
1

Petri net models
within distributed embedded

controller design

Luis Gomes
Univ. Nova de Lisboa –
Faculty of Sciences &

Technology &
UNINOVA - CTS, Portugal

lugo@fct.unl.pt

Lisboa

PORTUGAL

EUROPA

Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica

UNINOVA

Centro de Tecnologia e
Sistemas

2

Lisbon
airport

Costa da Caparica

Lisbon
downtown

Monte da
Caparica

Almada

Setubal
Campus and

residence

New University of Lisbon
Faculty of Sciences and Technology

2012/2013: 7500 students

Department of Electrical Engineering

UNINOVA – Center of Technology and Systems

3

Department Structure

Telecommunications

Digital Systems and
Perceptional SystemsDecision and Control

ElectronicsElectrical Machines

Robotics and
Integrated

Manufacturing

Research Groups

Electrical Machines
Group

Microelectronics
and

Signal
Processing

Group on
Reconfigurable and
Embedded Systems

Robotics
and

Integrated
Manufacturing

Soft Computing
and Autonomous

Agents Group

Telecomunications
Group

Research Group
on

System’s
Integration

Control of Industrial
Plants

RIM

CA3RGSI

MESP

4

1st cycle

3rd cycle

2nd cycle

Licenciatura
5 years

PhD

MSc
2 years

Before
2005 Current

(according
With

Bologna
Process)

Offers on Electrical and Computer
Engineering after Bologna declaration

• Integrated MSc
5 year long study cycle (300 ECTS)
integrating:
– 1st cycle (180 ECTS)
– 2nd cycle (120 ECTS)
– Emphasis on flexibility, broad spectrum

• Specialized MSc
2 year long 2nd cycle (120 ECTS)
– Focused on specialization 1st cycle = “Licenciatura”

2nd cycle = MSc

Engineer habilitation ≥ 300 ECTS

5

Offers on Electrical and Computer
Engineering after Bologna declaration

• Integrated MSc on Electrical and Computer
Engineering

• MSc on Electrical, Systems and Computer
Engineering
– Five current specializations:

• Electric Energy and Automation

• Microelectronics and Digital Systems

• Corporate Cooperative Networks

• Robotics and Sensorial Systems

• Telecomunications

Our offer

Integrated MSc

PhD

MSc

Mobility

Employment

Specialized
MSc

Mobility

Employment

Mobility
Employment

MSc

Graduates

1st year
students

Graduates

6

The structure of the Integrated MSc

Engineering Basics

E&C Engineering Basics

E&CE Specific options

Social Sciences and
Industrial Engineering

Additional options

Dissertation

77,5 ECTS

120,5 ECTS

≤21 ECTS

42 ECTS

≥9 ECTS

30 ECTS

The structure of the Integrated MSc

Engineering Basics

E&C Engineering Basics

E&CE Specific options

Social Sciences and
Industrial Engineering

Additional options

Dissertation

77,5 ECTS

120,5 ECTS

≤21 ECTS

42 ECTS

≥9 ECTS

30 ECTS

1st
Cycle
(180

ECTS)

2nd
Cycle
(120

ECTS)

7

Petri net models
within distributed embedded

controller design

Luis Gomes
Univ. Nova de Lisboa –
Faculty of Sciences &

Technology &
UNINOVA-CTS, Portugal

lugo@fct.unl.pt

Acknowledgments to contributions from
João Paulo Barros, Anikó Costa, Filipe Moutinho, and Fernando Pereira,
members of the
Group on Reconfigurable and Embedded System
from Univ. Nova de Lisboa / UNINOVA, Portugal.

8

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up

How to handle design complexity?

• For how long Moore’s law will stand?
… forever?

– Gordon Moore, "Cramming more components onto integrated
circuits", Electronics Magazine 19 April 1965:

• Sustained increase in the transistors/chip
doubling every ~1 ½ years since 1959

9

Design complexity
versus designer productivity

• Design Complexity � Moore’s law
– Transistors/chip doubling every 18 months

• Designer Productivity
– Methodology

– Modularity and Reusability

– Model-based design

– Top-down model-based approach versus bottom-up

– Handling different abstraction levels

– Interoperability

– Tool dependent

– …

Design complexity
versus designer productivity

• Top-down versus bottom-up approaches
– To handle complexity, it is normally assumed that

analysis needs to be hierarchical and top-down.
– However, reuse of modules is fundamental.

• Pragmatic approach (mostly followed):
– Primarily follow top-down approach (system-level)
– Complemented with bottom-up attitude (to

support reusability)

10

The productivity gap

Design Complexity

Designer Productivity

Reducing the
productivity gap:

One major challenge
in current design of
embedded systems

The verification gap

Designer Productivity

Verification Capability

Another major
concern in current

design of embedded
systems

11

Needs to improve the design…

• If one looks into ways for:
– improving performance,
– reducing power consumption,
– reducing costs,
– reducing time-to-market,
– reducing…
– Improving…

• Concurrent and distributed computing and control
is one major option to support improvement on
several aspects.

Academic example on a
concurrency class

process P1;
var I: Integer;
begin

for I := 1 to 10 do
N := N + 1

end;

From: The Concorde Doesn’t Fly Anymore; Moti Ben-Ari
Keynote Talk, SIGCSE 2005, St. Louis, MO

process P2;
var I: Integer;
begin

for I := 1 to 10 do
N := N + 1

end;

var N: Integer := 0; Proc. Instr. Reg. Reg. N

P1 P2

P1 Load N 0 0 0

P2 Load N 0 0 0

P1 Increm 0 0 0

P2 Increm 1 0 0

P1 Store N 1 1 0

P2 Store N 1 1 1

1 1 1“perfect” interleaving �

12

Open issues and challenges

• How to reduce the productivity gap?
• How to reduce the verification gap?
• How to support reliable distributed

execution?
• Contribution to the answers:

– Relying more and more on Model-based
Development

– Increasing usage of design automation tools
(including specification, simulation/validation,
verification, code generation, and test)

Moving to model-based
development

• Models are used not only for describing specifications of
the system at earlier phases of development, but also
intended to be used along the whole development
process, including automatic code generation (verification
and implementation).

• Start with platform independent specification, “easily”
supporting porting/implementation into specific platforms.

• For that end, an operational model having a precise
execution semantics needs to be selected, allowing usage
of the model at the different stages of the development
process.

13

Model-based
development :

from partial
models to

deployment into
implementation

platforms

Selection of model formalism

• Several modeling formalisms already proved
their adequacy fully supporting this model-based
development flow strategy

• Considering controller design, it is common to
give preference to state-based modeling
formalisms due to its expressiveness
capabilities.

• Also selecting an operational formalism will
support the whole development cycle, including
automatic code generation.

14

Selection of model formalism
• Among those eligible formalisms, it is worth

to mention state diagrams, hierarchical and
concurrent state diagrams, statecharts, and
Petri nets.

• It is not a surprise that the selected
formalism for this presentation is Petri nets:
– Rigorous computational model
– Precise execution semantics
– Graphical representation
– Formal representation

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up

15

Petri nets for controller modeling

• Starting with autonomous classes of Petri nets…
• Extremely important to have the possibility to add

dependencies to the environment under control, namely
input and output signals and events.

• In those cases, those Petri nets classes become non-
autonomous.

• Several classes of non-autonomous Petri nets have
been referred in the literature (some having strong links
with automation systems) ((Silva 1985) (David & Alla
1992) (Venkatesh, Zhou & Caudill 1994) (Hanisch &
Lüder 2000) (Frey 2000) (Frey & Wagner 2006)).

The Input-Output Place-Transition
Petri net class (IOPT nets)

• Extended from the Place/Transition net class (and
benefiting from interpreted and synchronous net cla sses)

• Non-autonomous dependencies:
� Input and output signals Input and output events
� Transition firing conditioned by input events and guard functions referencing

input signals
� Transition firing can generate output events
� Output signals can be associated with places

• Allows Deterministic execution: Maximal step execution semantics

� Includes Transition priorities and Test arcs

16

Application example
(from automation area)

• Controller for a
transportation
system composed
by three cars

• Cars move
asynchronously but
start synchronizely
at both ends.

GO

BACK

A1 B1

A2 B2

A3 B3

M1

Dir1

M2

Dir2

M3

Dir3

From: M. Silva, Las Redes de Petri: en la Automática y
la Informática. Madrid: Editorial AC, 1985

Application example

• Goal 1: to obtain a controller
for one car

• Goal 2: to obtain a controller
for the whole system
composed by three cars

• Goal 3: to obtain a distributed
controller composed by 3
controllers, one per car

17

Goal 1: to obtain a controller for
one car

A1 B1

GO BACK
�M1
�DIR1

One car
controller

GO

BACK

A1

B1
M1

DIR1

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up

18

Distributed
Embedded
Controllers

Development
Flow

Construction of partial sub-models

System model

Concurrent components

Distributed components

Platform components

Prototype

System model

Composition
(through
addition)

Distribution

Mapping

Construction of
partial sub-models

Decomposition
(through
splitting)

Concurrent
components

Distributed
components

Platform
components

Automatic
code

generation

Prototype

System model

Composition
(through
addition)

Distribution

Mapping

Construction of
partial sub-models

Decomposition
(through
splitting)

Concurrent
components

Distributed
components

Platform
components Automatic

code
generation

Prototype

Distributed
Embedded
Controllers

Development
Flow

19

System model

Composition
(through
addition)

Distribution

Mapping

Construction of
partial sub-models

Decomposition
(through
splitting)

Concurrent
components

Distributed
components

Platform
components Automatic

code
generation

Prototype

Distributed
Embedded
Controllers

Development
Flow

Synchronous
execution

Globally
Asynchronous

Locally
Synchronous

execution

Platform
Independent

Model
(PIM)

Platform
Specific
Model
(PSM)

Application example

• Goal 1: to obtain a controller
for one car

• Goal 2: to obtain a controller
for the whole system
composed by three cars

• Goal 3: to obtain a distributed
controller composed by 3
controllers, one per car

20

Goal 2: to obtain a controller for the
whole system composed by three cars

Three cars
controller

M2

DIR1
A3

B3

GO
BACK

A2

B2

M1

M3

DIR3

DIR2

A1

B1

Approach: Replication of individual models (supporting reusability)
Problem: synchronizaton at both ends is not satisfied
Solution: we need to adequately compose the models

car1 car2 car3

Composability of net models
• Several solutions have been proposed
• Fusion of places (asynchronous composition)
• Fusion of transitions (synchronous composition)
• Fusion of places and transitions
• Major three steps

– Identification of the models to compose
– Definition of the interfaces of the models and nodes to

be merged
– Merging models

21

The net addition operation

carcent = car1 + car2 + car3
(car1.go/car2.go/car3.go � go,
car1.back/car2.back/car3.back � back)

car1 car2 car3 carcent

What about property verification?

• Having non-
autonomous Petri
nets, we need to
face state-space
based verification
techniques.

22

State space verification

• Plenty of tools available for verification of
autonomous low-level nets.

• The number of tools shrinks if maximal
step is considered as execution
semantics.

• And shrinks again if non-autonomous
dependencies are considered.

• Anyway, for automation systems, several
tools are available.

Properties for our controller model
16 states detected; no conflict; no deadlocks
All places having as minimum marking 0 tokens
and as maximum marking 1 token

23

Goal 3: to obtain a distributed controller
composed by 3 controllers, one per car

M2

DIR1
GO

BACK

A2

B2

M1

M3

DIR3

DIR2A1

B1

Three cars distributed
controller

Car 1
controller

Car 2
controller

Car 3
controller

A3

B3

Approach :
Decompose the model
into concurrent models

Problem :
we need to introduce
communication
between
sub-models

Constraint : we want
to assure property
preservation

The net splitting operation
• Decomposition into a set of concurrent models,

which (whenever executed according with
synchronous paradigm) will preserve properties.

• Usage of directed synchronous channels to
communicate among components synchronizing
transition synchrony sets.
– One master transition (responsible for the firing of the

synchrony set);
– One or more slave transitions

• Concurrent models are amenable to support
distributed execution of the Petri net model (in a
later stage)

24

The net splitting operation
• Identifying the nodes (the cutting set) where the

model should be broken.
• The nodes defined as cutting set have to be

validated.
• Once defined a valid cutting set, the result sub-

models can be obtained applying three rules,
depending on the cutting node:
– Rule#1, cutting node is a place
– Rule #2, cutting node is a transition with incoming

arcs only from one component
– Rule #3, cutting node is a transition with incoming

arcs from more than one component

Rule1 – Splitting by place

Initial model

(only referring the locality
associated with the cutting node)

Component models

25

Rule2 – Splitting by transition
with incoming arcs only from

one component

Initial model

(only referring the locality
associated with the cutting node)

Component models

Initial model

(only referring the locality
associated with the cutting node)

Component models

Rule3 – Splitting by transition with
incoming arcs from more than one

component

26

Properties are preserved!

Splitting our model

Cutting set

27

Concurrent sub-models

Concurrent sub-models

28

Concurrent sub-models
implementation view

Facing distributed
implementations - I

• When global execution of the model is not viable
anymore, and the system needs to be seen as a
collection of parallel components.

• We need to move away from the synchronous
paradigm (where one global tick / execution step
is considered) and need to face globally
asynchronous locally synchronous (GALS)
execution semantics.

• Maximal step execution semantics needs to be
kept in each component.

29

Facing distributed
implementations - II

• Approach:
– Definition of time domains (each time domain has its

own tick / execution step)
– Each component will be associated with one different

time domain
– Communication channels have a place semantics

(holding non-instantaneous pending communication)
– Each directed synchronous channel will be replaced

by a directed asynchronous channel, where master
transition, slave transitions, and the channel itself are
associated with different time domains.

Distributed sub-models

30

Coming back to property verification
• Property verification still possible based on state

space construction.
• Behavioral model for the asynchronous

channels needs to be used, complemented by
interleaving execution between all time domains
(each of them having a maximal execution step),
assuring GALS evolution

31

Configuring communication layers

• Using the presented Petri net-based distributed
embedded controllers development flow is
possible to check a-priori impact of using
different types of communication support
between components.

• The maximum number of messages that each
Asynchronous-Channel may need to buffer can
be determined through analysis of associated
state space (determining maximum bound of
associated places).

Tools

• Petri nets already have a set of supporting
tools mostly covering specification and
verification.

• Petri nets need additional tools, mostly
covering automatic code generation, to be
fully integrated in engineering
development flows.

• A contribution (for IOPT nets) is available
at http://gres.uninova.pt/

32

Tools
overview

PNML

Editor

PNML2VHDL PNML2C

VHDL C

Configurator

Editor

PNML2C

Configurator

PDC

Modeler

Application code
for embedded
target platform

EditorAnimator

C++
Executable

Synoptic

Synoptic data
files (XML).NET C++

compiler

Graphical Editor
and Simulator

Petri net
Operations

Automatic code
generation

Animation

Platform
deployment

EditorState space

Verification

Net addition

EditorNet Splitting

IOPT-Tools: Previous tool-chain

� Model edition (Snoopy IOPT Petri Net editor)
� User interface/synoptic/animation editor
� Automatic controller C code generator
� Automatic controller VHDL synthesis
� Automatic GUI/synoptic C code generator
� Automatic GUI/synoptic VHDL synthesis
� Software animation and simulation tool
� Configurator tool

No IOPT state-space generators and
model-checking tools

33

IOPT-Tools: The present
Web User Interface (http://gres.uninova.pt)
AJAX Based IOPT Petri Net Graphical Editor
Relax-NG Syntax Validation Grammar
Automatic controller C code generator
State Space Generation Tool
Model-checking using a Query System

IOPT-Tools: The future

Porting all other tools
Full support for distributed execution of models (globally

asynchronous locally synchronous systems)
… and more

IOPT-Tools – Web User Interface

34

Web based IOPT Model Editor

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up

35

Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes

Tools
overview

PNML

Editor

PNML2VHDL PNML2C

VHDL C

Configurator

Editor

PNML2C

Configurator

PDC

Modeler

Application code
for embedded
target platform

EditorAnimator

C++
Executable

Synoptic

Synoptic data
files (XML).NET C++

compiler

Graphical Editor
and Simulator

Petri net
Operations

Automatic code
generation

Animation

Platform
deployment

EditorState space

Verification

Net addition

EditorNet Splitting

36

THE MARX PULSE
GENERATOR TOPOLOGY

Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes

Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes

37

Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes

Composition and decomposition of Petri net models within distributed embedded controller design– Luis Gomes

38

Open issues and challenges

• How to reduce the productivity gap?
• How to reduce the verification gap?
• How to support reliable distributed

execution?
• Contribution to the answers:

– Relying more and more on Model-based
Development

– Increasing usage of design automation tools
(including specification, simulation/validation,
verification, code generation, and test)

Petri net models
within distributed embedded controller

design
Luis Gomes

lugo@fct.unl.pt
Univ. Nova de Lisboa &

UNINOVA, Portugal

