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Offers on Electrical and Computer
Engineering after Bologna declaration

 Integrated MSc on Electrical and Computer
Engineering

» MSc on Electrical, Systems and Computer
Engineering
— Five current specializations:
« Electric Energy and Automation
« Microelectronics and Digital Systems
« Corporate Cooperative Networks
« Robotics and Sensorial Systems
» Telecomunications
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The structure of the Integrated MSc
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77,5 ECTS

FACULDADE DE
CIENCIAS E TECNOLOGIA

The structure of the Integrated MSc
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How to handle design complexity?

» For how long Moore’s law will stand?
... forever?

— Gordon Moore, "Cramming more components onto integrated
circuits", Electronics Magazine 19 April 1965:

« Sustained increase in the transistors/chip
doubling every ~1 % years since 1959




Design complexity
versus designer productivity

» Design Complexity < Moore’s law

— Transistors/chip doubling every 18 months

» Designer Productivity

— Methodology

— Modularity and Reusability

— Model-based design

— Top-down model-based approach versus bottom-up
— Handling different abstraction levels

— Interoperability

— Tool dependent

Design complexity
versus designer productivity

* Top-down versus bottom-up approaches

— To handle complexity, it is normally assumed that
analysis needs to be hierarchical and top-down.

— However, reuse of modules is fundamental.
* Pragmatic approach (mostly followed):

— Primarily follow top-down approach (system-level)

— Complemented with bottom-up attitude (to
support reusability)




The productivity gap

Designer Productivity

Reducing the
productivity gap:

One major challenge
in current design of
embedded systems

Another major
concern in current

Designer Productivity —design of embedded
= systems
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Needs to improve the design...

* If one looks into ways for:
improving performance,
reducing power consumption,
reducing costs,

reducing time-to-market,
reducing...

Improving...

» Concurrent and distributed computing and control
IS one major option to support improvement on
several aspects.
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Academic example on a
concurrency class

var N: Integer := 0; Proc. | Instr. |Reg. | Reg. | N

process P1,; process P2; Pl P2
var |: Integer; var |: Integer; P1 LoadN| 0 0 0
begin begin P2 Load N| O 0 0
forl:=1to0 10 do forl:=11to0 10 ddg P1 Increm | 0 0 0

N:=N+1 N:=N+1
. . P2 Increm | 1 0 0
end; end;

P1 Store N| 1 1 0
\ P2 Store N| 1 1 1
“perfect” interleaving > 1 1 1

From: The Concorde Doesn't Fly Anymore; Moti Ben-Ari

Keynote Talk, SIGCSE 2005, St. Louis, MO
[ R QZ ninoval
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Open issues and challenges

How to reduce the productivity gap?
How to reduce the verification gap?

How to support reliable distributed
execution?

Contribution to the answers:

— Relying more and more on Model-based
Development

— Increasing usage of design automation tools
(including specification, simulation/validation,
verification, code generation, and test)

Moving to model-based
development

* Models are used not only for describing specifications of
the system at earlier phases of development, but also
intended to be used along the whole development
process, including automatic code generation (verification
and implementation).

» Start with platform independent specification, “easily”
supporting porting/implementation into specific platforms.

» For that end, an operational model having a precise
execution semantics needs to be selected, allowing usage
of the model at the different stages of the development
process.

12



Model-based

System Merging of
d eve I O p m e nt : lljlodel partial models
from partial  oto omponents
models to

deployment into
Implementation .
platforms 0] 010

bus

Selection of model formalism

» Several modeling formalisms already proved
their adequacy fully supporting this model-based
development flow strategy

» Considering controller design, it is common to
give preference to state-based modeling
formalisms due to its expressiveness
capabilities.

» Also selecting an operational formalism will
support the whole development cycle, including
automatic code generation.

13



Selection of model formalism

« Among those eligible formalisms, it is worth
to mention state diagrams, hierarchical and
concurrent state diagrams, statecharts, and
Petri nets.

* Itis not a surprise that the selected
formalism for this presentation is Petri nets:
— Rigorous computational model
— Precise execution semantics
— Graphical representation
— Formal representation

Outline

» Petri-nets for controller modeling
 Distributed Embedded Controllers
Development Flow
— Operations on nets
— Distributed execution
—Tools

e Sum-up




Petri nets for controller modeling

» Starting with autonomous classes of Petri nets...

* Extremely important to have the possibility to add
dependencies to the environment under control, namely
input and output signals and events.

* |n those cases, those Petri nets classes become non-
autonomous.

» Several classes of non-autonomous Petri nets have
been referred in the literature (some having strong links
with automation systems) ((Silva 1985) (David & Alla
1992) (Venkatesh, Zhou & Caudill 1994) (Hanisch &
Lider 2000) (Frey 2000) (Frey & Wagner 2006)).

FACULDADE DE
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The Input-Output Place-Transition
Petri net class (IOPT nets)

Extended from the Place/Transition net class (and
benefiting from interpreted and synchronous net cla sses)

Non-autonomous dependencies:

Input and output signals Input and output events

Transition firing conditioned by input events and guard functions referencing
input signals

Transition firing can generate output events

Output signals can be associated with places

Allows Deterministic execution:  Maximal step execution semantics

Includes Transition priorities and Test arcs

FACULDADE DE
CIENCIAS E TECNOLOGIA
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Application example
(from automation area)

e Controller for a

—on transportation
— o system composed
] = =] py three cars

GO = =
[

]

A2 B2

leel T - * Cars move
asynchronously but
From: M.,Silva, Las R.edes dg Petri: en la Automatica y Start Syn C h ro n Ize Iy
la Informatica. Madrid: Editorial AC, 1985 at bOth endS ]

Application example

 Goal 1: to obtain a controller
for one car

» Goal 2: to obtain a controller
for the whole system
composed by three cars

» Goal 3: to obtain a distributed
controller composed by 3
controllers, one per car

16



Goal 1: to obtain a controller for
one car

L . M1
One car
controller | —, DIR1

Car_Move_Rack Cof_Arrived

>0 SM1 o
GO Q S>DIR1 BACK

Al Bl

Outline

» Distributed Embedded Controllers
Development Flow
— Operations on nets
— Distributed execution
—Tools

e Sum-up
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Construction of
partial sub-models

Composition
(through
addition)

Systemmodel

n )
] Decomposition

(through

splitting)
Concurrent
components

Distributed
components

Platform
components

Prototype

Distributed
Embedded
Controllers
Development
Flow

<

Distribution

Mapping

Automatic
code
generation

Construction of partial sub-models

System model

Concurrent components

Distributed components

Platform components

Prototype
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(" Construction of
\pal’tlal sub-models Compos'tion
(through
Synchronous - addition)
execution Systemmodel
L Decomposition
A (through Platform
Distributed ([ Concurrent splitting) I ndependent
Embedded | components M odel
Controllers — Distribution A (P
Development ([ Distributed
Flow | components
M Mapping
Globally [ Platform
Asynchronous | components Automatic
L ocally code Y Platform
&/nchro_nous g generation Specific
execution Prototype M odel
L (PSM)
Ct ‘‘‘‘‘‘‘ Hevooo ﬂI.ININM
Application example
» Goal 1: to obtain a controller
for one car
» Goal 2: to obtain a controller
for the whole system
composed by three cars
» Goal 3: to obtain a distributed
controller composed by 3
controllers, one per car
Ce S Lo ﬂumumm
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Goal 2: to obtain a controller for the
whole system composed by three cars

Al

E—
B1 M1
—
) A2 Mo
ve_[Forward BZ [—>
A3 —Three cars |, m3
83 — controller |_, pir1
L DIR2
GO ——
—— DIR3
BACK

Approach: Replication of individual models (supporting reusability)
Problem: synchronizaton at both ends is not satisfied
Solution: we need to adequately compose the models

FACULDADE DE
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Composability of net models

Several solutions have been proposed

Fusion of places (asynchronous composition)
Fusion of transitions (synchronous composition)
Fusion of places and transitions

Major three steps
— Identification of the models to compose

— Definition of the interfaces of the models and nodes to
be merged

— Merging models

FACULDADE DE
CIENCIAS E TECNOLOGIA
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The net addition operation

carcent

carcent = carl + car2 + car3
(carl.go/car2.go/car3.go - go,
carl.back/car2.back/car3.back - back)

FACULDADE DE
CIENCIAS E TECNOLOGIA

What about property verification?

e Having non-
autonomous Petri
nets, we need to
face state-space
based verification
techniques.

FACULDADE DE
CIENCIAS E TECNOLOGIA
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State space verification

» Plenty of tools available for verification of
autonomous low-level nets.

 The number of tools shrinks if maximal
step is considered as execution
semantics.

« And shrinks again if non-autonomous
dependencies are considered.

* Anyway, for automation systems, several
tools are available.

Properties for our controller model

16 states detected; no conflict; no deadlocks
All places having as minimum marking 0 tokens
/ and as maximum marking 1 token
Net N_3Car_Chapter
16 (from 16) Nodes, 25 Loops, 0 Deadlocks, D Conflicts, Max. Depth = 6, 0 Invalid

Min Bound = [Car1_Arived=0 Carl_Move_Back=0 Cari_Move | 1_Ready 2 2 Move E 2 Move| 2 Ready ¥ }_ Move | 3 Move_| 3 Ready=0]
Max Bound = [Car1_Anived=1 Car1_Move_Backe1 Cari_Mave_Farward=1Cari_Ready=1Car2_Ariveds1 Car2_Move_Back=1 Car2_Move_Forwardw=1 Car2_Ready=1 Car3_Amiveds=1 Car3_Mave_Backe1 Car_Move_Forward=1 Cara_Ready=1]

|_Move_Forward=1
“Move_Forward=1
ar3_Move_Forward=1

22



Goal 3: to obtain a distributed controller
composed by 3 controllers, one per car

Approach : Three cars distributed
Decompose the model controller
into concurrent models
A2 M2
B2 Car 2
Problem : controller DIR2
we need to introduce *? i
communication Bl Car1l M1
between GO controller DIR1
sub-models BACK L &

. A3 Car 3 M3
Constraint : we want g, controller DIR3
to assure property
preservation

Ch B o &8\ novd

The net splitting operation

» Decomposition into a set of concurrent models,

which (whenever executed according with

synchronous paradigm) will preserve properties.

» Usage of directed synchronous channels to

communicate among components synchronizing

transition synchrony sets.

— One master transition (responsible for the firing of the

synchrony set);

— One or more slave transitions

» Concurrent models are amenable to support
distributed execution of the Petri net model (in a

later stage)

FACULDADE DE
CIENCIAS E TECNOLOGI
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The net splitting operation

« Identifying the nodes (the cutting set) where the
model should be broken.

» The nodes defined as cutting set have to be
validated.

» Once defined a valid cutting set, the result sub-
models can be obtained applying three rules,
depending on the cutting node:

— Rule#1, cutting node is a place

— Rule #2, cutting node is a transition with incoming
arcs only from one component

— Rule #3, cutting node is a transition with incoming
arcs from more than one component

FACULDADE DE
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Rulel — Splitting by place

Initial model M Walidation of Cutting Set (M- C8) Resulted components

C nt 2
T1_copy(slave) ompone
-« — — — T1({master)

Tlcomp=2

P1

Component 1
TZ.comp=1

[ T2

h) c)

Initial model Component models
(only referring the locality
associated with the cutting node)

FACULDADE DE
CIENCIAS E TECNOLOGIA
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Rule2 — Splitting by transition
with incoming arcs only from
one component

Initial model M Walidation of Cutting SetiN - CS5) Resulted components
F1

@) P1

Pi.camp=1
T1_copyisliave)
—_ — "
T1imaster Component 2
Plcomp=2 Component 1 Pl

F2camp=1

Or: O O Pa

a) b} c)
Initial model Component models

(only referring the locality
associated with the cutting node)

FACULDADE DE
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Rule3 — Splitting by transition with
Incoming arcs from more than one
component

Initial model M validation of Cutting Set (M- C5) Resulted compaonents

T_to_P1 T_to P2

T_to Pleomp=17 4y Pzeomp=2 T_to_F1  T_to_P2_copy(slave) T_to_F2({master)
-———— = =
Q O P2_copy ps
p
F1.comp=1 P2camp= 2 Component 2

T1imaster)

- = = = - - e T1_copy(slave)
O O Component 1
P3.comp=1 Pd.comp=2 P2
Pi @) P4 by o P4
Initial model Component models

(only referring the locality
associated with the cutting node)

FACULDADE DE
CIENCIAS E TECNOLOGIA
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Properties are preserved!

Tt Pt T

T_to_P2_copy(slave) T_to_P2imaster)
-
T_1o[ F1
P R Pz
 copy Component 2

_______ - T1_copy(slave)

Component 1
P4 Ps5
P4 @ P5 b
T_tn_P1 Tto_P2
Timasten T_copylslave) T P2
. p P2_topy
T
]
P4 P5

d

FACULDADE DE
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Splitting our model

Car2_Movd Forard
Cara_movg_Faward

Cutting set

Carl_Move_Bath

FACULDADE DE
CIENCIAS E TECNOLOGIA

26



Concurrent sub-models

A2 _copy

\

"Carzfﬂeady\fmpy

GO_topyl

Carl_Ready

DCara_Ready

Card_Move_Back

Carl|_Move_Back

Car2_Move_Back

Car3_Arrived_gT
SEACK cop? T~

Car?_Arrived)

a2 I "BACK_capy!

FACULDADE DE
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Concurrent sub-models

Card_Arrived
Carl|_Move_Back

Card_Move_Back

DCara_Ready .
Car?

Car2_Move_Back

Arrived|

ghCK_copwl

FACULDADE DE
CIENCIAS E TECNOLOGIA

& o
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Concurrent sub-models
Implementation view

Carl

—> In:A3Slave
—> In:B3Slave In:B2Sk

-
=
5
q
"
/]

ter Car2

b/ N
> @
NN

Arriued, copy L —out:A2Master
out:B2Master

Out:A3Master —
Out:B3Master

I 2 Out 1
2 Out;| faster BACK_master O 1

FACULDADE DE
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Facing distributed
Implementations - |

* When global execution of the model is not viable
anymore, and the system needs to be seen as a
collection of parallel components.

* We need to move away from the synchronous
paradigm (where one global tick / execution step
is considered) and need to face globally
asynchronous locally synchronous (GALS)
execution semantics.

« Maximal step execution semantics needs to be
kept in each component.

FACULDADE DE
CIENCIAS E TECNOLOGIA
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Facing distributed

Implementations - Il
» Approach:

— Definition of time domains (each time domain has its
own tick / execution step)

— Each component will be associated with one different
time domain

— Communication channels have a place semantics
(holding non-instantaneous pending communication)

— Each directed synchronous channel will be replaced
by a directed asynchronous channel, where master

transition, slave transitions, and the channel itself are
associated with different time domains.

FACULDADE DE
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Distributed sub-models
Qs

Car3_Ready_copy’

|
¥ td:3 Car3_Move_Forward

FACULDADE DE
CIENCIAS E TECNOLOGIA
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Coming back to property verification

» Property verification still possible based on state
space construction.

» Behavioral model for the asynchronous
channels needs to be used, complemented by
interleaving execution between all time domains
(each of them having a maximal execution step),
assuring GALS evolution

” .
received  Tgonds

Tconsumes

FACULDADE DE
CIENCIAS E TECNOLOGIA

Merging of
partial models

System
model

Splitting
into components

FACULDADE DE
CIENCIAS E TECNOLOGIA
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Configuring communication layers

» Using the presented Petri net-based distributed
embedded controllers development flow is
possible to check a-priori impact of using
different types of communication support
between components.

* The maximum number of messages that each
Asynchronous-Channel may need to buffer can
be determined through analysis of associated
state space (determining maximum bound of
associated places).

Tools

 Petri nets already have a set of supporting
tools mostly covering specification and
verification.

» Petri nets need additional tools, mostly
covering automatic code generation, to be
fully integrated in engineering
development flows.

A contribution (for IOPT nets) is available
at http://gres.uninova.pt/

31
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\?F” Editor Net addition
Petri net {Net Splitting

/ Graphical Editor

AN Simulaior,

PNML

Automatic code i State space
Tools ‘\A S
overview

Anlmator

VHDL

Synoptic data
Application code fl|>é5 (F>)<ML)
for embedded Configurator .NET C++
compiler

target platform

Platform

PDC C+ Synoptic
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IOPT-Tools: Previous tool-chain

Model edition (Snoopy IOPT Petri Net editor)
User interface/synoptic/animation editor
Automatic controller C code generator
Automatic controller VHDL synthesis
Automatic GUI/synoptic C code generator
Automatic GUI/synoptic VHDL synthesis
Software animation and simulation tool
Configurator tool

No IOPT state-space generators and
model-checking tools

FACULDADE DE
CIENCIAS E TECNOLOGIA
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|IOPT-Tools: The present

Web User Interface (http://gres.uninova.pt)
AJAX Based IOPT Petri Net Graphical Editor
Relax-NG Syntax Validation Grammar
Automatic controller C code generator

State Space Generation Tool
Model-checking using a Query System

IOPT-Tools: The future

Porting all other tools
Full support for distributed execution of models (globally

asynchronous locally synchronous systems)
... and more

[ v

IOPT Tools
Net file: Elevaf

tor01.pnmi

Upload model file: [T

33



Web based IOPT Model Editor

IC 10PT Tools - P

0’
(=2
2
(2]
vV E
m
0
)
=
-

Select transition 3183
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Outline

Motivation

— How to handle design complexity

— Some issues and challenges
Petri-nets for controller modeling
Distributed Embedded Controllers
Development Flow

— Operations on nets

— Distributed execution

—Tools

Sum-up
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THEORY
- Models
-Analysis TOOLS
methods - Editing
- Simulation
-Verification
-Code
generation
PRACTICALUSE
Adapted from - Specification - Validation
[Kurt Jensen, 80]
-Verification - Implementation

G! FACULDADE DE HEZ
Composition and decomposition of Petri net models within distributed embedded controller design— Luis Gomes CIENCIAS E TECNOLOGIA
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overview
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Application code
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Open issues and challenges

How to reduce the productivity gap?
How to reduce the verification gap?

How to support reliable distributed
execution?

Contribution to the answers:

— Relying more and more on Model-based
Development

— Increasing usage of design automation tools
(including specification, simulation/validation,
verification, code generation, and test)

FACULDADE DE
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Petri net models
within distributed embedded controller
design

Luis Gomes
lugo@fct.unl.pt
Univ. Nova de Lishoa &
UNINOVA, Portugal
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