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components
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Distributed 
Embedded 
Controllers 

Development 
Flow
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System model

Composition
(through 
addition)

Distribution

Mapping

Construction of 
partial sub-models

Decomposition
(through 
splitting)

Concurrent 
components

Distributed
components

Platform
components Automatic 

code
generation

Prototype

Distributed 
Embedded 
Controllers 

Development 
Flow

Synchronous 
execution

Globally 
Asynchronous 

Locally 
Synchronous 

execution

Platform 
Independent 

Model 
(PIM)

Platform 
Specific 
Model 
(PSM)

Application example

• Goal 1: to obtain a controller 
for one car

• Goal 2: to obtain a controller 
for the whole system 
composed by three cars

• Goal 3: to obtain a distributed 
controller composed by 3 
controllers, one per car
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Goal 2: to obtain a controller for the 
whole system composed by three cars

Three cars
controller

M2

DIR1
A3

B3

GO
BACK

A2

B2

M1

M3

DIR3

DIR2

A1

B1

Approach: Replication of individual models (supporting reusability)
Problem: synchronizaton at both ends is not satisfied
Solution: we need to adequately compose the models

car1 car2 car3

Composability of net models
• Several solutions have been proposed
• Fusion of places (asynchronous composition)
• Fusion of transitions (synchronous composition)
• Fusion of places and transitions
• Major three steps

– Identification of the models to compose
– Definition of the interfaces of the models and nodes to 

be merged
– Merging models
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The net addition operation

carcent = car1 + car2 + car3
(car1.go/car2.go/car3.go � go,
car1.back/car2.back/car3.back � back)

car1 car2 car3 carcent

What about property verification?

• Having non-
autonomous Petri 
nets, we need to 
face state-space 
based verification 
techniques.
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State space verification

• Plenty of tools available for verification of 
autonomous low-level nets.

• The number of tools shrinks if maximal 
step is considered as execution 
semantics.

• And shrinks again if non-autonomous 
dependencies are considered.

• Anyway, for automation systems, several 
tools are available.

Properties for our controller model
16 states detected; no conflict; no deadlocks
All places having as minimum marking 0 tokens 
and as maximum marking 1 token



23

Goal 3: to obtain a distributed controller 
composed by 3 controllers, one per car

M2

DIR1
GO

BACK

A2

B2

M1

M3

DIR3

DIR2A1

B1

Three cars distributed 
controller

Car 1
controller

Car 2
controller

Car 3
controller

A3

B3

Approach : 
Decompose the model 
into concurrent models 

Problem : 
we need to introduce 
communication
between 
sub-models

Constraint : we want 
to assure property 
preservation

The net splitting operation
• Decomposition into a set of concurrent models, 

which (whenever executed according with 
synchronous paradigm) will preserve properties.

• Usage of directed synchronous channels to 
communicate among components synchronizing 
transition synchrony sets.
– One master transition (responsible for the firing of the 

synchrony set);
– One or more slave transitions 

• Concurrent models are amenable to support 
distributed execution of the Petri net model (in a 
later stage)
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The net splitting operation
• Identifying the nodes (the cutting set) where the 

model should be broken. 
• The nodes defined as cutting set have to be 

validated.
• Once defined a valid cutting set, the result sub-

models can be obtained applying three rules, 
depending on the cutting node:
– Rule#1, cutting node is a place
– Rule #2, cutting node is a transition with incoming 

arcs only from one component
– Rule #3, cutting node is a transition with incoming 

arcs from more than one component

Rule1 – Splitting by place

Initial model

(only referring the locality 
associated with the cutting node)

Component models
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Rule2 – Splitting by transition 
with incoming arcs only from 

one component

Initial model

(only referring the locality 
associated with the cutting node)

Component models

Initial model

(only referring the locality 
associated with the cutting node)

Component models

Rule3 – Splitting by transition with 
incoming arcs from more than one 

component
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Properties are preserved!

Splitting our model

Cutting set
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Concurrent sub-models

Concurrent sub-models
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Concurrent sub-models 
implementation view

Facing distributed 
implementations - I

• When global execution of the model is not viable 
anymore, and the system needs to be seen as a 
collection of parallel components.

• We need to move away from the synchronous 
paradigm (where one global tick / execution step 
is considered) and need to face globally 
asynchronous locally synchronous (GALS) 
execution semantics.

• Maximal step execution semantics needs to be 
kept in each component.
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Facing distributed 
implementations - II

• Approach:
– Definition of time domains (each time domain has its 

own tick / execution step) 
– Each component will be associated with one different 

time domain
– Communication channels have a place semantics 

(holding non-instantaneous pending communication)
– Each directed synchronous channel will be replaced 

by a directed asynchronous channel, where master 
transition, slave transitions, and the channel itself are 
associated with different time domains.

Distributed sub-models
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Coming back to property verification
• Property verification still possible based on state 

space construction.
• Behavioral model for the asynchronous 

channels needs to be used, complemented by 
interleaving execution between all time domains 
(each of them having a maximal execution step), 
assuring GALS evolution
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Configuring communication layers

• Using the presented Petri net-based distributed 
embedded controllers development flow is 
possible to check a-priori impact of using 
different types of communication support 
between components.

• The maximum number of messages that each 
Asynchronous-Channel may need to buffer can 
be determined through analysis of associated 
state space (determining maximum bound of 
associated places).

Tools

• Petri nets already have a set of supporting 
tools mostly covering specification and 
verification.

• Petri nets need additional tools, mostly 
covering automatic code generation, to be 
fully integrated in engineering 
development flows.

• A contribution (for IOPT nets) is available 
at http://gres.uninova.pt/
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Tools 
overview

PNML

Editor

PNML2VHDL PNML2C

VHDL C

Configurator

Editor

PNML2C

Configurator

PDC

Modeler

Application code
for embedded
target platform

EditorAnimator

C++
Executable 

Synoptic

Synoptic data 
files (XML).NET C++ 

compiler

Graphical Editor 
and Simulator

Petri net 
Operations

Automatic code 
generation

Animation

Platform 
deployment

EditorState space

Verification

Net addition

EditorNet Splitting

IOPT-Tools: Previous tool-chain

� Model edition (Snoopy IOPT Petri Net editor)
� User interface/synoptic/animation editor
� Automatic controller C code generator
� Automatic controller VHDL synthesis
� Automatic GUI/synoptic C code generator
� Automatic GUI/synoptic VHDL synthesis
� Software animation and simulation tool
� Configurator tool

No IOPT state-space generators and
model-checking tools



33

IOPT-Tools: The present
Web User Interface  (http://gres.uninova.pt)
AJAX Based IOPT Petri Net Graphical Editor
Relax-NG Syntax Validation Grammar
Automatic controller C code generator
State Space Generation Tool
Model-checking using a Query System

IOPT-Tools: The future

Porting all other tools
Full support for distributed execution of models (globally 

asynchronous locally synchronous systems)
… and more

IOPT-Tools – Web User Interface
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Web based IOPT Model Editor

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers 

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up
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Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes

Tools 
overview
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Editor
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Configurator
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Modeler

Application code
for embedded
target platform

EditorAnimator

C++
Executable 

Synoptic

Synoptic data 
files (XML).NET C++ 

compiler

Graphical Editor 
and Simulator

Petri net 
Operations

Automatic code 
generation

Animation

Platform 
deployment

EditorState space

Verification

Net addition

EditorNet Splitting
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THE MARX PULSE 
GENERATOR TOPOLOGY

Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes

Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes
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Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes

Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes
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Open issues and challenges

• How to reduce the productivity gap?
• How to reduce the verification gap?
• How to support reliable distributed

execution?
• Contribution to the answers:

– Relying more and more on Model-based
Development

– Increasing usage of design automation tools
(including specification, simulation/validation, 
verification, code generation, and test)

Petri net models 
within distributed embedded controller 

design
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