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Objetivo

E o estudo, fixacdo e aplicacdo de métodos e
modelos para avaliacdo de sistemas criticos.

Pré-requisitos

Avaliagdo de Desempenho de Sistemas

Modelos para Sistemas Comunicantes

Programa

Sistemas de Tempo Real (at¢ o 08/10)

Dependabilidade (de 15/10 até 26/11)
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Sistemas de Tempo Real (t¢ o 08/10)
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Categorias

Alocagao de tarefas e escalonamento

Métricas de desempenho para sistemas de tempo real

Modelos
Algebras de Procesos Temporizada
Redes de Petri Temporizadas

Andlise e verificagdo e estimativa

Programa

Dependabilidade (de 15/10 até 26/11)

Historia
Conceitos basicos e terminologia
Fundamentos

Andlise de Dados
Analise de tempo de vida
Modelos de aceleragdo de tempo de vida
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Metodologia Dependability

Dependability of a computing system is the ability to
deliver service that can justifiably be trusted.

Aulas expositivas

The service delivered by a system is its behavior as it is

Aulas praticas perceived by its user(s).

A user is another system (physical, human) that interacts
with the former at the service interface.

The function of a system is what the system is intended
for, and is described by the system specification.

[Laprie, J. C. (1985)].

Avaliacao Dependability

In early 1980s Laprie coined the

= . term dependability for
Resolugao de listas. encompassing concepts such
reliability, availability, safety,

confidentiality, maintainability,

security and integrity etc [Laprie, 1. C.
(1985)].

Dependable Computing and Fault Tolerance:

Concepts and terminology. In Proc. .
15th IEEE Int. Symp. on Fault-Tolerant Computing, Jean Claude Laprie
(pp. 2-11).




A BRIEF HISTORY

A Brief Histor

Dependability is related to disciplines
such as reliability and fault tolerance.

The concept of dependable computing
first appeared in 1820s when Charles
Babbage undertook the enterprise to
conceive and construct a mechanical
calculating engine to eliminate the risk of
human errors. In his book, “On the
Economy of Machinery and
Manufacture”, he mentions
‘The first objective of every person
who attempts to make any article of
consumption is, or ought be, to
produce it in perfect form’.

" (Blischke, W. R. & Murthy, D. N.
P. (Ed. b

.

Charles Babbage in 1860

A Brief History

In the nineteenth century, reliability theory evolved from probability
and statistics as a way to support computing maritime and life insurance
rates.

In early twentieth century methods had been applied to estimate
survivorship of railroad equipment [Stott, H. G. (1905)] [Stuart, H. R.
(1905)].

A Brief History

The first IEEE (formerly AIEE and IRE) public document to mention
reliability is “Answers to Questions Relative to High Tension Transmission”
that summarizes the meeting of the Board of Directors of the American
Institute of Electrical Engineers, held in September 26, 1902.

[Answers to Questions Relative to High Tension Transmission. (1904). Transactions of the American
Institute of Electrical Engineers, XXIII, 571-604.]

In 1905, H. G. Stott and H. R. Stuart: discuss “Time-

Limit Relays and Duplication of Electrical Apparatus to Secure
Reliability of Services at New York and at

Pittsburg.

In these works the concept of reliability was primarily qualitative.

In 1907, A. A. Markov began
the study of an important new
type of chance process.

In this process, the outcome of
a given experiment can

affect the outcome of the next
experiment.

This type of process is now called a

Markov chain [ushakov, I (2007)] .
Andrei A. Markov

A Brief History

In 1910s, A. K. Erlang studied
telephone traffic planning
problems for reliable  service
provisioning [Erlang, A. K. (1909)].

[Erlang, A. K. (1909)] Principal Works of A. K. Erlang -

The Theory of Probabilities and Telephone

Conversations . First published in Nyt Tidsskrift for Agner Karup Erlang
Matematik B, 20, 131-137.




A Brief History A Brief History

The most prominent researchers during that period were Shannon, Von
Neumann and Moore, who proposed and developed theories for building
reliable systems by using redundant and less reliable components.

Later in the 1930s,

extreme value theory was £ : 1 These were the predecessors of the statistical and probabilistic techniques
applied to model fatigue life of ) that form the foundation of modern dependability theory [avizienis, A. (1997)].
materials by W. Weibull and : i

Gumbel [Kotz, S., Nadarajah, S. (2000)]. g

Waloddi Weibull 3 g A \ "

Gumbel, Emil Julius j
1887-1979 (

h "
C. E. Shanon John von Neumann Edward Forrest Moore

A Brief Histor

In 1931, Kolmogorov, in his il In the 1950s, reliability became a subject of great engineering interest as a
famous paper “Uber die ks result of the:

analytischen Methoden in der e :
Wahrscheinlichkeitsrechnung”

(Analytical methods in probability fail  Ameti A K
theory) laid the foundations for the ailures of American and Soviet rockets, and

modern theory of Markov processes failures of the first commercial jet aircraft, the British de Havilland
[Kolmogoroff, A. (1931)]. comet [Barlow, R. E. & Proschan, F. (1967)][Barlow, R. E. (2002)].

cold war efforts,

Kolmogoroff, A. (1931). Uber die analytischen

Methoden in der Wahrscheinlichkeitsrechnung (in

German). Mathematische Annalen, 104, 415-458.

Springer-Verlag. (25 April 1903 — 20 October 1987)

A Brief History A Brief History

. ) R . Epstein and Sobel’'s 1953 paper studying the exponential distribution was a
In the 1940s quantitative analysis of reliability was applied to many landmark contribution.

operational and strategic problems in World War II [Blischke, W. R. & Murthy, D. N. Epstein, B. & Sobel, M. (1953). Life Testing.

3 Journal of the American Statistical
P. (Ed.) (2003)] [Cox, D. R. (1989)]. Association, 48(263), 486-502.

The first generation of electronic computers were quite
undependable, thence many techniques were investigated for
improving their reliability, such as error:

control codes,
replication of components,
comparison monitoring and

diagnostic routines. i
Milton Sobel




A Brief History

In 1954, the Symposium on Reliability and Quality Control (it is now the IEEE
Transactions on Reliability) was held for the first time in the United States.

In 1958, the First All-Union Conference on Reliability took place In Moscow
[Gnedenko, B. V., Ushakov, I. A. (1995)] [Ushakov, 1. (2007)].

Gnedenko Boris V.
(1912-1995)

Gnedenko, B. V., Ushakov, 1. A. (1995). Probabilistic Reliability eering. J. A. Falk (Ed.), Wiley-
Interscience.

Ushakov, 1. (2007). Is Reliiabiility Theory Still Alive?. e-journal “Reliability: Theory& Applications”,
1(2).

A Brief History

In 1957 S. J. Einhorn and F. B. Thiess adopted Markov chains for
modeling system intermittence [Einhorn, S. J. & Thiess, F. B. (1957)].

In 1960, P. M. Anselone employed Markov chains for evaluating
availability of radar systems [Anselone, P. M. (1960)].

In 1961 Birnbaum, Esary and Saunders published a milestone paper
introducing coherent structures [Bimbaum, z. W., J. D. Esary and S. C. Saunders. (1961)].

Zygmunt William Birnbaum

A Brief History

Fault Tree Analysis (FTA) was originally developed in 1962 at Bell
Laboratories by H. A. Watson to evaluate the Minuteman I
Intercontinental Ballistic Missile Launch Control System.

Afterwards, in 1962, Boeing and AVCO expanded use of FTA to the entire
Minuteman II.

Minuteman I Minuteman IT

A Brief History

In 1967, A. Avizienis integrated
masking methods with practical
techniques for error detection,
fault diagnosis, and recovery into

the concept of fault-tolerant systems
[Avizienis, A., Laprie, J.-C., Randell, B. (2001].

Fundamental Concepts of Dependability. LAAS-
CNRS, Technical Report N01145.

A. Avizienis

A Brief History

In late 1970s some works were proposed for mapping Petri nets to Markov
chains [Molloy, M. K. (1981)][Natkin, S. 1980][Symons, F. J. W. 1978].

These models have been widely adopted as high-level Markov chain
automatic generation models as well as for discrete event simulation.

Natkin was the first to apply what is now generally called Stochastic
Petri nets to dependability evaluation of systems.

BASIC CONCEPTS




Basic Concepts Basic Concepts

AVAILABILITY B Fault is the adjudged or hypothesized cause of an error.
RELIABILITY

SAFETY
CONFIDENTIALITY A fault is active when it produces an error; otherwise it is dormant.
INTEGRITY — -
MAINTAINABILITY Xe() =§0. if S has failed
® 1, if Sisoperational

ATTRIBUTES

FAULT PREVENTION
FAULT TOLERANCE
FAULT REMOVAL

FAULT FORECASTING failure

DEPENDABILITY MEANS

FAULTS
THREATSgE ERRORS
FAILURES
The dependability tree
Avizienis, A., Laprie, J.-C., Randell, B. (2001).

Fundamental Concepts of Dependability. LAAS-CNRS, : ble X(t) that repre: em state at time /
Technical Reort NO1145

Basic Concepts Basic Concepts

Dependability of a system is the ability to deliver service that can

justifiably be trusted. M Failure Modes

A correct service is delivered when the service implements what it is
y VALUE FAILURES
specified. DOMAIN
TIMING FAILURES
® A system failure is an event that occurs when the delivered

COMSISTENT FAILURES
" 0 : PERCEPTION BY TWO
service deviates from correct service. FAILURES —i
OR MORE USERS INCONSISTENT FAILURES

CONSEQUENCES
ON ENVIRONMENT

service.

A failure is thus a transition m correct service to incorrect |:'~’INDR_FAILURES

CATASTROPHIC FAILURES

A transition from incorrect service to correct service is service
restoration.

Basic Concepts A motivational example

B An error is that part of the system state that may cause a
subsequent failure.

A failure occurs when an error reaches the system interface and alters the

service.

VM1 VM2

o -
fault ————3» error ——————3 failure VMM1 VMM2

Hardware
CPL

activation. ropagatiof . causatios Memory
cos e fault ——— 3 error % failure A fault - - Power

NIC
Coole




A motivational example

What is the respective RBD?
This?

Appl VML VMMI  Hostl

Or this?

VMI  VMMI  Hostl

App2 VM2 VMMZ  Hos2

A motivational example

W It is not clear.
Something is still missing!
® What is it?
The operational mode(s)
(success oriented networks: RBD and Relgraph)
or

The failure mode(s)
(failure oriented networks: FT)

Operational Mode

is a condition that defines the system as
operational.

= Operational Mode 1
OM; = App, AVMM AVM AH{ A SAN
/\A:DPZAVMMzAVMzAHz

Appl WMI VMM Hostl SAN App2 VM2 VMM2  Host2

R(t) = 0.805735302, t=0.002 tu

Operational Mode

¥ QOperational Mode 2
OMy = ((App, \VMM{AVM{A\H ;)
V (App,AVMM, AV M3AHR)) A SAN

WIVIVIZ Host2

R(t) = 0975215145, t=0.002 tu

Basic Concepts

W Fault prevention: how to prevent the occurrence or
introduction of faults;

B Fault tolerance: how to deliver correct service in the
presence of faults;

B Fault removal: how to reduce the number or severity of faults;

B Fault forecasting: how to estimate the present number,
the future incidence, and the likely consequences of faults.

Basic Concepts

Fault prevention is attained by quality control techniques employed
during the design and manufacturing of  hardware and  software,
including  structured programming, information hiding, modularization,
and rigorous design.

Operational physical faults are prevented by shielding, radiation
hardening, etc.

Interaction  faults  are prevented by training, rigorous
procedures  for maintenance, "foolproof' packages.

Malicious faults are prevented by firewalls and similar defenses.



Basic Concepts

Fault Tolerance is intended to preserve the delivery of correct service in
the presence of active faults.

B Active strategies
Phase:
1) Error detection

2) Recovery

B Passive strategies
Fault masking

Basic Concepts

Fault Removal is performed both during the development phase,
and during the operational life of a system.

Fault removal during the development phase of a system life-cycle consists
of three steps: verification, diagnosis, correction.

Checking the specification is usually referred to as validation.

Basic Concepts

Fault Forecasting is conducted by performing an evaluation of the
system behavior with respect to fault occurrence or activation.

Classes:
qualitative evaluation identifies event combinations that  would
lead to system failures;
probabilistic evaluation evaluates the probabilities of attributes of
dependability are satisfied.

The methods for qualitative and quantitative evaluation are either
specific (e.g., failure mode and effect analysis for qualitative evaluation,
or Markov chains and stochastic Petri nets for quantitative evaluation), or
they can be used to perform both forms of evaluation (e.g., reliability block
diagrams, fault-trees).

Basic Concepts

= Time to Failure

(0, if S hasfailed
Xs(0) = {1‘ if § is operational

fr(®

fr)(t) - Density Function  t

t

States of Xs(¢ - -
es of Xs(t) Fr(t) — Cumulative Distribution Function

Now, consider a random variable T as the time to reach the state X(t) = 0, given that the system started in state
X(t) = 1 at time t = 0. Therefore, the random variable T represents the time to failure of the system S, Fy(¢) its
cumulative distribution function, and f7(¢) the respective density function, where:

Fr(0) =0 and lim F(0) =1, .
Folt) = %L f fr©xde=1

dc’

Basic Concepts

= Reliability

N

R(t) Reliability Function t

The probability that the system S does not fail up to time t (reliability) is
P{T >t} =R(t) =1—Fp(t).
R(0)=1 and rlirr(}c R(t) =0.

Basic Concepts
= Reliability

Reliability (Survivor function) - Complementary of the distribution

function: R(t) =1 -F(t)



Basic Concepts

The probability of the system S fail within the interval [t, t + At] may be calculated by:

P{t <T < t+At}=Fp(t+At) — Fr(t) =
R(t) —R(t +At) =

J;“mf'f(t) dt.

Basic Concepts

» Hazard function
The probability of the system S failing during the interval [t, t + At]
if it has survived to the time # (conditional probability of failure) is
P{t<T(0) < t+AtT >t} =
R(t) — R(t + At)
R(®) '

P{t T < t + At|T > t}/At is conditional probability
of failure per time unit. When At — 0, then

R(t) —R(t+ At) o —[R(t+ At) — R()] 1
WS T RO XAt Ao x

dR(t) 1

dc RO

At R(t)

aR® . 1 _ fr _
a > R@® ~ RM® A0

Basic Concepts

» Hazard function
Hazard rates may lure rate (DFR),
constant failure i FR) according to A(t).

(d)
Hazard rate: (a) Decreasing, (b) Constant, (¢) Increasing, (d) Bathtub curve

Basic Concepts

= Cumulative Hazard function

Since dR(D) 1
Alt) = — at X my

_ _dR(@®

A®)dt = =0

¢ __[fdR®) _
J;/l(t)dt— LT(:) =

t
—f A@)dt =InR(t) =
0

R = efjc’/l(t)dr (O]

Basic Concepts

= Mean Time To Failure
MTTF = E[T] = [t % fr()dt.

Since

_dPe __dr
fr{t) = T a

thus,

“dR(t
MTTF = E[T] :—f d()xtdt.
o t

Letu=t, dv= ? X dt, and applying integration
by parts (fudv=uv—[vdu), then du=dt, v=
R(t), hence:

Basic Concepts

= Mean Time To Failure

MTTF = 7r d':i(tt) X tdt = 7[r X R(@®)|F — me(t) X dt] =
0

0
- 0= R dt| = R dt,
L (t) x t] L (&) x dt

hence

MTTF = [°R(t) x dt




Basic Concepts

= Median Time To Failure
MedTTF R(t)

The median time to failure divides the time to fail distribution
into two halves, where 50% of failures occur before
MedTTF and the other 50% after.

Basic Concepts

me random variable X(t)
Xs()=0 w N

Now, consider the random variable D
that represents the time to reach the state
Xs(8)= 1, given that the system started in state
Xs®)=0attimet=0.

Therefore, the random variable D represents the
system time to repair,

0, if S has failed
if Sis operational

Fp(t) its cumulative distribution function,
and fp (t) the respective density function

restore

Fp (0) =0 and Jim Fp =1

_ 9Fpay
fo) =20,

fp(t) = 0,and

States of X¢(t)
fwfn(c) xdt=1
0

Basic Concepts

= Maintainability

The probability that the system S will be repaired by ¢
is defined as maintainability.

t
M(t) =P{D <t} =F(t) = J fo(t) x dt
[}

_(0, if S has failed
Xs© = {1, if § is operational

States of Xs(t)

Basic Concepts

= Mean Time To Repair

The mean time to repair (MTTR) is defined by:

MTTR = E[D] = fmz X fo (O)dt
0

An alternative often easier to compute MTTR is

MTTR = [,” M(¢) x dt.

Basic Concepts

= Repairable Systems

Consider a repairable system S that is either operational (Up) or faulty (Down).
‘Whenever the system fails, a set of activities are conducted in order to allow
the restoring process.

These activities might encompass administrative time,

transportation time, logistic times etc.

When the maintenance team arrives to the system site, the actual repairing
process may start.

Further, this time may also be divided into
diagnosis time and actual repair time, checking time ete.
Downtime = TR = NRT +TTR
However, for sake of simplicity, we group these times such that
the downtime equals the time to restore
—TR, which is composed by non-repair time — NRT —
(that groups transportation time, order times, deliver
times, etc.) and time to repair — TTR

Basic Concepts

= Downtime and Uptime

Occurrence of a falure Occurrence of a failure
Uptime Uptime

SystemUp

System Down

=t
Downtime and Uptime

10



Basic Concepts

= Availability

The simplest definition of Availability is expressed as the ratio of the
expected system uptime to the expected system up and downtimes:
_ E[Uptime]
E[Uptime]+E[Downtime]

Basic Concepts

= Availability
Consider that the system started operating at time t = t’ and
fails at t = t", thus At =t"" —t' = Uptime.
Therefore, the system availability may also be expressed by:

MTTF

" MTTF+MTR

Downtime and Uptime

Basic Concepts

= Availability
where MTR is the mean time to restore, defined by
MTR = MNRT + MTTR (MNRT — mean non-repair
time, MTTR —mean time to repair), so:
MTTF
A= MTTF + MNRT + MTTR"

If MNRT =0,
MTTF

= MTTF + MTTR

Basic Concepts
= Availability

As MTBF = MTTF + MTR = MTTF + MNRT + MTTR,
and if MNRT = 0, then MTBF = MTTF + MTTR.

Since MTTF > MTTR, thus MTBF = MTTF, therefore:

_ MTBF
~ MTBF+MTTR

Basic Concepts

= Instantaneous Availability

The instantaneous availability is the probability that
the system is operational at t, that is,

A(t) = P{Z(t) =1} = E{Z(t)}, t=0.

If repairing is not possible, the instantaneous availability,
A(t), is equivalent to reliability, R(t).

Basic Concepts

= Steady State Availability

If the system approaches stationary states as the time increases,
it is possible to quantify the steady state availability

A=limi_, A(t), t =0

11



Probability Review

m Slides 32-120 (SPN1)

Ja vimos este assunto.

Exponential Distribution

B Arises commonly in reliability & queuing theory.

B A non-negative continuous random variable.

M [t exhibits memoryless property (continuous counterpart
of geometric distribution).

W Related to (discrete) Poisson distribution

Exponential Distribution

B Often used to model

— Interarrival times between two IP packets (or voice calls)
— Service times at a file (web, compute, database) server
— Time to failure, time to repair, time to reboot etc.

B The use of exponential distribution is an assumption
that needs to be validated with experimental data; if
the data does not support the assumption, then other
distributions may be used

Exponential Distribution

M For instance, Weibull distribution is often used to
model times to failure;

B [ ognormal distribution is often used to model
repair time distributions

B Markov modulated Poisson process is often used to

model arrival of IP packets (which has non-
exponentially distributed inter-arrival times)

Remember these formulae

Exponential Distribution: EXP(1)

B Mathematically (CDF and pdf are given as):

1—-e 2 fo<z<oo

CDF: F(z) =4 o otherwise

here X is a paramter and the base of natura
logarithm, e = 2.7182818284

. _[xe M ifz>0
paf: /(=) = { 0, otherwisd]

A f(z)de = e
¢

Pa< X <b)= /[bf(:v

Exponential Distribution: EXP(A)

R(t) = e ™,

F(t)=1—e™,

h(t) = A,
E[T] = MTTF =

1
7

1
Var[T] = 0% = =

12



Exponential Distribution: EXP(A)

The memoryless property can be demonstrated with conditional reliability:

Pr(T > x+1)
R(x =P(T T>t)= ——— -
x 10 T>x+t|T>1) PT > 1)
e MtHx)

=—= e = R(x), x>0.
o

Hyperexponential Distribution

fx({l'):ijﬂje x>0,
J=t
. 1
T=YY_" axq
Swoon

k
. b 4
variance: var(X) =2 E = -
i

Erlang Distribution

e \F L
pdf: fx(z)= -7ka(;‘#1))! e~kur

mean: X =

1
I
variance:  var(X) =

coefficient of variation:

1500 200

Hypoexponential Distribution

fxlz) = Zaiu,‘?"‘“, >0,
i=1

k
My

with a; = s
5 — I

=Ly

coefficient of variation:

Weibull Distribution

Fx(x) = ar(Az)* Vexp(—~(Az)*), A >0,

shape parameter o

scale parameter A > 0

model times to failure

TP

Weibull Distribution

13



Lognormal Distribution Cox Distribution

exp(—{In(z) - A}?/2a%), z>0
2 209 _
- , var (X) = &2%22‘1) i
X = exp(A +a?/2 R IR
Lognormal distribution is often
o = exp(a?) — 1 u@ed_lo model repair time
distributions

W +apf(2—a)

& =
* {p2 +am)?

—
a= \/ln(c§ +1),
The importance of this distribution arises from the fact that the product of

n mutually independent random variables has a lognormal distribution in the
limit n — oo.

Cox Distribution

REDUNDANCY MECHANISMS

The model consists of & phases in series with exponentially distributed
times and rates pp, po, ..., ug. After phase j, another phase j + 1 follows
with probability a; and with probability b; = 1 — a; the total time span
is completed.

Cox Distribution Redundancy Mechanisms

W Parallel Redund

T- by + k(1 ~bl)’
'U
k+bik-1)(b1(1-k)+k—-2
var (X) = i ) li )+ ) . Parallel Redundancy refers to the approach of having multiply units running in parallel.
M All units are highly synchronized and receive the same input information at the same time.

k4 by(k—1) (bi(1— k) +k—2)

2
X [br + k(1 — by)?

' Vi . But because all the units are powered up and actively engaged, the system is at risk of
encountering failures in many units.
_k=bi(k=1)
X




Redundancy Mechanisms

W Parallel Redund

Deciding which unit is correct can be challenging if you only have two units. Sometimes you
just have to choose which one you are going to trust the most and it can get complicated.

If you have more than two units the problem is simpler, usually the majority wins or the two
that agree win.

ular Redundancy (TMR)

pd—hN
N

Deciding which unit is correct can be challenging if you only have two units. Sometimes you
just have to choose which one you are going to trust the most and it can get complicated.

If you have more than two units the problem is simpler, usually the majority wins or the two
that agree win.

A generalization is named NMR

Redundancy Mechanisms

| HOt Standby In hot standby, the secondary unit is powered up.

If you use the secondary unit as the watchdog and/or voter to decide when to switch over, you
can eliminate the need for a third party to this job.

This design does not preserve the reliability of the standby unit. However, it shortens the
downtime, which in turn increases the availability of the system.

Redundancy Mechanisms

m Hot Standby

Some flavors of Hot Standby are similar to Parallel/ Redundancy.
These naming conventions are commonly interchanged.

For us, Hot Standby and Parallel Redundancy are the same mechanism!
But, attention!

Redundancy Mechanism

m Cold Standby

In cold sta , the secondary unit is powered off, thus preserving the reliability of
the unit.

The drawback of this design is that standby unit have to power up, since it is initially
powered off.

Perfect switching AND non-prefect switching

Redundancy Mechanisms

B Warm Sta

the secondary unit is powered up, but not receiving the workload.

It is common to assume that in such a state the standby component has higher
reliability than when receiving the workload (properly working).

When tl ain component fails, the standby device promptly assumes the task.

Its switching time is shorter than the cold standby’s switching time .

15



Redundancy Mechanisms

mK out of N

Consider a system composed of n identical and independent components
that is operational if at least k out of its n components are working

properly.

This sort of redundancy is named & out of n

Redundancy Mechanisms
W N-version programming

System
Input

Ha flware.
C A
Hardware Software
D A

Primary Avionics Software System
(PASS)

Hardware Software
E B

Backup Flight Control System

Hardware and software redundancy in the Space Shutile’s avionics control system.

Redundancy Mechanisms
m Checkpoints and recovering

4
Chee

paint provessing

Foll back to Altemative
check paint procasEng
“

Roll back to
sheek point
|

Redundancy Mechanisms

m Backward Recovery
— Compensation 1
Compensation 2
Compensation 3

Transaction 4

Redundancy Mechanisms

m Reboot
The simplest - but weakest - recovery technique.
From the implementation standpoint is to reboot or restart the system.

| Journaling - To employ these techniques requires that:

1. a copy of the original database, disk, and filename be stored,

2. all transactions that affect the data must be stored during execution, and
3. the process be backed up to the beginning and the computation be retried.

Clearly, items (2) and (3) require a lot of storage; in practice, journaling

can only be executed for a given time period, after which the inputs and the
process must be erased and a new journaling time period created.

COHERENT SYSTEM

16



Coherent System

W Structure Function Operations

= {+,%,+} - arithmetic

Consider a system S composed by a set of components, C = {¢;|1 < i < n}, where the state of the system S and
its components could be either operational or failed. Let the discrete random variable x; indicate the state of
component i, thus:

_ {o if the component i has failed
Y= if the component i is operational

The vector X = (X1,Xy, ..., Xj, ..., X,)! represents the state of each component of the system, and it is named state
vector. The system state may be represented by a discrete random variable (X) = $(ky, Xz, ., i, -, %), Such
that
0 if the system has failed
$00= {1 if the system is operational

¢(x) is called the structure function of the system.

If one is interested in representing the system state at a specific time t, the components’ state variables should be|
interpreted as a random variables at time t. Hence, ¢p(x(t)), where x(t) = (x;(t), X2 (t), ..., X;(t), ..., X, (£)).

Coherent System

W Structure Function

For any component ¢;,

P = x; p(1;,%) + (1 = x;) $(0,%),

where ¢(1;,X) = p(xy,X3, ..., 1j, o, Xp) and @(0;,X) = P(x1, %3, ..., 04, e, Xp).

The first term (x; ¢(1;,X)) represents a state where the component ¢;

is operational and the state of the other components are random variables

(p(xy, x5, ., 1, ..., x3)). The second term ((1 — x;) ¢(0,%)), on the other hand,
states the con n where the component ¢; has failed and the state

of the other components are random variables (¢(xq,xz, ..., 05, .., X))

Equationis known as factoring of the structure function and very useful for studying
complex system structures, since through its repeated application,
one can eventually reach a subsystem whose structure function is simple to deal with (1).

Coherent System

W Irrelevant Component

A component of a system is irrelevant to the dependability
of the system if the state of the system is not affected
by the state of the component.

¢; is irrelevant to the structure function if ¢(1;,x) = ¢(0;, x).

Coherent System

A system with structure function ¢ (x) is said

to be coherent if and only if ¢ (x) is non-decreasing
in each x; and every component ¢; is relevant.

A function ¢ (x) is non-decreasing if for every
two state vectors X and y, such that x<y,

then ¢p(x) < ().

Another aspect of coherence that should also be
highlighted is that replacing a failed component

in working system does not make the system fail.
But, it does not also mean that a failed system will

work if a failed component is substituted by an
operational component.

Coherent System

m Example - Structure Function
Consider a coherent system (C, ¢p) composed of three blocks, € = {a, b, c}

Coherent System

B Example - Structure Function
factoring on component a, we have:

Do xp, xe) = Xg G(La,xp, %) + (1= x0) $(0g, xp, %) = X p(1a, X5, %c).
since ¢ (04, xp,x.) = 0.

Now factoring ¢(14, X, X¢) on component b,

P(La,xp, %) = xp P(Lg, 1y, xc) + (1 = xp) (14, 0p, %)

As (1,4, 1,,x.) = 1, thus:

P(1a,x5,%) = x5 + (1= x5) ¢(14,0p,%,).

Therefore:

O (xaxp, X)) = Xg $(1a, Xy, x2) = X0 X [x5 + (1 —xp) ¢(1, 04, %))

17



Coherent System

B Example - Structure Function

Fact ¢p(1,, 0y, x.) on component ¢ to get:
P (14, 0p,xc) = x¢ p(1q, 05, 1) + (1 — xc) (14,05, 0).

Since ¢(1,,04,1.) = Land ¢(1,,0,,0.) = 0, thus:
P14, 0p,x.) = x,.

So

(xa Xy, xe) = xq X (x5 + (1= x) p(14,0p,%.)] =
Xo X [xp + (1= xp) xc] =

P (xg Xy Xc) = XqXp + Xgxc (1 —xp) =

P(xa Xp, Xc) = Xg[1 — (1 — x)(1 — x)].

Coherent System

W Logical Function

Operations

if the component i has failed + {n,-}  logic operations

if the component i is operational

if the system has failed

ws)={7
¢ —r if the system is operational

bs = (51,52, ...,5;,...,5,) represents the Boolean state of each component of the system.
The svstem state could be either operational or failed.
The operational system state is represented by @(bs), whereas @(bs) denotes a faulty system.

Coherent System

W Example — Logical Function

Example: Consider a system (C, ¢) composed of three blocks, € = {a, b, c}

©(Sa,5p,Sc) = Sa A(Sp Vse) =5 N (§p A5

Coherent System

B Example — Converting a Logical Function into a Structure Function

Using the notation described. s; is eauivalent to x;, 5, represents 1 — x;,
@(bs) is the counterpart of ¢(x) =1, ¢(bs) depicts ¢p(x) =0,
A represents X, and V is the respective counterpart of +.

Consider a system (C, ) composed of three blocks, C = {a, b, ¢}

_{:F‘
4{:}4 ’ I (P(sa‘sb‘sc) =Sa/\(5_b /\S_c)

$(x) = xa x [1 = (1= xp) x (1 = x)]

MODELING

Modeling Techniques

B Classification

— State-space based models
mCTMC, SPN, SPA

— Combinatorial models
ERBD, FT, RG




Combinatorial models

Reliability Block Diagram

RBD is success oriented diagram.
Each component of the system is represented as a block

RBDs are networks of functional blocks connected such that they affect
the functioning of the system

Failures of individual components are assumed to be independent for easy
solution.

System behavior is represented by connecting the blocks
— Blocks that are all required are connected in series
— Blocks among which only one is required are connected in parallel
— When at least k out of n are required, use k-of-n structure

Reliability Block Diagram

m A RBD is not a block schematic diagram of a

system, although they might be isomorphic in some
particular cases.

m Although RBD was initially proposed as a model
for calculating reliability, it has been used for
computing availability, maintainability etc.

Reliability Block Diagram

Reliability Block Diagram

“TH -1

Plp(x) = 1} = Plp(xn Xz, Xy o, X)) = 1 = [IL Pl = 3 =Ty = 1

Therefore, the system reliability is
Rs(t) = P{p(x t) = 1} = [1ie Pxi () = 1} =[Ti=, Re(8),
where R;(t) is the reliability of block b;.
Likewise, the system instantancous availability is
As(t) = Pigp(x,0) = 1} = [Ty Plxi(6) = 1} =T, A0,
where A;(t) is the instantancous availability of block b;.
The steady state availability is
45 = Plp(x) = 1} = [IL, Plx; = 1} =[I., 4s
where A; is steady state availability of block b;.

Computing the Reliability

Appl WML VMMI  Hostl SAN  Appl VM2 VMMZ2  Host

R(t) = e7tapp1t x e~ Avant
x e~ AvMMit x g—AH1t
x @~4sant x
e~ tappzt w p=Avmzt x o= Avmmat
X e~ AH2t =
e~ (Rapp1+Avm1+Avmm1 +AH1+AsaN+ap
R(t) = 0.805735302, t=0.002 tu
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Reliability Block Diagram

W Series

Series system of n independent components, where
the i component has lifetime exponentially
distributed with rate /;

Thus lifetime of the system is exponentially
distributed with parameter pyi4 1\
=

and system MTTF = l/ i=1 )\j

Reliability Block Diagram

R.v. X: series system life time
R.v. X;: i""comp’s life time (arbitrary distribution)
0 < E[X] < min{E[X;]}
Case of weakest link
X=min{X,, X, ..X,}
Rx() = ] Ry, < min{Rx ()}, (0 < Rx,() < 1)

1
P00

E[X] = /;

R (t)dt < min {/Ooc in(t)dt}
= min (B[X;])

Reliability Block Diagram

H Example:

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =
0.00004 failures per hour, respectively. The sw system cannot work
when any one of the web services is down.

a) Calculate the total sw system failure rate.
b) Calculate MTTF of sw system.
c) Calculate the R(t) at 730h

Reliability Block Diagram

H Example:

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =
0.00004 failures per hour, respectively. The sw system cannot work
when any one of the web services is down.

a) Calculate the total sw system failure rate.
b) Calculate MTTF of sw system.
c) Calculate the R(t) at 730h

Reliability Block Diagram

B Example:
The sw system cannot work when any one of the web services is down.
=

The sw system only works when all web services work.

wsy ¥ web services 1 working
ws, ¥ web services 2 working
ws; ¥ web services 3 working

ws, ¥ web services 4 working

@WSy, WSy, W3, WSy) = WSy AWS, A WSz A WSy

Reliability Block Diagram

W Example:

@(Wsy, WSy, WS4, WE) = Ws; AWSy; A WSz A wsy

0.00001 + 0.00002 + 0.00003 + 0.00004
0.0001 failures per hour

q I
- b) M'I'I'F: q MM TTEs = ey = 10000k
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Reliability Block Diagram

W Example:
= C)

# (3, %2,73) = X1 2%,%3%4

PLg(xyxz %) = 1} = E{gp(xy,%5,%3)} = E{x1%%3%)

If the components are independent, then:
PLP(xy 2z, %5) = 1} = E{x,) Elx,} E{x} E{x,} =
As
P{ ¢(xq,x5,33) = 1} = R(t), then
PLplxy,x5,%3) = 1} = R(8) = 1y ()7 ()7 ()7 (1)

And, since 7; (£) = e~%%, therefore:

R(E) = e~22t x g~k x g=hat x g=Af = g (hathatlatly)t

R(730Hh) = g~ (0-00001+0.00002+0.00003+0.00004)X730 = 0.929500830

Rel

H Problem:

iability Block Diagram

Reliability Block Diagram

H Parallel

P

Hence,

So,
Therefore:
So,

or
P{p(x) =1) canbe R(t), A(1), 4

P{p(x) =1} + P{¢p(x) =0} =1

(¢®) =1} =1-Plpx) =0} "
) =0
() =0 = P(s)
PE) =5 A5,

¢ =0=(1-x)(1~-x)
P{p(x) = 0} = P{(1 —x)(1 —x,)} =
P{p(x) = 0} = E{(1 —x)(1 —xp)} =
E{Q =2 3E{(1 —x)} = (1 = p)(1 = p2) = 0142
P{p(x) =1} =1 - P{p(x) = 0}
Plpx) =1} =1-qq,

Reliability Block Diagram

H Parallel

POO) = 1) = Pt e 1 ) = 1) = 1
Plp =1 =1-] Ja-p.
=1

Thus P{p(x) =1} =1—(1—p)™

!;[P{x,:()] =1 7[1[(1 Py =1]) =

The svstem reliabilitv is then: Source Target
R =1-] [Pe@ =0 =1-] Ja-rmm =1 =
=1 i=1 :
Rp(8) =1-17L, Qi) = 1[I 1 - Ri()
such that, .

Qi) = P{x;(t) = 0} = 1= P{xy(t) = 1} = 1 - Ry(©),

where Ry(t) and Q;(t) are the reliability and the unreliability of block by, respectively.

Reliability Block Diagram

H Parallel

. . . Souce Target
Similarly, the system instantaneous availability is
n

4,0 = P& =1 =1-] [P =0=1-] [1-a@
=1 i=1

b2
Ap(0) = PIp(x 0 = 1) = 1 =TT, UA(D) =1 = [T, 1 = A0, LEJ

such that, UA; (t) = P{x;(t) = 0} = 1 — P{x;(t) = 1} = 1 — A;(¢), b

where A;(t) and UA;(t) are the instantancous availability and unavailability of block by, respectively.
The steady state availability is

Ap = P{p(0) =1 = 1~ [T, UA; =1~ T, 1 - 4,

where 4; and UA; are the steady availability and unavailability of block b;, respectively.

Due to the importance of the parallel structure, the following simplifying notation is adopted:

Plp(x) =1} =1-(1-p)(1—p,)

Plp() =1) = 1 -7 - Plxi = 1) = I Plxi = 1} = [ pe = 1- (0 - )"

Reliability Block Diagram

H Parallel

For a parallel system with n independent and
identical components with rate 1

Ry(1) = 1= (1 -

and system

MTTF = [” R(t) x dt = [[1-(1-e*)"dr =
0

21



Reliability Block Diagram

W Example

Reliability Block Diagram

W Example

The system works when at least one server warks.
ot

sy & server 1 working

s, & server 2 working
(s1,8,) = 81 VS, < @(s1,5,) = FH AF

We know that

Ppx) =1 =1-(1-p)A-p)
As
P{¢p(x) =1} canbeR(t), A(t), A

Reliability Block Diagram

W Example
We know that
Plp(x)=1}=1-(1—p)1 —py)
As
P(p(x) =1} canbe R(t), A(t), A

Reliability Block Diagram

W Example

We know that

P{px)=1}=1-(1-p)(1-ps)
As
P{¢h(x) = 1} canbe R(t), A(t), A

R(730h) = 0.9997906870
MTTF = 105 000k

Reliability Block Diagram

W Series-Parallel System

— Series-parallel system: n stages in series, stage i with n; parallel

components.
— Fori=1,..n,Rj=R, n>j>1

— Reliability of series-parallel system is given by

Rop = [[[1—-(1-R)"]

Reliability Block Diagram

W Series-Parallel System
Example:

R(1) =1-(1-R ()1 - R, (7))
= Rl(l) +R, (1) _R1(1)R2(f)

—Mt —(M+2)t
o o (h+22)

P=(1-(1-p)1-p3))x (1 -1 —-p)(1—p)1—ps))




Reliability Block Diagram

W Series-Parallel System
Example:

P=(1-(1-pp:)(1 - pspaps))

Reliability Block Diagram

B Example:

Consider a system S, represented by four blocks (by, by, bs, by) where each block has
13,73, 73 and ry as their respective reliabilities.

RBD of System S;

The system reliability of the system Sy is

Rs, =mx[1-(1=-rpxn)x(1-1)l

1

Reliability Block Diagram

M Problem

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw system are A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =
0.00004 failures per hour, respectively. The sw system provides the
proper service if the web services 1 or 3 are up and the web services 2
or 4 areup.

a) Calculate MTTF of sw system.
b) Calculate the R(t) at 730h

Reliability Block Diagram

W Problem
Now, considering the previous example, suppose that the repairing
time of each web service is exponentially distributed with average 2h.

a) Compute the steady state availability.
b) Compute the downtime in hours in one year period.

Reliability Block Diagram

m K out of N

Sequence of Bernoulli trials: # independent repetitions.
= 71 consecutive executions of an if-then-else statement

S,,: sample space of n Bernoulli trials

Sl = {O, 1}
S2 = {(0,0),(0,1),(1,0),(1,1)}
S, = {2" n-tuples of Os and 1s}

Reliability Block Diagram

mKout of N

Consider s € §,, such that, s =(1,1,...,1,0,0,...,0)

k n-k

s=A4 N4, .4 A Ara Ao Ao

P(s) = P(4)P(4,)...P(4,)P(A1)..P(A)

k _n-k

=rq

P(s): Prob. of sequence of k successes followed by (n-k)
failures. What about any sequence of k successes out of
n trials?

23



Reliability Block Diagram

mKout of N

can be arranged in (2) different ways,

= P(Exactly k successes and n — k failures)
—_ (™ k n—k
= (k)p 1-p)

=n, reduces to Series system p(n) = p"

k=1, reduces to Parallel system p(1) = 1—(1 —p)"

Reliability Block Diagram

Example: 2 out of 3 system
n statistically identical components; also statistically independent

block0

2outof 3

blockl

Reliability Block Diagram

Example: 2 out of 3 system

n statistically identical components; also statistically independent
n

ny "
Z([)p‘(l -
i=k
Block Ifn=3and k = 2, then

3
3 " i
Z (i)pl(l —p)i=

2outof 3 =
-+ (A pra-p=
2 3

3p2(1—p) +p* = 3p? - 2p°.

Reliability Block Diagram

W 2 out of 3
Assume independence and that the reliability of a
single componentis: R, .. (1) =¢e"
weget: R, .(1)=3e’"-2e7"

E[X]= [ Ry, (0)dt = [3e7"dt - [ 2e7"dr
v ? o
5
= > = MTIF ,,,
64 -

Comparing with expected life of a single
component:  MTTF, =513 = MTTF,
A e

2003 Simplex

Reliability Block Diagram

Reliability

250
At

Comparison of 2003 and simplex reliabilities

Thus 2003 actually reduces (by 16%) the MTTF over
the simplex system.

Although 2003 has lower MTTF than does Simplex, it
has higher reliability than Simplex for “short”
missions, defined by mission time t<(In2)/A.

Reliability Block Diagram

1 Example: 2 out of 5

A =01 % a component failure rate

—_ et 3 I
1 =09 ¥ a component repair rate 0.0081 + 0.0728 + 0.32803 + 039049 = 0.99934

I o Block Availability =
A= T T Componet Availability
w+d) sseeme Quiputs asked for the modet Zo5 ===
Steady-State Avalabiity
55 Avall 9395400002001

24



Fault Tree Fault Tree

FT is failure oriented diagram. W Structure Function
i < ={¢|l <i<n}
The system failure is represented by the TOP event. Consider a system S ccmpo.sed of a se.l 0‘1" components, € = {¢;|1 < l' <n}
Let the discrete random variable y; (t)indicate the state of component i, thus:
The TOP event is caused by lower level events (faults, component’s failures etc). = {l if the component i is faulty at timet
i) = 0 if the component i is operational at time t
The term event is somewhat misleading, since it actually represents a state

reached by event occurrences. The vector y(t) = (v, (£), Vo (t), .., ¥i (), .., Y0 () represents the state

of each component of the system, and it is named state  vector. The
The combination of events is described by logic gates. system state may be represented by a discrete random
variable 3 (x()) = ¢y (), ¥2(t), ., ¥ (), ... ¥ (£)), such that

The most common FT elements are the TOP event, AND and OR gates, and basic 0 if the system is operational at time t
EORh

if the system is faulty at time t

The events that are not represented by combination of other events are named

Y(y(t)) is named the Fault Tree structure function of the system.
basic events.

Fault Tree Fault Tree

Failures of individual components are assumed to be independent for easy | Logical Function
solution.

FT Logic Function ¥ denotes the counterpart that represents the FT structure function (1))
In FTs, the system state may be described by a Boolean function that is According to the notation previously introduced, s; (a Boolean variable) is equivalent to x;

evaluated as true whenever the system fails. and §; represents 1 — x;. The W(bs) (Logical function that describes conditions that cause
a system failure) is the counterpart of 1(y(t)) = 1 (FT structural function — represents
The system state may also be represented by a structure function, which, opposite system failures), W(hsg depicts of 1h{y(t)) = 0, A represents X, and Vis the
y r
to RBDs, represents the system failure. respective counterpart of +.

If the system has more than one undesirable state, a Boolean function (or
a structure function) should be defined for representing each failure mode.

Many extensions have been proposed which adopt other gates such as XOR,
transfer and priority gates.

Fault Tree Fault Tree

B Basic Symbols m Example
Basic Symbols and their description

Symbol Description

- TOP E\Z... represents the system failure. Consider a system in which software applications read, write
Basic event is an event that may cause a system failure. and modify the content of the storage device D, (source).
Basic repeated event The system periodically replicates the production data

(generated by the software application) of one storage device (D;)

AND gate generates an event (A) if All event B, have occurred. in two storage replicas (targets) so as to allow recovering
data in the event of data loss or data corruption. The system is
composed of three storage devices (D,, D, D3), one

OR gate generates an event (A) if at least one event B, have server and hub that connects the disks D, and Ds to the server
oceurred.

KOFN gate generates an event (A) if at least K events B; out of
N have occurred.
Server

The comment rectangle.




Fault Tree

m Example

Server

The system is considered to have failed if the hardware infrastructure does
not allow the software applications to read, write or modify data on D,
and if no data replica is available,

Hence, if Dy or the Server
or the Hub,
or both replica storages (D5, D3) have failed.

Fault Tree

H Example

W(bs) =5 Vs,V 5, V(s3A sy ),

So V5,V 53 V(s3Asy) =
So A58 53 A( 53/ s)
The respective FT structure function may be expressed as
Py(6)) = [1= (1= yo(8)) X (1 =y2(£)) X (1 = y2(8)) X (1 = y3(£) X ya(£))].

ifyp(t) = 1ory (£) = 1 ory,(t) = 1 or ¥3(t) = ¥4 () = 1, then
P(y(t)) = 1, which denotes a system failure,

Fault Tree

W Problem

Consider that the constant failure rates areA s =0.00002, Az = 0.00001, Ap,
= 0.00008, Ap, = 0.00009, and Ap; = 0.00007, respectively.

a) Calculate the R(t) at 730h
b) Calculate MTTF of system.

/ ’L \ Server
[
A L
i 1] ( £
D1 Serwer  Huh JjI|
o Q
o2 3

Fault Tree

W Problem

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw system are A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =
0.00004 failures per hour, respectively. The sw system provides the
proper service if the web services 1 or 3 are up and the web services 2
or 4 areup.

a) Calculate MTTF of sw system.
b) Calculate the R(t) at 730h

ANALYSIS METHODS

Analysis by Expected Value of the

Structure Function

B The method by an example

Consider a system (C, ¢) composed of three blocks, C

={a,b,c}

I
B

SH

3

A(p(sa,sb,sc) =5a N (spVse) =SaA(GpASc)
Px) =xa X [1 = (1 —xp) x (1 —x)]

Rs=P{¢p(x) = 1} = E[p(®)] = E[xa X [1 = (1 =) X (1 = x)]] =
Rs =P{p(x) =1} = E[xg] X E[1- (1 = %) x A = x)] =
Rs = P{$p(x) = 1} = E[xg] x [1 = E[(1 = x)] X E[(1 = x)] =
Rs = P{¢(x) = 1} = E[xa] X [1 = (1 = E[x]) X (1 = E[x.])
Ry =P{p(X) =1} =p, x[1 = (1 =pp) X (1 = p)] = Pa X [1 = a5 X q]
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Analysis by Expected Value of the
Structure Function

B Summary of the Process
As x; is a binary variable, thus x;" = x; for any { and &;
hence ¢ (x) is a polynomial function in which
each variable x; has degree 1.

13

Summarizing, the main steps for computing the system
failure probability, by adopting this method are:

i) obtain the system structure function.
ii) remove the powers of each variable x;; and

iil) replace each variable x; by the respective p;.

Analysis by Expected Value of the

Structure Function

B Example
2 out of 3 system

Consider a 2 out of 3 system represented by the RBD components statistically independent
in figure. The logical function of the RBD
presented in figure is r‘;cka’j "

23

Block.
bs) = A v A Y 4 o %) ouce Targed
@(bs) = (s; Asz)V(S1 As3)V (52V 53) "%" & _E_

Therefore
@(bs) = (sy AS2)V (51 As3)V (52Vs3)

2ourof3

blockl

@(bs) = (s As2) A (51 AS3)A(S2A53)

=
Px) = 1= (1—xx)(1 = xyx5)(1 — x2x3).

Considering that x; is binary variable, thus x;* = x; for
any 7 and k, hence, after simplification

P(X) = 1%z + X103 + XpX3 — 201253

Analysis by Expected Value of the
Structure Function

2 out of 3 system

components statistically independent

H Example ]
block3 Z(EJ Block

oooDoo Sowee Target
blockz

2outof3

‘blockl

Since ¢(x) is Bernoulli random variable, its expected value
is equal to P{¢p(x) = 1}, that is, £[¢p(x)] = P{¢p(x) =
1, thus

Plp(x) = 1} = E[¢p(x)] = E[x12z + X1 X5 + Xp43 — 201 45%3] =

Elx122] + E[x1x3] + E[x3x3] — 2 X E[xyx023] =

Elx1] Elx] + E[x1] E[23] + Elxz] Ex3] = 2 % E 21 ]E[x] E[x3].
Therefore

P{p(x) = 1} = p1pz + P13 + P23 — 2 X p1paps,
Aspi=p2=p3=p

P{p(x) = 1} = 3p* — 2p?

Pivotal Decomposition, Factoring or

Conditioning

This method is based on the conditienal probability of the system
according the states of certain components. Consider the system
structure function as depicted in

P00 = x; $(1,%) + (1 —x) (01, %)
and identify the pivot component i,
then

B Method

Pigp(x) =1} = E[x, ¢(1,0) + (1 -x,) ¢(0,%)] =
E[x, ¢(1, )]+ E[(1 —x,) ¢(0,,x)]
If x; is independent, then:
E[x] X E[¢(1,%)] + E[(1—x)] x E[¢(0,,x)].
As x; is a Bernoulli random variable, thus:
Pigp(x) =1} = p; x E[p(1;,x)] + (1 = p) x E[p(05,%)].
Since E[¢p(1;,x)] = P{¢(1;,x) = 1} and E[p(0;, )] = P{$(0;,x) =1},

then:

P{p(x) =1} = pi x P{¢p(1;,x) = 1} + (1 = p;) x P{¢p(0;,x) = 1}.

Pivotal Decomposition, Factoring or
Conditioning

B Example

Consider the system composed of three components, a, b
and ¢, depicted inthe figure where ¢(x,, X}, x.) denotes the
system structure function.

As Pp(x) = 1} = E[x; $(1,%) + (1 = x) $(0;, x)], then:

Plp(xq.xp,x;) = 1} = pg X E[$ (10, %5, 2.)]
+ a
(1 —pa) X E[ ¢(0g, x5, %)
But as E[ ¢(04, xp,x.)] = 0, s0:
P{p(xg, xpx.) = 1} = pg X E[p(14,xp,x.)].
Since
El¢(La, xp,x)] = P14, xp, X)) = 1},

Pivotal Decomposition, Factoring or
Conditioning

H Example
Now factoring on component b,
Pip(la xp,xe) = 1} =
Po X E[p(1a,1p,xc)]
(1= pp) X E[ (10, 05, xc)],
then
P (%a Xp,20) = 1} = pa X [Py X E[d(La, 1p,x)] + (1= pp) X E[ (14,05, x)]].
As E[¢p(1g.1p,x;)] = 1, thus:
Plg(aa x5, %) = 1} = a [ + (1= py) X E[4(14,0,20)]]-
Now, as we know that
E[ (14,05, x)] = P{¢p(14,0,,%.) = 1}, and
P{¢(1a, Oy, xe) = 13 = E[xc $(10,0p, 1) + (1 — x) (12,05, 0.)1.
then
E[¢(1q,0p,x0)] = E[xc] E[$(14,05,1)] + E[(1 = x)E[¢ (14, 05, 00)],
thus
E[¢(1q,0p,xc)] = pe X E[$(14,05,1c)] + (1 = pc) X E[$(14, 05, 00)]-
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Pivotal Decomposition, Factoring
Conditioning

H Example

As El¢(l(ll Din1c)J = P{Q‘)(lm Oinjc) = l} =1
and E[¢(14,05,0)] = P{¢p(14,050.) =1} =0,
then
EI. ¢(1u1 Db! xc)_] = Pe-
Therefore:
P{¢(xXa, xp, %) = 1} = pa [pp + (1 —pp) X pc] =
P{‘;b(xw Xps X(_-) = 1} = Palp + pap.':(l - pl));
which 1s
P{¢p(xq xp, %c) = 1} = pall — (1 — pp)(1 — pc)]-

Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

@0 = x,0(1,%) + (1 —x) $(0;,%)
Factoring on by
$®) = x5 $(15,%) + (1 —x3) ¢(05,%)
P{p(x) =1} = E[x; ¢(13,%) + (1 - x3) 9(05,%)] =
P{p(x) =1} = E[xg ¢(15,%] + E[(1 — x3) $(05,%)] =

By independency
P{p(x) = 1} = E[xs] E[¢p(15,%)] + E[(1 — x5)] E[9(05,%)] =
P{p(x) = 1} = p; E[¢(13,X)] + (1 —p;) E[9(05,X)] =

Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

Ifx; =1=p;=1,then:
Configuration 1:

Plp(x) = 1} = E[¢(15,%)] = P{op(1;,%x) = 1}
Plp(15,x) =1} = (1 - (1 —p )1 —p)) x (1 = (1 —p)(1 —ps))

Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

Ifx; =0 =p; =0, then:
Configuration 2:

P{p(x) = 1} = E[¢(05,%)] = P{g(05,%) = 1}
P{p(05,%) = 1} = (1 — (1 — pyp2) (1 — paps))

Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

Therefore:
P{p(x) = 1} = ps X P{p(15,%x) = 1} + (1 — p;) X P{¢(05,%) = 1}

Pp(x) =13 =ps x ((1 - (1-p)A-p))x (1 -1 —p)(1 -
) + (@ —ps) (1 (- p)( —p)) x (1 - (1 )1~ ps)))
1

Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

SR Y [ VR o Y N Y Y —(h+A+25)t
R[;ridge(t)_e 2 D _ e At dytd)t (it

—Z/l,-t
+2e !

—(A+A)t

B R S o S R R R YN

—(A4+A5)t e—(l, +A, + A+ A5)t

+e +e
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Pivotal Decomposition, Factoring or
Conditioning

B Example — Bridge Structure

(Hdt

bridge

MTTF:L"R

1 1 1 2
MTTF = —+— —t ———————+ —
Mt Ay Ayt Ay T AT A — .,
5 Z/“f
i=1

1 1 1

I A I+t Ay gt A+ Ayt Ay A+ At A+ A
1 1 1
MH g+ A+ A A+ Ay At Ay + A+ Ay

Reductions

The dependability evaluation of complex system
structures might be conducted iteratively by indentifying
series. arallel. k our of n and bridee subsvstems.

evaluating each of those subsystems. and then reducing each
subsystem to one respective equivalent block.

This process may be iteratively applied to the resultant
structures until a single block results.

Reductions

W Series reduction 5"“‘&{ N H h: %ﬂ{ }j,gﬂ

Pl =1} =L, P{x, = 1) =l p = 1.

bn

m Parallel reduction

Source Target

ba

Pl =1=1-] Ja-m.

Reductions

Block

2outof 3
P{p(x) = 1} = 3p® = 2p?

B Bridge reduction

\_‘..
1

P{p(x) = 1} = p3 X P{$(13,%) = 1} + (1 — p3) X P{$(05,%) =1}

Reductions

B Example

Consider a system composed of four basic blocks (by, b3, b3, bs), one 2 out of 3
and one bridge structure. The three components of the 2 ouf of 3 block are equivalent,
s, the failure probability of each component is the same (p,). The failure
ities of components by, by, bz, bs and the failure probability of

Reductions

The 2 out of 3 structure can be represented one equivalent block wh liability is 3p? — 2p® . The
bridge structure can be transformed into one component, by,, whose failure probability is py, =

(1= (1= PpaPs2) (1 = PoaPys) (1 = PoaDosPos) (1~ DoaPpabia))-

b

After that, two series reductions may be applied, one reducing blocks b, and bzinto block b,3; and a second that
combines blocks bs and by and reduces it to the block bg,. The reliability of block by is pps = py X 3, and the
block reliability of block bsp is Psy = ps X [(1 = (1 = Pp1Ps2) (1 = Puapps)(1 = Po1PpsPes) (1 = Po2PpaPpa))]
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Reductions

B Example

Now a parallel reduction may be applied to merge blocks bys and b,.
The block byss represents the block byz and by composition, whose reliability is pysq = 1 — (1 —py X p3) X
(1-3p*-2p%).

Finally, a final

erics reduction may be applied to RBD and one block RBD is gencrated ,
whose reliabil S

s

Przassp = p1 X [1 = (1= py X p3) X (1= 3p? = 2p*)]
x [ps % [(1 = (1 = poap2) (1 = Puapp) (A = D12sspws) (L = PraPispes))]|-

Computation Based on Minimal
Paths and Minimal Cuts

W Path and Minimal Path

Consider a system S with # components and its structure function ¢(x), where SCS = {cy, ¢z, ..., ¢} is the set of
components. A state vector X is named a path vector is ¢(X) = 1, and the respective set of operational components
defined as path set. More formally, the respective path st of a state vector is defined by PS(x) = {¢;|p(x) = 1,x; =
1,¢; € SCS}. A path vector X is called minimal path vector if ¢(x) = 0, for any y < x, and the respective path

imal path set, that is MPS(x) = {cilc; € PS(X),p(x) = 0 Yy < x}.

PS; is a minimal path set
PS; is a minimal path set

PS; is not minimal

Computation Based on Minimal
Paths and Minimal Cuts

m Cut and Minimal Cu

A state vector X is named a cut vector is ¢(x) = 0, and the respective set of faulty components is defined as cut set.
Therefore, CS(x) = {c;|$(x) = 0,x; = 0,¢; € SCS}. A cut vector X is called minimal cut vector if ¢(x) = 1, for any]
v > x, and the respective path set is named minimal cut set, that is MCS(x) = {c;|c; € CS(x),p(x) =1 Vy > x}.

Source Target

PSy = {by, by}, PSy = {by, b3}, PS3 = {by, by, b3}, PSy = {b,}, and
PS5 = {by, b3}
PS4 is a minimal cut set,

PS5 is a minimal cut set,
The same is not true for PS;, PS,, and PS;.

Sum-of-Disjoint-Products (SDP)
method

A

Disjoint Terms: Addition Law The addition law of probabilities is the underlying
justification for the SDP method. If two or more events have no elements in common,
the probability that at least one of the events will occur is the sum of the probabilities
of the individual events. If two events A and B have elements in common, the union
of these two events, A U B, may be expressed as the union of event A with event
AB, where A denotes the complement of A. Then we have the following equation
for evaluation of the probability of A U B:

Pr(A U B) = Pr(A) + Pr(AB).

Sum-of-Disjoint-Products (SDP)
method

Similarly with three events A, B, and C, we have
Pr{(AU B U C) = Pr(A) +Pr(AB) + Pr(A B C).
With n events Ay, Az, ..., Ay, we have

Pr(A{ U---U Ap) = Pr(A{) + Pr(A; As)
+Pr(Z|XzA3) + - +P1‘(X| -

Sum-of-Disjoint-Products (SDP)
method

B Example

Consider the RBD presented, where the operational probabilities are p; = p, = ps = 0.9.
The minimal path sets and cuts are Sy = {by, b,} and S, = {by, b3}, and S, = {b;}and S5 = {b,, b}, respectively]
The operational probability computed in the first interaction of 48 when considering the minimal path S; is 0.980296 |
If the minimal cuts are adopted instead of paths, and if S, is the first, operational probability is 0.990099. So
P{p(x) =1} € [0.980296,0.990099]. In the second I probability calculated considering the
5,05, is 0.9900019. When adopting the cuts, the next (and sole) disjoint product is $,° N S5. The operational
bability computed idering the additional term is 0.9900019. The reader may observe that the two bounds|
converged. Thus, the system operational probability is P{$(x) = 1} = 0.9900019.

Smc;‘: =

el
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Computing the Reliability

What is the respective RBD?
This?

Appl VML VMMI  Hostl

Or this?

VMI  VMMI  Hostl

App2 VM2 VMMZ  Hos2

State-space based models

Single Component System Availability Mode @

A simple 2-state CTMC

Consider a system with one component

or when the system is considered as a

black-box. This systems may have a
m(0) =1

normal functioning (1) state and a
failed state (2).

If the TTF and TTR are exponentially
distributed with rate A and p,
respectively, the CTMC that represents

H n 4 o=+t
A+u A+p

my(t) =

A U
t) = ,—(A+m)t
m2(6) /1+u+/1+uL

() +m(t) =1

A(t) = m (t)
Instantaneous availability

the system availability model is

oo

A simple 2-state CTMC

Single Component System Availability Model

m
m(t) = m = M‘t ~ “ WFigure shows the transient and
2 steady-state behavior of the 2-state
ﬂz(f)=ﬂz=m' CTMC for 3A = = 1.

A=m
Steady state availability

A simple 2-state CTMC

© DT =(1—-A)XT
m(t) =m =——
T — time period

A
mt)=n,=>——,t > Downtime

A+u
A=m, DT = (1 — A) X 8760h

Steady state availability hours in a year
DT = (1 — A) X 525,600 min

minutes in a year

CTMC
Single Component System Reliability Model
m(0) =1 @

my(t) = e

o

1
R(t)dt =f e~ Mdt ==
b 2

() +mp(t) =1
R(t) = my(6)
Reliability

R(t) =m,(t) =0,t >
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CTMC

Two Component System
Availability Model

C1
c2

Two-component parallel redundant
system with the same repair rate u
and the same failure rate for both

components is (4).

When both the components fail, the
system fails.

CTMC

Two Component System
Availability Model

24 A
ONONO
H 2u

Non-shared (independent) repair

A(t) = my(t) + my(t)
Instantaneous availability

u2A+ p)
AT G

Steady state availability
DT =(1-A)xT
T — time period

Downtime

CTMC

Two Component System
Availability Model

22 A

H H

Shared repair
A(t) = my(t) + i (t)
Instantaneous availability

1244+ u
I i D)

Steady state availability
DT =(1—-A)XT
T — time period

Downtime

202 4 22+ w?

CTMC

Two Component System
Availability Model
Non-shared case can be modeled & solved

using a RBD or a FTREE but shared case needs
the use of Markov chains.

_p(2A+ )
YT A+ p)?

CTMC
Some authors erroneously claim
Two Component System S .
P ¥ that reliability models do not admit
Reliability Model repair.
25 A

u

R(t)=1—-my(t) MWF:JmRamt=§1+JL
0

24 22

CTMC

B Example — Availability model

Generalization of the two ponent system
Model with shared repair

Failure rate of each machine is 4
Repair rateis p




TMC

B Example — Availability model
Generalization of the tw nent system
Vi model with independent r

Failure rate of each machine is 1

Repair rate is u

System availability is then computed
using a combinatorial approach

ample Avallab ode

An equivalent 2-state availability model

It is interesting to consider an equivalent 2- Failure rate of each machine is 1

state availability model that has the same Repair rate is (t
steady state availability as the given multi-

state availability model. /( 7

To represent system availability in the simple Up ) - @
form of equivalent 2-state system, we need < u

. . . — 1L eq
to properly define equivalent failure rate 1,4
and equivalent repair rate /1,4, such that A = )"”.1171

eq
MTTE,, Heq Ty + 7+ 7y ot 7T,
T MTTFE,q +MTTR.q ~ Zeq + leq Hog = H

TMC

B Example — Availability model
An equivalent 2-state availability mode

Let U be the set of up states, D the set of
down states, R the set of all transitions from
Uto D, G the set of all transition from D to
U t;;

_ ATy,
To+ 7 + 7Ty +oat Ty

Uy =

€q

the transition from state itoj

Aeg = Z P(system in state i | system is up)x g;

yeR

Heg = ZP(system in state i| system is down ) x g, =
<G

m Example

Consider a system consisting of two web-
servers, one database server and a network
infrastructure. The system is operational as
long as one web-server and the database
server are operational. It is assumed that a

Aws = 1.14 x 107* failures per hour

Aap = 2.28 X 107 failures per hour

Ihs = lap = 417 X 1072 repairings per hour

network infrastructure is fault-free. The
database server repairing has priority over
the web-servers’ repairing activities. The
failure rates of the web-servers and of the
database server are constant (4,5, 45
respectively), and the respective time to
repair are exponentially distributed with rate

s and fgp.

TMC

B Example — Availability model

A=y, +my = 0994547080

Toos = 114 x 10-* failures per hour Downtime = (1 — A) x T = 2866.05467 minutes

Jap = 2.28 X 10~* failures per hour T = 8760h X 60min = 525,600 minutes in one year.

Ihs = lap = 417 X 1072 repairings per hour

States (0,1), (1,0) and (2,0) are absorbing states
and (2,1) and (1,1) are transient states.

Absorbing states can be combined into a single
one.

R)=m, (1) + 7 4(1)

Aws = 1.14 % 10°* failures per hour

Ay = 228 x 10°* failures per hour

Hhws = Hap = 417 X 10 2 repairings per hour
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CTMC g

B Example - Availability model
EUCALYPTUS is composed by five high-level
components: Cloud Controller, Cluster Controller,
Node Controller, Storage Controller, and Walrus.
The Cloud Controller (CLC) is responsible for
exposing and managing th underlying virtualized No redundancy
resources (servers, network, and storage).

cusera / Clsters

1 Node_2 Node_h
Redundancy in the GC

CTMC

B Example - Availability model
EUCALYPTUS is composed by five high-level
components: Cloud Controller, Cluster Controller,
Node Controller, Storage Controller, and Walrus.

) - st
The Cloud Controller (CLC) is responsible for = -
exposing and managing th underlying virtualized o) bt 1)
resources (servers, network, and storage). N_S2 |
As2 st | 52
{=) o
- st
Parameter Description Value
As2=1/x Mean time for host failure 1/180.721
Mean time for inactive host failure ~ 1/216.865
Mean time for host repair 1/0.9
Mean time to system activate 1/0.005

p(Ni(p+ sa) + p? + sa(X + p))
XA+ ) (e + sa) + p2 (N + p) + sa(A2 + A+ p?)

Node_l  Node_2

Redundancy in the GC

CTMC

B Example — Reliability model
System composed by Two Subsystem:

One Switch/Router and Server Cluster

Clients Switcher/Route

-

Perfect switching cold
standby server architecture

The system is composed by a Switcher/Router and Serve subsystem. The system fails if the
Switcher/Router fails OR if the Serve subsystem fails. The Server subsystem is composed by two servers,
S1and S2. S1is the main server and S2 is the spare server. They are configured in Cold Standby, that is,

S2 starts as soon as S1 fails. The start-up time of S2 is zero. This is named perfect switching.

CTMC

B Example — Reliability model

System composed by Two Subsystem:

Perfect switching cold
standby server architecture

One Switch/Router and Server Cluster

The CTMC reliability model

Absorbing states can be
combined Into a single one

Variable Value
s T lambd: 112000,

System Unreliability: fambds o1 1115000
mu 1524

UR(4000h)= 0.181615244 lambda, 115000]

The unity of these rates is ™"
System Reliability: Jys is failure rate of the Switcher/Router.
Asy is failure rate of the Server 1.

R(4000h) = 0.818384756

Agy s failure rate of the Server 2.

 is the repair rate assigned to Server 1 repair activity.

CTMC

B Preventive Maintenance

Preventive maintenance is useful when the time [l Two main strategies:

Condition-based (inspection-based)
PM considered here

rate. Time-Based PM

to failure distribution has an increasing failure

We model TTF by Hypoexponential HYPO(As, A2)
distribution.

Time to trigger inspection is assumed to be
EXP(Ain),

Time to carry out inspection is EXP(uin ),

Time to repair is EXP(u ),

Time to carry out PM is EXP(yu).

CTMC

W Preventive Maintenance

Preventive maintenance is useful when the time

to failure distribution has an increasing failure
rate.

CTMC with corrective maintenance only
Time to failure is HYPO(As, A2);
(0,0) & (1,0) are up states;

2 is a down state

Time to corrective maintenance is EXP(p)
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TMC

B Preventive Maintenance
Preventive maintenance is useful when the time
to failure distribution has an increasing failure
rate.

CTMC with preventive maintenance
Inspection triggered after EXP(Ain) intervals
Time to carry out inspection is EXP(in)
Time to carry out PM is EXP(yp)

PM carried out if inspection finds the system
to be in degraded state (1,0)

CTMC

2, =0.001h7!
2, =0.001h7

B Preventive Maintenance = 1017
—01ht

Preventive maintenance is useful when the time " : 2'1 "

to failure distribution has an increasing failure j: 0 0005 A-1

rate.

0891 1000
A= TEO'O + n-l’o MTBI - mean time /ailability

between inspections MTBI=1/....

2-equal component cold standby availability model
without perfect switching (with finite
detection delay)

= 2-equal component cold
standby availability
model with perfect
switching
A\‘s = l_ﬂ;)

CTMC

2-equal component cold standby availability model

without perfect switching (with finite

detection delay)
We can model this by assigning a reward rate
e~9%ten to the state 1D, 1 to the state 0 and
0 to the remaining states

Then Unavailability is given by

Example

Plot of downtime D(8), D(, tw), and D (for 3
state model without state 1D) as functions of
1/6 (in seconds) for 1/A =10, 000 h and 1/u =

o o o o o
R S

Downtime (minutes per year)

o

10
1/5 (seconds)

CTMC

Capacity oriented availability

Consider a system with two parallel servers.
The system is considered to be operational
if at least one of the servers is operational.

Server 1 An availability model is represented by the following CTMC:

PR

Server 2

__H2itw
A =n(UU) +n(UD) = 222+ 24u + 1
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TMC

Capacity oriented availability

Now, if the users are interested not as much

whether the system is operational or not, but

rather in the service capacity the system may

deliver. Considering the depicted

architecture, it is assumed that if the two COA = zlu(l + ,Ll)
servers are operational, the system may 222 + 2]_;1 + .uz
deliver its full service capacity. If only one

server is operational, the system may deliver

only half of it service capacity. And when

none of the servers is operational, the system

may not deliver the service. Therefore

Capacity Oriented Availability (COA) is:

COA =2 xn(UU) + (DU).

TMC

2-equal component cold standby without perfect
switching with imperfect coverage availability model

Coverage factor = ¢ (conditional
probability that the fault is correctly
handled)

1C state is a reboot (down) state.

A8+ 12(1 —¢)

U(B,c) = mo+mic = (E=pryt)

D (5. c) = U(B,c)x8760x60

2-equal component cold standby without
perfect switching with imperfect coverage
reliability model

Coverage factor = ¢ (conditional
probability that the fault is correctly
handled)

1C state is a reboot (down) state.

It should be clear that the
system MTTF and system
reliability are critically
A(1+20)+ u “overagel
MTTF = ( ) K dependent on the coverage

‘= 2&[/1+,u(lfc)] factor.

R(U :/T:({) f /Tj(l()

SPN

ngle Component System Availability Mode

The instantaneous availiability :

A(z) = P{{m(C_0K) = 1)(1)}

Transition | Time_| Time | Type of service Downtime in period T

\
F | mTTF | 4 |single Server | PEm(C
R | MTTR | | single Server |

The stationary availability :

A
A=P{(m(C_0K)=1)} = Z X =
A+p
viERs
1 se my(COK)=1
0 semi(C.OK)=0

SPN

Single Component System Reliability Mode

Type of Service
F MTTF
A

Although the reliability of the basic component is analytically defined by R(t) L itis
possible to calculate the respective value through numerical transient analysis, once the
transiton R. is removed. The reliability can be calculated by:

R = P(n(C.0K) = D@} = Y rixm (@),

VMERS

r.f{l se mi(C_.OK) =1
70 sem(C.0K) =0

Basic Model with Erlang Distributed Repair Time

A = P{(m(C_OK) = 1)} = Z

VMERS

>
_ X
"=\op

n
A=z
X

1 se my(C_0K) =1 ElTg] =X e DP[Tg] = SD

Transition Time or weight Type of service

MTTF single Server

R1 MTTR/n single Server

i
R2 MTTR/n _ single Server
MTTR

R3 w=1

Basic Model with the Erlang Distributed Repair Time
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Basic Model with imperfect coverage
availability model

A= P{(m(C_0K) = 1)} = Z X
VMERS
_ (1 se m(COK)=1
= {o sem;(C_OK) =0

Type | Time or Wieght | Rate | Type of Service
E MTTF 2| single server
Whet
Wipet
MTTP B | single server
MTTR 1| single server
Failure Coverage Basic Model

Hot Standby Model
Availability Model

A =P{(m(C_OK) = 2)V(m(C_0K) = 1)}
22

= XM=l
Z ¢ ¢ 207 + 22u + it

VMERS

o= {1 se (m(Cox) = 2)V(m(Cox) = 1)
7o sem;(C_OK) = 0.

Transition | Type | Rate | Type of Service
F MTTF | A | infinity Server
R MTTR | u single Server

Availability Model

©5_0N_ok cs_oFF

Transition | Type | Time or Weight | Rate | Type of Service

cpF E | mmiEce 4| single server
PR £ |mmR_cp 1| single server
3 E__|[MTFCs a_| single server start
SR E_|MTR G B_| single server s
Start E_|ms single server

!

7

CSTONF

The stationary availability of the component is calculated by the expression:

A= P{((m(CP_OK ) = 1)V(m(CS_ON_OK) = 1))} = Z rXm
VM;ERS
where 1; is a function that
_ (1 se (m(CP_OK)=1)V(m(CS_ON_OK) = 1)
n= {0 se (m(CP_OK ) = 0)A(m(CS_ON_OK) = 0)

The Warm Standby model is similar to the
Cold Standby model. However, in a system with
Warm Standbv redundancv. the reserve

component remains energized (but inoperative),

so that. when the main component fails.

the reserve component takes over operations without
the delay that occurs in a Cold Standby system.

Warm Standby
Availability Model

Transition | Type | Time or Weight _| Rate | Type of Service | Priority
E | mrrFce A_| single server

PR E__|MTR_cp |_u_| single server

CsF1 E__|mrF1cs | single server

CSR1 E__|[MTRI_Cs B_| single server

CsF2. E__|mrr2cs | single server

CsR2 E__|MTTR2_CS5 B single server

Start ]

7 [

2 out of 3 with shared repair
Availability Model

The CTMC model:

Availability=n(S3) + m(S,) = 9.99955210e-001

2 out of 3 with shared repair
Availability Model

The equivalent SPN model.

The result obtained through TimeNET:

The Availability = P{#P1= 2} = 0.9999552
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Example

Clients Switcher/Route 1

i

Perfect switching cold
standby server architecture

The system is composed by a Switcher/Router and Serve subsystem. The system fails if the
Switcher/Router fails OR if the Serve subsystem fails. The Server subsystem is composed by two servers,
S1and S2. 51 is the main server and 52 is the spare server. They are configured in Cold Standby, that is,
52 starts as soon as 51 fails. The start-up time of 52 is zero

Clents Switcher/Route “
Perfect switching cold
standby server architecture

Example

CTMC reliability model 4. isiure rate of the switcher/router.

Asyisfailure rate of the Server 1.

)(-3 Agyisfailure rate of the Server 2.

- isthe repair rate assigned to Server 1 repai actvty.
i
Ats
S An ‘ ‘ariable ‘alue
4 lambda_rs 1/2000
¢ Asl as2 . lambda_s1 1715000
) |mu 1§24
5 M 2 3 lambda_s2 /15000

| The unity of these rates is h~1

System Unreliability:
UR{(4000h)=0.181615244
System Reliability:

R(4000h) = 0.818384756

Clients Switcher/Route: “
Perfect switching cold
standby server architecture

Example

SPN reliability model
st
SAF
System Unreliability:
UR(4000h)=0.18161528133
System Reliability: Lok
R(4000h) = 0.81838471867
MTTF_SR = 20000
NITTF_S1 = 15000
1TTF _S2 = 15700
WITR St =24

‘Systemtinrelshiby = PI#SA_F=1 OR (§S1_F=1 AND#52_F=1) |

SysterRelisbifly = 1-PI#SR_F=1 OR (£S1_F=1 AND#52_F=1)

SPN

Example CTMC availability model

The component’s state machines are:

1) SR state machine (SR)

Server's state machine (CS)

Example CTMC availability model

The respective CTMC availability model is

Up states:

Example

Clients Switcher/Route

i~

Perfect switching cold
standby server architecture

Perfect switching cold
standby server architecture

System availability:
A=0.998799526

System unavailability:
UA=0.00120047377

Clients Switcher/Route

i~

Perfect switching cold
standby server architecture

The respective CSM = Sync(SR,CS} is

SPN availability model

MTTF_SR = 20000
WTTF_S1 = 15000

Systemunavallabiity = PIFSR_F=1 OR (#51_F=1 AND #52_F=1) }
SystamAvalabiliy = 1-P{FSR_F=1 OR (#61_F=1 AND#52_F=1) }
Availability Results:
Steady State Unavailability = 0.0012011
Steady State Availability = 0.9987989
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HIERARCHICAL MODELING

Hierarchical Modeling

EUCALYPTUS is composed by five high-level
components: Cloud Controller, Cluster Controller,
Node Controller, Storage Controller, and Walrus.
The Cloud Controller (CLC) is responsible for
exposing and managing th underlying virtualized

resources (servers, network, and storage).

Node_l Node_2 Node_\
Redundancy in the GC

Hierarchical Modeling

EUCALYPTUS is composed by five high-level
components: Cloud Controller, Cluster Controller,
Node Controller, Storage Controller, and Walrus.
The Cloud Controller (CLC) is responsible for
exposing and managing th underlying virtualized
resources (servers, network, and storage).

Node 1 Node_2 Node_N

Redundancy in the GC

custera /

Description
Mean time for host failure
Mean time for inactive host failure
(52 =1/p Mean time for host repair 1/0.9667
sa_s2 =1/sa Mean time to system activate 1/0.005

7884 h

Redundant general
controller subsystem

A 50 cc cc sc

e
cloud system HLM RBD model of the non-redundant
General Controller subsvst

Hierarchical Modeling

_ J(Ni (i + sa) + p2 + sa(X + p)
(O ) (- sa) - (O 4 ) + sa(DZ F M+

Actoua = Age * (1 H 1 — Anode_i))
i=1

Acc

Measure GC without redundancy  GC with redundancy

Steady-state availability 0.99467823178 0.99991793
Number of 9’s 2.273944 4.08581
Annual downtime 46.66 h 0.72 h
—

S oo

i

< 099918

2 stimdneyle i G MITF of GC Hardware (months)
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