
Pos-Graduation in Computer Science

“A Time Petri Net Based Approach for Software
Synthesis in Hard Real-Time Embedded Systems

with Multiple Processors”

By

Eduardo Antônio Guimarães Tavares

MSc Dissertation

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/∼posgraduacao

Recife, March/2006

1

FEDERAL UNIVERSITY OF PERNAMBUCO

INFORMATIC CENTER

POS-GRADUATION IN COMPUTER SCIENCE

Eduardo Antônio Guimarães Tavares

“A Time Petri Net Based Approach for Software Synthesis in

Hard Real-Time Embedded Systems with Multiple Processors”

ADVISOR: Dr. Paulo Romero Martins Maciel
CO-ADVISOR: Dr. Raimundo Barreto da Silva

Recife, March/2006

Tavares, Eduardo Antônio Guimarães
A time Petri net based approach for software synthesis in Hard

Real-Time embedded systems with multiple processors / Eduardo
Antônio Guimarães Tavares. – Recife : O Autor, 2006.

xi, 118 pages : il., fig., tab.

Dissertação (mestrado) – Universidade Federal de Pernabuco.
CIn. Ciência da Computação, 2006.

Inclui bibliografia.

1. Ciência da Computação – Sistemas Operacionais. 2. Śıntese
de Software – Sistemas de tempo real cŕıticos. 3. Redes de Petri –
Modelagem de sistemas. 4. Múltiplos processadores – Passagem de
mensagens. I. T́ıtulo.

004.415.2 CDU (2.ed.) UFPE
005.273 CDD (22.ed.) BC2006-308

This dissertation is dedicated to
my mother,

and
my sister.

i

Acknowledgments

First of all, I would like to thank God for all conquests that I have been achieving.
Also, I am very grateful to my mother, who has always encouraged me to do what I
dreamed. Many thanks to my sister, who has been at my side at all difficult moments.
Thanks to my father.

Many thanks to my advisor and friend professor Paulo Maciel. He gave me the
chance to be part of his research group, and has helped me at all moments. A spe-
cial thanks to professor and friend Raimundo Barreto who helped me at all stages of
this research. Even away from UFPE, he has never stopped to give his support and
encouragement; to professor Meuse Oliveira Jr. who provided the hardware implemen-
tation for validating the experiments; to Fernando Rocha and Bruno Souza for testing
and validating the experiments; to professor Ricardo Massa who helped with valuable
reviews; to all members of our research group (MODCS - Modeling of Distributed and
Concurrent Systems); and to Tomaz Barros for his valuable contribution and service
as a comittee member.

Thanks to several colleagues I made at CIn/UFPE. In order to not forget any name,
feel acknowledged all who read this dissertation. Thanks to all professors and staff in
the center for informatics.

ii

Resumo

Atualmente, sistemas embarcados são ub́ıquos. Em outras palavras, eles estão em
todos os lugares. Desde utilitários domésticos (ex: fornos microondas, refrigeradores,
videocassetes, máquinas de fax, máquinas de lavar roupa, alarmes) até equipamentos
militares (ex: mı́sseis guiados, satélites espiões, sondas espaciais, aeronaves), nós pode-
mos encontrar um sistema embarcado. Desnecessário afirmar que a vida humana tem
se tornado mais e mais dependente desses sistemas.

Alguns sistemas embarcados são classificados como sistemas de tempo real, onde
o comportamento correto depende não somente da integridade dos resultados, mas
também nos tempos em que tais resultados são produzidos. Em sistemas embarcados
de tempo real cŕıticos, se as restrições temporais não forem satisfeitas, as conseqüências
podem ser desastrosas, incluindo grandes danos aos equipamentos ou mesmo perdas
de vidas humanas.

Devido a tarefas que possuem alta taxa de utilização de processador, alguns sistemas
embarcados (ex: dispositivos médicos) precisam ser compostos de mais de um proces-
sador para obter performance aceitável e, no caso de sistemas embarcados de tempo
real cŕıticos, para satisfazer as restrições temporais cŕıticas. Entretanto, questões adi-
cionais precisam ser consideradas para lidar com um ambiente multiprocessado, tal
como comunicação entre processadores e sincronização .

Nessa dissertação, um método de śıntese de software baseado no formalismo matemá-
tico redes de Petri com tempo é apresentado para lidar com sistemas embarcardos de
tempo real cŕıticos com múltiplos processadores. A abordagem inicia a partir de uma
especificação (usualmente composta de tarefas concorrentes e comunicantes) e auto-
maticamente gera o código fonte de um programa considerando: (i) as funcionalidades
e restrições; e (ii) o suporte operacional para execução das tarefas em um ambiente
multiprocessado. Śıntese de software é uma alternativa para sistemas operacionais es-
pecializados para dar suporte a execução de um programa. Sistemas operacionais são
usualmente genéricos e podem introduzir atrasos no tempo de execução, e ao mesmo
tempo produzir alto consumo de memória. Por outro lado, a śıntese de software é uma
alternativa de projeto, dado que este método automaticamente gera o código fonte
do programa, satisfazendo a funcionalidade, as restrições especificadas, o suporte para
execução, e a minimização dos atrasos e uso de memória.

iii

Abstract

Nowadays, embedded systems are ubiquitous. In other words, they are everywhere.
From household appliances (e.g. microwave ovens, refrigerators, VCRs, fax machines,
dishwashers, burglar alarms) to military equipments (e.g. guide missiles, spy satellites,
deep-space probes, aircrafts), we may find an embedded system. Needless to say, the
human life has become more and more dependent of these systems.

Some embedded systems are classified as real-time systems, where the correct be-
havior depends not only on the integrity of the results, but also on the time in which
such results are produced. In hard real-time systems (e.g. medical devices), if timing
constraints are not met, the consequences can be disastrous, including great damage
of resources or even loss of human lives.

Due to CPU-bound tasks, some embedded systems (e.g. medical devices) need to
be composed of more than one processor for achieving acceptable performance and, in
the case of hard real-time embedded systems, for meeting stringent timing constraints.
However, additional issues should be considered when dealing with a multiprocessing
environment, such as inter-processor communication and synchronization.

In this dissertation, a software synthesis method based on a mathematical formal-
ism, namely, time Petri Net, is presented for handling hard real-time embedded systems
with multiple processors. The approach starts from a specification (usually composed
of concurrent and communicating tasks) and automatically generates a program source
code considering: (i) the functionalities and constraints; and (ii) the operational sup-
port to the tasks’ execution in a multiprocessing environment. Software synthesis is
an alternative to specialized operating system for supporting the software execution.
Operating systems are usually very general and may introduce delays in the execution
time, at the same time in which produces a higher rate of memory utilization. On
the other hand, the software synthesis is a design alternative, since this method auto-
matically generates the program source code, satisfying the functionality, the specified
constraints, the typical runtime support, and the minimization of both delays and use
of memory.

iv

Contents

1 Introduction 1
1.1 Problem Description . 2
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Proposed Method . 4
1.5 Contributions . 6
1.6 Outline . 6

2 Background 7
2.1 Embedded Systems . 7

2.1.1 Hardware-Software Codesign . 8
2.1.2 Embedded Software . 10

2.2 Real-Time Systems . 13
2.2.1 Characteristics of Real-Time Systems 13
2.2.2 Types of Real-Time Systems . 14
2.2.3 Types of Real-Time Tasks . 15
2.2.4 Specification and Verification of Real-Time Systems 15

2.3 Scheduling in real-time systems . 16
2.3.1 Runtime Method . 16
2.3.2 Pre-runtime method . 17
2.3.3 Runtime versus Pre-runtime Scheduling 18

2.4 Summary . 19

3 Related Works 20
3.1 Code Generation for a Single Processor 20
3.2 Code Generation for Multiple Processors 22
3.3 Summary . 24

4 Petri Nets 26
4.1 Introduction . 26
4.2 Place-Transition Net . 27

v

4.2.1 Transition Enabling and Firing 28
4.2.2 Elementary Nets . 30
4.2.3 Petri Net Subclasses . 32

4.3 Modeling with Petri Nets . 34
4.3.1 Parallel Processes . 34
4.3.2 Mutual Exclusion . 35
4.3.3 Communication Protocols . 35
4.3.4 Producer-Consumer . 35
4.3.5 Dining Philosophers . 36

4.4 Time Extensions . 37
4.5 Petri nets Properties . 39

4.5.1 Behavioral Properties . 39
4.5.2 Structural Properties . 41
4.5.3 Coverability (Reachability) Tree 42

4.6 Summary . 43

5 Modeling Embedded Hard Real-Time Systems 44
5.1 Formal Model . 44
5.2 Specification Model . 48

5.2.1 Task Constraints Specification 48
5.2.2 Inter-tasks Relations . 49
5.2.3 Scheduling Method . 50
5.2.4 Task Source Code . 50
5.2.5 Communication Task . 50
5.2.6 Specification Example . 51

5.3 Modeling the Specification . 51
5.3.1 Scheduling Period . 52
5.3.2 Composition Rules . 52
5.3.3 Tasks’ Modeling . 57
5.3.4 Inter-processor Communication 62

5.4 Summary . 69

6 Software Synthesis 71
6.1 Scheduling Synthesis . 71

6.1.1 Minimizing State Space Size . 72
6.1.2 Pre-Runtime Scheduling Algorithm 73
6.1.3 Application of the Algorithm 75

6.2 Scheduled Code Generator Framework for One Processor 76
6.2.1 Scheduled Code Generation . 77

6.3 Scheduled Code Generation Framework for Multiple Processors 80

vi

6.3.1 An Architecture for Embedded Hard Real-Time Systems with
Multiple Processors . 80

6.3.2 Scheduled Code generation . 82
6.4 Summary . 94

7 Experiments 96
7.1 Simple Control Application . 96
7.2 Pulse Oximeter . 99
7.3 Vehicle Monitoring System . 105
7.4 Summary . 110

8 Conclusions 111
8.1 Contributions . 111
8.2 Future Works . 113

vii

List of Figures

1.1 Proposed Software Synthesis Methodology Phases 5

2.1 Main Phases of a Hardware-Software Codesign Methodology 9
2.2 Comparison between runtime and pre-runtime scheduling 19

4.1 The Basic Components of a Petri Net: (a) place, (b) arc, (c) transition,
and (d) token . 27

4.2 Petri net. (a) Mathematical formalism; (b) Graphical representation
before firing of t1; (c) Graphical representation after firing of t1 29

4.3 Source and sink transition before and after the firing 30
4.4 Self-Loop . 30
4.5 Elementary Structures . 30
4.6 Confusions. (a) symmetric confusion; (b) asymmetric confusion 32
4.7 Five fundamental Petri net subclasses 34
4.8 Transitions T1 and T2 represents parallel activities 34
4.9 Mutual Exclusion . 35
4.10 Communication Protocols . 36
4.11 Producer/Consumer . 36
4.12 Dining Philosophers . 37

5.1 A Simple Example of Time Petri Net: (a) initial marking (m0); (b) new
marking after firing of t0 . 45

5.2 An Example of Place Merging . 53
5.3 Place Refinement . 54
5.4 Building Block Arrival . 57
5.5 Non-Preemptive Task Structure Building Block 58
5.6 Preemptive Task Structure Building Block 58
5.7 Deadline Checking Building Block . 58
5.8 Resources Modeling: (a) Processor; (b) Bus 59
5.9 Building Block Fork . 59
5.10 Building Block Join . 60
5.11 Complete Model for τ0 and τ1 Non-preemptive Tasks 61

viii

5.12 Precedence Relation Model Example 62
5.13 Exclusion Relation Model Example . 62
5.14 Building Block Message Sending . 64
5.15 Modeling of the Sending and Receiving Tasks 66
5.16 Modeling of two communication tasks 69
5.17 A Simple Example of Inter-processor Communication 70

6.1 Scheduling Synthesis Algorithm . 73
6.2 State Structure . 74
6.3 State Compressed Structure . 74
6.4 State example . 75
6.5 Compressed State example . 75
6.6 TPN for the task set in Table 6.2 . 76
6.7 Proposed Code Generator Overview . 77
6.8 Simplified Version of the Dispatcher . 79
6.9 Example of a Schedule Table . 79
6.10 Timing Diagram for Schedule Table in Figure 6.9 80
6.11 Shared-Clock Schedulers Using External Interrupts 81
6.12 Proposed Multicomputer Architecture 82
6.13 Proposed Architecture using 8051 Microcontroller 83
6.14 Proposed Code Generation Overview 85
6.15 Simplified Version of the CTC Processor Dispatcher 86
6.16 Simplified Version of the Node Processor Dispatcher 87
6.17 TPN for the task specification in Table 6.3 88
6.18 Timing Diagram Considering Both Processors 89
6.19 Generated code for the node processor 1 89
6.20 Generated code for the node processor 2 89
6.21 Generated code for the CTC processor 90
6.22 TPN for the task specification in Table 6.4 91
6.23 Timing Diagram for the TPN Model in Figure 6.22 92
6.24 Generated code for the node processor 1 92
6.25 Generated code for the node processor 2 92
6.26 Generated code for the node processor 3 93
6.27 Generated code for the CTC processor 93
6.28 Proposed Architecture with four 8051 Microcontroller 94

7.1 The Simple Control Application Graph 97
7.2 Simplified Simple Control Application Time Petri Net Model 98
7.3 Timing Diagram for the Simple Control 99
7.4 Simple Control Generated Code for Node Processor 1 100
7.5 Simple Control Generated Code for Node Processor 2 101

ix

7.6 Simple Control Generated Code for Node Processor 3 102
7.7 Simple Control Generated Code for Node Processor 4 102
7.8 Simple Control Generated Code for CTC Processor 103
7.9 Pulse Oximeter Architecture . 105
7.10 Pulse Oximeter Timing Diagram . 105
7.11 Pulse Oximeter Generated Code for CTC Processor 106
7.12 Pulse Oximeter Generated Code for Node Processor 1 107
7.13 Pulse Oximeter Generated Code for Node Processor 2 107
7.14 Timing Diagram for the Vehicle Monitoring System 108
7.15 Code for the node processor 1 . 109
7.16 Code for the node processor 2 . 109
7.17 Code for the CTC processor . 110

x

List of Tables

4.1 Interpretation for places and transitions 28

5.1 Specification Example . 51
5.2 Timing Constraints for a Simple Task Set 52
5.3 Modified Timing Constraints for a Simple Task Set 52
5.4 A Simple Example of Task Timing Specification with Two Communica-

tion Tasks . 68

6.1 Choice-priorities for each transition class 72
6.2 Simple Specification . 75
6.3 Task Timing Specification Considering 2 Processors 87
6.4 Task Timing Specification Considering 2 Communication Tasks 90

7.1 Compressing Function Experimental Results 97
7.2 Task Set for the Simple Control Application 98
7.3 Task Specification for the Pulse Oximeter 104
7.4 Task Timing Specification of Considering 2 Processors 108

xi

Chapter 1

Introduction

Nowadays, embedded systems are ubiquitous. In other words, they are everywhere.
From household appliances (e.g. microwave ovens, refrigerators, VCRs, fax machines,
dishwashers, burglar alarms) to military equipments (e.g. guide missiles, spy satellites,
deep-space probes, aircrafts), we may find an embedded system. Needless to say, the
human life has become more and more dependent of these systems.

Depending on the purpose of the application, the design of embedded systems
may have to take into account several constraints, for instance, time, size, weight,
cost, reliability and energy consumption. Additionally, many embedded systems need
to be composed of more than one processor, since some CPU-bound tasks surpass the
computation power of a single processor. In this way, other issues should be considered,
for instance, inter-processor communication and synchronization.

Embedded systems that have timing constraints are classified as real-time systems
(e.g. cell phones and medical devices). In real-time systems, not only is the logical
result of the computation important, but also the time in which it was obtained [46].
Such systems are categorized as hard or soft real-time systems. In soft real-time sys-
tems, timing constraints may occasionally not be reached. In this case, the system may
just degradate its behavior and this may be tolerated. On the other hand, consequences
can be disastrous in hard real-time systems, which is the focus of this dissertation, if
timing constraints are not met. In this case, the consequences can be resource damages
or even loss of human life.

Lately, the automatic synthesis of embedded software has been receiving much at-
tention. According to [40], most part of an embedded system is composed of software,
more specifically, more than 80% of functionalities considering standard embedded sys-
tems. This leads to a software-oriented design, which leverages some advantages such
as flexibility, lower cost and accessibility. However, not many works deal with em-
bedded software synthesis, more specifically, time-critical embedded software synthesis
considering multiple processors. Generating code that guarantees meeting all timing
and resource constraints is not a trivial task, even more when considering multiple

1

CHAPTER 1. INTRODUCTION 2

processors. This research area has several open issues, mainly related to generation
of predictable scheduled code considering multiple processors . In order to cope with
those stringent requirements, formal development methodologies play an important
role.

1.1 Problem Description

According to Cornero et.al. [12], software synthesis is the task of converting auto-
matically a specification (typically composed of concurrent and communicating tasks)
into a software considering: (i) the specified functionalities; and (ii) the typical runtime
support required. In other words, the software synthesis method translates a high-level
specification into a program source code with all the operational support code required
for its execution.

Software synthesis is necessary since specifications have special characteristics which
are not found in traditional programming languages. For instance, specifications are
generally composed of several concurrent tasks, so, scheduling and synchronization
of multiple tasks are important issues. Considering multiple processors, additional
issues should be considered, such as inter-processor communications. In this particular
situation, software synthesis should provide an appropriate scheduler, in such a way
that all specification constraints are satisfied. Thus, software synthesis consists of two
main activities [12]: (i) task handling, and (ii) code generation. Task handling takes
into account tasks scheduling, resource management, and intertask communication.
Code generation is responsible for static generation of source code for each individual
task.

In general, complex systems adopt a specialized operating system to support the
software. However, this solution is very general and usually introduces overheads,
mainly in execution time and memory requirements. On the other hand, the software
synthesis method is an alternative to such operating systems usage, since this method
automatically generates customized codes, in such a way that all constraints are met
and overheads are minimized.

The problem considered in this dissertation is software synthesis for hard real-time
embedded systems with multiple processors.

1.2 Motivation

Hard real-time embedded systems have stringent timing constraints that must be met
for the correct functioning of the system. Some of these systems need to be composed
of more than one processor in order to satisfy all timing constraints.

CHAPTER 1. INTRODUCTION 3

It is not a trivial task developing software for hard-real time embedded systems,
even more when considering multiple processors. In many embedded systems, the
adoption of multiple processors is a feasible solution:

• some systems are composed of several critical tasks that are CPU-bound. For
ensuring that all deadlines are met, critical tasks must be placed on different
processors. As an simple example, sampling a keyboard might interfere with the
calculation of the oxygen saturation in a pulse oximeter;

• using several small processors may be cheaper than using one large CPU. In
many cases, several 8-bit controllers can be purchased for the price of one 32-bit
processor.

• many embedded computing systems require a large number of devices. Imple-
menting the device interfaces through a set of microcontrollers may result in a
low cost and flexible project.

Additionally, the market pressure has demanded, at the same time, high complex
applications, and short time-to-market. Software synthesis methods play an important
role, since code can be generated automatically, meeting all timing constraints and
handling all inter-processor communication issues. Moreover, adopting formal methods
in the software synthesis permits the verification and analysis of properties as well as
facilitate system validation.

An alternative method is hand-crafted solutions. However, this alternative is error-
prone, very time consuming, and generally leads to unacceptable results when consid-
ering hard real-time systems.

1.3 Objectives

Considering the problem stated previously, the main objective of this dissertation is to
propose a methodology starting from a high-level specification, translating such specifi-
cation into a predictable source code taking in account a multiprocessing environment.

More specifically, the objectives are:

1. proposing a specification model that captures code, timing constraints, inter-
task relations (such as precedence and exclusion relations), and inter-processor
communications;

2. modeling the specification using a formal method;

3. providing a scheduling synthesis framework that produces schedules guaranteeing
that timing, precedence and exclusion constraints, and inter-processor communi-
cations are satisfied;

CHAPTER 1. INTRODUCTION 4

4. developing a code generator for multiple processors that generates scheduled code
with guaranteeing that the implemented code satisfies the specified properties.

1.4 Proposed Method

The specification is composed of a set of tasks, which may be executed in one or
more processors. For each task, timing constraints are specified, as well as inter-task
relations, scheduling method, and allocation of task to processors. Additionally, inter-
processor communications need to be considered. This dissertation represents each
inter-processor communication as a special task, namely, communication task.

In this work, the system’s tasks are modeled using a transition-annotated time Petri
nets (TPN), that is, a time Petri net with code associated with transitions. The TPN
model is used in the scheduling phase, which adopts the pre-runtime scheduling policy.
In hard real-time systems, pre-runtime scheduling may provide better results than
runtime policies, mainly when considering inter-task relations. In other words, pre-
runtime policies are more predictable than runtime methods, therefore more suitable
to hard real-time systems. Starting from a TPN model, a feasible schedule (one that
satisfies all constraints) is synthesized, and a scheduled code is generated in accordance
with the found schedule.

The generated code can be seen as a cyclic executive[5], since tasks are recurrently
executed in accordance with the previously computed schedule. Cyclic executive con-
sists of a single control loop where the execution of several periodic process is statically
interleaved (or scheduled) on each CPU. The interleaving is done in a deterministic
fashion so that execution time is predictable.

Figure 1.1 presents a diagram of the phases composing the proposed methodology.
The phases are:

• Specification. The specification is composed of a set of tasks. Each task con-
tains: (i) timing constraints (phase, release time, worst-case execution time, dead-
line, and period); (ii) scheduling method (preemptive or non-preemptive); (iii)
inter-tasks relations, such as precedence and exclusion relations; (iv) processor
allocated; and (v) source code. As described before, an inter-processor commu-
nication is represented by a special task, namely, communication task. Each
communication task contains: (i) communication worst-case time; (ii) bus (the
channel); (iii) sender; and (iv) receiver.

• Modeling. This phase deals with the translation from specifications to the
respective time Petri net (TPN) models. This modeling is based on building
blocks composition. There are specific blocks for modeling the task structure
(preemptive or non-preemptive), deadline-checking, processor(s), communication
channel(s), periodic arrival of tasks, precedence relations, exclusion relations, and

CHAPTER 1. INTRODUCTION 5

MODELING

Annotated
TPN Model

SCHEDULING
SYNTHESIS

CODE
GENERATION

Scheduled
Code

Scheduling

User
Requirements

USER REQUIREMENTS ANALYSIS

Code of Tasks Scheduling
Method

Timing
Constraints

Inter-task
Relations

Allocation
Task-Processors

Inter-Processor
Communications

Hardware
Architecture
Description

Behavioral
Specification

Constraints
Specification

#Processors

Topology,
ID of processors

Figure 1.1: Proposed Software Synthesis Methodology Phases

inter-processor communication between tasks. The resulting model is considered
in the scheduling synthesis phase. Part of this model, that is the code of tasks,
is also used in the code generation phase.

• Scheduling Synthesis. Since this work deals with time-critical systems, a pre-
runtime scheduling is adopted. Starting from the TPN model, a schedule is
entirely computed during design time. This work adopts the algorithm proposed
by Barreto [8], which is based on depth-first search method.

• Code Generation. This phase aims to generate the respective scheduled code,

CHAPTER 1. INTRODUCTION 6

considering the previously computed schedule. In addition to the tasks’ code, the
runtime support is also taken into account in the code generation phase. In this
work, a special architecture is adopted to provide real-time clock synchronization
between processors .

1.5 Contributions

This dissertation presents a methodology for development of predictable scheduled code
for hard real-time embedded systems with multiple processors. This work extends the
approach proposed by Barreto [8] for dealing with a multiprocessing environment.
Specific contributions are depicted as follows:

1. Modeling. The proposed method translates the specification into a time Petri
net model. As stated before, the modeling phase is based on composition of
building blocks. This dissertation defines a new block, namely, the inter-processor
comunication block.

2. Schedule Synthesis. The pre-runtime scheduling algorithm presented in [8]
adopts a tagging scheme in order to avoid visiting a state more than once. Al-
though this solution improves the algorithm execution, the tagging scheme needs
to save all visited states in the memory, leading to a huge memory consumption.
In this dissertation, a compressing function is utilized to mitigate such problem.

3. Code Generation. This dissertation presents a code generation framework for
embedded hard real-time systems with multiple processors, that considers release
time, deadline, periods, arbitrary precedence and exclusion relations, and inter-
processor communications.

1.6 Outline

Chapter 2 overviews the main concepts of concern in this dissertation, such as embed-
ded systems, real-time systems, and scheduling. Chapter 3 reviews the related works,
and Chapter 4 introduces Petri nets. Afterwards, Chapter 5 describes the method
for modeling embedded hard real-time systems. Next, Chapter 6 explains the method
for synthesizing the software. Chapter 7 shows experiments conducted using the pro-
posed methodology. Finally, Chapter 8 concludes this dissertation and presents future
works.

Chapter 2

Background

This chapter introduces the main concepts needed to the understanding of this disser-
tation. Firstly, an overview of embedded systems is presented. Next, concepts related
to real-time systems are shown. Finally, the relevant scheduling methods for real-time
systems are described.

2.1 Embedded Systems

According to [53], an embedded system is a system whose principal function is not
computational, but which is controlled by a computer embedded within it. Such com-
puter maybe a microprocessor or microcontroller. The meaning of the word embedded
implies that the computer lies inside the overall system, hidden from view, forming an
integral part of a greater whole. As a result, the user may be unaware of the computer’s
existence. Unlike a general-purpose personal computer, embedded system computer is
usually purpose designed, or at least customized, for the single function of controlling
its system. Besides, embedded systems do not terminate, unless it fails [27].

Nowadays, embedded systems are everywhere, from home appliances to spaceships.
More specifically, we may find an embedded system in washing machines, dishwash-
ers, microwave ovens, burglar alarms, avionics, and so on. Due to this diversity of
applications, the design of embedded systems can be subject to many different types
of constraints, including timing, size, weight, power consumption, reliability, and cost.

Originally, most part of embedded systems were hardware-based, using for instance
ASICs (Application Specific Integrated Circuit). However, the technology evolved, pro-
cessors increased computational power and, correspondingly, decreased size and cost.
Consequently, the software is responsible for 80% of an embedded system development
nowadays [40]. The moving of functionalites from hardware to software brings some
advantages such as flexibility, lower cost, and accessibility. On the other hand, func-
tionalities implemented in hardware still have better performance and consume less

7

CHAPTER 2. BACKGROUND 8

energy.
Over the last years, the market pressure has demanded, at the same time, high

complexity embedded systems, and short time-to-market. In order to cope with these
issues, design methodologies play an important role. There are some methodologies
that have been used for embedded systems development. However, this work only
concentrates on hardware-software co-design [18, 52, 54, 16, 26, 32], which is detailed
in the next section.

2.1.1 Hardware-Software Codesign

Hardware/Software Codesign can be defined as the cooperative design of hardware
and software. One of the purposes of such methodology is to deal with the problem
of designing heterogeneous systems. Additionally, codesign aims to reduce time-to-
market, the design effort and costs of the designed system.

One important concern in codesign methodologies is the process of selecting which
functionalities should be implemented in software and in hardware. Several advan-
tages may be obtained using software, since it is more flexible and cheaper than hard-
ware. This flexibility allows late design changes and simplified debugging opportunities.
Moreover, the possibility of reusing software by porting it to other processors, reduces
the time-to-market and the design effort. Finally, in most cases, the processor-based
implementation is cheaper compared to the development costs of ASICs, because pro-
cessors are often produced in high-volume, leading to a significant price reduction.
However, hardware is always used by the designer when processors are not able to
meet the required performance and energy constraints.

Codesign Phases

A hardware-software codesign methodology may be depicted by four main phases (Fig-
ure 2.1): Specification, Partitioning, Co-Synthesis, and Estimation Analysis and Vali-
dation. These phases are described below:

a) Specification. This phase describes the system requirements at a high abstrac-
tion level, taking into account functional and non-functional requirements. Such
description should be performed using an appropriate language or formalism.

b) Partitioning. This phase selects functionalities that should be implemented in
hardware or in software. Such process can be executed either manually, auto-
matically, or combining both approaches. The output of this phase is a set of
communicating modules, where some of them should be implemented in hard-
ware and others in software. Partitioning methods often take into account quality
metrics as mean for partitioning the system specification.

CHAPTER 2. BACKGROUND 9

Figure 2.1: Main Phases of a Hardware-Software Codesign Methodology

c) Co-Synthesis. The co-synthesis phase maps the partitioning output into a real
prototype in such a way that all system constraints are satisfied. The synthesis
decisions might be considered in this phase. For instance, the specific processor
to be used, the interconnection network, communication protocols, interface be-
tween hardware and software, concurrent processes scheduling, and so on. This
phase comprises the hardware synthesis, software synthesis and the interface syn-
thesis (when one module is implemented in hardware and the other in software)
and communication synthesis (when both modules are implemented in software
but in different processors).

d) Estimation and Validation. The analysis of a system consists of providing several
quality metrics. These estimations are evaluated in order to make good design
decisions. The validation can be carried out after each phase, since before each
design refinement, the product of each phase may be validated through simulation
or considering a real prototype evaluation. Once systems having hardware and
software components are considered, this methodology may require the interac-
tion between different simulation environments in a process called co-simulation.
In this case, the methodology should permit the concurrent utilization of several
simulators.

CHAPTER 2. BACKGROUND 10

2.1.2 Embedded Software

Over the last years, embedded systems have enlarged their functionalities and complex-
ity, in such a way that the development time has become hard to predict and control.
The increasing complexity along with evolving specifications has forced designers to
consider implementations that can be easily modified. Because hardware manufac-
turing is expensive and time consuming, much attention has been given to embedded
software recently. Moving functionalities from hardware to software has been possible
since processors have increased computational power and decreased the size and cost.

According to [40], nowadays, software accounts for more than 80% of a embed-
ded system development. Differently from PC-like software applications, embedded
softwares may have to take into account several constraints such as reaction speed,
memory footprint, power consumption, and so on. In this way, traditional software
design methodologies can not be applied directly to the development of embedded
softwares.

Problems with Embedded Software

In [40], Sangiovanni-Vincentelli and Martin present some problems related to the de-
velopment of embedded software, which are summarized below.

Embedded software also has some drawbacks in spite of providing more flexibility
than hardware. One of these drawbacks is related to performance, since hardware
implementations can provide better response time than software. For dealing with
performance issues, programmers usually adopt hand-crafted solutions using low-level
programming languages, such as C or assembly. Nevertheless, these solutions may
affect the time-to-market, readability, and maintainability of the resultant software.
In addition, the tools utilized for developing embedded systems are basically the same
as those for PC-like software applications. However, embedded software also needs
hardware support for debugging and performance evaluation, which are more important
for embedded software than PC-like software applications.

Another drawback is the increasing difficulty in verifying design correctness in em-
bedded software. Such verification is critical, since several application domains, such
as transportation and environment monitoring, are characterized by safety considera-
tions. Moreover, little attention has been given to hard real-time constraints, memory
utilization, and power consumption of embedded software.

Many companies have adopted object-oriented and other syntactically driven meth-
ods. Such methods are certainly very important for dealing with embedded software
structure and documentation, but they are not sufficient for guaranteeing quality as-
surance and meeting time-to-market.

CHAPTER 2. BACKGROUND 11

Embedded Software Design Methodology

Considering a simple embedded software implementation, there is no need for a sophis-
ticated design method. Nevertheless, taking into account complex embedded software
applications, primitive methods becomes a bottleneck.

Recently, much attention has been given to embedded software, more specifically,
embedded software development methodologies. In [41], Sangiovanni-Vicentelli and
Martin describe the challenges, which a software development methodology has to
consider:

• reusing;

• hardware/software co-design;

• modeling non-functional properties;

• extensive use of software components;

• system and SW architecture;

• system level validation and verification;

• adoption of HW and SW reconfigurable architectures and component plug and
play;

• composition of SW systems using reusable SW components;

• support for parallel development via integration technology

• development of process standards and common workflows.

Summarizing, Sangiovanni-Vicentelli and Martin envision a embedded software de-
sign methodology that have an optimized, semi-automated, transparent, verifiable, and

mathematically correct flow from product specification through to implementation for

software-dominated products implemented with highly programmable platform.
This section depicts the main stages of design (specification, refinement and de-

composition, and analysis), implementation (target platform definition, mapping, and
links to implementation) and verification, considering the software project perspective.

Specification

Specification is the entry point of the design process. It should contain three basic
elements:

CHAPTER 2. BACKGROUND 12

• description of the system functionality without implying an implementation. This
description should be expressed using a formalism, in such a way that ambiguity
is avoided;

• a set of constraints that have to be satisfied by the final implementation of the
system. Example of constraints are weight, cost, size, and so on; and

• A set of design criteria. The difference between constraints and criteria is that
constraints have to be met (e.g. maximum power dissipation allowed), while
criteria you do your best to optimize it (e.g. higher autonomy).

Refinement and Decomposition

Once a specification is obtained, the design process should progress toward implemen-
tation via well-defined stages. The idea is to manipulate the description by introducing
additional details while preserving the original functionality, its properties and meeting
the constraints. Considering smaller steps, it is easier to formally prove that constraints
are met and properties are satisfied. This process is called successive refinement. It is
one of the main features of embedded software design methodology proposed in [40].

Moreover, it is often convenient to split parts of the design description in smaller
parts so that optimization techniques might have a large design space and hence bet-
ter chance of producing interesting results. This is called decomposition. The main
idea is to determine whether the decomposed system satisfies the original specification
The designer, however, should be concerned that larger design space demands longer
evaluation.

Analysis

While advancing in the direction of the final implementation, designers may take deci-
sions that lead to designs that do not satisfy some of the constraints. In this way, the
adoption of tools is extremely important, in such a way that intermediate results are
evaluated with respect to such constraints.

Target Platform Definition

Because most embedded systems are defined to map onto a target platform, it is essen-
tial to find the right specification form and notations with which a target platform can
be described. When a platform offers re-configurable logic, new methods of describing
the service and configuration are required.

CHAPTER 2. BACKGROUND 13

Mapping

The mapping associates parts of the specification (generally refined) with specific im-
plementation components of the target platform.

Link to Implementation

The implementation process comprises not only the selection of reusable components,
but also generation of software for programmable components, generation of the static
or dynamic configuration of reconfigurable hardware, and generation of the synthesis
of appropriate hardware modules. Although the selection of the components could
be done by hand, part of the work for obtaining an implementation should indeed be
automatically done for minimizing human errors and for optimizing productivity.

Verification

This phase consists of verifying if the system is in accordance with the original spec-
ification. The adoption of formal specification makes easier the application of formal
methods and may eliminate the need for verifying properties that are satisfied by
construction. Moreover, automatic synthesis can reduce the need for implementation
verification.

2.2 Real-Time Systems

There are several embedded systems for many different purposes, such as home ap-
pliances, guide missiles, medical devices, and so on. Some of these systems are time
sensitive, in the sense that not only is the logical result of the computation impor-
tant, but also the time in which the results are produced [46]. These systems are
denominated real-time systems. Two approaches have been adopted for designing such
systems: event-triggered and time-triggered. In event-triggered systems, the system
promptly reacts to external events. On the other hand, time-triggered systems react
to external events at predetermined time instants [25].

It is worth explaining that real-time computing is not fast computing. Fast com-
puting aims to get the results as fast as possible, while real-time computing aims at
obtaining the results within prescribed timing constraints.

2.2.1 Characteristics of Real-Time Systems

Real time systems are characterized by the timely response to external stimuli, pre-
dictable behavior, dependability or robustness, accuracy of the outputs, and concur-

CHAPTER 2. BACKGROUND 14

rency [46]. This section overviews each characteristic.
Timely Response. The most important characteristic of a real-time system is that

it must respond to some external stimuli within prescribed time constraints. Getting
a correct output is not the only goal. This output must also be produced in a timely
manner otherwise disastrous consequences may arise.

Predictability. Another requirement of real-time systems is that they must have
predictable performance. Each execution of the system should run in a more or less
similar manner, and one should be able to deterministically say when each of the tasks
is executed.

Robustness. The system should be immune to minor changes in its state and
should be able to run without degradation as when it was originally designed. In this
way, machine overloads, execution delays, change in environment, and hardware failure
should be dealt with in such a way that the overall system performance is not degraded.

Accuracy. Not only the system should be predictable and dependable, but it
should also give accurate results. In case of most real-time systems, inaccurate results
can be as bad as not meeting timing constraints and also can have serious conse-
quences. Sometimes it is impossible to compute accurate results in the given timing
constraints. In this way, a trade-off between computation time and accuracy results is
very important.

Concurrency. Viewing a real-time system as a collection of concurrent process is
quite common. Real-time systems should be distributed and provide parallel process-
ing, since a system may have multiple sensors, each independent of the other, providing
stimuli to the system and requiring response from the system within a given time frame.

Nevertheless, parallelism in real-time systems introduces additional complexities,
such as: (i) parallel process must be scheduled correctly to meet timing constraints;
(ii) synchronization between tasks in such environment may not be easy; (iii) commu-
nication models can introduce significant amount of overhead into the system; and (iv)
the system is more susceptible to failures, since there are several processing units.

2.2.2 Types of Real-Time Systems

Real-time systems can be classified into two categories: hard real-time systems and
soft real-time systems. The main difference between both types is the stringency of
the predictability requirements.

Hard real-time systems require guaranteed predictable responses and behaviors.
These systems are also called safety-critical real-time systems, since they are often
used to control life-critical operations. In such cases, any deadline missing may result
disastrous consequences, or even loss of human life. Moreover, any lateness in the
execution of hard real-time tasks is not allowed under any circumstances, and such
systems also have to employ a high degree of robustness and fault tolerance. Examples

CHAPTER 2. BACKGROUND 15

of hard real-time systems are aircraft navigation, medical devices, nuclear power plant
control, and so on.

Differently, soft real-time systems have a trade-off between computation time and
the accuracy of the desired results. In such systems, if a timing constraint is not
met, nothing critical happens, the system may only have its performance degraded.
Examples of soft real-time systems are on-line transaction systems, electronic games,
telephone switches, and so on.

2.2.3 Types of Real-Time Tasks

In real-time systems, there are, generally, three types of tasks:

• Periodic tasks perform a computation that are executed once in each fixed period
of time;

• Aperiodic tasks are activated randomly;

• Sporadic tasks are executed randomly, but the minimum interval between two
consecutive activations is known a priori.

In order to provide predictability in hard-real-time systems, the timing constraints
of all tasks must be previously known, otherwise it is impossible to guarantee that all
constraints will be met [56]. In this way, periodic and sporadic tasks are the most
adopted tasks in hard real-time systems. The timing constraints of a periodic task
is generally composed of periodicity, computation time (worst case execution time -
WCET), deadline (the maximum time by which a task must finish its execution in a
period) and release time (the earliest time that a task can start in a period). Timing
constraints of sporadic tasks are composed of its computation time, deadline, and the
minimum interval between two activations.

It is worth explaining that worst case execution time (WCET) of each task must
be known previously, since its the only way to guarantee that each task finishes its
execution before reaching its respective deadline [25]. The WCET is an upper bound
for the time interval between task’s activation and task’s termination instants. This
period (WCET) must be valid for all possible input data and execution scenarios of
the task.

2.2.4 Specification and Verification of Real-Time Systems

As stated by Singhal [46], the fundamental challenge in the specification and verifica-
tion of real-time systems is how to incorporate the time metric. Formal methods must
be developed to incorporate these timing criteria into the specifications of a real-time

CHAPTER 2. BACKGROUND 16

system specification. Additionally, verification methods must guarantee that these tim-
ing constraints are being met and that the system is robust, predictable and accurate.
Such problem is made even more difficult in the face of concurrency issues inherently
present in real-time applications.

Many formal methods for specifying, analyzing, and verifying real-time systems
have been proposed over the years. Most of them have not being adopted due to two
main reasons: (i) the difficulty of using such formalisms; and (ii) the lack of enthusiasm
from the developers’ community. Nevertheless, this should not take away from their
importance in real-time systems, since many accidents can be avoided if formal methods
are adopted [43, 46].

2.3 Scheduling in real-time systems

Real-time systems are generally composed of a set of concurrent tasks, where each
task has its respective timing constraints. In hard real-time systems, these constraints
must be met for the correct functioning of the system. In light of this consideration,
scheduling plays an important role in software synthesis for hard real-time systems,
since the code must be generated in order to provide predictable execution and resources
use(e.g. buses, processors).

Scheduling is one of the most active research areas in real-time systems. Since this
work considers only safety time-critical systems, this session presents a summary of the
most relevant methods related to scheduling with stringent timing constraints.

In a broad sense, there are two scheduling approaches, named: runtime (also called
dynamic or on-line), and pre-runtime (also called static or off-line). In addition to
this classification, a scheduling method can also be characterized whether an executing
task may be interrupted (e.g. if a more urgent task needs to be executed - preemp-
tive scheduling) or not (non-preemptive scheduling). This section give an overview of
runtime and pre-runtime approaches and, afterward, a comparison between them is
presented.

2.3.1 Runtime Method

Runtime scheduling method make decisions at run time by selecting one of the current
ready tasks for execution. The selection is based on priorities, in a such way that the
task with higher priority is selected. For each task, a fixed priority is assigned.

Hereafter, a set of runtime method algorithms is concisely introduced: (i) Rate
Monotonic Scheduling, (ii) Earliest Deadline First and (iii) Priority Ceiling Protocol.
In the following presentation, it assumed that n is the number of tasks, ci is the
computation time, di is the deadline, and pi is the period of task ti.

CHAPTER 2. BACKGROUND 17

Rate Monotonic Scheduling. In [31], Liu et. al proposed a dynamic preemptive
algorithm based on static task priorities, namely, Rate Monotonic Scheduling (RMS).
The approach makes the following assumptions about the task model: (i) all tasks are
periodic and independent; (ii) the deadline of every task is equal to its period; (iii)
the computation time of each task is previously known and it is constant; and (iv) the
context-switching overhead is ignored.

In rate monotonic scheduling, the task with shorter period have the higher priority.
Moreover, a schedulability analysis (verification whether a given schedule satisfies all
deadlines) is performed before run-time:

U =
n

∑

i=1

(ci/pi) ≤ n(21/n − 1)

In other words, if the utilization factor U is less than n(21/n − 1), the set of tasks
is schedulable. In [28], Leung et al. extend RMS in order to permit deadlines to be
less than or equal to periods. This extension is called Deadline Monotonic Scheduling
(DMS).

Earliest Deadline First. The earliest deadline first (EDF) scheduling [31] is an
dynamic scheduling algorithm based on dynamic priorities. The assumptions are the
same as RMS. After any significant event, the task closest to its deadline (consider-
ing the current time) receives the highest priority, and it is selected for execution.
According to EDF, a set of tasks is schedulable if:

U =
n

∑

i=1

(ci/pi) ≤ 1

Priority Ceiling Protocol. The Priority Ceiling Protocol (PCP) [43] is utilized to
schedule a set of periodic tasks that may have critical sections protected by semaphores.
It makes the same assumptions as RMS.

A set of n periodic processes using PCP can be scheduled by the rate-monotonic
algorithm if the following condition is satisfied:

c1

p1

+
c2

p2

+ · · · +
cn

pn

+ max

(

B1

p1

, · · · ,
Bn−1

pn−1

)

≤ n(21/n − 1)

where Bi is the worst-case blocking time of task τi due to any lower priority process.

2.3.2 Pre-runtime method

Pre-runtime method performs scheduling decisions at compile time. It aims at generat-
ing a schedule table for a runtime component, namely, dispatcher, which is responsible
for controlling the tasks during system execution. In order to adopt such method, the
major characteristics of the tasks must be know in advance.

CHAPTER 2. BACKGROUND 18

This approach can only be used to schedule periodic tasks. It computes a schedule
considering the least common multiple (LCM) of the periods of the given set of tasks.
Nevertheless, it is possible to translate a sporadic task to a periodic task using the
technique described in [36, 56].

Several algorithms and techniques were proposed. In [55], Xu and Parnas propose
an algorithm that adopts the branch-and-bound technique, where a large number of
possible schedules are analyzed in order to find the optimal solution. That work is
the first attempt to formalize a method of pre-runtime scheduling for real-time tasks
with arbitrary exclusion and precedence relations. In [44], Shepard et al. extended
Xu’s approach in order to deal with multiprocessors. In the same way, Albelzaher and
Shin [1] proposed an extension to Xu’s algorithm for dealing with distributed real-time
systems.

This work adopts the pre-runtime scheduling algorithm proposed in [8], which is
based on depth-first search method. Such algorithm is described in Chapter 6.

2.3.3 Runtime versus Pre-runtime Scheduling

Runtime as well as pre-runtime method have advantages and disadvantages. However,
pre-runtime method has become a more suitable approach for embedded hard real-time
systems, since this method provides more predictable behavior than runtime approach.
This section aims to provide a brief comparison between both scheduling classes. For
more details, readers are referred to [57].

When adopting a runtime method, the amount of system resources required (e.g.
memory) is much greater than a pre-runtime approach, since a schedule is computed
entirely online. Moreover, the runtime scheduling takes time, which leads to overheads
that directly affect the system predictability. In other words, tasks may miss their
respective deadlines. On the other hand, pre-runtime methods compute the schedule
in advance. When using this method, overheads are greatly reduced, since just a tiny
dispatcher will be executing in addition to the real-time tasks.

Real-world time-critical applications are composed of several tasks with their re-
spective timing constraints and inter-tasks relations (e.g. precedence and exclusion
relations). In a runtime method, it is usually difficult to extend schedulability analy-
sis to consider additional constraints, such as inter-tasks relations, because additional
applications constraints are likely to conflict with existing priorities. In general, it is
unfeasible to map application constraints into a fixed hierarchy of priorities. In con-
trast, a pre-runtime approach can compute an off-line schedule considering additional
constraints without being restricted by any priority scheme.

The runtime scheduling approach requires complex run-time mechanisms for pro-
viding task synchronization and prevent simultaneous access to shared resources. In
addition to the overheads, such mechanisms may conduct the system to a deadlock
state. In contrast, in pre-runtime scheduling, there is no need of concern related to

CHAPTER 2. BACKGROUND 19

deadlocks, since a feasible schedule is guaranteed to be deadlock-free whenever it is
found.

Another drawback of runtime methods is that they have less chance of finding a
feasible schedule than a pre-runtime scheduling algorithm. For instance, let us consider
the task set consisting of two tasks, A, B, and the respective timing constraints (release,
computation, and deadline): A = (0, 10, 12); B = (1, 1, 2). This specification also
considers that B can not preempt A.

Figure 2.2(a) shows that a runtime method could not find a feasible schedule, since
task B misses its deadline. However, a pre-runtime method finds a feasible schedule
(Figure 2.2(b)). It is worth observing that the processor must be left idle between time
0 and 1, even though A’s release time is 0.

A

A

B

B

0 10 11

01 2 12

a)

b)

12

db da

db da

2

Figure 2.2: Comparison between runtime and pre-runtime scheduling

2.4 Summary

This chapter showed the main concepts needed for understanding this dissertation.
Firstly, concepts related to embedded systems were presented. Since design method-
ologies play an important role in the development of an embedded system, an overview
of hardware/software co-design was presented. Besides, some issues related to em-
bedded software were described. Next, real-time systems were introduced, including
characteristics and types. Lastly, scheduling in real-time systems was explained. In
order to show the benefits and drawbacks of the scheduling methods (runtime and
pre-runtime), a comparison was shown.

Chapter 3

Related Works

This chapter aims to show a summary of the relevant related works. Since this disser-
tation deals with software synthesis, this section presents some works that are related
to code generation for single processor and multiple processors.

3.1 Code Generation for a Single Processor

Several works address the problem of code generation for embedded systems with a
single processor. However, few works consider hard timing constraints.

Cornero et al. [12] present a software synthesis method for real-time information
processing systems. As stated by the authors, such systems have the distinctive char-
acteristic of the coexistence of two different types of functionalities: digital signal pro-
cessing and control functions. In that work, the specification is composed of concurrent
processes with their respective timing constraints, data dependencies and communica-
tions. Such specification is translated into a set of program threads, which may or may
not start with a non-deterministic operation. Program threads are represented by a
constraint graph model, where the nodes represent threads and the edges capture data
dependency, control precedence and timing constraints between threads. Initially, con-
straint graphs are partitioned into disjoint clusters, called thread frames. Next, static
scheduling is performed for determining the relative ordering of threads in the same
thread frame. Lastly, the static information is used at runtime by the dynamic sched-
uler, whose aim is to combine different thread frames according to runtime system
evolution. Although Cornero’s work seems an interesting approach, the method can
not be applied to hard real-time systems, since it considers non-deterministic delays.
In safety time-critical systems, predictability is essential.

Lin [29] presents a software synthesis approach for implementing asynchronous
process-based specifications without the need of a run-time scheduler. The specifi-
cation is captured using a C-like programming language extended with mechanisms for

20

CHAPTER 3. RELATED WORKS 21

concurrency and communication. The extension is based on Communicating Sequen-
tial Process formalism, since it provides mechanisms not found in standard C language.
Starting from the specification, an intermediary model based on Petri nets is generated
in order to provide explicitly the ordering relations across process boundaries. Lastly,
the software synthesis is performed using the intermediary model. The approach has
some drawbacks when considering time-critical applications, since timing and resources
constraints are not considered.

Balarin and Chiodo [6] present the software synthesis approach adopted in POLIS
co-design framework [7]. In that work, the approach is focused on reactive embedded
systems. In POLIS, systems are specified as networks of communicating processes,
called Codesign Finite State Machines (CFMS), which are finite state machines with
arithmetic and relational operators. Moreover, an intermediary data structure, namely,
s-graph (software graph), is adopted to describe the reactive behavior. Such structure
is translated into C code together with a simple Real-Time Operating System (RTOS),
which is responsible for performing the scheduling (e.g. Rate-Monotonic or Deadline-
Monotonic). Although the approach seems to be very interesting, the authors do not
show how inter-task relations are dealt with, and no code example is shown.

Bokhnoven et al. [11] propose a software synthesis for system level design using
process execution trees. The approach aims to translate a specification described in
a process algebra language, namely, Parallel Object-Oriented Specification Language
(POOSL), into an imperative programming language (C++). The process execution
trees are adopted for capturing the real-time and concurrent behaviour of processes.
The work proposed by Bokhoven et al. has some drawbacks. Firstly, it does not show
how mutual exclusions are handled. In addition, nothing is said about preemption.

Sgroi et. al. [42] propose a software synthesis methodology based on a Petri net sub-
class, namely, Free Choice Petri Nets (FCPN). A FCPN model is adopted to represent
a system specification, which is taken as input in a quasi-static scheduling algorithm for
partitioning the model in a set of tasks. Basically, the algorithm decomposes the model
in a set of conflict-free nets with the purpose of finding possible resolutions for each
non-deterministic choice. Each resolution is represented by a cyclic firing sequence,
which is used to compose a feasible schedule, in a such way that memory constraints
are met. After obtaining a feasible schedule, a C code is synthesized by traversing the
schedule and replacing transitions with the respective associated code. Although the
approach seems very promising, it does not deal with real-time constraints, which are
left to a real-time operating system (RTOS).

Su and Hsiung [47] extends the approach proposed by Sgroi et. al. [42], in the sense
that they do not use free-choice Petri net, but a complex-choice Petri net (CCPN). As
stated by the authors, CCPN models can describe more complex systems than FCPN,
since CCPN models can have confusions, which are mixing of conflict and concurrent
transitions. Additionally, the quasi-static scheduling algorithm was modified in order
to cope with CCPN models. Briefly, a CCPN model is decomposed into conflict-free

CHAPTER 3. RELATED WORKS 22

subnets, in a such way that a finite complete cycle is constructed for each subnet. A
conflict-free subnet is said to be schedulable if a finite complete cycle can be found for
it and it is deadlock-free. Once all conflict-free subnets are scheduled, a valid schedule
for the CCPN can be generated as a set of finite complete cycles. Starting from the
schedule, a multi-threaded code is generated, including the synchronized access to
variables that are utilized concurrently. Although the approach evolved the concepts
presented by Sgroi [42], it is still not suitable for hard real-time systems because timing
constraints are not considered in the scheduling process. Moreover, a generated code
example is not presented.

Hsiung [19] proposes another extension of Sgroi et. al. work [42] considering timing
constraints. The new approach adopts another model, namely, Time Free-Choice Petri
Net (TFCPN), which is a Free-Choice Petri Net extended with time. As described by
the author, the TFCPN time semantics is equal to time Petri net [34]. In that work, two
scheduling are carried out: (i) quasi-static scheduling (for dealing with task generation
with limited memory), and (ii) dynamic fixed-priority scheduling (for satisfying hard
real-time constraints). Firstly, the quasi-static scheduling is performed, which is the
same as one presented in [42]. For each finite complete cycle of the conflict-free subnets,
the execution time interval is calculated by summing up all earliest firing time and
latest firing time values, respectively, of each transition in the sequence. Among all
the execution time intervals of conflict-free subnets, the maximum latest firing time
is selected as the worst-case execution time of the TFCPN. In this way, a real-time
scheduling algorithm, such as rate monotonic or deadline monotonic, may be used to
schedule the TFCPN. Lastly, the code generation is performed. For each TFCPN, a
real-time process is created. In each process, a task is created for each transition with
independent firing rate. Although the approach deals with stringent timing constraints,
there are drawbacks:(i) no real-world experiments are presented; and (ii) it is not shown
how to add preemption in the proposed methodology.

Amnell et al. [3] propose a framework for the development of real-time embedded
systems based on timed automata extended with a notion of real-time tasks. They de-
scribe how to compile from the design model to executable programs with predictable
behavior. In addition, the approach rely on a real-time operating system for controlling
tasks execution during system runtime. The framework utilizes a fixed-priority schedul-
ing, which is well suited for independent tasks. However, such policy may not reach
feasible schedules when considering arbitrary intertask relations (such as precedence
and exclusion relations).

3.2 Code Generation for Multiple Processors

Few works aim to generate code for embedded systems with multiple processors. Ad-
ditionally, just a subset of these works take into account hard real-time constraints.

CHAPTER 3. RELATED WORKS 23

Pino et at. [21] present the software synthesis approach adopted in Ptolemy. Ptolemy
is an environment for simulation, prototyping and software synthesis for heterogeneous
systems. The approach is based on object-oriented software methodology, and the code
generation is focused on digital signal processors (DSP). The code generation frame-
work utilizes a set of classes, which describes the system behavior and the features
of the hardware architecture. Considering a multiprocessing environment, hardware
resources essential for inter-processor communication, such as bus, are also taken into
account in the scheduling. For an inter-processor communication, two tasks are gen-
erated: (i) send (which is responsible for transmitting the data at sender side) and
(ii) receive (which gets the respective data at receiver side). Although the approach
contains a scheduling phase, nothing is said about stringent timing constraints.

Altenbernd [2] presents CHaRy, a software system to support the synthesis of pe-
riodic controller applications, considering hard real-time constraints and parallel em-
bedded computers. Essentially, CHaRy receives as input a description of a controller
algorithm implemented by a C subset, and, next, it partitions the algorithm in several
tasks using a task graph. Each vertex of the graph represents a program statement,
whereas the edges represent the dependencies between the statements. Afterwards, a
timing analysis process is started for estimating the worst-case execution time (WCET)
of each task. The next step comprises the allocation of periodical tasks to processors
using a method, namely, Slack Method. The processors are considered to be identical
and interconnected using a point-to-point network. In order to verify timing constraints
after the allocation, a schedulability analysis is performed using deadline monotonic
scheduling (DMS). Additionally, the approach allocates one timer for each task during
system execution. CHaRy seems a powerful tool for safety time-critical controller ap-
plications. However, DMS is a runtime policy, and, in this way, there are cases where
a feasible schedule may not be found, even if one exits (Chapter 2). Moreover, nothing
is said about exclusion relations.

Thoen et al. [48] propose a system model for real-time embedded software synthe-
sis, namely, Multi-Thread Graph (MTG). The authors extend the approach proposed
in [12] with new features, mainly, the support of multiple processors, data communi-
cation and multiple threads of control. A MTG model is composed of operation nodes
(e.g. program threads, events) and control edges. Operation nodes have single control
entry or exit points or both. A control edge ei,j between an exit point of an operation
node oi and entry point of an operation node oj enforces the start of execution of oj

to be after the completion of oi. In this way, control precedences and data dependen-
cies are modeled. Additionally, each node has an attribute that specifies its execution
time (δi). In that model, non-deterministic timing delays are also captured, which are
related to external synchronization (e.g. wait for peripherals and wait for communica-
tion), and they are modeled as event nodes.In MTG models, all data communications
are based on shared memory paradigm. The authors state that other communication
paradigms (e.g. message passing) may be modeled applying some refinements, since

CHAPTER 3. RELATED WORKS 24

they utilize physical memory in some way. The approach presented by Thoen ap-
pears to be very interesting. However, it can not be applied to time-critical systems
since non-deterministic timing delays are considered. Moreover, details about the code
generation are not shown.

Böke [10] presents a software synthesis of real-time communication system for dis-
tributed embedded applications. The aim is the automatic synthesis of communication
software for embedded systems from reliable software fragments. The specification is
captured using a communication graph, which describes the communication behavior,
and a resource graph, which describes the given hardware topology. Starting from
the specification, a generator tool is adopted to provide the communication code for
each CPU. Even though the approach is very promising, it does not seem suitable
for hard real-time systems, since there is no scheduling phase (as stated by the au-
thor). Moreover, no real-world experiments are shown, and examples of the generated
communication code are not depicted.

Kang et al. [24] present a software synthesis tool for designing distributed embed-
ded systems. The authors concentrate on embedded systems that are dominated by
throughput and latency requirements, such as digital signal processing systems. In ad-
dition, the approach takes into account off-the-shelf processors. In that work, stochas-
tic time is considered, since each task has associated a discrete probability distribution
function (PDF). In this way, the run-time system model assumes soft real-time con-
straints. The approach is not feasible for embedded hard real-time systems because
timing constraints may not be met. In time-critical systems, timing correctness is
fundamental.

Anand et al. [4] propose a code generation approach for distributed embedded sys-
tems from hybrid system models. Hybrid systems allow the state to change discretely
as well as in a continuous manner. In that work, the modeling is performed using a
modeling language called CHARON. Starting from a high-level model, a C++ code is
generated and compiled along with the runtime support. Although the work seems a
promising approach, there are some issues that do not allow the approach to be adopted
in hard real-time systems. In that approach, the communication times are not taken
into account. Futhermore, a schedulability analysis is not performed when considering
a distributed environment, although, in a centralized environment, Earliest Deadline
First scheduling (EDF) is adopted.

3.3 Summary

This chapter summarized the main works related with code generation. Several works
address the problem of code generation for embedded systems with a single processor.
However, few works consider hard real-time timing constraints. Besides, just a subset
of these works take into account multiple processors. This research area has several

CHAPTER 3. RELATED WORKS 25

open issues, mainly related to generation of predictable scheduled code considering
multiple processors.

Chapter 4

Petri Nets

This chapter presents an introduction to the formal model adopted in this dissertation,
namely, Petri nets. First of all, one of the best studied class of Petri nets, namely, Place-
Transitions nets, is presented, including the respective transition enabling and firing
rules. Next, elementary nets and some Petri net subclasses are described. In order to
show the practical utilization of Petri nets, some examples of models are shown. After
that, time Petri net is presented, which is the extension adopted in this dissertation.
Finally, this chapter shows some behavioral and structural properties that some Petri
net models may contain.

4.1 Introduction

In the sixties, Carl Adams Petri [38] proposed the Petri net theory in his PhD thesis at
Technical University of Darmstandt, Germany. Petri net can be defined as a mathemat-
ical formalism that allows specification and verification of systems. Initially, the theory
aimed to model and analyze communication systems. Later, Petri’s work came to the
attention of the scientific community, and since then, the theory has been adapted
and extended in several directions. Many extensions has been proposed to the original
Petri net model in order to model and analyze different kinds of systems. The main ex-
tensions are inhibitor arcs, deterministic and stochastic timed nets [58], and high-level
nets, such as object-oriented nets [50] and colored nets [22]. As described in [37], Petri
net is adopted for modeling several kinds of systems, such as: discrete-event systems,
multiprocessor memory systems, operating systems, manufacturing/industrial control
systems and so on.

For the practical utilization of a formalism, a set of tools are essential for au-
tomatizing several tasks, such as modeling, analysis and verification. Petri net is a
well-established formalism, and several tools are available for all Petri net extensions.

26

CHAPTER 4. PETRI NETS 27

4.2 Place-Transition Net

Place/Transition Petri nets are one of the most prominent and best studied class of
Petri nets. This class is sometimes called just Petri net [13].

Place/Transition Petri net is a bipartite directed graph, represented by a tuple
N= (P, T, F,W,m0) such that,

• P = {p1,p2,...,pn};

• T = {t1,t2,...,tm};

• F ⊆ (P × T) ∪ (T × P) is a flow relation for the set of arcs;

• W : F → N
+ is a weight function for the set of arcs;

• m0 is the initial marking.

This class of Petri net consists of two kinds of nodes, called places (P) and transi-
tions (T), such that P ∩ T = ∅. Places represent local states and transitions represent
actions. The set of arcs F is used to denote the places connected to a transition, and
transitions to a place. W is a weight function, which assigns a weight to each arc in F .
In this case, each arc is said to have multiplicity k, where k represents the respective
weight of the arc. if k > 1, the arc weight can be interpreted as the set of k paral-
lel arcs. A marked Petri Net contains tokens, which reside in places, and their flow
through the net is regulated by transitions.

Figure 4.1 depicts graphically the basic components of a Petri Net. Places (a) are
represented by circles, transitions (b) are depicted as bars or rectangles, arcs (c) are
represented by arrows, and (d) tokens are generally represented by filled small circles.

(a) (b) (c) (d)

Figure 4.1: The Basic Components of a Petri Net: (a) place, (b) arc, (c) transition,
and (d) token

Places and transitions may have several interpretations. Using the concept of con-
ditions and events, places represent conditions, and transitions represent events, such
that, an event may have several pre-conditions and post-conditions. For more inter-
pretations, Table 4.1 shows other meanings for places and transitions [37].

CHAPTER 4. PETRI NETS 28

Table 4.1: Interpretation for places and transitions

input places transitions output places

pre-conditions events post-conditions
input data computation step output data
input signals signal processor output signals
resource granting tasks resource releasing
conditions logical clauses conclusions
buffers processor buffers

The set of reachable markings is denoted by m = {m0,m1, · · · ,mi, · · · }, where m0

represents the initial marking. Although the definition of reachable marking set may
have infinite markings, in the context of this dissertation it is assumed that this set is
finite. A marking mi of a Petri net is an assignment of tokens to the places in that net.
The vector mi = (mi1 ,mi2 , · · · ,min) gives, for each place in the Petri net, the number
of tokens in that place at respective marking mi. Therefore, the number of tokens
in place pj at marking mi is mij , for j = 1, ..., n. It may also be defined a marking
function mi : P → N, from the set of places to the natural numbers. This allows using
the notation mi(pj) to specify the number of tokens in place pj at marking mi. In
this case, for a marking mi, mij = mi(pj). In this dissertation both notations are used
interchangeably.

The set of input transitions (also called pre-set) of a place pi ∈ P is:

•pi = {tj ∈ T | (tj, pi) ∈ F}

and the set of output transitions (also called post-set) is:

pi• = {tj ∈ T | (pi, tj) ∈ F}

The set of input places of a transition tj ∈ T is:

•tj = {pi ∈ P | (pi, tj) ∈ F}

and the set of output places of a transition tj ∈ T is:

tj• = {pi ∈ P | (tj, pi) ∈ F}

4.2.1 Transition Enabling and Firing

The behavior of many systems can be described in terms of system states and their
changes. In order to simulate the dynamic behavior of a system, a state (or marking)
in a Petri net is changed according to the following transition firing rule:

CHAPTER 4. PETRI NETS 29

1. A transition t is said to be enabled, if each input place p of t is marked with at
least the number of tokens equal to the multiplicity of its arc connecting p with
t. Using a mathematical notation, an enabled transition t for given marking mi

is denoted by mi[t >, if mi(pj) ≥ W (pj, t),∀pj ∈ P .

2. An enabled transition may or may not fire. It depends on whether or not the
respective event takes place.

3. The firing of an enabled transition t removes tokens (equal to the multiplicity of
the input arc) from each input place p, and adds tokens (equal to the multiplicity
of the output arc) to each output place p’. Adopting a mathematical notation,
the firing of a transition is represented by the equation mj(p) = mi(p)−W (p, t)+
W (t, p),∀p ∈ P . If a marking mj is reachable from mi by firing a transition t, it
is denoted by mi[t > mj.

Figure 4.2: Petri net. (a) Mathematical formalism; (b) Graphical representation before
firing of t1; (c) Graphical representation after firing of t1

Figure 4.2(a) shows a Petri net mathematical formalism for a model with three
places and one transition. Figure 4.2(b) outlines its respective graphical representation,
and 4.2(c) provides the same graphical representation after the firing of t1. For this
example, the set of reachable markings is m = {m0 = (1, 3, 0),m1 = (0, 1, 1)}. m1

was obtained by firing t1, such that, m1(p1) = 1 − 1 + 0, m1(p2) = 3 − 2 + 0, and
m1(p3) = 0 − 0 + 1.

A transition without any input place is called a source transition, and one without
any output place is called a sink transition. A source transition is unconditionally
enabled, and the firing of a sink transition consumes tokens, but does not produce any.
Figure 4.3 shows source and sink transitions before and after the respective firing. A
pair of a place p and transition t is called a self-loop if p is both an input and output
place of t. A Petri net is said to be pure if it has no self-loops. Figure 4.4 depicts a
self-loop.

CHAPTER 4. PETRI NETS 30

(a) (b)

Figure 4.3: Source and sink transition before and after the firing

Figure 4.4: Self-Loop

P1 P0 P0 P0 P0 P1

P1

P1

P1P2 P2 P2
P2 P2

t1 t0 t0 t0 t0t1 t1

(a) (b) (c) (d) (e)

P0

t0

Figure 4.5: Elementary Structures

4.2.2 Elementary Nets

Elementary nets are used as building blocks in the specification of more complex appli-
cations. Figure 4.5 shows five structures, namely, (a) sequence, (b) fork, (c) synchro-
nization, (d) choice, and (e) merging.

CHAPTER 4. PETRI NETS 31

Sequence

The sequence is a structure that represents sequential execution of action execution,
provided that a condition is satisfied. After the firing of a transition, another transition
is enabled to fire. In Figure 4.5(a) a mark in place p0 enables transition t0, and with
the firing of this transition, a new condition is established (p1 is marked). This new
condition allows the firing of transition t1.

Fork

This net allows the creation of parallel processes. As it can be seen in Figure 4.5(b),
the firing of transition t0 removes the token of place p0, and adds one token in place p1

and another in place p2. Considering that places p1 and p2 are pre-conditions of two
distinct processes, the new state allows that both processes can execute in parallel.

Synchronization (or Join)

Generally, concurrent activities need to synchronize with each other. This net (Fig-
ure 4.5(c)) combines two or more nets, allowing that another process continues its
execution only after the end of predecessor processes.

Conflict (or Choice)

If two (or more) transitions are in conflict, the firing of one transition disables the
other(s). As you can see in Figure 4.5(d), the firing of transition t0 disables transition
t1. This building block is suited for modeling if-then-else statement.

Merging

The merging is an elementary net that allows the enabling of the same transition by
two or more processes. In the case of Figure 4.5(e) the two transitions (t0 and t1) are
independent, but they have an output place in common. Therefore, after the firing of
any of these two transitions, a condition is created (p2 is marked) which may allow the
firing of another transition (not shown in the figure).

Confusions

The mixing between conflict and concurrency is called confusion. While conflict is a
local phenomenon in the sense that only the pre-sets of the transitions with common
input places are involved, confusion involves firing sequences. Two types of confusions
are shown in Figure 4.6: (a) symmetric confusion, where two transitions t1 and t3

CHAPTER 4. PETRI NETS 32

p1
p2

t1 t2 t3

p1
p2

t1

t2

t3

p3

p4

(a) (b)

Figure 4.6: Confusions. (a) symmetric confusion; (b) asymmetric confusion

are concurrent while each one is in conflict with transition t2; and (b) asymmetric
confusion, where t1 is concurrent with t2, but will be in conflict with t3 if t2 fires first.

4.2.3 Petri Net Subclasses

Net subclasses is defined exclusively by introducing constraints on the structure of the
nets [45]. By restricting the generality of the model, it may improve the study of its
behavior. In particular, powerful structural results allow us to fully characterize some
properties, such as liveness and reversibility.

Based on [37], let us introduce five important subclasses depicted in Figure 4.7.

State Machine

In this subclass (state machine-SM) (Fig. 4.7(a)) each transition has just one input
and output place, i.e.,

| • t| = |t • | = 1 for all t ∈ T .

State machines can represent conflict and merging structures, but not fork and
synchronization. Several properties are obvious in this Petri net class. For instance,
the number of tokens are always the same (conservative property), which results in a
finite system.

Marked Graph

The subclass called marked graph (MG) (Fig. 4.7(b)) restricts each place p to have
exactly one input transition and one output transition, i.e.,

CHAPTER 4. PETRI NETS 33

| • p| = |p • | = 1 for all p ∈ P .

Marked graphs can represent concurrency and synchronization, but not conflict and
merging structures.

Free-Choice Petri Nets

The free-choice (FC)) (Fig. 4.7(c)) is a Petri net such that every arc from a place is
either a unique outgoing arc or a unique incoming arc to a transition, i.e.,

p1 • ∩p2• 6= ∅ => |p1 • | = |p2 • | = 1 for all p1, p2 ∈ P .

In other words, a place may be input for several transitions, however, it is the
only input for these transitions. Free-choice allows the modeling of conflict as well as
modeling concurrency and synchronization. However, this subclass is more restricted
when compared with general Petri nets, since when a conflict exists either all conflicting
transitions are enabled or not. Therefore, the choice is made freely.

Extended Free-Choice Petri Nets

Extended free-choice nets (EFC) (Fig. 4.7(d)) extend free-choice nets allowing more
complex conflict structures. EFC models the conflict of two or more transitions even
if they have more than one input places. However, in such case, the input set of each
of these conflicting transitions should be the same, i.e.

p1 • ∩p2• 6= ∅ => p1• = p2• for all p1, p2 ∈ P .

Asymmetric Choice (or Simple Net)

An asymmetric choice (AC) (Fig. 4.7(e)) is a Petri net such that

p1 • ∩p2• 6= ∅ => p1• ⊆ p2 • or p1• ⊇ p2• for all p1, p2 ∈ P .

In other words, asymmetric choice nets allow that each transition has at most one
input place shared with other transitions. The typical basic example of an asymmetric
choice net is the model of a system in which a resource is shared by two or more
processes [45].

In summary, SMs admit no synchronization, MGs admit no conflict, FCs admit no
confusion, and ACs allow asymmetric confusion (Fig. 4.6(b)), but disallow symmetric
confusion (Fig. 4.6(a)) [37].

CHAPTER 4. PETRI NETS 34

(a) (b) (c) (d) (e)

Figure 4.7: Five fundamental Petri net subclasses

4.3 Modeling with Petri Nets

This section shows some classical problems and their respective Petri net models. These
models are represented by using elementary net structures presented in previous sec-
tion.

P0

P1

P2

P3

P4

P5

T0

T1

T2

T3

Figure 4.8: Transitions T1 and T2 represents parallel activities

4.3.1 Parallel Processes

In order to represent parallel processes, a model may be obtained by composing the
model for each individual process with a fork and synchronization models. Two tran-
sitions are said to be parallel (or concurrent), if they are causally independent, i.e., one
transition may fire either before (or after) or in parallel with the other.

Figure 4.8 shows an example of parallel activity, where transitions t1 and t2 represent
parallel activities. When transition t0 fires, it creates marks in both output places (p1

and p2), representing a concurrency. When t1 and t2 are enabled for firing, they may
fire independently. The firing of t3 depends on two pre-conditions, p3 and p4, implying
that the system can only continue whether t1 and t2 have been fired.

CHAPTER 4. PETRI NETS 35

4.3.2 Mutual Exclusion

Some applications require sharing of resources or data or both. Most of resources and
data should be accessed in a mutual exclusive way. Usually, the resource (or data
variable) is modeled by a place with tokens representing the amount of resources. This
place is seen as pre-conditions for all transitions that need this resource. After the use
of the resource, it must be released.

Figure 4.9 shows an example of a machine accessed in a mutual exclusive way.

P1 P2 P3

P4

start end

P5 P6

machine

Figure 4.9: Mutual Exclusion

4.3.3 Communication Protocols

Communication protocols are another area where Petri nets have been widely used to
represent and specify systems’ features as well as analysis of properties.

Communicating entities may be modeled in several ways: (i) a single transition
representing the communication (Fig. 4.10(a)); (ii) the explicit representation of mes-
sage flow (Fig. 4.10(b)); or (iii) representing the sending of message and the rspective
acknowledgment (Fig. 4.10(c)).

4.3.4 Producer-Consumer

The producer-consumer problem represents two kinds of processes: producers and
consumers.

Producer process generates objects that are stored in a buffer. A consumer process
waits until one (or more) object is stored in the buffer in such a way that it can consume
such an object. The net that models the producer-consumer problem is depicted in
Figure 4.11, where we can see the producer, the consumer, and the buffer. The number
of tokens in p0 and p2 indicate the number of producers and consumers, respectively.
Transition t0 represents production of items and transition t1 the storage of this item

CHAPTER 4. PETRI NETS 36

send-msg

msg

receive-msg

msg

ack

send-msg receive-msg

receive-ack

send-ack
msg

sender receiver

(a) (b) (c)

Figure 4.10: Communication Protocols

into the buffer. The same way, transition t2 represents the item removal from the buffer
by the consumer, and t3 the consumption of the item.

p0

p1

buffer

p2

p3

Producer Consumer

t0

t1

t2

t3

Figure 4.11: Producer/Consumer

4.3.5 Dining Philosophers

The dining philosophers is a classical problem that was proposed by Dijsktra in [14].
Briefly, three philosophers are arranged in a ring with one fork (resource) between each
pair of neighbors, and for eating, a philosopher must have exclusive access to both of
its adjacent forks. If all philosophers take at the same the right fork and wait the left
fork to be free, the system will enter a deadlock state.

In Figure 4.12 it is presented a solution for this problem. It is represented the
resources (forks) by marks in the places fork1, fork2, and fork3. The state of each
philosopher is represented by the places eating (pci), hungry (pcfi), and thinking(ppi).
The event start-to-eat is represented by transition tcci, as well as, is-hungry, and start-
to-think are represented by ttfi and tcpi, respectively.

CHAPTER 4. PETRI NETS 37

Figure 4.12: Dining Philosophers

4.4 Time Extensions

Originally, the Petri net theory did not deal with time, since the aim was only the logical
behavior of systems by describing the causal relations between events. However, time
is essential in many systems because some applications have requirements not only
related to logical correctness, but also associated to the time at which results are
produced. The introduction of time into Petri nets allows the modeling of real-time
controls, communication protocols, and so on, where timing is essential for assuring
that systems are correct.

When introducing time into Petri net models, it should not modify the basic behav-
ior of the underlying untimed model. In this way, it is possible to study the Petri net
extended with time exploiting the properties of the basic model as well as the available
theoretical results.

There are different ways for incorporating timing in Petri Nets. Time may be
associated with places, tokens, arcs, and transitions. Since transitions represent activ-
ities that change the state (marking) of the net, it seems natural to associate time to
transitions.

The firing of a transition in a Petri net model corresponds to an event that changes

CHAPTER 4. PETRI NETS 38

the state of the real system. There are two different firing policies:

• Three-phase firing: firstly, the tokens are consumed from input places when the
transition is enabled, then a delay elapses; finally, tokens are generated in output
places. Such delay is called duration;

• Atomic firing: when the transition is enabled, tokens remain in input places until
the delay elapses; after that period they are consumed from input places and
generated in output places when the transition fires. The firing itself does not
consume any time.

The memory policies represent the way transitions are affected whenever a transi-
tion fires [33]:

• Resampling: the timers of all transitions are discarded (restart mechanism). No
memory of the past is recorded. New values of timers are set for all enabled
transitions at a new marking;

• Enabling memory: the timers of transitions that are disabled are restarted whereas
the timers of all transitions that are not disabled hold their present value.

• Age memory: at each transition firing, the timers of all transitions hold their
present values (continue mechanism).

Several time extensions have been proposed and adopted by the research commu-
nity. This section only describes the extension adopted in this work, namely, time Petri
net.

Time Petri net [34] is defined by (PN, I), where PN is an underlying Petri net,
and I is a deterministic time interval expressing timing constraints, such that each
transition ti has associated a time interval Ii = (EFTi, LFTi). EFT stands for earliest
firing time and LFT stands for latest firing time. This non-negative interval expresses
the minimum and maximum time for firing the respective transition. The firing policy
adopted is the atomic firing.

An enabled transition ti may only fire in the interval EFTi ≤ δ ≤ LFTi, that is, ti
must be continuously enabled for at least EFTi time units. But what happen when a
transition ti is enabled for LFTi time units? The firing mode concept is related to this
issue.

There are two firing modes: strong and weak firing modes. Consider that transition
ti is enabled at time θ. According to the strong firing mode, a transition is forced to
fire at time θ + LFTi, if ti has not fired and has not been disabled by other transition
firing. The weak firing mode, on the other hand, does not force an enabled transition
to fire, that is, an enabled transition may or may not fire.

CHAPTER 4. PETRI NETS 39

The reader should note that time Petri nets are equivalent to the standard Petri nets
if all EFT = 0 and all LFT = ∞. It is also important to note that the set of reachable
markings of the time Petri nets is either equal to or a subset of the equivalent untimed
model. This is true because the enabling rules for the timed model are the same for
the untimed model. The only difference is due to the timing restrictions imposed on
the firing rules. Thus, the time information may restrict the set of reachable markings,
but never increase it.

4.5 Petri nets Properties

Petri nets are not just a modeling tool for describing systems. A major strength of
Petri nets is their support for analysis of many interesting properties. Two types of
properties can be studied with a Petri net model: behavioral properties (those which
depend on the marking) and structural properties (those which do not depend on the
marking).

4.5.1 Behavioral Properties

This section, based on [37], describes behavioral properties.

Reachability

A marking mi is said to be reachable from marking m0 (initial marking), if there exists
a sequence of firings that transforms m0 to mi. A firing (or occurrence) sequence is
denoted by σ = t1t2 · · · ti. In this case, mi is reachable from m0 by σ. It is denoted by
m0[σ > mi. The set of all possible reachable markings from m0 in a net (PN,m0) is
denoted by R(PN,m0), or simply R(m0). The set of all possible firing sequence from
m0 in a net (PN,m0) is denoted by L(PN,m0), or simply L(m0).

It has been shown [30] that the reachability problem is decidable, although it needs
exponential space for system verification in the general case.

Boundedness and Safeness

A Petri net is said to be k-bounded (or simply bounded) if the number of tokens in each
place does not exceed a finite number k for any reachable marking from m0. A Petri
net is said to be safe if it is 1-bounded.

Places in a Petri net are often used to represent buffers for storing intermediate
data. By verifying that a net is bounded (or safe), it is guaranteed that there will be
no overflows in the buffers, no matter what firing sequence is taken.

CHAPTER 4. PETRI NETS 40

Liveness

A Petri net is said to be live if, no matter what marking has been reachable from
m0, it is possible to fire any transition of the net by progressing through some further
firing sequence. This means that a live Petri net guarantees deadlock-free operation, no
matter what firing sequence is chosen. In Petri nets, deadlock means that all transitions
are unable to fire.

Liveness is an ideal property for many real systems. However, it is impractical and
too costly to verify this strong property for some systems. Thus, the liveness condition
is relaxed in different levels. A transition t is said to be live at the following levels:

• L0-Live (dead), if t can never be fired in any firing sequence in L(m0).

• L1-Live (potentially firable), if it can be fired at least once in some firing sequence
in L(m0).

• L2-Live if, given any positive integer k, t can be fired at least k times in some
firing sequence in L(m0).

• L3-Live if there is an infinite-length firing sequence in L(m0) in which t is fired
infinitely.

• L4-Live (or simply live), if it is L1-Live for every marking m in R(m0).

A net is classified as live at level i, if every transition is live at the same level i. It
is worth noting that transition live at level 4, is also live at levels 3, 2, 1.

Reversibility and Home State

A Petri net is said to be reversible if, for each marking (or state) m in R(m0), m0

is reachable from m. Thus, in a reversible net one can always get back to the initial
marking (or state). This property is very important mainly in the context of control
systems.

In many applications, however, it is not necessary to get back to the initial state as
long as one can get back to some (home) state. Therefore, the reversibility condition is
relaxed in such a way that the net can always get back to another marking mk (where
mk 6= m0). Marking mk is defined as home state.

Coverability

Coverability is closed related to reachability. A marking m is said to be coverable, if
there exists a marking m′ in R(m0) such that m′(p) ≥ m(p), for each place p in the
Petri net. If a marking m′ covers marking m, it means that m may be reached from
m′.

CHAPTER 4. PETRI NETS 41

Persistence

A Petri net is said to be persistent if, for any two enabled transitions, the firing of
one transition will not disable the other. A transition in a persistent net, once it is
enabled, will stay enabled until it fires. Persistency is closed related to conflict-free
nets. It is worth noting that all marked graph are persistent, but not all persistent
nets are marked graphs. Persistence is a very important property when dealing with
parallel system design.

Fairness

Petri net literature presents many different points of view about the fairness concept
(e.g.[9, 49, 37]). This section presents two of them: bounded-fairness and unconditional-
fairness. According to the bounded-fairness (B-fair) concept, two transitions t1 and
t2 are said to be bounded if the maximum number of times that one fires, while the
other does not fire, is bounded. A Petri net is said to be a B-fair net if every pair of
transitions in the net are in a B-fair relation.

A firing sequence σ is said to be unconditionally (or globally) fair if it is (i) finite;
or (ii) every transition in the net appears infinitely often in σ. A Petri net is said to be
unconditionally fair net if every firing sequence σ from m in R(m0) is unconditionally
fair.

4.5.2 Structural Properties

This section, based on [32], aims to describe structural properties.

Structural Boundedness

A net is bounded if the bound of each of its places is finite for a given initial marking.
A net is structurally bounded if it is bounded for any initial marking.

Conservation

A Petri net is said to be conservative if any transition firing does not change the number
of tokens. In other words, resources are neither created nor destroyed. In this case,
the net is called strictly conservative.

However, this property is not only restricted to conservation of the number of
tokens. There exist nets that are not classified as strictly conservative, but they can
be converted into strictly conservative nets. Such nets are said to be conservative.

One token in one place may represent several resources that may later be used to
create multiple tokens by firing a transition with more output arcs than input arcs.

CHAPTER 4. PETRI NETS 42

These nets may provide a weighted sum of tokens for all reachable markings of the net.
A conservative net is one in which the weighted sum of tokens is constant.

Repetitiveness

A marked net is classified as repetitive if there is an initial marking m0 and a sequence
σ from m0 such that every transition of the net is infinitely fired. If only some of
these transitions are fired infinitely often in the sequence σ, this net is called partially
repetitive.

Consistence

A net is classified as consistent if there is an initial marking m0 and an enabled firing
sequence from m0 back to m0 such that every transition of the net is fired at least
once. If only some of these transitions are not fired in the sequence σ, this net is called
partially consistent.

4.5.3 Coverability (Reachability) Tree

Given a Petri net, from the initial marking m0 many new markings can be obtained
due to the firing of enabled transitions. This process results in a tree representation of
the markings, namely, coverability tree. Nodes represent markings generated from m0

(root) and its successors, and each arc represents a transition firing, which transforms
one marking to another. However, such tree representation will grow infinitely large if
the net is unbounded. To keep this tree finite, a special symbol ω, is introduced which
can be thought of “pseudo-infinite”, which represents a number of tokens that can be
made very large. Therefore, for any integer n, ω > n, ω + n = ω, ω − n = ω, and
ω ≥ ω. The coverability tree can be built using the following algorithm [37]:

1. Label the initial marking as the “root” and tag it as “new”;

2. While “new” markings exist do:

2.1. Select a “new” marking M ;

2.2. If no transitions are enabled at M , tag M as “dead-end”;

2.3. If M is identical to a marking on the path from the root to M , label M as
“old” and go to another “new” marking;

2.4. For all transitions enabled at M do:

2.4.1. Obtain the marking M ′ by firing a transition t enabled at M ;

CHAPTER 4. PETRI NETS 43

2.4.2. If from the “root” to M there exists a marking M ′′ such that M ′(pi) ≥
M ′′(pi) for each place pi and M ′ 6= M ′′ then replace M ′(pi) by ω wher-
ever M ′(pi) > M ′′(pi);

2.4.3. Introduce M ′ as a node, labeling the arc with t and tag M ′ as “new”.

For a bounded Petri net, the coverability tree is called reachability tree (reachability
graph) since it contains all possible reachable markings. Using the coverability (reach-
ability) tree method, several properties can be analyzed, for instance, boundedness,
safeness, and reachability.

4.6 Summary

Petri nets are well-established tools for modeling and analyzing several kinds of systems,
such as concurrent and parallel systems. This chapter introduced several concepts
related to this subject, from the basic aspects to the properties analysis. Additionally,
an extension of Petri nets was presented, namely, time Petri net, which is adopted in
this dissertation. More details about time Petri net are described in the next chapter.

Chapter 5

Modeling Embedded Hard
Real-Time Systems

Modeling is defined as the process of creating a representation of objects considering
only characteristics of interest. This chapter aims to present the method adopted for
modeling embedded hard real-time systems. The modeling method utilizes time Petri
net as the computational model.

This work is interested in the modeling of specifications composed of inter-processor
communications and hard real-time tasks, more specifically, their timing constraints,
inter-task relations, scheduling method, and allocated processor. This dissertation
extends the modeling method proposed in [8] with inter-processor communications. In
this way, a new building block is presented for representing such communications.

5.1 Formal Model

This section presents the computational model that assures timing constraints. As
stated before, time Petri net is being adopted. In the following subsections, concepts
related to the formal model are described.

Definition 5.1 (Time Petri Net) A time Petri net (TPN) is a tuple P = (N , I),
where N is the underlying marked Petri net, and I : T → N×N, is a bounded static fir-
ing interval that represents the timing constraints, such that I(t) = (EFT (t), LFT (t))
∀t ∈ T and EFT (t) ≤ LFT (t).

This definition is an extension of ordinary Petri nets in which time intervals are
attached to transitions. This extension introduces the static firing interval I(t) associ-
ated with each transition t ∈ T . I(t) is the allowed timing interval for the respective
transition firing. The lower and upper bound of I(t) are called earliest and latest firing

44

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 45

time, respectively. EFT is the minimal time that must elapse, starting from the re-
spective transition enabling, until this transition can fire. LFT denotes the maximum
time during which the respective transition can be enabled without being fired.

Figure 5.1: A Simple Example of Time Petri Net: (a) initial marking (m0); (b) new
marking after firing of t0

Figure 5.1(a) shows a simple time Petri net, where:

• P = {p0, p1, p2, p3, p4, p5};

• T = {t0, t1, t2, t3};

• F = {(p0, t0), (t0, p1), (t0, p2), (p1, t1), (p2, t2), (t1, p3), (t2, p4), (t3, p5)};

• W (x, y) = 1, ∀(x, y) ∈ F ;

• m0(p0) = 1, m0(pi) = 0, 1 ≤ i ≤ 7; and

• I = {I(t0), I(t1), I(t2), I(t3)}, where I(t0) = (0, 0), I(t1) = (1, 3), I(t2) = (5, 8),
and I(t3) = (0, 0).

Firing intervals I(t) of some transitions may be equal to (0,0), which means that
the respective delay from the instant in which the transition became enabled and its
firing is 0.

Definition 5.2 (Enabled Transition Set) Let P be a time Petri net, and mi a
reachable marking. The set of enabled transitions at marking mi is denoted by:

ET (mi) = {t ∈ T | mi(pj) ≥ W (pj, t)}, ∀pj ∈ P.

Taking into account the net depicted in Figure 5.1(a), only transition t0 is enabled
at the initial marking m0.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 46

Definition 5.3 (Clocks) A clock is defined by ci : ET (mi) → N, where ci is a clock
function (or vector) , which represents the time elapsed since the respective transition
enabling.

In time Petri nets, each enabled transition has an implicit clock. The clock starts
counting at the moment the transition is enabled. This dissertation adopts the firing
semantics described in [33], namely, single server semantics with restart. This semantics
states that just one transition may be fired at once, and only its respective clock and
the clocks of transitions in conflict with the fired transition are reset to zero after the
firing. Since enabling memory is adopted, the clocks of other transitions are not reset.
Additionally, the tokens remain in places up to the firing of the transition [34]. In this
dissertation, it is considered that this firing is instantaneous, that is, the firing takes
no time.

In addition, it is important to differentiate between static and dynamic firing inter-
vals for a transition t in time Petri nets. As defined before, I(t) is the static firing inter-
val. The dynamic firing interval is defined as (ID(t) = (DLB(t), DUB(t))), where DLB
stands for dynamic lower bound, and DUB stands for dynamic upper bound. ID is
computed as follows: DLB(t) = max(0, EFT (t)−c(t)), and DUB(t) = LFT (t)−c(t).
As it can be seen, ID(t) is dynamically modified whenever the respective clock vari-
able is incremented, and t is not fired. Initially, when a transition t becomes enabled,
ID(t) = I(t).

Definition 5.4 (States) Considering P a time Petri net, M the set of all reachable
markings of P, and C the set of all clock vectors of P, the set of states S of a time
Petri net is defined by S ⊆ (M × C). A single state is defined by a pair (m, c), where
m is a marking, and c is its respective clock vector for ET (m). The initial state is
s0 = (m0, c0), where c0(t) = 0, ∀ t ∈ ET (m0).

In time Petri nets, there are two types of transitions between states. The first takes
into account the time elapsing. In this case, there is no marking changing, but only
clock incrementation. The second regards state change due to transition firings. In
this case, changes happen in both marking and clock. Although, by definition, the
first type represents a state change, this is not considered in this dissertation in order
to optimize the state space generation. This work is only concerned with the time
instants where the transitions are fired.

Definition 5.5 (Fireable Transition Set) Let s = (m, c) be a state of a TPN .
FT (s) is the set of fireable transitions at state s, which is defined by:

FT (s) = {ti ∈ ET (m) | DLB(ti) ≤ min(DUB(tk)) ∀tk ∈ ET (m)}.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 47

This definition enforces the strong firing semantics. In such semantics, an enabled
transition t cannot fire before it has been enabled for EFT (t) time units and no later
than LFT (t) time units.

Definition 5.6 (Firing Domain) Let s = (m, c) be a state of a TPN . The firing
domain for a fireable transition t at a specific state s, is defined by the following time
interval:

FDs(t) = [DLB(t), min (DUB(tk))], ∀tk ∈ ET (m).

A transition t at state s can only fire in the interval expressed by FDs(t).

Definition 5.7 (Reachable States) Let P be a time Petri net, si = (mi, ci) a reach-
able state, t a fireable transition (t ∈ FT (si)), and θ a specific time value in the firing
domain of t (θ ∈ FDsi

(t)). A new reachable state sj =fire(si, (t, θ)) denotes that
firing a transition t at time θ from the state si, a new state sj = (mj, cj) is reached,
such that:

• ∀p ∈ P, mj(p) = mi(p) − W (p, t) + W (t, p), as usual in Petri nets;

• ∀tk ∈ ET (mj), Cj(tk) =











0, if(tk = t)

0, if(tk ∈ ET (mj) − ET (mi))

Ci(tk) + θ, otherwise

Definition 5.8 (Timed Labeled Transition System) A timed labeled transition
system is a quadruple L= (S,Σ,→,s0), where S is a finite set of discrete states, Σ is an
alphabet of labels representing activities (or actions), → ⊆ S ×Σ× S is the transition
relation, and s0 ∈ S is the initial state.

The semantics of a time Petri net P is defined by associating a timed labeled
transition system (TLTS). The TLTS is utilized to represent a feasible firing schedule,
which is a firing sequence that guarantees all constraints are met. In order to find
a feasible firing sequence, a schedule synthesis algorithm is adopted. Next chapter
presents in details this algorithm.

Definition 5.9 (Feasible Firing Schedule) Let L be a timed labeled transition sys-
tem of a time Petri net P, s0 its initial state, sn = (mn, cn) a final state, and mn = MF

is the desired final marking. s0
(tk1,θk1)
−→ s1

(tk2,θk2)
−→ s2 → ... → sn−1

(tkn,θkn)
−→ sn is defined

as a feasible firing schedule, where si+1 = fire(si, (tki, θki)), i ≥ 0, tki ∈ FT (si), and
θki ∈ FDsi

(tki).

Definition 5.10 (Code-Labeled Time Petri Net) A code-labeled time Petri net
(CTPN) is represented by Pc = (P , CS). P is the underlying time Petri net, and
CS:T 9 ST is a partial function that assigns transitions to behavioral source code,
where ST is a set of source code.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 48

5.2 Specification Model

As stated previously, this work is concerned with hard real-time embedded systems,
more specifically, hard real-time embedded systems with multiple processors. A speci-
fication model for such systems is obtained through the user requirement analysis. A
specification can be composed of several elements:

1. Timing constraints of a set of hard real-time tasks;

2. Inter-task relations, such as precedence and exclusion relations;

3. Scheduling method of each task (preemptive or non-preemptive);

4. Processors where each task is allocated;

5. Inter-processor communications;

6. Source code of each task.

In the following subsections, the specification model is detailed.

5.2.1 Task Constraints Specification

The scheduling approach adopted in this dissertation is pre-runtime, which only deals
with periodic tasks. Considering T the set of tasks in a system and P the set of
processors, the definition of periodic tasks is as follows.

Definition 5.11 (Periodic Task Constraints) Let τi ∈ T be a periodic task. The
constraints of τi is defined by (phi, ri, ci, di, pi, proci), where phi is the phase time; ri

is the release time; ci is the worst-case execution time(WCET); di is the deadline; pi

is the period; and proci ∈ P is the processor allocated to such task.

The phase (phi) is the delay associated to the first time request of task τi after the
system starting. The periodicity in which τi is executed is defined by the period pi.
Release time ri, WCET ci, and deadline di, are time instants related to the beginning
of a period. In this way, ci is the WCET required for executing task τi; and di is
the time at which task τi must be completed. This work considers that ci ≤ di ≤ pi.
All these timing constraints (phase, release, computation, deadline, and period) are
non-negative integer values, that is, phi, ri, ci, di, pi ∈ N.

When adopting an architecture with multiple processors, the previous allocation of
tasks to processors becomes necessary. This dissertation considers that this allocation
have to be performed by the designer.

It is work stating that all timing constraints are expressed in task time units (TTUs),
where each TTU has a correspondence with some multiple of a specific timing unit (e.g.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 49

millisecond). A TTU is the smallest indivisible granule of a task, during which a task
cannot be preempted by any other task. The granularity of the TTU is a design
decision.

In real applications, there are some situations where the arrival of tasks is not
periodic, since these tasks arrive randomly. These tasks are called aperiodic tasks. As
stated before, pre-runtime approach only deals with periodic tasks. Nevertheless, there
is a class of aperiodic tasks called sporadic tasks, where the minimum period between
two activations is known. In [35], Mok describes a translation technique from sporadic
to periodic. Using this technique, converted sporadic tasks can also be taken in account
in the scheduling process. The definition of sporadic tasks is as follows.

Definition 5.12 (Sporadic Task) Let τk ∈ T be a sporadic task defined by τk =
(ck, dk, mink, prock), where ck is the worst-case execution time; dk is the deadline;
mink is the minimum time interval between two activations of task τk; and prock is the
respective processor.

The tecnique proposed by Mok converts a sporadic task (cs, ds,mins, procs) into a
corresponding periodic task (php, cp, dp, pp, procp) using the steps below:

1. php = 0;

2. cp = cs;

3. ds ≥ dp ≥ cs;

4. cs ≤ pp ≤ min(ds − dp + 1,mins); and

5. procp = prock.

5.2.2 Inter-tasks Relations

The inter-tasks relations are represented by precedence and exclusion relations.
A task τi preceding task τj (τi PRECEDES τj) means that τj can only start executing

after τi has finished. In general, this kind of relation is suitable whenever a task
(successor) needs information that is produced by another task (predecessor). This
relation imposes equal period for both tasks involved.

A task τi excluding task τj (τi EXCLUDES τj) means that τj can not start while task
τi is executing. In other words, if a single processor is being utilized, task τi could not
be preempted by task τj. In this work it is considered that the exclusion relation is
symmetrical, that is, when A EXCLUDES B it implies that B EXCLUDES A.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 50

5.2.3 Scheduling Method

Two scheduling methods are considered in this work: (i) preemptive and (ii) non-
preemptive.

A task τi is said to be preemptive if its execution can be suspended by another
tasks. A task τi is said to be non-preemptive if its execution cannot be suspended by
another tasks. In the non-preemptive case, the task runs without interference until its
conclusion.

It is up to the designer the selection of the best suited method.

5.2.4 Task Source Code

The purpose of this dissertation is to provide automatic code generation for embedded
hard-real time systems. In this way, the source code associated with each task also
needs to be specified.

This work adopts C language as the standard programming language for the code
generation. Although C has standard constructs, there are some C extensions that
contain additional functionalities for specific hardware platforms. This work considers
that the designer is responsible to provide the compiler for the desired plataform. For
this dissertation, Keil 8051 compiler is adopted, since all experiments were performed
using the 8051 microcontroller. However, as described later, the approach may be
easily ported to other plataforms.

5.2.5 Communication Task

When adopting a multiprocessing environment, the inter-processor communications
have to be taken into account, since these communications affect the system pre-
dictability. A inter-processor communication is represented by a special task, namely,
communication task, which is described below.

Definition 5.13 (Communication Task) Let µm ∈ M be a communication task
defined by µm = (τi, τj, ctm, busm), where τi ∈ T is the sending task, τj ∈ T is the
receiving task, ctm is the worst case communication time, busm ∈ B is the bus, B is the
set of buses, and proci 6= procj.

It is worthwhile observing that the definition enforces point-to-point communica-
tion, since the communication can only occur between two different tasks, where each
task is allocated to a different processor. In addition, the bus is an abstraction for a
communication channel used for providing communication between tasks from different
processors.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 51

Table 5.1: Specification Example
task phase release wcet deadline period proc/bus from to

A 0 0 2 10 30 proc1 - -
B 0 2 3 20 30 proc1 - -
C 0 2 3 30 30 proc1 - -
D 0 0 2 10 30 proc2 - -
E 0 2 3 30 30 proc2 - -
F 0 0 3 10 30 proc3 - -
M1 - - 1 - - bus1 F A
M2 - - 2 - - bus1 C D

Intertask Relations
A PRECEDES B, B EXCLUDES C

5.2.6 Specification Example

Table 5.1 depicts parts of a specification, which is composed of periodic and communi-
cation tasks. In addition, the intertask relations are shown. It is worthwhile observing
that buses also need to be specified, since they are considered in the scheduling syn-
thesis.

5.3 Modeling the Specification

This section presents the modeling phase of the proposed methodology. In order to
model a system specification, a mathematical formalism is being adopted, namely, time
Petri net.

This work adopts the modeling proposed in [8], which applies composition rules on
building blocks models. These blocks are specific for the scheduling policy adopted, that
is, pre-runtime scheduling policy. In that work, the building blocks are: (i) periodic
task arrival; (i) task structure, which considers preemptive or non-preemptive task
scheduling method; (ii) deadline checking; (iii) inter-task relations, such as precedence.
In this dissertation, a new building block is defined: inter-processor communication
block. In order to depict the modeling phase, an overview of the composition rules
and building blocks proposed in [8] are presented, and next, a detailed explanation is
presented for modeling inter-processor communications.

In addition, it is worth explaining that pre-runtime algorithm schedules tasks con-
sidering a schedule period that corresponds to the least common multiple between
all periods in the task set. Thus, the modeling has to be adjusted to consider such
requirement.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 52

5.3.1 Scheduling Period

When adopting a pre-runtime policy, the task scheduling is performed using a finite
period. This finite period is obtained by calculating the least common multiple (LCM)
among periods of the given set of tasks. The LCM is called schedule period.

Considering this new period, there are several tasks instances of the same task,
which are obtained by calculating N (τi) = PS/pi, where N (τi) represents the number
of instances of task τi, PS the schedule period, and pi the task period. For example, let
us consider the task set in Table 5.2. In this particular case, PS = 24, hence implying
that the two periodic tasks are replaced by seven new periodic tasks (N (τ0) = 3, and
N (τ1) = 4), where the timing constraints of each task instance has to be adjusted to
consider that new period.

Table 5.2: Timing Constraints for a Simple Task Set

task ph r c d p

τ0 0 0 2 7 8

τ1 0 2 2 6 6

Table 5.3 depicts the modified timing constraints. For the jth task execution of τi,
the corresponding release time is rj

i = ri+pi∗(j−1); and deadline is dj
i = di+pi∗(j−1).

Table 5.3: Modified Timing Constraints for a Simple Task Set

τ 1
0 τ 2

0 τ 3
0 τ 1

1 τ 2
1 τ 3

1 τ 4
1

r 0 8 16 2 8 14 20

c 2 2 2 2 2 2 2

d 7 15 23 6 12 18 24

p 24 24 24 24 24 24 24

5.3.2 Composition Rules

The modeling method adopted is conducted by applying composition rules on building
block models in order to form larger Petri net models. This section gives an overview
of the operators that represent the composition rules. These operators are: place
merging, serial place refinement, place addition, arc addition, arc removing, and net
union operator. For a more detailed explanation about the operators, the reader is
referred to [8].

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 53

Definition 5.14 (Place Merging) Consider the following nets:

N1 = (P1, T1, F1,W1,M01, I1);

N2 = (P2, T2, F2,W2,M02, I2);

Nc = (Pc, Tc, Fc,Wc,M0c, Ic).

The composition by place merging is denoted by Nc = 〈Pmerg〉 (N1, N2). The net

Nc is composed in the following way:

⋆ Pc = P1 ∪ P2

⋆ Tc = T1 ∪ T2

⋆ ∀t ∈ Tc : Ic(t) =







I1(t), if t ∈ T1

I2(t), if t ∈ T2

⋆ Fc = F1 ∪ F2

⋆ ∀p ∈ Pc : M0c(p) =



















M01(p) if p ∈ P1

M02(p) if p ∈ P2

max (M01(p),M02(p)) if p ∈ P1, P2

This operator combines two nets by merging a set of places with the same name,
resulting in a single net. Figure 5.2 shows a simple example of place merging operator
applied to two nets.

Figure 5.2: An Example of Place Merging

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 54

α β

α β1 1

pδ

pσ

tσ

p'δ

ta

ta

tb

tb

Figure 5.3: Place Refinement

Definition 5.15 (Serial Place Refinement) Considering the following time Petri

nets N= (P, T, F,W,M0, I), and Nc = (Pc, Tc, Fc,Wc,M0c
, Ic), the serial place refine-

ment is defined by Nc = 〈Pref〉 (N, pδ, pσ, tσ, p
′

δ), where pδ ∈ P . The new net Nc is

composed in the following way:

⋆ Pc = (P ∪ {pσ, p
′

δ}) − {pδ}

⋆ Tc = T ∪ {tσ}

⋆ Fc = (F − F 1) ∪ F 2 ∪ F 3, where:

– F 1 = {(ti, pδ), (pδ, tj) | ti ∈ •pδ, tj ∈ pδ•}

– F 2 = {(ti, p
′

δ), (p
′

δ, tj) | ti ∈ •pδ, tj ∈ pδ•}

– F 3 = {(pσ, tσ), (tσ, p
′

δ)}

⋆ ∀p ∈ Pc: M0c
(p) =







M0(pj), if p = pj ∧ pj ∈ P

0, if p = pσ ∨ p = p′δ

⋆ ∀t ∈ Tc: Ic(t) =







I(tj), if t = tj ∧ tj ∈ T

[0, 0], if t = tσ

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 55

⋆ ∀f ∈ Fc: Wc(f) =







































1, if f = (g, pσ), ∀g ∈ T

1, if f = (pσ, tσ)

W (•pδ, pδ), if f = (tσ, p
′

δ)

W (pδ, •pδ), if f = (p′δ, pδ•)

W (f), otherwise

The serial place refinement operator replaces a single place by a sequence of one
place, one transition, and a second place. Figure 5.3 depicts the final result of using
the place refinement operator.

Definition 5.16 (Arc Addition) Considering the following time Petri nets N = (P,

T, F, W, M0, I), and Nc = (Pc, Tc, Fc, Wc, M0c
, Ic), arc addition is an operator that

adds a single arc (x, y), such that (x ∈ P ∧ y ∈ T) ∨ (x ∈ T ∧ y ∈ P). Arc addition is

represented by Nc = 〈Aadd〉 (N, (x, y), n), where N is the original net, (x, y) is the arc,

w is the weight of the arc, and Nc is the resultant net. Nc is generated in the following

way:

⋆ Pc = P ; Tc = T ; M0c
= M0; Ic = I;

⋆ Fc = (F ∪ {(x, y)};

⋆ ∀f ∈ Fc: Wc(f) =







W (f), if f ∈ F

n, if f = (x, y)

This operator adds an arc from a place to a transition or from a transition to a
place.

Definition 5.17 (Arc Removing) Considering the following time Petri nets N =

(P, T, F, W, M0, I), and Nc = (Pc, Tc, Fc, Wc, M0c
, Ic), arc removing is an operator

that removes a single arc (x, y), such that (x ∈ P ∧ y ∈ T) ∨ (x ∈ T ∧ y ∈ P). Arc

removing is represented by Nc = 〈Arem〉 (N, (x, y)), where N is the original net, (x, y)

is the removed arc, and Nc is the resultant net. Nc is generated in the following way:

⋆ Pc = P ; Tc = T ; M0c
= M0; Ic = I;

⋆ Fc = (F − {(x, y)};

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 56

⋆ ∀f ∈ Fc: Wc(f) = W (f)

Arc removing removes an arc from a place to transition, or from a transition to a
place.

Definition 5.18 (Place Addition) Considering the following time Petri nets N =

(P, T, F, W, M0, I), and Nc = (Pc, Tc, Fc, Wc, M0c
, Ic), place addition is an operator

that adds a single place into the respective net. Place addition is represented by Nc =

〈Padd〉 (N, pδ,mδ), where N is the original net, pδ is the place, mδ is its respective

marking, and Nc is the output net. Nc is generated in the following way:

⋆ Tc = T ; Fc = F ; Wc = W ; Ic = I;

⋆ Pc = P ∪ {pδ}

⋆ ∀p ∈ Pc, M0c(p) =







M0(p), if p ∈ P

mδ, if p = pδ

This operator adds a single place to a net.

Definition 5.19 (Net Union) Considering the following time Petri nets

N1 = (P1, T1, F1, W1, M01
, I1), N2 = (P2, T2, F2, W2, M02

, I2), and Nc = (Pc, Tc, Fc,

Wc, M0c
, Ic), the net union is an operator that unifies two nets. It is represented by

Nc = N1 ⊔ N2. Nc is computed in the following way:

Pc = P1 ∪ P2; Tc = T1 ∪ T2; Fc = F1 ∪ F2

∀f ∈ Fc, Wc(f) =







W1(f), if f ∈ F1

W2(f), if f ∈ F2

∀p ∈ Pc, M0c(p) =







M01(p), if p ∈ P1

M02(p), if p ∈ P2

∀t ∈ Tc, Ic(t) =







I1(t), if t ∈ T1

I2(t), if t ∈ T2

Net union joins two nets into a single one.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 57

5.3.3 Tasks’ Modeling

In order to show how to represent the specification using time Petri net, this section
describes the building blocks that are used to model the tasks.

Periodic Task Arrival Block

This block models the periodic invocation for all task instances in the schedule period
(PS). As can be seen in Figure 5.4, the transition tphi

models the initial phase of
the first task instance. Additionally, tai

models the periodic arrival for the remaining
instances.

pwai
pwri

pwdi
psi

tai

tphi

αi

[pi, pi]

[phi, phi]

Figure 5.4: Building Block Arrival

Task Structure Block

For modeling release and computation, the task structure block is defined for such
purpose. Processor granting and releasing are also modeled in this block, since a
processor needs to be accessed in mutual exclusion.

For each scheduling method (preemptive or non-preemptive), there is a respective
task structure block. For modeling non-preemptive method, the task structure block
for non-preemptive tasks should be considered (see Figure 5.5). Transitions tri and tci
represent release and computation, respectively. Processor granting is represented by
transition tgi and, after the computation, processor releasing is performed (tci firing).
In order to model preemptive tasks, the task structure block depicted in Figure 5.6
is adopted. It is worthwhile observing that, for preemptive tasks, the computation
time is broken in several task time units (TTU). For example, considering a task with
computation time equals to 10, this value is represented by 10 TTUs, where, after each
TTU, the task may be preempted by another task. This situtation is represented by
the arc weight (ci) from tri to pwgi.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 58

[ci, ci]

pwri
pwgi pwci

pwfi pfi

tri tgi tci

tfi

pprock
pprock

pwdi

[ri, di - ci] [0, 0]

[0, 0]

Figure 5.5: Non-Preemptive Task Structure Building Block

pwri pwgi pwci pwfi pfi

tri tgi tci

tfi

pprock pprock

pwdi

ci ci

[ri, di - ci] [0, 0] [1, 1]

[0, 0]

Figure 5.6: Preemptive Task Structure Building Block

Deadline Checking Block

This block models the deadline missing, which is an undesirable state in hard real-time
systems. Although this state is modeled, one of the goals of the scheduling algorithm
(Chapter 6) is to eliminate states that represent undesirable situations like this one.
Figure 5.7 depicts this block. Transition tdi represents the deadline timing constraint,
and tpci is an auxiliary transition, which removes any token that enables a computation
transition.

pwdi pwpci

pdmi

tdi tpci

pwci

[di, di] [0, 0]

Figure 5.7: Deadline Checking Building Block

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 59

Resource Block

This work explicitly models processors and buses, where each one is represented by a
single place. Figure 5.8 shows an example of a processor (Pproci

) and a bus (Pbusk
).

As described before, each task is previously allocated to a processor, and the task
migration to another processor is not allowed.

pproci
pbusk

(a) (b)

Figure 5.8: Resources Modeling: (a) Processor; (b) Bus

Fork Block

The building block fork (Fig. 5.9) is responsible for starting all tasks instances occurring
in the schedule period. In other words, this block consists of creating of n concurrent
processes.

pst1

tstart [0,0]

pstart

psti pstn

.

Figure 5.9: Building Block Fork

Join Block

The join block represents the synchronization of executions of all tasks in the schedule
period. Figure 5.10 presents the join block.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 60

It is worth stating that a marking in place pend represents the desirable final marking
(or MF). In this case, M(pend) = 1 indicates that a feasible schedule was found.

Figure 5.10: Building Block Join

A Complete Example Considering Two Tasks

In order to show the practical utilization of the building blocks and composition rules,
this section shows an example considering the specification depicted in Table 5.2. The
specification is composed of two tasks, τ0 and τ1, and both share the same processor.

In this example, two nets (N0 and N1), representing both tasks (τ0 and τ1), are
being considered, and the net Naux = (Paux, Taux, Faux, Waux,M0aux

, Iaux) represents
the system. Additionally, the fork and join blocks (Nf and Nj) are instantiated (N ′

f

and N ′

j) considering that n = 2, that is, there are two tasks in the system.
For the proposed example, pproc is a single place, where M(pproc) = 1. Using the

modeling method proposed in [8], the TPN representing this system is modeled as
follows:

1. Naux = (N0 ⊔ N1);

2. Naux = 〈Padd〉 (Naux, pproc, 1)

3. Naux = 〈Aadd〉 (Naux, (pproc, tg0), 1)

4. Naux = 〈Aadd〉 (Naux, (pproc, tg1), 1)

5. Naux = 〈Aadd〉 (Naux, (tc0, pproc), 1)

6. Naux = 〈Aadd〉 (Naux, (tc1, pproc), 1)

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 61

7. Naux = 〈Pmerg〉 (Naux, N
′

f)

8. Naux = 〈Pmerg〉 (Naux, N
′

j)

Initially, two nets N0 and N1, representing the two tasks, are joined in a new net
called Naux (Step 1). Next, place pproc is added into the Naux net (Step 2). The next
four steps (Steps from 3 to 6) add the respective arcs that represents processor granting
((pproc, tg0) and (pproc, tg1)) and processor releasing ((tc0, pproc) and (tc1, pproc)). Finally,
place merging is used in order to compose the two tasks with the fork (Step 7) and
join (Step 8) nets.

Figure 5.11 shows the resultant model taking into account the non-preemptive
scheduling method. It is worth restating that the timing constraints are faithfully
modeled using the building blocks. As presented before, the periodic arrival of each
task is represented by the respective arrival block, release and computation are repre-
sented by the task structure block, the deadline is modelded using the deadline checking
block, and the processor is modeled using the resource block. From the Petri net model,
the aim is to obtain a feasible schedule, such that a firing sequence results in a marking
in place pend. In this case, the marking states that a feasible schedule was found. In
order to search for a feasible schedule, the scheduling algorithm described in Chapter 6
is responsible for this role.

pwa0 pwr0

pwd0pst0

ta0

tph0

2

[8, 8]

[0, 0]

pwg0 pwc0 pf0

tr0 [0, 5] tg0 tc0
[0, 0] [2, 2]

pwpc0 pdm0

td0 tpc0[7, 7] [0, 0]

pwa1 pwr1 pwg1 pwc1 pf1

pst1 pwd1 pwpc1 pdm1

ta1 [6, 6]

tph1[0, 0]

tr1 [2, 4]

tg1
[0, 0]

tc1
[2, 2]

td1 tpc1[6,6] [0, 0]

3

pproc

4

3

tend [0,0]

pend

pstart
tstart
[0,0]

pwf1
tf1

pwf0

tf0
[0, 0]

[0, 0]

Fork

Arrival

Arrival Deadline Checking

Deadline Checking

Join

Task Structure

Task Structure

Resource

Figure 5.11: Complete Model for τ0 and τ1 Non-preemptive Tasks

Inter-task Relations Modeling

This section presents how to model precedence and exclusion relations. Precedence
relations are defined between pairs of tasks, such that one task can only start executing

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 62

after the other has been finished. Figure 5.12 shows the TPN model for tasks Ti and
Tj, such that Ti PRECEDES Tj.

Exclusion relations are also defined between pairs of tasks, such that two tasks
cannot be executing at the same time. Figure 5.13 depicts an example considering
that τi EXCLUDES τj.

For more details, the reader is referred to [8].

pwaj pwrj

pwdjpstj

taj

tph

[pj, pj]

[phj, phj]

pwgj pwc0 pfj

trj [rj, rj] tcj
[cj, cj]

pwpcj pdmj

tdj tpcj[dj, dj] [0, 0]

pwai pwri pwgi pwci pfi

psti pwdi pwpci pdmi

tai [pi, pi]

tphi [phi, phi]

tri [ri, ri]

tgi
[0, 0]

tci
[ci, ci]

tdi tpci[di,di] [0, 0]

pprecij

pwfi
tfi

pwf0

tfj
[0, 0]

[0, 0]

pwpij

αi

αi

tgj
[0, 0]

tprecij
[0, 0]

Figure 5.12: Precedence Relation Model Example

pwaj pwrj

pwdjpstj

taj

tph

[pj, pj]

[phj, phj]

pwgj pwc0 pfj

trj [rj, rj] tcj
[cj, cj]

pwpcj pdmj

tdj tpcj[dj, dj] [0, 0]

pwai pwri pwgi pwci pfi

psti pwdi pwpci pdmi

tai [pi, pi]

tphi [phi, phi]

tri [ri, ri]

tgi
[0, 0]

tci
[ci, ci]

tdi tpci[di,di] [0, 0]

pexclij

pwfi
tfi

pwf0

tfj
[0, 0]

[0, 0]

αi

αi

tgj
[0, 0]

texclji
[0, 0]

pwexclij

pwexclji

texclij
[0, 0]

Figure 5.13: Exclusion Relation Model Example

5.3.4 Inter-processor Communication

One of the main contributions of this dissertation is the modeling of inter-processor
communications. It is extremely important that inter-processor communications are

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 63

taken into account in order to provide predictability in embedded hard real-time sys-
tems with multiple processors.

This work considers that communication time between tasks allocated to the same
processor is taken into account in each task computation time, since, in embedded
systems, communication is usually performed through shared memory. In this case,
such communication is simply dealt with as precedence relation.

However, when considering inter-processor communication the method is different,
since communication is usually performed through a shared channel (e.g. bus). This
dissertation adopts message-passing paradigm as the standard way for communication
between processors.

The proposed method schedules the communication for avoiding network con-
tention. Otherwise, it could result in different execution times for different runs of
the same system, which is not appropriated for hard real-time systems.

The proposed method for inter-processor communication considers that:

1. after the execution of the sending task, the message transmission is performed;

2. the receiving task can only execute after receiving the complete message;

3. both the sending and receiving processors are ready in the beginning of the com-
munication. In other words, when the sender is transmitting the data, a special
task is executing at receiver side at the same moment for getting the respective
data. This mechanism may be viewed as a synchronous communication. Since
interrupts may affect the system predictability, the proposed approach adopts
polling rather than interrupt handling to implement the receive operation;

4. point-to-point communication (or unicasting);

5. buses are reliable;

6. before communication takes place, the bus and, both sending and receiving pro-
cessors have to be granted;

7. communication time is represented by the respective communication transition.

Next sections define a new building block, namely, inter-processor communication
block, and describe how inter-processor communications are modeled.

Inter-processor communication Block

As previously introduced in Section 5.2 (Specification Model), the specification con-
siders that all inter-processor communications are dealt with as a new communication

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 64

Figure 5.14: Building Block Message Sending

task. This section aims to present a new building block for modeling inter-processor
communication. Figure 5.14 depicts this building block.

The building block inter-processor communication is a TPN Nipc = (Pipc, Tipc, Fipc,
Wipc, M0ipc

, Iipc), such that:

⋆ Pipc = {pwgbij
, pwsij

, pcomcij
, prbufij

, pproci
, pprocj

, pbusk
}. These places model the

following situations:

pwgbij
: waiting for bus and processors granting;

pwsij
: waiting for sending a message;

pcomcij
: communication concluded;

prbufij
: receiving buffer;

pproci
: processor of the sending task;

pprocj
: processor of the receiving task; and

pbusk
: bus.

⋆ Tipc = {tgbij
, tsendi,j

, tcommij
}. These transitions model the following actions:

tgbij
: bus and processors granting;

tsendi,j
: sending the message; and

tcommi,j
: bus and processors releasing.

⋆ F = {(pwgbij
, tgbij

), (tgbij
, pwsij

), (pwsij
, tsendi,j

), (tsendi,j
, pcomcij

), (pcomcij
, tcommi,j

),
(tcommi,j

, prbufij
), (pproci

, tgbij
), (tcommi,j

, pproci
), (pprocj

, tgbij
), (tcommi,j

, pprocj
),

(pbusk
, tgbij

), (tcommi,j
, pbusk

)}

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 65

⋆ Wipc(x, y) = 1 ∀(x, y) ∈ Fipc.

⋆ M0ipc
(pbusk

) = M0ipc
(pproci

) = M0ipc
(pprocj

) = β, β ∈ N
+; M0ipc

(p) = 0 ∀p ∈
P ∧ p 6= pbusk

∧ p 6= pproci
∧ p 6= pprocj

.

⋆ Iipc(tsendij
) = [ctm, ctm]; Iipc(tgbij

) = Iipc(tcommij
) = [0, 0])

The timing interval of transition tsendij
is fulfilled by the timing constraint specifica-

tion, in this case, ctm (worst-case communication time) of the respective communication
task µm ∈ M. The timing intervals of transitions tgbij

and tcommij
are constant ([0,0]).

It is worthwhile to point out that the the transition tsendij
represents both the

message sending and receiving.

Modeling Inter-processor Communications

Communication tasks (Definition. 5.13) are specified by µm = (τi, τj, ctm, busm). In
this case, the communication is from task τi to task τj, the worst-case communication
time is ctm, and the bus to be used is busm. Figure 5.15 applies the building block
inter-processor communication for modeling the sending task τi as well the receiving
task τj.

Taking into account that: (i) a bus is specified ({pbusm
} represents the bus busm);

(ii) nets Ni and Nj represent tasks τi and τj, respectively, with their respective allocated
processors ({pproci

,pprocj
}). Formally, inter-processor communication model is obtained

by applying the following steps:

1. instantiate the block inter-processor communication (let us call Nsmij
);

2. join three nets Ni, Nj and Nsmij
(Naux = ((Ni ⊔ Nj) ⊔ Nsmij

))

3. For the sending task (Ni), do:

(a) refine place pfi
(Naux = 〈Pref〉 (Naux, pfi

, pfci
, tendcommi

, pfi
));

(b) remove the arc from tfi
to pfci

(Naux = 〈Arem〉 (Naux, tfi
, pfci

));

(c) add an arc from tfi
to pwgbij

(Naux = 〈Aadd〉 (Naux, tfi
, pwgbij

, 1)).

(d) add an arc from tcommij
to pfci

(Naux = 〈Aadd〉 (Naux, tcommij
, pfci

, 1)).

(e) add an arc to the bus pbusm
(Naux = 〈Aadd〉 (Naux, (pbusm

, tgbij
), 1));

(f) add another arc to the bus pbusm
(Naux = 〈Aadd〉 (Naux, (tcommij

, pbusm
), 1)).

(g) add an arc to the processor pproci
(Naux = 〈Aadd〉 (Naux, (pproci

, tgbij
), 1));

(h) add another arc to the processor pproci
(Naux = 〈Aadd〉 (Naux, (tcommij

, pproci
), 1)).

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 66

4. For the receiving task (Nj), do:

(a) refine place pwgj
(Naux = 〈Pref〉 (Naux, pwgj

, precij
, trecij

, pwgj
));

(b) add an arc to the processor pprocj
(Naux = 〈Aadd〉 (Naux, (pprocj

, tgbij
), 1));

(c) add another arc to the processor pprocj
(Naux = 〈Aadd〉 (Naux, (tcommij

, pprocj
), 1));

(d) add an arc from prbufij
to trecj

(Naux = 〈Aadd〉 (Naux, prbufij
, trecij

)).

pwri pwgi pwci pwfi pfi

tri
tgi

tci
tfi

pwrj precij pwci pwfi pfi

trj tgj tcj tfj

pwgbij
pwsij pcomcij prbufij

tgbij tsendij tcommij

pbusm

pproci

pprocj

pfci

tendcommij

pwgj

trecji

Figure 5.15: Modeling of the Sending and Receiving Tasks

As it can be observed in this procedure, the modeling of communication between
tasks in different processors is performed by composing the nets representing both tasks
with the inter-processor communication block (Step 2). Considering the modeling of
the sending task, a place refinement is performed (Step 3a) in order to represent the end

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 67

of all communications performed by the respective task. This situation is represented
by the place pfci

and the transition tendcommi
. In addition, the arc weight from pfci

to
tendcommi

is equal to the number of inter-processor message sending performed by τi.
In this case, the arc weight of pfci

to tendcommi
is 1, since just one message sending is

done by τi. The requirement of such refinement is more clear when taking into account
more than one communication task. Additionally, one arc is removed (Step 3b) and
six arcs are added (Steps from 3c to 3h). Considering the modeling of the receiving
task, one place is refined (Step 4a), and three arcs are added (Steps from 4b to 4d).

Considering another communication task µm2 = (τi, τk, ctm2, busm), where the com-
munication is from task τi to task τk, the worst-case communication time is ctm2, and
the bus to be used is busm. The composition, taking into account the second message
sending block from task τi, is shown in Figure 5.16. Considering both communication
tasks (µm1 and µm2), inter-processor communication model is obtained by carrying out
the following steps:

1. instantiate the first block inter-processor communication (let us call Nsmij
);

2. instantiate the second block inter-processor communication (let us call Nsmik
);

3. join five nets Ni, Nj, Nk, Nsmij
and Nsmik

((Naux = ((((Ni ⊔Nj)⊔Nk)⊔Nsmij
)⊔

Nsmik
))

4. For the sending task (Ni), do:

(a) refine place pfi
(Naux = 〈Pref〉 (Naux, pfi

, pfci
, tendcommi

, pfi
));

(b) remove the arc from tfi
to pfci

(Naux = 〈Arem〉 (Naux, tfi
, pfci

));

(c) remove the arc from pfci
to tendcommi

(Naux = 〈Arem〉 (Naux, pfci
, tendcommi

));

(d) add an arc from pfci
to tendcommi

(Naux = 〈Aadd〉 (Naux, (pfci
, tendcommi

), 2)).
It is worth observing that the arc weight is equal to the number of inter-
processor message sending performed by τi. For this case, the weight is
2;

(e) add an arc from tfi
to pwgbij

(Naux = 〈Aadd〉 (Naux, tfi
, pwgbij

, 1)).

(f) add an arc from tcommij
to pfci

(Naux = 〈Aadd〉 (Naux, tcommij
, pfci

, 1)).

(g) add an arc from pbusm
to tgbij

(Naux = 〈Aadd〉 (Naux, (pbusm
, tgbij

), 1));

(h) add another arc to the bus pbusm
(Naux = 〈Aadd〉 (Naux, (tcommij

, pbusm
), 1)).

(i) add an arc to the processor pproci
(Naux = 〈Aadd〉 (Naux, (pproci

, tgbij
), 1));

(j) add another arc to the processor pproci
(Naux = 〈Aadd〉 (Naux, (tcommij

, pproci
), 1)).

(k) add an arc from tfi
to pwgbik

(Naux = 〈Aadd〉 (Naux, tfi
, pwgbik

, 1)).

(l) add an arc from tcommik
to pfci

(Naux = 〈Aadd〉 (Naux, (tcommik
, pfci

), 1)).

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 68

(m) add an arc to the bus pbusm
(Naux = 〈Aadd〉 (Naux, (pbusm

, tgbik
), 1));

(n) add another arc to the bus pbusm
(Naux = 〈Aadd〉 (Naux, (tcommik

, pbusm
), 1)).

(o) add an arc to the processor pproci
(Naux = 〈Aadd〉 (Naux, (pproci

, tgbik
), 1));

(p) add another arc to the processor pproci
(Naux = 〈Aadd〉 (Naux, (tcommik

, pproci
), 1)).

5. For both receiving tasks (Nj and Nk), do:

(a) refine place pwgj
(Naux = 〈Pref〉 (Naux, pwgj

, precij
, trecij

, pwgj
));

(b) add an arc to the processor pprocj
(Naux = 〈Aadd〉 (Naux, (pprocj

, tgbij
), 1));

(c) add another arc to the processor pprocj
(Naux = 〈Aadd〉 (Naux, (tcommij

, pprocj
), 1));

(d) add an arc from prbufij
to trecij

(Naux = 〈Aadd〉 (Naux, (prbufij
, trecij

), 1)).

(e) refine place pwgk
(Naux = 〈Pref〉 (Naux, pwgk

, precik
, trecik

, pwgk
));

(f) add an arc to the processor pprock
(Naux = 〈Aadd〉 (Naux, (pprock

, tgbik
), 1));

(g) add another arc to the processor pprock
(Naux = 〈Aadd〉 (Naux, (tcommik

, pprock
), 1));

(h) add an arc from prbufik
to trecik

(Naux = 〈Aadd〉 (Naux, (prbufik
, trecik

), 1)).

Table 5.4: A Simple Example of Task Timing Specification with Two Communication
Tasks

TaskID ph r c d p proc/bus from to

T0 0 0 10 100 250 proc1 - -
T1 0 0 15 100 150 proc1 - -
T2 0 0 20 150 250 proc1 - -
T3 0 0 40 200 250 proc1 - -
T4 0 0 20 50 250 proc2 - -
T5 0 0 10 100 250 proc3 - -
M1 - - 5 - - bus1 T4 T2
M2 - - 5 - - bus1 T3 T5

Intertask Relations
T0 PRECEDES T2, T1 PRECEDES T2,
T2 PRECEDES T3, T4 PRECEDES T5

A more complex example is depicted in Table 5.4, where five tasks are allocated in
three processors, and two communication tasks perform the inter-processor communi-
cations. For this specification, Figure 5.17 shows the respective TPN model. For sake
of readability, this net does not show the processors. It is worth observing that com-
munications between tasks in the same processor is dealt with as precedence relation.

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 69

pwri pwgi pwci pwfi pfi

tri
tgi

tci
tfi

pwgbij
pwsij pcomcij prbufij

tgbij
tsendij

tendcommi

pbusm

pproci

pprocj

pwgbik
pwsik pcomcik prbufik

pprock

pfci
2

tgbik tsendik tcommik

tcommij

Figure 5.16: Modeling of two communication tasks

5.4 Summary

This chapter detailed the method adopted for modeling embedded hard real-time sys-
tems. Firstly, aspects related to the computation model, namely, time Petri net, were
presented. Next, the specification model was shown. The specification is composed of
periodic task timing constraints, inter-task relations, allocation of tasks to processors,
tasks source code, and inter-processor communications. Lastly, the modeling of em-
bedded hard real-time systems using time Petri net was demonstrated. The modeling
approach applies composition rules on building block models. In this dissertation, a
new building block was presented: inter-processor communication block. This block

CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS 70

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T1 T0 T2 T3 T4 T5

tg1

tc1

tf1

tg0

tc0

tf0

tprec02

tprec12

trec42

tc2

tr2

tg2

tprec23

tg3

tc3

tgb35

tsend35

tcomm35

pbus1

tgb42

tsend42

tcomm42

tg4

tc4

tr4

tg5

tc5

tr5

tf5

.

.

.

tf2

Figure 5.17: A Simple Example of Inter-processor Communication

represents the communication between two tasks allocated to different processors.

Chapter 6

Software Synthesis

This chapter aims to present the software synthesis approach proposed by this disserta-
tion. Software synthesis is the task of converting a high-level specification into software,
with lower overheads and satisfying all timing constraints. Firstly, a scheduling syn-
thesis algorithm is presented for finding a feasible schedule that satisfies all timing
constraints. As stated before, this work uses the pre-runtime scheduling policy, where
schedules are computed entirely off-line. Starting from the found feasible schedule, the
code generation phase can be started. Firstly, the code generation considering a single
processor is shown. After that, the method for multiple processors is presented.

6.1 Scheduling Synthesis

Starting from the time Petri net model, a scheduling synthesis algorithm is utilized
to generate a timed labeled transition system that represents a feasible pre-runtime
schedule, considering that such schedule exists. This dissertation adopts the algorithm
proposed in [8].

In a nutshell, the algorithm consists in recursively checking all successor states,
starting from an initial state, by firing all enabled transitions in each state. This
method is called state space exploration. Although using this simple mechanism a
feasible schedule can be found, this solution leads to a well-known problem, namely,
state explosion problem [17, 51]. In order to mitigate this problem, the algorithm
applies some techniques for reducing the state space size.

The scheduling algorithm proposed in [8] has one shortcoming, which is the huge
set of visited states that need to be stored in memory due to the tagging scheme
(see Section 6.1.2). Therefore, this dissertation extends the implementation of this
algorithm applying a method for compressing visited states in order to reduce memory
consumption.

In the next subsection, an overview of the minimization techniques adopted by the

71

CHAPTER 6. SOFTWARE SYNTHESIS 72

proposed method for reducing the state space size is presented. After that, the schedul-
ing synthesis algorithm is explained. Finally, an example showing the application of
the algorithm is depicted.

6.1.1 Minimizing State Space Size

In order to avoid the analysis of all possible states, the scheduling algorithm adopts
two minimization techniques: partial-order reduction and elimination of undesirable
states.

The first technique (partial-order reduction) associates for each transition class a
choice-priority. The main idea is to avoid the verification of all interleaving possibilities
of a set of firable transitions. When changing from one state to another, it is sufficient
to analyze the class with the highest choice-priority and prunning the other ones, in
such a way that the exploration occurs only in part of the state space. The highest
choice-priorities are given to transitions that do not disable other transitions. These
transitions are called independent. In other words, it does not matter in which order
independent transitions fire, the final result is always the same. Examples of these tran-
sitions are arrival and release transitions. On the other hand, transitions that disable
other firable transitions have the lowest choice-priority. Examples of these transitions
are processor-granting and exclusion transitions. The choice-priorities adopted in this
work is depicted in Table 6.1. For more information about partial-order reduction, the
interested reader is encouraged to refer to [17], [51] , and [8].

Table 6.1: Choice-priorities for each transition class

Choice-priority Transition

1 Final
2 Arrival
3 Release
4 Precedence
5 Computation
6 Exclusion
7 ProcessorGranting
8 BusGranting

The second technique aims to remove undesirable states, more specifically, states
that represent deadline missing. This technique is very simple, it just prunes firable
transitions that lead to undesirable states, for instance, deadline-checking transitions.
Deadline-checking transitions should not fire unless deadlines are not met.

CHAPTER 6. SOFTWARE SYNTHESIS 73

1 scheduling-synthesis(S,MF ,TPN)
2 {
3 if (S.M = MF) return TRUE;
4 tag(S);
5 PT = remove-undesirable(partial-order(firable(S)));
6 if (|PT| = 0) return FALSE;
7 for each (〈t, θ〉 ∈ PT) {
8 S’= fire(S, t, θ);
9 if (untagged(S’) ∧ scheduling-synthesis (S’,MF,TPN)){
10 add-in-trans-system (S,S’,t,θ);
11 return TRUE;
12 }
13 }
14 return FALSE;
15 }

Figure 6.1: Scheduling Synthesis Algorithm

6.1.2 Pre-Runtime Scheduling Algorithm

As stated before, the pre-runtime scheduling algorithm used in this dissertation was
proposed in [8]. This algorithm is a depth-first search method that generates as output
a TLTS (Definition 5.9), which represents a feasible schedule.

In [8], the author shows some properties of the proposed Petri net model. One
property of interest is boundedness (Chapter 4), which implies that the TLTS is finite
and thus the proposed algorithm always finishes.

Figure 6.1 depicts the algorithm, which was implemented using C language. Al-
though presented as a recursive function, the algorithm was iteratively implemented
due to performance issues. The algorithm execution is described as follows. Firstly,
the algorithm checks if the desired final marking (MF) was reached. By reaching this
marking, it means that a feasible schedule satisfying all timing constraints was found
(line 3). For avoiding the state space explosion, the partial-order reduction and the
prunning of undesirable states is applied in the set of firable transitions (line 5). PT

is a set of ordered pairs 〈t, θ〉 representing, for each post-pruning fireable transition,
all possible firing time in the firing domain (Definition 5.6). The tagging scheme (lines
4 and 9) ensures that no state is visited more than once. The function fire (line
8) returns a new generated state (Definition 5.7) due to the firing of transition t at
time θ. The feasible schedule is represented by a TLTS generated by the function
add-in-trans-system (line 10). The whole state space is visited only when the sys-
tem does not have a feasible schedule (line 14), where the algorithm returns FALSE.

Tagging Scheme

As described before, the tagging scheme is adopted to avoid visiting a state more
than once. Such scheme considerably improves the algorithm execution. As explained

CHAPTER 6. SOFTWARE SYNTHESIS 74

in [8], an experiment was performed without the tagging scheme. The algorithm took
more than 48 hours to return a feasible schedule. Using the tagging scheme, the same
schedule was found in just 2.5 seconds.

Although the tagging scheme optimizes the algorithm execution, memory consump-
tion can be very high, since the set of visited states may be very large. In order to
mitigate this problem, a function to compress the visited states was implemented. The
set of visited states stores three information: marking(M), set of enabled transitions
(ET) and a clock (C). All these information are stored as a contiguous list. Figure 6.2
depicts the structure that represents a state.

struct state {
 int *M;
 int *ET;
 int *VC;
 int sizeM;
 int sizeET;
};

Figure 6.2: State Structure

struct state_compressed {
 unsigned short int *elements;
 unsigned int size;
};

Figure 6.3: State Compressed Structure

Analyzing the generated states of some experiments, the most important aspect
observed is the great amount of zeros values in the marking vector(M). Hence, the
main idea of the compressing function is to reduce the representation of zero se-
quences. A new data structure was implemented to represent the compressed state
(state compressed), which is composed of an vector of unsigned short int. Fig-
ure 6.3 shows the structure that represents a compressed state. The compressing
function acts in the M vector as follows. A sequence of more than one zero is repre-
sented by two elements in the list: the identifier 65,535 (reserved number) followed by
the number of zeros in the sequence; a sequence of just one zero or any other number
directly copied from the M vector to the new structure. As an example, using the
state depicted in Figure 6.4, the respective compressed state is shown in Figure 6.5.
Supposing that an int variable requires 4 bytes of memory and an unsigned short

CHAPTER 6. SOFTWARE SYNTHESIS 75

int requires 2 bytes, the state size was reduced from 32×4 = 128 bytes to 22×2 = 44
bytes. For this simple example, the compression rate was 65%.

state->M = {0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,3,0,0,0};
state->ET = {1,2,4,6,7};
state->VC = {0,0,0,2,1};

state->sizeM = 20;
state->EC = 5;

Figure 6.4: State example

compressedState->elements = {65535,10,1,0,1,1,1,0,3,65535,3,
1,2,4,6,7,0,0,0,2,1};

compressedState->size = 21;

Figure 6.5: Compressed State example

Considering the experiments adopted in this work, this very simple method results
in compression rate of about 70%. This compression rate increases so as the amount
of zero sequences in the M vector. Therefore, the larger the number of places the
higher compression rate. Chapter 7 describes some experiments adopted to show the
feasiability of the compressing function.

6.1.3 Application of the Algorithm

Table 6.2: Simple Specification

task ph r c d p

τ1 0 0 2 7 8

τ2 0 2 2 6 6

The simple task set shown at Table 6.2 produces the TPN model outlined in Fig-
ure 6.6. For this example, the LCM is 24, resulting in 7 task instances. Applying
the scheduling algorithm, the feasible firing schedule found for the TPN model of Fig-

ure 6.6, expressed as a TLTS, is depicted as follows: s0
(tstart,0)
−→ s1

(tph1,0)
−→ s2

(tph2,0)
−→

s3
(tr1,0)
−→ s4

(tp1,0)
−→ s5

(tr2,2)
−→ s6

(tc1,0)
−→ s7

(tf1,0)
−→ s8

(tp2,0)
−→ s9

(tc2,2)
−→ s10

(tf2,0)
−→ s11

(ta2,2)
−→ s12

(ta1,2)
−→

s13
(tr1,0)
−→ s14

(tr2,0)
−→ s15

(tp2,0)
−→ s16

(tc2,2)
−→ s17

(tf2,0)
−→ s18

(tp1,0)
−→ s19

(ta2,2)
−→ s20

(tc1,1)
−→ s21

(tf1,0)
−→

s22
(tr2,1)
−→ s23

(tp2,0)
−→ s24

(tc2,2)
−→ s25

(tf2,0)
−→ s26

(ta1,1)
−→ s27

(tr1,0)
−→ s28

(tp1,0)
−→ s29

(ta2,1)
−→ s30

(tc1,1)
−→

s31

(tf1,0)
−→ s32

(tr2,1)
−→ s33

(tp2,0)
−→ s34

(tc2,2)
−→ s35

(tf2,0)
−→ s36

(tend,0)
−→ s37.

CHAPTER 6. SOFTWARE SYNTHESIS 76

Pstart

Pend

tstart
[0,0]

tph2 [0,0]

ta2 [6,6]

ta1 [8,8]

ph1 [0,0]

tr2 [2,3]

tr1 [0,5]

tp2 [0,0]

tp1
[0,0]

tend [0,0]

3

2

4

3

td1 [7,7] tpc1 [0,0]

td2 [6,6] tpc2 [0,0]

tc2
[2,2]

tc1
[2,2]

P
pr

oc

tf2
[0,0]

tf1
[0,0]

Figure 6.6: TPN for the task set in Table 6.2

6.2 Scheduled Code Generator Framework for One

Processor

As presented before (Definition 5.9), the feasible firing schedule is expressed as a TLTS.
The code is generated by traversing the TLTS, and detecting the time when the tasks
should be executed. Thus, the generated code should execute the tasks in accordance
with the previously computed schedule. A special data structure called pre-runtime
schedule table is created for defining information about each task instance, for example,
start time, and a pointer to a C function containing the code. More details about this
data structure is presented in this Chapter. In the proposed method, the code for each
task comes directly from the code associated with each computation transition in the
TPN model.

In order to manage the execution of tasks, the code generation includes a small dis-
patcher to treat this activity. The timer is programmed by the dispatcher to interrupt
the processor at the time instant where the next task must be executed (or resumed).
It is worth observing that just one timer is needed since the generated code is already
scheduled.

The code generation presented in this section considers one processor. Next section
describes the code generation framework considering multiple processors.

CHAPTER 6. SOFTWARE SYNTHESIS 77

6.2.1 Scheduled Code Generation

The proposed method for code generation includes not only the code of tasks (im-
plemented by C functions), but also includes a timer interrupt handler, and a small
dispatcher. Such dispatcher is adopted to automate several controls needed to the
execution of tasks. Timer programming, context saving, context restoring, and tasks’
calling are examples of such additional controls. The timer interrupt handler always
transfers the control to the the dispatcher, which evaluates the need for performing
either context saving or restoring, and calling the specific task. It is worthwhile to
remind that, as presented before (Chapter 5), the proposed method considers that the
timer is always programmed by a multiple of the TTU.

Schedule
Table

Timer

Prog.
Timer

Dispatcher
Kernel

Assignment of Task

Context
Saving

Context
Restoring

External
Memory

Task Calling

D I S P A T C H E R

1

2

7

3

5

8

9

10

4

6

11

Figure 6.7: Proposed Code Generator Overview

Figure 6.7 overviews the proposed code generator framework, where the dispatcher
is the main component. Figure 6.8 shows a simplified version of the proposed dispatcher
function. Using Figure 6.7, the description of the code generator framework can be
summarized as follows.

1. When the system starts, the timer is programmed using the first entry in the
schedule table. Whenever the timer overflows, the timer interrupt handler is
called, and the control is transferred to the dispatcher kernel. This dispatcher
kernel uses the current clock (line 4 of Figure 6.8) to check if there is a task to
be executed at this time;

CHAPTER 6. SOFTWARE SYNTHESIS 78

2. The dispatcher kernel consults the schedule table for evaluating when and which
is the next task to be executed. This table is stored as an array of struct

scheduleItem. This array, representing the schedule table, is accessed as a cir-
cular list (line 13 of Figure 6.8);

3. The dispatcher kernel saves the context of the current task (line 7 of Figure 6.8) if
the current task is being preempted by the new task. This information is obtained
by a global variable called existTaskInExecution (line 6 of Figure 6.8). This
variable has true value if, at a specific time instant, any task is running, and false
otherwise;

4. The dispatcher kernel uses the external memory for storing such context;

5. The dispatcher kernel restores the context of the new task (line 10 of Figure 6.8),
if it is returning from a preemption. This information comes from the schedule
table;

6. The dispatcher kernel accesses the external memory in order to get such context;

7. Using the schedule table, the dispatcher kernel assign the next task function
code (functionPointer at line 12 of Figure 6.8) to the global pointer variable
taskFunction. At this point, the next task becomes the current task;

8. The dispatcher kernel uses the information of the schedule table for programming
the timer to interrupt at the beginning of the next task execution (line 14 of
Figure 6.8). It is worth observing that scheduleIndex was incremented at line
13 of Figure 6.8.

9. The timer is activated (line 15 of Figure 6.8);

10. A C-function, that corresponds to the current task, is executed.

11. When the timer interrupts, the control is again transferred to the dispatcher.

As defined before in this section, the schedule table is stored in an array of struct
ScheduleItem. In particular, there is one entry in the array for each execution part of
a task instance. That is, in case of preemption, a task instance may have more than
one execution part. The struct ScheduleItem contains the following information: (i)
start time; (ii) a flag indicating if either it is a preemption returning or not; (iii) task
id; and (iv) a pointer to a function that represents the code of the respective task.
Figure 6.9 shows the schedule table for a preemptive example that contains 7 task
instances and 4 preemptions. Thus, the array has 11 entries. Figure 6.10 presents the
respective timing diagram.

CHAPTER 6. SOFTWARE SYNTHESIS 79

1 void dispatcher()
2 {
3 struct ScheduleItem newTaskInfo = scheduleTable[scheduleIndex];
4 globalClock = newTaskInfo.clock;
5
6 if(existTaskInExecution) {
7 // context saving
8 }
9 if(newTaskInfo.isPreemptionReturn) {

10 // context restoring
11 }
12 taskFunction = newTaskInfo.functionPointer;
13 scheduleIndex = ((++scheduleIndex) % SCHEDULE_SIZE);
14 programmingTimer(scheduleTable[scheduleIndex].clock);
15 activateTimer();
16 }

Figure 6.8: Simplified Version of the Dispatcher

struct ScheduleItem scheduleTable [SCHEDULE_SIZE] =
{{ 1, false, 1, (int *)TaskA},
{ 4, false, 2, (int *)TaskB},
{ 6, false, 3, (int *)TaskC},
{ 8, true, 2, (int *)TaskB},
{10, false, 4, (int *)TaskD},
{11, true, 2, (int *)TaskB},
{13, true, 1, (int *)TaskA},
{18, false, 1, (int *)TaskA},
{20, false, 3, (int *)TaskC},
{22, false, 2, (int *)TaskB},
{28, true, 1, (int *)TaskA}

};

Figure 6.9: Example of a Schedule Table

The generated code has a set of global variables. Figure 6.8 shows some of them
which stores, for instance, the number instances of tasks (SCHEDULE SIZE), information
of the task currently executing (newTaskInfo), global clock value (globalClock); and
a pointer to the task function to be executed (taskFunction).

CHAPTER 6. SOFTWARE SYNTHESIS 80

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

A

B

C

D

A1 A1 A2 A2

B1 B1 B1 B2

C2C1

D

Figure 6.10: Timing Diagram for Schedule Table in Figure 6.9

6.3 Scheduled Code Generation Framework for Mul-
tiple Processors

This section presents the code generation approach for embedded hard real-time sys-
tems with multiple processors.

In the proposed hard real-time method considering multiple processors, a special
mechanism is necessary for dealing with real-time clock synchronization. In this way,
this section presents an architecture for solving the problem related to real-time clock
synchronization between processors.

6.3.1 An Architecture for Embedded Hard Real-Time Sys-
tems with Multiple Processors

Whenever considering hard real-time embedded systems design based on multiprocessor
platforms, one fundamental concern is the mechanism for synchronizing processors. As
an example, supposing a system composed of two traffic lights is hard time constrained.
Each traffic light is controlled by one particular processor, which is responsible for
turning on/off the set of lights (red, yellow, green). In addition, at the same time,
when one traffic light changes from yellow to red, the other traffic light must change
from red to green. How to keep both real-time clocks synchronized? Obviously, if both
are green at the same, accidents may happen.

In order to tackle this problem, an specific architecture is proposed. The archi-
tecture is based on Central Master Synchronization [25], in the sense that a central
master processor peforms the time counting and it sends periodically synchronization
messages to slave processors for updating their respective real-time clock values. More
specifically, the architecture is a modified version of a pattern, namely, Shared-Clock
Schedulers Using External Interrupts [39]. Figure 6.11 depicts the pattern. The pat-
tern defines a master processor for performing the time counting for the entire system.
The master processor is responsible for propagating the real-time clock values to the
slave processors through external interrupts. Additionally, there is a runtime scheduler

CHAPTER 6. SOFTWARE SYNTHESIS 81

running in each processor (including the master processor) for performing the tasks
scheduling.

Figure 6.11: Shared-Clock Schedulers Using External Interrupts

The proposed architecture differs from the Shared-Clock Schedulers Using External
Interrupts pattern in two points, summarized in the following steps:

• there is no runtime scheduler running in each processor, but a runtime dispatcher.
The scheduling is performed using a pre-runtime approach, as described previ-
ously;

• the master processor is only responsible for performing the time counting and for
notifying the slave processors. The master processor does not execute any task,
but only a special dispatcher. In addition, the slave processors do not have their
own real-time clocks. The real-time clock only resides in the master processor.
Therefore, the master processor is called Central Time Counting Processor -
CTC Processor. The slave processors are being named as Node Processors.
Figure 6.12 depicts the proposed architecture.

It is worth stating that the terms multiprocessing and multiple processors are em-
ployed to refer to both multiprocessor and multicomputer architectures. As described
in [20], a multiprocessor architecture is composed of a set of processors and a shared
common memory. In contrast, a multicomputer architecture is composed of a set of
processors and unshared distributed memories, and the processors are interconnected
by a message-passing network. Although the terms multiprocessing and multiple pro-
cessors are being employed, the architecture adopted in this work is multicomputer.

Figure 6.13 depicts a system composed of three 8051 microcontrollers adopting
the proposed architecture. One 8051 is responsible for performing the time counting
(CTC Processor), and the other two are responsible for performing the tasks’ execution

CHAPTER 6. SOFTWARE SYNTHESIS 82

Node
Processor 1

Node
Processor 2

Node
Processor 3

Node
Processor 4

Node
Processor n

Central
Time Counting

Processor

...

Figure 6.12: Proposed Multicomputer Architecture

(Node Processors). The CTC processor is connected with the node processors through
a parallel port. A different pin of the parallel port is connected to the external interrupt
of each node processor. Figure 6.13 shows the node processor 1 connected with the
CTC processor using the pin P2.0 and node processor 2 connected using the pin P2.1
of the parallel port P2. If one or more node processors need to be interrupted, the
CTC processor just sends a byte value to the parallel port in order to perform the
interruption. Additionally, Figure 6.13 depicts two node processors connected by a
serial channel. However, other channels may be adopted to perform the communication
between the node processors, for instance, parallel communication. A comparison
between different communication means is beyond of the scope of this work.

Although the current implementation is using 8051 microcontrollers, the architec-
ture may be ported to other platforms. Moreover, the CTC processor does not need to
be a powerful processor. This processor just need to have a timer and a parallel port.
Another alternative is performing the synthesis of a specific hardware for doing this
job.

Next section details the code generation taking into account this proposed archi-
tecture.

6.3.2 Scheduled Code generation

As presented previously, the feasible firing schedule is expressed as a TLTS. The code
generation is performed by traversing the TLTS, and detecting the time where the
tasks should be executed.

Adopting a multiprocessing environment, the communication tasks are also taken
into account in the code generation. As stated before, this work does not consider

CHAPTER 6. SOFTWARE SYNTHESIS 83

Central Time
Counting
Processor

Node Processor 1

Node Processor 2

Figure 6.13: Proposed Architecture using 8051 Microcontroller

the data receiving via interrupt handling, since interrupts may affect the system pre-
dictability. The proposed approach adopts polling. Thus, a communication task (µm)
is translated into two special tasks: sendMm and receiveMm. Both tasks are executed

CHAPTER 6. SOFTWARE SYNTHESIS 84

at the same time for guaranteeing the correct data transmission. sendMm is executed
at sender side and receiveMm at receiver side. In addition, sendMm and receiveMm

are considered in the pre-runtime schedule table and both can not be preempted.
In order to manage the tasks’ execution, a dispatcher is automatically generated for

performing the management. However, when adopting a multiprocessing environment,
the dispatcher and the pre-runtime schedule table are divided in two parts :

• The first one is deployed in the CTC processor. The dispatcher is responsible
for interrupting the node processors and to perform the timer programming, in
accordance with the schedule table. In the CTC processor, the schedule table
only contains the clock values and the node processors to be interrupted.

• The second one is deployed in the node processors. The dispatcher is responsible
for performing the task calling, context saving and context restoring. In the node
processors, each entry in the schedule table contains: (i) a flag indicating if either
it is a preemption returning or not; (ii) task id; and (iii) a pointer to a function
that represents the code of the respective task. It is worthwhile to pointing out
that the schedule table only contains the tasks to be executed in the respective
node processor.

Figure 6.14 overviews the proposed code generator framework considering a mul-
tiprocessing environment. Figure 6.15 shows a simplified version of the proposed dis-
patcher for the CTC processor and Figure 6.16 depicts the dispatcher, which will be
running in each node processor. Using Figure 6.14, the description of the code gener-
ator framework can be summarized as follows.

1. When the system starts, the timer is programmed using the first entry in the
schedule table. Whenever the timer overflows, the timer interrupt handler is
called, and the control is transferred to the dispatcher kernel of the CTC proces-
sor.

2. The dispatcher kernel consults the schedule table for evaluating which node
processors should be interrupted. This table is stored as an array of struct

ScheduleItemCTC. This array, representing the schedule table in CTC processor,
is accessed as a circular list (line 7 of Figure 6.15);

3. A byte value is sent to a parallel port (line 5 of Figure 6.15), where the nodes are
connected, for interrupting a subset of the node processors;

4. The dispatcher uses the information of the schedule table for programming the
timer to interrupt node processor(s) at the beginning of the next task execu-
tion (line 8 of Figure 6.15). It is worth observing that scheduleIndexCTC was
incremented at line 7 of Figure 6.15.

CHAPTER 6. SOFTWARE SYNTHESIS 85

Timer

Schedule
Table

Dispatcher
Kernel

Prog.
Timer

Parallel
Port

Central Time Counting Processor

External
Interrupt

Dispatcher
Kernel

Context
Saving

Context
Restoring

External
Memory

Task Calling

Node 1

Schedule
Table

1

2 3

4

5

6
8 9

10

7

1112

13

...

14

External
Interrupt

Dispatcher
Kernel

Context
Saving

Context
Restoring

External
MemorySchedule

Table

Node n

Assignment
of Tasks

Assignment
of Tasks

Task Calling

Figure 6.14: Proposed Code Generation Overview

5. The timer is activated (line 9 of Figure 6.15);

6. When a node receives an external interrupt performed by the CTC processor, the
external interrupt handler is forced to be called, and the control is transferred to
the dispatcher kernel in the node processor.

7. The dispatcher kernel consults the schedule table for evaluating which is the next
task to be executed. This table is stored as an array of struct ScheduleItemNode.
This array, representing the schedule table in a node processor, is accessed as a
circular list (line 13 of Figure 6.16);

8. The dispatcher kernel saves the context of current task (line 6 of Figure 6.16) if
the current task is being preempted by a new task. This information is obtained
from a global variable called existTaskInExecution (line 5 of Figure 6.16). This
variable has true value if, at a specific time instant, any task is running, and false
otherwise;

9. The dispatcher kernel uses the external memory for storing such context;

CHAPTER 6. SOFTWARE SYNTHESIS 86

10. The dispatcher kernel restores the context of the new task (line 9 of Figure 6.16),
if it is returning from a preemption. This information comes from the schedule
table;

11. The dispatcher kernel accesses the external memory in order to get such context;

12. Using the schedule table, the dispatcher kernel assign the next task function
code (functionPointer at line 11 of Figure 6.16) to the global pointer variable
taskFunction. At this point, the next task becomes the current task. If it is
returning from a preemption, a new task instance will not be created, but the
restored context will be considered.

13. A C-function, that corresponds to the current task, is executed.

14. When the timer interrupts, the control is again transferred to the dispatcher in
the CTC processor.

1 void ctcDispatcher()
2 {
3 struct ScheduleItemCTC nodesInfo = scheduleTableCTC[scheduleIndexCTC];
4
5 parallelPort = nodesInfo.nodes;
6
7 scheduleIndexCTC = ((++scheduleIndexCTC) % SCHEDULE_SIZE_CTC);
8 programmingTimer(scheduleTableCTC[scheduleIndexCTC].clock);
9 activateTimer();
10 }

Figure 6.15: Simplified Version of the CTC Processor Dispatcher

Even in a multiprocessing environment, it is worth observing that just one timer is
needed since the generated code is already scheduled.

Let us take a look at how to apply the proposed code generation method considering
the specification depicted in Table 6.3. This specification is automatically translated
into the TPN model of Figure 6.17. For a better understanding, this figure does not
show the timing constraints, the deadline checking, the bus, the precedence relation,
and the shared processors (P1 and P2). Moreover, the LCM is 500, which results
in 7 tasks instances. Applying the scheduling synthesis algorithm (Figure 6.1) on

the TPN model, the following feasible firing schedule was found: s0
(tstart,0)
−→ s1

(tph0,0)
−→

s2
(tr0,0))
−→ s3

(tph1,0)
−→ s4

(tr1,0)
−→ s5

(tph2,0)
−→ s6

(tr2,0)
−→ s7

(tph3,0)
−→ s8

(tr3,0)
−→ s7

(tph4,0)
−→ s8

(tr4,0)
−→ s10

(tg0,0)
−→

s11
(tg4,0)
−→ s12

(tc0,10)
−→ s13

(tc4,0)
−→ s14

(tf0,0)
−→ s15

(tf4,0)
−→ s16

(tg1,0)
−→ s17

(tc1,40)
−→ s18

(tf1,0)
−→ s19

(tgb2,0)
−→

CHAPTER 6. SOFTWARE SYNTHESIS 87

1 void nodeDispatcher()
2 {
3 struct ScheduleItemNode newTaskInfo = scheduleTableNode[scheduleIndexNode];
4
5 if(existTaskInExecution) {
6 // context saving
7 }
8 if(newTaskInfo.isPreemptionReturn) {
9 // context restoring

10 } else {
11 taskFunction = newTaskInfo.functionPointer;
12 }
13 scheduleIndexNode = ((++scheduleIndexNode) % SCHEDULE_SIZE_NODE);
13 }

Figure 6.16: Simplified Version of the Node Processor Dispatcher

Table 6.3: Task Timing Specification Considering 2 Processors

Task Release Comp. Deadline Period Processor/Bus From To

T0 0 10 10 250 P1 - -
T1 0 40 200 500 P1 - -
T2 0 20 150 500 P2 - -
T3 0 10 450 500 P2 - -
T4 0 10 10 250 P2 - -

M1 - 2 - - bus1 T1 T2

Intertask Relations

T2 PRECEDES T3

s20
(tsend2,2)
−→ s21

(tcomm2,0)
−→ s22

(tendcomm1,0)
−→ s23

(trec2,0)
−→ s24

(tg2,0)
−→ s25

(tc2,20)
−→ s26

(tf2,0)
−→ s27

(tprec3,0)
−→

s28
(tg3,0)
−→ s29

(tc3,10)
−→ s30

(tf3,0)
−→ s31

(ta0,168)
−→ s32

(tr0,0)
−→ s33

(ta4,0)
−→ s34

(tr4,0)
−→ s35

(tg0,0)
−→ s36

(tg4,0)
−→

s37
(tc0,10)
−→ s38

(tc4,0)
−→ s39

(tf0,0)
−→ s40

(tf4,0)
−→ s41

(tend,0)
−→ s42. Figure 6.18 depicts the respective

timing diagram, considering both processors and their respective tasks, including the
communication task.

Analyzing the schedule, which is represented by a TLTS, it has been found out that
task T0 is executed twice, for clock values equal to 0 and 250, and task T1 is executed
once, when the clock value is equal to 10. The same way, T2 is executed once, for clock
value 52, T3 is executed once, for clock value 72, and T4 is executed twice, for clock
values 0 and 250. Additionally, the communication task M1 is executed once, when
the clock value is equal to 50.

CHAPTER 6. SOFTWARE SYNTHESIS 88

tstart

ta0

tr0

tg0

tc0

tf0

ta1

tr1

tg1

tc1

tf1

ta2

tr2

tg2

tc2

tf2

tg2

tsend2

tcomm2

ta3

tr3

tg3

tc3

tf3

ta4

tr4

tg4

tc4

tf4

trec2

Figure 6.17: TPN for the task specification in Table 6.3

Examining the task specification (Table 6.3), three processors are required: one
for performing the time counting (CTC Processor), and two for executing the tasks
(Node Processors). Moreover, the processors need to be linked using the architecture
described in Section 6.3.1. Figure 6.19 shows the code generated for the node processor
1, and Figure 6.20 shows the code generated for the node processor 2. As described
previously, it is worth observing that each entry in the schedule table of each node
processor contains: (i) a flag indicating if either it is a preemption returning or not;

CHAPTER 6. SOFTWARE SYNTHESIS 89

P1

P2

0

T01
10 50

T11
M11

52

T21

72

T31

82 250

T02
260 500

T41 T42

Figure 6.18: Timing Diagram Considering Both Processors

void sendM1() {...} void taskT0() {...}
void taskT1() {...}

#define SCHEDULE_SIZE_NODE 4

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 0, (int *)taskT0},
{false, 1, (int *)taskT1},
{false, 5, (int *)sendM1},
{false, 0, (int *)taskT0}

};

Figure 6.19: Generated code for the node processor 1

void receiveM1() {...} void taskT2() {...}
void taskT3() {...} void taskT4() {...}

#define SCHEDULE_SIZE_NODE 5

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 4, (int *)taskT4},
{false, 6, (int *)receiveM1},
{false, 2, (int *)taskT2},
{false, 3, (int *)taskT3},
{false, 4, (int *)taskT4}

};

Figure 6.20: Generated code for the node processor 2

(ii) task id; and (iii) a pointer to a function that represents the code of the respective
task. Figure 6.21 depicts the code generated for the CTC processor. For this processor,
the schedule table contains: (i) clock value; and (ii) node processors to be interrupted.
In order to interrupt the node processors, 0 bits are being used, since all experiments
were performed using the 8051 platform. In this platform, the external interrupts

CHAPTER 6. SOFTWARE SYNTHESIS 90

#define SCHEDULE_SIZE_CTC 6

struct ScheduleItemCTC schedule[SCHEDULE_SIZE_CTC] =
{

{0, 252}, //11111100 - Proc 1 and 2
{10, 254}, //11111110 - Proc 1
{50, 252}, //11111100 - Proc 1 and 2
{52, 253}, //11111101 - Proc 2
{72, 253}, //11111101 - Proc 2
{250, 252} //11111100 - Proc 1 and 2

};

Figure 6.21: Generated code for the CTC processor

were activated using the low level sensitive setting. As an example, let us consider
the first entry in the schedule table depicted in Figure 6.21. The node processors to
be interrupted are represented by the value 252. Converting to binary, 252 means
11111100. The value indicates that two processors need to be notified at clock value
0, more specifically, the processors connected at pin 0 and 1 of the parallel port.
Additionally, it should be mentioned that when the clock value is equal to 50, both
processors are interrupted in order to execute the data transmission, which is performed
by tasks sendM1 and receiveM1.

Table 6.4: Task Timing Specification Considering 2 Communication Tasks

Task Release Comp. Deadline Period Processor/Bus From To

T0 0 10 100 250 P1 - -
T1 0 40 200 500 P1 - -
T2 0 20 150 500 P2 - -
T3 0 10 450 500 P2 - -
T4 0 20 500 500 P3 - -

M1 - 2 - - bus1 T1 T2

M2 - 4 - - bus1 T3 T4

Let us examining a second example composed of two communication tasks (Ta-
ble 6.4). This specification is automatically translated into the TPN model of Fig-
ure 6.22. Examining the task specification (Table 6.4), four processors are required:
one for performing the time counting (CTC Processor), and three for executing the
tasks (Node Processors). For this example, Figure 6.23 depicts the timing diagram
that represents the feasible schedule. Figure 6.24, Figure 6.25, and Figure 6.26 show,
respectively, the code generated for the node processor 1, node processor 2, and node
processor 3. Lastly, Figure 6.27 depicts the generated code for the CTC processor.

CHAPTER 6. SOFTWARE SYNTHESIS 91

For this example, Figure 6.28 shows the proposed architecture considering four 8051
microcontrollers. It is worth observing the way that all node processors are connected.
Diodes are placed in each transmission pin (P3.1) in order to avoid equipment damage
due to the transmission of multiple messages at the same time in the same commu-
nication channel. Diode is a component that allows an electric current to flow in one
direction, but block it in the opposite direction. However, as the communication chan-
nel is taken into account in the scheduling synthesis, the problem stated should never
occur.

tstart

ta0

tr0

tg0

tc0

tf0

ta1

tr1

tg1

tc1

tf1

ta2

tr2

tg2

tc2

tf2

tg2

tsend2

tcomm2

ta3

tr3

tg3

tc3

tf3

ta4

tr4

tg4

tc4

tf4

tg4

tsend4

tcomm4

trec2 trec4

Figure 6.22: TPN for the task specification in Table 6.4

CHAPTER 6. SOFTWARE SYNTHESIS 92

P1

P2

0

T01
10 50

T11
M11

52

T21

72

T31

250

T02
260 500

P3
M21

14

T41

34

Figure 6.23: Timing Diagram for the TPN Model in Figure 6.22

void sendM1() {...} void taskT0(){...}
void taskT1() {...}

#define SCHEDULE_SIZE_NODE 4

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 0, (int *)taskT0},
{false, 1, (int *)taskT1},
{false, 4, (int *)sendM1},
{false, 0, (int *)taskT0}

};

Figure 6.24: Generated code for the node processor 1

void sendM2() {...} void receiveM1() {...}
void taskT2() {...} void taskT3() {...}

#define SCHEDULE_SIZE_NODE 4

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 3, (int *)taskT3},
{false, 6, (int *)sendM2},
{false, 5, (int *)receiveM1},
{false, 2, (int *)taskT2}

};

Figure 6.25: Generated code for the node processor 2

CHAPTER 6. SOFTWARE SYNTHESIS 93

void sendM2() {...} void receiveM1() {...}
void taskT2() {...} void taskT3() {...}

#define SCHEDULE_SIZE_NODE 2

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 6, (int *)receiveM2},
{false, 4, (int *)taskT4}

};

Figure 6.26: Generated code for the node processor 3

#define SCHEDULE_SIZE_CTC 6

struct ScheduleItemCTC schedule[SCHEDULE_SIZE_CTC] =
{

{0, 252}, //11111100 - Tasks T3, T0
{10, 248}, //11111000 - Tasks sendM2, receiveM2, T1
{14, 251}, //11111011 - Task T4
{50, 252}, //11111100 - Tasks sendM1 and receiveM1
{52, 253}, //11111101 - Task T2
{250, 254} //11111110 - Task T0

};

Figure 6.27: Generated code for the CTC processor

CHAPTER 6. SOFTWARE SYNTHESIS 94

8051

80518051
8051

P3.0 RXD

P3.1 TXD

P3.2 INT0

P2.2

P2.1

P2.0

8051

P3.0 RXD

P3.1 TXD

P3.2 INT0

8051

P3.0 RXD

P3.1 TXD

P3.2 INT0

Figure 6.28: Proposed Architecture with four 8051 Microcontroller

6.4 Summary

This chapter described the proposed software synthesis approach. First of all, it was
presented the pre-runtime scheduling algorithm, which is considered for finding feasible
schedules from the formal model. As a contribution, an algorithm was developed for
compressing the visited states with the purpose of reducing memory consumption.

Next, the code generation framework for one processor was presented. The feasible
schedule is translated into a schedule table, which contains all information about the
tasks’ execution. Additionally, a dispatcher and a timer interrupt handler were de-
scribed in order to provide several controls, for instance, timer programming, context
saving, context restoring, and tasks calling

Finally, the code generation framework for multiple processors was described. Firstly,
an architecture for dealing with real-time clock synchronization between processors was

CHAPTER 6. SOFTWARE SYNTHESIS 95

adopted and adapted. Next, the code generation method was presented in order to
provide predictable code considering a Central Time Counting Processor and Node
Processors. In order to control the tasks’ execution in a multiprocessing environment,
two special dispatchers were described. Finally, the handling of communication tasks
was presented.

The proposed code generation framework may be applied to several processor plat-
forms. It is sufficient to make each dispatcher available for each respective platform.
Furthermore, the Central Time Counting Processor does not need to be a powerful
processor. This processor just need to have a timer and a parallel port.

Chapter 7

Experiments

This chapter aims to present the experiments carried out in this work in order to show
the practical usability of the proposed methodology. First of all, Table 7.1 depicts some
experiments adopted for demonstrating the feasibility of the compressing function,
which is utilized to reduce the state space size. In this table, instances represent the
number of task instances; min is the minimum number of states to be verified, which
is equal to the number of transitions to be fired; found counts the number of states
actually verified for finding a feasible schedule; time expresses the algorithm execution
time in seconds without the compressing function; size is the state space size in kilobytes
without compression; time comp. expresses the algorithm execution time in seconds
with the compressing function; comp. size is the state space size in kilobytes with
compression; and method states the chosen (preemptive (P) or non-preemptive (nP))
scheduling method. It is worth observing that the compressing function has provided
a compression rate of about 70% for those case studies considered during this research.
However, it increases the algorithm execution time.

In order to show the practical feasibility of the proposed software synthesis method,
three case studies are presented in details : (i) simple control application, (ii) pulse
oximeter, and (iii) vehicle monitoring system. Although all case studies considered
adopts the 8051-based plataform, the approach may be ported to other plataforms, as
described in Chapter 6.

All executions of the scheduling synthesis algorithm were performed on a Duron 1.2
GHz, 256 MB RAM, OS Linux, and compiler GCC 3.3.2.

7.1 Simple Control Application

The simple control application consists of a sensory device mounted on a motorized
platform that must detect and track specific objects in the environment. This ap-
plication was originally described in [15], and later used in [8]. Four processors are
connected by a single bus. The model consists of 6 tasks split into 22 subtasks, which

96

CHAPTER 7. EXPERIMENTS 97

Table 7.1: Compressing Function Experimental Results
Example inst. min found time (s) size time comp. comp. size method

Simple Example 7 30 30 0.002 3.589 0.002 1.427 nP
Xu&Parnas (example 3) 4 171 1558 0.118 250.616 0.121 93.422 P
Xu&Parnas (figure 9) 5 281 2406 0.164 647.671 0.166 213.097 P
Pulse-Oximeter 178 850 850 0.079 631.438 0.080 171.265 nP
Mine Pump Control 782 3130 3255 0.260 1575.667 0.273 603.231 nP
Unmanned Ground Vehicle 433 4701 14761 0.978 8665.132 1.036 3086.281 P

exchanges 10 messages, 6 of them are sent across processor boundaries.

P1P2

P3
P4

S3

S22

S10

S2

S19 S1

S20

S11

S14

S6

S23

S5

S4

S28

S9

S25

S26

S16

S18

S8 S7

S12

M13

M21

M17

M24

M15

M27

Figure 7.1: The Simple Control Application Graph

Figure 7.1 shows the communication graph, which depicts the communication be-
tween tasks. The graph shows the subtasks allocated to processors, and its communi-
cation pattern, where the interprocessor communications are labeled with “M” in the
figure. Communication in the same processor is treated as precedence relation. Ta-
ble 7.2 gives the worst-case execution time and deadline for each subtask as well as the
worst-case communication time for each inter-processor communication. In this work,
the period of all tasks is 200 and the task time unit is 1 second. Figure 7.2 presents a
simplified time Petri net model for this case study using a non-preemptive scheduling
method. Transitions GP stands for granting-processor, and GB stands for granting-
bus. For a better understanding, this figure does not show the timing constraints, the

CHAPTER 7. EXPERIMENTS 98

Table 7.2: Task Set for the Simple Control Application

Segment Ci Di Segment Ci Di Segment Ci Di Segment Ci Di

S1 3 100 S8 2 100 M15 1 S22 6 40

S2 3 200 S9 2 100 S16 10 100 S23 10 200

S3 3 40 S10 2 40 M17 1 M24 1

S4 3 100 S11 2 200 S18 1 100 S25 2 100

S5 3 100 S12 2 200 S19 5 200 S26 1 100

S6 3 200 M13 1 S20 7 100 M27 1

S7 2 100 S14 15 100 M21 1 S28 7 100

deadline checking block, the bus, and the shared processors (P1, P2 and P3).

GP-S3

GP-S22

GP-S10

S3

S22

S10

GP-S2

GP-S19

GP-S20

GP-S11

S2

S19

S20

S11

M21

GB-M21

GB-M13

S1

M13

M15

GB-M15

S16

GB-M17

M17

S14

S18

S7

GP-S4

GP-S25

GP-S26

GP-S8

S4

S25

S26

S8M27

GB-M27

GP-S5

GP-S28

S5

S28

GP-S9

S9

S23

S6

M24

GB-M24

S12

End

Start

Figure 7.2: Simplified Simple Control Application Time Petri Net Model

CHAPTER 7. EXPERIMENTS 99

P1

P2

0

S1

3 7

M13

12

S19

18

S22

20 27 43 46 53

P3

P4

S3

S4

S6

S5

4

S2 S10 S20 M21

S14

S11

28

M15

M15

S16

S25 S28 S9

M17

M17

54 55

S26

S23

M27

M27

56

S8

57

M24

M24

S12

S18

65 66

S7

67

M21

M13

44

Figure 7.3: Timing Diagram for the Simple Control

The scheduling synthesis algorithm found a feasible schedule after examining 152
states in just 0.0181001 seconds. Figure 7.3 shows the timing diagram that graphically
represents the found feasible schedule. The timing diagram depicts 4 processors with
their respective task instances, including the communication tasks.

In order to apply the proposed software synthesis method, the system architecture
needs to be compatible with the architecture presented in Chapter 6. Therefore, an
additional processor needs to be considered for performing the time counting.

Traversing the feasible firing schedule, the C code generated for the processor 1 is
depicted in Figure 7.4. For the processor 2 and 3, Figure 7.5 and Figure 7.6 depict the
respective codes. Additionally, Figure 7.7 shows the generated code for the processor
4. Finally, the C code generated for the Central Time Counting Processor is shown in
Figure 7.8.

7.2 Pulse Oximeter

The pulse oximeter [23] is an equipment responsible for measuring the oxygen satura-
tion in the blood system using a non-invasive method. A pulse-oximeter may be used
in many circumstances, like checking if the oxygen saturation is lower or not than the
acceptable level, when a patient is sedated with anesthetics for a surgical procedure.
This equipment is widely used in center care units (CCU) in hospitals.

Originally, a particular pulse oximeter was developed using a single microcontroller.
Since this equipment is composed of several CPU-bound tasks, a pricey, powerful mi-
crocontroller was adopted. However, using the proposed approach, some cheap mi-
crocontrollers can be utilized instead of an expensive microcontroller. The original
architecture of this equipment can be seen in Figure 7.9. The architecture consists of
a microcontroller unit, a spectrophotometric sensor (which is composed of a infrared
led, a red led, and a photo-diode), a digital/analog interface, a led driver, a converter,
a pre-amplifier, a demultiplex, a demodulator, a selector signal/test, two filters, a
programmable amplifier, an interface, an attenuator, and a selector control.

In order to show the practical usability of the proposed software synthesis approach
for multiple processors, the pulse oximeter is being composed of two microcontrollers.
One microcontroller controls the synchronization and amplitude of the led driver, which

CHAPTER 7. EXPERIMENTS 100

#define SCHEDULE_SIZE_CTC 20

void taskS1() { ... } void sendM13(){ ... }

void receiveM21() { ... } void receiveS14() { ... }

void sendM15() { ... } void taskS16() { ... }

void sendM17() { ... } void receiveM27() { ... }

void receiveM24() { ... } void taskS18() { ... }

void taskS7() { ... }

#define SCHEDULE_SIZE_NODE 11

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 1, (int *)taskS1},
{false, 13, (int *)sendM13},
{false, 21, (int *)receiveM21},
{false, 14, (int *)taskS14},
{false, 15, (int *)sendM15},
{false, 16, (int *)taskS16},
{false, 17, (int *)sendM17},
{false, 27, (int *)receiveM27},
{false, 24, (int *)receiveM24},
{false, 18, (int *)taskS18},
{false, 7, (int *)taskS7},

};

Figure 7.4: Simple Control Generated Code for Node Processor 1

CHAPTER 7. EXPERIMENTS 101

void taskS3() { ... } void receiveM13() { ... }

void receiveS2() { ... } void receiveS19() { ... }

void receiveS22() { ... } void receiveS10() { ... }

void receiveS20() { ... } void sendM21() { ... }

void taskS11() { ... }

#define SCHEDULE_SIZE_NODE 9

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 3, (int *)taskS3},
{false, 13, (int *)receiveM13},
{false, 2, (int *)taskS2},
{false, 19, (int *)taskS19},
{false, 22, (int *)taskS22},
{false, 10, (int *)taskS10},
{false, 20, (int *)taskS20},
{false, 21, (int *)sendM21},
{false, 11, (int *)taskS11}

};

Figure 7.5: Simple Control Generated Code for Node Processor 2

CHAPTER 7. EXPERIMENTS 102

void taskS4{ ... } void taskS5{ ... }

void receiveM15{ ... } void taskS4{ ... }

void taskS25{ ... } void taskS28{ ... }

void taskS9{ ... } void taskS26{ ... }

void sendM27{ ... } void taskS8{ ... }

#define SCHEDULE_SIZE_NODE 9

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 4, (int *)taskS4},
{false, 5, (int *)taskS5},
{false, 15, (int *)receiveM15},
{false, 25, (int *)taskS25},
{false, 28, (int *)taskS28},
{false, 9, (int *)taskS9},
{false, 26, (int *)taskS26},
{false, 27, (int *)sendM27},
{false, 8, (int *)taskS8}

};

Figure 7.6: Simple Control Generated Code for Node Processor 3

void taskS6{ ... } void receiveM17{ ... }

void taskS23{ ... } void sendM24{ ... }

void taskS12{ ... }

#define SCHEDULE_SIZE_NODE 5

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 6, (int *)taskS6},
{false, 17, (int *)receiveM17},
{false, 23, (int *)taskS23},
{false, 24, (int *)sendM24},
{false, 12, (int *)taskS12}

};

Figure 7.7: Simple Control Generated Code for Node Processor 4

CHAPTER 7. EXPERIMENTS 103

#define SCHEDULE SIZE CTC 20

struct ScheduleItemCTC schedule[SCHEDULE SIZE CTC] =
{ //Comments
{0, 240}, //11110000 - Tasks S1,S3,S4,S6
{3, 248}, //11111000 - Tasks S5, sendM13, recM13
{4, 253}, //11111101 - Task S2
{7, 253}, //11111101 - Task S19
{12, 253}, //11111101 - Task S22
{18, 253}, //11111101 - Task S10
{20, 253}, //11111101 - Task S20
{27, 252}, //11111100 - Tasks sendM21, receiveM21
{28, 252}, //11111100 - Tasks S11, S14
{43, 250}, //11111010 - Tasks sendM15, receiveM15
{44, 250}, //11111010 - Tasks S25,S16
{46, 251}, //11111011 - Task S28
{53, 244}, //11111011 - Task S9
{54, 246}, //11110110 - Tasks sendM17, receiveM17
{55, 243}, //11110011 - Tasks S26, S23
{56, 250}, //11110100 - Tasks sendM27, receiveM27
{57, 251}, //11111011 - Task S8
{65, 246}, //11110110 - Tasks sendM24, receiveM24
{66, 246}, //11110110 - Tasks S12,S18
{67, 254}, //11111110 - Task S7

};

Figure 7.8: Simple Control Generated Code for CTC Processor

dispatches non-simultaneous stream pulses to the infrared and red leds. Both leds gen-
erate, respectively, infrared and red radiation pulses that cross the finger of a patient.
After crossing the finger, a photo-diode catches the radiations level. A sequence of
operations occurs until data reaches the microcontroller. The acquired data is sent to
a second microcontroller, which is responsible for performing the calculation related
to oxygen saturation level based on data received, and shows the result on a display.
Additionally, there is an extra microcontroller for performing the time counting.

Table 7.3 shows the pulse oximeter task specification. In this work, the oximeter
specification was based on 3 task sets: excitation (TE), acquisition (TA) , and control
(TC). The excitation tasks are responsible to dispatch stream pulses to the leds in
order to generate radiation pulses. The acquisition tasks capture radiations crossing
patient’s finger. Finally, the control tasks perform the calculation of oxygen saturation
level.

All tasks are non-preemptive. Additionally, there is a communication task (M1)
responsible to send the acquired data to the second microcontroller. Moreover, the

CHAPTER 7. EXPERIMENTS 104

Table 7.3: Task Specification for the Pulse Oximeter
TaskID Task Name r c d p proc/bus from to

TE1 SetExcitationLedRed 0 43 1000 2500 P1 - -
TE2 ResetExcitationLedRed 371 43 1000 2500 P1 - -
TE3 SetExcitationLedInfra 576 43 1000 2500 P1 - -
TE4 ResetExcitationLedInfra 947 43 1000 2500 P1 - -
TE5 ResetOutputDAConversor 0 47 2000 2500 P1 - -
TA1 StartChannelACRed 0 43 5000 16000 P1 - -
TA2 ReadChannelACRed 141 52 5000 16000 P1 - -
TA3 StartChannelACInfra 191 43 5000 16000 P1 - -
TA4 ReadChannelACInfra 323 52 5000 16000 P1 - -
TA5 StartChannelADRed 382 43 5000 16000 P1 - -
TA6 ReadChannelADRed 523 52 5000 16000 P1 - -
TA7 StartChannelADInfra 573 43 5000 16000 P1 - -
TA8 ReadChannelADInfra 714 52 5000 16000 P1 - -
TC1 StoreDataArrays 764 62 5000 16000 P2 - -
TC2 ScreenScanTime 0 52 10000 16000 P2 - -
TC3 SaturAndBPMPresentation 0 52 10000 16000 P2 - -
TC4 StorePointsDetectionBeep 764 47 10000 16000 P2 - -
TC5 GenerateAlarmSignaling 0 92 10000 16000 P2 - -
TC6 ProgrammingTiming 0 62 10000 16000 P2 - -
TC7 Control 0 92 10000 160000 P2 - -
TC8 GenerateCardioBeep 0 92 10000 80000 P2 - -
M1 - - 7 - - bus1 TA8 TC1

Intertask Relations
TE1 PRECEDES TE2, TE2 PRECEDES TE3, TE3 PRECEDES TE4,
TA1 PRECEDES TA2, TA2 PRECEDES TA3, TA4 PRECEDES TA4,
TA4 PRECEDES TA5, TA5 PRECEDES TA6, TA6 PRECEDES TA7,
TA7 PRECEDES TA8, TA8 PRECEDES TA9

CHAPTER 7. EXPERIMENTS 105

SPECTROPHOTOMETRIC
SENSOR

CONVERSOR

LED DRIVER

PRE-AMPLIFIER DEMULTIPLEX

DIGITAL/ANALOG
INTERFACE DEMODULATOR

ATENUATOR

SELECTOR
CONTROL

SELECTOR
SIGNAL/TEST

Test Signal

INTERFACE
PROGRAMMABLE

AMPLIFIER
FILTER

FILTERDC Signal

AC Signal

MICRO-CONTROLLER
UNIT

Figure 7.9: Pulse Oximeter Architecture

dispatcher overheads (CTC dispatcher and node dispatcher) are being considered in
each task computation time. The overheads totalize 200 microseconds. Lastly, the task
time unit (TTU) adopted in this example is 100 microseconds.

P1

P2

0

TE11
43 104

TC21

196 240

TA21
157500

TE164
157543 157871 158076 16000090

TE51

TC31

52

TA11

TC51 TC61

133 250

...
TE564 TE264 TE364 TE464

158447

Figure 7.10: Pulse Oximeter Timing Diagram

Using the proposed approach, a feasible schedule was found in 0.272232 seconds.
The amount of visited states was 2619 states. Due to the size of the feasible schedule
(463 task instances), just part of the timing diagram is depicted in Figure 7.10. Also,
for sake of readability, just part of the generated code is shown. Figure 7.11 depicts the
code generated for the CTC processor. Figure 7.12 and Figure 7.13 show, respectively,
the code for the node processor 1 and node processor 2. In addition, it is worth
explaining that only the oximeter control part was adopted for testing and validating
this experiment.

7.3 Vehicle Monitoring System

The vehicle monitoring system is a system composed of a set of sensors, which are used
to verify whether the car components are correctly working. Whether a component fails
or works erroneously, the system notifies the driver through the dashboard. The vehicle

CHAPTER 7. EXPERIMENTS 106

#define SCHEDULE SIZE CTC 449

struct ScheduleItemCTC schedule[SCHEDULE SIZE CTC] =
{ //Comments
{0, 252}, //11111100 - P1 and P2(Tasks TE1,TC2)
{43, 254}, //11111110 - P1 (Task TE5)
{52, 253}, //11111101 - P2 (Task TC3)
{90, 254}, //11111110 - P1 (Task TA1)
{104, 253}, //11111101 - P2 (Task TC5)
{196, 252}, //11111100 - P1 and P2 (Task TA2, TC6)

.

.

.

{157500, 254}, //11111110 - P1 (Task TE1)
{157541, 254}, //11111110 - P1 (Task TE5)
{157871, 254}, //11111110 - P1 (Task TE2)
{158076, 254}, //11111110 - P1 (Task TE3)
{158447, 254} //11111110 - P1 (Task TE4)

};

Figure 7.11: Pulse Oximeter Generated Code for CTC Processor

CHAPTER 7. EXPERIMENTS 107

void taskTE1() { ... } void taskTE2() { ... }

void taskTE3() { ... } void taskTE4() { ... }

void taskTE5() { ... } void taskTA1() { ... }

void taskTA2() { ... } void taskTA3() { ... }

void taskTA4() { ... } void taskTA5() { ... }

void taskTA7() { ... } void taskTA8() { ... }

#define SCHEDULE_SIZE_NODE 400

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 1, (int *)taskTE1},
{false, 5, (int *) taskTE5},
{false, 6, (int *) taskTA1},
{false, 7, (int *) taskTA2},

.

.

.

{false, 1, (int *)taskTE1},
{false, 5, (int *)taskTE5},
{false, 2, (int *)taskTE2},
{false, 3, (int *)taskTE3},
{false, 4, (int *)taskTE4}

};

Figure 7.12: Pulse Oximeter Generated Code for Node Processor 1

void taskTC1() { ... } void taskTC2() { ... }

void taskTC3() { ... } void taskTC4() { ... }

void taskTC5() { ... } void taskTC6() { ... }

void taskTC7() { ... } void taskTC8() { ... }

#define SCHEDULE_SIZE_NODE 73

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 15, (int *)taskTC2},
{false, 16, (int *) taskTC3},
{false, 18, (int *) taskTC5},
{false, 19, (int *) taskTC6},

.

.

.

};

Figure 7.13: Pulse Oximeter Generated Code for Node Processor 2

CHAPTER 7. EXPERIMENTS 108

monitoring system relies on multiple processors, since several sensors are considered
and the microcontroller adopted (8051) contains only four 8-Bit I/O ports. In this way,
two processors are utilized for interfacing with the sensors.

A set of tasks periodically checks the status of the engine (TV and TR), the breaks
(TB), the gearing (TG), the water (TW), and the temperature (TT). Next, the
data are packaged and sent to an external system (TRA), which is responsible for
notifying the driver. The specification model (Table 7.4) is composed of 14 tasks,
including a communication task (M1). The communication task is used to send the
data acquired by the processor 2 to the processor 1, which is connected to the notifier
system. Additionally, the task time unit is 1 µs and the dispatcher overhead is 200 µs,
which is being considered in the computation time of each task .

Table 7.4: Task Timing Specification of Considering 2 Processors

TaskID Task Name Release Comp. Deadline Period Proc/Bus From To

TV0 ReadVelocity 0 231 20000 120000 P1 - -
TV1 MapVelocity 20000 5487 40000 120000 P1 - -
TB0 ReadBreaks 20000 221 40000 120000 P1 - -
TB1 MapBreaks 40000 236 60000 120000 P1 - -
TR0 ReadRPM 40000 232 60000 120000 P1 - -
TR1 MapRPM 60000 238 80000 120000 P1 - -
TRA NotifierSystemTrans. 80000 2444 120000 120000 P1 - -
TW0 ReadWater 0 227 20000 120000 P2 - -
TW1 MapWater 20000 241 40000 120000 P2 - -
TT0 ReadTemperature 20000 259 40000 120000 P2 - -
TT1 MapTemperature 40000 234 60000 120000 P2 - -
TG0 ReadGearing 40000 224 60000 120000 P2 - -
TG1 MapGearing 60000 236 80000 120000 P2 - -

M1 - - 1700 - - bus1 TG1 TRA

Using the proposed approach, the specification model is automatically translated
into a TPN model. Applying the scheduling synthesis algorithm on the TPN model,
a feasible firing schedule (Figure 7.14) was found in 0.007141 seconds, analyzing 78
states.

P1

P2

0

TV01
20000

M11

26487 120000

TW01

TB0TV11

TW11

20241

TT01

TB11

TT11

40000 4023440236

TG01

TR0 TR11

TG11

60000 60238 80000

TRA1

Figure 7.14: Timing Diagram for the Vehicle Monitoring System

CHAPTER 7. EXPERIMENTS 109

Figure 7.15 and Figure 7.16 depict the code generated for the processor 1 and 2,
respectively. Figure 7.17 shows the code for the CTC processor.

void taskV0() {...} void taskV1() {...}
void taskTB0() {...} void taskTB1() {...}
void taskTR0() {...} void taskTR1() {...}
void receiveM1() {...} void taskTRA() {...}

#define SCHEDULE_SIZE_NODE 8

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 0, (int *)taskTV0},
{false, 1, (int *)taskTV1},
{false, 2, (int *)taskTB0},
{false, 3, (int *)taskTB1},
{false, 4, (int *)taskTR0},
{false, 5, (int *)taskTR1},
{false, 6, (int *)receiveM1},
{false, 7, (int *)taskTRA},

};

Figure 7.15: Code for the node processor 1

void taskTW0() {...} void taskTW1() {...}
void taskTT0() {...} void taskTT1() {...}
void taskTG0() {...} void taskTG1() {...}
void sendM1() {...}

#define SCHEDULE_SIZE_NODE 7

struct ScheduleItemNode schedule[SCHEDULE_SIZE_NODE] =
{

{false, 8, (int *)taskTW0},
{false, 9, (int *)taskTW1},
{false, 10, (int *)taskTT0},
{false, 11, (int *)taskTT1},
{false, 12, (int *)taskTG0},
{false, 13, (int *)taskTG1},
{false, 14, (int *)sendM1}

};

Figure 7.16: Code for the node processor 2

CHAPTER 7. EXPERIMENTS 110

#define SCHEDULE_SIZE_CTC 10

struct ScheduleItemCTC schedule[SCHEDULE_SIZE_CTC] =
{

{0, 252}, //11111100 - Proc 1 and 2
{20000, 252}, //11111100 - Proc 1 and 2
{20241, 253}, //11111101 - Proc 2
{25487, 254}, //11111110 - Proc 1
{40000, 252}, //11111100 - Proc 1 and 2
{40234, 253}, //11111101 - Proc 2
{40236, 254}, //11111110 - Proc 1
{60000, 252}, //11111100 - Proc 1 and 2
{60238, 252}, //11111100 - Proc 1 and 2
{80000, 254}, //11111110 - Proc 1

};

Figure 7.17: Code for the CTC processor

7.4 Summary

This chapter presented in details the experiments conducted in this work. Firstly, some
experiments were depicted for showing the feasibility of the compression function. After
that, three software synthesis experiments were detailed. The first experiment was a
simple control application, which is composed of 4 processors. The second experiment
was conducted taking into account a pulse-oximeter case study, which is an electro-
medical equipment responsible for measuring the oxygen saturation in the blood system
using a non-invasive method. The third experiment was applied in a vehicle monitoring
system, which is responsible for checking whether the car components, such as engine
and breaks, are properly working.

These experiments empirically shows that the proposed code generator may be
applied to several real-world case studies. In all these experiments, the performance
was acceptable and results are very promising.

Chapter 8

Conclusions

Over the last years, the market has demanded, at the same time, high complexity
embedded systems, and short time-to-market. Since software implementations have
some advantages than hardware, due to flexibility and lower cost, nowadays, 80% of a
embedded system development is related to software. Due to this fact, the design of
embedded software has significantly increased its complexity. Moreover, little attention
has been given to correctness and timeliness verification, which are issues that must be
concerned, since several applications demand safety properties.

In light of these considerations, formal methodologies play an important role, be-
cause verification and/or analysis of qualitative as well as quantitative properties can
be performed at design time, improving the degree of confidence of critical systems.

The dissertation presented a methodology for generating predictable source code
in a suitable programming language for multiple processors, satisfying resource access
and stringent timing constraints.

The proposed method started from a specification model, which is automatically
translated into a formal model, in this case a TPN model. The model is then analyzed
for finding a feasible schedule using a pre-runtime approach. Next, the code generation
phase is performed.

In order to show the practical feasibility of the proposed approach, this work
presents the application of the methodology into three case studies. In all experiments,
the performance was acceptable and the results are very promising.

This chapter shows the main contributions proposed during the research and pre-
sented in this dissertation as well as future works.

8.1 Contributions

This work extended Barreto’s approach [8] in order to consider multiple processors.
Three contributions were proposed, which are summarized as follows.

111

CHAPTER 8. CONCLUSIONS 112

Modeling

The modeling phase presented in this work adopts time Petri net formalism for mod-
eling hard real-time embedded systems. Time Petri Net allows the modeling of several
features presented in concurrent and real-time systems. Moreover, several tools adopts
such formalism, in order to allow verification and/or analysis of properties.

The modeling is based on composition of building blocks. Several blocks were
proposed by Barreto [8], such as (i) periodic task arrival, (ii) task structure (preemp-
tive or non-preemptive), (iii) deadline checking, (iv) resources (e.g. processors and
buses), (v) fork, and (vi) join. This dissertation presented a new building block for
modeling a communication task, which represents the worst case communication time
between two tasks allocated to different processors. The proposed building block was
named inter-processor communication block. In order to provide predictable execu-
tions, it is assumed that all communications adopt the message passing paradigm and
the transmission is synchronous. Furthermore, a bus is explicitly modeled and taken
into account in the inter-processor communication block, since this resource may be
utilized by several processors.

Scheduling

Predictability is fundamental in hard real-time embedded systems, since equipment
damage or even loss of human life may occur if timing constraints are not met. In
this way, scheduling plays an important role in the development of timing-critical
systems. This work adopts a pre-runtime scheduling, which always finds a feasible
schedule, considering if one exists, satisfying all constraints. This work adopts Barreto’s
scheduling algorithm, which utilizes the time Petri Model in order to generate a time
labeled transition system that represents a feasible schedule.

The algorithm proposed by Barreto adopts a tagging scheme in order to avoid a
state to be visited more than once. This simple technique improves the algorithm
execution, but it leads to a huge memory consumption, since the visited states need to
be stored in memory.

For mitigating such problem, a compressing function was implemented. The solu-
tion resulted in compression rate of 70% in average, and only increased slightly the
algorithm execution time.

Code Generation

Starting from the found feasible schedule, a C-code is generated satisfying all timing
constraints. This dissertation proposed a code generation method for multiple proces-
sors, in such a way that the system execution is predictable. The code generation also
comprises the synthesis of schedule tables that contain all information about tasks’

CHAPTER 8. CONCLUSIONS 113

execution, and the synthesis of dispatchers, which are responsible for controlling the
tasks during runtime.

In order to provide the real-time clock synchronization between processors, a special
architecture was presented. The architecture takes into account a central time counting
processor (CTC Processor), which is responsible for performing the time counting and
the propagation of real-time clock values to the node processors.

In addition, two new dispatchers were presented. One is deployed in the CTC
processor, and it is responsible for performing the time counting and for notifying the
node processors. The other one is deployed in the node processors, and it is responsible
for controlling the tasks’s execution.

In order to provide predictable behavior, each communication task is translated
into two special tasks (send and receive), which are also taken into account in the
schedule table.

8.2 Future Works

Software synthesis for hard real-time embedded systems remains a relatively fertile
topic in systems research. Consequently, it has several opportunities for further im-
provement.

The adoption of multiple processors in hard real-time embedded systems emerges
additional problems to be handled. Some of them were tackled in this work. However,
new issues remain. For instance, many hard real-time systems have constraints on
autonomy (e.g. mobile pulse oximeter). Therefore, such systems cannot exceed their
respective energy constraints for executing their associated tasks in order to prolong the
battery charge usage. Furthermore, processors may fail (e.g. short-circuit), hence fault-
tolerance mechanisms based on multiple operational modes seem to be an interesting
approach to be considered. Each operational mode is a pre-runtime schedule, which is
selected at runtime by the dispatcher due to the occurrence of an external event.

Additionally, some improvements proposed in [8] were not addressed in this work.
They are described as follows.

The possibility of deadlock in the precedence relation was not directly addressed.
In this case, deadlock-detection may be performed by a cycle search in the graph that
represents the precedence relation.

Analysis of properties in large dimension nets is not trivial. Therefore, methods that
allow transforming models while preserving system properties has been largely studied.
Usually, these transformations are reductions that are applied to larger models in order
to obtain smaller ones while preserving properties. Reduction rules is a further work
to be investigated.

Bibliography

[1] T. F. Abdelzaher and K. G. Shin. Optimal combined task and message schedul-
ing in distributed real-time systems. In Proc. of the IEEE Real-Time Systems
Symposium, pages 162–171, December 1995.

[2] P. Altenbernd. Chary: the c-lab hard real-time system to support mechatronical
design. 1997 Workshop on Engineering of Computer-Based Systems (ECBS ’97),
page 271, 1997.

[3] T. Amnell, E. Fersman, P. Pettersson, H. Sun, and W. Yi. Code synthesis for
timed automata. Nordic Journal of Computing, 2003.

[4] M. Anand, J. Kim, and I. Lee. Code generation from hybrid systems models
for distributed embedded systems. Proceedings of the 8th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing 2005 (ISORC
2005), pages 166–173, 2005.

[5] T.P. Baker and A. Shaw. The cyclic executive model and ada. In Proceedings of
the IEEE Real-Time Systems Symposium. December 1988.

[6] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
A. Sangiovanni-Vincentelli, E. Sentovich, and K. Suzuki. Synthesis of software
programs for embedded control applications. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 18(6):834–849, June 1999.

[7] F. Balarin and et al. Hardware-software Co-design of Embedded Systems: the
POLIS approach. Kluwer Academic Publishers, 1997.

[8] R. Barreto. A Time Petri Net-Based Methodology for Embedded Hard Real-Time
Systems Software Synthesis. PhD Thesis, Centro de Informática. Universidade
Federal de Pernambuco, April 2005.

[9] E. Best. Fairness and conspiracies. In Information Processing Letter, volume 18,
pages 215–220. Elsevier, 1984.

114

BIBLIOGRAPHY 115

[10] C. Boke. Software synthesis of real-time communication system code for dis-
tributed embedded applications. In Proc. of the 6th Annual Australasian IFIP
Conf. on Parallel and Real-Time Systems (PART’99), December 1999.

[11] L.J. Van Bokhoven, J.P.M. Voeten, and M.C.W. Geilen. Software synthesis for
system level design using process execution trees. 25th Euromicro Conference
(EUROMICRO ’99), 1:1463, 1999.

[12] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli. Software synthesis for real-
time information processing systems. Code Generation for Embedded Processors,
pages 260–279, 1995.

[13] J. Desel and W. Reisig. Place/transition nets. Lectures on Petri Nets I: Basic
Models, LNCS 1491, pages 122–173, June 1998.

[14] E. W. Dijsktra. Hierarchical ordering of sequential processes, volume 1. Acta
Informatzca, 1971.

[15] M. DiNatale and J. A. Stankovic. Dynamic end-to-end guarantees in distributed
realtime systems. In Proc. of the IEEE Real-Time Systems Symposium, pages
216–227, 1994.

[16] R. Ernst. Codesign of embedded systems: Status and trends. IEEE Design and
Test of Computers, pages 45–54, April-June 1998.

[17] P. Godefroid. Partial Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. PhD Thesis, University of Liege,
Nov. 1994.

[18] R. Gupta and G. De Micheli. Hardware /software co-synthesis for digital systems.
IEEE Design and Test, 3:26–41, September 1993.

[19] P.-A. Hsiung. Formal synthesis and code generation of embedded real-time soft-
ware. 9th Int. Symp. Hw/Sw Codesign (CODES’01), pages 208–213, April 2001.

[20] K. Hwang. Advanced computer architecture: paralelism, scalability, programma-
bility. McGraw-Hill, July 1993.

[21] Pino J, Ha S., Lee E., and Buck J. Software synthesis for dsp using ptolemy.
Journal of VLSI Signal Processing, (9):7–21, May 1995.

[22] K. Jensen. Coloured petri nets and the invariant method. Theoretical Computer
Science, 1:317–336, 1981.

BIBLIOGRAPHY 116

[23] M. Nogueira Oliveira Júnior. Desenvolvimento de Um Protótipo para a Medida Não
Invasiva da Saturação Arterial de Oxigênio em Humanos - Ox́ımetro de Pulso (in
portuguese). MSc Thesis, Departamento de Biof́ısica e Radiobiologia, Universidade
Federal de Pernambuco, August 1998.

[24] D.-I. Kang, R. Gerber, L. Golubchik, J. K. Hollingsworth, and M. Saksena. A
software synthesis tool for distributed embedded system design. In Proceedings
of the ACM SIGPLAN 1999 workshop on Languages, compilers, and tools for
embedded systems, pages 87–95. ACM Press, 1999.

[25] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Kluwer Academic Publishers, 1997.

[26] L. Lavagno, A. Sangiovanni-Vincentelli, and H. Hsieh. Embedded system co-
design: Synthesis and verification. In G. DeMicheli and M. Sami, editors, Hard-
ware/Software Co-Design, pages 213–242. Kluwer Academic Publishers, 1996.

[27] E. A. Lee. Embedded software. In M. Zelkowitz, editor, Advances in Computers,
volume 56. 2002.

[28] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Performance Evaluation, 2(4):237–250, December 1982.

[29] B. Lin. Efficient compilation of process-based concurrent programs without run-
time scheduling. Design Automation and Test in Europe Conference (DATE’98),
February 1998.

[30] R. J. Lipton. The reachability problem requires exponential space. Research report
62, Department of Computer Science. Yale University, January 1976.

[31] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. ACM Journal, 20(1):46–61, January 1973.

[32] P. Maciel. Petri Net Based Estimators for Hardware/Sofware Codesign. PhD
Thesis, Centro de Informática. Universidade Federal de Pernambuco, Dec 1999.

[33] M. Marsan, A. Bobbio, and D. Donatelli. Petri nets in performance analysis: An
introduction. LNCS: Lectures on Petri Nets I: Basic Models, 1491:211–256, June
1998.

[34] P. Merlin and D. J. Faber. Recoverability of communication protocols: Implicatons
of a theoretical study. IEEE Transactions on Communications, 24(9):1036–1043,
Sept. 1976.

BIBLIOGRAPHY 117

[35] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-
Real-Time Environment. PhD Thesis, Dept Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, May 1983.

[36] A. K. Mok. The design of real-time programming systems based on process models.
IEEE Real-Time Systems Symposium, pages 5–17, 1984.

[37] T. Murata. Petri nets: Properties, analysis and applications. Proc. IEEE,
77(4):541–580, April 1989.

[38] C. A. Petri. Kommunikation mit Automaten. PhD Dissertation, Darmstad Uni-
versity, Germany, 1962.

[39] M. J. Pont. Patterns for Time-Triggered Embedded Systems: Building Reliable Ap-
plications with the 8051 Family of Microcontroller. Addison-Wesley Professional,
1 edition, July 2001.

[40] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and sofware
design methodology for embedded systems. IEEE Design and Test of Computers,
pages 23–33, November-December 2001.

[41] A. Sangiovanni-Vincentelli and G. Martin. A vision for embedded software. In
Proceedings of the International Conference on Compilers, Architectures and Syn-
thesis for Embedded Systems (CASES’01), pages 1–7. Atlanta, Georgia, November
16-17 2001.

[42] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Synthesis of
embedded software using free-choice petri nets. Design Automation Conference,
1999.

[43] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An ap-
proach to real-time synchonization. IEEE Transactions on Computers, 39(9):1175–
1185, September 1990.

[44] T. Shepard and J. A. Gagné. A pre-run-time scheduling algorithm for hard real-
time systems. IEEE Trans. Soft. Engineering, 17(7):669–677, July 1991.

[45] M. Silva. Introducing petri nets. In F. DiCesare, G.Harhalakis, J. M. Proth,
M. Silva, and F. B. Vernadat, editors, Practice of Petri Nets in Manufacturing,
chapter 1. Chapman & Hall, 1993.

[46] A. Singhal. Real time systems: A survey. Technical report, Computer Science
Department. University of Rochester, December 1996.

BIBLIOGRAPHY 118

[47] F.-S. Su and P.-A. Hsiung. Extended quase-static scheduling for formal synthesis
and code generation of embedded software. International Symposium on Hard-
ware/Software Codesign (CODES’02), May 2002.

[48] F. Thoen, J. Van Der Steen, G. de Jong, G. Goossens, and H. De Man. Multi-
thread graph: A system model for real-time embedded software synthesis. Euro-
pean Design and Test Conference (ED&TC ’97), page 476, 1997.

[49] R. Valk. Infinite behavior and fairness. In Lecture Notes in Computer Science,
volume 254, pages 377–396. Springer-Verlag, 1987.

[50] R. Valk. Petri nets as token objectsan introduction to elementary object nets.
LNCS 1420, pages 1–24, 1998.

[51] A. Valmari. The state explosion problem. LNCS: Lectures on Petri Nets I: Basic
Models, 1491:429–528, June 1998.

[52] Wolf. W. Hardware-software co-design of embedded systems. Proceedings of the
IEEE, 82(7):967–989, July 1994.

[53] T. Wilmshurtz. An Introduction to the Design of Small-scale Embedded Systems.
PALGRAVE, 2001.

[54] W. Wolf. Essential issues in codesign. In J. Staunstrup and W. Wolf, editors, Hard-
ware/Software Co-Design: Principles and Practice, pages 1–45. Kluwer Academic
Publishers, 1997.

[55] J. Xu and D. Parnas. Scheduling processes with release times, deadlines, prece-
dence, and exclusion relations. IEEE Trans. Soft. Engineering, 16(3):360–369,
March 1990.

[56] J. Xu and D. Parnas. On satisfying timing constraints in hard real-time systems.
IEEE Trans. Soft. Engineering, 19(1):70–84, January 1993.

[57] J. Xu and D. Parnas. Priority scheduling versus pre-run-time scheduling. In Real-
Time Systems, volume 18, pages 7–23. Kluwer Academic Publishers, January 2000.

[58] W. Zuberek. Timed petri nets - definitions, properties and applications. Micro-
electronics and Reliability (Special Issue on Petri Nets and Related Graph Models),
31:627–644, 1991.

