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Dependability Evaluation of a Smart Poultry
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Abstract— Internet of Things (IoT) applications equip ru-
ral producers with decision support tools and automated
solutions that boost agribusiness productivity, quality, and
profit. However, most poultry farmers still use conventional
methods of operation in which human workers carry out
all routines for monitoring and controlling their farms at
the expense of greater productivity. One of these human
activities is manual weighing, which can be replaced by
non-intrusive methods such as computational vision ap-
plications that estimate live poultry’s weight using video
cameras. Since Internet of Things (IoT) devices may have
low computing power limiting the ability to process the
data locally, they can transfer it to a fog or cloud data
center, where they are processed. This paper aims to con-
duct a dependability study of a poultry house automated
with a computer vision-based system for estimating poultry
weight considering hierarchical models (e.g., Markov chain,
Reliability Block Diagram, and closed-form equation) to rep-
resent the whole system and obtain steady-state availability
and annual downtime. In addition, our purpose is to con-
sider and compare different architectural solutions, such
as edge and fog computing-based solutions. The proposed
solution verified that a cloud-based application with no
redundancy has a downtime of 34.14% and 9.176% hours
when considering a hot-standby redundancy strategy in the
office node of a cloud solution.

Index Terms— Internet of Things, Dependability analysis,
Markov Chain

I. INTRODUCTION

IN agribusiness, Internet of Things (IoT) applications equate
rural producers with decision support tools and automated

solutions that boost productivity, production quality, and prop-
erty profit [1]. For example, computer solutions based on
agribusiness might (i) estimate the appearance of pests in the
crop and, consequently, reduce the frequent use of insecticides
and fungicides [2]; (ii) keep control of safe temperatures and
humidity conditions in production storage facilities [3]; (iii)
make available to producers and consumers an up-to-date
and secure record of the path taken by food at all stages
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of the production chain [4]; (iv) manage technical, strategic
and operational data for the entire rural property for planning,
documentation, and process optimization [5].

Poultry agribusiness is an important industry in emerging
economies like Brazil and Malaysia. Brazil is the third-largest
producer in the world and the first when it comes to the largest
exporters [6].

The poultry industry can be divided into egg and meat
production. The system’s availability features may be peculiar
to each category according to the product type. For example,
in meat production, the life cycle of chickens is 50 days
maximum. The shed is emptied at the end of this period, and
a new cycle begins. During this cycle, when the chickens are
going through the growth process, any sudden environmental
change can cause an increase in mortality. Therefore, monitor-
ing the environment with minimal disruption is critical to avoid
poultry mortality. However, the system may be interrupted
when the shed is emptied for maintenance.

In addition, when we analyze egg production, the hens’ life
cycle is longer. Reaching up to two years, laying hens are
kept for longer and require as much care as those applied in
meat production. In this scenario, high unavailability can blind
the technician to the actual conditions of the sheds, leaving
damages from which the producers can not recover.

In the last few years, some computational paradigms may
have been used as the architectural environment to implement
solutions and services [7]. This paper aims to carry out an
infrastructure based on cloud, fog, and edge for monitor-
ing and controlling of ambiance metrics of a poultry farm.
An automatized poultry farm comprises sensors that collect
metrics essential to maintain the poultry’s health, such as
temperature, water quality indicators, and illumination sensors.
Also, we can use video images to extract information about
the broiler’s weight or sanity. We create and validate, by
executing experiments in a controlled environment, Reliability
Block Diagram (RBD) and Markov chain models to represent
the system and study the availability issues of this system.
Additionally, we perform a sensibility analysis to identify
essential components to improve the system’s availability. Our
analysis verified that fog-based availability with no redundancy
has a slight advantage compared with the edge solution.
When considering the fog and cloud nodes, the downtime is
38.85 hours and 34.14 hours. We also consider scenarios with
redundancies and perform a sensitivity analysis where we can
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identify critical components of the system’s availability. The
contributions of this work are:

• The proposition of architecture of intelligent sheds con-
sidering different architectural patterns;

• The suggestion of Continuous-time Markov Chain
(CTMC) and Reliability Block Diagram availability mod-
els validated through fault injection experiments;

• An availability study considering different types of re-
dundancy and fault tolerance;

• And an availability analysis study highlighted the essen-
tial system availability parameters.

The rest of this paper is structured as follows: Section II
introduces the concepts of cloud, fog, and edge computing,
as well as dependability metrics. Some related works are
presented in Section III. Section IV describes the system
architecture. In Section V we introduce the proposed models.
In Section VI, we perform a dependability study and analysis,
and finally, in Section VII, we make the final remarks.

II. BACKGROUND

This section briefly explains the main concepts crucial to
understanding this work. First, we provide an overview of
cloud, fog, and edge computing, explain the modeling and
availability analysis, and discuss sensitivity analysis.

A. Cloud, Fog and Edge Computing
For processing data and operating Internet of Things appli-

cations, several different technologies are available, including
cloud computing, fog computing, and edge computing (IoT).
Each of these computing paradigms carries out a particular
task to facilitate IoT devices’ effective and efficient function-
ing.

Cloud computing [7] provides high computational power
and unlimited storage capacity, scarce resources in IoT de-
vices. So it is intuitive to offload the data to the cloud services,
where such data can be processed and stored. However, since
the data centers are distributed globally, the distance between
the cloud server’ and the users can imply high latency rates,
which can be unwanted in real-time applications.

A fog-based architecture allows some computational re-
sources closer to the IoT devices than the cloud servers. These
advances in the network’s edge facilitate data transmission
flow, reducing network bandwidth latency and consumption.
Fog computing can support applications that need low latency
and can be used in scenarios where this is not required. Fog
computing can be used for localized analytics and decision-
making, much like cloud computing can be used for large-scale
analytics and long-term storage.

Edge nodes refer to all devices that can ensure some com-
putational power or storage capacity, performing closer to the
sensors and actuators. This proximity with the resources at the
”edge” has benefits, which include less transmission latency
on data computing or storage. In addition, edge computing can
offer the fast response times required for IoT applications even
with limited resources. For instance, data can be filtered and
prepared for analysis at the edge before being sent to cloud
or fog nodes.

Edge node Edge node Edge node Edge node

Fog node Fog nodeFog node

Cloud

Sensors and Controllers

More

Less

Pr
oc

es
sin

g p
ow

er
, s

to
ra

ge
, r

eli
ab

ili
ty

Slower

Faster

Response tim
e

Fig. 1. IoT Stack: Edge to cloud

Figure 1 shows the common stack that represents each
paradigm. The edge nodes adjacent to the sensors and ac-
tuators’ are closer to the pyramid base. The fog is halfway
to the cloud, having more computational resources than the
edge nodes. Furthermore, the cloud has greater computational
resources and storage at the top. It is important to highlight
that there is less network overhead closer to the stack base
and less latency. On the other hand, more processing power,
storage, and reliability are expected closer to the top of the
stack.

So when it comes to designing a system, we must consider
which would be the desired features.

B. Modeling and Availability analysis: an overview
A system’s dependability can be understood by its capacity

to do the following: deliver a reliable service, properly fulfill a
set of specific functionalities (with high availability, in a safe
manner, without adverse effects) [8], and avoid frequent and
serious service failures [9].

The dependability concept includes some other metrics,
such as availability and reliability. In this paper, we have a
particular interest in availability, that is, the probability of a
system being in a functioning condition, considering the in-
terchange of operational and non-operating states. Availability
(A) can be calculated by the ratio between the Mean Time
to Failure (MTTF) and the Mean Time to Repair (MTTR), as
shown in Equation 1. Furthermore, the unavailability (U) is
calculated using Equation 2.

A =
MTTF

MTTF +MTTR
(1)

U = 1−A (2)

The mean time to repair (MTTR) can be estimated using
the MTTF, as shown in Equation 3:

MTTR = MTTF × U

A
(3)

The mean time to failure (MTTF) can be described by
integrating the reliability function as shown in Equation 4.
The reliability function defines the probability of a system
surviving a certain period without failures.
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MTTF =

∫ ∞

0

R(t)dt (4)

The Reliability Block Diagram (RBD) is a modeling tech-
nique that can evaluate a system’s reliability through each
component’s reliability. Each block represents a component of
the system and its functioning state, i.e., functional or failed.
The system works properly with a path from the start node to
the final node.

The Markov chain is an analytical modeling technique
that represents a stochastic process represented by a state-
space diagram, in which the future state of the chain is
determined by the current state and not by the way that the
process got to that state [10]. There are three types of Markov
chains: Discrete-Time Markov chains (DTMC), Continuous-
Time Markov Chains (CTMC) [11] and semi Markov process
[12]. This work will use CTMCs when our state space is

continuous.
There are several methods to perform a sensitivity analysis.

This work utilizes a differential sensitivity analysis technique
that uses a sensitivity coefficient calculated by the ratio be-
tween a given variable parameter and the output metric. In
contrast, the remaining parameters are kept constant. In this
way, if we aim to calculate the sensitivity coefficient of a
metric Y which depends on a parameter θ, we must use the
Equation 5 or Equation 6 for scaled sensitivity [13].

Sθ(Y ) =
∂Y

∂θ
(5)

SSθ(Y ) =
θ

Y

∂Y

∂θ
(6)

III. RELATED WORKS

This section provides some bibliographic material from the
latest years, which is key to understanding this research’s real
contributions.

The work referred to in item [14] models the IoT system
of a smart building and presents a modeling strategy based on
hierarchical models using the Continuous Time Markov Chain
(CTMC). Using such proposed models, the authors estimate
the steady-state availability by comparing a local infrastructure
and a cloud computing system, considering a cold-standby
strategy. They also perform a sensitivity analysis to verify
which components in the system most affected the system’s
availability. Unfortunately, the authors did not consider other
types of architecture, such as edge and fog computing, as we
did in our work; the authors verified a cold standby redundancy
strategy. However, in our work, we do not conduct such
analysis.

Kutyauripo et al. [15] evaluated several modeling techniques
applied to the agro-food sectors. The authors describe how to
use and the performance of those several models to optimize
the production of broiler.

In [16], the reliability and security challenges of an IoT-
based smart business center (SBC) network were examined,
and a Markov model was built to demonstrate a high level of
protection against hacker attacks.

Regarding IoT for smart health care, [17] proposes availabil-
ity models for an IoT system focused on failures and attacks
on components. The paper considers the main causes of failure
in a healthcare system and shows Markov chain models to set
up the IoT infrastructure.

In [18], Markov chain models are proposed for modeling
latency-sensitive applications such as a security face recogni-
tion system in a train station. In addition, the authors propose
availability models considering edge and fog architectures,
performing a capacity-oriented availability analysis and a cost
assessment.

In the work referred to [19], the authors use Reinforce-
ment Learning model to offload edge computing networks.
The authors took into consideration how the jamming and
interference affect the performance of the systems.

Our work proposes the Markov chain and the Reliability
Block Diagram (RBD) models for an intelligent poultry house
system. It conducts an availability analysis considering the
different architectural approaches (such as solutions with edge,
fog, and cloud computing) with different redundancy configu-
rations. We also perform a sensitivity analysis to identify the
main components affecting the system’s availability.

IV. SYSTEM ARCHITECTURE

When it comes to a smart poultry farm, we consider
obtaining data from the poultry houses by sensors and using IP
cameras and video processing to estimate the poultry weight
[20]. We suggest the following architectural solutions: an
edge-based solution, a fog-based solution, and a cloud-based
solution considering, in all cases, a hot-standby redundancy.

These solutions follow a basic one: to obtain the input data
(video through the IP camera and metrics by the sensors) and
transmit it to a node with enough power capacity to process
these data. In the processing node, images are classified, and
the attributes of interest are extracted. The data obtained from
the sensor nodes (the temperature, gas, light, and water quality
sensors) is also centered on the edge node and transmitted to
the office. The technical responsible for the shed has access to
this data through a computer in the local office, where the data
is stored locally and may undergo further processing. So with
the information of interest in hand, he gets an overview of the
situation and can intervene and make any changes if needed. In
this scenario, the technician holds information about a specific
shed and has an overview of all the sheds he manages.

An edge-based architecture is shown in Figure 2. In this
approach, the video captured through the IP camera is pro-
cessed only by the edge node. The technician has access to
the processed data in a local office, which is interconnected
to the system’s components by a network switch or a router.
The downside of this solution is that the edge resources are
limited, which restrains the video processing capacity.

A fog-based solution can be also viewed in Figure 2. In this
architecture, data processing responsibility is transferred to a
fog node. This fog node is a server that can be in the same
network as the office or the IP camera but can also be a server
in another network accessible by the Internet but not so far
from the cloud.
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Fig. 2. Environment design

The cloud-based solution can also be viewed in Figure 2.
Data usually are transferred to a cloud server that processes it
and returns the results to the office application in this approach.
In this architecture, network latency is expected, given that the
infrastructure administrators access the cloud servers through
the Internet.

Figure 3 shows an abstraction made in order to simplify
our models. We assume that a physical node is a junction
between the hardware and the operating system. This compo-
nent represents the edge node, the fog node, and the office
node. Regarding the cloud, we assume that this component
(physical node) represents a virtual machine instance. On top
of a physical node, one or more application instances are
running. These applications can be the classification software
or a virtual machine providing the office’s application service.

Operating System

Hardware

APP Application

Physical
Node

Hardware
Physical Node

APP APP APP...

Fig. 3. Abstraction of a general node

V. PROPOSED MODELS

This section presents availability models for the environ-
ment described in Section IV. We used a Markov chain and
an RBD model to represent and establish the link between
the components of the system. These formalisms are chosen
because they offer closed equations to calculate the availabil-
ity, which is more convenient than simulation processes and
is processed faster.

First, to build our Markov chain model, we need to obtain a
component representing the abstraction we made in Figure 3.
We must consider that the operating system and the hardware
on the stack are a single component called a physical node.
This simplification allows the model to be simpler, excluding
unnecessary details that cannot refine our model. To do this,
we use the RBD model and also extract Equation 7, where we
have the availability of physical nodes (Apn), availability of
hardware (Ahw), and availability of operating system (Aos);

from which we can obtain the availability of one physical node
instance. The RBD model obtained the MTTF and MTTR
related to the edge, fog, cloud, and office physical node
components by an exact evaluation on Mercury Tool1 [21].

Apn = Ahw ×Aos (7)

We can also consider the sensors as a unique component
called a sensor module and use a serial RBD to represent
it. The components of the sensor module are an esp32 micro-
controller, a temperature sensor, a gas sensor (that captures the
CO2 and Ammonia gases), a light sensor that is for measuring
the light intensity, and a water quality sensor, that measures
the ph, temperature, and turbidity of the water.

Equation 8 refers to the availability equation for one in-
stance of the module sensor extracted from the serial RBD
described previously. The availability of the sensor module is
represented by the product of the esp32 availability (Aesp32),
the temperature sensor availability (Ats), the gas sensor avail-
ability (Ags), the availability of the light sensor (Al), and the
water quality sensors availability (Aw).

As = Aesp32 ×Ats ×Ags ×Al ×Aw (8)

Figure 4 shows the proposed Markov chain model. Our
model comprises five components: the camera, the network
switch, the sensors’ module, the processing node, and the
office node.

In a baseline model, we consider a minimal functional
scenario composed of a switch, a sensor module, a camera,
an office computer running an application, and a processing
node executing an instance of the Software responsible for pro-
cessing the video. This strategy is to simplify our baseline, but
our model considers having one or more of each component,
i.e., we can have redundancies of each element that forms part
of the architecture. So, for example, our model can have one,
two, or Z switches. In the same direction, we can have up to
W cameras, M processing nodes with L applications running,
and N office nodes running applications.

One or several applications can run in the processing and
office nodes model. This application can be either the Software
that classifies the images or the office analysis software. For
example, if we have one active processing node, we can have
up to L applications running in that node. On the other hand,
we have up to 2L applications available if we have two active
processing nodes. So, if we have M processing nodes, we can
have ML applications running.

The office processing node model has a similar function.
Each office node can have one or up to Y applications
running in any node. Since the model supports up to N office
processing nodes, we can have, if we have the maximum of
office processing nodes, up to NY office applications running.

Each switch can have both a failure and a repair rate
(represented respectively by λsw and µsw), as well as a camera
(λcam and µcam). The processing node has a failure rate
λpn and a repair rate µpn. Each application running in the
processing node also has failure and repair rates (λapp, µapp).

1https://www.modcs.org/
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Fig. 4. Markov chain models

Finally, the office node failure rate is represented by λpno and
the repair rate by µpno. In turn, this office application also has
failure and repair rates (λappo, µappo). Our model assumes that
each component and replica are identical and that the system
has sufficient and independent repair teams.

From the Markov chain, we can extract the availability equa-
tions shown forward. These equations are important because,
with them, we can test infrastructure changes without imple-
menting them duly. This means it is more cost-efficient than
buying and implementing the entire infrastructure. First, we
obtain the availability equation for each component: Equation
9 for the switch, Equation 10 for the sensor module, Equation
11, Equation 12 for the processing server nodes, and Equation
13 for the office server nodes. In this way, we can calculate
the availability for the entire system, shown in Equation 14.

Asw =

Z∑
j=1

Z!

j! (Z − j)!
× λZ−j

sw µj
sw

(λsw + µsw)
Z

(9)

As =

X∑
q=1

X!

q! (X − q)!
× λX−q

s µq
s

(λs + µs)
X

(10)

Acam =

W∑
k=1

W !

k! (W − k)!
× λW−k

cam µk
cam

(λcam + µcam)
W

(11)

Ap =

M∑
i=1

(
1−

λiL
app

(λapp + µapp)
iL

)
× M !

i! (M − i)!
(12)

×
λM−i
pn µi

pn

(λpn + µpn)
M

Ao =

N∑
p=1

(
1−

λpY
apo

(λapo + µapo)
pY

)
× N !

p! (N − p)!
(13)

×
λN−p
pno µp

pno

(λpno + µpno)
N

Asys = Ap ×Ao ×Asw ×Acam ×As (14)

It is worth pointing out that we use the Mercury2 Modeling
Tool [21] to find our closed-form solutions. The Mercury Tool
allows us to draw Markov chains and calculate the probability
of each state. This tool also allows us to export our Markov
chain model to the Wolfram Mathematica3 Tool [22], where
we can find the probability equations of each state. From
there, we perform algebraic manipulations and can develop
the generalization of our analytical models.

We proposed analytical models instead of simulations or
measurements because they are costly. Simulations need to
perform an entire run to get a sample point of how the system
behaves; consequently, simulations perform several runs to
build a sample space [23]. On the other hand, measurements
are only feasible if there is already a system or prototype to
compare. The biggest drawback of this method is that it must
have at least a prototype to measure, and monitoring activities
are very susceptible to errors [23]. Therefore, we proposed
analytical models to help analysts to plan and evaluate faster
and easier conceptual systems.

VI. CASE STUDIES

In this section, we describe the cases that we have con-
ducted. The first step is a fault injection experiment to obtain
data to validate the edge-based model. We also study steady-
state availability based on an experiment in the Mercury tool
[21].

2https://www.modcs.org/
3https://www.wolfram.com/mathematica/
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A. Edge-based Model Validation

We aim to create a model representing a real system; once
created, we need to validate this model to ensure that it suits
the real scenario. As a baseline for our study, we consider an
environment with one edge node running the video processing
application. We perform a fault injection experiment to obtain
the data required for such validation. This technique is used
to understand the system’s behavior when a failure occurs.
Hence, a controlled environment is created and monitored
while the failures are injected. A failure can take a long time
to occur in an operating system. Before that, we accelerate
the occurrences of failures in our experiment. We consider a
reduction factor (RF) of 876 for each MTTF, i.e., turning one
year into ten hours. Thus, in our system, failure occurred by a
fault injection experiment; 10 hours are equivalent to a period
of 1 year in a real system.

We consider that the MTTF and MTTR, applied to inject
the failures and simulate their repairs, as shown in Table I,
are exponentially distributed. The column ”MTTF RF” of the
same table shows the value of the MTTF after applying the
reduction factor. These are the values that are set in the fault
injector.

These times for failure and recovery have been used in a
fault injection experiment implemented in an infrastructure of
the base architecture.

Component MTTF (h) MTTF RF (h) MTTR (h)
Camera 25,000 28.53 2
Orange pi 25,000 28.53 12
Raspbian OS 8,000 9.13 6
Application 8,000 9.13 0.1
Switch 25,000 28.53 6
Office Hardware 40,000 45.66 48
Office OS 400 0.46 0.5
Office application 1,200 1.37 0.5
Esp32 module 22,602 25.80 2
Temperature sensor 13,140 15 2
Gas sensor 13,140 15 2
Water quality sensor 13,140 15 2
Light sensor 13,140 15 2

TABLE I
MTTF AND MTTR BY COMPONENT

The environmental setup was composed of an Orange
pi WinPlus model with an AllWinner A64 SoC processor,
2GB DDR3 SDRAM, and 32 GB of storage. The operating
system was the Raspbian Server 10, and the video processing
application was a program in Python 3. The office computer
was personal; its configuration was an AMD C-60 processor,
4GB RAM, and 500 GB storage capacity, with Debian 10.
The fault injector was running in another personal computer,
with an Intel i7-8565U 1.8 GHz, 8GB RAM, 256GB SSD,
and Linux Debian 10. Interconnecting all this was an 8-port
Gigabit network switch. The fault injector was a Python 3
program that creates sub-processes to inject failures in each
system component, following the MTTR and MTTF shown in
Table I. The fault injector generates a random value based on
the exponential distribution with rates from the literature. We
use a Python library to generate these random values.

Alongside this execution, a bash script verifies every 10

seconds if those system components are working properly,
saving the referred status (if it is up or down) in a text
file. The experiment lasted 100 hours, and we got a total of
501 failures and repairs in all system components, i.e., the
degree of freedom was 501. This information will be useful
for calculating the confidence interval in the next step.

Now, we can calculate the system’s availability with the
measured information, which is 0.99474. We can also apply
a method [24] to calculate the 95% confidence interval’s
availability. We can now determine if we have evidence to
reject the proposed model or to accept it with the confidence
interval. We get that the mean is between 0.99374 < X <
0.99558.

By calculating the availability based on the proposed
Markov Chain model, we obtain availability of 0.99557, which
is within the confidence interval. So, we have no evidence
to reject the model representing the system. By proposing
analytical models instead of simulation or measurements, we
are able to analyze several distinct scenarios faster than if we
used simulation or measurements. The motivation behind this
proposal is to make the evaluation of settings easier for the
system analyst.

B. Steady-State Availability Study
First, we perform steady-state reliability analysis of the

model corresponding to Equation 7, using the Mercury tool
and the numbers shown in I. The results of this analysis can
be found in Table II. We consider that the MTTF and MTTR
for the cloud are 2880 and 0.03, respectively. Based on this,
we can extract that the MTTF and MTTR for the fog physical
node component are 2167.4226 and 1.1659, respectively. The
edge’s physical node has an MTTF of 6060.6056 hours and
an MTTR of 7.4567 hours. Finally, the MTTF and MTTR for
the office’s physical node correspond to 396.0396 and 0.9709
hours.

Metric Cloud Fog Edge Office
MTTF (h) 2880 2167.4226 6060.6056 396.0396
MTTR (h) 0. 03 1.16591 7.45672 0.97089
Availability (%) 0.99999 0.9994624 0.9987711 0.9975
Availability (# 9’s) 4.98227 3.2695 2.9105 2.6116
Downtime (h) 0.09125 4.7128 10.7718 21.4368

TABLE II
RESULTS FROM PHYSICAL NODE RBD MODEL

Applying the numbers displayed in Table I to the model
represented by Equation 8, we obtain the numbers of MTTF
and MTTR for the sensor module component. The obtained
failure and repair times are 2868.14107 and 2.00055 hours.
We can view these results in Table III. Now we can set the
components of the processing node and the office node in the
Markov chains shown in Figure 4(d). By conducting a steady-
state evaluation using the models with the times shown in
Tables I and II, we are able to build Tables IV and V.

Table IV shows the results with no redundancy strategies.
We set up the model with one switch, one camera, one sensor
module, one edge, fog, or cloud device with one processing
application and one office node. We can see in Table IV
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Metric Sensor modules
MTTF (h) 2868.14107
MTTR (h) 2
Availability (%) 0.99930
Availability (# 9’s) 3.15675
Downtime (h) 6.10996

TABLE III
RESULTS FROM SENSORS’ MODULE RBD MODELS

that the downtime of the fog-based architecture is lower than
the edge solution. A downtime of 38.85 hours for the fog
architecture signifies that the system would be offline for
approximately 39 hours in a year, with an availability of
0.99556, which contains 2.35 nines. However, if we consider
an edge node, the availability will be 0.99488, with 2.29 nines
representing an annual downtime of 44.77 hours and an uptime
of 8715.22 hours. The cloud-based solution’s downtime is the
lowest of the three architectures tested, being approximately
34 hours in a year. This way, we got an availability of 0.99610,
with 2.40 nines.

Metric Edge-based Fog-based Cloud-based
Availability (%) 0.99489 0.99556 0.99610
Unavailability (%) 0.00511 0.00443 0.00389
Availability (# 9’s) 2.29148 2.35310 2.40922
Uptime (h/y) 8715.22661 8721.14905 8725.85858
Downtime (h/y) 44.77339 38.85095 34.14142

TABLE IV
RESULTS WITH NO REDUNDANCY

When we consider scenarios with redundancy in the pro-
cessing node, i.e., with two processing nodes in hot-standby,
which can be seen in Table V, all architectures - fog, cloud,
and edge - have similar results. We can see the results
with redundancy in Table V. The system’s downtime with
redundancy for this component is approximately 34 hours. The
availability is 0.996125, which means an uptime of 8726 hours
a year.

We can see better results when considering the office node
redundancy. In the edge-based architecture, the availability
obtained was 0.99773, which means 2.64 nines and uptime
of 8740 hours. In the fog, the uptime result was 8746 hours,
which means availability of 0.99841 with 2.79949 nines.
These results represent a gain of 6 hours to the fog solution in
a year. In the cloud-based solution, availability was 0.99895
representing approximately an uptime of 8751 hours and
downtime of 9.17692 hours in a year. The cloud solution has
a gain of more than 10 hours compared to the edge solution.

However, it is noteworthy to highlight that this redundant
approach implies costs. These costs can be related to equip-
ment acquisition or other aspects like power consumption,
refrigeration, and maintainability since the spare computer is
always online. Depending on the solution adopted, we can
reduce these costs by embracing the policy of freeing up the
resources when they are not being used.

The decision regarding which strategy to adopt to ensure
desirable availability must consider the availability that wants
to be achieved and the financial feasibility of implementing
the solution. Although placing as many replicas as possible for

each component is a viable solution to maximize availability,
the costs involved in the operation may be higher than the
gains obtained.

C. Sensitivity Analysis

We have performed a sensitivity analysis to study how the
model’s parameters impact the system’s availability. This anal-
ysis aims to show us which parameter significantly influences
the system availability when it reaches the steady-state. Table
VI presents the sensitivity ranking calculated based on the
partial derivative from Equation 14. Here are the sensitivity
index parameters shown in decreasing order:

The top of the rank includes those that directly influence
the system’s availability. These parameters are related to the
number of office nodes, the number of processing nodes, the
number of office applications per node, and the failure and
repair rate of the office node. For example, the parameters (N,
M, Y, λpno and µpno) have an impact on the increase of the
component’s failure probability and, thereby, all system fails.
On the other hand, the failure and repair rates of the camera
and processing applications have less influence on the system’s
availability.

Figure 5 is used to verify the sensitivity of the system’s
availability when we variate each parameter at a time. For
example, once they were in the integer domain, we changed
the numbers referring to N, M, and Y in single steps (i.e.,
1, 2, 3, ...). This kind of graph is used to verify how a
parameter’s variation impacts the system’s availability. For
example, we can see in Figure 5 that some parameters, like
the number of active physical nodes (servers) or the number
of active switches, cause a small variation in the availability
after the second redundancy. So we can assess whether the
costs required for adding a new component’s replica are worth
it once these components slightly improve availability.

On the other hand, changing the number of office nodes
from one to two and getting a better repair rate for the office
nodes increases the general availability. We can decide which
component will be redundant in the infrastructure or what
will be the best repair rates taking into account the operating
costs. A better repair rate will depend on the contract adopted
and on the number of repair teams available. It is essential to
highlight that the graphs help us find the best fit to maximize
the infrastructure’s availability.

For example, we are considering that now the MTTF of
the office node is equivalent to 560 hours and that the MTTR
corresponds to 0.5 hours. We can get this MTTF by acquiring
better hardware and operating systems. Also, we can increase
the MTTR with more repair teams. Let us assume that two
office nodes will be used in hot standby based on the times
shown in Table II and that the architecture adopted will also
be based on edge computing, considering that the MTTF and
MTTR, respectively 8400 and 3.5 hours. We will be using a
camera, a switch, and a sensor module with the times described
in Tables I and III. Based on this configuration, the availability
will be 0.99855, representing a yearly downtime of 12.67
hours. It is an improvement of approximately 7 hours in the
uptime, reducing the downtime by 36.12%.
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Redundant component Availability Unavailability #9 Uptime (h/y) Downtime (h/y)
Physical node on Edge 0.99612 0.00388 2.41160 8726.04510 33.95489
Physical node on Fog 0.99612 0.00387 2.41174 8726.05578 33.94421
Physical node on Cloud 0.99612 0.00387 2.41177 8726.05854 33.94146
Office node on Edge 0.99773 0.00226 2.64498 8740.16069 19.83931
Office node on Fog 0.99841 0.00159 2.79949 8746.10008 13.89992
Office node on Cloud 0.99895 0.00105 2.97980 8750.82308 9.17692

TABLE V
RESULTS WITH HOT STANDBY REDUNDANCY
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Fig. 5. One at a time sensitivity analysis of the top eight parameters

Parameter |SS(A)|
N 0.0147034
M 0.00838095
Y 0.0032437
λpno 0.00243776
µpno 0.00243776
Z 0.00200075
µpn 0.00125255
λpn 0.00125255
W 0.000754806
µapo 0.00041656

TABLE VI
SENSITIVITY RANKING BASED ON PARTIAL DERIVATIVES

VII. FINAL REMARKS

This study aimed to propose dependability models to per-
form availability studies on a smart poultry house with sensors
to measure the environmental indicators, such as temperature,
and a computer for estimating poultry weight. We have con-
sidered three architectural systems: cloud-based, edge-based,
and fog-based. We have also considered a redundancy strategy
to measure the impact on improving availability, considering
the hot-standby nodes. As a result, we have presented three
case studies: first, a validation of an edge-based model with a

fault injector experiment; second, we have performed a steady-
state availability study; then, we have conducted a sensitivity
analysis.

Our availability analysis verified that fog-based availability
with no redundancy has a slight advantage compared to the
edge solution. When we consider the fog node, the availability
is 0.99556. We can see similar availability when we put
a hot-standby for the fog and edge solutions side by side.
However, the fog-based solution has better processing and
storage capacity.

The cloud-based solution achieved better results when an-
alyzed with no redundancy. The scenario that allowed re-
dundancy and a 2oo3 configuration obtained an availability
of 0.99767, representing a better availability when compared
to the other cases. When considering the redundancy in the
office node, the cloud-based solution did better, achieving a
downtime of 9.18 hours. However, we also emphasize that
despite being a good option in terms of availability, the cloud-
based solution can lead to network delays, compromising the
proper functioning of the preferred solution.
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