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Dependability

Dependability of a computing system is the ability to
deliver service that can justifiably be trusted.

The service delivered by a system is its behavior as it is
perceived by its user(s).

A user is another system (physical, human) that interacts
with the former at the service interface.

The function of a system is what the system is intended
for, and is described by the system specification.

[Laprie, J. C. (1985)].




Dependability

In early 1980s Laprie coined the
term dependability for
encompassing concepts such
reliability, availability, safety,
confidentiality, maintainability,

security and integrity etc [Laprie, J. C.
(1985)].

Dependable Computing and Fault Tolerance:
Concepts and terminology. In Proc. .
15th IEEE Int. Symp. on Fault-Tolerant Computing, Jean Claude Laprie

(pp. 2-11).




A BRIEF HISTORY




A Brief History

Dependability is related to disciplines
such as reliability and fault tolerance.

The concept of dependable computing

first appeared in 1820s when Charles
Babbage undertook the enterprise to
conceive and construct a mechanical

calculating engine to eliminate the risk of
human errors. In his book, “On the
Economy of Machinery and
Manufacture”, he mentions

‘The first objective of every person
who attempts to make any article of ' =

consumption is, or ought be, to -
produce it in perfect form’.

" (Blischke, W. R. & Murthy, D. N. Chal’leS Babbage in 1 860
P. (Ed.) 2003).

A\Y




A Brief History

In the nineteenth century, reliability theory evolved from probability
and statistics as a way to support calculating maritime and life insurance
rates.

In early twentieth century methods had been applied to estimate
survivorship of railroad equipment [Stott, H. G. (1905)] [Stuart, H. R.
(1905)].




A Brief History

The first IEEE (formerly AIEE and IRE) public document to mention
reliability is “"Answers to Questions Relative to High Tension Transmission”
that summarizes the meeting of the Board of Directors of the American
Institute of Electrical Engineers, held in September 26, 1902.

[Answers to Questions Relative to High Tension Transmission. (1904). Transactions of the American
Institute of Electrical Engineers, XXIII, 571-604.]

In 1905, H. G. Stott and H. R. Stuart: discuss “Time-

Limit Relays and Duplication of Electrical Apparatus to Secure
Reliability of Services at New York and at

Pittsburg.

In these works the concept of reliability was primarily qualitative.




A Brief History

In 1907, A. A. Markov began

the study of an important new
type of chance process.

In this process, the outcome of
a given experiment can

affect the outcome of the next
experiment.

This type of process is now called a
Markov chain [Ushakov, I. (2007)]

Andre1 A. Markov




A Brief History

In 1910s, A. K. Erlang studied
telephone traffic planning
problems for reliable service
provisioning [Erlang, A. K. (1909)].

[Erlang, A. K. (1909)] Principal Works of A. K. Erlang -
The Theory of Probabilities and Telephone

Conversations . First published in Nyt Tidsskrift for Agner Karup Erlang
Matematik B, 20, 131-137.




A Brief History

Later in the 1930s,

extreme value theory was
applied to model fatigue life of
materials by W. Weibull and
Gumbel [Kotz, S., Nadarajah, S. (2000)].

Gumbel, Emil Julius
Waloddi Weibull (1871891 -

1887-1979 10.9.1966)




A Brief History

In 1931, Kolmogorov, in his
famous paper “Uber die

analytischen Methoden in der
Wahrscheinlichkeitsrechnung”

(Analytical methods in probability
theory) laid the foundations for the

modern theory of Markov processes
[Kolmogoroff, A. (1931)].

Kolmogoroff, A. (1931). Uber die analytischen
Methoden in der Wahrscheinlichkeitsrechnung (in

German). Mathematische Annalen, 104, 415-458.
Springer-Verlag.

Andrey Nikolaevich Kolmogorov
(25 April 1903 — 20 October 1987)




A Brief History

In the 1940s quantitative analysis of reliability was applied to many

operational and strategic problems in World War II [Blischke, W. R. & Murthy, D. N.
P. (Ed.) (2003)] [Cox, D. R. (1989)].

The first generation of electronic computers were quite
undependable, thence many techniques were investigated for
improving their reliability, such as error:

control codes,

replication of components,
comparison monitoring and
diagnostic routines.




A Brief History

The most prominent researchers during that period were Shannon, Von
Neumann and Moore, who proposed and developed theories for building
reliable systems by using redundant and less reliable components.

These were the predecessors of the statistical and probabilistic techniques

that form the foundatlon of modern dependability theory [Avizienis, A. (1997)].

C. E. Shanon John von Neumann Edward Forrest Moore




A Brief History

In the 1950s, reliability became a subject of great engineering interest as a
result of the:

cold war efforts,
failures of American and Soviet rockets, and

failures of the first commercial jet aircraft, the British de Havilland
comet [Barlow, R. E. & Proschan, F. (1967)][Barlow, R. E. (2002)].




A Brief History

Epstein and Sobel’'s 1953 paper studying the exponential distribution was a
landmark contribution.

Epstein, B. & Sobel, M. (1953). Life Testing. Journal of the American Statistical
Association, 48(263), 486-502.

Milton Sobel




A Brief History

In 1954, the Symposium on Reliability and Quality Control (it is now the IEEE
Transactions on Reliability) was held for the first time in the United States.

In 1958, the First All-Union Conference on Rellablllty (0]0] ¢ place In Moscow

[Gnedenko, B. V., Ushakov, I. A. (1995)] [Ushakov, I. (2007)].

Gnedenko Boris V.
(1912-1995)

Gnedenko, B. V., Ushakov, I. A. (1995). Probabilistic Rellablllty Englneerlng . A. Falk (Ed.), Wiley-
Intersaence

Ushakov, I. (2007). Is Reliiabiility Theory Still Alive?. e-journal “Reliability: Theory& Applications”,
1(2).




A Brief History

In 1957 S. J. Einhorn and F. B. Thiess adopted Markov chains for
modeling system intermittence [Einhorn, S. J. & Thiess, F. B. (1957)].

In 1960, P. M. Anselone employed Markov chains for evaluating
availability of radar systems [Anselone, P. M. (1960)].

In 1961 Birnbaum, Esary and Saunders published a milestone paper
introducing coherent structures [Birbaum, Z. W., J. D. Esary and S. C. Saunders. (1961)].

Zygmunt William Birnbaum




A Brief History

Fault Tree Analysis (FTA) was originally developed in 1962 at Bell
Laboratories by H. A. Watson to evaluate the Minuteman I

Intercontinental Ballistic Missile Launch Control System.

Afterwards, in 1962, Boeing and AVCO expanded use of FTA to the entire
Minuteman II.

Minuteman I Minuteman I1




A Brief History

In 1967, A. Avizienis integrated
masking methods with practical
techniques for error detection,
fault diagnosis, and recovery into

the concept of fault-tolerant systems
[Avizienis, A., Laprie, J.-C., Randell, B. (2001].

Fundamental Concepts of Dependability. LAAS-
CNRS, Technical Report N01145.

A. Avizienis




A Brief History

In late 1970s some works were proposed for mapping Petri nets to Markov
chains [Molloy, M. K. (1981)][Natkin, S. 1980][Symons, F. J. W. 1978].

These models have been widely adopted as high-level Markov chain
automatic generation models as well as for discrete event simulation.

Natkin and Molloy wers the first to apply what is now generally called
Stochastic Petri nets to performance and dependability evaluation of
systems.




BASIC CONCEPTS




Basic Concepts

— AVAILABILITY
— RELIABILITY

— SAFETY

L CONFIDENTIALITY
— INTEGRITY

— MAINTAINABILITY

— ATTRIBUTES —

FAULT PREVENTION
FAULT TOLERANCE
FAULT REMOWVAL
FAULT FORECASTING

DEPENDABILITY —

FAULTS
[ THF{EAT54E ERRORS
FAILURES
The dependability tree
Avizienis, A., Laprie, J.-C., Randell, B. (2001).

Fundamental Concepts of Dependability. LAAS-CNRS,
Technical Report NO1145.




Basic Concepts

Dependability of a system is the ability to deliver service that can
justifiably be trusted.

A correct service is delivered when the service implements what is
specified.

O A system failure is an event that occurs when the delivered
service deviates from correct service.

A failure is thus a transition from correct service to incorrect
service.

A transition from incorrect service to correct service is service
restoration.




Basic Concepts

O An error is a state of a component of a system (a system substate) that
may cause a subsequent failure.

A failure occurs when an error reaches the system interface and alters the
service.

activation ropagatio o
fault ——————3 error M failure

activation ropagatio 3 causatio
oo 3 fault ———— 3= error M failure 4 fault — - --




Basic Concepts

O Fault is the adjudged or hypothesized cause of an error.

A fault is active when it produces an error; otherwise it is dormant.

(0, if § has failed

Asit)=11, if 5is operational

Consider an indicator random variable X(t) that represents the system state at time /.




Basic Concepts

O Failure Modes

VALUE FAILURES
— DOMAIN —l:
TIMING FAILURES

S e COMSISTENT FAILURES
FAILURES FEHGEE 1IN EG T 4[
OH MORE USERS INCONSISTENT FAILURES

MINOR FAILURES

CONSEQUENCES

ON ENVIRONMENT =5 _
CATASTROPHIC FAILURES




A motivational example

VM1 VM2

VMM VMM2

Hardware
LFL)
Memory
Power
NIC
‘q_-l s

ooler




A motivational example

What is the respective RBD?
This?

VIVIVIL

APP1

VM1

VMM




A motivational example

O It is not clear.
Something is still missing!
0 What is it?
The operational mode(s)
(success oriented networks: RBD and Relgraph)

or

The failure mode(s)
(failure oriented networks: FT)




Operational Mode

IS @ condition that defines the system as
operational.

= Operational Mode 1
OM1 = Appl/\VMMl/\VMl/\Hl ANSAN
/\Appz/\VMMz/\VMz/\HZ

Appl VMl VML Hostl SAN App2 VM2 VN2 Host2




Operational Mode

¥ Operational Mode 2
OM, = ((App,A\VMM;A\VM{\H )
V (App,AVMM,A\VM,AH3)) A SAN

e

App?2 V2 VM2 Host2

R(t) = 0.975215145, t =0.002 tu




Basic Concepts

= Time to Failure

X t)_{U: if S has failed |1 p—
s(0) = 1, ifSisoperational

fr(t)
Fr(t)

] t 1 1 - el —
Fr(t) — Cumulative Distribution Function fry(t) - Density Function

States of Xg(t)

Now, consider a random variable T as the time to reach the state X(t) = 0, given that the system started in state
X(t) = 1 at time t = 0. Therefore, the random variable T represents the time to failure of the system S, Fy(t) its
cumulative distribution function, and fy(t) the respective density function, where:

F-(0) =0 and lim Fr(t) =1,
dF =
fr® =L f Jieler sde= 1



Basic Concepts

= Reliability

H\'-.

e

——

—
|

R(t) Reliability Function t

The probability that the system S does not fail up to time ¢ (reliability) 1s
P{T >t} = R(t) =1 — F(t),
R(0) =1 and tlim R(t) = 0.




Basic Concepts




Basic Concepts

= Reliability

Reliability (Survivor function) - Complementary with the
distribution function: R(?) = I -F(t). Therefore, F(¢) 1s the
unreliability function.

= DPM

It 1s common to measure service unreliability as defects per million

operations. DPM values are related to a time period. The time period

may be in minutes, hours, days, weeks, months etc.




Basic Concepts

= Unreliability as DPM

n — n; is the number of failures (defects -D)

R(t) = 1—Fr(¢t) : ;
’ : in the test period, so
Now consider that n devices have been placed e
under test. D=n—-—n; =UR(AT) Xn
If after a testing period AT, n; devices survived, If n = 10° (one million), then
then the reliability may be estimated as =N
J l n. DPM = UR(AT) x 10°
R(AT) = —
(AL n (DPM — Defect per million)

Therefore, the unreliability UR(&T) = Fo(AT) |
may also be estimated by: Therefore:
DPM = UR(t) x 10°

UR(AT) = F,.(AT) = 1 — R(AT) =
n—n;

| n-‘
1-R(AT) =1——=
n g

DPM = (1 — R(t)) X 10°

R(t) =1— (DPM x 1079)

Time period = t—0




Basic Concepts

» Hazard function

The probability of the system S failing during the interval [t, t + At]
if 1t has survived to the time 7 (conditional probability of failure) 1s

Plt<T< t+AtIT >t} =

R(t) — R(t + At)
R(t) '
P{t <T < t+ At|T > t}/At is conditional probability
of failure per time unit. When At — 0, then

R(r)—R(r+ﬂt)= - —[R(t+ﬂt)—R(t)]x 1 _dﬁ?(t)>< 1

R(t) x At At At R(©  dt R

dFr(t) 1 fr _
dt X R(t) R(t) A(t)




Basic Concepts

» Hazard function

Hazard rates may be characterized as decreasing failure rate (DFR),
constant failure rate (CFR) or increasing failure rate (IFR) according to A(t).

Hazard rate: (a) Decreasing, (b) Constant, (c) Increasing, (d) Bathtub curve




Basic Concepts

= Cumulative Hazard function
Since
_ dR(t) 1
Mol = q R(t)

dR(t)
R(t) ’

At)dt = —

thus,

f At f "dR(t)
0 o R(t)

t
- f A(t)dt = InR(t) =
0

: P .
R(t) — €_~'IE] A{_E]l‘it - E_H{'E-}




Basic Concepts

= Mean Time To Failure
MTTF = E[T] = [t x fr(t)dt.

Since

dF; dR(t)

f'r[t)=?= rrpt

thus,

“dR(t
MTTF = E[T] = —f d( ) X t dt.
0 t

Lletu=t dv= dt X dt, and applying integration

by parts (fudv=uv— [vdu), then du=dt, v =
R(t), hence:




Basic Concepts

= Mean Time To Failure

00

“dR(t)

MTTFz—j t xrdt=—|rxﬂ(t}|§f—f
0

R(t) x a’t‘ —
0

— \U — Lmﬂ(t} X dr] = Lmﬁ{r) X dt,

hence

MTTF = [° R(t) x dt




Basic Concepts

= Median Time To Failure
MedTTF =t, Fr = R(t) = 0.5

The median time to failure divides the time to fail distribution

into two halves, where 50% of failures occur before
MedTTF and the other 50% after.




Basic Concepts

Consider a continuous time random variable X¢(t)

that represents the system state. Xs(t) =0 when § is failed,
Xs(t) =1 when Sisoperational

Nm&g consider the random variable D
that represents the time to reach the state
Xs(t)= 1, given that the system started in state

Xs(t)=0attimet =0.

Therefore, the random variable D represents the
system time to repair,

X t}_{ﬂ, if S has failed
s(t) = 1, if Sisoperational

Fp(t) its cumulative distribution function,
and fp (t) the respective density function

resiore

Fp (0) =0 and ilim Fi,(t) =1,

fo(t) = o
fp(t) =0, and

States of X¢(t)
0




Basic Concepts

Maintainability is the probability the system S will be

repaired by t, hence

M(t) = P{D <t} = Fp(t) = f fp(t)dt
0

¥ t)_{ﬂ, if § has failed
s(t) = 1, ifSisoperational

resiore

States of X¢(t)



Basic Concepts

= Mean Time To Repair

The mean time to repair (MTTR) 1s defined by:

oo

MTTR = E[D] = f t X fp(t)dt

0




Basic Concepts

= Repairable Systems

Consider a repairable system S that is either operational (Up) or faulty (Down).
Whenever the system fails, a set of activities are conducted in order to allow
the restoring process.

These activities might encompass administrative time,
transportation time, logistic times etc.

When the maintenance team arrives to the system site, the actual repairing
process may start.

Further, this time may also be divided into

diagnosis time and actual repair time, checking time etc.
Downtime = TR = NRT + TTR.

However, for sake of simplicity, we group these times such that

the downtime equals the time to restore

—TR, which i1s composed by non-repair time — NRT —

(that groups transportation time, order times, deliver

times, etc.) and time to repair — TTR




Basic Concepts

Downtime and Uptime

Occurrence of a faflure

System Up

System Down

Occurrence of a failure
Uptime

L]
L ]
TBF
Downtime

TTR
1

t=t”

Downtime and Uptime

- L
i Down-

time
TFF '



Basic Concepts

= Availability

The simplest definition of Availability 1s expressed as the ratio of the
expected system uptime to the expected system up and downtimes:

. E[Uptime]
- E[Uptime]+E[Downtime]




Basic Concepts

= Availability
Consider that the system started operating at time t =t and
fails at t =t", thus At =t"" — t' = Uptime.
Therefore, the system availability may also be expressed by:
_ MTTF
~ MTTF+MTR

Occurrence of a failure Occurrence of a failure
; Uptime

-
System Up ¥ Down- T /A Y Down-

time time
System Down - = TFF I
L] L]
L] L]
TBF
Downtime

NRT TTR
1

t=t”

Downtime and Uptime




Basic Concepts

= Availability
where MTR 1s the mean time to restore, defined by
MTR = MNRT + MTTR (MNRT — mean non-repair
time, MTTR —mean time to repair), so:
MTTF
A= MITTF + MNRT + MTTR

It MNRT = 0,
MTTF

A= VTTF + MTTR




Basic Concepts

= Availability

As MTBF = MTTF + MTR = MTTF + MNRT + MTTR,
and if MNRT = 0, then MTBF = MTTF + MTTR.

Since MTTF > MTTR, thus MTBF = MTTF, therefore:

MTBF
MTBF+MTTR




Basic Concepts

= Tnstantaneous Availability

The instantaneous availability is the probability that
the system 1s operational at ¢, that 1s,

A(t) =P{Z(t) =1} =E{Z(t)}, ¢t=0.

If repairing 1s not possible, the instantaneous availability,
A(t), is equivalent to reliability, R(t).




Basic Concepts

= Steady State Availability

If the system approaches stationary states as the time increases,
it 1s possible to quantify the steady state availability

A=lim;_,A(t), t=0




Basic Concepts

» Steady State Availabili

Availability may also be commonly expressed as the number of nines:

H9s = —log UA.
A FUs DT
0.99999 | 5 | 5.256min
0.99494 4 | 52.56min
(),9494 3 5.76h
(.99 2 R7.6h
(.9 ] 36.5days




Basic Concepts

MTBF vs Useful Life Time

Sometimes MTBF is confused with useful life. Consider, a
battery has a useful life of four hours and MTBF of 100,000
hours. This means that in a set of 100,000 batteries, there will
be about one battery failure every one hour during their useful

lives.

The reason of sometimes these numbers are so much high is
that these numbers are calculated based on the failure rate of
usefulness period of component, and it is assumed that the
component will remain in this stage for along period of time.
In the above example, wear out period affects the life of
component, and the usefulness period becomes much smaller
than its MTBF. -




Basic Concepts

MTBF vs Useful Life Time

Consider another example in which 100,000 20-year-old people
in the sample. We monitored this sample for one year. During
that period, the death rate calculated was 100/ 100,000 =
0.1%/year. Considering TTF exponentially distributed, the MTBF
is the inverse of the failure rate, that is 1/0.001 = 1000.

This example shows that high MTBF is different from the life
expectancy. As people become older, more deaths occur, so the
best way to compute MTBF would be monitor the sample to
reach their end of life. After that, the average of these life
spans is computed. Then, we reach values of order of 75-80,

which would be much more realistic.




A REVIEW ON STATISTICAL INFERENCE
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Some Important

Probability Distributions




Exponential Distribution

[ Arises commonly in reliability & queuing theory.

[ A non-negative continuous random variable.

[ It exhibits memoryless property (continuous counterpart
of geometric distribution).

[ Related to (discrete) Poisson distribution




Exponential Distribution

[ Often used to model

— Interarrival times between two IP packets (or voice calls)

— Service times at a file (web, compute, database) server

— Time to failure, time to repair, time to reboot etc.

[0 The use of exponential distribution 1s an assumption

C

t]
t]

nat needs to be validated with experimental data; 1f
ne data does not support the assumption, then other

1stributions may be used



Exponential Distribution

O For instance, Weibull distribution 1s often used to
model times to failure;

O Lognormal distribution 1s often used to model
repair time distributions

[0 Markov modulated Poisson process 1s often used to
model arrival of IP packets (which has non-
exponentially distributed inter-arrival times)




- Remember these formulae

Exponential Distribution: EXP(1)

O Mathematically (CDF and pdf are given as):
AT if 0 <z < o0
otherwise

here A\ is a paramter and the base of natural
logarithm, e = 2.7182818284

_ [ xe ) ifz>0
pdf: f(x) = { 0, otherwise

Pla< X <b) = fbf(:c)dac — F(b) — F(a)
2 e—Aa _ o= Ab




Exponential Distribution: EXP(1)

R(t) =e™™,

Ft)=1—¢M,

h(t) = A,

)




Exponential Distribution: EXP(1)

The memoryless property can be demonstrated with conditional reliability:

Pr(T > x +1)

Rx|t)=Pr(T >x+1t|T >1)= ,
1o ( v ) Pr(T > t)

e—k(t-l—x)

- —¢ M =R, x > 0.




Exponential Distribution:

Exp(A = 10) = E[X] = 0.1

R(0.1)=0.367879 R(0.2]0.1)=0.36788
R(0.2)=0.135335

Distribution Iripat vl _ E'U-l,l'ﬂ;ﬂ.lr& .
Exponential 0.1 —

| Diisplag
Location [theta) | Otk vl se: f
0.3s7er94412 !
Scala [lambda) ﬂ.

LClose

Probabbity densiby funchon: 1 - Cumubative distnbatson funchon




Exponential Distribution:

N(u=0.1,0 = 0.1)
R(0.1)=0.5 R(0.2]0.1)=0.317311
R(0.2)=0.158655

Costr ﬂ:lull:-_n
Modmal

Location o rean (mul Dutput value

Ty :
o, | LR A

Scale or SD [zigmal

1 - Curmudatvve distribution function




Hyperexponential Distribution

mearn:

variance:




Hyperexponential Distribution

In case cx > 1, one fits a Ho(p1, p2; 11, p12) distribution.
2 Al

1=1

Hy(p1, p2; 141, f12) 1s not uniquely determined
by its first two moments.

Therefore, the normalization
Po_ P

may be adopted, so that:




Erlang Distribution

j!

Kol b ) ¥ ._.G_. -
Fx(z)=1-—e "“”‘:-Z bri) e 0 T S [ N e : +

- Phase 1 Phase 2 Phase k

J=0

ku(kpx)c—1
> _ —kur _
pdf: fx(z)= k- 1) g Al s )ok—= 1 Diiny
- |
mean: X = —, Distribution Plot
4 Gamma; Scale=100; Thresh=0
]- Shaps
variance: var(X) = —, R -
ku - -
: ;i 1 0,008 - i
coeflicient of variation: c¢x = \TE o B
0,006

Density




Hypoexponential Distribution

fx(z) = Zﬂimﬂ_“'I, >0,

i=1
k

with a; =

coeflicient of variation:




Weibull Distribution

Fx(z)=1—-exp(—(Az)"), =0
Fx(z) = aA(Az)*~! exp(—(Az)*), A >0,
shape parameter o

scale parameter A > 0

ant mortality and a > (0 means wear out

- 1./ 1 : e e
X =T (1 + —|) Weibull distribution is often used to

¥
(1 4 2{,;}_.} model times to failure

B ol M il L,

T +1/a)}?

7.




Weibull Distribution -

Probabéity Density Function Probability Density Function

0 < B <1

Probabslity Density Funclion




Lognormal Distribution

fx(x) = —=—exp(—{In(x)
N 2m

X = exp() + a?/2) o
Lognormal distribution 1s often

c% = exp(a?) — 1 used to model repair time

' o distributions

Yy = lll.-'lfll'l{:_ f"i + 1’ )

The importance of this distribution arises from the fact that the product of
n mutually independent random variables has a lognormal distribution in the
limit n — oo,




Cox Distribution

T'he model consists ot & phases in series with exponentially distributed
times and rates py,puo, ..., . After phase j, another phase 7 + 1 follows
with probability a; and with probability b; = 1 — a; the total time span
is completed.




Cox Distribution

Case 1: ex <1

by + k(1 — by)
= y
k+bi(k—1)(i(l—k)+k—2)
p? |
_k+hk-1)(bi(1-k)+k—-2)

. e —— . A —— - — - ———— ="\ e— e, ———

ﬁir
= b1 + k(1 — by)]?

var (X ) =




Cox Distribution

Example

Let us construct a phase-type distri-
bution having expectation E|X]| = 4
and variance SD [X]| = 2.236068.

With these parameters, we have
Cov|X] =0.559017, which is less
than 1. We may choose parameters
for a Coxian distribution as repre-
sented in

ay ( )
o RN R
‘EI
b =1-—a;
-

Case 1: cx <1

1 1
k= [COU[X]J B |0.5590172‘ =[3.2]=4

_2X4%05590172 + (4—2) —/42 +4—4x 4 X 0.55
- 2% (0.5590172 + 1) x (4—1)

a, =0.9203788377837205

a

_ 4-0.9203788377837205 x (4 —1)
- 4
A =0.9402841283377904




Cox Distribution

_ pi+api(2—a)
(p2 +am)?




Cox Distribution

Example

A random variable X having expecta- B
tion E[X] = 3 and standard devia- T IXCov Xz
tion equal to 0 y = 4 may be mod-

eled as a two-phase Coxian. Given a
thatE[X] —3and Cov|X]| = 4/ 3,

b=1~-a
we may take the parameters of the
Coxian distribution to be:

Z 2

M=TE T3

;{2:

2
E[X] % Cov[X]2




Reliability Data Analysis




Reliability Data Analysis

The aim is the selection and the specification of
suitable reliability (and maintainability) models
based on failure (and repair) data.

Non-parametric approaches

Parametric approaches




Reliability Data Analysis

The observation of failures (or repairs) times

can be represented by:

Failure
Time N

The functions f(t), F;(t),R(t) (M(t)) and
h(t) and H(t) represent the failure time

(repair time) of the population.




Reliability Data Analysis

A taxonomy of data
Failure data may be classified as:

e Operational X Test-generated failures
e Grouped X Ungrouped data
e Large samples X Small samples

e Complete X Censored data

Complete Data
sample size 5

> Failed

X Failed

X Failed

X Failed

X Failed




Reliability Data Analysis

A taxonomy of data
Failure data may be classified as:

¢ Operational X Test-generated failures

e Grouped X Ungrouped data

Failure times are usually either field data or failures I e ——

e Complete X Censored data

observed from reliability testing.

Often failure field data are grouped into time intervals
in which the exact failure times are not preserved.

For large sample sizes, grouping data into time
intervals may be preferred.

Testing may result in small sample sizes.

Failure data obtained from testing are likely to be more
precise and appropriate.

However, field data usually provide larger data samples
and reflect the operating environment conditions.




Reliability Data Analysis

A taxonomy of data
Failure data may be classified as:

e Qperational X Test-generated failures
¢ Grouped X Ungrouped data
e Large samples X Small samples

® Complete X Censored data

Censoring occurs when data are incomplete when units

are removed from the analysis. The censoring occurs

because:

e units may have been removed before their failures

or
e because the test finishes before the respective

failures occur.




Reliability Data Analysis

Singly censored data: all units have the same test A taxonomy of data

time. Failure data may be classified as:

Multiply censored data: test time or operating N IS N —L Y

time differ from censored units. e Grouped X Ungrouped data

Left censored: failure time occurs before a e Large samples X Small samples
specified time. e Complete X Censored data
Right censored: failure time occurs after a
specified time.

e Typel-right censored: the testing stopsat T

time units. Left Censored

sample size 5

e Type ll -right censored: the testing stops

: 3¢ Failed
when r out n failures occur. ~

-

< Failed - Censored

> Failed

< Failed - Censored

X Failed

[

time




A taxonomy of data

Reliability Data Analysis [t

® QOperational X Test-generated failures
® Grouped X Ungrouped data
o Large samples X Small samples

® Complete X Censored data

Right Censored Type |

2 3 sample size 5
Singly censored data: all units have the same test P

time. » Operational
censored

Multiply censored data: test time or operating X Failed

time differ from censored units. »Operational
censored

Left censored: failure time occurs before a X Failed

specified time. % Failed
Right censored: failure time occurs after a

1
1
specified time. the testing stopped at T

e Typel-right censored: the testing stopsatT Right Censored Type ||

time units. sample size 5, r=3 failures
e Type ll - right censored: the testing stops

X Failed
when r out n failures occur.

» Operational
% Failed censored

»Operational

: censored
X Failed

- L
time

1
1
the testing stopped at t




Reliability Data Analysis
Non-parametric approaches

Ungrouped Complete Data . Blgss1¥— RigS

Consider tq, ty,...ty, Where t; < t;,q are fi+11_ L

T i —t)(n+ 1)
B |
i —td)(+1-10)

n ordered failure times.

n

MTTF = Zi=1fi
n

Confidence interval for the MTTF: adopt
bootstrap.




Reliability Data Analysis
Non-parametric approaches CIMTTH

Ungrouped Complete Data R(t; +1)—R(ty)

flt) =— Ungrouped Complete

Consider tq, ty,...ty, Where t; < t;,q are ti+11_ i Data

T (ti —t)(n+ 1) 10
F () 1 Failure times
R(t) (tr—tp(n+1—1)
B < Erg

n ordered failure times.

Aty) =

T T b
VT ===
n
Confidence interval for the MTTF: adopt

bootstrap.

[
=




Reliability Data Analysis
Non-parametric approaches

Grouped Complete Data

Failures that have occurred into time
intervals, their original values are lost.

Consider k time intervals where

tq, to,...t) are the time instants
representing the ends of each time
interval, such that t; < t;4+4.

Let nq, ny,..., Ny be the number of units
that survived at respective ordered time
tq, to,...t, and n the number of units at
risk at the beginning of the test.

P T;
R(t;) = f i=1,2...

F(t))=1-R(t;)
R(t;+ 1) — R(ty)

Lig1— L
ni — Nj41q

~ (tiz1 —t)) X n

_ ni —nj4q
(tiza — £5) X 1

ft) =-




Reliability Data Analysis
Non-parametric approaches

The MTTF is estimated considering the

midpoint of each interval and fraction of Time Number | Number
Interval failing surviving

units that have failed in each interval. 0 70
5 67
<z Cihliey 10 60

L, = > 15 52
20 43

23 30

— N
MTTF = Z £ et 30 12

30 0

f[]:(},ng:n

Confidence interval for the MTTF: adopt

bootstrap.




Reliability Data Analysis
Non-parametric approaches

Ungrouped Censored Data So i n+1—i

R(t)=1-— .
For singly censored on the right, l n+1 n+1

R(t), f(t), and A(t) may be iteratively Therefore:
estimated from the equation adopted for 1 —i — 1) n 12—

Ungrouped Complete Data. ﬁ(fi—:[) = T+ 1 T 1
We know that:
F(t;))=1—R(t;) = - j_ : Now, consider:
R(t) = R(ti—q) ¥
P(Unit will not fail between t;
and ti_q1, given it has

survived tj_q)




Reliability Data Analysis
Non-parametric approaches | Excel |

Two events may occur at £; (since t; is

there, otherwise it is not there): a failure

Hence: Or a censoring. So:

R(t;) nt+l-—t nt1l—i 5. = {1 if failure occurs at t;
o n+l = Y70 if censoring occurs at t;
R(tji.y) nt2—i n+2-—i

n+1

- n+l—-1t .
R(t;) = ————5 X R(ti-1) . O o (.
R(t) = (o) x R(timn)
So fibd—i
P(Unit will not fail between t;and t;_q, Fr(t) =1~ ﬁ(gi)
: : : _ [ _
given it has Survlwed tiiq) F(t) = (_1) x F(t;_1)
n+1l-1 — .
B n+2—i 3 [:] =
f) = D> G-t




Reliability Data Analysis
Non-parametric approaches | Excel |

1
2
3
4
5
6
F
8
9

R R OO0 R ORRKRO R

=
o




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method

for grouped censored data A

P(ANB Therefore Two censoring - Cj

P(B) R(t;) = R(t;—1) X R(At;)

So where t; = t;_; + At;
P(ANB) = P(A|B) X P(B) If at £; we have 1; failures, then:
If A and B are independent, then:

= o
R(At)=1——
P(A|B) = P(A), so: n;

_ where n; is the number of available

P(ANB)=P(4) XP(B) units at the instant t; — At; without
considering the censoring, that is,
shortly after t;_;. You should bear in
mind that the interval (t; — At;, t;]is
open at the left hand side.

The probability of a subject surviving to any point in time T = (t + At) 15 the product of the
cumulative survival probability up to time € and the probability of surviving interval At.




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method

for grouped censored data
For the sake of calculating n;, it is assumed that

censoring occurs shortly after the failures at

ti_l' ﬂtl
% 2 i -t
Therefore: R(t,) = R(t;) X R(At,) ti-1 t

R(t,) = (1 —;il)x (1 —;—22)

Generalizing:

wo=[](-2)

t<t;

ie€(1l,m)i e’




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method summary

Kaplan-Meier method

for grouped censored data

Niy1 =
: _ ‘l(nz'. ey T
#
ti-ﬂ\ ti At;~i+1

5 )

Two censoring - C; 1.
L

t<t;

i€ (1,m),i €Z

Nig1 =Ny — 6 — 1




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method
for grouped censored data

TTF or TTS (ti)

[
=

9

[
I-\_‘J

11

[
=

13

-
(]

15

[
fod

17

[
[

19

o
=

21

[
[

23

0
1
2
3
4
5
il
7
8
9

25

[
=

27

[
=

F

]
[

31

33

= |
b |

35

|G

37

b
=

39

O | (R B (LA | =] MDD

Total

MTTF

| 19.54545455




Reliability Data Analysis -
Non-parametric approaches

Kaplan-Meier method
for grouped complete data

As the data set is complete (no censoring), then

Niy1 =
v At S

ti-1




Reliability Data Analysis -
Non-parametric approaches

Kaplan-Meier method
for grouped complete data
i TTF or TTS (ti) ri

0
3
10
15
20
25
30
35

0
1
2
3
4
a3
b
Fj

Total
MTTF
25.64285714




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method summary

Kaplan-Meier method
for ungrouped complete data

As the data set is complete (no censoring), then
Ci == U, V&fl

Hence,

And since the data set is ungrouped (exact time o k

to failure) r; = 1, VAE;.




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method
for ungrouped complete data

i TTF or TTS {ti) ri Ci

[l =]
=
L |

| R [ B LD o | ] | GO | WD

15.4
18.9
20.1
24.5
29.3
33.9
458.2
>4.7

712
86.1

Total
MITTF
40.31

0
L
2
3
4
]
)
Fi
)
9

Pt |t | | | | | e |

(5
o

ok
=




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method summary

Kaplan-Meier method

for ungrouped censored data
Hence:
Ny =n; —1
n; t+1 L
v At;
Therefore:

o=T](-2)

t<t;

i€(l,m)i€Z




Reliability Data Analysis
Non-parametric approaches

Kaplan-Meier method
for ungrouped censored data
ti ni+l ti ni+l
i 0 ri ci 48 13 682.11 0 1 40
| 1 30.04 1 0 47 14 706.65 0 1 40
2 245.07 1 0 46 15 728.22 1 0 39
3 305.49 1 0 45 16 776.81 il 0 38
4 357.54 0 1 45 17 983.08 - | 0 3
5 446.86 1 0 44 18 1122.82 1 0 36
6 462.06 1 0 43 19 1162.18 1 0 35
7 521.41 0 1 43 20 1240.12 i i 0 34
8 522.82 0 1 43 24 1274.35 3 | 0 33
9 525.27 1 0 42 22 1352.68 1 0 32
10 525.47 1 0 41 23 1400.67 0 1 32
11 533.38 1 0 40 24 1479.84 il 0 31
12 614.24 0 1 40 25 1487.85 4l 0 30
ti ni+l ti ni+l

26 1570.43 1 0 29 39 2883.53 1 0 19
27 1577.28 0 1 29 40 3057.72 1 0 18
28 1683.28 1 0 28 41 3305.78 0 1 18
29 1701.61 1 0 27 42 3389.78 0 1 18
30 1822.66 1 0 26 43 4011.22 1, 0 17
31 1911.96 0 1 26 44 4138.45 2 [ 0 16
32 1958.93 1 0 25 45 4870.55 1 0 15
33 2013.9 1 0 24 46 4939.94 | 0 14
34 2027.21 1 0 23 47 5047.31 1 0 13
35 235553 0 1 23 48 5479.37 1 0 12

36 2164.79 1 0 22X

37 2235.64 1 0 241

38 2487.26 1 0 20




Reliability Data Analysis
Non-parametric approaches

Other methods:

Actuarial method
Rank method




Reliability Data Analysis
Parametric approaches

General process:

¢ |dentifying a theoretical
distribution
= Build graphs and compute
statistics, analyze the
empirical failure rate, and
consider the properties of
theoretical distributions

e Estimating the distribution
parameters
= Point estimation
e Graphical methods
e | east square method
e Method of moments
¢ Maximum Likelihood
Estimation method
= Confidence interval
e Performing the goodness-of-fit
test
= KS, AD, x?2...




Reliability Data Analysis
Parametric approaches

Point estimation

Graphical method

A distribution isbe transformed into a standard
distribution by means of linear transformation. On
the graph paperwith y axis socalibrated, x and
y are linearly related with positive slope, where y
represents a cdf F(x) with some scale and

location parameters.

Method of Least Squares

The method of least squaresfitsa curve (or
straight line) to a series of data points, by
minimizing the sum of squared deviations of the
fitted curve and the actual data points.

Method of Matching Moments

The theoretical moments of the distribution are
equated with the sample moments.

Method of Maximum Likelihood

The core of this method is selecting as estimate of the
distribution parameter a value for which the observed
sample is most “likely” to occur.




Reliability Data Analysis

Parametric approaches -

Exponential Distribution
F(t)=1-eMt

1—F(t) =2t

i (1-F(9) e
In (1 — F(t)) = —At

_ 1
At—lnl_F(t)

1

1—F(t))

Plot (¢, In

fA=1, E(t)=1,then F (1]

0.63212. Hence F (MTTF]

0.63212, thus MTTF can be
obtained from the graph, and




Reliability Data Analysis
Parametric approaches

Exponential Distribution

N | In(/{a-F(ti))) | F{MTTF)=1- expf-1)
50 0.020 0.632
0,040 896.2
0.061 1.12E-03
0.082]
0.103
0.125
0.148
0.171
0.194
0.218
0.243
0.268
0.294
0.321
0.348
0.376
0.405
0.435

Inf1/(1-Fiti)))

500 1004 1500 2000 2500

e
Cl




Reliability Data Analysis

Parametric approaches -

Normal Distribution Use F(ti) and obtain
We know that (normalization): z;=F (ti) -
LR _t_u
Zi=— T35 o Plot (¢t;, z;)
Considering the model Use LSM to obtain the slope (b)
y=bx+a, and the intercept (a), then

. tch with th
we have the intercept maten wi ©

| -
a=—%,and the slope a=-—gand b=z and find
g 1
g=x
—1 b
and
Take the t; and compute L
— —ao

F(t,) = A

n+1




Reliability Data Analysis

Parametric approaches -

zi a=Wo . . .
-2.06192| -4.8061[Intercept | Normal D|Str|bUt|On
-1.75986| P
-1.56473|  0.0046|Slope |
14157 o
-1.29281| 218.8755
-1.18683) p
-1.09274| 1051.933
-1.00744
-0.9289
-0.85571| ¢
-0.78685| 15
-0,72152
-0.65914
-0.59923
-0.5414

b =
s

w ea [ e |n | |w [ |—

=
=

y =0.0046x - 4.8061

=
[

=
Pt

= (=
o | R

—
LA

=
L=}

i) 4 800 1200 1400 1600

-0.43073

-0,37739

-0,32511
-0.2737

-0.22301

-0,17238

[
bt |

=
L=

=
(¥

e
=}

[t
==

e
et




Reliability Data Analysis

Parametric approaches -

Lognormal Distribution

Consider a RV T~LN. Assume Consideringy=p0x+ «,
another RV D =InT, thus D~N. e have

t.
As Z; =% In tmtzd and ¢»‘(Z), then 5 =% (5|ope) and
N :
2 = d-1 (F (ti)) a=— :1Int,,, (intercept)
’ y Therefore
=§lnti_ §lntmed 3:1 and tmedze_ag

B




Reliability Data Analysis

Parametric approaches

Lognormal Distribution

Take the TTFs, t;, and obtain
Int;. Calculate

F(t) n+1
Get z; = ®~1(F (¢;))
Plot (Int;, z;) Vi

Use LSM to obtain the slope (f)

and the intercept (), then

apply in’s =5 and tpeq = e=as




Reliability Data Analysis
Parametric approaches

Lognormal Distribution

In ti zi o
674.50| 5.513978 -2.06192 -40.4105 |ntE!‘CEpl‘|
689.52| 6.536003 -1.75986 B
740.00| 6.606645 -1.56473 5.8626|Slope |
7a7.60| 6.643267 -1.4157 5
803.61| 6.689113 -1.29281 0.17057337
806.456| 6.69265 -1.18643 tmed
806.92| 6.693224 -1.09274| 985.3085736
811.30| 6.698632 -1.00744) 25

838.19| 6.731242 -0.9289

864.84| 6.762544 -0.85571 ! .y, - D.Ugoﬂ-}‘{ Bl 1.7259
885.24| 6.785862 -0.78685| 15

880.25| 6.786994 -0.72152
895.258| 6.797137 -0.65914
895.63| 6.797525 -0.59923
902.65| 6.805334 -0.5414
911.46| 6.815044 -0.48532
946.36| 6.85262 -0.43073| -
956.90| 6.863704 -0.37733
958.02| 6.864865 -0.32511
958.64| 6.865519 -0.2737
966.51| 6.873688 -0.22301
934.26| 6.89189 -0.17283

P I I o | A Fa T o N 0 M




Reliability Data Analysis

Parametric approaches

Weibull Distribution

a

-t
Consider F(t) =1—e (3)

(94

1-F(t)= e_(f?)

(44

In (1 - F(t)) =In e_(‘g)

_ln(l—F(t)) _ (%)a
(i)

alnt — alnp

o[r{h)

Consideringax+c =y,




Reliability Data Analysis

Parametric approaches -

Weibull Distribution

Hence
a:ln(%)zln <1“<1—1F(t))> —c=alnf
C

alnt — alnf 111,82—&
elnff = o~
=In| In _ 1 i
1—F(t) ;8 — &
Therefore

Consideringax+c =y,

we get a = a (slope) a=a (shape)

¢ = — alnp (intercept) f = e a (scale)




Reliability Data Analysis
Parametric approaches

Weibull Distribution

i ti | | N[ Inp/perpy | e
7.90 50 3.922| -5.9328|Intercept
14.67 3219
15.78 2.803| 0.8446| Shape
37.47 2505, B
96.83 2.271| 1123.973| Scale
192.19 . -2.078|
229.69 -1.913
233.56 -1.768
251.28 -1.639
260.41 -1.522
386.79 -1.415
397.16 -1.316
412.54 -1.223
419.25 1.137|
442.32 : ~1.055
474.43 0,977
477.64 -0.903||| -3-000
483.71 7 0.832
483.78 -0.763|| -4.000
500.65 0.697
561.43 -0.634|| -5.000

2.000

y = 0.8446x - 5.9328
1.000 R* = 0.9467

1
2
3
4
5
il
7
a
9

=t
=

0000

=
=

=
o]

= =
o |

[
%]

= =
=~ |

=
(=]

=
(1=

Pt
[

[t
=




Reliability Data Analysis
Parametric approaches

Method of Matching Moments

THE METHOD OF MOMENTS PROCEDURE

Suppose there are | parameters to be estimated, say ¢ = (¢4, ..., 6)).
1. Find / population moments, ,u,;l_;k =il wisds ,u;r will contain one or more parameters 1, ...

2. Find the corresponding / sample moments, m, .k = 1,2, ...,I. The number of sample moments

should equal the number of parameters to be estimated.
. From the system of equations, ,u.;‘_, — mi,_,k =1,2,...,1,solve for the parameter & = (4, ..

0.

L0

this will be a moment estimator of .




Reliability Data Analysis

| Mathematia|
Parametric approaches -
| Bl |

Method of Matching Moments

X be a random sample from a Bernoulli population with parameter p.
Find the moment estimator for p.
Tossing a coin100times and equating heads to value 1 and tails to value 0, we obtained the
following values:

}
Obtain a moment estimate for p, the probability of success (head).

For the Bernoulli random variable, Iul = E[X] = p so we can use m ’] to estimate p. Thus,

Then, the method of moments estimator for p is p = Y /n. That is, the ratio of the total number of
heads to the total number of tosses will be an estimate of the probability of success.

Note that this experiment results in Bernoulli random variables. Thus, using part (a) with ¥ = 33, we

get the moment estimate of p is p = % — 0333 ..




Reliability Data Analysis
Parametric approaches

Method of Matching Moments

Let the distribution of X be N(u, o).
(a) Fora given sample of size n, use the method of moments to estimate u and o2.
(b) The following data (rounded to the third decimal digit) were generated using Minitab from a
normal distribution with mean 2 and a standard deviation of 1.5.

{1.35%02, 3.14884, 0.965424, 2.18839, 2.876, 3.5369, 1.52715, -0.0196308,
-0.354723, 3.49483, 0.330451, 3.475908, 5.01668, 1.1625, 0.625021, 1.990848,

2.72912, 3.46589, 1.24573, 1.73628, -0.345712, 3.55427, 4.37219, 1.09182,
4.28345, -0.378624, 2.63557, 2.10456, 2.36662, 3.01285, 2.74881, 2.85877,
1.74839, 1.58864, 0.86862, 5.38307, 0.94671, 1.49921, 1.15941, 0.87684, -1.01581,
0.770395, 0.82342, 0.661982, 2.84892, -2.77245, 1.92475, 2.67788, 3.01776,
1.51121, 4.61112, 1.35135, 3.60583, 2.78596, 1.4498 796683, 5.37726,

4.24755, 3.85384, 1.67251, 3.32339, 3.0388, 4 211UJ, 2.4825, 2.60209, 1.56404
2.84462, 3.04684, 1.26248, 3.20472, 3.49371, -0.991947, 2.37858, 2.35186,
2.59153, 0.873494, 0.232236, 1.90613, 0.693796, 2.0918, -0.198688, 1.28351,
3.66317, -0.75596, 2.26349, 3.84623, 2.02748, 1.21615, 1.4_214, 1.5392, 4.47995,
0.637378, 0.97747, 1.95484, 3.31798, 0.404918, 1.82952, 1.80883, 2.36095
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Method of Matching Moments

Let the distribution of X be N(u, o<).
(a) For agiven sample of size n, use the method of moments to estimate . and 2.
(b) The following data (rounded to the third decimal digit) were generated using Minitab from a
normal distribution with mean 2 and a standard deviation of 1.5,

For the normal distribution, E(X)=pu, and because Var(X) = EX* — u*, we have the second
maoment as E{XE} =o? 4 ﬁz.
Equating sample moments to distribution moments we have
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Method of Matching Moments

For the normal distribution, E(X) =, and because Var(X) = EX* — u*, we have the second
maoment as E(XE} —o? 4 JLLE.
Equating sample maoments to distribution moments we have

1 n ;
-ZX.;:H] :IH_
H

i=1
and

mn
1
! 2 2 2
J”E:; E Xi =0 +p”.
=1

' i a .
Solving for i and o<, we obtain the moment estimators as

=X

i=1

Because we know that the estimator of the mean is ji = X and the estimator of the variance is 6% =

(1/m) Y " X;.l —X*, from the data the estimates are fi = 2.00612, and 62 = 6.26614 - ( 2.00612)% =2.24163

i=1
Naotice that the true mean is 2 and the true variance is 2.25, which we used to simulate the data.
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Method of Matching Moments

Let Xi,..., X, be a random sample from a uniform distribution on the interval [a, b].
Obtain method of moment estimators for a and b.

The pdf of a uniform distribution is
a<x=<b
otherwise.

The first two population moments are
b b

ol 2 2
X a+b . X a“ +ab+ b
_ — - = E{X*) = iy = ;
w1 = E(X) f ; ”d'.x 5 and 12 S f o ”{ X 3

P {
The corresponding sample moments are

H
i 1 2
1 =X and jir = — X,
ity iy = ~ Z ;
=1
Equating the first two sample moments to the corresponding population moments, we have

B a-+ b . a? + ab + b?
fily = and fi1y =
2 3
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Method of Matching Moments

As an example, consider the sample:

£65.5507, 1.82501, 54.442, 20.810&, T73.430&, 37.2997, 99.8077, 42.0728, 99.4873,
3.85754, 23.1605, 31.2296, 69.4113, 36.7962, 31.580¢e, 78.2281, 29.8135, 96.9085,
a0 .7682, 91L.6715, B7.7T468, 14.4566, 5.67949, 19.4372, 61.3422, 99.7406, 1.34892,
68.7094, 32.2245, 48._.3566, 19.5227, 7T8.5485, 40.3027, 19.367, 96.T5E89, 48.1216,
11.5421, 14.3864, 39.5703, 73.7419, 59.4226, 35.8165, 62.3096, 97.7783, 50.6027,
52.2752, 3.29905, 22.6661, 75.5028, 49.3881, £4.9971, 93.0265, 14.3681, 94.0825,
33.6467, 95.1028, 39.494, 90.4233, 24.189, 4.59304, 44.1816, 55.2385, 65.9597, 52.0646,
39.0851, 91.5647, 94.8363, 48.97, 6.58895, EE.0581, ET7.4569, 87.4905, 53.7736,
22.9349, 63.1581L, 1.293%98&8, 54.€77, 97.T7355, £89.1812, 12.3295, 22.4311, 87.3989,
o4.8723, 70.7633, 1.89215, 20.8777, 30.4361L, 41.2275, 23.4138, 84.3135, 75.8812,
38.493, 8.37428, 66.5273, 15.772, 65.6423, 67.1072, 27.8115, 45.4726, 57.9424
- _ = T =2V . s _~_ o fara -2
a = ji] — 4f ELH_-—;:]} and Db = g —1—1,-.5{14:‘:! —,ral]
ii; — 55.97982
iz — 3873.881
s i
@ = 55.97982 — /3 X (3873.881 x 55.97982%) = 8.858458

=4

55.97982 + /3 x (3873.881 x 55.979822)

103.1012
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Method of Matching Moments

For a Gamma distribution G (a, 1), we have

H1 =

Then,

Therefore
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Method of Maximum Likelihood

PROCEDURE TO FIND MLE ~ maximum likelihood estimators (MLEs)

1. Define the likelihood function, L(&).

2. Often it is easier to take the natural logarithm (In) of L(8).

3. When applicable, differentiate In L(#) with respect to 8, and then equate the derivative to zero.
4. Solve for the parameter 6, and we will obtain 6.
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Maximum Likelihood Estimation (MLE)

The method of estimating the parameters of a distribution by maximizing a
likelihood assumes a statistical model the observed data is most probable.

For instance, let us guess a set of data is normally distributed.

We assumed the Normal distribution, but we have to infer the parameters which
determine the location as well as the “fatness” of the curve.
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For Normal distributions, the parameters of interest are ¢ and p.

These two parameters are what define our curve, as we can see when we look at the
Normal Distribution PDF:

(=’

1

Nx) = e 202
o\ 21

In order to use MLE, data must be independently and identically distributed (i.1.d).

In other words, the 1.1.d. it is required the observation of any given data point does
not depend on the observation of any other data point and that each data point is
generated from same distribution with the same parameters.
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Assume a set of parameters 0 = {u, c}.

This problem is set up as a conditional probability of which the goal is to maximize
the probability of observing our data given 0.

For a dataset of size n, mathematically this looks like:

P(xq,%5,..%,|0)

We want to maximize this probability of observing our data as a function of 0.
In other words, we want to find p and ¢ values such that this probability term is as
high as i1t can possibly be.

We are used to x being the independent variable. But in this case 0 is/are the
independent variable(s), and x4, x5, ..., X, are constant since the observed data, does
not change.
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We know that the probability of multiple independent events is termed joint
probability. We can treat each data point observation as one single event.

If the events are independent and identically distributed, we can treat the observation
of our dataset as a series of independent events, such that the joint probability follows:

P(xq,%5,..X,]10) = P(x,|0) - P(x,|0) - ... - P(x,|0)

= ﬁp(xi|9)

Remember, the goal is to maximize this probability term by finding the optimal 6.
Hence, we seek the “argmax” of this term with respect to 0:

n
OuLe = argmaxg 1—[ P(x;16)
i
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Therefore:

n n
9,
argmaxg HP(x,;IQ) — %HP(JC,;IQ) =0
i i

Now, the only problem is that this is often not easy to obtain a derivative to calculate
the parameter value 6 that maximize [[}* P(x;|0).

However, it usually easier to obtained the derivative of

1n1_[p(xl|9) - Z In(P(x;]6))

Z‘“ (P(x:10)) =

Thus

39 In(P(x;|0)) =0
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Taking the natural log of our original probability term does not affect the argmax,
which is the metric we are interested.

Obviously, In [} P(x;|0) is a different value from [[}* P(x;|0) , but both functions
have the same global maximum with respect to 0 since In [[}* P(x;|0) does not
changes its curvature.

fx) #Inf(x)
max f (x) # maxIn f(x)

argmax, f(x) = argmax, In f(x)
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Now let’s think about a distribution with two parameters we want to
infer, 1 and o, rather than the symbolic representation 0, considering
one data points. Assume the likelithood function 1s density function of
Normal distribution.

_(x1—ll)2

1
L(u,olx;) = N(x,) = e 20?2
(.U |1) (1) J\/E

L(‘U,O'lxl)
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Now assume n data points:
L(u, olx1x5x3 o xq)= LW, 0|x1) X -+ L(@, 0]xy)

Therefore
1 (xl—li)z 1 _(xn—ﬂ)z

e 202 XX e 202
oV2T

L(u,o|lx1x,x3 .. Xpy) = T

Now, let us solve L(u, o|x{x,x3 ...x;;) for the maximum likelihood
for u and 0. Hence, we have to calculate two derivatives of
L(u,o|xix,x3 ...x5), one with respect to u, and the other with
respect to o.
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Hence

IL(U, O|X1X3X3 ... Xp) — 0 and L(U, O|X1 X X3 ...
ou do

But before taking the derivative of likelihood function, let us take the
In(L(u, o|x1x,x3 ...x;)). It makes taking the derivative much easier.

Thus

Ln(L(,u, olx1x,%3 ... xn)) =

1 _(xl—ﬂ)z 1 _(xn—li)z

e 202 XX e 202 )

Ln( T

O\ 2T
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Ln(L(,u,alexzxg ...xn)) =
1 _(xl_ﬂ)z 1 _(xn—ﬂ)z

e 202 XX e 202
oV2TT

Ln( o2

Then,
1

Ln(ame
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(xl 121')2 1 2 )
20 ) e 4 Ln a\/ﬁe 20

Let us focus on this one first.

_(xg—w)?
207 ) = Ln( \/_) + Ln(e 202 ) =
_(x1—w?

—17)2
202 ) = Ln(2mo?) /2 — (x;ag)
_(1-w? 1

_ 2
> )__ELn(z,w) Gri—p)”

202

(c1-p)? 1

_ 2
Tzo? )= —>Ln(2m) — 5 Ln(e?) — FLL

202




1
Ln(am

Now, take

1
—=Ln(2
5 n(2m)

— Ln(o) — — e — ELn(Zn) — Ln(o) —
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_(1-w? L

N2
202 ) = —ELTL(ZTL') — %LTL(O’Z) (xa=p)

202

_(x1-w? 2
T 202 ) = —%Ln(Zn) — %Ln(a) _ i)

202

(x1—w)?

N2
202 ) = ——Ln(Zn) Ln(o) — )

202

2 2 cee 2 —
e 202 )+ -+ 1ILn ——=e 20

(v — W)* 1 (en — W)*

202 202
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Therefore, we started with this

_(xl—ﬂ)z 1 _(xn—li)z)
202 X -+ X 202
o\2T €

b

and end up with this

o —m® L @) — (o) — T ™ W7 _

1
— ELn(Zn) — Ln(o) — 5o > P

n (x1 — w)? (xp — w)?
—ELn(Zn) —nln(o) — P Iy




Reliability Data Analysis
Parametric approaches

Thus,
Ln(L(u,alexzxg ...xn)) =

n g —w? (e —w?
—ELn(Zn) —nln(o) — o T T 53

Now, let us take

dLn(L(,u,J|X1XzX3 ---xn))

2(x1 _/'l) 4ot Z(xn _.u)
du 207 207

=0-0+

dLn(L(u, T|xX1x,%3 ...
du
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Hence,

dLn (L (U, o|x1 x5
du

dLn(L(,u,alexzx3 ...xn)) 1
du g2

(g —p) + -+ (xy — )

dLn L(H,O-lxlexS e X ) 1
( an L ) = (1.t xp)— np)
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Hence, as

Ln(L(,u, olx1x,%3 ... xn)) =

n (g — p)? Ot — w)?
—ELn(Zn) —nln(o) — oz T

Then,

do

(x1—w)?*  (xq—u)?o™?
202

Since
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Thus,

dLn(L(u, olx1x2%3 .. X)) Ly O w)?
do B o3

din(L(u, olx1x,x3 ...x;,)
( — W) _ — 2+ (g — 1)?)

Finally, we have the to derivatives:

dLn L(H,O-lxlexS e X ) 1
( an L ) = (1.t xp)— np)

dLn(L(u, T|xX1x,%3 ... n

1
- =—+— (L —w? + 4 G —1)?)
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dLn(L(,u, Ol|x1%2%3 ... xn)) _
du

0

Hence

1
(et )= =0

(x1+...+ x;,,)
n

=
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Thus,

dLn(L(,u, olx1x3x3 ... xn)) _

do 0

n 1
——+

— (1 = P + e+ G — 0)?) = 0

(‘2"‘%((951—#)2 +~°+(Xn—ll)2)>0= 0Xxao

1
(—n +— (G =) 4 (= u)2)> =0
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Finally:

(x1+... 7 x;,)
n

=

(e = )2 + -+ (o — )2
n
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Method of Maximum Likelihood

Let f(x1,...,%,;0),0 € © C R", be the joint probability (or density) function of n
random variables X1, ..., X, with sample values xi. ..., x.. The likelihood function
of the sample is given by L(&;x1.....x5) = f(x1,...,: Xni B), [= L(9), in a briefer notation].

If X1,..., X, are discrete iid random variables with probability function p(x, #), then,
the likelihood function is given by L{#) = P(X; = x;

n
— 1_[ P(X; = x;), (by multiplication rule for independent
i=1 random variables)

= 1_[ pxi, 8)

i=1
and in the continuous case, if the density is f(x, 8), then the likelihood function is

LO)=]] fxi.0.

i=1

We emphasize that L is a function of 8 for fixed sample values.
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Method of Maximum Likelihood
Suppose X X, are a random sample from a geometric distribution with parameter p,0 < p < 1.

Find MLE p.
For the geometric distribution, the pmfis given by f(x, p) = p(1 — p}"_], i el 2=1.20.%. . ...

Hence, the likelihood function is n
n n+Y x;

Xi—1 H
Lip) = ]_II:.”“ — p) ]:p (1—p) r=1

=1
Taking the natural logarithm of L{p), Solving for p

M
lnL=u]np—|—(—n—|—2x,-)1n{1—;:r} p= LI

5 H -

i=1 Z X -

Taking the derivative with respect to p, we have i=1

i .
] Thus, we obtain a
S Z i maximum likelihood
dln L n i=1 :
= — — estimator of p as

dp j2 (1 — p)
Equating ”Ih%‘”—] to zero, we have ( i i : )
_ xi

=]
2 =i
(1—p)
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Method of Maximum Likelihood

Assume that X denotes the time to failure of device. The parameter value that maximizes the likelihood

The time to failureis exponentially distributed with function is called the maximum likelihood estimator.
failure rate A. The MLE can be interpreted as the parameter value
fFX)=Ae ™ 21>0,x>0 that is most likely to explain the dataset.

We intend to estimate A from random sample The parameter value that maximizes the log-likelihood

function will maximize the likelihood function.

Xy Koysns s WHETE X'= (265, %, wiy Xz ) 15 FHiE vector
representing the observed values of the sample. In(L(x ID) g (Iﬂ e—AZ}lej)
1=0(x)

In(L(x,A)) — InA" 4+ In e A Ei=1%
The joint pdf of X4, X5,..., X,, is given by

Lix, 1) = A" e ALi=1% ln(L(x,l)) —q gl lz X;
i

L(x, A)is called the likelihood function, which is the

function of the unknown parameter A and the real data
%
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Method of Maximum Likelihood -
The function In(L(x, 1)) can be maximized by

deriving it with respect to 4, setting the resulting
expression to zero, and solving the equation for A.
Therefore:

GIH(L(x D) n -
=1

=1

7 T
So: Accelerated life testing
Now assume for a certain system that we

observed 60 failures during T = 15 116 772.7753 min

hours. Hence: |
o5 60 failures _ 3 96 x 10~° failures/ min
15116 772 .T153
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Dealing with Censoring

Above, we illustrated the MLE methodology for complete lifetime data sets. Often, however, these
sets contain censored data. Dealing with right-censored data involves including another term in
the hikelthood tunction. As stated earher, the term for the complete data uses the density function.
The second term tor representing the censoring takes into account the complementary cumulative
density function. This extended likelihood function has the form:

Lix1,x2,....%,|0) = [ f(xi|0) x [] (1-F(x;]8)).
i=1

where n — r 1s the number of censored data points, x; is the .,"”" suspension and F(x;|@) is the cdf,
and 8 is the set parameters of the distribution. With this function, the analysis process proceeds
as described previously: take the natural logarithm of the likelihood function, take the partial de-
rivatives with respect to the parameters and solve simultaneously. The likelihood function for the
suspended data helps illustrate some of the advantages that MLE analysis has over other parameter
estimation techniques.
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Assume the TT Fs are exponentially distributed with rate 4;, thus we may adopt

L{xp,x3,....x5|A) = li[}d. Ali ]‘[ oA
=

i=r+1

Thus,
L(Xx1,X2,...,Xn|A)

Lix1, X2, x|A)=A"e

Lixy,X2,....xs|A)=A"e

L

as the likelihood function. Differentiating the L{x;,x2,...,x,|A ) with respect to A and setting it equal
to zero, we obtain
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Relationships among probability distributions

[ Megative binomial(n,p) }-3— —A=n(1-p) , o0 — — Poissan(A) —_— e =A=NpP, - e
i oy EXi Bemouli{p)
p=MIN , n=k , N
A% z
\-{ Hypergeometric(M,N,K) J

Uniform({0,1)

a+{b-a)x a=0b=1
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Confidence Interval Exponential
Distribution (MTTF, MTTFy)

Consider a reliability test starts at 0 and - ( Zzbn:r : 225”’:?“ )
that all (n) failures are reported as exact Xonay, Aana-a/,
failures. The test finishes when all units 2n is the degree of freedom, « is

fail or after r failures occur (right significance degree.

censoring type Il). The confidence interval
for A and MTTFcan be computed by:

2 2
(A Ay = (X2n,1—f1/2 XZ?L“@) where T; denotes the failure time of the
25ny | 2Sny

unit 1.
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Consider that we have observed 60 units
of a specific type until the respective
failures. The failure times were registered
and are depicted in the spreadsheet.
Assuming the time to failure is
exponentially distributed, computed the
confidence interval for A.

Now, also consider an accelerated test in
which 60 units have been placed. The test
was finished when 10 failures occurred.
The observed failure times are registered
in the spreadsheet. Assuming the time to
failure is exponentially distributed,
compute_ the confidence interval for A,
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Confidence Interval Exponential Distribution

If right censoring type | is considered, the
method still provides a useful
approximation.

The same process can be applied to
estimate the confidence interval for
MTTR.
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Confidence Interval Exponential

Distribution Therefore: 2 _ 1
Availability - 1 L+p
Since u
1 I I I }
N MTTFE B The confidence mtergal for pis (P :Olé),
T MITF+MTTR 1,1 1 Where  p = Py = =
AU U f2n,2n:“/2 f2n,2n;1—05/2
1+ T
1 71 Hence, the confidence interval for A is
- {42 (4;, Ay), where:
u
1 1

A=m where p= 1+ pu R )

If T, and T, are chi-squared random variables with n, and n, degrees of freedom respectively, then (T,/n,)/(T,/n,) is an F(n,, n,) random variable.
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Consider now that the units have been

repaired. The respective time to repairs
are also registered in the spreadsheet.

Compute confidence interval for the

availability.

The CTMC representing the system:

A

el 1)

u
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Confidence Interval
You may also adopt:

e Adopt Bootstrap or Semi-parametric Bootstrap
e If possible, you may also use t-student distribution or

¢ Central Limit Theorem




Means to Enhance Reliability and
Availability

O Fault prevention: how to prevent the occurrence or
introduction of faults;

O Fault tolerance: how to deliver correct service in the
presence of faults;

0 Fault removal: how to reduce the number or severity of faults;

0 Fault forecasting: how to estimate the present number,
the future incidence, and the likely consequences of faults.




Means to Enhance Reliability and
Availability

Fault prevention is attained by quality control techniques employed
during the design and manufacturing of hardware and  software,
including  structured programming, information hiding, modularization,
and rigorous design.

Operational physical faults are prevented by shielding, radiation
hardening, etc.

Interaction  faults are prevented by training, rigorous
procedures  for maintenance, "foolproof" packages.

Malicious faults are prevented by firewalls and similar defenses.




Means to Enhance Reliability and
Availability

Fault Tolerance is intended to preserve the delivery of correct service in
the presence of active faults.

O Active strategies
Phase:
1) Error detection
2) Recovery

0 Passive strategies
Fault masking




Means to Enhance Reliability and
Availability

Fault Removal is performed both during the development phase,
and during the operational life of a system.

Fault removal during the development phase of a system life-cycle consists
of three steps: verification, diagnosis, correction.

Checking the specification is usually referred to as validation.




Means to Enhance Reliability and
Availability

Fault Forecasting is conducted by performing an evaluation of the
system behavior with respect to fault occurrence or activation.

Classes:

qualitative evaluation identifies event combinations that would
lead to system failures;

probabilistic evaluation evaluates the probabilities of attributes of
dependability are satisfied.

The methods for qualitative and quantitative evaluation are either
specific (e.g., failure mode and effect analysis for qualitative evaluation,
or Markov chains and stochastic Petri nets for quantitative evaluation), or
they can be used to perform both forms of evaluation (e.g., reliability block
diagrams, fault-trees).




REDUNDANCY MECHANISMS




Redundancy Mechanisms

O Parallel Redundancy

Parallel Redundancy refers to the approach of having multiply units running in parallel.
All units are highly synchronized and receive the same input information at the same time.

But because all the units are powered up and actively engaged, the system is at risk of
encountering failures in many units.




Redundancy Mechanisms

O Parallel Redundancy

Deciding which unit is correct can be challenging if you only have two units. Sometimes you
just have to choose which one you are going to trust the most and it can get complicated.

If you have more than two units the problem is simpler, usually the majority wins or the two
that agree win.




Redundancy Mechanisms

O Parallel Redundancy (Active-Active) — load sharing

Active-Active refers to the approach of having multiply units sharing the load.

As the units are powered up and actively engaged, the system is at risk of encountering failures
in many units.




Redundancy Mechanisms

O Triple Modular Redundancy (TMR)

Deciding which unit is correct can be challenging if you only have two units. Sometimes you
just have to choose which one you are going to trust the most and it can get complicated.

If you have more than two units the problem is simpler, usually the majority wins or the two
that agree win.

A generalization is named NMR




Redundancy Mechanisms

O Hot Stand by In hot standby, the secondary unit is powered up.

If you use the secondary unit as the watchdog and/or voter to decide when to switch over, you
can eliminate the need for a third party to this job.

This design does not preserve the reliability of the standby unit. However, it shortens the
downtime, which in turn increases the availability of the system.




Redundancy Mechanisms

0 Hot Standby

Some flavors of Hot Standby are similar to Paralle/ Redundancy.
These naming conventions are commonly interchanged.

For us, Hot Standby and Parallel Redundancy (active-active) are the same
mechanism!

But, attention!




Redundancy Mechanisms

0 Cold Standby

In cold standby, the secondary unit is powered off, thus preserving the reliability of
the unit.

The drawback of this design is that standby unit have to power up, since it is initially
powered off.

Perfect switching AND non-perfect switching




Redundancy Mechanisms

0 Warm Standby

In warm standby, the secondary unit is powered up, but not receiving the workload.

It is common to assume that in such a state the standby component has higher
reliability than when receiving the workload (properly working).

When the main component fails, the standby device promptly assumes the task.

Its switching time is shorter than the cold standby’s switching time .




Redundancy Mechanisms

O Active-Active

Active—active redundancy means that workload is shared by two
operational units, but workload can be served with acceptable
quality by a single unit.




Redundancy Mechanisms

O K out of N

Consider a system composed of n identical and independent components
that is operational if at least k out of its n components are working

properly.

This sort of redundancy is named & out of n




Redundancy Mechanisms

O RAID (redundant array of independent disks)

Many types of RAID have been developed and more will
probably come out in the future.

The technology is driven by the variety of methods available
for connecting multiple disks as well as various coding
techniques, alternative read-and-write strategies, and the
flexibility in organization to “tune” the architecture of the

system.




Redundancy Mechanisms

0 RAID O

involves striping, which is the distribution of data
across multiple disk drives in equally sized
chunks.

For example, a 150 KB file can be striped, or
chunked, across ten 15 KB chunks.

The RAID set of striped disks appears as a
single, logical disk to the operating system.

RAID-0 does not provide any data redundancy.




Redundancy Mechanisms

0 RAID 1

uses mirroring, or shadowing: all data written on a
given disk is duplicated on another disk.

0 RAID 4

uses block-level striping with a dedicated
parity disk.

Disk O Disk 1 Disk 2 Disk 3




Redundancy Mechanisms

O RAID 5

is similar to RAID 4 except that the parity data is
striped across all HDDs instead of written on a
dedicated HDD. —ry

RAID 1

0 RAID 0+1

striped sets in a mirrored set.

0 RAID 1+0 (RAID 10)

mirrored sets in a striped set.




Redundancy Mechanisms

0 N-version programming

Hardware Software

A A

System Hardware Software | o - System
Inpai B A Chutput

Hardware Software
C A

Hardware Software

B A

Primary Avionics Software System

(PASS)

Hardware Software

E B

Backup Flight Control System
(BFS)

Hardware and software redundancy in the Space Shuttle’s avionics control system. -




Redundancy Mechanisms

0 Checkpoints and recovering

Al e At

Fall back to
chack poind




Redundancy Mechanisms

0 Backward Recovery

)

- Cnmpen::-atmn 1

..-'r-'_-; — l:::-mr.:-en gation 2

I

- Enmpﬂnsatmn 3




Redundancy Mechanisms

0 Reboot

The simplest - but weakest - recovery technique.
From the implementation standpoint is to reboot or restart the system.

O Jou rnaling - To employ these techniques requires that:

1. a copy of the original database, disk, and filename be stored,

2. all transactions that affect the data must be stored during execution, and
3. the process be backed up to the beginning and the computation be retried.

Clearly, items (2) and (3) require a lot of storage; in practice, journaling
can only be executed for a given time period, after which the inputs and the
process must be erased and a new journaling time period created.




MODELING




Modeling Techniques

0 Classification

— State-space based models
O0CTMC, SPN, SPA

— Combinatorial models
ORBD, FT, RG




Modeling Strategy

Hierarchical modeling +

Are expolinomial
distributions .
suitable? In many cases through high-level models,

such as SPN

Are combinatorial
models suitable? .. 4

Simulation

Adopt RBD or FT

Is there a closed-
form solution? Is the state space
finite and do |
have resources for
obtaining numerical
solution?

Markov chain




Combinatorial models




Reliability Block Diagram

RBD is success oriented diagram.
Each component of the system is represented as a block

RBDs are networks of functional blocks connected such that they affect
the functioning of the system

Failures of individual components are assumed to be independent for easy
solution.

System behavior is represented by connecting the blocks
— Blocks that are all required are connected in series
— Blocks among which only one is required are connected in parallel
— When at least k out of n are required, use k-of-n structure




Reliability Block Diagram

0 A RBD is not a block schematic diagram of a

system, although they might be isomorphic in some
particular cases.

O Although RBD was initially proposed as a model
for calculating reliability, it has been used for
computing availability, maintainability etc.




Structural Function

Let x; be a random variable, and

| 1f component i/ functions
0 if component / fails

Xj —

Therefore, x; is a Bernoulli variable.

AS BernoulliDistribution p]

PDF

DistnbutionDomain

DistnbutionParameterAssumptions
Mean

Vanance

P(x; =1)=p; = E[x{]




Structural Function

Operations
« {+,-,%,+} - arithmetic operations

Consider a system S composed by a set of components, C = {¢;|1 < i < n}, where the state of the system S and
its components could be either operational or failed. Let the discrete random variable x; indicate the state of
component i, thus:

e [U if the component i has failed
1 [f the component i is operational

The vector X = (x4,X3, ..., Xj, ..., X )! TEepresents the state of each component of the system, and it is named state
vector. The system state may be represented by a discrete random variable ¢(x) = ¢(xq, x5, ..., X, ..., X)), such
that

if the system has failed

if the system is operational

600 =1,

¢(x) 1s called the structure function of the system.

If one is interested in representing the system state at a specific time t, the components’ state variables should be
interpreted as a random variables at time £. Hence, ¢p(x(t)), where x(t) = (x;(t), x5(t), ..., x;(£), ..., x, (£)).




Structural Function

As ¢ (x) is also a Bernoulli random variable, then

P(p(x) =1) = E[¢(X)]

If p; is the reliability of component i (at t) or its
instantaneous availability (at t) or its steady-state

availability, then P(¢(x) = 1) is the respective
system measure.

If one is interested in representing the system state at a specific time t, the components’ state variables should be
interpreted as a random variables at time £. Hence, ¢p(x(t)), where x(t) = (x;(t), x5(t), ..., x;(£), ..., x, (£)).
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Structural Function

O Irrelevant Component

A component of a system 1s irrelevant to the dependability
of the system if the state of the system is not affected

by the state of the component.

¢; 15 irrelevant to the structure function if ¢(1;,x) = ¢(0;, x).

1

Component 2 is irrelevant.




Structural Function

O Irrelevant Component

A component of a system 1s irrelevant to the dependability
of the system if the state of the system is not affected

by the state of the component.

¢; 15 irrelevant to the structure function if ¢(1;,x) = ¢(0;, x).

Component 2 is| relevant.




Structural Function

0 Factoring/Conditioning/Pivoting

For any component ¢;,

p(x) = x; (1;,x) + (1 — x;) ¢(04, %),
where ¢(1;,X) = @(x1, X2, «uer 1 e X)) and P(04,X) = (X1, X2, v0e, 0, o0e» X ).

The first term (x; ¢p(1;, X)) represents a state where the component c;

is operational and the state of the other components are random variables

(p(xq1, %2, ..., 1, ..., x5 )). The second term ((1 — x;) ¢(0;,x)), on the other hand,
states the condition where the component ¢; has failed and the state

of the other components are random variables (¢(xq, x5, ..., 04 .., X)),

Equationis known as factoring of the structure function and very useful for studying
complex system structures, since through its repeated application,
one can eventually reach a subsystem whose structure function 1s simple to deal with (1).



Structural Function

A system with structure function ¢(x) is said

to be coherent if and only if ¢(x) is non-decreasing
in each x; and every component ¢; is relevant.

A function ¢(x) 1s non-decreasing if for every
two state vectors X and y, such that x <y,

then ¢p(x) < p(y).

Another aspect of coherence that should also be
highlighted 1s that replacing a failed component

in working system does not make the system fail.
But, it does not also mean that a failed system will

work 1f a failed component 1s substituted by an
operational component.




Structural Function

0 Example

Consider a coherent system (C, ¢p) composed of three blocks, € = {a, b, ¢}




Consider a coherent system (C, ¢p) composed of three blocks, € = {a, b, ¢}

Structural Function 3{5}

0 Example
factoring on component a, we have:
‘ﬁ'{xm II’."IE] = Xg ‘p'“u' Xho Il’.‘) + {1 o Iu) d’(ﬂm Xhs Ic] = Xg ¢(1u' Xhe Il’.‘)'
since (0,4, xp,%:) = 0.

Now factoring ¢p(1,, X3, X.) on component b,
{ﬁ'(lmxbr Ir_‘) = Xp ¢{1ﬂ: IhJ Ir_‘) + {1 e Ih} {ﬁ(iul DhJ Ir:)*

As (1,4, 14, x.) = 1, thus:
‘i}(lcuxhrxf:) = Xp T I:]- v Ih) ‘i}[lm ﬂhlxr.')-

Therefore:
‘i’(xuaxhrxc] = Xa fi’(larxb-xc) =Xg X [xb + (1 _ xb) ';t'(laa ﬂbaxc)]-




Structural Function

0 Example

Fact ¢p(1,, 04, x.) on component ¢ to get:
¢(1ﬂ!ﬂfflxt') = X¢ ‘ﬁ(iuv Dh.l 1&) + (1 ) Ir:) {?’3(1&1{]1‘1:{]{:]'

Since ¢p(1,,0,,1.) = 1and ¢(1,,04,0.) = 0, thus:
$ (14,05, xc) = x¢.

S50

P(xq, xp, xc) = xg X [xp + (1 —xp) ¢(15,0p,x.)] =
Xg X [xp +(1—xp) x.] =

P(xq, xp, Xc) = Xgxp + Xgx (1 —xp) =

P (xq, xp, Xc) = Xg|1 = (1 = xp)(1 — x)].




Logical Function

if the component i has failed Operations
if the component i is operational « {A,v,—}— logic operations

Lf the system has failed
if the system is operational

bs = (5,55, ..., 5;, ..., 5y ) represents the Boolean state of each component of the system.
The svstem state could be either operational or failed.
The operational system state is represented by @(bs), whereas @(bs) denotes a faulty system.




Logical Function

0 Example

Exampie: Consider a system (C, ¢) composed of three blocks, C = {a, b, ¢}

¢

(P(Saxsb: Sc) = Sq A\ (Sb v Sr:) = Sq (5_.{1 A ST::)




Logical Function

[0 Example — Converting a Logical Function into a Structure Function

Using the notation described. s; 1s equivalent to x;, S, represents 1 — x;,
@(bs) 1s the counterpart of ¢(X) = 1, @(bs) depicts $p(x) = 0,
A represents X, and V 1s the respective counterpart of +.

Consider a system (C, ¢) composed of three blocks, C = {a, b, ¢}

1 " @(Sa,Sp,Sc) = Ssa A(Sp ASe).

) fib(x)=xax[1_(1—xb)x(l'xc)]




Reliability Block Diagram

INGEES

Hostl
Al'P1

VM1

VMM

= Operational Mode
OM, = App, AVVMM;A\VM{AH, A SAN
ﬁAppZAVMMzAVsz\HZ




Reliability Block Diagram

00 Series

= Operational Mode
OMl = Appl/\VMMl/\VMl/\Hl AN SAN
/\Appz/\VMMz/\VMz/\HZ

Appl VMl VML Hostl SAN App2 VM2 VN2 Host2




Reliability Block Diagram

INGEES

As ¢ (x) is also a Bernoulli random variable, then

P(¢(x) =1) = E[¢p(x)]

If p; is the reliability of component i (at t) or its
instantaneous availability (at t) or its steady-state
availability, then P(¢(x) = 1) is the respective
system measure.




Reliability Block Diagram

INGEES

P'[{t'{}{} = 1} — P{¢[I1,I2,...JI[J '":x.rlj — 1} - ]-[:LLF{IL - 1} =l—l1[rl=l Pi = 1.

Therefore, the system reliability is

Rs(t) = P{gp(x, ) = 1} = [i=, P{x;(t) = 1} =[Ii=, Ri (),
where R;(t) 1s the reliability of block b;.

Likewise, the system instantaneous availability is

As(t) = P{o(x,t) = 1} = [Tz, P{x;(t) = 1} =[1i=, Ai(8),
where A;(t) 1s the instantancous availability of block b;.

The steady state availability is
AS — P{Cb{x} - 1}: lep{.:'ff — 1}=n}1=11qi,
where A; 1s steady state availability of block b;.




Computing the Reliability

Appl VM1 VMM Hostl SAN ppd VM2 VWMZ  Host2

If for every component i, TTF; = EXP(A;), then
Ri(t) =e Mt
Hence:
R(t) = e *avr1t x g~ Avmit
X e~ AvMM1t x o—AH1t
X E_ASANI: X
e tapp2t w p=Avmzt x o—AvMM2t
X e AH2t =
e~ (Aapp1tAvmi+Avmmi tAH1 HAsaN HAap)

R(t) = 0.805735302, t =0.002 tu




Reliability Block Diagram

INGEES

Series system of n independent components, where
the i component has lifetime exponentially
distributed with rate 4,

Thus lifetime of the system 1s exponentially
distributed with parameter >

and system MTTF = T/




Reliability Block Diagram

0 Series
R.v. X: series system life time

R.v. X;: i""comp’s life time (arbitrary distribution)
0 < F[X] < min{E[X;]}
Case of weakest link
X=min{X;, X,,...X}

Rx(t) = ]] Rx,(t) <min{Rx, (1)}, (0 < Ry;(¢) <1)
=1

B[X] = /:G Rx(t)dt < min {[;@ RX%.(t)dt}
= m?:in {;E[X,E-]}




Reliability Block Diagram

0 Example:

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
fallures per hour, A3 = 0.00003 failures per hour,and A4 =
0.00004 failures per hour, respectively. The sw system cannot work
when any web services is down.

a) Calculate the total sw system failure rate.
b) Calculate MTTF of sw system.
c) Calculate the R(t) at 730h




Reliability Block Diagram

0 Example:

The sw system cannot work when any web services is down.

—

The sw system only works when all web services work.
wsy; = web services 1 working
ws, & web services 2 working
W5, = web services 3 working
ws, & web services 4 working

@ (WS, WS,, W53, WS,) = WSy AWS,; A WS A WS,




Reliability Block Diagram

O Example:

@ (WS5y, WS,, WS4, WS,) = W5y AWS, A WS A WS,

0.00001 + 0.00002 + 0.00003 + 0.00004

0.0001 failures per hour

| ot
IV e = = = ]0,000h
RS 0000 ] Ll




Reliability Block Diagram

0 Example:
—_ C)

@y, 2x5,%3) = X323,
Pl @lx; x5, %:) = 1} = E{dx. 25,25 ) = Efxyx535%05]

If the components are independent, then:

P{ ¢p(x1,%5,%3) = 1} = E{x1 } E{x;} E{x3} E{x4} =

As
P{ ¢(x,,x;,x3) = 1} = R(¥), then
P{p(x1,%3,%3) = 1} = R(t) = 1 (Orz (Drz (D12 (t)
And, since 1;(t) = e, therefore:
R[t:} — o~ ML v o= A2l o p=Agl o oAyt — S (A +AzHAa+A )0

R(?Eﬂh:} - E.—[III.EIEIEIEll+EI.EIEIEIDE+U.DUUDE+U.DUUU4]KTED = 0.929600830




Reliability Block Diagram

O Problem:

Now, considering the previous example, suppose that the repairing time of each
web service is exponentially distributed with average 2h.

a) Compute the steady state availability.
b) Compute the downtime in minutes in one year period.




Reliability Block Diagram

O Parallel

E|-“~l|. Hxl' 2

AFPF]

APP2
VM1 VM2 BEGIN END
VMM VM2
El.i:-hr.u':-
Py

.".!I-'III.'-'J'_'n.'
Power
MK
Cooler

Operational mode: OM; £ H,V H,

Logical function: @(s},1, Sp2) = Sp1 V Sio

Structure function: ¢ (xy,, X32) = [1 == ((1 —xp1) X (1 — xhg))]

—




Reliability Block Diagram

Parallel
PO®) = 1) = P{$(x1, X, e, Xy s Xn) = 1) = 1 - ]_[P{xl =0}=1-] J[a-Pm=1p=
i=1
Pigx)=1}=1—] |(Q—-p
[ —1
Thus P{p(x) =1}=1—-(1-p)™ ;—l
The svstem rt,liabilihr is then: Source - [_ i
L |
Rp(£) = 1 - ﬂP{xm =0=1-| [a-Pr@®=1p E
i=1 :
Rp(t) =1—-IL,Q;(®) =1 =TI, 1 - Ri(t) ,
such that, ba

Qi(t) = P{x;(t) = 0} = 1 — P{x;(t) = 1} = 1 - R;(¢),
where R;(t) and Q;(t) are the rehiability and the unreliability of block b;, respectively.




Reliability Block Diagram

O Parallel
bl
Similarly, the system instantaneous availability 1s vouee :._ g
I Tt

Ap(t) = Plp(x,) =1} =1—| | P{xi(t) =0} =1—| | 1— A, (D), i

a!_n.:ih. afn.:il. =
Ap(t) = P{p(x,t) = 1} = 1 = [[iz, UA;(6) =1 —[[i=; 1 — A (D),
such that, UA;(t) = P{x;(t) =0} =1 — P{x;(t) = 1} = 1 — A;(¢t), »

where A;(t) and UA;(t) are the instantaneous availability and unavailability of block b;, respectively.
The steady state availability 1s

Ap=Plp() =1} =1-TL, UA; =1- [T}, 1- 4,

where A; and UA; are the steady availability and unavailability of block b;, respectively.

Due to the importance of the parallel structure, the following simplifying notation is adopted:
Plp(x) =1} = 1 -[[5,(1 = P{x; = 1) = [[jo, Pl = 1} = iy pi = 1 = (1 = p)™.



Reliability Block Diagram -

O Parallel

For a parallel system with » independent and
identical components with rate 4

and system

% P T < |
MTTF = ["R(t) x dt = [[1-(1-e*)"Jdr = 5 7
0 b=




Reliability Block Diagram —

0 Example

R_1comp (t) - MTTF=15000h

-

m—f icomp_[t) -
MTTF=15000h

Rpar_2com(t) i I
bl ?

10000.0

™ MTTFs=15000h

10000.0

18 281.3




Reliability Block Diagram

0 Example

The system works when at least one server works.
s, ¥ server 1 working
s, ¥ server 2 working

@(51,8,) =8, V5, & @(sy,5,) = 8§ NS,

We know that

Plp(x)=1}=1—-(1—p)(1 —p,)

As
P{¢(x) = 1} can be R(t), A(t), A




Reliability Block Diagram

0 Example

We know that

Plp(x)=1}=1—-(1—p)(1 —p,)

As
P{¢(x) = 1} can be R(t), A(t), A

R(1) =1=(1=R ()1~ R, (1))
= Ry (1) +15 (1) — Ky (1) R, (1)

Myt At A+t

= € il €




Reliability Block Diagram

0 Example

We know that

Plp(x)=1}=1—-(1—p)(1 —p,)

As
P{¢(x) = 1} can be R(t), A(t), A

MTTF, jR(x)dt j(e Lo gty gy

l 1 1
= 4 —
b A A4

R(730h) = 0.9997906870

MTTF = 105 000h




Reliability Block Diagram

0 Series-Parallel System

— Series-parallel system: n stages in series, stage i with n, parallel
components.

— Fori=1,..n, R j= R, n>j > 1

— Reliability of series-parallel system 1s given by

Rsp = H [1—-(1—-R;)"™




Reliability Block Diagram

0 Series-Parallel System
Example:

P=(1-(1-p)A-p))x(A-(1-p,)(1—py )1 —ps))




Reliability Block Diagram

0 Series-Parallel System
Example:

P=(1-(1~pip)(1— p3psps))




Reliability Block Diagram

0 Example:

Consider a system 5, represented by four blocks (by, b,, bg, by) where each block has
r, 1y, 13 and ry as their respective reliabilities.

il

RBD of System §;

The system reliability of the system 5, 1s

st :T-IK[l_{l_rz}{?:q_]x(]__rg)_l.




Reliability Block Diagram

O Problem

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =

0.00004 failures per hour, respectively. The sw system provides the

proper service if the web services 1 or 3 are up and the web services 2
or 4 are up.

a) Calculate MTTF of sw system.
b) Calculate the R(t) at 730h




Reliability Block Diagram

O Problem

Mow, considering the previous example, suppose that the repairing
time of each web service is exponentially distributed with average 2h.

a) Compute the steady state availability.
b) Compute the downtime in hours in one year period.




Reliability Block Diagram

O K out of N

Sequence of Bernoull1 trials: » independent repetitions.
= 7 consecutive executions of an if-then-else statement

S, : sample space of n Bernoulli trials

S]_ — {O,l}
S> = {(0,0),(0,1),(1,0),(1,1)}
S, = {2™ n-tuples of Os and 1s}




Reliability Block Diagram

Consider that event
A ¥ Success,

thus, A & Failure.

0 Kout of N A: is a success at the i*"

repetition an experiment.

Consider s €S , such that, s = (L1 L, p 0,...,@)
4

7 Tff

S:Al A AEA Ak AN E}’(—lf\ cas I% Eu

P(s)=P(4)P(A4,)..P(4)P(Ar1)...P(Ar)

Eoak If each event A4; is independent, and
P T P) =p,P(A) =q
P(s): Prob. of sequence of k successes followed by (n-k)
failures. What about any sequence of £ successes out of

n trials?




Reliability Block Diagram

O K out of N

k 1's can be arranged in (’E) different ways,

p(k) = P(Exactly k successes and n — k failures)

(:)pk(l . p)n—k

=n, reduces to Series system p(n) = p"

k=1, reduces to Parallel system p(1) = 1—(1 — p)"




Reliability Block Diagram

Example: 2 out of 3 system

n statistically identical components; also statistically independent

block2

block(




Reliability Block Diagram

Example: 2 out of 3 system

n statistically identical components; also statistically independent

n

(V) pia-pyn
2.0

i=k

Ifn=3and k = 2, then

3

L

Qra-pr+ Q- -

3p*(1 -p) +p° =3p* - 2p°.




Reliability Block Diagram

Example: 2 out of 3 system
n statistically identical components; also statistically independent

n

RS(f) s Z (:)E—;‘LEI(I . E—JLI)?I—I

x=k

Target

n [o's)
[ MTTF = Z (") f g MET] g MY
x=k i 0

| o 1
e
x=k




Reliability Block Diagram -

O 2 out of 3

Assume independence and that the reliability of a
single componentis: R, .. (7)= e

(1) =3e" —2e*

we get:

700

E[X]:,[R:aa::(f)df:j-a {df—.[2e =
0 0

.2 = MTITF .

6/1,

Comparing with expected life of a single

5 1
component: MTIFE, ,=—<—=MITF,

Simplex
6. A =




Reliability Block Diagram -

1 2 out of 3

2.50 3.75
Ar

Comparigon of 2003 and simplex reliabilities

Thus 2003 actually reduces (by 16%) the MTTF over
the simplex system.

Although 2003 has lower MTTF than does Simplex, it
has higher reliability than Simplex for “short”
missions, defined by mission time t<(In2)/A.




Reliability Block Diagram

1 Example: 2 out of 5

2 a component failure rate

a component repair rate 0.0081 + 0.0729 + 0.32805 + 0.59049 = (.99954

o Block Availability =
= clel - ' 1 or -
= s Ea Componet Availability
['u 2p ] i Outpuiz azked for the modetl 2oph =
Steady-State Availabiity
oo Avail $.993540000e-001




Reliability Block Diagram

0 Example

For a system with 6 HDDs in a RAID-0 disk set, if the
reliability of each HDD at t=3 years is 0.9, the reliability

of the RAID set is

6
RRaID set(t) = H Rypp(t)
i=1

6

RRraID set (3 yea’rs) =

RRAID set (3 }’EH?"S) =

Rupp(3 years) =

0.9 = 0.531441




Reliability Block Diagram

|:| Example Consider the reliability of each HDD at t=3 years as 0.9.
For a storage system with 6 HDDs configured as RAID-1
array, what is the storage system reliability at t= 3

# of RAID sets

Rramp-1set(t) = 1_[ A

I=1

years?

2
Rramp-1 (1) = 1— (1 n RHDD(E)) = 0.99
3

Rraip-1set(t) = H (RRAID—i i(t))

=
Rraip—1 set(t) = 0.99 X 0.99 x 0.99 = 0.97029899




Reliability Block Diagram

RAID-5 can tolerate one HDD failure in an array of n
HDDs. For example, if the parity HDD fails, the
remaining data HDDs are not affected, but redundancy
is lost. If a data HDD fails, the RAID controller uses the
remaining data HDDs and the parity HDD to recalculate

the missing data on the fly. System performance
slightly degrades until the failed HDD is replaced;
however, no data is lost.

All data in the RAID set will be lost if another HDD fails
before the failed HDD is restored.

The mathematical relationship that evaluates the
reliability of n HDDs in a RAID-5 configuration is
n

Raaio-s s = ) () Rhoo 0 % (1~ R ®) "

J=n-1




Reliability Block Diagram

[] Examp|e For a storage system with 14 HDDs, one possible
configuration is 13 HDDs dedicated to RAID-5 with the
remaining HDD available for failover. The reliability for
this configuration is (in which 12 of 13 HDDs must
operate)

Rraip-5 set (1)
13

- Z ({:3) Rlpp(t) x (1 - R;fm(t))w_j

j=12

Rrap-5 set (3 years)
13!

e

. 13!
13 (13 =13

Rraip—s set (3 years) = 0.6213

x 0.912 x (1 — 0.99)13-12

X 0.913 x (1 — 0.99)13713 =




Reliability Block Diagram

O Importance Indices

Reliability Importance

The reliability importance, or Birmbaum importance (B-importance), of component
i 18 defined as

;B — 28s(p) 0<pi<]

’ opi
pi 18 the reliability of component i, p is the vector of component reliabilities,
and R 1s the reliability of the system.

17 = Rs(1;, p) — Rs(0;, p),

where p’ represents the component reliability vector with the ith component re-
moved.

17 = E@(1;,X) — $(0:, X)) = Pr(p(1;,x') — $(0;, X') = 1)
where ¢ is the structural function of the system.




Reliability Block Diagram

O Importance Indices

Normalized Reliability Importance

where In‘? Is normalized reliability importance and

I, = maxy;{I’}.




Reliability Block Diagram

Importance Value

Reliability Importance

Value

0.4706158045078663
0.3442083554630504

O Importance Indices | e

0.25200984031 208873
0.24929178977809807
01731809757 2675767
0.1622727298090447

Mormalized Value

10
0.7313999066032152
0.5795994586269384
0.535489539233858
0.535489539233858
0.52971402020548
0.36798801409634504 ;
0.344809350333521 E

=11

Component name

EMD

&3

Component i Co | 11 | C12 | c3 | o] | Cs51 | 52 | 53
Component's failure rate 0.001 0.02 0.01| 0.0001 0.01 0.01 0.01 0.04




Reliability Block Diagram

O Importance Indices

Availability Importance

I = A (1;,p") — Ay (0;, p")

7

Normalized Availability Importance

where In‘f Is normalized availability importance and

L, = maxy{[{'}.




Reliability Block Diagram

O Importance Indices

Importance Value
0.9805600622799777
0.9632560611809194
0.16268554669369795
0.1478977163822564
0.08874922218453907
0.025028798433878063
0.025028798433878063
0.00796370859259754

MNormalized Value

10
0.9823520411764708
0.16591084315164226
0.15082983956981455
0.08050870578818113
0.025525002900568503
0.025525002900568503
0.008121591831999043

Component name

Availability Importance

o

Component i

Component's failure rate

Component’s repair rate

Value



Reliability Block Diagram

O Importance Indices
Reliability and Cost Importance

(.
176 = IP x(l— : )
CSys

Availability and Cost Importance

(-
Iffszx(1— - )
CSys

where (; is the cost of component /, and (g, is the

system cost.




Reliability Block Diagram

O Importance Indices

Normalized Reliability Cost Importance
I
L

BC _
n; BC
L Ix

Bt = max{l]
Vi * :
Normalized Availability Cost Importance
AC
AC _ 11_
n; _I;?C

[£¢ = max{I{"*]




Reliability Block Diagram

O Importance Indices

Irmportance Value

0.4313978207988774

0.3155243258411295

0.235209184291 28282
0.22730722126170033
0.22680885628087985
0.19943343182247847
0.15415909331359246
0.12988573179506824

Mormalized Value

cl2; 1.0
0.7313999066032152

cli:

52 0.5452257126744737
fa i 0.5269085987517622
o5l 0.5257533657932425
c3: 0.462295872179328
53 (0.35734787216383085
cd 2/ (0.30108110317882775

Component name

cl12

cl1

c52

o

o1

c3

c53

c4 23

BEGIN

<12 23

) - ) B
) -
Component i co c11 ciz c3 ca cs1 T¢s2 cs3
Component's failure rate 0.001 0.02 0.01 0.0001 0.0001 0.01 0.01 0.04
Component's repair rate 0.05 0.1 0.1 0.05 0.05 0.1 0.1 0.1
Component's cost ($) 500 500 1200 1500 600 400 300
|
G t:  Importance Val - e
ty P ol; 0.8171333852333148 Walue
Value o 0.7706048489447356 o
) cl2: 0.14912841780255645
ol 2/3: 0.1109232876616523 =
i 0.0813534536691608
52 0.023260211871619525 -
51 0.022525918590490256 i
53 0.007565523162967663 2 e
- m
Compenent: Mormalized Value *E o4 273
=== oo oSS g
0 10 2 en
=t 0.943058823520412 =
cl2: 0.18250192746680646 S ema|
ol 2/, 0.1357468556128331
cll: 0.09955857636639922 =t
52 0.028588003248636723 '
o5l 0.027567003132613082 o
53 0.00925861468847891

W Component




Reliability Block Diagram

ance Indices

<12 23

Irmportance Value

Reliability-Cost Importance

0.4313978207988774 Value
0.3155243258411295 o
0235200184291 28282
0.22730722126170033 s
0.22680885623087985
0.19943343182247847 i
0.15415909331859246
o 2/3; 0.12988573179506824 2
m
Component:  Mormalized Value % 0
fLimh ok it s it Lo ach sy it i Limh Lot oo i i Lish a1 i Lot 1 s Lt ) =
12 10 2 oA
el 0.7313999066032152 =
52 0.5452257126744737 = ed
ol 0.5269085387517622
5l 0.5257533657932425 £
3 0.462205872179328
53 0.35734787216383085 i
ol 2/3; 03010811031 7882775

W Component

Time: gl

Component:

cd /3%
c53:

Component:

cd 2/3:

0.4706158045078663
0.3442083554630504
0.2727686655140404
0.25200984031 208873
0.25200984031 208873
0.24929178977809807
01731808757 2675767
0.1622727298080447

Mormalized Value

1.0
0.7313999066032152
0.5795994586.209384
0.535489539233858
0.535489539233858
0.52971402020548
0.357988014995634504
0.344809350333521

Component name

- ) B
” -
Component i o c11 c12 c3 ca cs1 | cs2 cs3
Component's failure rate 0.001 0.02 0.01 0.0001 0.0001 0.01 0.01 0.04
Component's repair rate 0.05 0.1 0.1 0.05 0.05 0.1 0.1 0.1
Component's cost ($) 500 500 1200 1500 600 400 300

c0

c51

c52

c3

[vaiuate |
Reliability Importance

Value




Reliability Block Diagram

O Importance Indices

<12 23

- )
N -
Component i co c11 ciz c3 ca cs1 T¢s2 cs3
Component's failure rate 0.001 0.02 0.01 0.0001 0.0001 0.01 0.01 0.04
Component's repair rate 0.05 0.1 0.1 0.05 0.05 0.1 0.1 0.1
Component's cost ($) 500 500 1200 1500 600 400 300
Component:  Importance Value - (1 C S | rt Val " HH
oo W s o R Availability Imnportance ||_C7roeT  mereneeERE Availability-Cost Importance
c0: 0.9805600622799777 Value 0.8171333852333148 Value
3 0.9632560611809194 o 0.7706048489447356 o
c: 0.16258554669369795 0.14912841780255645 |
4273 0.1478977168822564 , 0.1109232876616923
cll: 0.08874922218453907 ; 0.0813534536601608 2
51 0.025028798433378063 ; 0.022260211871619525
52: 0.025028798433378063 51 0.022525912590490256 o i
5% 0.00796370859259754 2 o2 : 0.007565523162967563 2 o2
(1]
" . = il
Component Mormalized Value E c4 213 Mermalized Yalue *E e 203
SSSSSSSSSs SEESEsEEEsEEEEES = e e e s =
D 1.0 2 e . E c11
o 3 0.9823529411764708 E . 0.043058823520417 g
3 (5] ' ’
=, = w s I
[ 2 B
- ol 2, 0.1357468556128331
CE: gggggg?;gg;gg;ggga cll: 0.08955357636609922 =2k "ﬂ
cals o
52 0.028588003248636723
i 0.025525002900566503 51 0.027567003132613982 2 '
53 0.008121591831999043 53 0.00025861468847301



Fault Tree

FT is failure oriented diagram.
The system failure is represented by the TOP event.
The TOP event is caused by lower level events (faults, component’s failures etc).

The term event is somewhat misleading, since it actually represents a state
reached by event occurrences.

The combination of events is described by logic gates.

The most common FT elements are the TOP event, AND and OR gates, and basic
events.

The events that are not represented by combination of other events are named
basic events.




Fault Tree

Failures of individual components are assumed to be independent for easy
solution.

In FTs, the system state may be described by a Boolean function that is
evaluated as true whenever the system fails.

The system state may also be represented by a structure function, which, opposite
to RBDs, represents the system failure.

If the system has more than one undesirable state, a Boolean function (or
a structure function) should be defined for representing each failure mode.

Many extensions have been proposed which adopt other gates such as XOR,
transfer and priority gates.




Fault Tree

0 Basic Symbols

Basic Symbols and their description’

Description

TOP event represents the system failure.

Basic event is an event that may cause a system failure.

Basic repeated event.

AND gate generates an event (A) if All event B; have occurred.

OR gate generates an event (A) if at least one event B; have
occurred.

KOFN gate generates an event (A) if at least K events B; out of
N have occurred.

The comment rectangle.




Fault Tree

O Structure Function

Consider a system S composed of a set of components, C = {¢;|1 <i < n}.
Let the discrete random variable y;(f)indicate the state of component i, thus:

oy [1 if the component i is faulty at timet
Yt =10 if the component [ is operational at time t

The vector v(t) = (y,(t), v=(t), ..., i (L), ..., ¥, (t)) represents the state
of each component of the system, and it i1s named state wvector. The
system state may be represented by a discrete random

variable Y(x(t)) = ¢y (€), y2(t), ... ¥i (), ..., ¥ (t)), such that

if the system is operational at time t
if the system is faulty at time t

Py ={;

P (y(t)) 1s named the Fault Tree structure function of the system.




Fault Tree

0 Logical Function

FT Logic Function ¥ denotes the counterpart that represents the FT structure function (i)
According to the notation previously introduced. s; (a Boolean variable) is equivalent to x;
and §, represents 1 — x;. The W(bs) (Logical function that describes conditions that cause
a system failure) is the counterpart of ¥ (y(t)) =1 (FT structural function — represents

system failures), W(bs) depicts of Y(y(t)) = 0, A represents X, and V is the




Fault Tree

O Example

Consider a system in which software applications read. write
and modify the content of the storage device D, (source).

The system periodically replicates the production data
(generated by the software application) of one storage device (Dy)

in two storage replicas (targets) so as to allow recovering
data in the event of data loss or data corruption. The system is
composed of three storage devices (D,, D5, D3), one

server and hub that connects the disks D, and D5 to the server




Fault Tree

O Example

The system is considered to have failed if the hardware infrastructure does
not allow the software applications to read, write or modity data on Dy,
and 1f no data replica 1s available,

Hence, if Dy or the Server
or the Hub,
or both replica storages (D5, D3) have failed.




Fault Tree

O Example

W(bs) = so Vs;V 5, V(s3A s4),

sg V51V, V(ssAsy)=
Sp N s1A 53 A( 53\ s4)

The respective FT structure function may be expressed as

P(y(@) =[1—-(1—y(t)) X (1 —y1(t)) x (1 —y2(t)) X (1 — y3(t) X yu(t))].

if yg(t) =1ory;(t) =1ory:(t) =1 or y;(t) = y4(t) = 1, then
P (y(t)) = 1, which denotes a system failure.




Fault Tree

O Problem

Consider that the constant failure rates areA s =0.00002, Ay = 0.00001, Apy
= 0.00008, Ap, = 0.00009, and Apy; = 0.00007, respectively.

a) Calculatethe R(t)at 730h
b) Calculate MTTF of system.

%

j: —]

[ 1
() [
server Hub

"

|
L
1
| .
]__‘| :




Fault Tree

O Problem

Assume that the constant failure rates of web services 1, 2, 3, and 4 of
sw systemare A1 = 0.00001 failures per hour, A2 = 0.00002
failures per hour, A3 = 0.00003 failures per hour,and A4 =

0.00004 failures per hour, respectively. The sw system provides the

proper service if the web services 1 or 3 are up and the web services 2
or 4 are up.

a) Calculate MTTF of sw system.
b) Calculate the R(t) at 730h




ANALYSIS METHODS




Computing the Reliability

What is the respective RBD?
This?

VIVIVIL




Analysis by Space Enumeration

O The method by an example

State-space enumeration method proceeds by determining the whole set of state vectors,
checking for each one if the systemis operational or not.

The wholg set of state vectors represents all the combinations where each of the m
component can be good or bad, resulting in 2" combinations.

Each of these combinations is considered as an event E;. These events are all
mutually exclusive (disjoint) and the reliability expression is simply the probability of the union
of the subset of events that contain a path between the source and the target nodes.

Rs+(S) = Pr(E; UE, U ..U E,) = Pr(E;) + Pr(E;) + - + P(Ep,)
where Ei NE =0QVi,Vji#]j

J --
c2 o]




Analysis by Space Enumeration

0 The method by an example

e === = e e I =R =R =0 =
== = = e =R = R =R I=0 =
= = = = e = e = e =R TR =
=R =N N = =R =R =R =R =R R =T f=T ="

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1




Analysis by Expected Value of the
Structure Function

O The method by an example

Consider a system (C, ¢) composed of three blocks, C = {a, b, ¢}

©(Sa,SpsSc) = Sq AN (SpV Se) =5q A (Sp ASe)
p(X) =x X [1=(1—=x) X (1 —x)]

Rs = P{¢p(x) = 1} = E[¢p(X)] = E[xg X [1 = (1 = x,) X (1 = x)]] =
Rs=P{p(x) =1} = E[xg] XE[1 - (1 —x,) X (1 —x.)] =
Rs = P{p(x) = 1} = E[xq] X [1 = E[(1 — x)] X E[(1 = x7)] =
Rs = P{¢p(x) = 1} = E[x4] X [1 = (1 — E[xp]) x (1 —E[x,])
Rs =P{p(x) =1} =pa X [1 = (1 =pp) X (1 = p.)] = pa X [1—qp X q.]




Analysis by Expected Value of the
Structure Function

O Summary of the Process

As x; is a binary variable, thus x;* = x; for any i and &;

hence ¢(x) is a polynomial function in which
each variable x; has degree 1.

Summarizing, the main steps for computing the system
failure probability, by adopting this method are:

1) obtain the system structure function.
11) remove the powers of each variable x;; and
111) replace each variable x; by the respective p;.




Analysis by Expected Value of the

Structure Function

0 Example

Consider a 2 out of 3 system represented by the RBD compozneontlégtgt'i:st:?casllz?rtl:c?er[lndent

in figure. The logical function of the RBD - [l

presented in figure is ) -
@(bs) = (51 AS55)V(S;ASs3)V (55A583) TL_TT = | T

Therefore . 2outof 3
@(bs) = (sy As2)V(s1AS3)V (52 As3) lock!

@(bs) = (s; AS3)A(S; AS3)A (S5 AS3)

=
P(x) =1—(1—x32)(1 = x1x3)(1 = x2x3).

Considering that x; is binary variable, thus x;* = x; for
any 7 and &, hence, after simplification

P(X) = x1x3 + X1X3 + XpX3 — 2X1XX3,




Analysis by Expected Value of the
Structure Function

2 out of 3 system
components statistically independent

0 Example

block3

block?2

Since ¢(x) is Bernoulli random variable, its expected value

is equal to P{¢(x) = 1}, that is, E[¢p(x)] = P{¢p(x) =
1, thus

P{p(x) = 1} = E[¢p(X)] = Elxyx5 + x1X3 + XoXx3 — 2X1 X, %3] =

E[xyx;] + E[xyx3] + E[x5x3] — 2 X E[xyx5x3] =

Elx,] E[x2] + E[x1] E[x3] + E[x;] E[x3] — 2 X E[x;]E[x,]E[x3].
Therefore

P{p(x) = 1} = p1p2 + p1D3 + P2P3 — 2 X 10203
ASpy =p,=p3=0p
P{p(x) = 1} = 3p* — 2p?




Pivotal Decomposition, Factoring or

Conditioning

This method 1s based on the conditional probability of the system
according the states of certain components. Consider the system
structure function as depicted in

qf:!{}{] = X 'Iil(j.l',x] + {1 T II) {b(ﬂj,x)
and identify the pivot component i,
then

0 Method

P{p(x) =1} = E[x; ¢(1,x) + (1 —x,) ¢(0,%)] =
E[x; ¢(1,x)] + E[(1—x;) ¢(0;,%x)]
If x; is independent, then:
Elx;] X E[¢(1,x)] + E[(1—x;)] X E[¢(0;,x)].
As x; is a Bernoulli random variable, thus:
P{p(x) =1} = p; X E[¢(1,x)] + (1 —py) X E[¢(0;,%)].
Since E[¢(1;,x)] = P{¢p(1;,x) = 1} and E[¢p(0;,x)] = P{¢(0;,x) = 1},

then:

Plip(x) =1} = p; X P{g(1,x) =1} + (1 = pg) X P{p(0;,x) = 1},




Pivotal Decomposition, Factoring or

Conditioning

0 Example

Consider the system composed of three components, a, b
and ¢, depicted inthe figure where ¢(x,, xp, x-) denotes the
system structure function.

As P{p(x) =1} = E[x; p(1;,x) + (1 — x;) ¢(0;,x)]. then:

P{qt'(xmxt}:xc} = 1} = Pa X E[(ﬁ?(lﬂ,xb,l‘c)] R b
+ B a
(1—pq) X E| ¢ (0q, xp, Xc)
But as E[ ¢p(0,, xp,x.)] = 0, s0:

P{'iJ(IH.Ib,IEj =1} = Pa % E[qﬁ(ladxbrxc)]-
Since
E[‘i’(la-xbrxr:}] — P{fi’(la-xh-xc} = 1};




Pivotal Decomposition, Factoring or
Conditioning

0 Example

Now factoring on component b,
Pigp(1g, xp,x.) = 1} =
pp X E[¢p(1g,1p,xc)]

+
(1 —pp) X E[ $(14,0p,x.)],

[
then

P{Qﬁ'{xﬂrrhr-xc) - 1} = Pa X [ph X E[iﬁ(1m Th:xr_‘)] e (T - ph) X H[qb(lﬂrﬂhkxc)”'
As E[¢p(1,,1,,x.)] = 1, thus:

P{qb(xa,xb,xc) = 1} = Pa [pb i1 — F’b) X E[‘i’(lﬂ-ub-xcﬂ}
Now, as we know that
E[l p(1,,0,,x.)] = P{db(1,,04,x.) = 1}, and

P{qb(la: Ub!xf.') = 1} cr El_xr: fi’{:lqr [}{3: 1::} 5 (1 o x.n:] 'i)(-]-u- UJE:I- D:’.‘)]!
then

Elqj(lw' ﬁblxﬂ')J = E[IE] E[¢(1RJDHJ IL)J T El.(T a xﬂ)Jqub(lehr DL‘)]:
thus

E[q’(la: ﬂbrxr:)] =Pc X E[ﬁb{la:ﬂbi 15}] T (1 - pc) X E[‘I’(lar DHID{"}]'




Pivotal Decomposition, Factoring or
Conditioning —
0 Example A 1

b

As Elqb(liarﬂhrit')J = P{.Q‘J(lm{]hrh_'} = 1} =1
and El‘f}(lmﬂmﬂf” — P{if}'[']u,ﬂh,ﬂﬂ-) — 1} = [}r
then
El t';b(l ar ﬂh-Iﬁ')J = Pe-
Therefore:
Plop(xq, xp, Xc) =1} = pq [pp + (1 —pp) X pc] =

F{¢(Iu1 Xh I{:) = 1} = PaPh T ;ﬂuﬂr(l o Fh)r
which 1s
P{{;b(xﬂ"xb*xﬁ) =1} = :-'3"[1-[1 — A= ]~ pc}]-




Pivotal Decomposition, Factoring or
Conditioning

0 Example — Bridge Structure

px) = x; ¢(1;,x) + (1 — x;) ¢(0;,%x)
Factoring on b
¢p(x) = x3 ¢(15,%x) + (1 — x3) ¢$(05,%)
P{p(x) = 1} = E[x3 ¢(13,x) + (1 — x3) ¢(05,x)] =
P{¢(K) =1} = E[x3 ‘;5(13;3'-)] i E[(l — X3) ‘13’(03:1"1)] %

By independency
P{¢(x) = 1} = E[x;] E[¢(15,x)] + E[(1 — x3)] E[¢(03,x)] =
P{p(x) = 1} = p; E[¢(15,%)] + (1 — p3) E[¢p(05,%)] =




Pivotal Decomposition, Factoring or

0 Example — Bridge Structure

Configuration 1:

BEGIN

Ifx; =1= p; = 1, then:

b1

Plop(x) = 1} = Elp(1;,x)] = P{pp(1,,x) = 1}
Pld(1:,2) =13 = (1 - (=) (1 —pa)) x 1 — (1 =p:)(1—ps))

Conditioning

— END




Pivotal Decomposition, Factoring or
Conditioning

0 Example — Bridge Structure

It x; = 0 = p; = 0, then:

Configuration 2: | ] L

bl b
BEGIN @ —= EMD

P{p(x) = 1} = E[¢(05,x)] = P{¢p(03,x) = 1}
P{p(05,x) =1} = (1 — (1 — p1p2) (1 — psps))




Pivotal Decomposition, Factoring or
Conditioning

0 Example — Bridge Structure

Therefore: | i | L
P{p(x) =1} = p; X P{¢p(13,x) = 1} + (1 — p3) X P{¢p(05,x) = 1}

P{o() =1} =ps x ((1 -1 —p)@ —p)) x (1 — (1 —p)(A -
p))) + (1 —p3) (1- A -p)A-p))x (1~ (1 -p)(A-ps)))
.



Pivotal Decomposition, Factoring or
Conditioning

0 Example — Bridge Structure

IC—

ES

(A A . —(A+ 43+ A, +45)E —(A+ A+ A5)1
Rbridge (t) =€ € Te

—Zzl.t

e e

+e +



Pivotal Decomposition, Factoring or
Conditioning

0 Example — Bridge Structure

) sz*fdge (f)df

] ] 1
MTTF = ——%——f —————
/L’l < /LQ A 4 1 /LS /ij =+ /Lr3 -+ /u4

] ]

1 1 1

Ay bAoAy by At ds b A Ay by F A A




Reductions

The dependability evaluation of complex system
structures might be conducted iteratively by indentifyving
series, parallel. & our of n and bridee subsvstems.

evaluating each of those subsystems, and then reducing each

subsystem to one respective equivalent block.

This process may be iteratively applied to the resultant
structures until a single block results.




Reductions

O Series reduction

O Parallel reduction




Reductions

O 2 out of 3 reduction

2outof 3
P{p(x) = 1} = 3p* — 2p’

O Bridge reduction

P{p(x) =1} =p; X P{ep(13,x) = 1} + (1 — p3) X P{¢p(05,x) = 1}




Reductions

0 Example

Consider a system composed of four basic blocks (by, b, by, bs), one 2 out of 3
and one bridge structure. The three components of the 2 out of 3 block are equivalent,

that 1s, the failure probability of each component is the same (p4). The failure
probabilities of components by, b4, by, bs and the failure probability of

the bridge structure are pPpy, Pp2, Ph3, Pra and pye, respectively.




Reductions

0 Example

The 2 out of 3 structure can be represented one equivalent block whose reliability is 3p? — 2p? . The
bridge structure can be transformed into one component, by, whose failure probability 1s py,;, =

(1 — (1 = pp1Pz) (1 — PpaPps) (1 — Pp1Pp3Pes) (1 — Pp2PpaPpa))-

Source b2 b3 Target

bl —‘ bs bb

b4 273

After that, two series reductions may be applied, one reducing blocks b, and byinto block b,5; and a second that
combines blocks bg and by, and reduces it to the block bgy. The reliability of block by5 18 py3 = Py X ps, and the

block reliability of block bsp is Psp = Ps X [(1 = (1 = Pp1Pp2) (1 = PoaPps) (1 = Pp1PpaPes) (1 — Pp2PraPsa))]

e

Soumce Target
) - I

T

b23
b4 23



Reductions

0 Example

Now a parallel reduction may be applied to merge blocks by and by.
The block bga4 represents the block by3 and by composition, whose reliability is pg34 =1 — (1 —p3 X p3) X
(L=3p*—2p°).

Source Target

3 B34 b5k

Finally, a final series reduction may be applied to RBD and one block RBD is generated ,
whose reliability is

Przassp = P1 X [1 = (1 —pp X p3) X (1 = 3p* — 2p?)]
X [Ps X [(1 = (1 = Pp1Pu2) (1 = Ppabps) (1 — Pp1Pp3Pps)(1 — szpbgﬁbq-]j]]-




Computation Based on Minimal
Paths and Minimal Cuts

O Path and Minimal Path

Consider a system § with » components and its structure function ¢(x), where SCS = {c¢,, €3, ..., € } is the set of
components. A state vector X is named a path vector if ¢p(x) = 1, and the respective set of operational components is
defined as path set. More formally, the respective path set of a state vector is defined by PS(x) = {¢;i|¢p(x) = 1,x; =
1,¢; € SCS}. A path vector X is called minimal path vector if ¢p(x) = 0, for any y < x, and the respective path set is
named minimal path set, that is MPS(x) = {c;|c; € PS(x),¢p(x) =0 Yy < x}.

Source

PS; 1s a minimal path set

PS, 1s a minimal path set

P55 1s not minimal

PS; = {b1, by}, PS; = {by, b3} and PS; = {by, b, b3} are path sets




Computation Based on Minimal

Paths and Minimal Cuts

O Cut and Minimal Cut

A state vector X is named a cut vector is ¢(x) = 0, and the respective set of faulty components is defined as cut set.
Therefore, CS(x) = {¢;|¢p(x) = 0,x; = 0,¢; € SCS}. A cut vector X is called minimal cut vector if ¢(x) = 1, for any
y > X, and the respective path set is named minimal cut set, that is MCS(X) = {¢;|c; € CS5(X),p(x) =1 Vy > x}.

|
Source ' b2 Target

bl

CS1 = {by, b2}, €S2 = {by,b3}, CS3 = {by, b, b3}, CSs ={by}, and ¥
CSs = {bz, b3}

(CS4 1s a minimal cut set,
(S5 1s a minimal cut set,
The same is not true for €S, €S>, and (55.



Sum-of-Disjoint-Products (SDP)
method

AUB =4 U (A° NB)
A° ={e, f, 9,y 2}
A NnB={ef,gh...z}n{cde f}=
A° NB={e, f}

AUB ={a,b,c,d}VUie f}=1{ab,cd,e,f}

PN
AUB ={a,b,c,d,e, f} ={ab,c,d}U{cd,ef)}

Now, consider P(AU B) = P(A U (4A° nB))
AsA N (A NB) =10
since A and (A¢ N B) are disjoint, then

P(AUB)=P(A)+P(A° nB)




Sum-of-Disjoint-Products (SDP)
method

A

Disjoint Terms: Addition Law The addition law of probabilities is the underlying
justification for the SDP method. If two or more events have no elements in common,
the probability that at least one of the events will occur is the sum of the probabilities
of the individual events. If two events A and B have elements in common, the union
of these two events, A U B, may be expressed as the union of event A with event

B, where A¢ denotes the complement of A. Then we have the following equation
for evaluation of the probability of A U B:

Pr(A U B) = Pr(A) + Pr(A°B).




Sum-of-Disjoint-Products (SDP)
method

4]

A, B, and C, we have

Pr(AUBUC) =
Pr(A) + Pr(4A°B)
+ Pr(4°B¢C)




Sum-of-Disjoint-Products (SDP)
method

Similarly with three events A, B, and C, we have
Pr(AU B UC) = Pr(A) + Pr(4°B) + Pr(4A°B°C).

With n events Ay, A>, ..., A,, we have

Pr(A,) + Pr(AS4,) + Pr(A{A543) + -+ Pr(4§ ... 45,_14,)




Sum-of-Disjoint-Products (SDP)
method

Considering a system composed of three independent

components by, b, and by, where the components failure

probabilities are py, p5, and p;. respectively.

The respective RBD logical function 1s:
P(81,82,83) = S; A (S, V 53)

Then define all minimal paths: Source
@(S1,S2,53) = (51 A Sz) V (51 As3)

The minimal paths are:
PS, =1{by, by} and PS, = {by, b3}.

(and PS, = {by}, and PSc = {b,, b3} are minimal cut sets)

(p(51!52!53) — qb('le xZ!XB) =1




Sum-of-Disjoint-Products (SDP)
method

The respective RBD logical function 1s:
P (S1,52,53) =S A(S, V S3)
Then define all minimal paths:
@(S1,52,53) = (51 As) V (51 A s3)
Theminimal paths are: = pope ps,) = P(PS,) + P(PS,° 0 PS,).
PS, = {by, by} and PS, = {b,, b3}.

) _ ) _ _ Every component within the minimal
(and PS, = {b;}. and PS5 = {by, b3} path PS; must properly work for PS; being
are minimal cut sets) responsible for ¢ (x4, x5, x3) =1

P(S1,S2,53) © Pp(xy,x9,x3) =1

Therefore:

P(q}(51,52,53)) = P(¢p(xq,x9,x3) = 1).
Then, applving the SDP formula:
P(AUB)=P(A)+ P(A° nB)




Sum-of-Disjoint-Products (SDP)
method

So,
g el
PS; © s; As, and

P(PS;) = P(s; A S3).

Therefore:
P(PS;“ NPS,) =P(s; As, AS; AS3)

. _
PS;°NPS;, © 5;{AS; ASq Sy

eq
AsPS; & s; Asy, thus: So,
eq iy - —_ e ol e = ~
P5." < 5 As P(PS;" NPS;) = P(5{ A'sy Asg As3)

Then:

P(p(51,52,53)) = P(51 AS) + P(5{ Asy Asy As3) =
P(sy Asp) +P((51V 5) Asy As3) =

P(sy Asp) +P((S A5 AS3)V (S As1As3)) =

P(s; Asp) + P(S; Asy As3) =P(PS;)+P(PS,° nPS,)

; ~ 2
Since PS, © s; A s3, thus:

. e
BSi" NPSs © S3A5 hsph 5




Sum-of-Disjoint-Products (SDP)
method

Source Target

Now,consider P(x;) = P(x,) = P(x3) = 0.9
P(p(xq,x9,x3)=1)=09%x09+(1-09)x09x09 =
P(p(xq,x9,x3)=1) =0.891

It is worth noting that:
P(p(xy,x2,x3)=1) =
P(x1) X (1= (1—=P(x2)) X (1= P(x3)) =
09X (1—-(1-09))x (1-0.9)) =0.891




State-space based models




Single Component System Availability Model G@)

Consider a system with one component
or when the system is considered as a A simple 2-state CTMC
black-box. This systems may have a

normal functioning (1) state and a Hl(O) =1

failed state (2). 1

o—(A+u)t

_|_
A+
B o-G+ut

_|_
A+ u

If the TTF and TTR are exponentially
distributed with rate A and g, m(t)+my(t) =1
respectively, the CTMC that represents A(t) = 11, (t)




CTMC
oo

Single Component System Availability Model A simple 2-state CTMC

Hl(t) — T3 = Figure shows the transient and

b steady-state behavior of the 2-state

my(t) =1y = CTMC for 31 =pu = 1.

A=my
Steady state availability




Single Component System Availability Model Cl:®

A simple 2-state CTMC

DT =(1—-A)XT

T
— > 00
A+ T — time period

A
m,(t) =m, = ,t > Downtime

DT = (1 — A) X 8760h

m(t) =m =

A=my
Steady state availability hours in a year

DT = (1 — A) X 525,600 min

minutes In a year




Single Component System Reliability Model

(o]

o . 1
R(t)dt = [ e Mdt ==
Jo A

MTTF = [
Jo

my () +m,(8) =1
R(t) = m(¢)
Reliability

R(t) =m(t) =0,t > o




Two Component System - Hot Standby
Availability Model

Two-component parallel redundant

system with the same repair rate u

and the same failure rate for both

components is (A4).

When both the components fail, the
system fails.




CTMC

Two Component System - Hot Standby 2+ )
Availability Model i, = (A + p)?

Steady state availability

DT = (1—A)XT

T — time period

Non-shared (independent) repair Downtime

A(t) = my(t) + my(2)
Instantaneous availability




CTMC

Two Component System - Hot Standby
Availability Model

o u@ZA+
Ay 21+ u?

Steady state availability

DT = (1-A)xT
Shared repair _ _
A(t) = m,(t) + m,(t) I' — time period

Instantaneous availability Downtime




CTMC

Two Component System - Hot Standby
Availability Model

Non-shared case can be modeled & solved
using a RBD or a FTREE but shared case needs

the use of Markov chains.




Two Component System - Hot Standby
Reliability Model

Some authors erroneously claim
that reliability models do not admit

repair.




CTMC -

_ ] HH Generalization of the two-component system
[0 Exam ple Availabil Ity model Model with shared repair facility

M similar machines independent repair facility.

Hot Standby

Failure rate of each machine is A

Repair rateis i




CTMC -

. .1 Generalization of the two-component system
O Example - Avallablllty mOdeI model with independent repair facility
M similar machines independent repair facility.

Hot Standby

Failure rate of each machine is A

Repair rate is i

System availability 1s then computed
using a combinatorial approach




Hot Standby

2-equal component availability model
without perfect switching (with finite
detection delay)

Hot Standby

2-equal component availability model
with perfect switching




Hot Standby

2-equal component availability model
without perfect switching (with finite
detection delay)

Then Unavailability is given by

| Then Unavailabilty s given by




Plot of downtime D(6), D(6, tw), and D (for 3
state model without state 1D) as functions of
1/6 (in seconds) for 1/A =10, 000 h and 1/u =
2 h.




Hot Standby
2-equal component without perfect

switching with imperfect coverage availability model

Coverage factor = ¢ (conditional
probability that the fault is correctly

handled)

1C state is a reboot (down) state.

AS 4 (1 —¢)
Lo E
D(8,¢c) =U(B,c)x8760x60 (down time in min/year

(E = prg?t)

U(B,c) = mo+m10 =




Cold Standby

A:0.001 A: (P{SD}+P{521) A: 0.9900375256
w 0.1 DTyh: 8760*(P{51}+P{53}) DTyh: 87.27127561.

& 6




Cold Standby
Reliability Model with Perfect Switching

Fi!
0.1 v

K
.}'.
R: 0.9640809
R: (1-PiF)

MTTA: 101999.9999849




CTMC

Active-Active Redundancy

Consider a system with two parallel servers.
The system is considered to be operational
if at least one of the servers is operational.

An availability model is represented by the following CTMC:

) o o
1(24 + p)

A=n(UU)+n(UD) =

222 + 2Au + p?




CTMC

Capacity oriented availability
Now, if the users are interested not as much
whether the system is operational or not, but
rather in the service capacity the system may
deliver. Considering the depicted
architecture, it is assumed that if the two
servers are operational, the system may
deliver its full service capacity. If only one
server is operational, the system may deliver
only half of it service capacity. And when
none of the servers is operational, the system
may not deliver the service. Therefore
Capacity Oriented Availability (COA) is:

COA =(2 X m(UU) + (D)) / 2

Active-Active Redundancy

An availability model is represented by the following CTMC:

u(A+ p)

A= 12+ i




Active-Active system with imperfect fault coverage,
automatic and manual failover mechanism

A:1/10000 U_F

w124
0:0.25 .

af: 8

mf: 2

c: 0.99
afps: 0.95
mfps: 0.98

200%

2*K(1-c)

100%

UP_S\

NS: 2

A:0.9999952351
DT_ym: 6.07933633296
COA: 0.9975661053

afpsaf . -
af*(1-afps) =

4
mfmfps

mf*(l-mfps

Capacity Oriented Availability

ifi =UPD, UP_S
if i U F C F AFF, AMF
otherwise

where n; € N is the number of active servers at
state |.
NS is the total number of servers

COA: ((PIUP_DJ*R{UP_D})+ (P{U_FI"R{U_F})+
(P{C_FYR{C_F})+ (P{UP_S}'RIUP_S])+ (PLAFFI'R{AFFY)+
PLAMEPRIAME} + (P{FI"R{FH)/(N3)

A:1-P{F}

DT_ym: ((P{F1"8760)*60)




Capacity Oriented
Availability in Cloud
Systems
A Simple Example

VM |PM1 | VM
1 2

State

S; = (SPMI,SPME,#'I?THHP)

U — Up
D Down

SpM; — {

w = {1,2,3,4}

Consider a system composed by two
physical machines, PM1 and PM2,
where each physical machine sup-
ports two virtual machines (VMs).




CTMC
Model 1

A =0.9999999868771198
COA=0.9995384300392318

p2*APM1

p3*APML =
pl*APM1 pITAPML

HPM pIAPML APML
@ “I#M

23V v

PANE

p3*aPM2

pITAPM2
APM1

: et ] Component
| PM,y

APML | it Apys = 1/8760h

Virtual machine Ayy = 1/2880h

_/// i = 1h~1is the repair rate assigned to

/ physical and virtual machines.
________,”/ pl: p2: p3:0.25

Failure rate
Apyey = 1/B760h0




CTMC
Model 2

APM: 1/8760
AVM: 1/2880 o ,
UVM: 1

uPM: 1

pl: 05 PP

p2:0.5 VM PM1 | VM
Un=2.615917789133822E-8 1 2
Av=0.9999999738408221
COA=0.999538513813583 e

|.J.F' |

P

M

00
APM

APM

#pmyp = {1,2}
2*(p2*APM) #vmu- - 1,2,3,4‘




CTMC
Comparison

Model 1 0.9999999868771198 | 0.9995384300392318

Model 2 0 9999999738408221 0. 999538513813583




Warm Standby WSB = (WShM |l WShbS)




2 out of 3 with shared repair
Availability Model

The CTMC model:

Availability=mr(55) + m(§,) = 9.99955210e-001




CTMC

0 Example — Availability model

An equivalent 2-state availability model
It is interesting to consider an equivalent 2-
state availability model that has the same Repair rate is u

steady state availability as the given multi-
state availability model.

To represent system availability in the simple
form of equivalent 2-state system, we need

to properly define equivalent failure rate )Leq
ATy

and equivalent repair rate /., such that

v S S TR e TR SR S
MTTFEQ i 0 1 2 M-1

T MTTF,, + MTTR,, A + it Moy =

A




CTMC

0 Example — Availability model

An equivalent 2-state availability model

Let U be the set of up states, D the set of
down states, R the set of all transitions from

£
Uto D, G the set of all transition from D to oy T+, +... 7T,
U, t;; thetransition from state itoj

t; R

i ZP(system in state i| system is down)x g, = -

i; e




0 Example

Consider a system consisting of two web-
servers, one database server and a network
infrastructure. The system is operational as
long as one web-server and the database
server are operational. It is assumed that a
network infrastructure is fault-free. The
database server repairing has priority over
the web-servers’ repairing activities. The
failure rates of the web-servers and of the

database server are constant (4,5, 145

respectively), and the respective time to
repair are exponentially distributed with rate

Hws and Hap-

Aps = 1.14 X 10~* failures per hour
Agp = 2.28 X 10™* failures per hour

WUps = Ugp = 4.17 X 1072 repairings per hour




CTMC

0 Example — Availability model

Ti
0.989108591499
0.00543748939
0.00001502574
0.00537867258
0.00005837750
0.00000024281

0.994547058138

| H

Aps = 1.14 X 10~* failures per hour

(i8]

(5]

Agp = 2.28 X 10™* failures per hour

Dy || |w|a|ba|a
=

| o

WUps = Ugp = 4.17 X 1072 repairings per hour

e




CTMC

0 Example — Availability model

A=m,, +m ;= 0.994547080

0. =5 805 10 Failiires e s Downtime = (1 — A) X T = 2866.05467 minutes

Ay = 2.28 X 10~* failures per hour T =8760h x 60min = 525,600 minutes in one year.

WUps = Ugp = 4.17 X 1072 repairings per hour




CTMC

0 Example — Availability model

The equivalent two-state model

B = Z P(system 1n state 7| system 1sup)x g, = —
&R

Hog = ZF{&}'HUII] in state i | system 1s down ) x g, =- i ~

P E R

099454708138
0.00545251846.2
093454708138




Aps = 1.14 X 10~* failures per hour
Agp = 2.28 X 10™* failures per hour

WUps = Ugp = 4.17 X 1072 repairings per hour

States (0,1), (1,0) and (2,0) are absorbing states
and (2,1) and (1,1) are transient states.

Absorbing states can be combined into a single
one.

R()=7 (1) + 7 1(1)




C I MC General Contraller

b

0 Example - Availability model T
EUCALYPTUS is composed by five high-level

components: Cloud Controller, Cluster Controller,

=

[T Junl

MNode 1 Node 2 MNode N

Node Controller, Storage Controller, and Walrus.

The Cloud Controller (CLC) is responsible for

exposing and managing th underlying virtualized

No redundancy

resources (servers, network, and storage).

A Eae R
e
..........

| Cluster B

MNode 1
Redundancy in the GC

Mode 2 MNode B




CTMC

0 Example - Availability model
EUCALYPTUS is composed by five high-level

components: Cloud Controller, Cluster Controller,
Node Controller, Storage Controller, and Walrus.
The Cloud Controller (CLC) is responsible for

exposing and managing th underlying virtualized
resources (servers, network, and storage).

g —

g T o 1 e,

TT—Ast—

GC TGz
N 7 Parameter Description Value
ML= B =11X Mean time for host failure 1/180.721
XNe 8= 1% Mean time for inactive host failure  1/216.865
i - = T P T Mean time for host repair 1/0.9667
sa_s2 = 1/sa Mean time to system activate 1/0.005

L o

111

MNode_1 Mode 2 MNode i
Redundancy in the GC

p(Ni(p + sa) + p* + sa(X + p))
A+ p)(p+ sa) + p?(A+ p) + sa(A? 4+ Ap + p?)

Acc = Wi




CTMC

0 Example — Reliability model

System composed by Two Subsystem:

One Switch/Router and Server Cluster

Clients Switcher/Route

|

Perfect switching cold
standby server architecture

The system is composed by a Switcher/Router and Serve subsystem. The system fails if the
Switcher/Router fails OR if the Serve subsystem fails. The Server subsystem is composed by two servers,
S1 and S2. S1 is the main server and S2 is the spare server. They are configured in Cold Standby, that is,
S2 starts as soon as S1 fails. The start-up time of S2 is zero. This is named perfect switching.




CTMC

0 Example — Reliability model

System composed by Two Subsystem:

One Switch/Router and Server Cluster

The CTMC reliability model

System Unreliability:

UR(4000h)=0.181615244

A, is failure rate of the Switcher/Router.

System Reliability:

Asq is failure rate of the Server 1.

R(4000h) = 0.818384756

Ao is failure rate of the Server 2.

W is the repair rate assigned to Server 1 repair activity.

Clients Switcher/Route

o~ -

Perfect switching cold
standby server architecture

Absorbing states can be
combined Into a single one

Variable Value
lambda_rs 1/2000|
lambda_s1 1/15000|
M 1424/
lambda_s2 1115000

The unity of these rates is h™1.




CTMC

0 Preventive Maintenance

Preventive maintenance is useful when the time Jll Two main strategies:

: . : : . . Condition-based (inspection-based)
to failure distribution has an increasing failure S

rate. Time-Based PM

We model TTF by Hypoexponential HYPO(A3, A2)
distribution.

Time to trigger inspection is assumed to be
EXP(Ain),

Time to carry out inspection is EXP(uin ),
Time to repair is EXP(u ),
Time to carry out PM is EXP(yu).




CTMC

0 Preventive Maintenance

Preventive maintenance is useful when the time
to failure distribution has an increasing failure
rate.

CTMC with corrective maintenance only



CTMC

0 Preventive Maintenance
Preventive maintenance is useful when the time

to failure distribution has an increasing failure
rate.

CTMC with preventive maintenance

Inspection triggered after EXP(Ain) intervals

Time to carry out inspection is EXP([in)

Time to carry out PM is EXP(yp)

PM carried out if inspection finds the system
to be in degraded state (1,0)




CTMC

A, = 0.001 ™1
A, =0.001 1

0 Preventive Maintenance ton = 10177
Preventive maintenance is useful when the time A E'“’“
y —_

to failure distribution has an increasing failure e —

rate. 0.0906

1010 1500

00 MTEI = Ry
A= TTo,0 £ 1,0 MTBI - mean time ~ Availability as function of

between inspections MTBI=//4.




SPN

Single Component System Availability Model

The instantaneous availiability :

A(t) = P{(m(C_OK) = 1)(t)}

Ade~HAYH 4 4
r X m; (t) =

VYMERS

A4+ u

| Transition | Time Type of Service Downtime in period T :

| F MTTF single Server DT=TxP{(m(C_F)=1)}=Tx (
| R MTTR single Server

The stationary availability -
A=P{(m(COK)=D}= ) nxm=

VMERS
i {1 se m(C_OK)=1
0 sem(C_OK) =10

P
A+




Transition Type of Service
F single Server

Although the reliability of the basic component is analytically defined by R(t) = e, it is

possible to calculate the respective value through numerical transient analysis, once the

transiton R. is removed. The reliability can be calculated by:

R() = P(n(COK) = D(®O} = ) 1ixm ()

VYMERS

- {1 se m;y(C_OK) =1
0 semi(COK) =0




Basic Model with Erlang Distributed Repair Time
Availability Model

A=P{(m(C_OK)=1)}= Z i X 1,
VM;ERS
o {1 se mi(C_OK) =1
0 semy(C_.OK) =0

Transition Time or weight Type of service
F MTTF single Server

R1 MTTR/n - single Server

R2 MTTR/n = single Server

R3 I W=1
Basic Model with the Erlang Distributed Repair Time




SPN

Basic Model with imperfect coverage
availability model

A = P{(m(C_OK) = 1)} = Z r X,
VMERS
i {1 se mi(C_OK) =1
0 semi(C_.OK) =0

Percep

C_F_ C_F_NS

Transition | Type | Time or Wieght Rate | Type of Service
F E MTTF A | single server
Det I Whet

Ndet / Wypet

Percep E MTTP 5 single server

R E MTTR U single server

Failure Coverage Basic Model




Hot Standby Model
Availability Model

A = P{(m(C_OK) = 2)V(m(C_OK) = 1)}

)3

— X =1 —— :
: : 222 + 2Au + ¥
VYM;ERS

= {1 se (m(Cog) = 2)V(m(Cog) = 1)
L 0 sem;(C_OK) = 0.

Transition

Type of Service

F

infinity Server

R

single Server




Cold Standby
Availability Model

vy

{ CS_ON_Ok CS_OFF

CP_F
Transition Time or Weight Type of Service
CPF MTTF_CP single server /—I‘ = =3 ® )
CPR MTTR_CP single server Ly ¥ T
CSF MTTF_CS single server Start
CSR MTTR_ CS single server
Start TTS single server

T7 Ww=1

CS_OM_F

The stationary availability of the component is calculated by the expression:

A= P{((m(CP_OK ) = 1)V(m(CS_ON_OK) = 1))} = z r; X

L

VM;ERS
where 1; is a function that

(1 se (m(CP_OK) = 1)V(m(CS_ON_OK) = 1)
= {0 se (m(CP_OK ) = 0)A(m(CS_ON_OK) = 0)




SPN

The Warm Standby model is similar to the
Cold Standby model. However, in a system with

Warm Standbv redundancv. the reserve

component remains energized (but inoperative),

so that. when the main component fails.

the reserve component takes over operations without
the delay that occurs in a Cold Standby system.

Warm Standby
Availability Model

CF_Ok Transition | Type | Time or Weight Rate | Type of Service | Priority
( : ) CPF E MTTF_CP A | single server
.- \Q CPR E MTTR_CP u single server
C5F1 E MTTF1_CS a single server
r CSR1 E MTTR1_ CS B | single server
CS5F2 E MTTF2_CS a single server
CSR2 E MTTR2 CS p single server
Start / W=1 1
T7 I w=1

C5_OFF_OK

CSF2

CS5_ON_F




2 out of 3 with shared repair
Availability Model

The CTMC model:

Availability=mr(55) + m(§,) = 9.99955210e-001




2 out of 3 with shared repair
Availability Model

The equivalent SPN model:

The result obtained through TimeMNET:

The Availability = P{#P1= 2} = 0.9999552.




Clients Switcher/Route
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Perfect switching cold

standby server architecture

The system is composed by a Switcher/Router and Serve subsystem. The system fails if the

Switcher/Router fails OR if the Serve subsystem fails. The Server subsystem is composed by two servers,
51 and 52. 51 is the main server and 52 is the spare server. They are configured in Cold Standby, that is,
52 starts as soon as 51 fails. The start-up time of 52 is zero,
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System Unreliability:
UR(4000h)= 0.181615244
System Reliability:

R{4000h) = 0.818384756

SPN

CTMC reliability model

Clients Switcher/Route 51

O=] =

Perfect switching cold
standby server architecture

Apg is failure rate of the Switcher/Router.
Agy is failure rate of the Server 1.
Aga is failure rate of the Server 2.

i is the repair rate assigned to Server 1 repair activity.

Yariable Walle
lambda_rs 172000
5 lambda_s 115000
mu 1024
lambda_s2 11148000

The unity of these ratesis h™"
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Perfect switching cold
Example .

standby server architecture

SPN reliability model

System Unreliability:
UR(4000h)= 0.18161528133
System Reliability:
R(4000h) = 0.81838471867

MTTF SR = 20000
WTTE_S1 = 15000

MTTF_S2 := 15000
MTTR_S1 =24

Symiemlinrsishilty = P[ESR_F=1 OF (ES51_F=1 AND#52 F=1) )

Systemalmbifty = 1-PI#SR_F=1 OF (#51_F=1 AND #52_F=1) }




Clients Switcher/Route 51

sen [P
Perfect switching cold
Example CTMC availa |::I“I'|:"1\‘I model standby server architecture

The component’s state machines are: The respective CSM = Sync(SR,CS) is

1) SR state machine (SR)

Server's state machine (C5)




Clients Switcher/Route

Perfect switching cold
Example CTMC availa |::I"I‘|:"3\‘I model standby server architecture

The respective CTMC availability model is

LIp states:

System availability:
A=0.998799526

System unavailability:
UA=0.00120047377




Clients Switcher/Route

Perfect switching cold

Exa m ple standby server architecture
SPN availability model

MTTF_SR = 20000
MTTF_S1 = 15000
MTTF_52 = 15000
MTTR_81 =24

MTTR_SR =24 52 _SwitchingCn
MTTR_S2 = 24

SystemUnavailability = P{##SE_F=1 OR (#51_F=1 AND #32 F=1) ]

BystemAvallablity = 1-P(#ER_F=1 OR [#51_F=1 AND#52_F=1}}

Availability Results:
Steady State Unavailability = 0.0012011
Steady State Availability = 0.9987989




SPN

Capacity Oriented Availability in Cloud Systems
A Simple Example

Consider a system composed by two
physical machines, PM1 and PM2,
where each physical machine sup-
ports two virtual machines (VMs).




NVM=64
Hstates=4489
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MTTFpm: 8760
MTTFvrr: 2880 £YMsS2_U>0 A = P{(#VMsS1_U+#VMsS2_U)>0}

MTTR: 1 COA=
(((P{(#VMsS1_U+H#VMsS2_U)=(2*NVM)}*

(2*NVM))
+
A: 0,999999986971564 (P{(#VMsS1_U+#VMsS2_U)=((2*NVM)-
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SPN

Comparison

COA
Model 1 | 0.9999999868771198 | 0.9995384300392318

Model 2 0.9999999738408221 | 0.999538513813583
Model 3 0.999999986909146 |0.9995387092788293
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SPN

SIEI(Ss(S o=l Corrective Maintenance

RSl RS2

o ) I MTTRL: 24 MTTRZ: 48 I

MTTFL: 720 2 A

PO MTTF2: 800

I.t
(=) ) »

A
Ae 0.8673325740429562
PIEPO=1)ANDEPI=1)AMD(EPT=1]}

DTyh DTyh: 1162.166651383704

(1-P{(=P0=1)AND(=P3=1)AND(=P7=1)})"E760 TU: 0.132667425957043...
TU

(NT-E{ZTeams])/MT

MTTE3: 600




Preventive Maintenance

Shared Repair Team

A 0,9943764869495751
: P{=P0=1}
mtbpm: 510.0 - DOUELE

mit: 0.5 - DOUELE
mpmt: 1 - DOLUELE
phttf: 400 - DOLUEBLE

mttr: 20 - DOUE...
#9s = —log, 1 — A

k: 5 - INTEGER

#F‘ll

P1
J’(#PIE:I}.&.ND(#PINII
TED

#F'EI

(#P12=1)AMD#EP2:=0)




ki 5 - INTEGER

Preventive Maintenance

Shared Repair Team

2.282746
2.282829
2.282662

0.994785
0.954756
0.994784

£:0.9943764869405751
: P{&P0=1}
mtbpm: 510.0 - DOUELE

o

rmit: 0.5 - DOLUELE

mpmt: 1 - DOUELE

1
phttf: 400 - DOUELE
0.5
mittr: 20 - DOUE,..
0 mtbpm

#9s = —logip 1 — A 300 400 500

600




Preventive Maintenance - Two Servers

Shared Repair Team

ki 5 - IMTEGER

(#P12=1)AND#P2>0)

Ph

rmthpm: 510.0 - DOUELE
mit: 0.5 - DOUBLE

rmpmt 1 - DOUELE
phttf: 400 - DOUBLE

mttr: 20 - DOL...
A 0.9999543007962495

mttf2: 2000 - DOUE..




Preventive Maintenance - Two Servers

Shared Repair Team

(#P12=1)AND(#P1>0,

mtbpm

mtbpm A #9s
91 0.999989 4.958607
101 0.99999 5
111 0.99999 5 (rumpabERen
121 0.99999 5
131 0.99999 5
141 0.99999 5
151 0.99999 5
161 0.99999 5
171 0.999989 4.958607
g e —— S
059005 Hﬂf T ———
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0.9597 |I
|
099965 |
0.0006 mtbpm
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HIERARCHICAL MODELING




Hierarchical Modeling

EUCALYPTUS is composed by five high-level
components: Cloud Controller, Cluster Controller,
Node Controller, Storage Controller, and Walrus.
The Cloud Controller (CLC) is responsible for
exposing and managing th underlying virtualized
resources (servers, network, and storage).
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Redundancy in the GC




Hierarchical Modeling

EUCALYPTUS is composed by five high-level
components: Cloud Controller, Cluster Controller,

Node Controller, Storage Controller, and Walrus.
The Cloud Controller (CLC) is responsible for

exposing and managing th underlying virtualized

resources (servers, network, and storage).

Mode 1  MNode 2 Node i
Redundancy in the GC

i P . -~ l
Cluster & P i S | Cluster B
£ » L )




Sync

Monitar

[nput Parameters for the nodes

Component MTTF MTTR
kAWM 2990 h I h
NC T88.4 h | h

Node 1 Node 2
Redundancy in the GC

Node_

Parameter Description Value
Asl=X_5s2=1/X Mean time for host failure 1/180.721
A 82 =172 Mean time for inactive host failure 1/216.865
pel=ps2=1/p Mean time for host repair 1/0.9667

so_s2=1/sa Mean time to system activate 1/0.005

Component MTTF MTTR

HW 8760 h 100 min

SO 2893 h 15 min
CLC 788.4 h I h

e T88.4 h 1

SC 788.4 h |
Walrus T88.4 h 1

Redundant general
controller subsystem

BEGIN — : : - - — — END
HwW S0 CcLC cc 5C

Walrus

Modes

cloud svstem HLM

RBD model of the non-redundant
General Controller subsystem




Hierarchical Modeling

p(Xi(p+ sa) + p? + sa(X + p))
Ml 4+ ) (g + sa) + pu2(\ + p) + sa(d2 4+ A + p?

fh:fmm‘ — AGC * “ " H“ ' "I)]'J""".'T{de.‘_?:})
i=1

Acc =

Measure GC without redundancy GC with redundancy
Steady-state availability 0.99467823178 0.99991793
Number of 9's 2.273944 4.08581
Annual downtime 46.66 h 0.72 h

0.999922

0999921 -
0999920 -
0999919 -
0.999918
0999917 - I
12 18 24 30 36 a2 48 54 60

Availability

0999916

Node_1

Redundancy in the GC MTTF of GC Hardware [months)




Hierarchical Modeling

Estimating Capacity Oriented
Availability (COA) in Cloud
Systems

Consider a system composed by two
physical machines, PM1 and PM2,
where each physical machine sup-
ports two virtual machines (VMs).

A Simple Example




Hierarchical Modeling

The respective model is represented
by RBD and CTMC availability models.




Hierarchical Modeling

Model 4

Availability model

4

Considering the components of a node Aipos = Z (?) X Abprvm X (1 —APM+VM)4—1'
are independent and identical, so all the i=1

nodes (PM+VM) have the same failure  FE5ch node is composed of 1 PM and 2
and repair distribution. VMs:

Hence, the availability of the system is _-_

VMIL_i
BEGIN —-— f—= END
4 PMI
A =S () B
loo4 = i PM+VM s

Considering
MTTRpy = MTTRypy = MTTR

i
n-—i

X (1 _APM+VM)

2
Ai . MTTFPM . MTTFVM
PMAVM = T o + MTTR <\ * ~ \ MTTF, ., + MTTR



Hierarchical Modeling

Model 4
COA model - The respective model is

represented by RBDs and CTMC

e 5 2 I . | I
. n . _ _ ) P[N oo 2) — PED.‘JZ — Z( ) X P! % (1 - P.)'.‘rl.—l
Pi.ﬂon. = Z ( ) X P! x (1 — P_)ﬂ_l : q

W) =2
[

onﬂzzlxpzx(l_}j)ﬂ
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Hierarchical Modeling

COA model - The respective model is
represented by RBDs and CTMC Model 4

2 2
Pigs :(1)><P1><(1—P)1+(2)><P2><(1—P)“

PIOGZZZXPX(]__P)+P2
Pioos= 2P — 2P% 4Pt =2P— P*




Hierarchical Modeling

COA model - The respective model is  Model 4
represented by RBDs and CTMC

PIN=1)=P,=P(N=1)—-P(N =2)
P(N=1)=P, = 2P — p2 — p?
T

n . ; S i
Pioon = Z (I) P X@—P) P(N'=1) = P; =2P —2P?

L




Hierarchical Modeling

COA model - The respective model is
represented by RBDs and CTMC

P4, P3, P2 and P1 represent the probability of being at each
state (CTMC model), where P4 is the probability of having
four virtual machines running, P3 is the probability of having
three virtual machines running, P2 is the probability of
having two virtual machines running and P1 is the
probability of having only one virtual machines running.




Hierarchical Modeling

COA model - The respective model is Model 4

represented by RBDs and CTMC

Z}I P(N — j) % Z:HnVMjH IPI

COA =

m
n
Pi = Piaﬂn o E P:r

j=i+1

nmVMjn
maximal number of Virtual Machines for j PMs




Hierarchical Modeling

COA model - The respective model is
represented by RBDs and CTMC

m . 'j‘pm m .
* COA= ((yp:ﬁ) )x([p4>(4]—§—[p3)<3]+[p3XZ]-!—[pl])-l.-(ﬁ)X([P:X2]‘|‘[P1]}

4
Where,

pé 12 22 p2
P4 = P2= 5 ¥
2404 +24 23 u+12 22 u2 + 4 A 3 + b 242 + 24 3 n+12 2% 2 + 4 A 3 + pf

4 A 3
24044243 u+12 2 2 + 4 A3+l

24 A3 u
P1=

P3 =
24 A4 +24 23 p+ 12 A2 2 + 4 A p3 + pf




Model A COA
Model 1 0.9999999868/71198 | 0.9995384300392318
Model 2 0.99599995738408221 | 0.9995538513813583
Model 3 0.9959999586509146 |0.9955387092/88293
Model 4 0.995999987 0.9955384342
0d¢el 4
- Mh:: : iiﬁ‘?ﬁm! Number of virtual machine COA
Ts0 100 0.9998823844
100 200 0.9998841211
500 1000 0.9998855104




