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Objective

= To study the fundaments of stochastic
simulation, its methods, and applying
simulation for solving performance and
dependability problems.
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Methodology

= Expositive classes

» Practical classes



Evaluation

= |ist resolutions

= Write a draft paper
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Introduction

= Simulation
= Analysis

= Evaluation



Introduction
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Introduction

= Common mistakes in simulation projects:

Not considering numerical or analytical methods
as possible alternative

Inappropriate level of detail

Not taking into account the modeling and coding
costs

Unverified and invalid models

Improperly handled initial conditions

Results without confidence level and error margin
Poor random-number generators

Poor interpretation of results



System and Model

The Concept of System

B An aggregation or assemblage of things so combined by nature or
man as to form an integral or complex whole (Encyclopedia
Americana).

B An interacting or interdependent group of items forming a unified
whole (Webster’s Dictionary)

B A combination of components that act together to perform a function
(IEEE Standard Dictionary).

There are two features in these definitions:
1. a system consists of interacting “components”, and
2. a system is associated with a “function”.



System and Model

Model

» Abstraction level

= Perspective



System and Model

Model

INPUT  —— OUTPUT
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System and Model

State and state variable

The state of a system at time t is the information required at ty such

information and from w(t), t = t;.

Like the input u(t) and the output y(t), the state is also generally a

vector, which we shall denote by x(t). The components of this vector,

Xq (t),..., X, (1), are called state variables.



System and Model

Event

An event may be identified with a specific action
taken by a person or system or

It may be viewed as a spontaneous occurrence
dictated by nature or

it may be the result of several conditions which are
suddenly all met.



System classification
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Types of Simulation

Static vs Dynamic Simulation

= Static simulation is adopted for representing a system
in which time does not play a role or to describe a
system at a particular time.

= Dynamic simulation is used for depicting a system
that evolves over time.



Types of Simulation

Deterministic vs Stochastic Simulation

= Deterministic simulation considers models that do not
contain any random variable, that is, the output is
determined once the input quantities and the model
relations are defined.

= Stochastic simulation adopts models that have at
least one random variable.



Types of Simulation

Continuous vs Discrete Model Simulation

= Continuous model simulation relies on continuous
models for representing the system whereas discrete
model simulation is supported by discrete models.



Types of Simulation

= Trace driven (Deterministic simulation)
= Monte Carlo (Stochastic static model simulation)

= Discrete event (Stochastic dynamic discrete model
simulation)



Trace-Driven Simulation

= Trace-driven simulation uses traces (time-ordered
record of events on a real system) as its input
applied to the simulation model which depicts the
system behavior. This sort of simulation strategy
has been applied for evaluating resource
management algorithms, such as paging algorithms,
cache analysis, CPU scheduling algorithms, and
algorithms for dynamic allocation of storage.



Monte Carlo Simulation

= Monte Carlo simulations are used to model
probabilistic phenomena that do not change
characteristics over time.

= Monte Carlo simulations are also used for
evaluating non-probabilistic expressions using
probabilistic methods.



Monte Carlo Simulation

Steps in the Monte Carlo Simulation

1. Define the Model (Transfer Equation)
. Define the Input Parameters

3. Create Random Input Data
. Apply the Input Data to the Model

5. Analyze the OQutput



Monte Carlo Simulation

Integration

Now, let's try to find the area boundedbyy = 9 — x%Z andy = 0.

We will envelop this area by a rectangular larger area that measures 6 = 9.

(0,9)

xp =6xXU(0,1)—3

vy =9 X U(0,1)
Exact Area:
(0,3) 3 N
| f[?—xzjd_cr:(gx—%) — (27 -9) — (—27 +9) = 36
3

-3
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Monte Carlo Simulation

Estimating T - Model

Since the area of quarter circle is: where

Aoc =

(t.j)=,U) Input parameters
Ar=7%2=1

Therefore

An approximation of m can be estimated by:

i =4xAyc



Monte Carlo Simulation

Piston pump

A manufacturing company needs to evaluate the
design of a piston pump that must pump 12 ml of fluid
per minute (flow rate).

You want to estimate the mean flow rate over
thousands pumps, given specified variation in piston

diameter (D), stroke length (L), and strokes per minute

(frequency - RPM).

Ideally, the pump flow rate across thousands of pumps
will have a standard deviation no greater than 0.2

ml/min.
Based on the historical data of pumps your facility has

manufactured, you can say that piston diameter is
normally distributed with a mean of 0.8 cmand a
standard deviation of 0.003 cm, the Stroke length is
normally distributed with a mean of 2.5cmand a

standard deviation of 0.15 cm. Finally, strokes per



Monte Carlo Simulation

Cont.

minute is normally distributed with a mean of 9.549
RPM and a standard deviation of 0.17 RPM.

Estimate the mean flow rate and the respective
standard deviation, considering a sample of 10,000
pumps with the above input definition.




Monte Carlo Simulation

Model

2
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Flow Rate = 1 X (
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Monte Carlo Simulation

Input data parameters

D ~N (0.8 cm,0.003 cm)
L ~N(2.5cm,0.15 cm)

Frequecy: RPM ~N(9.549 RPM, 0.17 RPM)



Monte Carlo Simulation

= Create random input data
= Apply the input data to the model
= Analyze the output




Monte Carlo Simulation

Analyze the output

Summary for Flow

&nderson-Darling Mormality Test
A-Squsren 4,84
P-Yzhe = 0.005

Mazn 12.033
StDew 1,538
W ariznce 2. 384
Skewnsss 02059051
Kurtosis 0.050549
N 10000

Mianinmasm 6,50
1st Quartile 10,970
Medizn 11,5986
Ird Queartile 13,022
M.acdamasm 18,727

5% Confidence Intarval for Maan

I | I 12,003 12,063

95% Confidence Interval for Median
11.54% 12,024

595% Confidence Interval for Sthey
1.517 1.559

95% Confidence Intervals




Monte Carlo Simulation

Analyze the output

The average flow rate Is pretty close to the specified value, but
the standard deviation far exceed 0.2 ml/min.



Discrete Event Simulation: an Overview

Let’s consider the Stochastic Timed Automaton
(STA) that represents a G/G/1 queue model:

E { a. } X

['(z) ={a,d} forall z >0 TI'(0)=

_[ T+ 1 if ¢/ = a

flz,e) = e .
T —1 ife' =dand xz >0

[.-_;:IT[‘]I: IJ‘” ||J}.. T e x"l-.lq (_‘J’” |::|.. {:;J{ ]

Recall that £ is always a countable set of events,
and that X is a denumerable state space.




Discrete Event Simulation: an Overview

We denote a denumerable set as a set that is
countably infinite, or countable.

Let’s recall that G of the stochastic timed
automaton model is the set of probability

distributions G = {G;: i € &} characterizing
event lifetimes. This information is combined

with the computer’s Random Number Generator
(RNG) to supply event lifetime samples as

required.



Discrete Event Simulation: an Overview

SUHEDRULE EVENT i

" UPDATE STATE

|"—_II X.&1b

o

F INELETE INFEASIBLE

s, dif

e,

A ADD NEW FEASIBLE ™

(€a.f + ¥l
AN BREORIDVER

BT M

GENERATINR
Mew evenl lifelime, i




Discrete Event Simulation: an Overview

that an initial state xo € X is given.

SCHEDULE EVENT

1.Let’s initialize the time at t = 0 and assume = >

LIST

Considering the G/G/1 model, let’s consider =oNNo=
x{] = 0 . E
2.For the state x = 0, the set of feasible events

PELETE INFEASIBLE
[r N

ADRD NEW FEASIBLE

is TI'(0) = {a}. This is the only event which

may occur at this state.

3.Associate a a clock value, which represents

the amount of time required until a occurs.
d d d d

E={a,d} X={0,1.2,---}
This amount of time is supplied by the D(x) = {a,d) for all 2 >0 T(0) = {a}

r+1 ife'=a

random variate generating mechanism that f@,e) o dand 0

r—1

considers G,(.). We denote clock values for Given: po(a).x € X, Gal’),Cal)
eventa by y,, and their lifetimes by v,.
Hence y, = v,.




Discrete Event Simulation: an Overview

4.Now given that the current stateis x = 0, we

look at all clock values y; wherei € I'(x =
0).
The triggering event e is the event which

occurs next at that state, that is, the event

with the smallest clock value:

¢ = arg min, (v}

As the only of feasible event is a, the

triggering event e’ is a: £—{ad X={01,2--

E?f = arg min{vﬂ} = 3a [(z) ={a,d} for all z >0 I['(0) = {a}
te{a} o) :{ bl e —a

r—1 ife=dandax>0

Given: po(r),r € X, Gu(-), Gal-)




Discrete Event Simulation: an Overview

At this point we can update the state based on a
given state transition mechanism.

5.As there is only one possible new state (the
adopted STA has a deterministic state
transition mechanism) when event a occurs
at state 0, we have f(0,a) = 1.

6. The amount of time spent at state x defines
the interevent time y™:
y' = Jmin 1y}
Since I'(x = 0) = {a}, the amount of time
spentatstateOis y*" =y, =1,

a a a @
d d d d

E={ad} X=1{0,1,2,---}

['(x) ={a,d} for all z >0 ['(0) = {a}

f(-j'-f") = { z+1 if ' =a

r—1 ife=dandax>0

Given: po(r),r € X, Gu(-), Gal-)




Discrete Event Simulation: an Overview

7.We can then update time by

t'"=t+y"=0+v,
8.We also update clock values for all feasible e
events in the new state x = f(0,a) =1 as|| X, the time remaining until its occurrence

follows: (the new clock value) is simply given by

e There are two cases to consider. yl.f =y, =y

o First, if an event i € I'(x)such thatfo The second case applies to e’ itself if
i # e’ remains feasible in the new state] e’ € I'(x) — x is next state — and to all

other events which were not feasible in x

(previous state), but become feasible in x
d d d d

(next state). For all such events, we need
£={a,d} X=1{0,1,2,--)

D)= {a.d) forall >0 T(0) = {a} new lifetimes. These new lifetimes are
z+1 e =a supplied once again by the computer

z—1 ife=dand x>0

fla,€)

Giver: po(@)o€ X, Gol) Gl through the random variate generating

mechanism.




Discrete Event Simulation: an Overview

Atx =1,I'(1) ={a,d}:
yﬂ — var

Mew

argmin;er ;) {y;} = argmineqay{va, vo} fllr——"———
y* = L_%r}i}{va, Vq}
£ ={ad} X=1{01,2---}

Let’s assume that v, < v, , then: D) = {a.d} forall >0 T(0) = {a}

r+1 ife =a

Ef — arg minEE{aJd}{vaJ vd} — a and r—1 ife=dand x>0

iven:  po(r),r € X, Gal(-),Gal-)

Yy = igiléﬂ}{vm vd} = Vq-




Discrete Event Simulation: an Overview

10. Hence we can then update time by

INITIALIZE

tf =1 ‘I‘}’Jk = va + Ua = 2 x Ua_ STATE
11. We also update clock values for all

—Ceo | G

feasible events in the new state x =
f(1,a) = 2 as follows:

First, since d € I'(2) and d # e’ (that is,
the triggered event e’ was a), then the time it

TELETE INFEANIBLE
{ee, e}

remaining until its occurrence (the new clock

value) is simply given by
a a a a
S
‘= yg -y = O BO0SOBOBE
yd _yd _y _Ud_va d d o “i d

The second case applies to a itself since £={ad} X={012-}
a € I'(2). For a, we need a new lifetime F(z)={a.d} for all >0 T(0) = {a}
. , :
: : : : . ) x+1 ife =a
The new lifetime is supplied again by the flae r—1 ifd=danda>0

computer through the random variate Given: po(x).7 € X, Ga(-).Gal)
generating mechanism.




Excel

N/N/1
. - - - @ . @ - @ . -
X X X X X X x ‘—@r.m: >
State 0 1 0 1 2 1 0 STATE p—-
x'=f(x,e') [x'=f(x,e') |x'=fx,e') |x'=fx,e") |x'=fx,e") |x'=fx,e') :x'=fx,e') . SOEDULE FYENT —
Mext state 1 0 1 2 1 0 UPDATE STUTE ey - o — TFDATE TIME
v v v v v v v — E T
Sojourn time at x 109.7491| 71.3786| 19.87634| 92.07155| 23.56192| 67.33343; 7.426077
t t t t t t t @
Global time 0 109.7491| 181.1277| 201.0046) 293.0761( 316.6381: 384.1715 _
g' g' g' g' g' g' g' g ”..-’-D
Scheduled event a d a a d d a — S
T(x) T(x) T(x) T(x) T(x) T(x) Tix) [,
Set of enabled events a a.d a a.d a,d a,d a 1 e
va va va va va va va G/G/1 queue model: N/N/1
Random variate generated fora| 109.7491| 91.25544 92.07155| 98.52148
vd vd vd vd vd ”_)7 J [ ‘F/\L,
Random variate generated ford 71.3786 115.6335 67.53348 = N
ya ya ya ya ya ya ya
Remaining time of a 109.7491( 91.25544( 19.87684| 92.07155| 98.52148| 74.95956: 7.426077 / \/ V \/ \(\/ \¥ \/ -~
\ /* /\ g, WL )\J‘
yd yd yd yd yd d d a
Remaining time of d 71.3786 115.6335( 23.56192| 67.53348 N(100120)
ymin ymin ymin ymin ymin ymin ymin d~N(90,20)
Minimal remaining time 109.7491( 71.3786| 19.87684| 92.07155( 23.56192| 67.53348; 7.426077
P{s0} P{s0} P{s0} P{s0} P{s0} P{s0} P{s0}
Initial state x0 DI 1| 0.605921| 0.644891( 0.4422935| 0.409382| 0.349982
P{s1} P{s1} P{s1} P{s1} P{s1} P{s1} P{s1}
Arrival event 3 N({100,20) 0| 0.394079| 0.355109( 0.557705| 0.516205| 0.589849
Departure event d N{90,20) P{s2} P{s2} P{s2} P{s2} P{s2} P{s2} P{s2}
Metrics 0 0 0| 0.074413| 0.060169
EP{sit= 1 1 1 1 1




C:\Users\Paulo Maciel\Dropbox\Models\Mercury\Mercury 4.4.3\Mercury 4.4.3.2\Examples
Discrete Event Simulation: an example

G/G/1 queue model: N/N/1

O -

MO: 0.795661548594109..
M1: 0.1059998450720813
M2: 0.0810818630981709

Metric : MO, B{#P0=0}

BEesult: 0.79566154844100544%

Confidence Interwval: [0.7BT7ES10Z68176973,0.8034720710644825]
Error %: 0.98163873304306008

Metric : M1, EB{#P0=1}

Eesult: 0.105990984507208135

Confidence Interwval: [0.104%94687340687012,0.107052816737208258]
Error %: 0.9933709473775153

Metric : MZ, P{#P0=2}

Besult: 0.08108186309817088

Confidence Interwval: [0.08027313531127094,0.08189059088507102]
Error %: 0.9974213171703543

Bun size: 1000

Number of Bum=s 403000

Total Buns 403000000




C:\Users\Paulo Maciel\Dropbox\Models\Mercury\Mercury 4.4.3\Mercury 4.4.3.2\Examples\StudyOnSimulation.xml

Discrete Event Simulation: a SPN example

| Enabled Transitions Firable Transitions
TO TO

Transitions | Delay

TO 91.55042574784241
Transition Fired = TO
Firing Delay = 91.55042574784241
Global Time = 91.55042574784241

N(100,20)

State 1: (M(P2)= M(P3)==1, M(PO)}= M(P3}= MIP4)= M(P5)=0])

Enabled Transitions Firable Transitions
T1,T2 T1,T2

Transitions Delay

T1 | 108.9958909819219
T2 121.0819483992443

N{120,20)

Transition Fired =minepeape Delay(T)}

Transition Fired = T1

Firing Delay =108.9958909819219

Global Time =200.5463
State 2: (M({P1)= M(P2)==1, M(P0)= M(P3)= M(P4)= M{P5)=0)
Enabled Transitions Firable Transitions

T2,713 T2, T3

Transitions . Delay

T2 Delay(T2)- Firing Delay=121.0819483592443 -

108.9958909815215 =
12.08606

LT3 | 67.76778453445709
Transition Fired =min;ec piape i Delay (T}

Transition Fired = T2

Firing Delay =12.08606

Global Time =212.6324

State O: (M({PO)=1, M{P1)= M{P2)= M{P3)= M(P4)= MIP5




C:\Users\Paulo Maciel\Dropbox\Models\Mercury\Mercury 4.4.3\Mercury 4.4.3.2\Examples\StudyOnSimulation.xml

Discrete Event Simulation: a SPN example

State 3: (M(P3)= M(P4)==1, M(PO)= M(P1)= M([P2)= M(P5)=0)

[ Enabled Transitions Firable Transitions
T3 T3

Transitions Delay
T3 Delay (T3)- Firing Delay = 67.76778453445709 -
12.08606 =55.68172

N(100,20)

Transition Fired =T3
Firing Delay =55.68172
Global Time =268.3141

N(80,20)  N{120,20) State 4: (M(P4)= M(P5)==1, M(PO}= M(P1)= M(P2)= M(P3)=0)
| Enabled Transitions Firable Transitions -
T4 T4

" Transitions Delay

| T4 103.1182638502188
Transition Fired = T4

Firing Delay =103.1182638502188

Global Time =371.4324

State O: (M(PO)=1, M{P1)= M(P2)= M{P3)= M(P4)= M(P5)=0)

The process repeats until a stop criterion is reached.

State O: (M({PO)=1, M{P1)= M{P2)= M{P3)= M(P4)= MIP5




C:\Users\Paulo Maciel\Dropbox\Models\Mercury\Mercury 4.4.3\Mercury 4.4.3.2\Examples\StudyOnSimulation.xml

Discrete Event Simulation: a SPN example

:

*F Staticnary Simulation
Confidence Level %
Mazx. Relative Error %
Min. # of firing for each Transition
Warm-up period (# Runs)
Run Size (# of firing)

M1: P{EP0=1
t ) Max simulation real time (sec)

Experiment
e [

M1: 0.25296016187570443

1000 |
b______

]
[ Goncel |

Metric : M1, PB{#P0=1}

Eesult: 0.282%9601cl8T7870443

Confidence Interwval: [0.280141580614%9667,0.28577T873414244215]
Error %: 0.899gl102152693122

Fun size: 1000

Humber of Runs 3897000

Total Runs 397000000




Random Number Generator

Stochastic simulation is deeply based on
sequences of values generated from of random
variates. Random variates require methods for
generating random numbers.

Since the generation methods should be
computationally efficient as well accurate, a
balance between efficiency and the accuracy is

very important requirement.



Excel

Random Number Generator

Generation of Uniform Random Numbers
The most common method for generating a
random number 1is to use a recursive function in
which the next number in the sequence i1s
obtained from the last one or two numbers, that
1S:

Xn = X1, Xn2s...)

For instance:

X, = S5x,1+ 1mod 16

Starting with xo, = 5, x; 1s obtained as follows:

x1=5(5)+ 1mod 16
x;=26mod 16
x; =10




Random Number Generator

Generation of Uniform Random Numbers

The first 32 numbers obtained by this method
are:

10,3,0,1,6, 15,

10,3.0,1,6, 15,

The xs are integers between 0 and 15.

6.

By dividing xs by 16, a sequence of random
numbers between 0 and 1 is obtained. hence:

0.6250, 0.1875, 0.0000, 0.0
0.7500, 0.8125, 0. 1230_, 0.€
0.8750, 0.4375,
0.0000, 0.0625,
0.1250, 0.6875,
0.2500, 0.3125.

"Jl

6
E

"Jl

I LA

L gy —
=1 2 --..] lu
A
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Random Number Generator

Generation of Uniform Random Numbers
[t 1s obvious that we can regenerate the sequence
provided the starting value (seed) x( 1s given.
Hence, f(x;.1, Xp.2,...) 1s deterministic. However,
as the sequence would pass statistical tests for
randomness, these numbers are called pseudo-
random.

In simulations, pseudo-random numbers are
preferable to random numbers because 1t 1s often
desirable to be able to repeat an experiment
exactly as it was done before. And i1f a different
result 1s needed, change the seed before the next
simulation.




Excel

Random Number Generator

Generation of Uniform Random Numbers

Notice only the first 16 numbers are unique, the
17th number 1s the same as the first and the
remaining sequence 1is a repetition of the first 16
numbers. Hence the random-number generator
has period of 16.

0.1875,
0.8125,
0.4375,
0.0623,




Random Number Generator

Generation of Uniform Random Numbers
The desired properties of the generator:
1. efficiently computable.

2. large period.

3. successive values should be independent
and uniformly distributed.

The third requires a lot of test.

Some random-number genera.tors:

 Linear-congruential generators
« Tausworthe generators

« Extended Fibonacci generators
« Combined generators

Excel



Excel

Random Number Generator

Generation of Uniform Random Numbers
X(k) = [aX(k — 1)+ ¢] mod M

where M is the modulus, M > 0, a large (prime) integer value; a is the multiplier,
0 < a < M, c is the increment, usually = 1 or 0; and X(0) is the seed, 0 < X(0) < M.
The algorithm is executed in integer arithmetic. The seed value X(0) is provided by the user.

The equation produces a random sequence of integer values in the range
0 < X(k) < M—1 and this sequence can be converted into a random sequence of uniform
random numbers in the interval [0, 1] by executing the floating-point operation

U(k) = Float[X (k)/M]
a, ¢, and M should be uncorrelated.

Example:

X(k) = (16,807 X X(k — 1) ) Mod (231 — 1)




Random Variate Generator

B A random variable is a function.

B A random variate is an outcome provided by
a random variable.



Random Variate Generator

B Basic methods

— Inversion transform
— Convolution

— Composition

— Characterization

— Acceptance-Rejection



Random Variate Generator
Inversion transform

The Inverse Transform method

x=Fx'(u)

Transform method as a two-step algorithm:

1. Use your favorite RNG to generate a
realization u from a variate U ~ Unif(0, 1).

2. Compute x = F'(u) as a realization of X.




Excel

Random Variate Generator Exponential
Inversion transform

Exponential

The sequence of random numbers will not be identical,
but will be statistically equivalent.

Generation of Exponential Variate

Suppose we wish to generate a realization x
from the exponential distribution with rate
A =0.5.

B If u = 0.55 was obtained and since
u=Fyonu)=F=1-e A =0.5, hence:

u=1—e x = 1.195674

l—-u=e ™=

In(1—u) =lne ** =

In(1—-u) =—-Ax
Since u was generated from U(0,1),

then 1 —u is also obtained from
U(0,1), so:
lInu = —Ax




Random Variate Generator
Inversion transform

Generation of Exponential Variate

Example: to generate an exponential variate with A, follow this
procedure:

—At
F(t)Z{l_E t=40
0 t=<0

Through its inversion, t; = —% X In(1 — u;) is obtained.

Exponential variate t; can be generated by a uniform variate u; and the
preceding equation.

Since u; is uniformly distributed between 0 and 1, 1 — wu; is also

uniformly distributed between 0 and 1, then:

1
—E:x: In(y;)) e t; = _EX In(1 — ;)
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What would the random variate have been if the parameter A had been
replaced by a new value A"? We can answer this question by arguing as
follows. If X had been generated through the inverse transform
technique, there would have been some random number U giving rise

to X through U = F(U), such that:

X=F U1
Now if this same random number U had been used to generate a
random variate X from the new F (U, 4"), we would get

X'=FY(U,X) |

()

X X' =FF(X;\):N]
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Discrete random variate
The inverse transform technique is quite general. It can be used, for example, to

sample from distributions of discrete random variables. Figure shows a random
variable X that can take threevalues a, < a, <a; :
with probability p,
with probability p; = p1 + p-
with probability p; = p; + ps

In general, for a discrete random variable X that can take N values

a, <..<ay with corresponding probabilities p, ,...,py , Wwe have

( (11 0 <U < p
az  ipr <U <p1+po

L anv Epr+p2+. PN

or. equivalently,
r X = min{a, : F(a,) = Un




Random Variate Generator
Inversion transform

Discrete random variate

Specification

Unif. Rand Gen.
Generated RV - output

U

In general, for a discrete random variable X that can take N values

a, <..<ay with corresponding probabilities p, ,...,py , Wwe have

Cay f0<U <
az i pp <
X =4

l ay ifpr+p2+...+pN

or, equivalently,

4‘{ ].].J.i].].'[ il ) . .E"::”-“ :l --_"1




Random Variate Generator
Inversion transform

TABLE - Applications of the Inverse-Transform Technique

Distribution CDF F(x) Inverse

Exponential 1- e-*({f_ P —~aln(u)
Extreme value 1-—e~° a+blnlnu

In(1- p)
e 1 1
gistic T . p—b]n(-&—l)

Geometric 1-(1-p)° "M:l

T 1 4 elx-p)/b

Pareto 1—x~* 1/ul'/e
Weibull 1 —elx/9 a(lnu)'/®

One drawback of the inverse transform technique is that it may not
always be possible to evaluate F~*(U) in closed form.

This problem arises with a number of common distributions

(e.g., the normal distribution).




Convolution

This technique can be used if the random variable X can be expressed

as a sum of n random variables 13,15, ..., Y,,, such that:

X=Y;+ VLht...+Y,

If X isasum of two random variables ¥; and ¥5, then the pdf of X can

be obtained analytically by a convolution of the pdf's of ¥; and 5.

This is why the technique is called convolution, although no convolution

is required in random-number generation.
An example: an Erlang-k variate is the sum of k exponential variates.

so, it can be obtained by generating k exponential variates and

summing them. Ul 0.382 . 100
Y1 0.009623 k 4
u2 0.443568 RV specification
Y2 0.007995 U[0,1] Random generation
U3 0.879696 Internal computation
Y3 0.001282 Result
U4 0.967559
¥4 0.00033
X 0.01923

Excel
Erlan

Mathematica
Erlan
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Examples of applications of this technique: Erlanc

* An Erlang-k variate is the sum of k exponential variates. so, it can be obtained
by generating k exponential variates and summing them.

* A binomial variate with parameters n and p is a sum of n Bernoulli variates with

success probability p. Thus, a binomial variate generated by n U(0O, 1) random
numbers and returning the number of random numbers that are less than p.

e The chi-square distribution with v degrees of freedom is a sum of squares of v
unit normal N(0, 1) va. iates.

* The sum of two gamma variates with parameters (a,bl) and (a, b2)is a
gamma variate with parameter(a,bl + b2). Thus, a gamma variate with a

noninteger value of b parameter can be obtained by adding two gamma
variates—one with integer b and the other with the fractional b.

e The sum of a large number of variates from any distribution has a normal
distribution. This fact is used to generate normal variates by adding a suitable
number of U(0, 1) variates.

e The sum of m geometric variates is a Pascal variate.

e The sum of two uniform variates has a triangular density.
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Hvper-Exponential

Composition Mathematica

Hyper-Exponential

Mixing or Composition Method: Suppose that the distribution Fy (y) or the
density function fy(y) can be represented by either of the following forms:

1. Fy(y)= a1 Fx,(y) + aoFx,(y) + ... + ax Fx, (y),

2. fvly)= oo fx, (y) +oafx,(y)+ ...+ aefx (y),

where «, ..., oy are non-negative and sum to one. Given that the X!s are
relatively easy to generate, these kind of variates can be generated using the
composition method.
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Random Variate Generator . |
per-Exponential

Composition Mathematica
Hyper-Exponential

The hyperezponential distribution is given by

Flr) = Zuf{l — t‘:"'b*‘I] =20, M, e >0and  a; = 1.

The random variate for the hyperexponential can be generated in two steps.
Consider, for example, a three-stage hyperexponential distribution with param-
eters oy, g, avq and Ay, Az, Az, First a uniform random number « is generated

and the following inverse function is used in the first step:

, 0<u<o,
P(u) = ,_ ] < U< e+ g,
3, ]+ <u=<1.

The desired variate is then given by

In( uy) In( u)
£= l{u':lrﬂ]- (_‘ ;],1.1 ) T llu"{ui—:u]vﬁz} (_ J'l*_g

In{ uq)
T+ 1{-::” bogcu<l} (_- .-153 )
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Hvper-Exponential

Composition Mathematica
Hyper-Exponential

O=u=cl

ol <u<cul+o2

ol+o2<u=l

0.555162 | +.1 2017 100].3
0.005885

The hyperezponential distribution is given by

Specification

Unif. Rand Gen. - Input Flr) = Z-:t,-{l — e T >0, A, a; >0and Y a; =1.
Internal i

Generated RV - output .

0<u< o,

P(u) =< 2, ] < U< 0y + g,

3, ay+ar<u<l.

The desired variate is then given by

In{ uq) In{ uy)
L= l{H*-'-rH} (_T) T lit'r:f.'.ui-:tnﬂrru} (__HI:.__

In( uy)
T l{n:’rnu-:tr‘k_'l} ('"_ Aa -
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Characterization
Normal

Characterization

Special characteristics of some distributionsallow the
respective random variates to be generated by specially

tailored algorithms. These algorithms are generally classified as
characterization methods.

Example: the Polar Method (Marsaglia and Bray (1964)) allows
generating two independent Normal variates.

1. Generate two U(0, 1) variates u; and u,.

2. letv; = 2uy — 1 andv, = 2u, — 1

3. r =vi+vi

4. If r = 1, go back to step 1; otherwise let s =

r

1
\/—2 X — and return:

X1 =HU+0XV; XS

Xo=H+0XVy; XS




Random Variate Generator

Characterization
Normal

20

RV specification

U[0,1] Random generation

Internal computation
Result

1. Generate two U(0, 1) variates u; and u,.
2. letv; = 2u; —1 andv, = 2u, — 1
3. r=vi+ v

4.1fr = 1, go back to step 1; otherwise let s =

Inr
—2 X — and return:
.
X1 =pH+oXv XS5

Xo =+ OXVy, XS




Random Variate Generator
Acceptance-Rejection

The Acceptance-Rejection method generates a random variate X from
the density function fy(t).

The first step is to identify some function gy (t) with the property:

g(t) = fx(t), vt.
g(t) is called a majorizing function, and it is clearly not unique.

Since g(t) is generally not a density function, we determine next a
normalization constant, ¢, which allows us to transform it into a density
function. So, consider

+ oo

c= J’ g(t) dt

— o0

and that gy (t) was chosen such that < oo, it possible defining a density

function hy (t) = gtt) .
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Acceptance-Rejection

Owing to the complex shape of fy(t), the simplest bounding function is
the rectangle. Random points within this box can be easily generated by
selecting a random value x that is uniformly distributed on the interval
[a,b] and a value y that is uniformly distributed on[0,c]. Then, if
y < fx(t), we accept x as a sample from the desired distribution.
Otherwise, we reject x and repeat the process, beginning with the
generation of new values for x and y.

reject

_______________________ y [
/fﬁ\\'k{:"y‘}

Nz ) ;

a:}&(rpt fx(t), I\\:

: I[:

l.:

Lo b
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Acceptance-Rejection

reject

Therefore: g(t) = fx(t), vt

¢ X hy (t) = fx(t), vt o
(t) .
Jx <c,Vt .
hy (t) a
Let us assume that the density function fy(t) is defined on the interval

[a , b].
Pseudo-code
1. generate two uniformly distributed random numbers, u; and u, on
[0.1]
2. set x; =a+(b-a) uy
3.sety; = cu,
4. (x4,y1) = (a+(b-a) uy,cu, ) // The tuple x;,y;) is arandomly
// selected point in the rectangle In fact, choosing a choosing a convenient majorizing function can

ff [.‘_‘1} b] h [0; L"] . enhance the efficiency of the method, since the percentage of rejection
may be reduced.

5. 1Fy; < fx(xy)
5.1. v =y, (Accept)
6. Else

A
Y
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Acceptance-Rejection

reject

Therefore: g(t) = fx(t), vt

¢ X hy (t) = fx(t), vt o
(t) .
Jx <c,Vt .
hy (t) a
Let us assume that the density function fy(t) is defined on the interval

[a , b].
Pseudo-code
1. generate two uniformly distributed random numbers, u; and u, on
[0.1]
2. set x; =a+(b-a) uy
3.sety; = cu,
4. (x4,y1) = (a+(b-a) uy,cu, ) // The tuple x;,y;) is arandomly
// selected point in the rectangle In fact, choosing a choosing a convenient majorizing function can

ff [.‘_‘1} b] h [0; L"] . enhance the efficiency of the method, since the percentage of rejection
may be reduced.

5. 1Fy; < fx(xy)
5.1. v =y, (Accept)
6. Else

A
Y
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Deciding which method to adopt

Is CDF
imveruie? Is the
variafe a sum of

wiher
ke inversion variates ¥ Y
Use convolution
Ve

Is the

variate related o
Use composition other
variates?
i
v Use
es —
characterization
Is pulf @ suimm

of oumer plfs?

L 4 Yes

[haes
[ e rejection ]

a majorizing
Lse Composition IR LS
exist?

Use empirical
IOVE IS 1T
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Output Analysis

The output data of simulations can be thought as estimate some quantity of

interest &.
For example, & may be the mean of residence time distribution of customers in a

bank, and X,, is the observed residence time of the k*" customer.

A point estimate of 8, denoted by g is a number that represents a “guess” of @
based on collected data X, , X, ..., X,,.

An interval estimate of & provides a range of numbers defined by

[ - ey, 6 + @, ] in which the true value of & lies within with a given probability.



Output Analysis

Point estimation

The simplest and most common estimation problem arises
when we collect a sequence of iid random variables

X1, X5, ..., X, characterized by a single probability distribution
function. Let @ be the mean of that distribution.

To obtain a point estimate of G, @n, based on n samples, we use

the sample mean:




Output Analysis

Point estimation

It is important to keep in mind that én is a random variable. So,

we are using a random variable to estimate a real number 6.

Therefore, an unbiased estimator of 8 is E[8,,] (E[6,,] = 6).

i 2
Var(0,,] = % is an unbiased estimator of the variance of the

distribution of én. As o2 is unknown, we adopt the sample

variance of our collected data, defined by

n
1 o
$2 =% "0 - X)?
i=1

n—1

as an estimate of o 2.
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Point estimation

Summary:
T

X = Z X;  (estimator of 0)

i=1
o[8,] = L?_ (standard deviation of our estimator 8,,)
\Vn
Adopt the following approach:
1. Choose a value of n (where n is at least 30) and
generate n samples X, X5, ..., X,,.

2. Compute the sample mean

n
z? — Z }{1
i=1

S
3. If = = ¢, then stop. € — error.
Vn

4. Otherwise generate additional samples and

incorporate into the recursive formulae until the

desired accuracy is attained. (52
y (n > (E) )

Excel
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Estimation considering confidence interval

If our output data X, X5, ..., X,, form an iid sequence, the unbiased point

estimator 8,, — 6 as n — cowith probability 1.
As our data set is finite, we would like to develop define an interval that contains 8

with some level of “confidence.”
The basic tool for accomplishing this task is the Central Limit Theorem, where for large

enoughn, we have:

Pl6, —Za ’szngagé“ﬂJrzg ’JEKH ~1—a
2 2

g® may be replaced by the sample variance SZ, since S approaches g as n — .

Thus: P8, —Za ’SEXH£H£§ﬂ+ZE ’SEXH ~1—a
2 2
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Estimation considering confidence interval

The obvious difficulty is the determination of how large n should be for the
central limit theorem to hold. To partly overcome this difficulty, the t distribution
can be adopted so that points denoted by —tn- Lay and tn- La; can be

2 2

determined such that
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Types

e Transientor terminating simulation

In transient simulation (terminating simulation) there is a particular point
that limits the length of a run, for instance: a condition, a specified time
instant, the completion of a trace etc.

Steady state or non-terminating simulation

Steady-state simulation (a non-terminating simulation) does not have this
particular simulation end point. In such an evaluation, there is no “natural”
reason why a simulation should finish other than measures’ accuracy.
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Issues in Obtaining Accurate Simulation Results

Before discussing the issues in obtaining accurate simulation results, a
key difference between model performance and system performance

needs to be highlighted.

The concern (here) is obtaining accurate results from the performance

of the model, assuming the model is accurate.

The aim (here) is NOT evaluating how accurate the model predicts the
system performance. This is the concern of model validation.
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Issues in Obtaining Accurate Simulation Results

Therefore, it is essential to stress that if the data used as input to the
model is inaccurate, then accurate prediction of the system

performance will not be provided.

Two key issues in assuring the accuracy of the estimates:

¢ Removal of any initialization bias:
o warm-up and
o initial conditions
¢ Ensuring that enough output data have been obtained to obtain
accurate estimates:
o long runs and

o multiple replications
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Transient or terminating simulation

Initial number of replications

Independent replication simulation must begin with some arbitrary number of
replications to begin the replication analysis. A small initial number of replications
may be insufficient so that additional replications might be required. On the other
hand, too much time may be wasted on unnecessary simulation runs if a too large
number of initial replications is adopted.

A good practice is setting a reasonably small initial number of replications, such as
ten. In general, this is sufficient to have statistical confidence for estimating the
additional number of replications needed.
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Transient or terminating
simulation

40 (s) Time

This type of simulation should be applied when we are interested Iin the
transient value of some measure, ie., number of processes in the system after
15 seconds of operation or the reliability of a system at 4000 hours.

¢ In these cases each simulation run Is conducted until the required
simulated time and

¢ from each run a single sample value of the measure is collected.

Transient simulation is usually conducted by making m independent simulation
runs, from which point and interval estimates of the required measure are
obtained using the basic methods described before.
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Independent Replication Method

b
40 (s) Time

A replication 1s a run of a simulation that uses a specific iid sequence
(X, X5, ..., X,). Multiple replications are conducted by changing the random
number seed and re-running the simulation. The aim is to produce several
samples for estimating the measure mean. An important issue is: how many
replications need to be carried out?

A confidence interval for the mean for shows how precise the average of a

value is being estimated.
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Transient or terminating simulation

# processes

Independent Replication Method s el

Feprocssses(th 03 155)

s

Cr:firn—].ufi -2
' (X; — X)~
s= | =

\ n—1

= mean of the output data from the replications

= standard deviation of the output replications
n = number of replications

th-1.a/2 = value from Student’s t-distribution with n—1 degree of freedom

and a significance level of o /2
X; = the result from replication i

The narrower the interval the more precise the estimate is. In general, the
more sample data that are included in the interval, the narrower it becomes.
When applying confidence intervals to simulation output, more replications
are performed until the interval becomes sufficiently narrow to satisfy the
user requirement.
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€ — absolute precision error required.

%e — relative precision error required, that is the percentage deviation of the
confidence interval about the mean.
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Steady State or Non-terminating Simulation

Initial transient Steady state

fisteady state)

T~

/

Steady state
mean

rrrrrrrr1rrrrrrr T T T T T T T T T T T T T T

5 10 15 20 25 30 35 40 (s)
Time

In steady-state simulation we are interested in estimating measures in steady
state.

Steady state simulations are, in general, more computationally intensive than
transient simulations.

A fundamental difference between steady-state and transient simulations is that,
in the former, the transient phase should not affect the result. As transient phase
length is unknown, this is an issue to be overcome.
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Steady State or Non-terminating Simulation

In principle, independent replications may be considered for steady-state
simulation, but since the transient phase needs to be removed, this approach is

not cost-effective.

A first problem to be addressed is estimating the length of the transient phase in
order to remove it from the steady state evaluation. A basic guideline for
accomplishing that is simply removing the first &k samples.

Another approach is to observer the measure values until they seem to approach
a regular pattern. A basic guideline is to simulate long enough so that the initial
transient period becomes negligible. Obviously, this is not an efficient method.
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Steady State or Non-terminating Simulation

Three methods:

e [ntelligent initialization

e Warm-up

¢ Batch means method
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Steady State or Non-terminating Simulation

e |[ntelligent initialization: it involves initialization of the simulation
in a state that is more representative of long-run conditions.

AQS: 9.131755487162402
5T:9

A

Metric : AQS, E{#0Q}
Result:9.131759487162402

—O——f

Confidence Interval: [9.040637417842197,9.222881 55648 2607]
Error %:0.9978588403287031

Run size:1000

Mumberof Runs 721000

Total Runs 721000000

AT:10 AQS5: 9.012788373436732
5T:9

S0

A

Metric : AQS, E{#Q}
Result:9.012789373436732
Confidence Interval:[8.922897362211062,9.102681384662402]

Error %: 0.9973828023831057
RBumn size:1000

MNumberof Runs 465000
Total Runs 465000000
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Steady State or Non-terminating Simulation

¢ Warm-up: a second method involves dividing the simulation into
two phases. One of them is called the initialization phase
(warm-up) from time 0 to T, and the other is called the
data-collection phase from Ty to Ty + TE.

Measure

T time

|dentify the warm-up period as the point where the time-series becomes
flat.




Output Analysis

Steady State or Non-terminating Simulation

e Warm-up
o Ensemble average (for independent runs) becomes smoother and
more precise as the number of replications increases. This method
may additionally consider:
» Cumulative average or
» Moving average or
" [inear Regression methods.

0.9

0.8

Replications

0.7

A e e il 0.6

0.5

0.4

0.3

0.2

0.1

R L e S S s S s et R 0 time
o 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 time 2 4 5 & 7 2 9 10 11 12 12 14 15 15 1T 18 19
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Steady State or Non-terminating Simulation

t yl Y w £ kneecusuml
0 0 0 1 0.01 30|
1] 0.103451] 0.051725 2
2|  0.1556] 0.08635 3
3| 0.26272] 0.130443 4
4| 0.340089] 0.172372 5

27| 0.938762| 0.643694 28
28( 0.945423( 0.658926 29
20| 0.962281| 0.669038 30
30| 0.937825( 0.677709 31
N -up
Warm u 31| 0.969615| 0.686831 32

o Cumulative average (of long runs) becomes
yl lessvariable as more data are averaged.

1 -
0.8
0.5
0.4
0.2

0
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Steady State or Non-terminating Simulation

¢ Warm-up
o Moving averages (averages over a single run, considering a window size)
become less variable as data reach a steady state.

The moving averages are calculated using the following formula:

- where:
5 . i
) Yi(w)
A=kl s T . "
ST R Y; = time-series of output data

moving average of window size w

i = period number

L
E Yiis m = number of periods in the simulation run
y=—u

IFI 1w —|— I ceee, M — W Moving Average

L 2w + 1 _ : :

y1 Moving Average Y _w=5 Moving Average Y _w=10

0 0.051725306 0.051725306 1

0.103451 0.086350332 0.086350332 =—Nloving Average_Y_w=5
0.1556 0.130442667 0.130442667

0.26272 0.172371962 0.172371962 p g

[=]

=3

=]

—oving Average_Y_w=10

w

w
¥

0.971854 0.960028123 0.944207535
0.958565 0.958810413 0.943554449 !

B 1
0.956193 0.968504045 0.955784705 06 i

w
[}

2

W
w

0.986293 0.966758709 0.958770018 knee_Moving Average w_5=t, st<0.01 | knee_Moving Average w_10=t, 5t<0.01
0.960888 0.967279171 0.962339476 33 | A4
0.974457 0.972458327 0.966243225 0.4
0.98446 0.976661215 0.967735814
0.977207 0.97692214 0.972713093
0.987598 0.980541142 0.973649925
0.978983 0.983266254 0.975272732
0.988082 0.984445836 0.978452082
0.990358 0.98609592 0.981378568
0.985458 0.982732323 0.973827232
0.97078 0.984422279 0.98248171

gug

(3%
['=]

&

0.2

F-
=

-
%]

F=Y
[T

0
0 246 810121416182022242628303234363840424446485052545658606264666870

£

w
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Steady State or Non-terminating Simulation

o Linear Regression Approach

The linear regression approach adopts the least-squares method to
determine if the linear regression slope coefficient is approaching
zero. If the slope for a given range of observations is not close
enough to zero, then the range to a later set of observations is
considered until reaching the slope coefficient constraint. At this
point, the simulation seems to have reached the steady-state

Excel

behavior. y1 Slope_w=5 Slope_w=10
Slope Measure 0 of o0.103450613] 0.103450613
01 | 1| 0.103451] 0.077200192] 0.077200192
2| o0.1sse] 0.022030878] 0.084020878
: 3| 0.26272] 0.083944734[ 0.083944734
| a| 0.32008s] 0.071444327] 0.075976406
008 - A , .
: 14| 0.736594]  0.033836086[ 0.032198087
| 15| 0.793684]  0.00861901] 0.027467758
16| 0.71951] 0.008806412] 0.023061324
0.06 17| 0.795387]  0.01495626] 0.022255441
Slope_w=5
18| 0.810524]  0.02082943[ 0.02163266
— Slope_w=10 19| 0.852324[ 0.037148218] 0.021868104
0.04 0.876732] 0.031845881| 0.021936743
0.921487[ 0.023170696]  0.02099498
0.891796]  0.015146668| 0.022050114
0.920551]  0.007094706] 0.020109304
0.0z 0.912724] 0.000593557| 0.019908747
0.913991 0.007191863| 0.014234654
0.931035[  0.00547341 0.011476546
0 0.938762] 0.009016998 0.008353011
02 4 6 8 101214161820222426283053234536384042 4444535052 5456580062 cd66 68 28| 0.9454723 0.011096871 0.00730059
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Steady State or Non-terminating Simulation

Batch means method

Batch means method considers only a single long simulation run. We can also use
a warmup interval, during which no data are collected. Then, the remaining
observations are split into distinct batches (subsamples). These batches are then

considered as individual replications.

measure
G000 —y

S000 —
4000 — Batch maan
||'|I /

nrrrrrrr L L FrrTrrrrrmgprrrTTried
10 15 25 30 a5 40

Given a long run of N + n, observations, wheren, is the number of
observations that belong to the transient interval and are discarded, the
remaining N observations are divided intom = [N/n] batches of n observations

each.




Output Analysis Excel
Steady State or Non-terminating Simulation -
Correlation

Batch means method 4. The confidence interval for the mean is
1. Compute the means for each batch: ¥ — tmo1,2) XSEd(X] =0<=X+t, , @ XSEd(X]
L& " m " m
X, =— Xij ) i=12,..,m 5. The required number of batches is:
n _
j=1 tm1,9/ XST,E{] <€ € — absolute precision
mohfz m error required.
2. Calculate thﬂ? mean of the batch means: : y Std()?))z . - dE(XJ .
_ 1 m-1,9/, — | =€ |, _St _ X €
X=£Z?'fu—r vm ) %€ ="00 =S
Ao Std(x;) 3
m=|1lp_1a 0
3. Compute the standard deviation of the batch L5/ € £ = Std(i(é; /o€
_ 1 - _ = 2 _
Std(X) = HZ(X;_X) |, o Std(X)
*' M=\ Bmet 26 d () X %e

100

100 %€ — relative precision error
Uhe required, that is the percentage
deviation of the confidence

interval about the mean of
means.

m= (Em_ 1,8/, X
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Notice that the computation is essentially the same as it is in the method of
independent replications.

However, the method of batch means incurs less waste, since only n,
observations are discarded.

The confidence interval width is inversely proportional to+/m X n , and it can be
reduced by increasing either the number of batches m or the batch size n. The
batch size n must be large so that the batch means have little correlation.

One way to find a suitable n is to compute the correlation of successive batch
means.

As Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y],
where 2Cov[X, Y] is defined as:

Cov[X, Y] = E[(X — E[X]) x (Y — E[¥]D]

= m—1

CovlX, Y] = ﬁZ(}f—f) X (Y =)

i=1
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Then, If X andY and independent, then Cov|[X,Y] = 0. Therefore:
Var[X+ Y] = Var[X] + Var[Y].

Independent random variables have correlation 0, but correlation 0 does not
guarantee independence!

Correlation is the scale free covariance, that is:

Cov|[X,Y]

Ox0y

Cor[X, Y] =
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As X =X,andY = X,,,, where X, and X,, , are obtained from the same set X,
considering a batch size n, we have:

m—1
_ 1 _ = _ —
Cov[X;, X;iq] = mz (Xi - X) X (X1'+1 - X)
i=1

Cﬂﬁ[fufw 1]

U%9%4,

CGT[-E;: £i+1] =

These quantities are called the autocovariance and autocorrelation.

The prefix auto denotes that the fact that both random variables X; and X,,; are
member (obtained) of the same set.

This process is repeated by increasing the batch size (n) until the autocorrelation
is small.
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Correlation
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Cov(x,y)

Excel

Mathematical
Correlation
Excel

Correlationfll _Minitab

Correlation

Correlation

0.992916
0.99118
0.997277
0.995647
0.997065

0.81395439

0.0015946

0.00119362

1.85075E-06

0.81395439

0.675835448[

0.001543

0.00099995

1.31698E-06

0.675835448

0.74829857]

0.001954

I 0.000897061

1.31174E-06

0.74829857

0.629564925

0.001965

[ 0.000837061

8.83294E-07

0.501110822

0.611706872

0.001387

0.000423095

3.14296E-07

0.611706872

0.785329537

0.002034

0.000215402

3.44057E-07

0.785329337

0.442689526

0.002133

/.84 734E-06

7.42859E-09

0.442689520

0.4765804343

0.002163

2.32804E-06

2.4362E-09

0.476304343

S e R

Direct use of
Excel formula

From Cov (x,y),
5td(x) and

Std(y)
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Mathematica

Excel -
Correlationfll _Minitab
Correlation

0.99898 0.004035
R““SS 0.99982 0.002198

0.99989 U.UU1EU§/

0.99986 0.00034
0.99983  0.001267
0.99988 0.000402
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