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“You are your own worst enemy. You waste precious time dreaming of the future instead
of engaging in the present. Since nothing seems urgent to you, you are only half involved

in what you do. The only way to change is through action and outside pressure. Put
yourself in situations where you have too much at stake to waste time or resources –if

you cannot afford to lose, you won’t. Cut your ties to the past; enter unknown territory
where you must depend on your wits and energy to see you through. Place yourself on

"death ground," where your back is against the wall and you have to fight like hell to get
out alive."

(The 33 Strategies of War - Robert Greene)



Resumo
A Computação na Nuvem Móvel (Mobile Cloud Computing - MCC) é a integração

da computação móvel e a computação em nuvem que pode aumentar o desempenho de
aplicativos móveis e reduzir o seu consumo de energia por meio do offloading de códigos
e dados. Os desenvolvedores podem implantar sistemas MCC em uma nuvem pública.
A nuvem pública pode oferecer economias de escala, mas há algumas considerações a
serem levadas em conta. Provedores de nuvem cobram seus clientes pelo tráfego de dados
e uso de virtual machines (VMs), e decisões erradas de offloading podem levar a prejuí-
zos financeiros. Essa dissertação propõe uma abordagem para estimar o desempenho de
aplicações, uso de VMs e tráfego de dados gerado pelo offloading de tarefas e os seus cus-
tos em uma nuvem pública. Este trabalho propõe duas estratégias de modelagem formal
baseadas em Redes de Petri Estocásticas (Stochastic Petri Nets - SPNs) para representar
aplicações MCC e um modelo de custo para estimar o volume de tráfego de dados e o uso
de VMs. A primeira estratégia representa os aplicativos MCC executando em dispositivos
de usuários. A segunda representa uma infraestrutura remota implantada em uma nu-
vem pública para suportar o offloading de usuários móveis. Combinando diferentes tipos
de VMs, trabalhos simultâneos por VM e thresholds para dimensionamento do sistema,
é possível oferecer diferentes tempos de resposta para cada cenário de offloading. Além
disso, usando ambas as estratégias de modelagem, é possível representar o processo de co-
municação entre o aplicativo em execução no dispositivo do usuário e uma infraestrutura
remota. Tornando possível estimar o desempenho do aplicativo MCC. Nossa abordagem
permite que os projetistas planejem e ajustem arquiteturas de MCC com base em quatro
métricas de desempenho: tempo médio de execução (Mean Time to Execute - MTTE),
tempo médio de resposta (Mean Response Time - MRT), função de distribuição acumu-
lada (Cumulative Distribution Function - CDF) e vazão. O MTTE está relacionado ao
desempenho no dispositivo móvel. Por outro lado, o MRT corresponde ao desempenho da
infraestrutura remota implementada em uma nuvem pública. Nossa estratégia de mod-
elagem permite representar o uso e o compartilhamento da largura de banda disponível
para operações de offloading, bem como o efeito da sua variação nas métricas avaliadas.
Ela possibilita uma avaliação mais precisa sobre o desempenho de aplicativos, levando em
consideração requisitos específicos de rede, usuários e cenários para offloading. Quatro es-
tudos de caso foram executados. Nossa abordagem provou ser viável e destaca os cenários
mais adequados. Ela suporta os desenvolvedores em tempo de projeto, fornecendo infor-
mações estatísticas sobre o comportamento dos aplicativos e estimativas de custos. Além
disso, nossa estratégia pode ser adaptada para oferecer suporte a aplicativos MCC em
tempo real, fornecendo estimativas probabilísticas imediatas de desempenho (on-the-fly).

Palavras-chaves: Nuvem móvel. Nuvem pública. Avaliação de desempenho. Avaliação
de tráfego de dados. Elasticidade. Modelagem estocástica.



Abstract
Mobile Cloud Computing (MCC) is the integration of mobile computing and cloud

computing, and it can increase the performance of mobile apps and reducing their energy
consumption through code and data offloading. Developers may build MCC systems on
a public cloud. The public cloud may offer economies of scale, but there are some con-
siderations to take into account. Cloud providers charge their customers by data traffic
and use of virtual machines (VMs), and wrong offloading decisions may lead to financial
losses. This dissertation proposes an approach for estimating applications’ performance,
use of VM instances and data traffic generated by tasks offloading and its related costs
on a public cloud. This work proposes two Stochastic Petri Net (SPN)-based formal mod-
eling strategies to represent MCC applications and a cost model to predict data traffic
volume and use of VM instances. The first SPN-based modeling strategy represents MCC
applications running on user devices. The second one represents a remote infrastructure
deployed in a public cloud for supporting offloading making by mobile users. By combin-
ing different instance types, simultaneous jobs per VM instance and thresholds for scaling
the system, it is possible to offer different response times for each offloading scenario.
In addition, using both strategies it is possible to represent the communication process
between the app running on the user’s device and a remote infrastructure. Thus, mak-
ing possible to estimate the performance of the MCC application. Our approach enables
designers to plan and tune MCC architectures based on four performance metrics: Mean
Time to Execute (MTTE), Mean Response Time (MRT), Cumulative Distribution Func-
tion (CDF) and Throughput. MTTE is related to the performance on the mobile device.
On the other hand, MRT corresponds to the performance of the remote infrastructure
deployed in a public cloud for supporting offloading. Our modeling strategy allows for the
representation of the use and sharing of available bandwidth for offloading operations,
as well as the effect of bandwidth variation on the metrics evaluated. It allows a more
accurate evaluation by developers about the performance of their applications taking into
account specific network requirements, users, and offloading scenarios. Four case stud-
ies were performed to evaluate our approach. Our approach has proven to be feasible
and it highlights the most appropriate scenarios. Supporting developers at design time
by providing statistical information about applications’ behavior and costs estimations.
In addition, our approach may be adapted to support MCC applications in real time
providing on-the-fly probabilistic performance predictions.

Keywords: Mobile cloud. Public cloud. Performance evaluation. Data traffic evaluation.
Elasticity. Stochastic modeling.



List of Figures

Figure 1 – Scenario Depicting a Mobile Application Offloading a Face Recognition
Task to an Elastic MCC Infrastructure on AWS . . . . . . . . . . . . . 23

Figure 2 – Master Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 3 – Cloud Layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 4 – Cloud Service Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 5 – Partial Method-Call Offloading . . . . . . . . . . . . . . . . . . . . . . 36
Figure 6 – A CTMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 7 – Components of a Petri Net. . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 8 – Example of a Petri Net . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 9 – SPN Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 10 – Example of a basic SPN . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 11 – CTMC Related to the State Space of the SPN Presented in Figure 10 45
Figure 12 – An Example of an SPN model . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 13 – Erlang Distribution SPN Subnet . . . . . . . . . . . . . . . . . . . . . 48
Figure 14 – Hyperexponential Distribution SPN Subnet . . . . . . . . . . . . . . . 49
Figure 15 – Hypoexponential Distribution SPN Subnet . . . . . . . . . . . . . . . . 49
Figure 16 – An SPN Model with a Non-Exponential Timed Activity Represented

by a Hypoexponential Distribution. . . . . . . . . . . . . . . . . . . . . 51
Figure 17 – Face Detection: This picture was processed by Haar Features and Clas-

sifiers technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 18 – (a) Thirteen eigenfaces calculated considering the faces of Figure 17;

(b) The average face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 19 – Decisions About “Where” to Process the Application’s Workload . . . . 62
Figure 20 – Steps of the Methodology for Evaluating MCC Applications’ Offloading 63
Figure 21 – Mobile Device Energy Profiling . . . . . . . . . . . . . . . . . . . . . . 64
Figure 22 – Mobile Device CPU Profiling . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 23 – Mobile Device Memory Profiling . . . . . . . . . . . . . . . . . . . . . . 65
Figure 24 – Decision Process for Metrics Evaluation . . . . . . . . . . . . . . . . . 68
Figure 25 – Steps of the Methodology for Planning MCC Systems in Public Clouds 70
Figure 26 – Remote Architecture for Deploying an MCC System in a Public Cloud 77
Figure 27 – Remote Architecture for Supporting Two MCC Functions . . . . . . . . 78
Figure 28 – Requests for Scaling Operations Sent by the Front-end to AWS EC2 . . 79



Figure 29 – Sequence Diagram Depicting the Front-end Behaviour When a Request
Arrives in the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 30 – Basic SPN Representation of One Application with Only One Local
Method-Call Using Absorbing State . . . . . . . . . . . . . . . . . . . . 91

Figure 31 – Basic SPN Representation of One Application with Only One Offload-
able Method-Call Using Absorbing State . . . . . . . . . . . . . . . . . 91

Figure 32 – CTMC of an Application with Only One Offloadable Method Call With
Absorbing State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 33 – SPNs Representing Offloadable Method-Calls . . . . . . . . . . . . . . 93
Figure 34 – Example of CDF based on SPN . . . . . . . . . . . . . . . . . . . . . . 95
Figure 35 – SPN Representation of an Application with Only One Method-Call

without Absorbing State. . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 36 – Public Cloud MCC Infrastructure Model . . . . . . . . . . . . . . . . . 104
Figure 37 – Sequence Diagram of the Front-End System Depicting Some Activities 107
Figure 38 – SPN Subnet Representing a Type of Service Instances . . . . . . . . . . 107
Figure 39 – Remote Architecture for Model Validation . . . . . . . . . . . . . . . . 121
Figure 40 – Sequence Diagram Depicting the Communication Between JMeter, Front-

End and a Service Instance . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 41 – Response Time for Both Scenarios . . . . . . . . . . . . . . . . . . . . 125
Figure 42 – Use of ODIs for Both Scenarios . . . . . . . . . . . . . . . . . . . . . . 126
Figure 43 – SPN Model Representing the Method processImages() . . . . . . . . . . 131
Figure 44 – MTTE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 45 – Available Bandwidth and MTTEs . . . . . . . . . . . . . . . . . . . . . 132
Figure 46 – Probability Analysis of the Scenarios based on SPNs . . . . . . . . . . 133
Figure 47 – Probability Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 48 – SPN Used to Calculate Throughput of an Application With Two Par-

allel Method-Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 49 – Comparing MTTEs and Volume of Total Transferred Data (Expected

BW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 50 – Public Cloud MCC Infrastructure Model . . . . . . . . . . . . . . . . . 143
Figure 51 – MRTs and Costs Results for all Scenarios . . . . . . . . . . . . . . . . . 145
Figure 52 – MRT and Cost of Scenarios that Comply with the SLA . . . . . . . . . 147
Figure 53 – Comparing MRTs and Costs for On-Demand Instances . . . . . . . . . 148
Figure 54 – Comparing MRTs and Costs for Reserved Instances . . . . . . . . . . . 148
Figure 55 – Comparing MRTs and Costs for ODIs and RIs . . . . . . . . . . . . . . 148
Figure 56 – Difference in MRTs and Costs Considering Thresholds for Scaling Out . 149
Figure 57 – MRTs and Thresholds for Scaling Out . . . . . . . . . . . . . . . . . . 150
Figure 58 – Public Cloud MCC Infrastructure Model Refined to Calculate CDFs

and MTTAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



Figure 59 – Probability Analyses of the Scenarios Based on SPNs Transient Eval-
uations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Figure 60 – MTTA and Cost for all Scenarios . . . . . . . . . . . . . . . . . . . . . 155
Figure 61 – Probability Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 62 – Service Time for Each Instance Type . . . . . . . . . . . . . . . . . . . 163
Figure 63 – SPN with Absorbing State Used to Calculate MTTE of an Application

With Only One Offloadable Method-Call . . . . . . . . . . . . . . . . . 164
Figure 64 – MTTEs and MRTs Results . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 65 – MTTEs Considering BW Variation . . . . . . . . . . . . . . . . . . . . 167
Figure 66 – MTTEs Considering the Minimum and Expected BW for all Scenarios

(Ordered by MTTE Values) . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 67 – MRTs and Costs of Using VM Instances . . . . . . . . . . . . . . . . . 170
Figure 68 – MRTs and Costs for Data Traffic and use of VM Instances . . . . . . . 171
Figure 69 – MRTs and Total Costs for one Year . . . . . . . . . . . . . . . . . . . . 172
Figure 70 – Utilization of ODIs for all Scenarios . . . . . . . . . . . . . . . . . . . . 173
Figure 71 – JMeter’s Configuration Screen . . . . . . . . . . . . . . . . . . . . . . . 191



List of Tables

Table 1 – AWS’s Featured Services (AWS, 2018b) . . . . . . . . . . . . . . . . . . 32
Table 2 – Possible Offloading Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 3 – Typical Applications of Face Recognition (ZHAO et al., 2012) . . . . . . . 52
Table 4 – Related Work Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 5 – Example of Offloading Scenarios . . . . . . . . . . . . . . . . . . . . . . 73
Table 6 – Example of Deployment Configurations for an MCC System . . . . . . . 73
Table 7 – EC2 Instances (AWS, 2018b) . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 8 – Amazon EC2 Prices per Transferred Bytes (AWS, 2017) . . . . . . . . . 97
Table 9 – Oracle Cloud Prices per Transferred Bytes (ORACLE, 2017) . . . . . . . 97
Table 10 – Microsoft Azure Prices per Transferred Bytes (AZURE, 2017) . . . . . . 98
Table 11 – SPN Model Validation Using Bootstrap Technique . . . . . . . . . . . . 100
Table 12 – Components of the SPN-based Modeling Strategy . . . . . . . . . . . . 105
Table 13 – Transitions Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 14 – Amazon EC2 Prices per Transferred Bytes (AWS, 2017) . . . . . . . . . 119
Table 15 – Scenario #1 for Model Validation . . . . . . . . . . . . . . . . . . . . . 120
Table 16 – Scenario #2 for Model Validation . . . . . . . . . . . . . . . . . . . . . 120
Table 17 – Mean Processing Time Considering 𝛾 Parameter . . . . . . . . . . . . . 123
Table 18 – Mean Time to Launch our ODIs . . . . . . . . . . . . . . . . . . . . . . 124
Table 19 – Scenario #1 - Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 20 – Scenario #2 - Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 21 – Scenarios to Method-Calls Executions . . . . . . . . . . . . . . . . . . . 128
Table 22 – Bandwidth Variation (in Megabits/s) . . . . . . . . . . . . . . . . . . . 129
Table 23 – Registered Processing Times per Method-Call . . . . . . . . . . . . . . . 129
Table 24 – Transferred Bytes per Method-Call . . . . . . . . . . . . . . . . . . . . . 129
Table 25 – MTTE of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 26 – Absorbing Probabilities at 100 s . . . . . . . . . . . . . . . . . . . . . . 134
Table 27 – Absorbing Probabilities Considering T2 Interval (Expected BW) . . . . 134
Table 28 – Throughput for Each User in Each Scenario . . . . . . . . . . . . . . . . 136
Table 29 – Transferred Bytes for Each Scenario . . . . . . . . . . . . . . . . . . . . 137
Table 30 – Executions per Month in Each Scenario . . . . . . . . . . . . . . . . . . 137
Table 31 – Total Transferred Bytes for Each Scenario . . . . . . . . . . . . . . . . . 137
Table 32 – Bytes Sent from the Cloud to Mobile Devices and their Costs on AWS . 138
Table 33 – EC2 Instances Used by all Evaluated Scenarios (AWS, 2018b) . . . . . . 140



Table 34 – Parameters for Supporting the Generation of Scenarios . . . . . . . . . . 140
Table 35 – Evaluated Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 36 – Time Required to Launch our ODIs . . . . . . . . . . . . . . . . . . . . 142
Table 37 – Processing Time Registered for Each Instance Type . . . . . . . . . . . 142
Table 38 – MRT and Costs for Each Scenario . . . . . . . . . . . . . . . . . . . . . 144
Table 39 – MRT and Cost of Scenarios that Comply with the SLA Orderered by

MRT Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 40 – MRTs and Costs Considering Two Thresholds for Scaling Out . . . . . . 150
Table 41 – Remote MCC Infrastructure Scenarios for Absorbing Probabilities Eval-

uation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 42 – Processing Time Registered for Each Instance Type . . . . . . . . . . . 153
Table 43 – Time Required to Launch our ODIs . . . . . . . . . . . . . . . . . . . . 153
Table 44 – MTTA and Cost for each Scenario . . . . . . . . . . . . . . . . . . . . . 153
Table 45 – Absorbing Probabilities at 3,000 s . . . . . . . . . . . . . . . . . . . . . 155
Table 46 – Time Intervals Analyzed . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 47 – Mean Absorbing Probabilities Related to Six Intervals . . . . . . . . . . 158
Table 48 – Absorbing Probabilities with T4 Interval . . . . . . . . . . . . . . . . . 158
Table 49 – EC2 Instances Used by all Evaluated Scenarios (AWS, 2018b) . . . . . . 160
Table 50 – Amazon EC2 Prices per Transferred Bytes (AWS, 2017) . . . . . . . . . 160
Table 51 – Scenarios for Deploying the MCC System in the Cloud . . . . . . . . . . 161
Table 52 – Bytes Transferred in Each Request . . . . . . . . . . . . . . . . . . . . . 161
Table 53 – Bandwidth Variation (in Megabits/s) . . . . . . . . . . . . . . . . . . . 161
Table 54 – Time Required to Launch our ODIs . . . . . . . . . . . . . . . . . . . . 162
Table 55 – Service Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 56 – Performance Metrics and ODIs Utilization for all Scenarios . . . . . . . 164
Table 57 – MTTEs and Related Metrics for all Scenarios . . . . . . . . . . . . . . . 165
Table 58 – Throughput, Data Traffic and its Related Costs for all Scenarios . . . . 169
Table 59 – MRTs and Costs for all Scenarios Considering a Period of One Year . . 172



List of Acronyms

AMI Amazon Machine Image

API Application Program Interface

AR Arrival Rate

AWS Amazon Web Services

BW Bandwidth

CDF Cumulative Distribution Function

CI Confidence Interval

CPN Colored Petri Net

CPU Central Processing Unit

CT Communication Time

CTMC Continuous Time Markov Chains

CV Coefficient of Variation

DoE Design of Experiments

DTMC Discrete Time Markov Chain

EC2 Amazon Elastic Compute Cloud

FCFS First Come, First Served

GPU Graphic Processing Unit

GSPN Generalized Stochastic Petri Nets

IaaS Infrastructure-as-a-Service

ISS Infinite Server Semantic

IT Information Technology

KSS K-Server Semantic

MCC Mobile Cloud Computing

MRT Mean Response Time

MSS Mean System Size



MTTA Mean Time to Absorption

MTTE Mean Time to Execute

NMon Nigel’s Monitor

ODI On-demand Instance

OpenCV Open Source Computer Vision Library

PaaS Platform-as-a-Service

PN Petri Net

RI Reserved Instance

RMI Remote Method Invocation

RTT Round-Trip Time

SaaS Software-as-a-Service

SI Service Instance

SIT Scaling In Threshold

SLA Service Level Agreement

SOT Scaling Out Threshold

SPE Software Performance Engineering

SPI Spot Instance

SPN Stochastic Petri Net

SSS Single Server Semantic

TP Throughput

TTB Total Transferred Bytes

UML Unified Modeling Language

VM Virtual Machine



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 IaaS Public Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Autoscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Mobile Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.1 Method-Call Offloading . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Performance Evaluations of Systems . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Continuous Time Markov Chain . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.4 Stochastic Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.5 Phase-type Approximation Technique . . . . . . . . . . . . . . . . . . 46

2.4 Face Detection and Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 51
3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Methodology for Evaluating MCC Applications Offloading . . . . . . . . . . . 61
4.1.1 Steps of the Methodology . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Methodology for Planning MCC Systems in Public Clouds . . . . . . . . . . . 69
4.2.1 Steps of the Methodology . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Remote MCC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1 Parameters Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Device Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.2 Cloud Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Performance Metrics in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.1 Mean Response Time (MRT) . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Modeling MCC Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Networking Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Execution Time (MTTE and CDF) . . . . . . . . . . . . . . . . . . . . . . . 89



6.2.1 Cumulative Distribution Functions (CDFs) . . . . . . . . . . . . . . . 92
6.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Costs for Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Modeling MCC Systems in the Public Cloud . . . . . . . . . . . . . . . . . 101
7.1 Modeling Elastic MCC Systems . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Performance Metrics on the Cloud . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Costs for Using Resources in the Public Cloud . . . . . . . . . . . . . . . . . 117
7.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.1 Case Study One: Color Reduction Application . . . . . . . . . . . . . . . . . . 127

8.1.1 The Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.2 Case Study Two: A Heterogeneous MCC Infrastructure in the Cloud . . . . . . 139
8.3 Case Study Three: Evaluating Absorbing Probabilities in the Cloud . . . . . . 151
8.4 Case Study Four: Deployment Planning of MCC Systems Considering Network-

ing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.2 Limitations and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . 176

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
APPENDIX A JMETER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
APPENDIX B AWS EC2 API . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



18

Chapter

1
Introduction

“ Everything is possible to him who has faith. ”
The Holy Bible, Mark 9:23

The first call from a handheld mobile phone occurred in 1973 (MOTOROLA, 1973).
Since then, the technology available in the user’s hand has evolved from a simple phone
to a smartphone that offers a myriad of functions and capabilities. Today, each smart-
phone model has its own hardware specification. Hardware specifications are determined
by the combination of components such as processor, volatile memory and memory for
storage, wireless technologies, screen width and resolution. The evolution process of all
technologies involved in theses devices naturally gave rise to a large ecosystem of devices.
This ecosystem consists of more than 600 brands (BUSINESS STANDARD, 2018).

Cisco forecasts that, by 2021, the mobile connection speed will overpass 20 Mbps and
the total number of smartphones will be over 50 percent of global devices and connec-
tions (CISCO, 2019). The report forecasts that there will be 11.6 billion mobile devices
connected to the internet. More specifically, there will be 8.3 billion handheld or personal
mobile devices. According to the same report, between 2016 and 2021 mobile data traffic
will be increased sevenfold and 86 % of global mobile traffic will come from smartphones
and phablets. A large part of the increase in mobile data traffic will come from cloud
computing applications.

This huge number of users, myriad of mobile device brands and increased data traffic
stimulates researches aiming to meet ever more demanding performance requirements and
the increasing demand. Today, many applications have real-time constraints and the pro-
cessing power available on mobile devices does not satisfy the performance requirements.
Complex applications — with complex methods — usually only reach users permanence
satisfaction through expensive devices. These complex methods are the critical points
which require the software engineer attention. This issue prompted researchers to find
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ways to increase the processing power available to mobile applications running on limited
devices. Sending mobile processing to powerful servers deployed on remote infrastructures
can improve the performance of mobile systems (CHUN et al., 2011), (KEMP et al., 2012),
(SATYANARAYANAN et al., 2009), (KOSTA et al., 2012), (CUERVO et al., 2010), (GORDON et

al., 2012), (SHI et al., 2014), (SHI et al., 2012), (SILVA et al., 2016).
Considering this, a new field of study known as Mobile Cloud Computing (MCC) has

emerged. MCC is the integration of mobile computing and cloud computing, and it can
increase the performance of mobile applications and reduces their energy consumption
through the offloading technique (KUMAR; LU, 2010), (KOCJAN; SAEED, 2012). The of-
floading process sends tasks to be processed on remote servers in the cloud. The first step
in performing task offloading is to split an application into different parts. Next, there is a
decision of which ones are most convenient for remote processing. Tasks may be partially
or completely offloaded, depending on the application requirements. The convergence of
mobile devices and cloud computing has been studied by a large number of works and
MCC still has open issues that motivate further researches (ARAUJO et al., 2014; MATOS

et al., 2015; COSTA et al., 2015; ABOLFAZLI; GANI; CHEN, 2015; SILVA et al., 2015; SILVA;

MACIEL; MATOS, 2015; SILVA et al., 2018; SILVA et al., 2017; ZHANG et al., 2018; AKHERFI;

GERNDT; HARROUD, 2018; ARAUJO et al., 2016).
Today, many mobile apps that have performance constraints benefit from using cloud

resources. Many companies have deployed most of their Information Technology (IT) re-
sources in the cloud. The cloud may be composed of physical and virtual heterogeneous
components that offer diverse computing power. This can help remove many of the com-
plexities and limitations of computing processing such as physical space, energy, time,
and cost. However, a physical cloud infrastructure may have limitations regarding the
computing power available for supporting the expected workload, taking into account
the increasing demand generated by mobile users. While powerful infrastructures become
accessible for even small businesses, a large number of physical resources can be diffi-
cult to manage. In addition to issues regarding the processing power, these infrastructure
may tackle communication issues. Cloud resources may be distributed geographically and
issues such as network latency must be considered by MCC systems.

MCC service providers are interested in tuning their underlying resources to face vari-
ations in user demands. Dynamic provisioning also known as elasticity is one of the most
important features of cloud computing (HAN et al., 2014). The elasticity characteristic
inherent in cloud computing makes it possible to a system to dynamically provision and
deprovision resources for it according to its demand. As demand increases, the system
inserts processing power in the infrastructure in order to comply with performance re-
quirements defined in Service Level Agreements (SLAs). Considering a mobile app that
may have users distributed around the world, a private infrastructure may have limited
processing capacity for supporting increasing demand. On the other hand, public clouds
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offer unlimited processing capacity.
Today, there are some Infrastructure-as-a-Service (IaaS) public clouds providers avail-

able on the market. As an example, we may cite Amazon Web Services (AWS) 1, Google
Cloud Platform 2, and Microsoft Azure 3. These cloud providers offer a large number of
infrastructure resource as services. Public clouds offer resources that makes it possible to
deploy systems for supporting a myriad of types of workloads. When using these IaaS
resources, customers may have full control from the kernel to the entire software stack.
AWS is the most mature cloud computing platform available today. AWS supports the
most well-known mobile services available to the general public such as Airbnb 4, Net-
flix 5, Reddit 6, Pinterest 7, and Spotify 8 (VOXMEDIA, 2018; CNBC, 2017; AWS, 2018c).
One of the major issues regarding mobile applications that will be made available to the
general public is related to the user base that may grow rapidly. For example, Pokémon
Go (stylized as Pokémon GO) is a location-based augmented reality game developed by
Niantic (POKEMONGO, 2018). Niantic released the game in selected countries in July 2016
and the Pokémon Go had its downloads peak within first six days after its launching. The
mobile game had 21 million daily active users only a few days after its launching (FORBES,
2016). Considering only the United States, more than 34 million people had downloaded
the game within a period of one month after its release (BUSINESS OF APPS, 2017). Of
course, public clouds can support applications like Pokémon Go, with millions of users in
their user bases and increasing demand. Public clouds offer unlimited processing power
and can be geographically distributed for supporting requests sent by users around the
world.

However, offloading to public clouds does not come for free. IaaS cloud service providers
charge their clients for resource usage. A wrong offloading decision may lead a company
to financial losses. The higher the resource usage, the higher the amount to be paid
to the IaaS provider. Method-call offloading is a partitioning strategy that enables to
split a code into multiple parts. Deciding which method to partition is not an easy task.
It is necessary to analyze many possible scenarios. There may be a large number of
offloading scenarios depending on the number of parts the developers splits their MCC
applications. Each offloading scenario may have a large number of remote configurations
for supporting offloading making by mobile users. These configurations correspond to the
number of virtual machines (VMs) —also known as instances —, available to process
external requests, and scaling policies. Public clouds charge for resources consumption
1 AWS: https://aws.amazon.com
2 Google Cloud Platform: https://cloud.google.com
3 Azure: https://azure.microsoft.com
4 Airbnb: https://www.airbnb.com
5 Netflix: https://www.netflix.com
6 Reddit: https://www.reddit.com
7 Pinterest: https://www.pinterest.com
8 Spotify: https://www.spotify.com
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and it is necessary to use them appropriately.
This dissertation proposes an approach for predicting performance, use of resources

and its resulting costs of MCC applications deployed in public clouds. This work proposes
two Stochastic Petri Net (SPN)-based modeling strategies to represent the workload of
MCC applications being processed both locally and remotely. The first SPN-based mod-
eling strategy represents MCC applications installed on mobile devices. It may represent
the structure of the application’s source code. Representing the source code enables the
software engineer to access a more accurate result. In addition, this modeling strategy
represents the use and sharing of the network bandwidth (BW) available for supporting
offloading operations as well as the effect of BW variation on the evaluated metrics. In
this way, making possible to represent the communication time to transfer data and code.
The second modeling strategy represents elastic MCC systems deployed in public clouds
for supporting offloading generated by mobile users. We have considered for modeling
purposes VM instances and data traffic as resources of the public cloud. These are the
two basic resources for supporting a remote MCC system. As the number of users grows,
the greater may be the data traffic and the consumption of VM instances for supporting
the demand. The public cloud provides an elastic capability capable of supporting varying
user demand patterns. Thus, making it possible to reduce costs and comply with perfor-
mance requirements defined in SLAs. On the other hand, it is a difficult task to identify
a configuration to deploy the system to meet performance and cost requirements. Our
SPN-based cloud modeling strategy makes it possible to represent remote MCC systems
deployed in a heterogeneous infrastructure with variable processing and buffers capacities,
variable demands, scaling policies, and a large number of VM instances running in the
same infrastructure. By combining different instance types, simultaneous jobs per VM
instance, stepsizes and scaling thresholds, it is possible to offer different response times
for each offloading scenario. Thus, impacting the total time to execute the mobile app on
user devices. However, each of these variables affects resource consumption as well as the
cost that an MCC service provider pays to an IaaS provider. An application may use an
unlimited amount of resources and this affects the prices that the service provider needs
to pay at the end of a period. For that aim, we propose a mobile cloud cost model to
predict data traffic volume, use of VM instances and its costs applying SPNs. The cost
of using VM instances corresponds to the cost of using reserved instances (RIs) and on-
demand ones (ODIs). Next, the proposed models are used to estimate four performance
metrics of the application: Mean Time to Execute (MTTE), Mean Response Time (MRT),
Cumulative Distribution Function (CDF) and Throughput (TP). MTTE corresponds to
the execution time of the mobile app as a whole. MRT corresponds to the time a remote
MCC infrastructure takes to process a request sent by a mobile device. CDF indicates the
maximum probability that the processing will finish in a specific time interval. Through-
put corresponds to the number of requests per unit of time made by each user as well as
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processed by a remote infrastructure.
On the remote side, we have evaluated the deployment of a mobile cloud face recogni-

tion system using the proposed approach. Many works have evaluated facial recognition
algorithms in the context of MCC (CIDON et al., 2011; CUERVO et al., 2010; KEMP et

al., 2012; KOVACHEV; YU; KLAMMA, 2012; KWON; TILEVICH, 2012; SOYATA et al., 2012;
HUANG; WANG; NIYATO, 2012; WANG; DONYANAVARD; CHENG, 2012; ZHANG et al., 2012).
We have validated our cloud modeling strategy considering this type of workload. How-
ever, it is important to highlight that the strategies proposed in this dissertation can
support the planning of MCC systems deployed in a remote infrastructure for supporting
a myriad of types of workloads. In some situations, there may be some refinement in our
modeling strategies in order to adapt them to more accurately represent the architecture
and system under consideration.

Monetary cost evaluation based on stochastic models may support companies in plan-
ning their applications on the public cloud. A very few papers have proposed strategies
based on stochastic models in order to support cost evaluations of resource consumption
on public clouds (FE et al., 2017; RIBAS et al., 2015b; RIBAS et al., 2015a; GUERFEL; SBAÏ;

AYED, 2018; SILVA et al., 2015). These works only addressed the monetary cost of using
VMs.

Our approach may assist software engineers to evaluate their applications at design
time and deciding where to process the application’s workload considering local and re-
mote processing resources and networking requirements. Although many studies focus on
the optimization of the offloading process, in the recent literature, few studies have ad-
dressed stochastic performance modeling in the context of MCC infrastructure planning.
In addition, the tradeoff between performance, data traffic and use of VM instances —
and their related costs — for offloading on public clouds have been ignored by these stud-
ies. Our work is the first one, to the best of our knowledge, that provides an integrated
modeling approach that represents MCC workloads running locally and remotely and the
communication process between both sides supporting performance and costs evaluations.

1.1 Problem Statement
Figure 1 illustrates a scenario where a mobile application offloads tasks to an elastic
infrastructure on a public cloud. Offloading these tasks may improve the application’s
performance. However, the infrastructure’s configuration as well as the workload being
processed by it impacts the total performance and resource consumption. In addition,
networking conditions may impact the time necessary to transfer data and code.

In this context, one question arises:

• How to represent MCC applications running on mobile devices and in an elastic
MCC infrastructure deployed on a public cloud, and the communication process be-
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tween both sides, in order to support performance and remote resource consumption
evaluations?

Service Instance Groups

AWS

EC2

Group 1

RI1

RI2 ODI2

ODI1

Group 2

RI3

RI4 ODI4

ODI3

Offloading

Scaling Requests 

Front-End
Load Balancing

Figure 1 – Scenario Depicting a Mobile Application Offloading a Face Recognition Task
to an Elastic MCC Infrastructure on AWS

1.2 Research Scope
There are three main perspectives that service providers need to take into consideration
when designing MCC applications. Each perspective is related to an aspect of the MCC
system that may impact the performance and the way the system performs offloading.
MCC systems usually explore one or more of the following three perspectives.

• What to Offload? The first step when using the offloading technique is to define
how the application’s workload should be represented and splitted. The workload is
defined in the application’s source code. Thus, service providers need to decide at
which level of granularity their applications must be represented. Granularity here
defines how the source code is represented for supporting the partitioning process.
For example, among other types of representations, source code may be partitioned
per class, method, and components. The most advanced offloading frameworks adopt
method-call as partitioning granularity (CUERVO et al., 2010; KOSTA et al., 2012;
CHUN et al., 2011; KEMP et al., 2012). In this work, we have adopted the method-
calls as granularity for supporting offloading scenarios generation.
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• When to Offload? The mobile application should decide whether it is worthy
to perform the offloading of its workload to a remote infrastructure. The perspec-
tive “when” corresponds to the process to decide the most appropriate moment to
perform offloading. For this, it is necessary to consider data traffic and network-
ing condition. Networking condition takes an important role in the decision-making
process. For example, when executing under worst networking conditions, the time
required to an application to send and receive data may degrade its performance.
An MCC application must have the context-awareness capability, so that it could
adapt itself on-the-fly to the changing of the environment conditions.

• Where to Offload? This perspective corresponds to the location at which the
application’s workload should be processed. It means that an application may be
partitioned in different parts and each of them may be processed at different lo-
cations. These parts are defined considering the granularity choosed in the “What
to Offload?” perspective. After the partitioning, there may be a decision related
to where each part must be processed. That is, based on the application’s require-
ments, the user’s device may process the workload or it may send the workload or
part of it to be processed in a more powerful remote infrastructure. On the remote
side, there may be a large number of servers with different processing capabilities
available to handle users’ requests. The capacity of the remote infrastructure as
well as the workload processed by it takes an important role in order to define the
application’s performance. The characteristics of such an infrastructure should be
considered to construct an offloading solution.

Figure 2 depicts the scope of this research. As we can see, this master research has
focused mainly on the “where” perspective due to its challenging and important features.

Where?

What?

When?

MCC Perspectives

Research Scope

Public Private

Cloud Models

Execution  Time

Elasticity

Costs

Resource Consumption

MCC Concerns Considered

Hybrid

Figure 2 – Master Research Scope
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1.3 Objectives
The main objective of this research is to proposes an approach for predicting
performance, use of resources and its resulting costs of MCC applications
deployed in public clouds.

Among the specific goals of the research, we can list:

• Develop an SPN-based modeling strategy to evaluate the performance of MCC ap-
plications deployed on mobile devices that consider the use of the actual bandwidth
for supporting offloading operations.

• Develop an SPN-based modeling strategy to evaluate the performance of elastic
MCC systems running on a public cloud that considers the use of virtual machines
of different types on the same infrastructure.

• Develop cost models considering the use of virtual machines and data traffic for
supporting MCC systems in public clouds.

• Evaluate the proposed strategies in case studies.

1.4 Publications
Following, we present a list with the published papers related to this research.

As main author:

• Thiago Pinheiro, Francisco Airton Silva, Iure Fe, Sokol Costa and Paulo Maciel. Per-
formance Prediction for Supporting Mobile Applications’ Offloading. The Journal
of Supercomputing. 2018. ISSN: 0920-8542 (Print) 1573-0484 (Online).

• Thiago Pinheiro, Francisco Silva, Iure Fe, Sokol Kosta and Paulo Maciel. Perfor-
mance and Data Traffic Analysis of Mobile Cloud Environments. In: 2018 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). October 7-10,
2018 – Myiazaki, Japan.

1.5 Organization of the Document
The remainder of the dissertation is organized as follows. Chapter 2 provides an overview
of the main concepts about cloud computing, mobile cloud computing, performance eval-
uation of systems, and face recognition technique. Chapter 3 discusses and compares note-
worthy works found in literature that have some topics in common to those addressed
in this dissertation. Chapter 4 presents detailed information about the methodologies
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proposed to support the decision-making process related to the definition of offloading
scenarios and remote configurations to deploy the MCC system in public clouds. Chap-
ter 5 describes the MCC architeture considered in this work. Chapter 6 and 7 describe
the core contribution of this dissertation. Chapter 6 describes our SPN-based modeling
strategy that represents mobile apps installed on user devices. Chapter 7 describes our
SPN-based modeling strategy that represents elastic MCC systems deployed in public
clouds. Chapter 8 details case studies considering the proposed approaches; and finally,
Chapter 9 traces conclusions and presents our ideas about future directions.
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Chapter

2
Background

“ Never argue. In society nothing must be discussed; give only results. ”
Benjamin Disraeli, 1804-1881

This chapter discusses the basic concepts needed to understand our work. More specif-
ically, the concepts presented here should provide the necessary knowledge for a clear
understanding of the chapters below, including aspects involving the proposed method-
ology and subsequent case studies. The remainder of the chapter is organized as follows.
Section 2.1 highlights the main concepts about cloud computing; Section 2.2 shows the
main concepts about Mobile Cloud Computing (MCC) and method-call offloading; Sec-
tion 2.3 presents concepts related to performance evaluation, such as Design of Exper-
iments (DoE), Continuous Time Markov Chains (CTMC), Petri Nets (PNs), Stochas-
tic Petri Nets (SPNs), and phase-type approximation technique; and finally, Section 2.4
provides detailed information on how the face recognition approach considered in this
dissertation works.

2.1 Cloud Computing
Cloud computing is a model that allows the use and delivery of Internet-based services,
which typically involves the provision of dynamically scalable and often virtualized re-
sources over the Internet. Acordingly to the National Institute of Standards and Technol-
ogy (NIST), cloud computing is “a model for enabling ubiquitous, convenient on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction” (MELL; GRANCE, 2011).
Cloud computing is a fairly widespread business model today and it offers cost savings,
more mobility and operational flexibility. It allows users to access application services
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from anywhere using a variety of terminals. A computational infrastructure is considered
a cloud when five essential characteristics are presented.

• On-demand self-service. Users can provision computing resources, such as vir-
tual machines, storage, and network capacity as needed, automatically, and without
requiring human interaction with human resources responsible for managing the
service provider.

• Broad network access. Resources are available on network and may be accessed
by heterogeneous computing platforms through standard communication interfaces.

• Resource pooling. Computing resources are grouped to serve multiple users using
a multi-tenant model. Resources are provisioned and de-provisioned dynamically
according to the demand received by applications deployed on the cloud. Gener-
ally, cloud users are not aware of the exact geographic location of the provisioned
resources.

• Rapid elasticity. Rapid elasticity is the ability to deliver, increase, or reduce ser-
vices and features automatically at any time without additional costs. Resources
may be automatically allocated and removed from the system according to demand
variation. In some service providers, the number of resources available for provision-
ing and use may seem unlimited and may be made available in any amount.

• Measured service. Cloud systems automatically control and optimize the available
resources and provide tools for consumption measurement appropriate to the type
of service and contracted resource.

Cloud computing stack comprises nine layers and three types of service models, as
we can see in Figure 3. Figure 4 depicts the three types of cloud computing service
models. As we can see, Software-as-a-Service (SaaS) offers the highest level of abstraction
to the cloud user, and Infrastructure-as-a-Service (IaaS) provides greater control over all
infrastructure and resources. The infrastructure layer is at the bottom, the platform layer
is in the middle, and at last the software layer is at the top.

• Infrastructure-as-a-Service (IaaS): IaaS is the first layer of the cloud computing
model. IaaS is a model that provides computational and networking infrastructure
through virtualization technology as a service for users over the Internet. More
specifically, IaaS service providers provide resources such as hardware, network,
connectivity, virtual machines, operating systems, among others. Instead of buying
servers, software, special network equipment, users may receive these features in the
form of outsourcing. IaaS normally employs a pay-as-you-go model with vendors
typically charging by a specific period, offering an economic way to hire resources.
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Figure 3 – Cloud Layers.
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Figure 4 – Cloud Service Models.

Computational resources are virtualized and made available in a way that simplifies
the provisioning, and configuration of an infrastructure. Basically, the provision of
infrastructure is performed in an environment that provides a variety of computing
and networking resources where users can hire and manage them through a web
interface or through an Application Program Interface (API). Generally, features
provided by the IaaS model are not preconfigured, and the responsibility for man-
aging them is unique of the cloud users. Depending on application demands, the
infrastructure provisioned for it may be dynamically extended or reduced. Some of
the largest IaaS service providers include Amazon, Microsoft, VMWare, and Red
Hat.

• Platform-as-a-Service (PaaS): PaaS is the second layer of the cloud computing
model, sometimes called middleware. PaaS provides a platform for cloud applica-
tions that make able to businesses or individuals to develop software for themselves
or to other users, and they only pay for the resources usage. PaaS make easy the
development and deployment of applications, while allows developers to save money
on hardware and software. PaaS providers offer a variety of solutions for develop-
ing and distributing applications such as virtual servers, operating systems, web
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application management, application design, hosting, storage, security, and collab-
orative development tools. Generally, a PaaS platform supports the whole process
of software development that includes design, deployment, testing, installation, and
hosting of applications. Some of the most well-known PaaS providers are Google
App Engine, Microsoft Azure, Force.com, Heroku and Engine Yard.

• Software-as-a-Service (SaaS): SaaS is the top layer of the cloud model. SaaS is
a model that enables the delivery of ready-to-use applications to end users as an
on-demand service, such as enterprise resource management over the Internet. Users
access such applications over the network, and they are usually made available as a
web application. Generally, SaaS is the only cloud layer that end users have direct
access to. Instead of buying software, users rent software from service providers and
pay only for the contracted period and the chosen features. There are several well-
known services that may be classified as SaaS such as Netflix, Dropbox and iCloud,
for example.

There are four deployment models for cloud computing (MELL; GRANCE, 2011; ERL,
2013).

• Private Cloud: Private cloud is an infrastructure built and used by an organiza-
tion in a context that only authorized people have access to. Usually private clouds
are built to provide resources for corporate users. The data center architecture and
servers maintenance is planned and executed by the infrastructure owner or an
outsourced team. The company owns the infrastructure and controls how applica-
tions are deployed and updated on it, as well as the network security rules. Private
cloud is a model that provides higher control over service quality, private data, and
infrastructure security.

• Community Cloud: Community Cloud is a cloud model that provides features and
services to a limited number of users and organizations. The cloud may be managed
and secured commonly by everyone involved, a group of them, or an outsourced
team. This is a hybrid model derived from the private cloud model, where users
with similar requirements and goals share the same infrastructure. Sometimes this
is the ideal cloud computing model for companies or groups of users who want to
work together on researches or shared projects.

• Public Cloud: Cloud computing provided in public infrastructures is the cloud
model most adopted by businesses and individual users. Public clouds may be ac-
cessed over the Internet and cloud features is not restricted to a single user or
company. The main idea behind the public cloud is that resources made available
for users and contracted by them are shared among other cloud’s users. Thus, the
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public cloud is more accessible to various sizes of business, being cheaper and elas-
tic. Contracted resources may be scaled easily, and users only pay for resources
consumption. Features may be scaled automatically or users only need to make a
few clicks to scale up/down the capacity of the contracted services. As a result,
companies do not have to buy new servers or storage devices to ensure maximum
performance for their systems. Public cloud is the ideal model for adoption by star-
tups that need fast scalability or may have high seasonality. However, this model is
not recommended for those who need a platform with high control over the features,
for security reasons. In general, IaaS and SaaS services are among the most popular
products licensed in this mode.

• Hybrid Cloud: Hybrid cloud is defined as a combination of a public cloud and a
private one. For security reasons, companies are more willing to store data in private
clouds, but at the same time expect to get public cloud computing resources. This
solution has proven to be a viable, economic and secure option.

Among a large number of benefits associated with the implementation and use of
cloud services, we can highlight the centralized resources management and the reduction
of energy consumption and maintenance costs (MILLER, 2008).

2.1.1 IaaS Public Clouds

Today, there exists some Infrastructure-as-a-Service (IaaS) cloud providers. Amazon Web
Services (AWS), Azure, and Cloud Oracle are among the most well-known IaaS cloud
providers. In this work, we evaluate resource consumption of applications running on
AWS (AWS, 2018b). Considering this, in this section, we briefly describe the features
provided by AWS and that were considered in this work.

AWS is a cloud services platform that offers to everyone computational power, storage,
content delivery among other powerful resources that make possible to organizations and
startups to scale and grow effortlessly. Infrastructure services are provided by AWS as
a commodity, which means that features are delivered on demand, made available in
seconds, and customers pay only for them in a pay-as-you-go model. AWS consists of
more than 50 availability zones in 18 geographic regions around the world, as well as a
large number of services. Availability zones allow developers to provide virtual machines
close to their end users, as well as providing a geographic distribution of data. Table 1
shows some of the most popular services provided by AWS. A large number of customers
are developing advanced applications in a flexible, scalable, and reliable environment.

Customers may scale resources provisioned for their applications to target the de-
fined requirements. EC2 offers a large number of instance types optimized for different
processing workloads. Instance types comprise combinating of CPU, memory, networking
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Table 1 – AWS’s Featured Services (AWS, 2018b)

Service Description

Amazon EC2 Virtual servers
Amazon Simple Storage Service (S3) Scalable storage
Amazon Aurora High performance managed relational database
Amazon DynamoDB NoSQL database
Amazon RDS MySQL, PostgreSQL, Oracle, and SQL Server
AWS Lambda Run code without thinking about servers
Amazon VPC Isolated cloud resources

capacity, and storage. EC2 provides flexibility to consumers by allowing them the free-
dom to select the appropriate set of feature to handle the demands for their applications.
Developers may customize an Amazon Machine Image (AMI) considering the operating
system and their application in order to the VM instances in the infrastructure use the
same system image with the same configuration.

Developers need to evaluate the application requirements and select the appropriate
instance family for supporting them. Amazon EC2 provides a large number of options
across ten different instance types. Each instance with one or more size options, orga-
nized into instance families optimized for different workloads. AWS provides a wide set of
services, such as computing power, storage, networking, and databases. All of them deliv-
ered as a commodity, that is delivered on-demand, and customers are charged considering
a pay-as-you-go pricing model (AWS, 2017).

Reserved Instances (RIs) Users may contract RIs for long periods and pay fixed
amounts for them. Customers can purchase RIs for a 1-year or 3-year term. RIs
are specific to handle the normal demands of systems. AWS offers to customers
a discount up to 75 % when using RIs compared with on-demand ones (ODIs).
Users may contract RIs adopting three upfront payment options such as follows:
No Upfront, Partial Upfront, and All Upfront. The discount rate applied to the
contract depends on the chosen option. It means contracts’ total value may be low
when using RIs compared when using ODIs. However, there is a downside when
using RIs. Contracted RIs are available for using them during the contract period.
In other words, users pay for RIs regardless of their actual use. However, customers
have the option to sell their unusable RIs to other AWS users through the Amazon
EC2 Reserved Instance Marketplace 1. By only using RIs, users may be required to
maintain idle resources to process transient increases in users demand. As we will
see, ODIs are valuable in dealing with transient increases in demand. It is important
for developers to find out the normal usage pattern of their applications. Making

1 https://aws.amazon.com/ec2/purchasing-options/reserved-instances/marketplace/
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possible for them to avoid the RIs over-provisioning and pay much for deploying
their applications on the public cloud.

On-demand Instances (ODIs). ODIs are a cost-effectively option to scale appli-
cations on the cloud. The main idea behind them is that customers only pay for the
resources that are really needed to support the needs of their applications in order
to maximize performance and minimize cost. In other words, applications have the
option to provision and use them only when they need them. ODIs are an appropri-
ate option to handle with a transient increase in application demand, as customers
pay a fixed price per hour for using them. More generally, they are used to compose
an autoscaling instances group. Developers need to evaluate their applications to
find out their transient needs, and to define a cost-effective autoscaling strategy.
Applications may completely deprovision instances when they are no longer needed,
and stopping the billing related to them. However, it is important to highlight that
the price paid for using ODIs for long periods may be higher than when using RIs.
Developers need to carefully define autoscaling thresholds for their applications.

Spot Instances (SPIs). SPIs offer a contracting model that may be even more
advantageous for AWS customers. SPIs are an appropriate option to avoid over-
provisioning resources and, as a consequence, wastage of financial resources. Spot
prices may be up to 90 % lower; related to on-demand ones. SPIs are equal to
ODIs in terms of computational attributes. The difference between them falls in
the way provisioning occurs. Spot prices are automatically adjusted according to
the supply and demand of AWS customers. Each SPIs type has a transient value
that is updated at periodic intervals. The provisioning process consists in customers
setting bids to hiring SPIs. If a customer’s bid is greater than or equal to the current
price for the selected SPI, then it is provisioned. Despite offering great savings, this
modality has some drawbacks. SPIs are the extra computational capacity available
in AWS cloud. It means that when AWS needs extra computational capacity, some
provisioned SPIs will be requested to supply the current cloud needs. For that aim,
AWS interrupts some SPIs that are currently in use after two minutes it has sent a
notification. This SPIs characteristic may be a limiting factor for applications that
require high availability or reliability. SPIs are a good option to fault-tolerant and
flexible applications. We have not evaluated them in this work.

AWS offers some options for developers to provision VM instances. Developers may
use the web management console, the CLI, or the EC2 API, which makes it possible
to provision instances programmatically. To scale multiple services offered by AWS, de-
velopers may use the AWS Auto Scaling service. Likewise, to scale only EC2 instances,
developers may use the EC2 Auto Scaling service.
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2.1.2 Autoscaling

Scaling is a technique that may offer performance and costs optimization (AL-DHURAIBI

et al., 2018; CHEN; BAHSOON; YAO, 2018). According to NIST, on-demand self-service
and rapid elasticity are key features related to cloud computing (MELL; GRANCE, 2011).
Rapid elasticity is related to the capacity to add and remove resources to support demands
variation. On-demand self-service and rapid elasticity offer the possibility to allocate com-
puting resources without interacting with human resources, and only using the resources
that are really necessary. The main idea behind autoscaling is making possible for an
application to support transient increases in demands while maintaining the performance
levels defined in SLAs.

An auto-scaling system can configure services and applications in a cloud taking into
account a set of requirements and configurations. The cloud provider inserts or removes
resources based on predefined thresholds set by the service provider. Adding and remov-
ing resources may be performed automatically through settings defined by developers.
The system deployed on the cloud may perform resource provisioning through API calls
provided by the cloud provider. Considering the AWS provider, another option is to use
a high-level tool, such as AWS Cloud Watch (AWS, 2018a). Cloud Watch monitors AWS
features such as Amazon EC2 and applications running on AWS. Some auto-scaling tech-
niques have been proposed to provide an automatic solution for allocation and deallocation
of resources.

Configuring auto-scaling strategies usually depends on the mapping of resources needed
to meet performance requirements defined in SLAs. Therefore, it is necessary to identify
the quantity of each resource that must be provisioned and released according to demand
variations (LORIDO-BOTRAN; MIGUEL-ALONSO; LOZANO, 2014). A large number of pa-
rameters may be used to identify the needs of an application in relation to computational
resources insertion or removal in the adjacent infrastructure, such as CPU utilization,
disk usage, memory usage, queue size, number of requests in the system, and response
time (GHANBARI et al., 2011).

In addition to the identification of computational resources, it is necessary to identify
the time at which resources must be provisioned and destroyed. Generally, the tech-
niques available to identify the instant of time to add or remove resources in the sys-
tem are divided into reactive and predictive techniques (AL-DHURAIBI et al., 2018; CHEN;

BAHSOON; YAO, 2018; CARDELLINI et al., 2018). Reactive techniques consider predefined
rules and they respond to changes in the system state when any predefined threshold
is found (LORIDO-BOTRAN; MIGUEL-ALONSO; LOZANO, 2014). This technique is widely
used in commercial systems (GALANTE; BONA, 2012). Predictive techniques try to predict
the resource needs for the system considering a future instant of time. Usually, they use
techniques such as time series to support this analysis (HAMILTON, 1994). Resources are
provisioned or released before the system needs them based on the result obtained. This is
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to ensure that the necessary resources are always available whereas trying to avoid holding
resources when they are not needed. This technique can also be used in combination with
a reactive approach (CARDELLINI et al., 2018).

There are two main approaches to scaling a system deployed on a cloud (AL-DHURAIBI

et al., 2018).

• Vertical Scaling: Vertical scaling, also called scale up and scale down, means
changing the capacity of a resource in the system infrastructure. For example, the
amount of RAM in a virtual machine may be increased or decreased according to
changes in workload. However, as the resources in the virtual machines have changed,
it is necessary to reboot the virtual machine so that the system can recognize changes
in hardware capacity. Therefore, it is not uncommon to automate vertical scaling.

• Horizontal Scaling: Horizontal scaling, also known as scale-out and scale-in,
means adding or removing VM instances in the infrastructure for supporting a
change in workload. The system deployed on a cloud continues running without
interruption while new instances are provisioned. Once the provisioning process
is complete, instances are deployed in the system infrastructure. As demand di-
minishes, the system may terminate and deallocate additional resources previously
inserted.

2.2 Mobile Cloud Computing
Mobile Cloud Computing (MCC) is a paradigm that increases the performance of mobile
applications and reduces their energy consumption through offloading technique (KUMAR;

LU, 2010), (KOCJAN; SAEED, 2012). The offloading process sends tasks to be processed
on remote servers in the cloud. The first step in performing task offloading is to split an
application into different parts. Next, there is a decision of which ones are most convenient
for remote processing. Tasks may be partially or completely offloaded, depending on the
application requirements. Method-call offloading is a partitioning strategy that enables to
split a code into multiple parts. Deciding which method to partition is not an easy task.
It is necessary to analyze many possible scenarios.

2.2.1 Method-Call Offloading

An application may offload method calls without restrictions to the cloud. The above-
mentioned scenario is called Full Method-Call Offloading (LI; WANG; XU, 2001), (BALAN,
2006), (KUMAR; LU, 2010). An alternative to the Full Method-Call Offloading is the Par-
tial Method-Call Offloading. In a method-call partitioning strategy, the source code is
partitioned at method level (KOSTA et al., 2012), (KEMP et al., 2012), (CUERVO et al.,
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2010), (PATHAK et al., 2011), (SILVA et al., 2015), (RIM et al., 2006), (SAARINEN et al.,
2012), (LI; WANG; XU, 2001), (BALAN, 2006), (KUMAR; LU, 2010). Instead of all methods,
only a subset of them is offloaded. Data dependencies must be observed to perform a
correct partition. If some parts of an application can be executed in parallel, then, these
tasks may be offloaded to more than one server concurrently. For example, considering
the methods m1() and m2(), two decisions should be made (as illustrated in Figure 5):
Where to execute m1() and m2()?

Mobile Side Cloud Side

m1()

m2()

m1()

m2()

Figure 5 – Partial Method-Call Offloading

Combining these possibilities (mobile device or the cloud), four scenarios may be
exploited (see Table 2). The number of possibilities increases proportionally to the appli-
cation complexity. In a real-world scenario, the number of combinations of method-calls
to offloading may be very large. Such variety makes harder the software engineer’s work
when deciding the most appropriate offloading distribution. The developer would expect
that partitioning and distributing a set of method-calls on multiple servers would reduce
its total execution time. However, one method-call may present a low level of processing,
not justifying the offloading process. Besides, other aspects, such as the mobile device
current CPU and energy consumption level, may influence the decision.

Table 2 – Possible Offloading Scenarios.

Possibility m1() m2()

Scenario #1 mobile mobile
Scenario #2 mobile cloud
Scenario #3 cloud mobile
Scenario #4 cloud cloud

2.3 Performance Evaluations of Systems
System administrators need to provide the highest performance at the lowest cost. A per-
formance evaluation is necessary when a system administrator wants to compare a number
of alternative configuration scenarios to find the best one. It is also used to compare two
similar systems and decide which one is better for a given task. Performance evaluation
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can also help to determine how well a system is performing certain tasks, and if some
improvements are necessary. Generally, evaluating the performance of a system means
to verify its behavior according to a defined set of metrics. The researcher must select
appropriate evaluation techniques (e.g.: analytical modeling, simulation or measurement),
perform a statistical analysis to identify possible bottlenecks and propose improvement
solutions. This work has applied a performance analysis from the analytical modeling with
SPN and CTMC models, and measurements based on the Design of Experiment (DoE)
technique.

2.3.1 Measurement

Design of Experiments (DoE) technique allows to obtaining a maximum of information
about a system, regarding many factors, with a reasonable number of experiments and
effort (JAIN, 1990; MONTGOMERY, 2017). A set of experiment executions planned through
DoE can be analyzed to determine if the factors have significant effects, or if the differ-
ences in the observed effects are due to variations caused by measurement errors and not
controlled parameters (JAIN, 1990; MONTGOMERY, 2017).

This study adopts the General Full Factorial Design, which uses all possible combi-
nations of levels for all factors, i.e., there are no limits to the number of factors and the
number of levels. This type of DoE allows every configuration to be examined, so we can
find the effects of all factors and their interactions, which is an advantage; the disadvan-
tage is that the cost of analysis can be very high if the number of factors and levels is
too high, and also considering that each of these experiments may have to be repeated
several times. It is possible to reduce the number experiments by reducing the number of
factors, and/or the number of levels for each factor, or using Fractional Factorial Design
instead (JAIN, 1990).

2.3.2 Continuous Time Markov Chain

Markov chains are used for evaluation of performance and dependability of computer and
communication systems. Markov chains make it possible to model the interaction between
different components that are part of an infrastructure. Markov chains may be described
as a state space diagram associated with a Markov process (BOLCH et al., 2006). Markov
chains are a stochastic process with memoryless property (CHUNG, 1954). Lack of memory
is a property of some probability distributions, and it is formally known as the Markov
property. Markov chains and stochastic processes form the basis for model-based system
evaluations.

A stochastic process is characterized by a set of random variables 𝑋, indexed by an
ordered set 𝑇 , representing the evolution of a system over time (CASSANDRAS, 2008). A
random variable is a quantitative variable that may assume different numerical values
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influenced by random factors. A random variable may represent the time of an activity
or event that is in a sample space Ω, and it is related to some probability distribution. A
stochastic process can be regarded as a set of random variables 𝑋 defined as 𝑋𝑡 : 𝑡 ∈ 𝑇 ,
of which each instance 𝑋𝑡 is characterised by a probability distribution function. The
index set 𝑇 is mostly associated with the passing of time. 𝑃𝑟{𝑋𝑡} defines the probability
that a given event 𝑋𝑡 occurs. A stochastic process is the opposite of a deterministic
process, where times are not influenced by random factors. The set of all possible values
of 𝑋𝑡 (∀𝑡 ∈ 𝑇 ) is called the state space of the stochastic process (BOLCH et al., 2006;
CASSANDRAS, 2008), named here as set 𝑆.

A Markov chain is a discrete-valued Markov process. Discrete-valued means that the
state space of possible values of the Markov chain is finite or countable. A Markov process
is a stochastic process in which 𝑃𝑟{𝑋𝑡𝑛+1} depends only on the previous value of 𝑋𝑡𝑛 ,
∀𝑡 ∈ 𝑇 and ∀𝑠𝑖 ∈ 𝑆. A Markov process is commonly referred to as a memoryless process,
in which the future state of the system depends only on its current state (BOLCH et al.,
2006; HAVERKORT, 2001). In other words, it means that the path followed by a process
from its initial state to its current state is irrelevant for evaluation purposes. Furthermore,
in a memoryless process, the transition to the next state is not influenced neither by the
time passed in the current state, nor on states visited previously (BOLCH et al., 2006;
CASSANDRAS, 2008). Due to the Markov property, the time associated with an activity
must follow a memoryless distribution. In the case of Markov chains, the probability
distribution related to the times involved follows an exponential distribution.

Some abstractions for the Markov chains have been proposed to represent the way
transitions between states occurs over time. Depending on the type of random variables
related to the process’s activities, times can be characterized as discrete time or continuous
time. Understanding the main difference between discrete and continuous Markov chains
is a key factor in choosing the most appropriate abstraction for representing processes.
Discrete Time Markov Chain (DTMC) represents systems that evolve through discrete
time steps. It means the system only changes at one of discrete time values in the set 𝑇 ,
which 𝑡 ∈ 𝑇 represents only non-negative integer values. On the other hand, Continuous
Time Markov Chain (CTMC) represents systems which the state changes may happen
at any time along a continuous interval (it means that 𝑇 ∈ 𝑅+). Basically, CTMC is
similar to DTMC with the difference that transitions in CTMC may occur any instant of
time (BOLCH et al., 2006). The way metrics are calculated is directly related to the Markov
chain abstraction chosen.

Graphically, CTMCs are represented by a directed graph. Vertices represent states
while directed arcs indicate how transition between states occurs. In Markov chains, states
represent different conditions a system may follow. Each arc has a transition rate or
probability assigned to itself, indicating the way at which transitions occur from one
state to another. Transitions between states indicate events occurrence (SILVA et al., 2013).
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Figure 6 shows an example of a CTMC.

S1

S4

S3

2.71828

S2

1.
61
80
3

3.14159

.5
77
21

Figure 6 – A CTMC

Mathematically, CTMC is defined by a probability vector for states 𝜋 and a transition
rate matrix 𝑄, also known as infinitesimal generator matrix. Matrix 𝑄 is a square matrix
that has a dimension equal to the number of states in the state space 𝑆. Matrix 𝑄’s
elements represent the transition rates between the states of the chain. The elements
𝑞𝑖𝑗 (for 𝑖 ̸= 𝑗) represent the rate departing from 𝑖 and arriving in state 𝑗. The main
diagonal elements 𝑞𝑖𝑖 are always defined by −𝑞𝑖𝑖 = ∑︀

𝑗,𝑗 ̸=𝑖 𝑞𝑖𝑗. The off-diagonal elements
are always nonnegative, whereas the main diagonal elements are always negative. The
sum of each matrix row equals zero. Once the model structure has been defined so that
the infinitesimal generator matrix 𝑄 is known. On the other hand, the probability vector
for states 𝜋 is a one row vector containing the transition probability from the current state
for all states, including itself. The initial probability vector is defined as 𝜋(0). Below we
can see the initial probability vector 𝜋(0) and the matrix 𝑄 related to the CTMC shown
in Figure 6 defined by the state space 𝑆 = {S1, S2, S3, S4} = {0, 1, 2, 3}. As we can see,
the probability vector 𝜋(0) defines that the probability of starting in state S1 is equal to
1. That is, the process always starts from the state S1. Through the 𝑄 matrix and the
probability vector 𝜋 it is possible to compute stationary and transient metrics.

𝜋(0) =
(︂

1.0 0.0 0.0 0.0
)︂

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑞00 𝑞01 𝑞02 𝑞03

𝑞10 𝑞11 𝑞12 𝑞13

𝑞20 𝑞21 𝑞22 𝑞23

𝑞30 𝑞31 𝑞32 𝑞33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.61803 1.61803 0.0 0.0

0.0 −3.14159 3.14159 0.0

0.0 0.0 −0.57721 0.57721

2.71828 0.0 0.0 −2.71828

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Non-time dependent metrics are obtained through stationary analysis (BOLCH et al.,

2006). Equation 2.1 allows the computation of the state probability vector for steady-
state analysis. The resolution of the system of differential equations obtains a probability
distribution that converges to a vector of stationary probabilities, that is independent of
the initial distribution 𝜋(0). Based on the limiting probability distribution obtained it is
possible to find out what happens in the long run.

𝜋 ×𝑄 = 0,
∑︁
𝑖∈𝑆

𝜋𝑖 = 1 (2.1)

Time-dependent metrics are obtained through transient evaluation (BOLCH et al.,
2006). Transient evaluation makes possible to find out what happens on the system taking
into account a specific period of time. Transient evaluation allows evaluating how a system
behaves before it reaches its stationary state. The row vector 𝜋(𝑡) = [𝜋1(𝑡), 𝜋2(𝑡), . . . , 𝜋𝑛(𝑡)]
represents the transient state probability vector of the CTMC in time 𝑡. The behavior of
the CTMC can be described by the Kolmogorov Equation 2.2 given the initial probability
vector 𝜋(0). Equation 2.3 gives the expected total time the CTMC spends in state 𝑖 dur-
ing the interval [0, t). The performance metrics can be derived for each evaluated system
from its state probability vector 𝜋 and its 𝑄 matrix.

𝑑𝜋(𝑡)
𝑑𝑡

= 𝜋(𝑡)×𝑄 (2.2)

𝐿𝑖(𝑡) =
∫︁ 𝑡

0
𝜋𝑖(𝑥)𝑑𝑥 (2.3)

Sometimes, it is necessary to evaluate the amount of time a process will take to
complete a task. The measure of interest is the Mean Time to Absorption (MTTA).
To calculate MTTA, the model must have at least one absorbing state. For a better
understanding of MTTA computation, it is necessary to define the difference between
transient state and absorbing one. Transient states are defined as temporary states. In
other words, when the system leaves a transient state, there is a likelihood of never coming
back to it again. On the other hand, an absorbing state is a state that when the system
reaches it, there is no way out. An absorbing state may represent the end of a task. For
MTTA evaluation, the state space 𝑆 is partitioned into two sets, the set of absorbing states
𝐴 and the set of non-absorbing states 𝑁 . The next step is to create the initial probability
vector for transient states 𝜋𝑁(0). From the matrix 𝑄 a new matrix 𝑄𝑁 can be constructed
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by restricting 𝑄 to the transient states. Matrix 𝑄𝑁 is a square matrix with dimension
defined by the cardinality of the set of non-absorbing states 𝑁 . The time spent before
absorption can be calculated restricted to the states of the set of non-absorbing states
(𝑁) by 𝑙𝑖𝑚𝑡→∞𝐿𝑁(𝑡). Thus, 𝐿(𝑡) satisfies the Equation 2.4 where 𝜋𝑁(0) is the vector 𝜋(0)
restricted to the states in the set 𝑁 . 𝑄𝑁 is the infinitesimal generator matrix restricted
to the non-absorbing states. Finally, MTTA may be described as Equation 2.5 (BOLCH et

al., 2006).

𝐿𝑁(∞)𝑄𝑁 = −𝜋𝑁(0) (2.4)

𝑀𝑇𝑇𝐴 =
∑︁
𝑖∈𝑁

𝐿𝑖(∞) (2.5)

2.3.3 Petri Nets

Carl Adams Petri formalized the initial conceptions of Petri Nets (PNs) in his Ph.D. thesis
presented at the Technical University of Darmstadt, Germany (PETRI, 1962). Petri nets
are a powerful modeling tool that may be used to represent concurrent, asynchronous, dis-
tributed, parallel, deterministic, or stochastic processes. The original theory (place/tran-
sition net) was developed as an approach to model and analyze communication systems.
PNs define a specification technique that allows a graphical and mathematical represen-
tation, and it has analytical mechanisms that enable verification on the properties and
correctness of modeled systems. As a mathematical tool, it is possible to set up state and
algebraic equations, and other mathematical models governing the behavior of systems.
As a graphical tool, PNs may be utilized as a visual representation mechanism, aiding in
process modeling and analysis.

PNs are constituted by a set of graphical components as shown in Figure 7. PNs are
constituted by a set of places, transitions, tokens, and directed arcs. Basically, PNs are
directed models consisting of two types of nodes: places and transitions. Places are repre-
sented by circles, whereas transitions are depicted as filled rectangles. Places correspond
to states in which the modeled system may be at some point during its operation. Tran-
sitions represent events occurrence or actions taken by the system. Tokens are markings
that indicate the activation of a particular state as well as available resources. Further,
tokens are used in these nets to simulate the dynamic and concurrent systems activities.
Tokens (small filled circles) are stored in places, and depending on the model, each place
may store an indefinite number of them. The number of tokens that may be stored in a
place is in the cardinality of the natural numbers (𝑁). The way which a token set is dis-
tributed over the places at a given moment determines the current system state. Directed
arcs define the flow of tokens. They can only connect places to transitions or vice versa.
Each individual arc has a weight with cardinality 𝑁+ and for default, its weight is one.
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The arc weight defines the number of tokens consumed or generated during transition fir-
ings. As we can see, visual modeling allows users to have a quick overview of the workings
of complex systems as well as their constraints. The way these components are organized
defines the system and its behavior.

(a) Place (b) Transition (c) Token (d) Arc

Figure 7 – Components of a Petri Net.

The behavior of a PN is defined in terms of a token flow. Tokens are created and
destroyed according to the transition firings (GERMAN, 2000). There may be a relationship
between places and transitions so that transitions may be enabled and able to fire. The
places where the directed arcs exit toward a transition are called input places whilst
the places connected to the arcs that exit a transition are called output places. When a
transition fires, tokens are consumed from its input places, and new ones may be created
at its output places. The execution of an action or event (i.e. transition firing) may depend
on certain preconditions. A transition can only be enabled whether the number of tokens
available at its input places is equal to or greater than the weight of the arcs connecting
each place to it. After transition firing, some places may have their markings changed
leading the model to a new state (i.e. postcondition). Transition firing occurs atomically
which means it consumes tokens and generates new ones in one single step. Further, it
is important to highlight that transitions may fire without the existence of input places
connected to them and transitions may not be connected to output places. The order in
which transitions are fired occurs non-deterministically. That is, if two or more transitions
are enabled in a certain state, then the transition to be fired will be chosen randomly.

Figure 8 contains the graphical representation of a Petri net in two different markings.
It consists of three places (P0, P1, and P2) and two transitions (T0 and T1). Figure 8a
shows the model in its initial marking. Places P0 and P2 both have one token, which
creates the preconditions for the transition T0 to be fired. Transition T0 firing takes the
model to its second marking (see Figure 8b). This marking corresponds to a single token
in the place P1. In the second marking, transition T0 is no longer enabled and cannot be
fired. However, the T1 transition is enabled and may fires. Transition T1 on firing takes
the model to the initial marking again. This causes T0 transition to be fired, which repeats
the entire firing cycle again (see Figure 8c). Since transitions T0 and T1 are immediate,
there is no delay for them to be fired.

Since Carl Petri’s work, many representations and extensions have been proposed pro-
viding more concise descriptions and describing systems features not observed in previous
models (MURATA, 1989). Time representation was introduced in PNs (NOE; NUTT, 1973;
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(a) Initial Marking
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T0 T1

P1

(b) Second Marking
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P0

T0 T1

P1

(c) Initial Marking Again

Figure 8 – Example of a Petri Net

MERLIN; FARBER, 1976). More specifically, event time may be represented in an inter-
val, deterministic, non-deterministic or stochastic way (RAMCHANDANI, 1974; MERLIN;

FARBER, 1976; MARSAN; CONTE; BALBO, 1984). As extensions to traditional PNs we can
cited the Colored Petri Nets (CPNs) (JENSEN, 2009), inhibitor arcs, object petri nets,
time and timed Petri nets, stochastic Petri nets (SPNs), among others.

2.3.4 Stochastic Petri Nets

Stochastic Petri Nets (SPNs) are an extension of Petri Nets (PNs). Stochastic modeling
is a widely used approach in the performance evaluation process (MOLLOY, 1981). SPNs
let the use of PNs in the performance evaluation of systems and processes. SPNs asso-
ciate a stochastic delay to each timed transition. Thus, PNs become probabilistic, being
described by a stochastic process. Timed transitions store the time to perform an activity.
The period in which a timed transition remains enabled corresponds to the duration of a
activity. Transition firing represents the end of the activity. On the other hand, immediate
transitions represent instantaneous activities which means they do not have time asso-
ciated with themselves. Besides, they have higher firing priority than timed transitions.
The need to represent both timed and immediate activities within a single formalism gave
rise to an extension of SPNs called Generalized Stochastic Petri Nets (GSPNs). GSPNs
allow the association of timed and immediate transitions on the same model (MARSAN;

CONTE; BALBO, 1984), making possible the modeling of systems with times, and logical
conditions. In the literature the acronym SPN is often used to represent the entire family
of SPN derived models, such as GSPN (GERMAN, 2000). In this work, from here down we
have used the acronym SPNs when referring to GSPNs.

SPNs have introduced new components and rules to the tradicional PNs. Figure 9 ex-
hibits the new components introduced into SPN formalism. Timed transitions are depicted
as hollow or gray rectangles. White transitions represent activities with exponential times
(see Figure 9a). Other probability distributions other than exponential are represented
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graphically as gray color transitions (see Figure 9b). An inhibitor arc is a special arc type
that depicts a circle-headed at one edge, instead of an arrow (see Figure 9c). Inhibitor
arcs are usually used to disable transitions if the corresponding input place contains at
least as many tokens as the cardinality of the corresponding inhibitor arc (MARSAN et al.,
1994).

(a) Exponential
Timed Transition

(b) Non-Exponential
Timed Transition

(c) Inhibitor Arc

Figure 9 – SPN Components.

There are some properties that increase modeling power. It is possible to associate
priorities, weights and enabling functions with immediate transitions (HERZOG, 2001;
MARSAN et al., 1994). Transitions with higher priority level fire first. The weight defines
the probability at which a immediate transition will be fired when more than one of them
have the same priority level and is enabled in the same marking. Enabling functions are
logic expressions related to the net’s marking and places. Even when there are tokens
in sufficiente numbers at its input places, an immediate transition only may fires when
its enabling function is evaluated as true (MARSAN et al., 1994). On the other hand, it is
possible to associate guard expressions with timed transitions (HERZOG, 2001; MARSAN

et al., 1994). Guard expressions have the same concept of the enabling functions, but they
can only be associated with timed transitions. Enabling functions are adopted in this
work.

The addition of timed transitions introduced the concept of multiple enabling degrees
and firing semantics. Enabling degree is related to the maximum number of tokens that
make a timed transition enabled considering for it tokens available in its input places.
Firing semantics define the way in which a transition fires when its enabling degree is
greater than one. In other words, a firing semantic defines the number of tokens that will
be processed in parallel. There are three types of them defined as Single Server Semantic
(SSS), Infinite Server Semantic (ISS), and K-Server Semantic (KSS). SSS defines that
timed transitions can only be enabled and fired by the processing of one token in each input
place at a time. That is, there is no token parallel processing in SSS. The time counting will
be restarted after each transition firing. Transitions with ISS assigned to them process the
entire set of tokens available in their input places simultaneously. Finally, when using KSS,
transitions process a set of tokens in parallel up to the maximum degree of parallelism
defined. System analyst should pay attention to the assignment of firing semantics to each
timed transition because they have a direct impact on the metric calculation.

The proposals regarding performance evaluation aimed at an equivalence between SPN
and CTMC (GERMAN, 2000). SPNs with a finite number of places and transitions may be
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isomorphic for continuous time Markov chains and, hence, they can provide performance
measures (GERMAN, 2000). In order to obtain an equivalence between SPNs and CTMCs,
it was necessary to introduce temporal specifications such that the future evolution of a
model, given the present marking, is independent of its marking history. For that aim, all
time values assigned to all timed transitions must be exponentially distributed. In other
words, the reachability graph of the state space related to an SPN model is converted
to a CTMC for performance evaluation. In this case, each reachable tangible marking
in an SPN model is equivalent to one state in a CTMC. Figure 10 depicts a SPN with
two reachable states and Figure 11 shows the CTMC related to the reachability graph
of this SPN. The SPN contains only exponential transitions. As we can see, the CTMC
in question contains two states S1 and S2, which represent the initial state and the sec-
ond one, respectively. Therefore, SPNs may be converted to CTMCs, which means that
SPNs may be resolved to reach the desired performance or reliability results (MOLLOY,
1982), (MARSAN et al., 1994), (TRIVEDI, 2001), (MARSAN, 1990). If non-poli-exponential
distributions (BOLCH et al., 2006), (SOUSA et al., 2014) are adopted, the SPN can only be
evaluated through simulation.

P2

P0

P1

l m

(a) Initial State
P2

P0

P1

l m

(b) Second State
P2

P0

P1

l m

(c) Initial State Again

Figure 10 – Example of a basic SPN

S1 = (P0=1, P1=0, P2=1)

S2 = (P0=0, P1=1, P2=0)

S1 S2

m

l

Figure 11 – CTMC Related to the State Space of the SPN Presented in Figure 10
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Through numerical evaluation it is possible to obtain more precise results. However,
there are limitations for its usage. The first limitation is that the time necessary to metrics
computation could be very large when during numerical evaluation occurs state space
explosion. The second one is that the probability distribution associated with all timed
transitions times must be exponential. A technique called moment matching could be used
when using non-exponential times. Moment matching adds new places and transitions to
represent the poly-exponential distribution which more approximate the non-exponential
distribution evaluted. However, as demonstrated in Section 2.3.5, the technique may lead
to the occurrence of state space explosion (TUFFIN; HIREL; TRIVEDI, 2007).

Simulation is another way to compute model metrics. Simulation techniques do not
generate and numerically evaluate the CTMC related to the SPN state space. Thus, they
are a viable option when occurs state space explosion during model numerical evaluations.
Further, when using simulation it is possible to evaluate SPN models with non-exponential
timed transitions. Metrics computed by simulation techniques are obtained within a con-
fidence interval whilst metrics obtained by numerical analysis are more accurate (TUFFIN;

HIREL; TRIVEDI, 2007). Simulation methods are a good option when there are limitations
to use numerical evaluations.

There are some tools that make be able the construction of SPN models as well as
metrics computation such as the Mercury, TimeNet, GreatSPN or SHARPE (SILVA et

al., 2015; GERMAN et al., 1995; GREATSPN, 2004; TRIVEDI; SAHNER, 2009). These tools
generate the state space of the evaluated SPN model and create the corresponding CTMC
enabling numerical evaluations. In addition, they implement simulation techniques for
allowing model evaluations when numerical evaluation execution is not possible. The
most simple SPN models may have a large state space. System analysts may model the
whole systems directly using CTMC. It means that in some situations, it is a very difficult
task to model all possible states in which a system may be as well as the transition rates
between them. Errors during manual CTMC definition are avoided when using a stochastic
modeling tool.

Despite the simplicity of SPNs, they are a powerful formalism. Using SPNs it is possible
to model complex activities as concurrency, resource sharing and synchronization in a
easy way. Figure 12 shows an example of an SPN model using all SPN components.
There are difficulties in modeling synchronization and resource sharing activities when
using queuing networks (KLEINROCK, 1975; BOLCH et al., 2006). However, SPNs have the
power to represent queues similar to queuing networks and offer more descriptive power
compared to them (MARSAN et al., 1994).

2.3.5 Phase-type Approximation Technique

A number of approximate analysis techniques are based on matching moments of contin-
uous time phase-type distributions. Systems with non-Markovian properties may be ana-
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Figure 12 – An Example of an SPN model

lyzed numerically through phase-type approximation technique (DESROCHERS; AL-JAAR;

SOCIETY, 1995; MALHOTRA; REIBMAN, 1993). Phase-type approximation technique allows
to represent unknown or non-exponential distributions using poly-exponential distribu-
tions such as Erlang, Hyperexponential and Hypoexponential (TRIVEDI, 2001).

The technique receives as input the inverse of the coefficient of variation (CV) cor-
responding to the evaluated empirical probability distribution (DESROCHERS; AL-JAAR;

SOCIETY, 1995). The CV is defined as the ratio between the standard deviation 𝜎 and
the mean 𝜇 of the empirical distribution (see Equations 2.6 and 2.7). It is important
to highlight that numerical evaluation may not be possible when using poly-exponential
distributions. As already mentioned in this work, it is necessary to add new places and
transitions in the SPN model to represent the selected poly-exponential distribution.
Thus, phase-type increases the state space of a model. When state space explosion oc-
curs, simulations should be adopted. The evaluation of CV lets to choose the most suitable
poly-exponential distribution.

𝐶𝑉 = 𝜎

𝜇
(2.6)

1
𝐶𝑉

= 𝜇

𝜎
(2.7)

Erlang distribution can be used to represent an activity when the inverse of the coef-
ficient of variation related to it is an integer number other than one. Erlang distribution
is represented in an SPN model by the addition of the Erlang SPN subnet depicted in
Figure 13 in order to replace a non-exponential timed transition. Equation 2.8 obtains
the value of 𝛾 assigned as the multiplicity of the output arcs of the transition T1 and the
place P2. The firing rate to be assigned to the new exponential timed transition T2 is
calculated by Equation 2.9 (DESROCHERS; AL-JAAR; SOCIETY, 1995).
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Figure 13 – Erlang Distribution SPN Subnet

𝛾 =
(︃

𝜎

𝜇

)︃−2

(2.8)

𝜆 = 𝛾

𝜇
(2.9)

Hyperexponential distribution can be used to represent an activity when the inverse
of the coefficient of variation obtained is a number less than one. Hyperexponential dis-
tribution is represented in an SPN model by the addition of the Hyperexponential SPN
subnet depicted in Figure 14 in order to replace a non-exponential timed transition. The
firing rate to be assigned to the new exponential timed transition T3 is calculated by
Equation 2.10, and the weights assigned to the two new immediate transitions T1 and
T2 are calculated by Equations 2.11 and 2.12 (DESROCHERS; AL-JAAR; SOCIETY, 1995),
respectively.

𝜆 = 2𝜇

𝜇2 + 𝜎2 (2.10)

𝑤1 = 2𝜇2

𝜇2 + 𝜎2 (2.11)

𝑤2 = 1− 𝑤1 (2.12)

Hypoexponential distribution can be used to represent an activity when the inverse
of its coefficient of variation is a non-integer number greater than one. Hypoexponential
distribution is represented in an SPN model by the addition of the SPN subnet depicted
in Figure 15 in order to replace a non-exponential timed transition. Equation 2.13 obtains
the number of phases represented by 𝛾 assigned as the multiplicity of the output arcs of
the transition T2 and the place P3. The firing rate to be assigned to the new transitions
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Figure 14 – Hyperexponential Distribution SPN Subnet

is calculated by Equations 2.14 and 2.15 (DESROCHERS; AL-JAAR; SOCIETY, 1995). The
first exponential transition (T2) in the subnet receives the firing rate 𝜆1 obtained by
Equation 2.14, while the second timed transition (T3) receive the rate 𝜆2 obtained by
Equation 2.15. The values of 𝜇1 and 𝜇2 considered by those equations are obtained by
Equations 2.16 and 2.17.

P0 P4T0

P2T2 P4T3

(

8281

P0 P3

(
T4

Hypoexponential SPN Subnet

T1 P1

Figure 15 – Hypoexponential Distribution SPN Subnet

(︂
𝜇

𝜎

)︂2
− 1 ≤ 𝛾 <

(︂
𝜇

𝜎

)︂2
(2.13)
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𝜆1 = 1
𝜇1

(2.14)

𝜆2 = 1
𝜇2

(2.15)

𝜇1 =
𝜇±

√︁
𝛾(𝛾 + 1)𝜎2 − 𝛾𝜇2

𝛾 + 1 (2.16)

𝜇2 =
𝛾𝜇±

√︁
𝛾(𝛾 + 1)𝜎2 − 𝛾𝜇2

𝛾(𝛾 + 1) (2.17)

Now let us see how the change occurs in a real SPN model to represent a poly-
exponential approximation of a non-exponential timed activity by adding an SPN subnet
related to the chosen approximate distribution. Figure 16a demonstrates an SPN model
with a non-exponential timed activity represented by transition T2. Figure 16b demon-
strates the same model with transition T2 replaced by an Hypoexponential subnet. Now
the changes enable the numerical evaluation of the model.

A few stochastic modeling software may support analysts in order to choose the poly-
exponential distribution that best fits their empirical distribution. The software Mercury
evaluates the most appropriate poly-exponential distribution based on the mean and
standard deviation of the empirical distribution (SILVA et al., 2015). In addition, Mercury
demonstrates how the SPN subnet related to the most suitable poly-exponential distri-
bution should be constructed in the SPN model of the user as well as it shows the values
of each parameter to be assigned in the subnet components. Mercury supports five poly-
exponential distribution that are Erlang, Hyperexponential, Hypoexponential, Cox-1, and
Cox-2.
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(b) An SPN Model with a Hypoexponential Subnet.

Figure 16 – An SPN Model with a Non-Exponential Timed Activity Represented by a
Hypoexponential Distribution.

2.4 Face Detection and Recognition
One of the most remarkable abilities of human vision is the ability for face recognition.
This ability is important for several aspects of our social life, and together with related
abilities, such as estimating the expression of people with which we interact, has played
an important role in the course of evolution (BRUNELLI; POGGIO, 1993). For many years,
several different techniques have been proposed for computer recognition of human faces
(KANADE; COHN; TIAN, 2000) (RICKMAN; STONHAM, 1992) (COHEN et al., 2003) since
other methods do not offer the same reliability in the biometric personal identification
field for example.

There is an obvious and strong need for user-friendly systems that can secure our assets
and protect our privacy, without losing our identity in a sea of numbers. At present, one
needs a personal identification number to withdraw money from an automated banking
machine, a password for a computer, a dozen others to access some Internet services, and so
on. Although reliable methods of biometric personal identification exist, such as fingerprint
analysis and iris scans, these methods rely on the cooperation of the participants, whereas
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a personal identification system based on analysis of frontal or profile images of the face
is often effective without the participant’s cooperation or knowledge (ZHAO et al., 2003).

Table 3 lists some of the applications of face recognition.

Table 3 – Typical Applications of Face Recognition (ZHAO et al., 2012)

Areas Specific Applications

Entertainment
Video game, virtual reality, training programs

Human-robot-interaction, human-computer-interaction

Smart cards

Drivers’ licenses, entitlement programs

Immigration, national ID, passports, voter registration

Welfare fraud

Information security

TV Parental control, personal device logon, desktop logon

Application security, database security, file encryption

Intranet security, internet access, medical records

Secure trading terminals

Law enforcement and surveillance

Advanced video surveillance, CCTV control

Portal control, postevent analysis

Shoplifting, suspect tracking and investigation

A general statement of the problem of face recognition can be formulated as follows:
given images of a scene, identify or verify one or more persons in the scene using a
stored database of faces. The solution to the problem involves segmentation of faces (face
detection) from cluttered scenes and extraction of features from the facial regions for
recognition. In this work we consider face detection and extraction in the same phase,
since face extraction is responsible for capturing the specific facial characteristics. We
call the entire process, including all three steps, the face recognition process (ZHAO et al.,
2003).

The face detection determines the potential locations of the human faces within an
image (e.g.: Figure 17). In this work we have utilized the Haar Features and Haar Clas-
sifiers (VIOLA; JONES, 2004) to perform face detection. This decision was motivated by
their widespread adoption for a vast range of computer vision applications (TANG et al.,
2010).

This iterative approach begins with fairly primitive classifiers that group potential face
candidates based on a small number of features. These simple classifiers in this initial stage
have low computational complexity but must operate on a large amount of data, and they
produce a large number of face candidates. The algorithm then progressively eliminates
some of these candidates by using increasingly more sophisticated classifiers based on
additional features at successive stages of the detection pipeline, such that the final stage
outputs the detected faces with high confidence (SOYATA et al., 2012). Although the num-
ber of remaining candidates is significantly less at each successive stage, the complexity
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of the calculations increases at almost the same rate, and thus the overall computational
complexity of each pipeline stage of this detection algorithm stays somewhat constant
(SOYATA et al., 2012).

Figure 17 – Face Detection: This picture was processed by Haar Features and Classifiers
technique.

The face recognition determines the match-likelihood of each face to a template el-
ement from a database. The potential faces determined in the previous face detection
phase are then recognized. We have employed the widely accepted Eigenfaces approach
(TURK; PENTLAND, 1991). This process extracts the relevant information in a face image,
encodes it, and compares the encoded face image with a database of models, similarly
encoded. A simple approach to extracting the information contained in an image of a face
is to somehow capture the variation in a collection of face images (called training images)
and use this information to encode and compare individual face images.

In mathematical terms, the objective of Eigenfaces approach is to find the principal
components of the distribution of faces, i.e., the eigenvectors of the covariance matrix
of the set of face images. Let Γ = (Γ1, Γ2, ..., Γ𝑀) be the set of 𝑀 face images used as
a database of face models, where each Γ𝑖 is a vector of 𝑁 pixel values constituting a
single face image. The “average face” Ψ = 1

𝑀

∑︀𝑀
𝑖=1 Γ𝑖 is computed from this database.

The difference from each face image to the average face is Φ𝑖 = Γ𝑖 − Ψ. The covariance
matrix of the face images is computed as:

𝐶 = 1
𝑀

𝑀∑︁
𝑖=1

Φ𝑇
𝑖 Φ𝑖 = 𝐴𝐴𝑇 , (2.18)

where 𝐴 = [𝜑1, 𝜑2, ..., 𝜑𝑛].
The eigenvectors of the covariance matrix 𝐶 can be thought of as a set of features that

together characterize the variation between face images. Each image location contributes
more or less to each eigenvector, so that we can display the eigenvector as a sort of ghostly
face that we call an eigenface. Some eigenfaces were generated using the image depicted
in Figure 17, and the result is shown in Figure 18. It is important to highlight that these
eigenfaces are just examples, because in practice hundreds of faces are used to build a
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training set. In the actual recognition phase, a new face undergoes a pattern matching to
the eigenfaces in the training images database.

Figure 18 – (a) Thirteen eigenfaces calculated considering the faces of Figure 17; (b) The
average face.

Each face image in the training set can be represented exactly in terms of a linear
combination of the eigenfaces. The number of possible eigenfaces is equal to the number
of face images in the training set. However the faces can also be approximated using
only the “best" eigenfaces - those that have the largest eigenvalues, and which therefore
account for the most variance within the set of face images. The primary reason for using
fewer eigenfaces is computational efficiency.
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Chapter

3
Related Work

“ Weak people never give way when they ought to. ”
Cardinal de Retz, 1613-1679

The first papers in MCC had the objective of optimizing the offloading process itself.
They focused on improving the offloading techniques by monitoring the mobile device,
the application, and the network conditions. Many offloading frameworks have tackled
mobile device constraints by offloading as much as possible heavy tasks obeying context
factors (KRISTENSEN, 2010; CUERVO et al., 2010; KEMP et al., 2012; KOSTA et al., 2012;
SOYATA et al., 2012; RAHIMI et al., 2012; CORDESCHI et al., 2015; CORDESCHI; AMENDOLA;

BACCARELLI, 2015; BACCARELLI et al., 2016; CHANG et al., 2017). The number of works
addressing context-aware offloading optimization is very large. Once the benefits of these
frameworks became widely acknowledged by the research community, a new research trend
appeared: MCC infrastructure planning (GABNER et al., 2011; PARK et al., 2011; PANDEY;

NEPAL, 2012; OLIVEIRA et al., 2013; CHEN; WANG; PEDRAM, 2014). The scope of this field
is to obtain an intelligent use of limited cloud resources by applying sophisticated system
evaluation techniques.

Formal methods have been applied in diverse computer areas by evaluating system
performance and assisting software engineers with architecture planning. Most of them
have dedicated to evolve what it is called Software Performance Engineering (SPE) (HER-

ZOG, 2001). SPE is a systematic, quantitative approach to constructing software systems
that meet performance requirements, classified as real-time or responsive systems. SPE
uses model predictions to evaluate trade-offs in software functions, hardware size, qual-
ity of results, and resource requirements. MCC has presented the need for applying SPE
methods requiring to reach higher quality levels. For this reason, the current work focuses
on MCC infrastructure planning applying SPE methods.
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As observed in (SILVA et al., 2016), the main metrics used to evaluate the MCC using
stochastic models are Reliability, Availability, Energy, and Execution Time. Reliability is
defined as the probability that a device will perform its intended functions satisfactorily for
a specified period of time under specified operating conditions (ARAUJO et al., 2014). Since
the performance of a system usually depends on the performance of its components, the
reliability of the whole system is a function of the reliability of its components (KUO; ZUO,
2003). Availability is defined as the probability that the system is operating properly at any
given time (OLIVEIRA et al., 2013). Availability is the vital metric for nowadays systems;
near 100 % availability is becoming mandatory for both users and service providers. High
availability is an important feature for MCC applications given that the cloud–dependency
can introduce unexpected failures (OLIVEIRA et al., 2013).

Execution Time and Energy are the most utilized metrics when evaluating the MCC
systems. Computing speeds of mobile devices do not increase at the same rate as servers’
performance (NIMMAGADDA et al., 2010). This is due to several constraints, including:
Form Factor—as users want devices that are smaller and thinner and yet with more
computational capability. Power consumption-insofar the current battery technology con-
strains the clock speed of processors. As the clock speed is increased, the power con-
sumption is increased too. As a result, it is difficult to offer long battery lifetimes with
high clock speeds (NIMMAGADDA et al., 2010). Therefore, energy and execution time will
continue to be an MCC concern in long term.

Although Reliability, Availability, and Energy are very important metrics, our work
focuses on Execution Time. For some computational tasks, it is possible to save battery
when we reduce the processing time. Ding et al. (DING; YANG, 2018) investigates existing
modeling and corresponding analyses methods for representing MCC systems based on
formal methods. This paper provides an analysis and comparison of formal methods from
the aspects of modeling capacity and related analysis techniques. Authors have argued
that PN and its variations are appropriate modeling paradigms for representing mobile
systems, taking into account their main characteristics. More specifically, the three basic
characteristics of MCC systems considered by the authors are concurrency, interaction,
and mobility.

Sousa et al. (SOUSA et al., 2014) have used stochastic modeling to represent systems
deployed in the cloud. More specifically, the authors evaluated a Virtual Learning En-
vironment - VLE deployed in a private cloud. Using the SPN-based modeling strategy
proposed by the authors, it is possible to evaluate the performance and cost of system
configurations. The strategy considers the arrival rate and evaluates the response time for
each hardware and software configuration and related costs. This work does not consider
the use of elastic mechanisms in the infrastructure to support an increase in demand.

Silva et al. (SILVA et al., 2018) propose an SPN-based modeling strategy to represent
method call executions of mobile cloud systems. The approach enables a designer to plan
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and optimize MCC environments in which SPNs represent the system behavior and es-
timate the execution time of parallelizable applications. The approach provides graphs
depicting Throughput, MTTE, and CDFs. Authors evaluated a mobile cloud facial recog-
nition system and an image processing Android application for color reduction. However,
neither networking requirements nor data traffic generated by the MCC application was
considered in the modeling strategy proposed by authors. In addition, the authors did not
consider on the cloud side arrival rates, scaling policies, allocation of simultaneous jobs
in each virtual machine nor their related costs. The work considered that each virtual
machine can only process one user request at a time.

Elasticity in multi-tier cloud applications was analyzed by some studies (see (HAN et

al., 2014; AL-DHURAIBI et al., 2018; HOROVITZ; ARIAN, 2018; AL-FAIFI et al., 2018; DUPONT

et al., 2015; ASLANPOUR; GHOBAEI-ARANI; TOOSI, 2017)).
Dupont et al. (DUPONT et al., 2015) evaluated elasticity strategies in the cloud com-

puting. The work considered the time required to start elastic resources in the cloud. It
is important because when the time to launch resources is known, it is possible to de-
fine more effective scaling strategies. What makes it possible for the system to not react
to unexpected workload spikes. Authors also discussed the waste of the partial usage of
contracted resources due to the billing cycles’ granularity of existing pricing models. For
this, authors argued that the software layer can take part in the elasticity process as the
overhead of software reconfigurations can be usually considered negligible if compared to
infrastructure one. This approach allowed redefining the elasticity configurations in order
to provide sufficient computing resources considering the demand.

Campos et al. (CAMPOS et al., 2015) evaluated the elasticity mechanism in a private
cloud. Authors have used a CTMC to represent the autoscaling process and to evaluate
its performance. The work considered the VM type, VM image size, and probability
that the VM will be in the cache. The strategy proposed by authors allows checking
the impact of every parameter on the system response time and pointing out effective
ways for improvement of autoscaling performance. Authors have used a full factorial DoE
to compute the effect, relevance, and interactions of the factors on the total time for
instantiation. The strategies of this work may be used for tunning private cloud systems
and speed up the time required to get a new VM instance running.

Monetary cost evaluation based on stochastic models may support companies in plan-
ning their applications on the public cloud. A very few papers have proposed strategies
based on stochastic models in order to support the cost evaluation of resource consumption
on public clouds. These works addressed the monetary cost of using VMs.

Fe et al. (FE et al., 2017) propose an SPN-based model to assist in video transcoding
system planning on public clouds. The model proposed by authors takes as input the auto-
scaling configuration parameters and the time between user requests. Using their model it
is possible to compute throughput, mean response time, and cost of the cloud computing
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infrastructure for supporting a system configuration. However, authors considered only
the cost related to the use of VM instances. In addition, the model represents only one
type of VM instance running on the infrastructure. On the other hand, our SPN-based
modeling strategy considers the use of a large number of VM instance types running on
the same infrastructure. Using different types of VM instances in the same infrastructure
may deliver further cost savings for cloud customers. Besides the cost for using instances,
our strategy also considers the data traffic generated in a given period and its related
costs. Data traffic plays an important role in a cost evaluation process for some types
of applications. Our strategy supports analysts to perform more accurate cost analyzes
for a set of system configurations that may be deployed in a public cloud. Using it, it is
possible to represent more accurately real-world applications.

Ribas et al. (RIBAS et al., 2015b; RIBAS et al., 2015a) proposed a Coloured Petri Net
(CPN)-based model that represents the use of public clouds spot instances pricing scheme
in order to save costs. This work focused on modeling and reducing cost of elasticity
of cloud services. The proposed model models the use of on-demand instances in the
autoscaling process. Using this model it is possible to calculate the monthly cost for using
a set of instances and saving offers by using Spot instances (SPIs). The model considers
a set of reserved instances that will remain always up and a set of autoscaled instances
to handle the increase in demand. Authors proposed a set of autoscaling policies that
may offer cost savings when using cloud resources. Authors identified that SPIs could
help reduce cost when compared to on-demand and reserved instances in an auto-scaling
process.

Guerfel et al. (GUERFEL; SBAÏ; AYED, 2018) proposed a CPN-based model to support
the modeling of elasticity strategy. The objective of the approach is to make it possible to
find the most cost-effective elasticity strategy considering SLA constraints. For that aim,
this work considers two factors in order to guide the definition of elasticity strategies.
The proposed approach considers thresholds and the cost of each option when applying
elasticity actions. More specifically, authors have considered the maximum and minimum
number of user demands that each service can hold and the cost gained when applying
the elasticity strategy. However, CPN tool does not allow us to check specific properties
and result can be obtained only through simulation.

Silva et al. (SILVA et al., 2015) presented an approach to represent Graphic Processing
Unit (GPU) parallel processes deployed in a public cloud by using SPNs. Using this
approach, it is possible to simulate GPU executions and compute and plot cumulative
distribution functions (CDFs). The modeling strategy allows to calculate the probabilities
of satisfying user requirements when using GPUs with different number of cores. This
work conclude that, based on the evaluated workload, AWS’s customers may reduce their
infrastructure costs by opting for less powerful GPUs instances, while still satisfying
application’s requirements in terms of execution time.
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Some works have evaluated facial recognition systems in the context of mobile cloud
computing (CIDON et al., 2011; CUERVO et al., 2010; KEMP et al., 2012; KOVACHEV; YU;

KLAMMA, 2012; KWON; TILEVICH, 2012; SOYATA et al., 2012; HUANG; WANG; NIYATO,
2012; WANG; DONYANAVARD; CHENG, 2012; ZHANG et al., 2012).

According to Dey et al. (DEY et al., 2013), an efficient scheduling algorithm in mobile
cloud must consider simultaneously both, communication and computation requirements.
He also concludes with experiments that there is a tradeoff between satisfying response
time for different user requests and maximizing system capacity. They tried to solve this
problem by ranking the current capacity of heterogeneous access networks (like macrocell,
microcell, carrier WiFi, public WiFi, etc.) and different clouds. In other words, for each
network and cloud it assigns a utilization percentage. The problem with this strategy is
the low level of resources granularity, not considering the machines as a resource unit,
which could lead to a more efficient scheduling.

Evolving this approach, Soyata et al. (SOYATA et al., 2012) have implemented a soft-
ware called MOCHA to improve mobile cloud face recognition simulating public clouds
and a cloudlet. A cloudlet is a resource-rich computer or cluster of computers with fast
Internet and available for use by nearby mobile devices (SATYANARAYANAN et al., 2009).
MOCHA has demonstrated that a cloudlet as a unique server enhances face recognition.
It redistributes the load to remote machines and ranking them by their round-trip time
(RTT). Although MOCHA has presented an efficient behaviour, some improvements are
still feasible.

Silva et al. (SILVA et al., 2017) have implemented an approach called SmartRank to
improve the performance of mobile cloud face recognition. SmartRank is a scheduling
approach that perform load partitioning and offloading. It has a scheduler algorithm
that take into account multiple metrics and assign weights to them. SmartRank intends
to minimize the response time of mobile applications by using cloud computing with
heterogeneous communication latencies and compute power in terms of CPU and memory.
Authors have applied the approach for suuport a face recognition process based on cloudlet
federation and resource ranking based on balanced metrics. The approach considers as
metrics the CPU utilization, round-trip time (RTT), processing time, and transmission
time. The smart scheduling algorithm ranks cloud servers and distributes pictures of
human faces among them. All VMs running the facial recognition system, and a dynamic
distribution of faces occurs based on the VMs’ ranking. Authors have used DoE and
analytical modeling through a CTMC for performance evaluate purposes.

Although many studies focus on the optimization of the offloading process, in the
recent literature, few studies have addressed stochastic performance modeling in the con-
text of MCC infrastructure planning. In addition, the tradeoff between performance, data
traffic and use of VM instances — and their related costs — for offloading on public
clouds have been ignored by these studies. Table 4 presents the main works related to our
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proposal. Unlike these works, we offer an approach to support at design time the evalua-
tion of performance, data traffic, use of VM instances, scaling policies, and related costs.
It may be adapted and used in conjunction with a context-aware offloading optimization
approach to providing on-the-fly performance evaluations. Mainly, our work advances the
related works in the following aspects: (i) an SPN-based modeling strategy that represents
applications installed on user devices and the use and sharing of the BW; (ii) an SPN-
based modeling strategy that represents heterogeneous and elastic MCC infrastructures
on public clouds that considers both the use of RIs and ODIs as well as data traffic; (iii)
and cost models supported by the proposed stochastic models that consider data traffic
and use of VMs.

Table 4 – Related Work Comparison

Related Work D
at

a
T

ra
ffi

c
E

la
st

ic
it

y

Fa
ce

R
ec

og
ni

ti
on

F
in

an
ci

al
C

os
t

In
fr

as
tr

uc
tu

re
P

la
nn

in
g

U
se

of
V

M
s

M
od

el
s

O
ffl

oa
di

ng
P

la
nn

in
g

P
er

fo
rm

an
ce

E
va

lu
at

io
n

P
ub

lic
C

lo
ud

(SOUSA et al., 2014) x x x x
(CAMPOS et al., 2015) x x
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Chapter

4
Methodology

“ Experience shows that, if one foresees from far away the designs to be
undertaken, one can act with speed when the moment comes to execute
them. ”

Cardinal Richelieu, 1585-1642

In this chapter, we present two methodologies for supporting MCC service providers
when designing their MCC services. The first methodology aims to support performance
prediction of MCC applications installed on user devices. Making it possible to choose suit-
able offloading scenarios. The second one aims to support the planning of MCC systems in
public clouds. As we will see, some steps are common between the two methodologies. Be-
sides that, we present concepts, resources, tools, techniques, and methods for supporting
the evaluation processes. Section 4.1 describes in detail all the steps of the methodology
for evaluating MCC applications’ offloading. Section 4.2 describes in detail all the steps
of the methodology for planning MCC systems in public clouds.

4.1 Methodology for Evaluating MCC Applications Of-
floading

In this section, we present the methodology for supporting performance evaluation of MCC
applications installed on mobile devices in order to find the most suitable scenario for
offloading data and code. The methodology comprises a set of well-defined steps for sup-
porting the evaluation process. The steps of the methodology are as follows: understanding
the MCC application, parameters definition, metrics definition, stochastic modeling, model
validation, model-experiment refinement, scenario generation, model generation, and met-
rics evaluation.
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4.1.1 Steps of the Methodology

In this subsection, we present detailed information about the process of evaluating MCC
applications installed on user devices. This process supports the decision-making process
related to the offloading scenario to be adopted. Figure 19 depicts the MCC perspective
considered by this methodology. Using the methodology, service providers are able to
decide “where” to execute the application’s workload. Figure 20 depicts the steps that
developers must follow in order to evaluate their MCC applications. “Offloading Scenario
Evaluation Process" is a subprocess that is considered after the modeling strategy is
validated.

AWS

Running
on the
Cloud

Mobile Cloud InfrastructureWHERE?

Mobile Client

Running
on

Device

Figure 19 – Decisions About “Where” to Process the Application’s Workload

Understanding the MCC Application: Developers should understand the mo-
bile application itself, its requirements, and how users can interact with it when
designing MCC applications. Understanding the application also includes under-
standing the source code to find out how the workload can be divided and dis-
tributed. Developers should identify more intensive components in processing and
understand how they interact with each other. Some applications have performance
requirements defined in SLAs. Thus, a developer needs to identify which parts are
best suited for remote processing in order to achieve the desired performance levels.

Let us now describe the performance evaluation of MCC applications executing on
mobile devices. Developers need to evaluate the performance of each part of the
application that is suitable to be processed in the cloud. To do this, it is necessary
to perform experiments in order to collect the processing time. Developers must
instrument the source code of their applications to register the time required to
process some tasks. In addition to processing time, developers may consider other
metrics, such as CPU, memory, and energy consumption. Below we describe how
developers may evaluate power consumption and CPU and memory usage on mobile
devices.
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Figure 20 – Steps of the Methodology for Evaluating MCC Applications’ Offloading

Power Consumption Evaluation. Regarding power consumption, there
exist hardware profiles that allow an user to record the total energy consumed
of a device, such as Watts Up (HIRST et al., 2013). There are also some software-
level energy profilers that record the energy consumption per application, such
as eDoctor (MA et al., 2013), and PowerTutor (ZHANG et al., 2010; POWER-

TUTOR, 2018). PowerTutor is a mobile application that monitors the power
consumed by some components of the device, such as CPU and display, and
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by mobile apps running on the device. It provides the developer with a log file
containing detailed data about the monitoring session and allows it to analyze
the impact of each offloading scenario on energy efficiency. Figure 21 demon-
strates an example of power consumption measured by PowerTutor while the
mobile device was running a specific workload.
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Figure 21 – Mobile Device Energy Profiling

CPU and Memory Consumption Evaluation. On an Android system,
some statistics about CPU load and other system resources are available in
the files in the /proc directory. Developers may need to read these files to get
the metrics they want when developing applications for this operating system.
Directory /proc is an interface to access data in the kernel of the operating
system. The /proc interface provides detailed information about processes and
some system resources. For example, when reading the /proc/stat file, an an-
alyst may monitor the CPU of the mobile device when executing a workload
and find out the time spent in the CPU and percentage of CPU usage. Devel-
opers can identify the CPU usage executing different types of workloads. In
addition, by reading the /proc/meminfo file, a developer get statistics related
to memory usage, such as total and free memory. Another option for an An-
droid application is to use the java.lang.Runtime class to collect some memory
information. Figures 22 and 23 depict CPU and memory usage by considering
a face recognition workload running on four different facial databases.

Parameters Definition: In this step, we define the parameters that will support
the modeling process. Each parameter is a characteristic of the mobile application
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Figure 22 – Mobile Device CPU Profiling

Figure 23 – Mobile Device Memory Profiling

or its environment that affects its execution. This work considers as parameters of
an MCC application running on mobile devices the bandwidth available for sup-
porting offloading operations, local and remotely processing times, data traffic and
application source code itself.

Developers may use DoE technique to generate scenarios to execute the application’s
workload considering the parameters defined here (JAIN, 1990; MONTGOMERY, 2017).
DoE makes it possible to evaluate the state space of possible scenarios considering
the input parameters and, based on this evaluation process, an appropriate scenario
may be found. Analysts may choose partial, fractional factorial, or full factorial de-
signs to evaluate their systems. Most of the parameters defined in this chapter fall
into two categories which are measurement and configuration parameters.

Measurement parameters represent the time spent to perform some activity. Devel-
opers need to know the times required to perform some system activities and their
probability distributions. These times define an empirical distribution. Analysts
must perform some experiments in order to collect the measurement parameters
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values. Our modeling strategy represents these parameters as timed transitions.

On the other hand, some configuration parameters have an upper and lower limit
with regard to them. They represent resources available in the cloud or in the mobile
device. On the device side, this work considers bandwidth as the only configuration
parameter. For example, the bandwidth may assume a minimum and maximum
value, and performance may be evaluated by varying this parameter.

Metrics Definition: Metrics definition is an important step in the methodology.
The metrics that are chosen in this step support developers on the decision-making
process to choose an appropriate scenario for offloading the mobile app’s workload.
There exists a large number of metrics that developers may use to support the
offloading decision process. This work considers performance and costs metrics. More
specifically, the performance metrics we consider on mobile devices are mean time to
execute (MTTE), throughput (TP), and cumulative distribution function (CDF).

Stochastic Modeling: Our SPN-based modeling strategies can represent the mo-
bile device and the cloud processing the MCC workload, and the communication
process between both sides. Using our models, it is possible to estimate the perfor-
mance of the MCC application. The mobile device modeling strategy can represent
the application’s source code and the device executing the app. In addition to rep-
resenting it by sending the workload for remote processing through the offloading
technique and receiving results. For this purpose, in order to estimate the communi-
cation time our strategy considers the bandwidth allocated for offloading operations,
as well as the volume of data that the app needs to transmit.

Parameters and metrics defined in the last steps determine how the models will be
generated. Our mobile device modeling strategy represents the only configuration
parameter (i.e. bandwidth) as logic expressions for estimating transitions delays.
The structure of the model depends on the input parameters and it impacts on the
definitions of metrics. For example, the modeling strategy represents each part of the
application with its own set of places, arcs, tokens, and transitions in the model. The
definition for calculating metrics depend on the generated models since parameters
values can change the model structure. In other words, parameters define the model
structure and the model structure defines how desired metrics are obtained.

Model Validation: Analysts should validate their models to make sure the metrics
obtained by them represent the results that the actual system presents by having
the same parameters and processing the same workload. Obviously, since we are
evaluating a stochastic system, the metric obtained from the model may differ from
the metric of the actual system within a predefined limit. Taking this into account,
model validation considers a confidence interval regarding the metric evaluated.
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There exist some statistical methods that may be used to validate stochastic models.
In this work, we consider a non-parametric method called Bootstrap (GONZALEZ-

RODRIGUEZ; COLUBI; GIL, 2012; GINE; ZINN, 1990). The first step in validating a
model is the definition of a system configuration that both the model and actual
system receive. After that, the analyst runs a specific workload both on the model
and actual system, and during this process, the desired metrics are collected. An
analyst may consider that a model represents an actual system when the results
presented by both sides are within the confidence interval.

Methods for Supporting Model Evaluations. Once the analyst generates
the models, it is necessary to choose the appropriate method to evaluate them
and get the desired metrics. When using SPN or CTMC models, it is possible
to evaluate them considering a transient or stationary perspective. An analyst
must calculate time-dependent metrics using transient evaluation. On the other
hand, for non-time dependent metrics, a stationary analysis obtains the metrics
in a steady state. In this work, we have considered three performance metrics
evaluated through stationary analysis, which are throughput (TP), mean time
to execute (MTTE), and mean response time (MRT). On the other hand,
cumulative distribution function (CDF) is a transient metric and it depends
on a specific time parameter 𝑡 defined by the evaluator.
As we pointed out in section 2.3.4, there exists two ways to compute metrics.
Analysts can evaluate their models through numerical analysis or simulation.
Before that, the analyst needs to configure the parameters in the model in order
to calculate the desired metrics. The numerical analysis of an SPN model cor-
responds to the analysis of the underlying CTMC regarding to its state space.
Numerical analysis provides more accurate results (TRIVEDI, 2001; BOLCH et al.,
2006; TUFFIN; HIREL; TRIVEDI, 2007). On the other hand, there may be some
problems when using numerical analysis. The two main problems regarding nu-
merical evaluations are state space explosions and use of non-exponential times
in any transition (TUFFIN; HIREL; TRIVEDI, 2007; TRIVEDI, 2001; BOLCH et al.,
2006). State space explosions may occur when the model represents a large
number of parameters and each of them can have a large number of possible
values. Another problem is the memory available for supporting the software
that performs metrics computation. A stochastic evaluation software, such as
Mercury, generates the CTMC relative to the SPN state space and maintains
the whole CTMC in the system memory throughout the computation. This
may cause memory failures considering models with large state spaces. Among
other factors, an analyst should use simulation technique when the time re-
quired to numerically evaluate a model is prohibitive (TRIVEDI, 2001). It is
important to highlight that simulation computes metrics within a specific con-
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fidence interval. Thus, numerical analysis is the only recommended method for
problems that require an exact solution.
Figure 24 depicts the decision process regarding the definition of the most ap-
propriate method for metrics calculation. An analyst may use moment match-
ing technique in order to represent a non-exponential distribution in which it
approaches some poly-exponential distribution. Based on the mean and stan-
dard deviation of a non-exponential distribution, it is possible to evaluate the
possibility of using a poly-exponential distribution such as Hyper-exponential,
Erlang or Hypo-exponential (see Section 2.3.5).
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Figure 24 – Decision Process for Metrics Evaluation

Model-Experiment Refinement: When metric values differ, it means that it is
necessary to refine the model to more accurately represent some system activities or,
in some cases, refine the experiment run on the actual system in order to collect more
detailed data. After that, the experiment is executed again and the metric values
are compared. This process is repeated until the evaluated metric is statistically
equal, that is, within the confidence interval defined by the analyst. Validating a
model allows an analyst to check the behavior of complex scenarios by using it. This
provides confidence in the values obtained from them.

Scenario Generation: The next steps of our methodology describe the activities
to find an appropriate scenario for offloading data and code. They characterize the
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Offloading Scenario Evaluation Process. The purpose of this process is to find out
an offloading scenario that meets the project’s requirements. An offloading scenario
defines where each part of the mobile application should be executed. Parameter
variations characterize this process. In the current step, developers define the min-
imum and maximum values that the only configuration parameter can take. That
is, the minimum and maximum actual bandwidth allocated for data transmission
operations. Thus, bandwidth varies from the minimum to the maximum value and
the evaluator may obtain the impact of this variation on the performance metrics,
considering each offloading scenario. A set of parameters and their values charac-
terize a scenario and each scenario impacts on how the analyst should refine the
models for evaluating metrics. The next step receives as input the scenario selected
in the current step for supporting the modeling refinement.

Model Generation: It is a difficult task to evaluate all possible offloading scenarios
through experiments. Considering this, the efforts to find out an appropriate set of
parameters values may be high, and an analyst may spend a lot of time and money
in this process. To avoid this, the process of evaluating scenarios allows evaluating,
in a short period of time, a myriad of scenarios using only stochastic models. Once
the modeling strategy is statistically validated, models can be refined to represent
a large number of scenarios. This step receives as input the desired metrics and a
set of parameters that represent a scenario to be evaluated in order to generate the
model.

Metrics Evaluation: In this last step, an analyst analyzes the metrics provided
by the model considering the current set of parameters values selected in the step
“Scenario Generation". Service providers may have statistics related to execution
time and throughput. These results guide them in planning how to configure the
offloading. If the metrics values do not meet the project’s requirements, a new
offloading scenario must be generated; after that, a new refined model is generated
and metrics are evaluated again.

4.2 Methodology for Planning MCC Systems in Public
Clouds

In this section, we present the methodology for supporting performance evaluation of MCC
systems to be deployed in public clouds in order to find the most suitable configuration.
The methodology comprises a set of well-defined steps for supporting the evaluation pro-
cess. The steps of the methodology are as follows: understanding the MCC system, parame-
ters definition, metrics definition, stochastic modeling, model validation, model-experiment
refinement, configuration generation, model generation, and metrics evaluation.
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4.2.1 Steps of the Methodology

In this subsection, we present detailed information about the process of supporting the
planning of MCC systems in public clouds, in order to support the decision-making process
related to the deployment configuration to be adopted. Figure 25 depicts the steps that
developers must follow in order to evaluate their MCC systems. “Configuration Evaluation
Process" is a subprocess that is considered after the modeling strategy is validated.
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Figure 25 – Steps of the Methodology for Planning MCC Systems in Public Clouds
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Understanding the MCC System: Offloading planning may be a difficult task
when considering demands generated by mobile users and the parts of the MCC
application that are suitable for remote processing. Developers need to analyze re-
source consumption in the cloud, taking into account the performance requirements
and user demand for each offloading scenario. The purpose of offloading planning
is to meet the performance expectations defined in SLAs while minimizing resource
consumption in the cloud.

The demand for some types of applications may vary and the system needs to main-
tain its performance even when there is an increase in demand. There must be a
set of remote resources to support the normal demand and it is possible to define
some thresholds to scale the system out/in. The workload defines how an applica-
tion scales in the cloud, and the thresholds are specific to each application. Each
workload is more intensive in the use of some computational resource. For example,
video transcoding and face recognition processing is more CPU intensive (FE et al.,
2017; SILVA; MACIEL; MATOS, 2015). Perhaps for these workloads the level of CPU
utilization on a machine may set the scaling thresholds. On the other hand, other
categories of applications can be more memory intensive, and monitoring memory
consumption in VM instances may define when and how the application scales. And,
that is why developers need to understand the system workload so that thresholds
must be set properly. Developers may set thresholds based on various criteria such
as CPU usage, memory, I/O operations, queue size (GALANTE; BONA, 2012). Some
public clouds provide APIs for supporting the definition of customized scaling poli-
cies. This work considers a customized reactive policy based on the queue size and
available processing capacity for request processing.

By combining different VM instance types, simultaneous jobs per instance and scal-
ing thresholds, it is possible to offer different response times for each offloading sce-
nario. However, each of these variables affects resource consumption on the cloud
side as well as the cost that the MCC service provider pays to an IaaS provider.
The response time of the system deployed in the cloud affects the execution time of
the mobile app running on the user device. Sometimes, the service provider needs to
allocate the maximum number of user requests in a VM instance to save money. It
is necessary to evaluate how computing resource consumption in the VM instance
occurs in order to set the maximum number of simultaneous requests to be pro-
cessed by it. To do this, the analyst needs to monitor the system and collect some
metrics related to resources consumption.

This step finishes with the analysis of all collected data. Developers at the end of
this step need to know the mobile application itself, its demand, and which parts
are best suited to process them in the cloud. Developers have to know how they can
split their applications and the possible scenarios to execute the system. Evaluating
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the workload running in the cloud and on the mobile device supports the definition
of some parameters. For example, when evaluating the cloud side, it is necessary to
know the impact on the service time to simultaneously process a different number of
requests in the VM instances. More detailed analysis in the system logs may provide
important information for supporting the definition of the system parameters.

Remote Resource Consumption Evaluation. Now let us describe the
performance evaluation of the system in the cloud. We have used JMeter (JME-

TER, 2018; HALILI, 2008) to generate external requests. JMeter is an open-
source tool specialized in load and functional tests. The goal of using JMeter
is to simulate requests made by mobile users. Developers may set some request
rate and JMeter generates requests accordingly. In addition, we have used
Nigel’s Monitor (NMon) software to monitor system resources (NMON, 2018).
NMon is a computing resource monitoring tool for AIX and Linux operating
systems. NMon can monitor a large number of computational resources and
provides detailed reports related to the collected data. Developers may find out
the most intensive features in each VM instance type in the infrastructure by
analyzing the NMon logs. Each instance might handle more than one request
at a time. In such a case, the developer may increase the number of concurrent
requests on each instance in each experiment that she runs to discover the ap-
plication thresholds in relation to resource consumption and processing time.
The number of concurrent requests affects response time and, as a consequence,
it impacts on the total time to process the mobile application.

Example of Deployment Configurations for an MCC System. There
may be a large number of offloading scenarios depending on the number of
parts the developers split their MCC applications. In the same way, each sce-
nario can have a large number of configurations in the cloud for supporting
offloading. These configurations correspond to the number of VM instances
available to process external requests. Table 5 demonstrates an example of
offloading scenarios for an MCC application, and Table 6 demonstrates con-
figurations that a developer could adopt for deploying the MCC system in a
cloud considering the scenario #1 depicted in Table 5. As we can see, there
may be a large number of configurations for deploying an MCC system taking
into account each offloading scenario.

Parameters Definition: This work considers as parameters of an MCC system to
be deployed in a public cloud its capacity in terms of the number of requests that
may be there at a time, arrival rates, number and types of VM instances, number
of simultaneous requests that each instance can process, maximum number of on-
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Table 5 – Example of Offloading Scenarios

Possibility m1() m2()

Scenario #1 cloud cloud
Scenario #2 mobile mobile
Scenario #3 mobile cloud
Scenario #4 cloud mobile

Table 6 – Example of Deployment Configurations for an MCC System

Configuration Instance Type 1 Instance Type 2

t2.micro t2.small

#1 1 3
#2 3 4
#3 3 2
#4 2 2
#5 4 1
#6 3 3

demand instances (ODIs) that the system may use, time spent to launch ODIs,
stepsizes and thresholds for scaling the system.

Analysts must perform experiments to collect the values of the measurement pa-
rameters. These parameter values depend on the workload running on the system
and the state of the cloud provider. Some software for load testing and resource
consumption monitoring in VM instance support these evaluations, such as JMe-
ter (JMETER, 2018; HALILI, 2008) and NMon (NMON, 2018) respectively.

On the other hand, configuration parameters represent resources available in the
cloud. This work considers as configuration parameters in the cloud the system
capacity, number and types of VM instances, maximum number of ODIs that the
system may use, stepsizes and thresholds for scaling the system in/out. The value
of some parameters must be carefully selected. For example, the thresholds for
scaling the system in need to be smaller than the thresholds for scaling the system
out. Otherwise, the MCC system will never terminate unused ODIs running in the
infrastructure. As we can deduce, in addition to affect the modeling process, each
parameter also impacts performance and costs.

Metrics Definition: The metrics that are chosen in this step support MCC service
providers on the decision-making process to choose an appropriate configuration for
deploying their systems in the cloud. We consider performance and cost metrics. The
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performance metrics are mean response time (MRT), TP, and CDF. Cost metrics
represent the cost of using resources in the cloud. We consider the cost of using VM
instances and data traffic. The cost of using instances corresponds to the cost of
using RIs and ODIs. The cost of data traffic depends on how much data the MCC
system sends to mobile users.

Stochastic Modeling: SPN makes easy the representation and evaluation of queu-
ing systems (SAHNER, 1996; TRIVEDI, 2001; JOHN, 2006; GERMAN, 2000). It is
important to highlight that an analyst may use our cloud modeling strategy to rep-
resent the system running in a public or private cloud. However, in order to support
resource consumption estimates in a highly distributed scalable environment, we
consider the MCC system deployed in a public cloud.

Parameters and metrics defined in the last steps determine how the models will be
generated. Our modeling strategy represents the configuration parameters as places,
tokens, enabling functions, arcs multiplicity, or logic expressions for estimating tran-
sitions delays. It represents each set of VM instances with its own set of places, arcs,
tokens, and transitions in the model. In addition, each group of elastic instances also
has its own set of SPN components.

An analyst using SPN-based modeling may define some logic in the model regarding
the system behavior. That is, in addition to the inherently stochastic behavior of
the model in relation to transitions delays, priorities and weights; logical expressions
defined as enabling functions, guard expressions or arc multiplicities also affect the
model behavior. We have used the software Mercury (SILVA et al., 2015) to support
us during the definitions and validations phases of our modeling strategies. Mercury
is an integrated environment for supporting performance and dependability metrics
evaluation of general systems and it allows users to define their models graphically.
When defining an SPN model, Mercury allows users to see the tokens flow, sup-
porting accurate analysis and avoiding errors in the modelling definition. However,
analysts may use others software other than Mercury to support their evaluations
such as TimetNet (GERMAN et al., 1995) or SHARPE (TRIVEDI; SAHNER, 2009).

Model Validation: We may use JMeter to generate workload in the actual sys-
tem deployed in a public cloud in order to accurately obtain the desired metrics.
The obtained metrics support the model validation process. For further information
about this process, see the step Model Validation in section 4.1.

Model-Experiment Refinement: For sake of conciseness, see section 4.1. The
same information available in the step Model-Experiment Refinement of the first
methodology also applies here.
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Configuration Generation: The next steps of our methodology characterize the
Configuration Evaluation Process. The purpose of this process is to find out a config-
uration for deploying the MCC system in the public cloud that meets performance
within the resource consumption levels expected by the MCC provider. In the cur-
rent step, developers define the value that each configuration parameter can take. For
example, the number of RIs and ODIs, or the stepsize associated with an instance
type for each scale-out request. We consider the use of DOE technique adopting a
full factorial planning. That is, we evaluate all possible configurations within the
state space of the evaluated parameters. The individual variation of each parameter
can provide an estimate of the impact of the parameter on the evaluated metric.
The next step receives as input the configuration generated in the current step for
supporting the modeling refinement.

Model Generation: This step receives as input the metrics of interest and a set of
parameters that represent the evaluated configuration in order to generate the SPN
model. Once the analyst generates the model, metrics may be evaluated to support
the decision-making process.

Metrics Evaluation: In this last step, an analyst analyzes the metrics provided by
the model. The performance metrics evaluated on the cloud side are MRT, CDFs,
and throughput. Here, we also consider resource consumption in the cloud. MCC
service providers may have statistics related to execution time, resource consump-
tions, and costs when resolving the stochastic models. These results guide them in
planning how to deploy their MCC systems in the cloud. If the obtained metrics
do not meet the performance and/or resource consumption level expected by the
service provider, a new configuration must be generated considering the state space
of the possible parameter values. After that, a new refined model is generated and
metrics are evaluated again.
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Chapter

5
Remote MCC Architecture

“ One should not be too straightforward. Go and see the forest. The straight
trees are cut down, the crooked ones are left standing. ”

Kautilya, Indian philosopher, third century B.C.

A basic MCC architecture deployed in a public cloud for supporting offloading gen-
erated by mobile users needs to receive the requests, process them, and lastly send the
results to the mobile devices. Figure 26 depicts the MCC architecture we consider in this
work. Basically, the architecture consists of one front-end instance and a set of RIs and
ODIs for service processing. The front-end is a RI and it performs some tasks. As we may
presume, the front-end communicates with the outside world and receives requests sent
by mobile users. RIs compose the set of VM instances that are always available for service
processing and they handle the normal workload of the system. On the other hand, the
ODIs compose the group of autoscaled instances that the MCC system may request to the
cloud when there is an increase in the expected number of request in it. More specifically,
the system requests ODIs to the cloud manager when it reaches any threshold for scaling
out. The cloud charges for the use of RIs per year and for the use of ODIs per hour of
use. An MCC service provider may use ODIs to allow their systems to handle transient
increases in user demand to comply with performance requirements and by paying for the
period of time the VM instance was in use. Some works have adopted a similar architec-
ture in their evaluations (YANG et al., 2015; LIN et al., 2013; FE et al., 2017). As we may
presume, this architecture can support a large number of application types.

Our architecture can represent a heterogeneous environment in relation to the types of
VM instances running on it. As mentioned above, the architecture may comprise a set of
RIs and ODIs. Each type of VM instance defines a group of service instances. It means that
each group of service instances must consist of RIs and ODIs of the same type. The number
of instances in each group may change considering the number of requests in the system.
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Figure 26 demonstrates an infrastructure with two groups of service instances depicted
with gray circles. Group 1 comprises instances of type t2.small and Group 2 comprises
intances of type t2.medium. Each instance running on the system has a maximum number
of parallel requests that it can process at the same time. This maximum number of parallel
requests assigned to each instance defines the processing capacity of a instance type. Each
group has its own processing capacity in relation to the number of requests it can process
per unit of time. The sum of the processing capacity of each VM instance in a group
defines the capacity of this group.
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Figure 26 – Remote Architecture for Deploying an MCC System in a Public Cloud

IaaS public cloud providers provide virtual machines with different computing power.
Table 7 describes the types of VM instances we consider in this work. As we can see,
each type offers different processing capabilities, such as the number of vCPUs, memory,
storage, network capacity, among others. The more powerful the VM instance, the higher
the price charged by the provider for it. The provider may charge different prices for an
type of instance. More specifically, contracting modalities provided by the cloud provider
determines the price that customers pay. AWS provides families of different instances
that are appropriate for multiple sets of workloads based on computing, memory, net-
work, and storage requirements. For example, some families provide VM instances with
a large amount of memory, while others provide instances with graphics processing ca-
pabilities (i.e. instances with GPU capabilities). We have considered in this dissertation
VM instances of the t2 family. The t2 instance family is appropriate for most applica-
tion workloads. However, the architecture and strategies proposed here may be applied
considering any instance families.

Our architecture comprises a set of VM instances to handle a specific MCC workload.
However, in a real-world context, a mobile application may offload a variety of workload
types for remote processing. In this case, there may be a specific architecture to handle
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Table 7 – EC2 Instances (AWS, 2018b)

Model vCPU Memory (GiB) Reserved ($/year) On-demand ($/hour)

t2.micro 1 1 $ 59.00 $ 0.0116
t2.small 1 2 $ 118.00 $ 0.023

t2.medium 2 4 $ 235.00 $ 0.0464
t2.large 2 8 $ 470.00 $ 0.0928

each workload. That is, each MCC function comprises its own set of RIs and ODIs.
Figure 26 shows an MCC architecture for supporting only one offloadable function and
Figure 27 demonstrates an MCC system deployed on the cloud for supporting two distinct
offloadable functions. As we can see, each architecture comprises two types of instances
running on it. However, in a real-world context, the number of instance types in the
infrastructure can be large.
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Figure 27 – Remote Architecture for Supporting Two MCC Functions

In the following, we provide a more detailed description of our architecture. The front-
end machine performs essential activities. It receives requests sent by mobile users, for-
wards them to receive processing, control the queue, performs load balancing, monitors
the MCC system and predefined thresholds, and performs scale in/out requests to EC2.
An application running on a mobile device offloads a task to the remote MCC infrastruc-
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ture. The front-end receives the external request and forwards it to any service instance
available on the system. Likewise, the front-end forwards requests to the queue when there
is no processing capability available to manipulate them. The architecture adopts a first
come first serve policy (FCFS) to manage requests in the queue. When a request that
was receiving service on any VM instance leaves the system, another request waiting in
the queue is forwarded to the available instance. Each MCC system may have a capacity
related to the number of jobs in it. The purpose of the capacity parameter is to prevent
the expected number of requests in the system grows and the response time exceeds the
desired value. The system may reject requests when no buffers are available when they
arrive. The front-end may perform scaling requests to the cloud manager when the sys-
tem reaches predefined thresholds. We consider a horizontal scaling approach to scale the
systems (AL-DHURAIBI et al., 2018). The system adds ODIs when it reaches any scaling
out threshold. Likewise, the system removes ODIs running in any service group when it
reaches a scaling in threshold. More specifically, the MCC system sends asynchronous scal-
ing requests to EC2 and AWS scales the system accordingly (see Figure 28). Each request
for scaling out may have a stepsize associated with it that defines the number of ODIs
that the cloud needs to insert. Our work considers a reactive scaling approach (BISWAS et

al., 2015; ASSUNCAO et al., 2016; LORIDO-BOTRAN; MIGUEL-ALONSO; LOZANO, 2014). The
size of the queue, the processing capacity of the VM instances and the number of requests
receiving service are the factors that our work adopts to define the scaling thresholds.
Figure 29 shows an UML sequence diagram representing the system behavior when a re-
quest arrives. As we can see, in addition to forwarding the request, the front-end verifies
whether the system has reached a threshold for scaling out. If so, front-end sends requests
to EC2 for launching ODIs by considering predefined stepsizes.
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Figure 28 – Requests for Scaling Operations Sent by the Front-end to AWS EC2
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Figure 29 – Sequence Diagram Depicting the Front-end Behaviour When a Request Ar-
rives in the System

Understanding and evaluating a system are key factors for deploying it in a cloud. The
following we describe how analysts may deploy their MCC applications in our architecture.
The first step in deploying an MCC application in the cloud is to understand its behavior.
Analysts need to evaluate the resource consumption of their applications. Each application
has its own patterns in resource consumptions. The main computational resources that
most systems consume are CPU and memory. However, some applications may be more
intensive in other resources such as network or storage. The main idea behind the study
of this behavior is to define the system thresholds. Thresholds regarding the number of
concurrent jobs that the system can process in a single VM instance and thresholds that
define when to scale.

Analysts need to evaluate the performance of their applications on each type of in-
stance they want to use in their infrastructure. The application processing a single request
and a set of them at the same time. The analyst varies the number of simultaneous ex-
ecutions and evaluates the time to process each of them. It is important to understand
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the impact on the processing time of a single request, considering a different number of
concurrent requests running on the evaluated VM instance. The processing time tends to
increase as high the number of concurrent tasks in the same machine. This time tends to
grow linearly for some applications, while for others it may have nonlinear growth. The
number of concurrent tasks plays an important role in defining the performance of the
system as well as the cost to maintain the infrastructure in the cloud. An analyst needs to
consider the trade-off between performance and cost. The use of powerful VM instances to
process a single request at a time may be disadvantageous from a financial point of view.
On the other hand, allocating a large number of requests in one VM instance to process
all of them at one time may decrease the total cost, but may not meet SLA performance
requirements.

There exist tools that analysts can use to evaluate their applications. We have used
JMeter and NMon software to support our evaluations (JMETER, 2018; NMON, 2018).
An analyst sets a specific arrival rate and JMeter generates requests accordingly. JMeter
generates requests that the front-end machine handle them and from there the system
processes them. Making it possible to evaluate performance in the cloud. NMon is another
tool we have used. NMon is a monitoring tool that collects a large number of operating
system and computer resource metrics. NMon supports analysts to define thresholds re-
lated to the number of concurrent processing in each instance type. An analyst needs to
execute a different number of request simultaneously and evaluate the resource consump-
tions for each execution as well as the processing time of a single request in each bulk
requests execution. Some applications may have a limit regarding the number of concur-
rent executions. This limit defines when the system crashes for not having more resources
available for supporting its execution or the processing time of a single request exceeds
the minimum performance levels. The task of the analyst is to find out the limit in order
to make it possible to define the number of concurrent tasks in each type of VM instance
that allows to comply with the SLA, minimizing the consumption of resources. An an-
alyst should consider during this evaluation all of instance types that will compose her
infrastructure. Each instance type has its own limits regarding the number of concurrent
processing in it.

Service providers using a public cloud may set autoscaling thresholds based on the
resource consumption or the state of their applications. Amazon Cloud Watch provides
several features for load balancing and scaling in/out an application based on predefined
thresholds, resources monitoring in each VM instance and in system logs (AWS, 2018a).
The cloud system monitors the customer’s application during its execution, and when
the application reaches any predefined thresholds, it performs some actions according
to the threshold, such as inserting or removing VM instances. Some clouds provide their
customers with tools that make it easy to configure these parameters. Users can set scaling
thresholds based on computational resources such as CPU usage, memory, I/O operations,
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and more. Additionally, they can set thresholds based on the number of requests in the
system and in the queue. By controlling the number of requests in the system, the queue
size, and the VM instances for requests processing, it is possible to ensure the performance
required by adding ODIs to handle increase in demand or remove them when it decreases.
While these tools make it easy for users to define their autoscaling strategies, on the
other hand, they do not offer flexibility to define custom policies. Some providers, such as
AWS, offer APIs that allow their customers to scale their applications based on custom
rules. AWS offers the EC2 API and this API makes it easy to define customized scaling
rules. In this case, the customer’s application monitors itself and performs actions based
on predefined custom rules. The application scales itself through API calls when reaching
any predefined threshold.

5.1 Parameters Definitions
We describe below the parameters for performance and resource consumption evaluations.
We consider parameters related to the MCC application running on mobile devices and on
a public cloud. These parameters provide input values to support evaluations considering
our proposed approach.

5.1.1 Device Parameters

We describe below the parameters related to the MCC application running on mobile
devices. These parameters support performance evaluation through our approach.

• Source Code. Analysts may use the source code itself to define where the system
will process each class or method call. They may adopt another abstraction to sup-
port the decision-making process on where to process each part of their applications.
For example, they may represent their systems as functions or modules and use the
chosen abstraction to decide where to process the parts.

• Offloading Scenario. The offloading scenario defines where the mobile application
processes its workload. The application processes the workload on the user device
or can offload the workload or part of it to a remote MCC infrastructure.

• Processing Time. This parameter defines the average time to process a workload
on the user device or in the cloud. When the application offloads a workload to
the cloud, the response time of the cloud becomes the processing time during per-
formance evaluation on the mobile device. An analyst can estimate the processing
time on a mobile device, when the system transfers the workload to the cloud, with
the response time of the remote infrastructure and the time to send and receive
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data. The communication time can be estimated with the actual bandwidth for the
offloading operation and the amount of data transferred.

• Bandwidth. In this work, we consider that an MCC service provider deploys its
MCC system in a public cloud and this requires an Internet connection to transfer
data and code between the mobile application and the remote system. The band-
width allocated for offloading operations becomes a critical aspect that affects the
performance of the MCC application. The higher the actual bandwidth, the shorter
the time to transfer a volume of data.

• Data Volume. This parameter defines the amount of data the system transfers
in each offloading operation. The data volume includes data and codes that an
application sends and receives to support this operation. An analyst can estimate
the communication time having the actual bandwidth and the volume of data.

5.1.2 Cloud Parameters

We describe below the parameters related to the MCC system running in the cloud. These
parameters support the evaluation of performance and resource consumption through our
approach.

• Arrival Rate. The arrival rate is related to the offloading generated by users.
This parameter corresponds to the interarrival time between requests arrival in the
system.

• System Capacity. This parameter sets the maximum number of requests that can
be in the system at a time. If the analyst increases the system capacity and there is
no increase in the processing capacity, it means that the response time may increase.
The parameter is also related to the probability that the system will reject external
requests when there is no available buffer in the system.

• Types of Instances. The type of VM instance defines the number of concurrent
requests that an instance may process per unit of time, and this number affects
the processing time of a single request on the instance. An MCC system may use
different types of instances in its infrastructure. In this case, each instance in the
system is in its own group in relation to its types. The parameter impacts the time
required to process requests as well as to start the autoscaled instances.

• Reserved Instances (RIs). This parameter defines the types and quantities of
RIs that the MCC service provider contracts. These VM instances will always be
available regardless of whether or not there is a workload on the system. Although
reserved instance contracts are longer, they are cheaper. These instances will be
used to meet normal system demand.
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• On-demand Instances (ODIs). This parameter defines the number and types of
ODIs that the MCC system may use to meet a transient increase in demand. By
using ODIs, the MCC service provider only pays for the VM instances that it uses.

• Processing Capacity. This parameter defines the number of simultaneous requests
that one VM instance can process at a time. The higher this number, the longer it
takes to complete the processing of each request.

• Time to Process Requests. This parameter represents the time to process a
single request on an instance, considering a predefined number of concurrent requests
being processed at the same time. That is, this parameter represents the service time
related to a request.

• Autoscaling Groups. ODIs allow the MCC service provider to pay for computing
capacity during the period of use with no long-term commitments. Each instance
type has its own auto-scaling instance group. The system adds or removes ODIs for
request processing when it reaches any scaling out/in threshold.

• Step Size. The step size defines the number of ODIs to be launched in each scaling
out request. Each instance type may have its own step size.

• Scaling Thresholds. This parameter defines when the system adds or removes
ODIs for request processing. The queue size and processing capacity of the MCC
infrastructure are the key parameters that will determine when to add or remove
extra processing power to handle the increase in demand. When the number of re-
quests in the queue increases and no increase occurs in computational resources, the
response time may increase. In such a case, it is necessary to add extra computa-
tional capacity to reduce or maintain response time.

• Time to Launch On-demand Instances. This parameter represents the time
the cloud spends to start and insert an ODI into a group of service instances after
the MCC system executes a scale out request. The MCC system itself, the operating
system, the instance type, and the state of the cloud provider impacts in this time.
The cloud must load the MCC system in the operating system during the instance
launching process. This time may have a large variation in each scale-out request.

• Data Volume. This parameter defines the data volume the MCC system transfers
in each offloading operation. The data volume comprises data and codes that the
MCC system sends and receives to support this operation. The volume of data to
be transferred from the cloud to mobile devices determines the cost of data traffic
over a given period for supporting an offloading scenario.
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• Costs. The costs associated with each feature that the MCC system uses in the
cloud. In our case, we have considered the cost of using VM instances and data
traffic.

5.2 Performance Metrics in the Cloud
Some strategies proposed in this work aim to find a configuration for the remote MCC
system so that SLA performance requirements are met whereas minimizing the use of
resources in the public cloud. For that aim, this work considers the mean response time
and throughput of the remote MCC system as cloud performance metrics.

5.2.1 Mean Response Time (MRT)

The MRT determines the time a user request spends on the remote MCC system. MRT
generally increases as user requests in the system increase. Using Little law (LITTLE, 1961)
it is possible to obtain MRT. Little law is a powerful tool for showing the performance
of a queue system over time. This law relates the mean number of requests in the MCC
system with the arrival rate (AR) and the average time a request spent in it (i.e. MRT), as
demonstrated by Equation 5.1. By derivation, we have Equations 5.2 and 5.3. Equation 5.2
obtains MRT and Equation 5.3 obtains the arrival rate. Little law may be applied as long
as the number of requests arriving at the system is equal to the one completing service. In
other words, it means that the MCC system does not create new internal requests and no
user request is lost inside it. Even in MCC systems that reject some user requests because
there is no available capacity, or requests are lost due to problems in the mobile network,
the Litle law may be used because, once the request enters the system, it is processed.
In such a case, the analyst must adjust the arrival rate to remove the requests lost. The
effective arrival rate is the arrival rate that represents only the requests that enter the
system.

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 = 𝐴𝑅× 𝑀𝑅𝑇 (5.1)

𝑀𝑅𝑇 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝐴𝑅
(5.2)

𝐴𝑅 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑀𝑅𝑇
(5.3)

5.2.2 Throughput

Throughput corresponds to the rate at which the remote MCC system processes user
requests. We may say that the throughput is the number of requests processed per unit of
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time. This rate generally increases as the number of incoming requests increases initially.
However, throughput stops increasing after a certain number of arriving requests. The
nominal capacity of an MCC system represents the maximum throughput when the system
is under ideal workload (JAIN, 1990). In this work, the throughput of an MCC system in
the cloud corresponds to the number of requests processed in a given period, considering
all service instances in the system. Higher throughput is considered better, but the cost
may be high when the system is on a public cloud. Equation 5.4 demonstrates how to
obtain throughput.

𝑇𝑃 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇 𝑖𝑚𝑒
(5.4)
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Chapter

6
Modeling MCC Applications

“ Space we can recover, time never. ”
Napoleon Bonaparte, 1769-1821

In this chapter, we present an SPN-based modeling strategy that represents MCC
applications running on mobile devices. It may represent the structure of the application’s
source code. Representing the source code enables the software engineer to access a more
accurate result. In addition, this modeling strategy represents the use and sharing of
the network bandwidth (BW) available for supporting offloading operations as well as
the effect of BW variation on the metrics. In this way, making possible to represent the
communication time to transfer data and code.

Companies in some situations need to balance system performance, resource consump-
tions and financial costs to find the most appropriate strategy that meets the requirements
of their projects. As the user base of an offloadable application grows, the higher may be
the consumption of some remote resources. The amount of money that a company must
pay to an IaaS cloud provider may grow significantly. Awareness of the related cost is a
major element in the choice of appropriate strategies. Application’s performance and data
traffic are key elements in defining an offloading scenario.

Most public cloud providers (Amazon1, Google2, Microsoft3) charge their customers
for data traffic. More specifically, by the outbound data traffic to the Internet. The pro-
posed approach for estimating data traffic evaluates from mobile users’ perspective. More
precisely, this chapter seeks to answer the following questions:

1. How to calculate the MTTE, CDF and throughput of a set of method-calls — that
may represent a system functionality — using SPNs?

1 AWS: https://aws.amazon.com
2 Google Cloud Platform: https://cloud.google.com
3 Azure: https://azure.microsoft.com
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2. How to estimate the impact of the available bandwidth and its variation on the
throughput, MTTE, and CDF?

3. How to estimate the data volume that will be transferred during the offloading
process of a set of method-calls for a given period of time over a public cloud?

4. How to estimate the monetary cost of transferring a data volume over a public
cloud?

6.1 Networking Aspects
Network performance is a key factor that has a direct impact on the performance of the
MCC application. However, it is a difficult task to estimate precisely at design time the
network conditions in which applications will be used. As we have already mentioned,
our approach is not a context-aware offloading approach. It aims to support developers at
design time. Thus, aspects related to context-aware approaches as network congestion are
not addressed in our approach. Our work considers the actual TCP throughput between
the device and cloud for tasks offloading. Our approach considers the effect of network
bandwidth on the applications’ performance.

An application may have many users and the users’ network has different conditions
from each other. Therefore, developers may establish network requirements for their ap-
plications in which the expected and minimum bandwidths are defined. In addition, when
planning their MCC applications, developers should consider that the expected band-
width allocated for their applications may vary within a specified limit. For example, if
the application detects that the available bandwidth is less than the lower-limit set value,
then the processing is performed locally. Considering the actual TCP throughput and the
number of bytes to be transferred it is possible to estimate the communication time (CT)
for data transfer using Equation 6.1 (MATHIS et al., 1997; PADHYE et al., 1998). Varying the
available bandwidth within the defined limits, it is possible to take a myriad of evaluations
for supporting both the offloading decision process and MCC infrastructure planning.

𝐶𝑇 = 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒

𝐵𝑊
(6.1)

Our solution may be adapted considering strategies proposed by other authors. When
adapting our strategy to work in a real-time context, developers may implement an ap-
proach to estimate the actual bandwidth available during the application execution. For
example, based on the actual available bandwidth estimated and the performance pre-
diction performed using the strategy proposed in this work, mobile apps may decide
how the processing will be executed. In this context, there are many works with the
aim of evaluating MCC offloading traffic considering the networking aspect and resulting
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network-induced constraints (BACCARELLI et al., 2016; CORDESCHI et al., 2015; CORDE-

SCHI; AMENDOLA; BACCARELLI, 2015; CHANG et al., 2017). Cordeschi et al. (CORDESCHI

et al., 2015) (CORDESCHI; AMENDOLA; BACCARELLI, 2015) uses an optimization scheme to
solve the well-known resource management problem. Authors proposed a reliable adaptive
resource management controller for vehicular access networks in order to provide relia-
bility guarantees to traffic considering the inherent mobility and fading induced changes.
The strategy proposed by the authors scale energy and bandwidth consumptions with the
dynamic demands where performance are enhanced through data traffic offloading to the
local or remote cloud.

6.2 Execution Time (MTTE and CDF)
MTTE corresponds to the average time to finalize the processing of a set of method-
calls. Figures 30 and 31 present an example of SPNs for computing MTTE. MTTE is the
expected time to reach an absorbing state. A state of an SPN is absorbing whether it
is impossible to leave it (i.e., P(#FINISH = 1)). It means a deadlock marking has been
reached. MTTE is based on the probability that the processing of a system functionality
has been completed. MTTE is the average time for a number of tokens to reach the
place FINISH given they were in place START at time instant zero. SPN models can be
evaluated either by numerical methods or by simulation (NELSON, 2013).

Figures 30 and 31 demonstrate a simple representation using SPN of one functionality
with only one method-call. Let us first look at the SPN representation that corresponds
to the local method-call (see Figure 30). The SPN model comprises three places and two
transitions. The first transition (trigger_time) is immediate. It means that the transition
has zero as its delay value. The second transition (processing_time) is a General Time
High-level Transition. It represents the time to processing the respective method-call.

The SPN pattern that represents an offloadable method-call has two new places and
two new transitions (see Figure 31). Transition offloading_time represents the time spent
to execute offloading. Transition receiving_time represents the time spent to receive the
result sent by the cloud. These transitions are depicted by a gray rectangle, and the
model is later refined by assigning probabilistic distribution parameter values to respec-
tive transitions. If, on the one hand, such transition is refined by poly-exponential distri-
butions (DESROCHERS; AL-JAAR; SOCIETY, 1995), (SOUSA et al., 2014), (SILVA et al., 2014),
the SPN can be evaluated either by numerical analysis or by simulation. On the other
hand, simulation should be carried out.

The models evolved by transformation of high-level transitions into exponentially dis-
tributed timed transitions. It allows assigning average delays to respective timed transi-
tions. Such transformation of transitions and delays assignments allow the SPN models to
be solved. From here, for simplicity, all timed transitions will have exponential enabling
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times. However, they may adopt other probabilistic distributions as well as deterministic
values.

Moment matching (DESROCHERS; AL-JAAR; SOCIETY, 1995) could also be applied to
obtain poly-exponential distributions (ARAUJO et al., 2011), (SILVA et al., 2014), (COSTA

et al., 2015) (see Section 2.3.5). By adopting moment matching, the planner may estimate
what exponential-based probability distribution best fits the mean. Additionally, moment
matching generates more accurate models, which can still be numerically evaluated. If
none poly-exponential distributions are adopted, simulations should also be adopted.

Such SPN patterns may originate other models to evidence data dependency between
method-calls of any source code arrangement. The SPN modeling pattern evolved to
calculate MTTE of distinct scenarios. Algorithms 1, 2 and 3 demonstrate three types
of method-call combinations. Figures 33b, 33d, and 33f demonstrate how the original
SPN model evolved to calculate MTTE of the three types of method-call combinations.
The pattern embraces general features common in concurrent systems. The place SYS-
TEM_INACTIVE when having one token means that the system is idle. The timed
transition T0 receives the delay to start the processing of method-calls when there is a
token in the place SYSTEM_INACTIVE. When there is no delay, T0 becomes an imme-
diate transition. In a real-world context, multiple combinations can be derived taking into
account the application’s method-calls and the modeling patterns presented in Figures 30
and 31.

Algorithm 1 Three Sequential Method-Calls
1: function 𝑟𝑜𝑜𝑡𝑀𝑒𝑡ℎ𝑜𝑑(𝑖𝑛𝑝𝑢𝑡1)
2: 𝑟𝑒𝑠𝑢𝑙𝑡1← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑇𝑎𝑠𝑘1(𝑖𝑛𝑝𝑢𝑡1) ◁ m_call_1
3: 𝑟𝑒𝑠𝑢𝑙𝑡2← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑇𝑎𝑠𝑘2(𝑟𝑒𝑠𝑢𝑙𝑡1) ◁ m_call_2
4: 𝑟𝑒𝑠𝑢𝑙𝑡3← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑇𝑎𝑠𝑘3(𝑟𝑒𝑠𝑢𝑙𝑡2) ◁ m_call_3
5: return 𝑟𝑒𝑠𝑢𝑙𝑡3
6: end function

Algorithm 2 Two Sequential Method-Calls and One in Parallel.
1: function 𝑟𝑜𝑜𝑡𝑀𝑒𝑡ℎ𝑜𝑑(𝑖𝑛𝑝𝑢𝑡1, 𝑖𝑛𝑝𝑢𝑡2)
2: 𝑟𝑒𝑠𝑢𝑙𝑡1← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑇𝑎𝑠𝑘1(𝑖𝑛𝑝𝑢𝑡1) ◁ m_call_1
3: 𝑟𝑒𝑠𝑢𝑙𝑡2← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑇𝑎𝑠𝑘2(𝑟𝑒𝑠𝑢𝑙𝑡1) ◁ m_call_2
4: 𝑟𝑒𝑠𝑢𝑙𝑡3← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑇𝑎𝑠𝑘3(𝑖𝑛𝑝𝑢𝑡2) ◁ m_call_3
5: return 𝑟𝑒𝑠𝑢𝑙𝑡2, 𝑟𝑒𝑠𝑢𝑙𝑡3
6: end function

The mean processing time and communication time of each evaluated method are the
base for MTTE calculation. In the models presented, the processing_time_m1 and pro-
cessing_time_m2 transitions receive the mean processing times of the methods m_call_1
and m_call_2, respectively. If the application’s method under analysis is an offloadable
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Algorithm 3 Three Parallel Method-Calls
1: function 𝑟𝑜𝑜𝑡𝑀𝑒𝑡ℎ𝑜𝑑(𝑖𝑛𝑝𝑢𝑡1, 𝑖𝑛𝑝𝑢𝑡2, 𝑖𝑛𝑝𝑢𝑡3)
2: 𝑟𝑒𝑠𝑢𝑙𝑡1← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑇𝑎𝑠𝑘1(𝑖𝑛𝑝𝑢𝑡1) ◁ m_call_1
3: 𝑟𝑒𝑠𝑢𝑙𝑡2← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑇𝑎𝑠𝑘2(𝑖𝑛𝑝𝑢𝑡2) ◁ m_call_2
4: 𝑟𝑒𝑠𝑢𝑙𝑡3← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑇𝑎𝑠𝑘3(𝑖𝑛𝑝𝑢𝑡3) ◁ m_call_3
5: return 𝑟𝑒𝑠𝑢𝑙𝑡1, 𝑟𝑒𝑠𝑢𝑙𝑡2, 𝑟𝑒𝑠𝑢𝑙𝑡3
6: end function

trigger_time

EXECUTING FINISHSTART

processing_time

one local method-call

Figure 30 – Basic SPN Representation of One Application with Only One Local Method-
Call Using Absorbing State

RECEIVINGEXECUTINGOFFLOADING

trigger_time offloading_time

FINISHSTART

processing_time receiving_time

one remote method-call

Figure 31 – Basic SPN Representation of One Application with Only One Offloadable
Method-Call Using Absorbing State

method, it is necessary to obtain the number of bytes transferred to send tasks and to
receive the remote results.

In this work, we consider that there is a specific bandwidth allocated to offloading op-
erations, as well as to receive the remote results. More specifically, the developer should
consider bandwidth variation for a more accurate estimate (see Section 6.1). Equations 6.2
and 6.3 consider the probability of there being tokens in the offloading place (variable
𝑂𝑚𝑗) as well as in the receiving place (variable 𝑅𝑚𝑗) for other method-calls other than mi,
respectively. 𝐵𝑊𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 represents the actual bandwidth allocated for tasks offloading –
in bits/s. 𝐵𝑊𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 represents the actual bandwidth allocated to receive the remote re-
sults – in bits/s. Thus, if other methods are using the allocated bandwidth, the bandwidth
allocated for the operation (i.e. offloading or receiving) is divided among the methods that
are using the network for the same operation.

Equations 6.4 and 6.5 calculate the communication time to transfer an amount of
data taking into account the actual bandwidth allocated to the evaluated method 𝑚𝑖.
𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒_𝑜𝑚𝑖 represents the amount of data transferred to offload the method 𝑚𝑖 – in
bits. 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒_𝑟𝑚𝑖 represents the amount of data received as the result of the remote
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processing of the method-call 𝑚𝑖 – in bits. Equations 6.4 and 6.5 are assigned as the mean
delay value of transitions offloading_time_mi and receiving_time_mi of the method-call
mi, respectively. In the evaluation process, developers must convert Equations 6.4 and 6.5
to the syntax of the stochastic evaluation program used.

𝐵𝑊𝑂𝑚𝑖 =
(︃

1
1 +∑︀𝑛

𝑗 ̸=𝑖 𝑃 {𝑂𝑚𝑗 > 0}

)︃
×
(︂

𝐵𝑊𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔

1000

)︂
(6.2)

𝐵𝑊𝑅𝑚𝑖 =
(︃

1
1 +∑︀𝑛

𝑗 ̸=𝑖 𝑃 {𝑅𝑚𝑗 > 0}

)︃
×
(︂

𝐵𝑊𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔

1000

)︂
(6.3)

𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑚𝑖 = 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒_𝑜𝑚𝑖

𝐵𝑊𝑂𝑚𝑖

(6.4)

𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑚𝑖 = 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒_𝑟𝑚𝑖

𝐵𝑊𝑅𝑚𝑖

(6.5)

After that, a transient analysis on the model obtains the MTTE. A tool such as
Mercury, TimeNet, GreatSPN or SHARPE may execute this analysis (SILVA et al., 2015),
(GERMAN et al., 1995), (GREATSPN, 2004), (TRIVEDI; SAHNER, 2009). When MTTE is
obtained through numerical evaluation, these tools generate the state space of the SPN
model and create the corresponding CTMC. Figure 32 presents a CTMC that represents
the elapsed time to finish the processing of an offloadable method-call. The calculations
described in the Section 2.3.2 are performed to obtain this transient metric.

RECEIVINGEXECUTINGOFFLOADING FINISHSTART

1/trigger_time 1/offloading_time 1/processing_time 1/receiving_time

Figure 32 – CTMC of an Application with Only One Offloadable Method Call With Ab-
sorbing State

We have adopted SPN as modeling formalism due to its greater descriptive power
in relation to Markov chains (MARSAN et al., 1994). Using SPN it is possible to make a
high-level graphical representation of method-calls and their possible synchronizations.
However, developers may model their systems using CTMC, but this approach may lead
to a model with a large number of states. Thus, depending on the size of the system, it
may become impracticable to directly model all method-calls, their synchronizations and
transitions rates using CTMC.

6.2.1 Cumulative Distribution Functions (CDFs)

Application developers and service providers willing to plan and design an MCC envi-
ronment should be aware at when their applications are more likely to finish execution.
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(b) SPN with Absorbing State Used to Calculate
MTTE and CDF of the Application_A (Three
Sequential Method-Calls).
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(c) SPN without Absorbing State Used to Calcu-
late Throughput of the Application_B (Two
Sequential Method-Calls and One in Parallel).
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(d) SPN with Absorbing State Used to Calculate
MTTE and CDF of the Application_B (Two
Sequential Method-Calls and One in Parallel).
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(e) SPN without Absorbing State Used to Calcu-
late Throughput of the Application_C (Three
Parallel Method-Calls).
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(f) SPN with Absorbing State Used to Calculate
MTTE and CDF of the Application_C (Three
Parallel Method-Calls).

Figure 33 – SPNs Representing Offloadable Method-Calls

Cumulative Distribution Functions (CDFs) may indicate such a moment through the
maximum probability of absorption. CDFs are associated with a specific probability dis-
tribution. In this work, the probability distribution is related to the probability of fin-
ishing the application execution within a specified time. It is obtained through transient
evaluation generating probabilities with time tending to one value 𝑡. In other words, devel-
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opers compute the probability to absorption in [0, 𝑡), through transient evaluation, where
𝐹 (𝑡) approaches 1. CDFs may also indicate the maximum probability of an application’s
processing to be completed within a given time interval. Regarding CDFs, non-negative
random variables may have the probability distributions defined in terms of its probability
density function (see Equation 6.6).

𝐹 (𝑡) =
∫︁ 𝑡

0
𝑓(𝑥)𝑑𝑥 (6.6)

CDFs allows a broader cost-effective architectural simulation of mobile cloud systems.
Analyzing the hypothetical example of CDF line plot in Figure 34, two types of interpre-
tation may be traced:

• Probability of Finishing Execution Before Time t: Considering one specific execution
time point 𝑡, the graph returns the probability 𝑃 (𝑇 < 𝑡) of finishing the execution
before such time for each application. The probability of finishing the execution
before 150 ms is equal to 66 % for Application A, 95 % for Application B, and 98 %
for Application C.

• Probability Interval: The developer may obtain the probability of finishing the ex-
ecution between a time interval (𝑡1, 𝑡2), which is calculated as 𝑃 (𝑡1 < 𝑇 < 𝑡2) =
𝑃 (𝑇 < 𝑡2) − 𝑃 (𝑇 ≤ 𝑡1). Thus, we can calculate the probability of finishing the
execution between 20 ms and 80 ms resulting in 9.2 % for Application A, 47 % for
Application B, and 65 % for Application C. As expected, Application C has higher
probability of satisfying the constraint.

If we relax the timing constraints and increase the time interval between 100 ms
and 200 ms, the probability of finishing the execution with Application A becomes
higher. Specifically, for each application we obtain the following values: 68 % for
Application A, 29 % for Application B, and 16 % for Application C.
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Figure 34 – Example of CDF based on SPN

6.3 Throughput
The throughput (TP) represents the number of executions per unit of time of a set of
method calls. 𝑇𝑝 is obtained by computing the expected value of tokens at a place,
multiplied by the inverse of the transition delay (MACIEL et al., 2011). For that aim, the
SPN model presented in Figures 30 and 31 evolved. Now, as illustrated in Figures 35a
and 35b, the models need two transitions to allow them to return to the initial state
when workload execution is complete. Such SPN pattern may be extended to evidence
the method-calls data dependency of any application (see Figures 33a, 33c, and 33e).

The throughput may be calculated considering two possibilities: Single Server Seman-
tics (SSS) and Infinite Server Semantics (ISS). In the SSS, the flow of tokens will occur in
series, regardless of the degree of the transition activation. In the ISS, every set of tokens
of the enabled transition is processed simultaneously. Equation 6.7 calculates throughput
according to SSS, and Equation 6.8 to ISS. The variable 𝑖 represents the weight of the
arc that connects the place INACTIVE to the subsequent transition T0. The variable 𝑖

may vary until 𝑁 , where 𝑁 is the highest enabling degree of the subsequent transition at
the place marking 𝑚(𝐼𝑁𝐴𝐶𝑇𝐼𝑉 𝐸) = 𝑖.

The throughput is defined by the delay between each request (transition T0 ) as well
as the delays assigned for others transitions in the SPN model. The available bandwidth
and the number of bytes to be transferred represent the transfer time. Thus, if there is a
change in the actual bandwidth, there may be a change in the throughput. If the delay
between requests is small (T0 ), the impact on the throughput may be high. On the other
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(a) SPN without Absorbing State Used to Calculate Throughput of an Application With One Local
Method-Call.

RECEIVINGEXECUTINGOFFLOADING
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trigger_time_2T0

one remote method-call

(b) SPN without Absorbing State Used to Calculate Throughput of an Application With One Of-
floadable Method-Call.

Figure 35 – SPN Representation of an Application with Only One Method-Call without
Absorbing State.

hand, if the delay between requests is high, the impact on the throughput may be small.

𝑇𝑝 = 𝑃 (𝑚(𝐼𝑁𝐴𝐶𝑇𝐼𝑉 𝐸) >= 𝑖)× 1
𝑇𝑖𝑚𝑒

(6.7)

𝑇𝑝 =
(︃

𝑁∑︁
𝑖=1

𝑃 (𝑚(𝐼𝑁𝐴𝐶𝑇𝐼𝑉 𝐸) = 𝑖)× 𝑖

)︃
× 1

𝑇𝑖𝑚𝑒
(6.8)

6.4 Costs for Data Transfer
Public clouds charge their customers for data transfers by considering “utilization ranges"
as illustrated in Tables 8, 9 and 10 — corresponding to Amazon, Azure, and Oracle
price tables4, respectively. The price charged per gigabyte transferred decreases as the
volume increases over a period. The providers mentioned above charge their customers
for outgoing data traffic to the Internet. Therefore, developers should only consider the
bytes transferred from the remote MCC infrastructure to mobile devices.
4 The practiced values by the IaaS cloud providers may change over time.
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Table 8 – Amazon EC2 Prices per Transferred Bytes (AWS, 2017)

Data Transfer OUT To Internet Price/GB
First 10 TB / month $0.09
Next 40 TB / month $0.085
Next 100 TB / month $0.07
Next 350 TB / month $0.05

Table 9 – Oracle Cloud Prices per Transferred Bytes (ORACLE, 2017)

Data Transfer OUT To Internet Price/GB
First GB / month Free

Next 9.999 TB / month $0.12
Next 40 TB / month $0.09
Next 100 TB / month $0.07
Next 350 TB / month $0.05

Using the Equation 6.9 it is possible to obtain the total transferred bytes (TTB) for
each evaluated offloading scenario. To obtain the TTB is necessary multiplying: (i) the
throughput(Tp); (ii) the evaluation period in milliseconds (Time); (iii) the volume of
data transferred in each request (Bytes); and finally (iv) the number of users (Users).

𝑇𝑇𝐵 = 𝑇𝑝× 𝑇𝑖𝑚𝑒×𝐵𝑦𝑡𝑒𝑠× 𝑈𝑠𝑒𝑟𝑠 (6.9)

Now, using Equation 6.10 it is possible to obtain the financial cost. First, it is necessary
to split the number of total bytes according to the utilization range of the price table used.
After that, it is necessary multiplying the number of bytes consumed in each “utilization
range" by its respective price. Companies may adjust the cost calculation according to
the data traffic charges policy of their IaaS cloud provider.

𝐶𝑜𝑠𝑡 =
𝑛∑︁

𝑢𝑟=1
𝑇𝑇𝐵𝑢𝑟 × 𝑃𝑟𝑖𝑐𝑒𝑃𝑒𝑟𝐺𝐵𝑢𝑟 (6.10)
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Table 10 – Microsoft Azure Prices per Transferred Bytes (AZURE, 2017)

Zone 1 Zone 2 Zone 3 DE
(trustee)

Data Transfer
OUT To
Internet

Price/GBPrice/GBPrice/GBPrice/GB

First 5 GB /
month Free Free Free Free

5 GB - 10 TB /
month $0.087 $0.138 $0.181 $0.100

Next 40 TB /
month $0.083 $0.135 $0.175 $0.095

Next 100 TB /
month $0.070 $0.130 $0.170 $0.080

Next 350 TB /
month $0.050 $0.120 $0.160 $0.057

6.5 Model Validation
Many aspects may interfere in the similarity between the model results and the reality,
such as connection with bad quality. To reduce the influence of errors (e.g., noise) in the
measuring process, a statistical technique called Bootstrap was utilized to validate the
models (EFRON; TIBSHIRANI, 1993; SILVA et al., 2014).

We implement and analyze an image processing mobile application following the prin-
ciples of method-call computation offloading (KOSTA et al., 2012). The implementation
uses a simple client-server architecture with remote method invocation (RMI).

Application A resides on the mobile device (see Algorithms 4, 5, and 6). If the method-
call is offloaded to a remote server (lines 2 to 4), it means that the mobile application
makes image processing calls to the server by passing one input (original images). In this
case, the app connects to one virtual machine and then calls the method reduceColor in
the server side. Thereafter, the processed image returns to the user device.

Both client and server side adopt the Open Source Computer Vision Library (OpenCV)
(OPENCV, 2018) and JavaCV (JAVACV, 2018b). We have implemented the computing
vision example of Picture’s Colour Reduction (JAVACV, 2018a). This example transforms
images by decreasing the number of colors depending on the picture’s size.

As infrastructure, the private cloud Eucalyptus 3.4.0.1 (NURMI et al., 2009) was used
with two physical machines (one node and one controller). The physical machines have the
following configuration: Intel Core i7-3770 3.4 GHz CPU, 4 GB of RAM DDR3, and 500
GB SATA HD. An Ethernet network is adopted to connect the physical servers through a
single switch and one VM of type m1.medium (1 CPU, 512MB of RAM, and 10GB Disk).
At the mobile device side, a Samsung Galaxy Note 4 was used running Android 5.1.1
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Algorithm 4 Application A - Three Sequential Method-Calls
1: function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝑚𝑎𝑔𝑒𝑠(𝑖𝑚𝑔1)
2: 𝑟𝑒𝑠𝑢𝑙𝑡1← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑖𝑚𝑔1) ◁ m_call_1
3: 𝑟𝑒𝑠𝑢𝑙𝑡2← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑟𝑒𝑠𝑢𝑙𝑡1) ◁ m_call_2
4: 𝑟𝑒𝑠𝑢𝑙𝑡3← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑟𝑒𝑠𝑢𝑙𝑡2) ◁ m_call_3
5: return 𝑟𝑒𝑠𝑢𝑙𝑡3
6: end function

Algorithm 5 Application A - Two Sequential Method-Calls and One in Parallel.
1: function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝑚𝑎𝑔𝑒𝑠(𝑖𝑚𝑔1, 𝑖𝑚𝑔2)
2: 𝑟𝑒𝑠𝑢𝑙𝑡1← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑖𝑚𝑔1) ◁ m_call_1
3: 𝑟𝑒𝑠𝑢𝑙𝑡2← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑟𝑒𝑠𝑢𝑙𝑡1) ◁ m_call_2
4: 𝑟𝑒𝑠𝑢𝑙𝑡3← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑖𝑚𝑔2) ◁ m_call_3
5: return 𝑟𝑒𝑠𝑢𝑙𝑡2, 𝑟𝑒𝑠𝑢𝑙𝑡3
6: end function

Algorithm 6 Application A - Three Parallel Method-Calls
1: function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝑚𝑎𝑔𝑒𝑠(𝑖𝑚𝑔1, 𝑖𝑚𝑔2, 𝑖𝑚𝑔3)
2: 𝑟𝑒𝑠𝑢𝑙𝑡1← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑖𝑚𝑔1) ◁ m_call_1
3: 𝑟𝑒𝑠𝑢𝑙𝑡2← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑖𝑚𝑔2) ◁ m_call_2
4: 𝑟𝑒𝑠𝑢𝑙𝑡3← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑖𝑚𝑔3) ◁ m_call_3
5: return 𝑟𝑒𝑠𝑢𝑙𝑡1, 𝑟𝑒𝑠𝑢𝑙𝑡2, 𝑟𝑒𝑠𝑢𝑙𝑡3
6: end function

Lollipop. Only the essential system processes were running on it during the experiments.
First, through controlled experiments, we have monitored the actual bandwidth for

downloading and uploading data. More specifically, we send and receive data to a remote
server on a local network in order to obtain the average actual bandwidth. We performed
a set of 100 data transfer operations, 50 for data download and 50 for data upload. For
each operation we have considered Equation 6.11 to obtain the TCP throughput. At the
end of the process, the testbed collected the mean values of them.

𝐵𝑊 = 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒

𝐶𝑇
(6.11)

After, the testbed executed all method-calls local and remotely (using one VM as
offloading target). Through a controlled experiment, the processing time for each method-
call were collected (m_call_1, m_call_2 and m_call_3 ). The experiment executed and
monitored 50 times each scenario. At the end of the process, the testbed collected the
mean values of them.

Now, 50 executions have been performed, capturing the total execution time for each
execution considering each evaluated scenario (see Figures 33b, 33d and 33f). In order to
validate an SPN model, the metric extracted from it should be inside the bootstrapped
confidence interval. Table 11 presents the results comparison. The results show that the
MTTE extracted from the models (Model column) remains inside the respective con-
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fidence interval. Therefore, the experiments provided evidence that our SPN modeling
strategy is reliable.

Table 11 – SPN Model Validation Using Bootstrap Technique

Model MTTE - Model MTTE - Experiment CI (𝐵𝛼/2) CI (𝐵[1− 𝛼/2])

A1 22,731 22,947 22,680 23,208

B2 287,914 287,055 281,803 291,352

C3 26,147 25,761 25,223 26,300

D4 26,999 27,003 26,932 27,085

E5 110,853 111,021 110,275 111,424

F6 59,856 59,711 55,696 63,634
1 Model with Three Sequential Method-Calls with Remote Processing (see Algorithm 4 / Figure 33b).
2 Model with Three Sequential Method-Calls with Local Processing (see Algorithm 4).
3 Model with Three Parallel Method-Calls with Remote Processing (see Algorithm 6 / Figure 33f).
4 Model with Three Parallel Method-Calls with Local Processing (see Algorithm 6).
5 Model with Two Sequential Method-Calls and One in Parallel with Remote Processing (see

Algorithm 5 / Figure 33d).
6 Model with Two Sequential Method-Calls and One in Parallel with Local Processing (see Algorithm 5).
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Chapter

7
Modeling MCC Systems in the Public
Cloud

“ It must be considered that there is nothing more difficult to carry out,
nor more doubtful of success, nor more dangerous to handle, than to
initiate a new order of things. ”

Niccolò Machiavelli, 1469-1527

In this chapter, we present an SPN-based modeling strategy that makes it possible
to represent remote MCC systems deployed in a heterogeneous infrastructure in a public
cloud with variable processing and buffers capacities, variable demands, scaling policies,
and a large number of VM instances running in the same infrastructure.

Public cloud providers charge their customers for resources consumed during a period.
The amount of money that a company must pay to an IaaS cloud provider may grow
significantly. Awareness of the related cost is a major element in the choice of appropriate
strategies for deploying the system. This work considers as remote resources the use
of VM instances and data traffic for supporting an MCC system deployed on a public
cloud. These are the two basic resources for supporting a remote MCC system. As the
number of users of an MCC system grows, the greater may be the consumption of VM
instances and data traffic generated for supporting the increase in demand. Chapter 6
considered the data traffic generated by offloading operations from the perspective of
the mobile app running on users devices. In this chapter, unlike that, we consider the
data traffic generated by the remote MCC infrastructure to mobile devices. Companies
in some situations need to evaluate the trade-off between some factors in order to find
the most appropriate configuration that meets the requirements of their projects. The
strategies proposed here support MCC service providers in the process of finding the most
appropriate configuration for deploying their system in the cloud considering the possible
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offloading scenarios. Thus, making possible to comply with the performance requirement
of SLAs within an acceptable cost.

More precisely, this chapter seeks to answer the following questions:

1. How to represent an elastic MCC infrastructure deployed on a public cloud using
SPNs in order to support performance, data traffic, and cost evaluations?

2. How to calculate MRT, CDF, and throughput of a remote configuration for deploy-
ing an MCC system — that represent a set of RIs, ODIs, and scaling thresholds —
using SPNs?

3. How to estimate the impact of the system parameters and their variations on the
evaluated metrics?

4. How to estimate the data volume that will be transferred from the MCC infrastruc-
ture to mobile devices for a given period of time?

5. How to estimate the monetary cost of using a set of VM instances and transferring
a data volume for supporting an offloading scenario during a given period?

7.1 Modeling Elastic MCC Systems
Analysts may adopt stochastic modeling to verify the impact of a set of settings on the
metrics of their systems. By adopting modeling, developers may perform performance
evaluation by considering a set of configurations in a model that represents the actual
system. After, the actual system receives the most appropriate configuration. It saves time
and money in some situations. A specific configuration for an application running on a
public cloud is a variable that affects the cost of maintaining the underlying infrastructure
over a period of time. It also impacts the overall system performance. This work considers
a set of parameters and values for each of them in which each possible combination of them
defines an application configuration in the cloud. We consider as parameters the types
and number of RIs and ODIs to be used, scaling thresholds, stepsizes, system capacity,
arrival rate, maximum number of jobs per VM instance (𝛾𝑛), maximum number of n-type
ODIs (MNODI𝑛) for provisioning and costs. Although costs are not system parameters,
they are parameters evaluated in the decision-making process. The costs considered are
related to the cost of data traffic and use of instances. The time and the effort required to
evaluate some metrics using modeling is smaller than evaluating each possible parameter
setting in an actual system.

Let us describe some parameters in more detail. The instance type and the maximum
number of concurrent jobs per VM instance (𝛾𝑛) affect the service time and response time.
Autoscaling service can insert ODIs in the system when the system reaches any configured
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thresholds. Thus, the system can handle an increase in user requests without degrading
performance. In this work, thresholds for scaling operations evaluates the number of re-
quests in the system. The parameter "scaling out threshold" (SOT) sets the threshold for
scaling out. The parameter "scaling in threshold" (SIT) sets the threshold for scaling in.
Here, scaling out and scaling in are conditions that determine whether the system may
insert or remove ODIs, respectively. SOT is a condition that evaluates whether there are
conditions to insert ODIs. On the other hand, SIT is a condition that evaluates whether
the system may remove ODIs. There may be a limit on the number of ODIs that the
system may insert in order to ensure that a financial cost is not exceeded. Therefore,
there exists a parameter (MNODI𝑛) that sets the maximum number of n-type ODIs the
system may use at a time. On the other hand, the NRI𝑛 parameter defines the number of
n-type RIs in use. The type of VM instance, the operating system and the MCC system
itself impact the time it takes for an ODI to become available and ready to process new
requests. The time necessary to start on-demand resources may be long in some situa-
tions (MAO; HUMPHREY, 2012). The service instances (SI) are another parameter of our
modeling strategy. SIs represents the set of n-type ODIs and RIs that are running on
the system to process external requests. The stepsize parameter (𝜔𝑛) defines the number
of ODIs the cloud starts when the system reaches a scaling out threshold. Each type of
ODIs may have its own stepsize assigned to it. As we will see, each parameter takes an
important role in the performance evaluation of the MCC system.

There are so many parameters and there may be a large set of possible values for each
parameter. Analysts need to adjust their system and verifying the effect of each change
on the performance when evaluating a set of configurations in an actual system. It is a
difficult task to evaluate and find out the most appropriate configuration for a system by
evaluating a large set of possible configurations in the actual system. By using our model,
an analyst can evaluate the performance of his system with less effort in order to choose
the most appropriate setting for the actual system running in the cloud.

Our cloud model represents the architecture presented in Chapter 5. Figure 36 demon-
strates a cloud model for supporting two types of VM instances running in the same
MCC infrastructure. However, by using our modeling strategy it is possible to represent
an unlimited number of VM instances of different types through a refinement process.
In addition, the model may represent the autoscaling mechanism for different types of
instances. Our model makes it possible to obtain performance metrics, such as waiting
time, service time, response time, throughput. An MCC service provider may evaluate
other metrics such as the mean number of tasks in the system, data traffic, ODIs con-
sumption estimation, and monetary costs related to resource consumption to maintain a
system configuration in the cloud. Using a large number of instance types in the same
model influences the time it takes to calculate the metrics. The higher the number of VM
instances, the longer it takes to calculate the metrics. In this work, from here down, we
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use the terms requisitions, requests and jobs interchangeably.
Two SPN-based subnet composes the model (see Figure 36). The Processing Subnet

represents the arrival and processing of outer requests. On the other hand, the Autoscal-
ing Subnet represents the autoscaling mechanism. Our model has three type of timed
parameters that are the arrival rate, the processing time for each instance type (i.e ser-
vice time), and the time for an n-type ODI becomes available on the system for requests
processing. Table 12 demonstrates the description of the model variables and components
and Table 13 shows the attributes of the transitions. Hereafter we describe in detail the
structure of the model and how it may be refined for supporting various instance types
and represents more accurately other characteristics of the system.

Autoscaling Subnet

SIR1

LODI1

ODIAL1

RODI1

ACPR1

RRS1 PT1
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Arrival

ODIBL1

Capacity
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Figure 36 – Public Cloud MCC Infrastructure Model

The most common arrival process is the so-called Poisson arrivals, which simply means
that the interarrival times are independently and identically distributed (IID) (JAIN,
1990). The transition Arrival is an exponential timed transition and it receives the mean
delay related to the interarrival time of the evaluated system. This work considers only
independent arrival times which are exponentially distributed. However, analysts may use
other probability distribution related to the interarrival time other than exponential. For
that aim, analysts need to refine the model when metrics need to be numerically evaluated
and an expolynomial-phase-type-distribution must represent an interarrival time distri-
bution (see Section 2.3.5). The model receives a set of new places and transitions related
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Table 12 – Components of the SPN-based Modeling Strategy

Component Description

𝛾𝑛 Maximum number of simultaneous jobs for each n-type VM instance
𝜔𝑛 Stepsize for launching n-type on-demand instances in each scale out request
ACPR𝑛 Available capacity to process requests in all n-type VM instances
Arrival Interarrival time
Capacity Capacity of the system
LODI𝑛 Launch n-type on-demand instances
MNODI𝑛 Maximum number of n-type on-demand instances that the system may use
NRI𝑛 Number of n-type reserved instances running on the system
ODIAL𝑛 N-type on-demand instances available to be launched
ODIBL𝑛 N-type on-demand instances being launched to be inserted in the system
ODIBR𝑛 N-type on-demand instances being removed from the system
PR𝑛 Process a request waiting in the queue in an n-type VM instance
PT𝑛 Processing time on an n-type VM instance
Queue Requests waiting for service
RODI𝑛 Remove a n-type on-demand instance running on the system
RRS𝑛 Requests that receive service in any n-type VM instance
SIR𝑛 Scaling in request
SIT𝑛 Scaling in threshold associated with a n-type instance group
SOR𝑛 Scaling out request
SOT𝑛 Scaling out threshold associated with a n-type instance group

Table 13 – Transitions Attributes

Transition Type Server Semantic Weight Priority Enabling Function

𝐴𝑟𝑟𝑖𝑣𝑎𝑙 Timed Single Server - - -
𝐿𝑂𝐷𝐼𝑛 Timed Infinite Server - - -
𝑃𝑅𝑛 Immediate - 1 1 -
𝑃𝑇𝑛 Timed Infinite Server - - -
𝑅𝑂𝐷𝐼𝑛 Immediate - 1 1 -
𝑆𝐼𝑅𝑛 Immediate - 1 1 Yes
𝑆𝑂𝑅𝑛 Immediate - 1 1 Yes

to a specific poly-distribution, replacing the transition Arrival. This refinement process
may be applied to any timed transition in which the moment-matching technique may be
applied 2.3.5. When, however, moment matching cannot be used, the related exponential
transition becomes a general high-time transition (represented by a gray rectangle) and it
receives a non-exponential probability distribution. Considering this, only by using simu-
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lation technique it is possible obtain the desired metrics. Transition Arrival firing creates
a token in the place Queue. It means that a request has just entered the system and is
waiting in the queue for receiving service. It is important to emphasize that our cloud
model does not consider the inherent delay related to data transfer activities as well as
packet loss regarding the use of mobile networks. The model considers the effective arrival
rate; that is, it considers only the requests that are actually entering the system and will
receive service.

The tokens in the place Queue represent requests waiting to receive service at a given
time. The waiting time corresponds to the time interval between the time a request
arrives and the time it begins to receive service. The service discipline is the order in which
requests waiting in the queue receive service. Our model adopts a service discipline known
as FCFS policy (JAIN, 1990). That is, the system processes requests taking into account
the order in which they arrive. The system forwards external requests to the queue in the
case where there is no computational capacity available to process them at the moment
one of them arrives. Figure 37 describes the sequence diagram related to the method-
calls executed by the system running in the front-end machine when an external request
arrives at it. Obviously, we describe our system here to offer more insight to analysts.
However, analysts need to adapt the strategies presented here by taking their systems
into account. As we can see in Figure 37, immediately after the arrival of a request, the
front-end verifies through the method-call system.hasAvailableCapacity() whether there
is any buffer available to it accept the incoming request. If there is capacity to accept the
request then the front-end verifies through the method-call hasFreeServiceInstance() if
there is computational capacity available in any SIs to process the request. If the answer
is positive, the system forwards the request to the SI that have available capacity to
process it through the processRequest() method-call. Otherwise, the system forwards it to
the queue through the addToQueue() method.

Our model can represent in the same MCC infrastructure for a specific workload
more than one instance type for request processing. From a financial point of view, the
use of two or more instance types may offer a reduction in costs. Each instance type
defines an instance group and it comprises its own set of places, transitions, and arcs. We
consider that each instance group comprises instances of the same type, with the same
system configuration and running the same number of concurrent processing at a time.
Figure 38 demonstrates the subnet of our model representing an instance type for request
processing. Two transitions, two places, and arcs connecting them compose the subnet.
It is important to highlight that each set of VM instances is composed of instances of
the same type. The n-index in all component names of our model represents the index
associated with a specific set of instances composed of instances of type n. As we can
see in Figure 36, the model represents a system with two types of SIs. Our cloud model
receives the set of components of the subnet presented in Figure 38 for each instance type
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Figure 37 – Sequence Diagram of the Front-End System Depicting Some Activities

in the MCC infrastructure. In addition, one output arc connects the Queue place to each
new transition PR𝑛, as well as the transition PT𝑛 to the place Capacity. We can see that
whenever the system completes a job processing it restores its capacity. Analysts need to
refine our cloud model by adding components to each instance type used in their MCC
infrastructure.

ACPRn

RRSn PTnPRn

Figure 38 – SPN Subnet Representing a Type of Service Instances

The firing of transition 𝑃𝑅𝑛 represents the admission of a request that is waiting in
the queue to be processed in an n-type VM instance. This transition has no delay as-
signed to itself. 𝑃𝑅𝑛 on firing represents the forwarding of the oldest queued request to
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any n-type instance when capacity becomes available for processing. Transition 𝑃𝑅𝑛 has
two input places. Therefore, for 𝑃𝑅𝑛 to be fired, at least one token in the queue and
one token in 𝐴𝐶𝑃𝑅𝑛 is required. Tokens in 𝐴𝐶𝑃𝑅𝑛 represent the processing capacity
currently available to process new requests. In this work, the processing capacity repre-
sents the number of jobs that can be processed in the system simultaneously at a given
moment. It is important to realize that there is no waiting time if, at the moment a re-
quest arrives, there are no queued requests and there is available processing capacity in
any SI to process it. We consider that 𝑃𝑅𝑛 transitions have the same priority and weight
between them. In spite of this, modelers may assign other weights and priorities for each
of them in order to more accurately represent their systems. For example, an analyst may
want to give preference to the requests to be processed in a given instance type when
two or more instance types are available to process them. Let us consider the standard
scenario in which 𝑃𝑅𝑛 transitions have the same weight and priority between them. It
means that when two or more transitions 𝑃𝑅𝑛 are enabled at any given time, the type
of n-type instance responsible for processing the request are randomly chosen with equal
probabilities between them. When 𝑃𝑅𝑛 transition fires a token is consumed from each
input place 𝑄𝑢𝑒𝑢𝑒 and 𝐴𝐶𝑃𝑅𝑛, and another one is created in its unique 𝑅𝑅𝑆𝑛 output
place. The system starts processing the request immediately after the token is created in
𝑅𝑅𝑆𝑛 place.

Now let us describe how the model represents the processing resources in the system.
The relation simultaneous jobs per VM instance define the processing capacity of an
instance. Thus, the maximum number of concurrent jobs that the system is able to handle
at any time represents the total processing capacity. The presence of tokens in 𝑅𝑅𝑆𝑛 place
represents external requests being processed (i.e, receiving service). The number of VM
instances of type 𝑛 in use multiplied by the maximum number of jobs (𝛾𝑛) that each
of them may process simultaneously determines the processing capacity for each set of
n-type instances. In its initial state, the model receives the total processing capacity in
each place 𝐴𝐶𝑃𝑅𝑛 in relation to the total capacity for each type 𝑛. In other words, each
token in all 𝐴𝐶𝑃𝑅𝑛 places represents each job that the system can handle. That is, in the
initial state, the sum of the number of tokens in each 𝐴𝐶𝑃𝑅𝑛 place (∑︀𝑛

𝑡𝑦𝑝𝑒=1 𝐴𝐶𝑃𝑅𝑡𝑦𝑝𝑒)
represents the processing capacity of the system. The 𝛾𝑛 variable stores the maximum
number of concurrent jobs that a n-type VM instance can execute. Analysts must perform
experiments to find out the most appropriate value for 𝛾𝑛 variable, as we have already
shown in Section 4.2.1. Later we will see that two arcs of the model receive the value of
𝛾𝑛 as its multiplicity. The number of tokens in all places 𝐴𝐶𝑃𝑅𝑛 and 𝑅𝑅𝑆𝑛 defines the
processing capacity of the whole system at any time for stationary or transient analysis
purposes. Equation 7.1 obtains the processing capacity (PC) of the MCC system at any
time. In the same way, we may obtain the total number of service instances (TNSI)
in the system using Equation 7.2. Developers need to pay attention to evaluating their
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application to set the processing limit for each VM instance.

𝑃𝐶 =
𝑛∑︁

𝑡𝑦𝑝𝑒=1
#𝐴𝐶𝑃𝑅𝑡𝑦𝑝𝑒 + #𝑅𝑅𝑆𝑡𝑦𝑝𝑒 (7.1)

𝑇𝑁𝑆𝐼 =
𝑛∑︁

𝑡𝑦𝑝𝑒=1

#𝐴𝐶𝑃𝑅𝑡𝑦𝑝𝑒 + #𝑅𝑅𝑆𝑡𝑦𝑝𝑒

𝛾𝑡𝑦𝑝𝑒

(7.2)

This work adopts the number of concurrent jobs as the abstraction related to the
consumption of computational resources in the VM instances. Each type of application
has its own pattern of computational resources consumption. Here, the computational
resources are those that define the configuration of an instance such as vCPU, memory,
storage, networking. There are types of applications that need more memory to satisfy
their running requirements. For these applications, the greater the number of parallel
executions, the higher the memory consumption. Similarly, other applications may only
consume more CPU time for code processing. As an example we can cite image processing
applications (SILVA et al., 2015). Obviously, there may be a limit related to the parallel code
execution for a system. A system may fail after a specific limit has been exceeded. The
performance of the system may degrade as the number of parallel executions increases.
Computer system CPUs use Round-Robin algorithm with a fixed quantum (JAIN, 1990).
It means that every process running on a computer system has a fixed fraction of time that
is divided between them. The time window for workload processing is assigned to each
process in a circular way, one process at a time. For a high-level system representation
as well as high-level metrics computation, as is the purpose of our work, it is impracti-
cable to represent the computer system at a low level. More specifically, it is a difficult
task to represent the behavior of low-level computational resources to evaluate high-level
application metrics. In addition to the fact that operating system processes are running
in the background in the computer system, which makes this task more complex. Thus,
this work abstracts the computational resources consumption in terms of the number of
threads of an MCC system that are being executed in the VM instance at a given mo-
ment. As each request processing runs in its own threads, the term threads and jobs are
interchangeable in this work.

The number of code that is running in parallel can affect the performance of an ap-
plication to process a particular job. The task of the analysts is to find out the most
appropriate number of parallel execution for their applications so that the desired perfor-
mance is satisfied and at the same time there is an appropriate use of the computational
resources. Using powerful instances to process only one job at a time can be a waste of
money. Developers may need to allocate the maximum number of parallel jobs running
on an instance when using a public cloud to achieve the desired performance within the
defined financial cost.
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Transition 𝑃𝑇𝑛 receives the mean processing time to process a job in an n-type VM
instance. Transition 𝑃𝑇𝑛 represents the service time and the service time depends on the
number of requests that each service instance is able to process concurrently. As already
mentioned, each VM instance can process a fixed number of parallel requests determined
by the 𝛾𝑛 parameter. The parameter 𝛾𝑛 remains constant while the system is up and
running. We consider that, as the system process a request, it leaves the system and a
new one in the queue receives the service right away. It is important to highlight that
the processing time assigned to 𝑃𝑇𝑛 take in account the average time for processing
one job when there are 𝛾𝑛 jobs executing in the VM instance at the same time. Each
𝑃𝑇𝑛 transition has infinite server semantics (ISS) associated with it as SIs may process
requests concurrently. ISS enables the concurrent processing of an entire set of tokens that
is enabling a timed transition (TRIVEDI, 2001; GERMAN, 2000). However, in our model,
there are limits regarding the number of tokens that may be enabling a 𝑃𝑇𝑛 transition.
The number of n-type SIs in the system multiplied by the 𝛾𝑛 parameter determines the
maximum enabling degree of a 𝑃𝑇𝑛 transition at a moment. Thus, the initial number
of tokens in each 𝐴𝐶𝑃𝑅𝑛 place defines the initial enabling degree of the related 𝑃𝑇𝑛

transition. As we will see later, the maximum enabling degree of each 𝑃𝑇𝑛 may changes
when ODIs are inserted or removed from the system.

The Capacity place represents the capacity of the MCC system in the cloud. This
place represents the maximum number of requests that may be in the system at a time. It
is important to highlight that there is a subtle difference between processing capacity and
system capacity in this work. Processing capacity defines the maximum number of requests
that may receive service at a given time. On the other hand, the system capacity includes
requests waiting in the queue for service, as well as the ones that are receiving service. In
other words, the system capacity defines the number of jobs that can be in the system
at a time. An analyst may increase the capacity of the system to handle an increase
in request rate without having to contract new VM instances for supporting the new
demand. However, in this case, the waiting time tends to increase and, as a consequence,
there will be both an increase in response time and a decrease in throughput. As we can
see, system capacity is a key variable that affects all system performance and the cost of
maintaining the infrastructure in a public cloud. Developers may change the capacity of
their systems to verify the impact of each change on the metrics evaluated. Place Capacity
is the unique input place of the Arrival transition and the unique output place of 𝑃𝑇𝑛

transitions. The firing of the Arrival transition depends on the existence of tokens in
the place Capacity. It means that user requests are lost when the number of jobs in the
system is equal to the initial number of buffers in Capacity (i.e. there are no tokens in
Capacity place). Each 𝑃𝑇𝑛 transition when firing creates one token in the place Capacity.
Thus, the system restores its capacity to handle new external requests when it finishes
the processing of jobs. Our model represents finite buffer systems that are always stable
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since requests in the system never exceed the number of buffers.
Heretodown we do not have depicted the representation of the scaling mechanism by

our model. We describe in the next paragraphs the scaling mechanism and how the system
inserts and removes resources for request processing. This work adopts a reactive approach
to activate the scaling mechanism (GALANTE; BONA, 2012; BISWAS et al., 2015; ASSUNCAO

et al., 2016). There exists some strategies that an analyst can adopt to define when the
system adds or removes resources. Most cloud providers monitor some metrics such as
CPU, memory usage, response time, queue size to define when applications should be
scaled. For example, AWS and Microsoft Azure provide tools to enable their customers to
set up scaling policies based on the parameters mentioned above. In addition, developers
also have the option of implementing a custom scaling policy. A custom implementation
would scale resources through calls to API provided by the cloud provider. For that
aim, taking into account some custom rules defined by the developer. CPU and memory
usage and any other computational resource can be controlled by limiting the number of
concurrent processes running in the VM instance. As we pointed out in Chapter 5, the
front-end machine is also responsible for monitoring the state of the system and scaling the
system accordingly. In this work, the size of the queue is the factor that defines whether
and when to scale the system. We adopted a reactive approach that monitors the number
of jobs in the system queue and the processing capacity available in the system at a given
moment.

Let us see how the model represents the process for adding ODIs to the system. When
the system reaches a SOT, it scales. More specifically, the system adds ODIs for service
processing when it reaches a predefined condition for this action. The system adds ODIs
to handle an increase in the number of requests in the queue in order to maintain the
expected performance defined in SLAs. In our architecture, the front-end controls the
scaling process. The front-end sends a command to the cloud manager by using the API
for the addition of ODIs when the system reaches any SOT and there is at least one ODI
available for insertion.

Place 𝑂𝐷𝐼𝐴𝐿𝑛 represents the number of n-type ODIs available for scaling out the
system and each token in it represents one non-used ODI. Variable 𝑀𝑁𝑂𝐷𝐼𝑛 defines the
maximum number of ODIs for an n-type service instance group that the system may use.
Place 𝑂𝐷𝐼𝐴𝐿𝑛 receives the value of this variable as its initial value. Public clouds allow
customers to provisioning resources without limits. However, the higher the resources
usages, the higher the monetary value that the service provider pays. In this way, this
variable prevents a predefined financial cost from being exceeded. It means that if the
system reaches a SOT but there are no tokens in 𝑂𝐷𝐼𝐴𝐿𝑛, it will not be able to add
ODIs in a service group.

Transition 𝑆𝑂𝑅𝑛 represents the process for inserting ODIs in the system. The firing
of this transition corresponds to an asynchronous call to the cloud manager in order to
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insert one or more ODIs in the system. No input places exist for transition 𝑆𝑂𝑅𝑛 and
it only fires when the system reaches any predefined condition. This transition has an
enabling function associated with it to represent the request for addition of n-type ODIs.
As we have pointed out, an enabling function is a boolean expression associated with an
immediate transition (see Section 2.3.4). In our work, enabling functions define conditions
to scale in/out the system. Equation 7.3 demonstrates an example of enabling function
associated with an 𝑆𝑂𝑅𝑛 transition. As we can see, this condition verifies whether the
system has reached a defined SOT, as well as whether there is at least one ODI available
for addition in the n-type service instance group. Following this example, if the number
of tokens in place Queue is greater than or equal to a specific SOT and there is at least
one n-type ODI available, the transition can fires. Equation 7.4 sets the threshold to scale
the system out. As we can see, it considers the processing capacity available in the system
at a given time and multiplies it by a predefined threshold. The Threshold parameter in
Equation 7.4 is an integer that represents a multiplicative factor. The stepsize associated
with the output arc of the transition 𝑆𝑂𝑅𝑛 defines the multiplicity of this arc. The 𝜔𝑛

parameter in the model represents the stepsize for an n-type ODIs group. It means that
the cloud starts the number of n-type ODIs associated with the stepsize for each scale out
request. Transition 𝑆𝑂𝑅𝑛 firing creates the number of tokens defined by 𝜔𝑛 in the place
𝑂𝐷𝐼𝐵𝐿𝑛.

(#𝑄𝑢𝑒𝑢𝑒 >= 𝑆𝑂𝑇 )
⋀︁

(#𝑂𝐷𝐼𝐴𝐿𝑛 > 0) (7.3)

𝑆𝑂𝑇 =
⎛⎝ 𝑛∑︁

𝑡𝑦𝑝𝑒=1
#𝐴𝐶𝑃𝑅𝑡𝑦𝑝𝑒 + #𝑅𝑅𝑆𝑡𝑦𝑝𝑒

⎞⎠× 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (7.4)

There may be situations where the stepsize is greater than the number of ODIs avail-
able for insertion. Thus, when the 𝑆𝑂𝑅𝑛 transition fires, the multiplicity of its output arc
performs a check to verify that the stepsize is less than or equal to the number of tokens
available in 𝑂𝐷𝐼𝐴𝐿𝑛 place. We have defined the verification for the multiplicity condition
of the output arc, as shown in Equation 7.5. As we can see, the condition associated with
the multiplicity of this arc determines the actual number of tokens that the transition
creates in the output place 𝑂𝐷𝐼𝐵𝐿𝑛. After that, the effective process to launch the ODIs
starts.

𝐼𝐹 (#𝑂𝐷𝐼𝐴𝐿𝑛 >= 𝑆𝑇𝐸𝑃𝑆𝐼𝑍𝐸) : (𝑆𝑇𝐸𝑃𝑆𝐼𝑍𝐸) 𝐸𝐿𝑆𝐸 (#𝑂𝐷𝐼𝐴𝐿𝑛) (7.5)

The presence of tokens in the place 𝑂𝐷𝐼𝐵𝐿𝑛 enables the 𝐿𝑂𝐷𝐼𝑛 transition and each
token represents one VM instance. This place when having tokens represents that the
system starts one or more ODIs. Transition 𝐿𝑂𝐷𝐼𝑛 has infinite server semantics assigned
to itself. It means that the instantiation process of each ODI occurs simultaneously. The
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delay assigned to an 𝐿𝑂𝐷𝐼𝑛 transition comprises the time interval between sending a
request to the cloud for scaling out and the time point at which the VM instance is
available in the system for request processing. This delay is a random variable whose
value depends on the instance type, the operating system, the MCC application itself,
and the state of the cloud provider. As we can see, this delay is inherently related to
an application. It means that two applications may have different instantiation time for
their instances, even when they use the same instance type. Each IT has a processing
limit related to the maximum number of jobs per unit of time can receive service and
the variable 𝛾𝑛 defines that limit. The 𝛾𝑛 variable defines the multiplicity of the unique
output arc of the 𝐿𝑂𝐷𝐼𝑛 transition. Transition 𝐿𝑂𝐷𝐼𝑛 when firing represents that an
ODI is available and ready for processing requests. In addition, when the transition fires,
the system’s processing capacity increases by 𝛾𝑛 requests. When the system inserts an
ODI to a service group, it means that the number of ODIs available to scale the system
out decreases. Thus, when 𝐿𝑂𝐷𝐼𝑛 fires, it consumes one token of place 𝑂𝐷𝐼𝐵𝐿𝑛 and one
token of place 𝑂𝐷𝐼𝐴𝐿𝑛 and creates the number of tokens defined by 𝛾𝑛 in place 𝐴𝐶𝑃𝑅𝑛.

Our model considers that the system only executes one scaling out request at a time to
avoid the over-provisioning of VM instances. For that aim, an inhibitor arc connects the
place 𝑂𝐷𝐼𝐵𝐿𝑛 to the transition 𝑆𝑂𝑅𝑛. It means that the system only may execute a new
scaling out request after the cloud processes a previous one. However, the MCC system
may instantiate more than one instance per request — 𝜔𝑛 parameter. After the cloud
process a scaling up request, the MCC system may execute another one, if necessary.

Let us see how our model represents the scaling in process. The first step for scaling in
is the existence of conditions for removal ODIs running in the system. The system inserts
ODIs to handle an increase in the number of requests in the queue. On the other hand,
the system needs to remove the ODIs running in it when the queue size decreases. The
objective for scaling in is to adjust the number of service instances taking into account the
number of requests and VM instances running in the system. In addition, the scaling in
process aims to avoid over-provisioning, and as a result, decreasing the amount of money
the service provider pays to an IaaS cloud provider. The system scales in when it reaches
any SIT.

The firing of the transition 𝑆𝐼𝑅𝑛 represents a request for scaling in. Transition 𝑆𝐼𝑅𝑛

only fires when there exists a condition for scaling in associated with its n-type ODIs
and the system satisfies this condition. This transition represents the front-end sending
a request to the cloud to remove one or more ODIs running in a service group. No input
places are associated with the transition 𝑆𝐼𝑅𝑛. Transition 𝑆𝐼𝑅𝑛 has an enabling function
that verifies whether the system reached a threshold to scale the system in and if there
is at least one ODI running on the system. Equation 7.6 demonstrates an example of an
enabling function associated with a 𝑆𝐼𝑅𝑛 transition. Following this example, it means
that the MCC system only executes the request for scaling in when the size of the queue
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is lower than a predefined SIT and there is at least one n-type ODI running. Equation 7.7
sets the threshold to scale the system in. As we can see, it considers the processing capacity
available in the system at a given time and multiplies it by a predefined threshold. The
Threshold parameter in Equation 7.7 is an integer that represents a multiplicative factor.
The firing of this transition creates one token in the 𝑂𝐷𝐼𝐵𝑅𝑛 place.

(#𝑄𝑢𝑒𝑢𝑒 < 𝑆𝐼𝑇 )
⋀︁

(#𝑂𝐷𝐼𝐴𝐿𝑛 < 𝑀𝑁𝑂𝐷𝐼𝑛) (7.6)

𝑆𝐼𝑇 =
⎛⎝ 𝑛∑︁

𝑡𝑦𝑝𝑒=1
#𝐴𝐶𝑃𝑅𝑡𝑦𝑝𝑒 + #𝑅𝑅𝑆𝑡𝑦𝑝𝑒

⎞⎠× 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (7.7)

It is important to note that the arc connecting the 𝑆𝐼𝑅𝑛 transition to the 𝑂𝐷𝐼𝐵𝑅𝑛

place has one as its multiplicity value. Place 𝑂𝐷𝐼𝐵𝑅𝑛 has an inhibitor arc connecting it
to the transition 𝑃𝑅𝑛. It means our model considers that the system only removes one
ODI per scaling in request. The system removes one ODI per request and, after removal, it
monitors its state. That is, after removing the VM instance, if the system needs to remove
another one, it will execute another request for scaling in. However, a refinement in our
model can change this behavior. This refinement consists in changing the multiplicity of
the output arc of 𝑆𝐼𝑅𝑛 to define the number of VM instances that the system removes
in each scaling in request. This arc receives a numeric value or a condition that defines
the number of tokens that the 𝑆𝐼𝑅𝑛 transition creates in the 𝑂𝐷𝐼𝐵𝑅𝑛 place at the time
it fires. That is, based on the state of the system, the number of ODIs that the system
removes in a single request can be changed by changing the multiplicity of the arc.

We have defined an abstraction to represent inactive service instances in the system
because GSPN does not differentiate tokens in the model as CPN does. For this purpose,
in our modeling strategy, when the number of tokens in 𝐴𝐶𝑃𝑅𝑛 is equal to or greater
than 𝛾𝑛, it represents the system has at least one non-used n-type instance. In this work,
an idle VM instance represents an instance that does not process any external requests.
Place 𝑂𝐷𝐼𝐵𝑅𝑛 has an inhibitor arc connecting it to the transition 𝑃𝑅𝑛. It means that
the system does not forward queued requests to the ODI that it must remove. Thus, the
system lets the ODI to finish the requests processing, and thereafter, the system removes
it from its instance group.

Transition 𝑅𝑂𝐷𝐼𝑛 when firing removes an ODI running on the system. This transition
has two input places that are 𝑂𝐷𝐼𝐵𝑅𝑛 and 𝐴𝐶𝑃𝑅𝑛. It needs at least one token in
𝑂𝐷𝐼𝐵𝑅𝑛 and 𝛾𝑛 tokens in 𝐴𝐶𝑃𝑅𝑛 to be able to fires. The 𝛾𝑛 parameter represents the
maximum number of concurrent jobs in a single n-type instance. That is, the processing
capacity of each n-type instance. This parameter defines the multiplicity of the output
arc of the place 𝐴𝐶𝑃𝑅𝑛 to the transition 𝑅𝑂𝐷𝐼𝑛. As mentioned above, the system can
only remove an ODI when there are no requests receiving service in the instance. That is,
the place 𝐴𝐶𝑃𝑅𝑛 must have at least the number of tokens equivalent to 𝛾𝑛. The firing
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of the transition 𝑅𝑂𝐷𝐼𝑛 creates one token in the place 𝑂𝐷𝐼𝐴𝐿𝑛 restoring the scaling
capacity and decreasing the actual processing capacity of the MCC system.

7.2 Performance Metrics on the Cloud
Performance evaluation is a critical process for determining whether the system perfor-
mance complies with the requirements defined in SLAs. Analysts can evaluate their sys-
tems by taking a long-term or short-term perspective. Short-term perspective corresponds
to the behavior of the system during a certain period of time. Long-term perspective cor-
responds to the behavior of the system over a long period of execution. The transient
analysis evaluates the time-dependent behavior of the system. On the other hand, the
stationary analysis evaluates the behavior of a system for a long period of execution. The
transient analysis is relevant if the short-term behavior is more important than the long-
term for an evaluation. Using the proposed model, it is possible to calculate a variety of
metrics taking into account a transient or stationary perspective. MRT and throughput
are the two key performance metrics when evaluating a system deployed in a cloud.

MRT corresponds to the mean time spent to process an external request, taking into
account the time it enters the system and the time it leaves. The MRT calculation con-
siders the Little’s law (LITTLE, 1961) (see Section 5.2.1). Little’s law considers three
parameters for estimating metrics, which are the average number of tasks in the system,
arrival rate, and mean response time. There are two requirements for applying Little’s
law. The first one is that the system is in a stable condition. The second one is that the
analyst knows the arrival rate and the average number of jobs in the system (JAIN, 1990).
The first requirement means that the arrival rate is less than or equal to the service rate.
In other words, the number of incoming requests is less than or equal to the number of
jobs that leave the system after they receive service, considering a period of time. Oth-
erwise, the number of requests in the system could increase indefinitely, and the time a
single request would remain in the system could be infinite. In this context, a request
enters the system and never comes back to the mobile device. Equation 7.8 obtains the
expected number of requests waiting to receive service. Equation 7.9 gets the expected
number of requests that receive service considering all service instance group in the in-
frastructure. Finally, Equation 7.10 gets the mean system size (MSS) or average number
of jobs in the system. Now we can obtain the MRT of an MCC system configuration.
Equation 7.11 computes the MRT taking into account the two requirements above. This
equation considers the probability that the system will accept new requests. The firing
rate of the transition Arrival (AR) multiplied by the probability that the system can
accept new requests represents the effective arrival rate. This effective arrival rate does
not consider discarding that may occur when there is no capacity in the system to accept
new requests. The expected number of jobs in the system divided by the effective arrival
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rate give us the MRT.

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑞𝑢𝑒𝑢𝑒 =
𝑛∑︁

𝑖=1
𝑃 (𝑚(𝑄𝑢𝑒𝑢𝑒) = 𝑖)× 𝑖 (7.8)

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑒𝑟𝑣𝑖𝑐𝑒 =
𝑛∑︁

𝑡𝑦𝑝𝑒=1

(︃
𝑛∑︁

𝑖=1
𝑃 (𝑚(𝑅𝑅𝑆𝑡𝑦𝑝𝑒) = 𝑖)× 𝑖

)︃
(7.9)

𝑀𝑆𝑆 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑞𝑢𝑒𝑢𝑒 + 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (7.10)

𝑀𝑅𝑇 = 𝑀𝑆𝑆

𝐴𝑅× (1− 𝑃 (𝑚(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) = 0)) (7.11)

The throughput represents the rate of processed jobs per unit time. In an SPN model,
the throughput evaluation considers the firing rate of a timed transition and the number
of tokens in its input places. This transition represents the activity whose rate we need
to evaluate. For example, the 𝑃𝑇𝑛 transition represents the processing of an external
request. Thus, the firing rate of the transition 𝑃𝑇𝑛 impacts the throughput of this activity.
The throughput for an n-type instance service group corresponds to the product of the
firing rate of the 𝑃𝑇𝑛 transition and the expected number of tokens in the place 𝑅𝑅𝑆𝑛.
The firing semantic, as well as the related probability distribution of a timed transition,
change the way an analyst gets the performance of his system. Equation 7.12 calculates
throughput according to SSS. Equation 7.13 computes it considering ISS. These equations
consider that the transition delay is exponentially distributed. However, the adoption of
other probability distributions may change these equations. The MCC infrastructure may
have more than one group of n-type service instances running at the same time. Thus,
the system throughput is the sum of the throughput of all groups running in the cloud.
Finally, the system throughput can be obtained by the Equation 7.14. Little law states
that we may obtain TP when we know the MSS — that is, the mean number of requests
in the system— and MRT (JAIN, 1990). Thus, Equation 7.15 give us the throughput
considering the MSS and MRT of a system configuration. A stationary evaluation in the
model obtains these metrics.

𝑇𝑃𝑛 = 𝑃 (𝑚(𝑅𝑅𝑆𝑛) >= 𝑖)× 1
𝑃𝑇𝑛

(7.12)

𝑇𝑃𝑛 =
(︃

𝑧∑︁
𝑖=1

𝑃 (𝑚(𝑅𝑅𝑆𝑛) = 𝑖)× 𝑖

)︃
× 1

𝑃𝑇𝑛

(7.13)

𝑇𝑃 =
𝑧∑︁

𝑛=1
𝑇𝑃𝑛 (7.14)

𝑇𝑃 = 𝑀𝑆𝑆

𝑀𝑅𝑇
(7.15)
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Analysts may evaluate performance metrics other than throughput and MRT when
using our SPN-based modeling strategy. In some situations, it is necessary to know the
probability of the system completing a set of jobs in a given period, as well as the mean
time for the system to process them (MTTA). More specifically, obtaining the CDF related
to the probability of the system completing the jobs processing at each point 𝑡 in the
evaluated period. For this purpose, the SPN model must be refined in order to create an
absorbing state in the state space. After that, a transient evaluation in the model obtains
CDF and MTTA. This analysis can provide a more accurate understanding of the system
behavior.

7.3 Costs for Using Resources in the Public Cloud
This work considers as cloud resources for cost evaluation the use of VM instances and
data traffic. A public cloud provides instances with different computational capabilities
and it can charge different values to use them. AWS charges for the use of RIs take
into account a long-term contract. On the other hand, AWS charges for the use of ODIs
considering the amount of hours that the system has used them during a period. Our cost
model considers the cost of using RIs and ODIs in the same MCC infrastructure. In this
case, it is necessary to group the VM instances by their types and contracting model to
estimate the costs for each group of instances. The sum of the costs of using VM instances
of all groups defines the total costs of using instances over a period of time.

The MCC service provider knows the number of RIs that have been contracted since
the beginning of the system operation. Considering this, it is not a difficult task to cal-
culate the total cost of using RIs in an MCC infrastructure over a given period. On the
other hand, the use of ODIs over a period of time may vary. The use of ODIs by a system
depends on the predefined scaling thresholds, stepsizes, user demands, and the time that
the system will be up and running.

The first step in calculating the cost of using ODIs is to estimate their use within
the period that the system is running. An MCC service provider can estimate the use of
ODIs using our SPN-based modeling strategy through a stationary analysis. This metric
is obtained by subtracting the maximum number of ODIs (MNODI𝑛) available to scale
the system and the expected number of ODIs not used by the system for each n-type ser-
vice instance group. Equation 7.16 calculates the expected ODI usage (EODIU) metric.
Variable MNODI𝑛 defines the initial number of tokens in place ODIAL𝑛. The expected
number of tokens in the place ODIAL𝑛 obtained through a steady-state evaluation cor-
respond to the non-use of ODIs by the system. Thus, we may estimate the cost of using
ODIs when the value of the metric EODIU𝑛 is known in advance.

𝐸𝑂𝐷𝐼𝑈𝑛 = 𝑀𝑁𝑂𝐷𝐼𝑛 −
(︃

𝑛∑︁
𝑖=1

𝑃 (𝑚(𝑂𝐷𝐼𝐴𝐿𝑛) = 𝑖)× 𝑖

)︃
(7.16)



118

For this purpose, the next step is to know the duration of time the MCC infrastructure
will be up and running. Equation 7.17 calculates the total cost of using ODIs (TCODI)
for a given period of time. The analyst must provide this value in hours since the public
cloud charges for the number of hours the system used the ODIs. 𝐶𝑜𝑠𝑡𝑛 corresponds to
the hourly price for the n-type ODI evaluated. And finally, 𝐸𝑂𝐷𝐼𝑈𝑛 defines the expected
number of n-type ODIs the system uses. We just multiply all of them to obtain the cost
of using ODIs for a group of n-type service instances. The sum of the costs of all instance
groups gives us the TCODI.

𝑇𝐶𝑂𝐷𝐼 =
∑︁
𝑛=1

𝐸𝑂𝐷𝐼𝑈𝑛 × 𝐶𝑜𝑠𝑡𝑛 × 𝑇𝑖𝑚𝑒 (7.17)

AWS makes possible that a customer contract RIs for long-term use. Customers may
choose to contract RIs for a year or more. Obviously, as the usage period is long, it means
that the price that AWS charges for them is low considering other contracting models.
Equation 7.18 calculates the total cost for using RIs (TCRI). The parameter 𝑛 defines
the type of RIs evaluated. The variable 𝑅𝐼𝑛 corresponds to the number of n-type RIs
contracted. 𝐶𝑜𝑠𝑡𝑛 corresponds to the annual price for this type of VM instance. And
𝑇𝑖𝑚𝑒 defines the number of years the system will be up in the cloud. If this value is less
than one, the analyst should consider one year. We just multiply the values to get the cost
for using a set of n-type RIs. The sum of the costs of all groups of RIs gives us the TCRI.
Equation 7.19 gives us the total cost of using instances (TCI). This equation considers
the cost of using RIs and ODIs.

𝑇𝐶𝑅𝐼 =
∑︁
𝑛=1

𝑅𝐼𝑛 × 𝐶𝑜𝑠𝑡𝑛 × 𝑇𝑖𝑚𝑒 (7.18)

𝑇𝐶𝐼 = 𝑇𝐶𝑅𝐼 + 𝑇𝐶𝑂𝐷𝐼 (7.19)

Public clouds charge their customers for outgoing data transfers to the Internet by
considering “utilization ranges" as illustrated in Table 14. As we can see, the price de-
creases as the volume of transferred data increases over a period. The first step in the
data transfer costs evaluation is to estimate the volume of data transferred over a given
period. For that aim, developers should only consider bytes transferred from the remote
MCC infrastructure to mobile devices. Using Equation 7.20 it is possible to find out the
TTB. TTB corresponds to the volume of data transferred during a period and, to obtain
it, it is necessary multiplying: (i) the system throughput (TP) — in requests/sec; (iii)
the period of time the system is up and running (Time) — in sec; and finally (ii) the
amount of data transferred in each request (Bytes).

𝑇𝑇𝐵 = 𝑇𝑃 × 𝑇𝑖𝑚𝑒×𝐵𝑦𝑡𝑒𝑠 (7.20)
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Table 14 – Amazon EC2 Prices per Transferred Bytes (AWS, 2017)

Data Transfer OUT To Internet Price/GB
First 10 TB / month $0.09
Next 40 TB / month $0.085
Next 100 TB / month $0.07
Next 350 TB / month $0.05

Now, using Equation 7.21 it is possible to obtain the financial cost for data transfer
(FCDT). First, it is necessary to split the number of total outgoing bytes according to
the utilization range of the price table used (see Table 14). After that, it is necessary to
multiply the number of bytes consumed in each “utilization range" by its respective price.
The sum of the cost of all ranges used defines the cost for a given period. Companies may
adjust the cost calculation according to the data traffic charges policy of their IaaS cloud
provider.

𝐹𝐶𝐷𝑇 =
𝑛∑︁

𝑢𝑟=1
𝑇𝑇𝐵𝑢𝑟 × 𝑃𝑟𝑖𝑐𝑒𝑃𝑒𝑟𝐺𝐵𝑢𝑟 (7.21)

Finally, using Equation 7.22 it is possible to obtain the total cost (TC) of maintaining
an MCC system in the public cloud. Analysts can use these equations to support the
financial evaluation of all possible configurations for deploying their MCC systems. First,
they choose the configurations that meet the desired performance level defined in the
SLAs. After that, they analyze the cost for each of them. Making possible the trade-off
between performance and costs in the decision-making process. In addition, analysts may
change these equations to perform more accurate financial analysis of their systems.

𝑇𝐶 = 𝑇𝐶𝐼 + 𝐹𝐶𝐷𝑇 (7.22)

7.4 Model Validation
We have validated our SPN-based modeling strategy that represents a remote MCC in-
frastructure using the infrastructure provided by AWS. The validation process consisted
of two scenarios and each one having its own configuration. The difference between them
lies in the thresholds for scaling the system out, number of simultaneous processing in
each VM instance (𝛾) and request rates. Tables 15 and 16 demonstrate the instance types
and parameters we have considered in scenarios #1 and #2, respectively. As we can see,
the stepsize (𝜔), number of RIs and SIT value remain the same for both scenarios. Both
the actual system as well as the SPN model were configured with the same parameters
and they received the same workloads.
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Table 15 – Scenario #1 for Model Validation

Scenario #1

Instance Type 1 Instance Type 2

Parameter Value Value

Instance Type t2.micro t2.small
RI 1 1
Max ODIs (MNODIs) 3 3
SOT1 3 3
SIT2 1 1
𝛾3 1 1
𝜔4 1 1

1 Scaling Out Threshold.
2 Scaling In Threshold.
3 Maximum number of simultaneous jobs for each n-type instance.
4The stepsize for launching n-type on-demand instances in each scale out request.

Table 16 – Scenario #2 for Model Validation

Scenario #2

Instance Type 1 Instance Type 2

Parameter Value Value

Instance Type t2.small t2.medium
RI 1 1
Max ODIs (MNODIs) 2 1
SOT1 4 4
SIT2 1 1
𝛾3 1 2
𝜔4 1 1

1 Scaling Out Threshold.
2 Scaling In Threshold.
3 Maximum number of simultaneous jobs for each n-type instance.
4The stepsize for launching n-type on-demand instances in each scale out request.

We have evaluated a heterogeneous MCC infrastructure composed of two types of VM
instances. The MCC infrastructure deployed in the cloud is similar to that presented in
Chapter 5, as we can see in Figure 39. The only difference between them is the presence
of an aditional RI in the infrastructure evaluated here, depicted in Figure 39 as “JMeter
Instance”. This additional RI assumes the role of external users making requests. JMeter
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was running in this VM instance to generate requests to be handled by the front-end,
simulating offloading making by mobile devices. JMeter run requests based on specific
exponential request rates configured by us (see Appendix A). JMeter uses threads to run
requests in parallel and each thread is supposed to simulate one user request. JMeter and
front-end instances are VM instances of type t2.small.
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Scale IN
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EC2
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Figure 39 – Remote Architecture for Model Validation

We have implemented an MCC service using a face recognition application as a bench-
mark. The MCC system has been implemented in Java and it is composed of two subsys-
tems. The first subsystem runs on the front-end and the second one runs on each service
instance. The two subsystems communicated with each other via socket messages. Front-
end handles the incoming request and performs some actions based on the state of the
system, such as queuing the request, forwarding it for receiving service, executing scaling
requests to AWS EC2, and sending the request back to the user device after the service
has been finished (see Chapter 5). The front-end subsystem performed requests for scaling
the system in/out using EC2 API. As all requests pass through the front-end, it knows
the state of the MCC system and performs load balancing when distributing the queued
request for receiving service among the available service instances — that is, considering
𝛾𝑛 parameter for each instance. Each service instance had OpenCV (OPENCV, 2018) and
JavaCV (JAVACV, 2018b) for supporting face recognition processing. Basically, mobile
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users — JMeter — send photos to our face recognition system and the system process
the requests. Each JMeter request sent a face image, chosen at random, of a set of face
images. The subsystem running in the service instances received the requests forwarded
by the front-end and processed them each one in its own thread. The system considered a
database of 8,000 faces replicated in each service instance. Figure 40 represents the com-
munication process between JMeter, front-end, and a service instance from the moment
JMeter generates a request.

1 : Send Request

alt

1.1 : getAvailableInstance()

1.2 : process(request)

JMeter
Service 

Instance n
EC2FrontEnd

result

x

result

[hasFreeServiceInstance()]

[hasFreeServiceInstance() = FALSE]

1.3 :addToQueue(request)

alt

Figure 40 – Sequence Diagram Depicting the Communication Between JMeter, Front-End
and a Service Instance

The first step in the validation process was to collect the distribution of times related
to the face recognition processing in each VM instance type evaluated. In scenario #1, we
consider only one user request being processed in each VM instance (parameter 𝛾 = 1).
On the other hand, in scenario #2, instances of type t2.medium process two requests at
a time (parameter 𝛾 = 2). For this evaluation, we have used JMeter to generate requests
in order to collect the time required to process a single request and its distribution, con-
sidering the configuration and workload evaluated. JMeter generated 80 requests with
one minute delay after the end of each request. It is important to highlight that in sce-
nario #2 the request was duplicated in the service instance of type t2.medium, and the
instance processed both requests at the same time, since we consider that this type of
instance can process two requests at the same time (parameter 𝛾 = 2, see Table 16). Ta-
ble 17 depicts the mean processing time and probability distribution related to the time
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for processing each request considering each instance type evaluated. We have used the
methods Anderson-Darling and Kolmogorov-Smirnov and they have indicated with 95 %
of confidence that there was no evidence to refute that the time distribution related to the
face recognition is a Gaussian distribution (ANDERSON; DARLING, 1954; CHAKRAVARTY;

LAHA; ROY, 1967).

Table 17 – Mean Processing Time Considering 𝛾 Parameter

Instance Type Processing Time (ms) 𝛾1 Distribution SD2

t2.micro 23,638 1 Gaussian 0.094
t2.small 19,075 1 Gaussian 0.047

t2.medium 19,131 2 Gaussian 0.090
1 Maximum number of simultaneous jobs.
2 Standard Deviation.

The second step in the validation process was to collect the time distribution related to
the time AWS EC2 spent to launch our ODIs and make them available in our system for
requests processing. There are several factors that affect this time and it does not depend
only on AWS EC2. Among the factors, we can mention the instance type, AMI, and the
state of the AWS EC2 when the system executes a request to scale itself. It is important
to highlight that the time to launch an ODI may change abruptly. Sometimes ODIs may
become available faster, and at other times, this process may take a long time. That
is, depending on the system configuration in relation to the number of ODIs, stepsizes,
and scaling thresholds, there may be a considerable difference in relation to the metrics
presented by the model and the metrics of the real system, due to the long delay to make
an ODI available. Not even AWS guarantees the time to launch an ODI. Thus, users who
adopt our modeling strategy should consider this issue.

We have generated 80 requests to AWS EC2 for launching our ODIs t2.micro, t2.small
and t2.medium. Table 18 demonstrates the time required to launch our three types of
ODIs. The duration of time comprises the instant of time the subsystem running in the
front-end sent a request to EC2 to launch an ODI until the time the ODI was available
in the system for processing requests. The methods Anderson-Darling and Kolmogorov-
Smirnov indicated that there was no evidence to refute that the time distribution related
to the time for launching our ODIs follows an Erlang distribution with 95 % confidence.
An portion of the algorithm responsible to execute the scaling out requests to AWS EC2
using EC2 API is available in Appendix B.

We have evaluated the two scenarios after collecting the times related to the face recog-
nition processing and launching of ODIs. It is important to highligh that both the model
and the actual system were configured with the same parameters (see Tables 15 and 16).
For both scenarios we have considered exponentially distributed interarrival times. The
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Table 18 – Mean Time to Launch our ODIs

Instance Type Lauching Time (s)

t2.micro 175,06
t2.small 204,57

t2.medium 239,46

default implementation of JMeter does not provide a default function to generate requests
considering the exponential distribution. Considering this, we have implemented a JMeter
add-on to generate our exponential requests. Appendix A demonstrates the script that
adds this functionality to JMeter.

In scenario #1 we have considered an arrival rate of 1/10, 000 𝑚𝑠. JMeter performed
30 iterations and, at each iteration, 80 requests for facial recognition were performed. The
results collected represent 2,400 requests processed for scenario #1. We have monitored
the mean response time and the use of on-demand instances. The use of ODIs comprises
the time interval that the ODI is available in the system. It is obtained for each instance
type dividing the total time of each iteration by the sum of the time interval that each
ODI of the same type was available in the system. At the end of each iteration our testbed
collected the mean values of them. Firstly, we adopted the stationary simulation to cal-
culate metrics using the model, since the time related to the face recognition processing
follows a Gaussian distribution and the time related to the launching of ODIs follows
an Erlang distribution. After that, we obtained the metrics adopting exponential transi-
tions in order to verify the possibility of evaluating our case studies through numerical
evaluation. Table 19 shows the mean response time and use of ODIs. As we can see, for
both types of evaluations, the model presents values within the confidence interval (CI).
It means that it is possible to evaluate the desired metrics using numerical evaluation.

Table 19 – Scenario #1 - Validation

Metric CI (𝐵𝛼/2) CI(𝐵[1− 𝛼/2]) System1 NA2 Simul3

Response Time (ms) 57,160 63,611 60,473 62,473 60,661
ODIs Usage (t2.micro) 0.130081 0.169886 0.157543 0.165369 0.132399
ODIs Usage (t2.small) 0.063564 0.127743 0.120569 0.125931 0.088613

1 Actual System.
2 Numerical Analysis.
3 Simulation.

Let us analyze the results for scenario #2. The model validation for #2 considered the
configurations presented in Table 16. In scenario #2 we have considered an arrival rate
of 1/5, 000 𝑚𝑠. We are now using VM instances of type t2.medium and two simultaneous
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requests are being processed in each of them (parameter 𝛾 = 2). JMeter performed 30
iterations and, at each iteration, 80 requests for face recognition were performed. The
results collected represent 2,400 requests processed for scenario #2. Table 20 shows the
mean response time and use of ODIs. As we can see, the model evaluation presents values
within the CI.

Table 20 – Scenario #2 - Validation

Metric CI(𝐵𝛼/2) CI(𝐵[1− 𝛼/2]) System1 NA2 Simul3

Response Time (ms) 76,370 87,424 82,138 80,332 79,554
ODIs Usage (t2.small) 0.416685 0.587414 0.501754 0.453051 0.451691

ODI Usage (t2.medium) 0.188375 0.248902 0.218816 0.203887 0.191265
1 Actual System.
2 Numerical Analysis.
3 Simulation.

Tables 19 and 20 show that the metrics extracted from the models remains inside
the respective CI. Therefore, this validation process indicates that the generated models
represents, statically proved, the reality. Figures 41 and 42 depict the mean response
time and use of ODIs obtained by simulation, numerical analysis, and the real system
considering both scenarios, respectively. Considering the obtained results, we have adopted
numerical evaluation to obtain the desired metrics in our case studies.
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Chapter

8
Case Studies

“ The best strategy is always to be very strong; first in general, then at the
decisive point... There is no higher and simpler law of strategy than that
of keeping one’s forces concentrated... In short the first principle is: act
with the utmost concentration. ”

— On War, Carl von Clausewitz, 1780-1831

This chapter presents four case studies to show the applicability of the proposed ap-
proach. The first case study evaluates a mobile application for reducing images color. In
this case study, we have considered networking requirements, performance, data traffic,
and its related costs. The second case study evaluates distinct scenarios for deploying
a face recognition system in a public cloud. We evaluated a heterogeneous elastic MCC
infrastructure composed of two types of VM instances. We analyzed the costs of using
VMs and MRT for each evaluated scenario. In the third case study, we evaluated for a set
of configurations the probability of completing the processing of an expected workload in
an MCC face recognition infrastructure using CDFs and MTTA. The second and third
case studies focused only on the remote infrastructure for supporting offloading. Finally,
the fourth case study presents performance, resource consumption, and costs evaluations
considering the MCC system deployed in a public cloud and the application running on
mobile devices. Networking requirements are considered in this last case study.

8.1 Case Study One: Color Reduction Application
We implement and analyze an image processing mobile application following the principles
of method-call computation offloading (KOSTA et al., 2012; CUERVO et al., 2010). The
implementation uses a simple client-server RMI architecture. Both client and server side
adopt OpenCV (OPENCV, 2018) and JavaCV (JAVACV, 2018b). We have implemented the
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computing vision example of Picture’s Colour Reduction (JAVACV, 2018a). This example
transforms images by decreasing the number of colors depending on the picture’s size.
Algorithm 7 demonstrates relevant parts of the evaluated source code.

The evaluation process considered the root method processImages() as a benchmark
aiming to evaluate the offloading possibilities. Application_A resides on the mobile device
and its method-calls are dependency free (lines 2 to 3). That is, the methods may be
executed in parallel. If the method-call is offloaded to the cloud, it means that the mobile
application makes image processing calls to the server by passing one input (original
image). In this case, the mobile app connects to one virtual machine and then calls the
method reduceColor in the server side. Thereafter, the processed image returns to the
mobile device. Our case study analyzed and compared all method-calls combinations.

Algorithm 7 Application_A
1: function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝑚𝑎𝑔𝑒𝑠(𝑖𝑚𝑔1, 𝑖𝑚𝑔2)
2: 𝑎← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑖𝑚𝑔1) ◁ m_call_1
3: 𝑏← 𝑟𝑒𝑑𝑢𝑐𝑒𝐶𝑜𝑙𝑜𝑟(𝑖𝑚𝑔2) ◁ m_call_2
4: return 𝑎, 𝑏
5: end function

8.1.1 The Evaluation

The case study evaluated distinct offloading scenarios by using the Color Reduction Appli-
cation. The analysis has focused on the root method processImages() of the Application_A
(see Algorithm 7). As aforementioned, the two method-calls are independent. By making
it possible for them to run in parallel on mobile devices or in the cloud. Considering
two method-calls and two possibilities as target (device or cloud), four scenarios were
exploited, as presented at Table 21. For simplicity, from here down the two method-calls
are referenced as m1() and m2().

Table 21 – Scenarios to Method-Calls Executions

Scenario m1() m2()
#1 mobile mobile
#2 mobile cloud
#3 cloud mobile
#4 cloud cloud

The analysis evaluated application’s performance and the volume of data traffic gen-
erated over a period of one month1 to 1000 active users and the resulting cost. Each
user makes requests at a rate of 1/(25, 000, 000 𝑚𝑠) which is exponentially distributed.
1 30 days
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We have used the Amazon’s data transfer pricing table. The evaluated SLA establishes
a MTTE around 150 s. We have considered that the available bandwidth for offloading
(upload) as well as receiving data (download) may vary within a specified limit impacting
the desired metrics in each variation (see Table 22). We have calculated the metrics by
varying the available bandwidth. Depending on the volume of data sent and received in
each user request, a high degree of bandwidth variation may result in a significant impact
on evaluated metrics.

Table 22 – Bandwidth Variation (in Megabits/s)

BW Variation

Operation Minimum BW Expected BW

Offloading Data 0.5 2.0

Receiving Data 1.0 3.0

As infrastructure, the private cloud Eucalyptus 3.4.0.1 (NURMI et al., 2009) was used
with two physical machines (one node and one controller). The physical machines have the
following configuration: Intel Core i7-3770 3.4 GHz CPU, 4 GB of RAM DDR3, and 500
GB SATA HD. An Ethernet network is adopted to connect the physical servers through a
single switch and one VM of type m1.medium (1 CPU, 512MB of RAM, and 10GB Disk).
At the mobile device side, a Samsung Galaxy Note 4 was used running the Android 5.1.1
Lollipop. Only the essential system processes were running on it during the experiments.

The testbed executed all method-calls local and remotely (using one VM as offloading
target). Through a controlled experiment, the collected input parameters for each method-
call were (see Tables 23 and 24): (i) the processing time and (ii) the number of bytes
sent and received. As we can see, processing times are lower when the code is running in
the cloud. The experiment executed and monitored 50 times each scenario. At the end of
the process, the testbed collected the mean values of them.

Table 23 – Registered Processing Times per Method-Call

Method-Call Device (ms) Cloud (ms)

m1() 81,399 17,256

m2() 131,406 25,476

Table 24 – Transferred Bytes per Method-Call

Method-Call Sent Bytes (MB) Received Bytes (MB)

m1 (Image 1) 2.60 1.07

m2 (Image 2) 4.27 1.68

We generated and refined the SPN models to calculate the desired metrics. We eval-
uated the four scenarios by combining the four processing time values as well as varying
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bandwidth for each operation (offloading and receiving data). For this experiment, we
considered the maximum number of parallel resources — that is, two target virtual ma-
chines.

First, it is necessary to analyze the MTTE of each scenario. Figure 43 shows the
SPN model that represents the evaluated application. Transitions processing_time_m1
and processing_time_m2 are exponential. They store the mean processing times of the
method-calls m1() and m2(), respectively. Equations 6.4 and 6.5 were used as the mean de-
lay value of the transitions that represent the offloading (upload) and receiving (download)
processes, respectively. Table 25 and Figure 44 present the respective MTTEs. Figure 45
shows the impact of the bandwidth variation on the MTTE.

We can extract some conclusions by analyzing the results. Considering that the SLA
accepts a MTTE around 150 s, the company may adopt the scenario #2, #3 or #4. In
this context, perhaps it has no advantage performing total offloading as in scenario #4.
The data volume transferred may be high as the cloud executes all method-calls. Then,
the company may decide to execute its mobile application adopting scenarios #2 or #3.
Scenario #1 was not impacted by the bandwidth variation, all processing was performed
locally. The variation had little effect on the MTTE of the scenario #3. A large portion
of the whole execution time was spent on local processing. On the other hand, scenario
#4 was the most sensitive in relation to variation. Scenario #4 transferred more data
than the other ones. The impact of the bandwidth variation on the performance metrics
is high when the amount of data being transferred is large. The performance of scenarios
#3 and #4, when executed on the minimum bandwidth requirements, was close to the
performance achieved when processing the whole application locally (see Figure 44). In
scenarios #2 and #4 the actual bandwidth available for offloading and receiving data had
a significant impact on the MTTE of the whole application. In theses scenarios, the higher
the available bandwidth, the lower the MTTE. The method m2() is the heaviest, so it must
be processed in the cloud. If m2() is processed locally, maybe it is not advantageous to
only perform the offloading of method m1() - scenario #3. Therefore, considering a remote
infrastructure that attends multiple users, the performance gain is small. Moreover, the
company will pay more for offloading only one method-call. Scenario #4 is most suitable
but the volume of data transferred in the period is high. Thus justifying the adoption of
scenario #2. Developers should carefully evaluate the effect of the available bandwidth
variation on the performance metrics.

Service providers should be aware at when their applications are more likely to finish
execution. Using CDFs, companies are able to calculate the probability of finishing the
application execution within a specified time. For that aim, we have computed CDFs for
all evaluated scenarios from t = 0 s to t = 250 s (see Figure 46). When comparing the
CDFs of scenarios #2 and #4 (see Figures 46a and 46b), we can see that there was a great
variation in the probability of absorption considering the available bandwidth. According
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Figure 43 – SPN Model Representing the Method processImages()

Table 25 – MTTE of the Experiment

Result (MTTE)

Scenario Minimum Bandwidth (ms) Expected Bandwidth (ms)

#1 162,544 162,544

#2 136,160 95,608

#3 150,273 135,863

#4 148,577 60,392

to Figure 46a, the distance between the probabilities of the scenarios #4 and #1 is large
in comparison with the distance presented in the Figure 46b. Scenario #4 transfers more
data compared to the other ones, thus the bandwidth variation in this scenario has a
greater impact on the probability of absorption. When considering only the CDFs of the
Figure 46b, the probabilities of absorption are close to each other.

According to Figure 47a, the distance between the probability regarding the scenario
#4 is larger than the probabilities regarding #1, #2, and #3. The probability of finishing
the execution for the scenario #4 becomes 100 % only after 220 s. Considering all sce-
narios, in some points, the probabilities for absorption are very close to each other. For
example, at some points, scenarios #2 and #3 have similar probabilities of absorption.
The difference between their MTTEs is around 40 s (expected BW), and both scenarios
only offload one method-call.

Best performance could be observed when adopting the scenario #4 (see Figures 47a
and 47b). Scenario #4 has the highest probabilities for finishing execution faster. However,
in that scenario more code is offloaded and, consequently, the data traffic may be higher.
Thus, it may result in a higher financial cost to the service provider. In the scenario #4,
the probability to finish the code execution at 100 s is equal to 89.44 %. The second-best



132

0

20

40

60

80

100

120

140

160

180

#1 #2 #3 #4

M
T

TE
 (

s)

Scenario

Minimum BW

Expected BW

(a) MTTE Ordered by Scenarios Index

0

20

40

60

80

100

120

140

160

180

#1 #3 #2 #4

M
T

TE
 (

s)

Scenario

Minimum BW

Expected BW

(b) MTTE Ordered by MTTE Values (Expected BW).

Figure 44 – MTTE Results

50

70

90

110

130

150

170

M
T

TE
 (

s)

Available Bandwidth (Mb/s)

Scenario #1 Scenario #2 Scenario #3 Scenario #4

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2.0

Receiving :

Offloading:

Figure 45 – Available Bandwidth and MTTEs

scenario — scenario #2 — offers 66.14 % of probability to finalize the code execution
at 100 s. The difference between their MTTEs is around 35 s, and the probability of
absorption is 23.3 % higher for scenario #4. The best and the worst scenario for absorbing
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Figure 46 – Probability Analysis of the Scenarios based on SPNs

at 100 s — scenarios #4 and #1 — reflect a difference between them of 51.77 %. When
evaluating absorbing probabilities considering the minimum bandwidth or bandwidth
variation, other considerations may be traced. For example, the absorbing probability
of the scenario #4 is the worst when considering the minimum bandwidth and a time
interval between 0 s and 130 s.

Now, let us execute an analysis from another point of view. Evaluating the absorbing
probability of the faster and the lower scenario that meets the SLA — scenarios #4 and
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#3, respectively — considering the expected bandwidth, we can notice a difference of
36.66 % between them to absorbing at 100 s. The difference between their MTTEs is
around 75 s. Given that scenario #3 is the most constrained, the service provider should
specify the observation of mainly scenario #3 in its Service Level Agreement. If the final
user needing the application finishes execution by 100 s, the probability for scenario #3 is
always around 52.78 %. Therefore, the service provider could agree to deliver the service
by charging low prices due to the offloading scenario limitations.

Table 26 – Absorbing Probabilities at 100 s

Absorbing Probabilities

Scenario Minimum BW Expected BW Diff

#1 37.67 37.67 -

#2 39.97 66.14 26.17

#3 43.11 52.78 9.67

#4 31.92 89.44 57.52

Willing to obtain the probability of absorption, the service provider may consider any
time within the range. Probability intervals can also be exploited using CDFs. Aiming
to better analyze the applications, Figure 47 depicts the respective probabilities of ab-
sorption obeying two intervals and two contexts. These intervals elucidate the cumulative
probability considering the difference between two moments. ¨

Considering the context with the expected bandwidth (see Figure 47a), the probability
of absorption is high in the T1 range compared to the other one. The mean absorption
probability is around 61.51 % and 23.67 % for the T1 and T2 intervals, respectively. As
we can see, scenario #4 has the highest probability of absorption in the T1 interval. On
the other hand, the scenario #1 has the worst absorption probability in the same interval.
With regard to the interval T2, the probability of absorption is higher for the scenario #1
— 33.80 % (see Table 27). Now, the scenario #4 has the lowest absorption probability.
Considering the interval T2, maybe it is not suitable to perform the offloading since the
scenario #1 has the highest probability when compared to the other one.

Table 27 – Absorbing Probabilities Considering T2 Interval (Expected BW)

Scenario Probability

#1 33.80

#2 25.16

#3 25.38

#4 10.34

Considering the context with the minimum bandwidth (see Figure 47b), the mean
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Figure 47 – Probability Intervals

absorption probability is around 38.17 % and 38.92 % for the T1 and T2 intervals, re-
spectively. Now, the probability of absorption is slightly higher in the interval T2. In this
context, considering the T1 range, scenario #3 has a higher probability of absorption
compared to the other ones. Performing the full-offloading (scenario #4) has the lower
probability of absorption in the interval T1. Scenario #2 has similar probabilities in both
intervals. Scenarios #1 and #3 have similar probabilities considering only the interval
T2. Due to such a myriad of interpretations, the application developer or service provider
should also pay attention to probability intervals.

The next step is to identify the expected throughput for each user in each scenario.
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For that aim, the SPN model presented in Figure 43 evolved. Now, an arc connects the
last transition (T1 ) to the first place (SYSTEM_INACTIVE) as illustrated in Figure 48.
When the system is not processing any method-calls it corresponds to having a token
in the SYSTEM_INACTIVE place. The transition T0 receives the request rate which
is equal to 1/(25, 000, 000 𝑚𝑠). A stationary analysis obtains the throughput using the
Equation 8.1. The equation considers both the probability of having tokens at place
SYSTEM_INACTIVE and the delay between each user request (request_time). Table 28
presents the values obtained.

𝑇𝑝 = 𝑃 (#𝑆𝑌 𝑆𝑇𝐸𝑀_𝐼𝑁𝐴𝐶𝑇𝐼𝑉 𝐸 >= 1)× 1
𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑡𝑖𝑚𝑒

(8.1)
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Figure 48 – SPN Used to Calculate Throughput of an Application With Two Parallel
Method-Calls

Table 28 – Throughput for Each User in Each Scenario

Executions/ms

Scenario Minimum Bandwidth Expected Bandwidth

#1 3.9741 × 10−8 3.9741 × 10−8

#2 3.9783 × 10−8 3.9847 × 10−8

#3 3.9761 × 10−8 3.9783 × 10−8

#4 3.9763 × 10−8 3.9903 × 10−8

Now, let us estimate the volume of transferred data generated by each scenario. Data
traffic sent from the cloud to device in each request for the method calls m1() and m2()
are respectively: 1.07 MB and 1.68 MB (see Table 24). The combination of these mea-
surements let to obtains the total costs for data traffic considering distinct offloading
scenarios. Table 29 presents the number of bytes transferred for processing one user re-
quest in each scenario. Table 30 shows the number of requests made by users during the
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evaluated period. The last column represents the difference between the values obtained
with the minimum and expected bandwidth. Using the Equation 6.9 it is possible to
find out the TTB. TTB corresponds to the data volume transferred during a period. Ta-
ble 31 demonstrates the TTB considering the application’s throughput. Amazon provides
a prices table that defines the cost per transferred gigabyte considering utilization ranges
(see Table 8). The cost calculation includes only the outbound data traffic generated by
the offloadable methods (see Equation 6.10). Table 32 summarizes the outgoing TTB and
its financial cost. Considering the networking requirements, we can see that bandwidth
variation had little impact on the amount to be paid for each scenario.

Table 29 – Transferred Bytes for Each Scenario

Scenario Sent Bytes (MB) Received Bytes (MB) Total Bytes (MB)

#1 - - -

#2 4.27 1.68 5.95

#3 2.60 1.07 3.67

#4 6.87 2.75 9.62

Table 30 – Executions per Month in Each Scenario

Executions/month

Scenario Minimum Bandwidth Expected Bandwidth Diff

#1 103,010 103,010 0

#2 103,118 103,285 166

#3 103,060 103,119 59

#4 103,067 103,430 362

Table 31 – Total Transferred Bytes for Each Scenario

Total Transferred Bytes (GB) / month

Minimum BW Expected BW Diff

Scenarios

#1 - - -

#2 599.10 600.06 0.96

#3 369.95 370.16 0.21

#4 968.77 972.18 3.41

The costs are inversely proportional to the MTTE, and depending on the application
perhaps a lower MTTE is more important than saving money. Figure 49 compares MTTEs
and volume of transferred data for all scenarios. In scenario #1 the mobile device processes
the two method-calls, whereas all method-calls are offloaded in scenario #4. In scenario
#4 the cost is high, and the MTTE is low. In scenario #1, the interpretation is the
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Table 32 – Bytes Sent from the Cloud to Mobile Devices and their Costs on AWS

Minimum Bandwidth Expected Bandwidth Diff

Scenarios

#1
Bytes (GB) - - -

Cost ($) - - -

#2
Bytes (GB) 169.15 169.42 0.27

Cost ($) 15.22 15.25 0.02

#3
Bytes (GB) 108.11 108.18 0.06

Cost ($) 9.73 9.74 0.01

#4
Bytes (GB) 277.19 278.16 0.98

Cost ($) 24.95 25.03 0.09

inverse —the MTTE is high, and there is no data traffic cost. The company will pay
more for the adoption of the scenario #4. On the other hand, this offloading scenario will
offer a higher probability for the application to complete its processing when considering
other scenarios. In that case, the higher absorption probability reflects in higher financial
cost. It means that the mobile application offloads more code to the cloud and the MCC
service provider will pay more for the resource consumption. Consequently, end users may
pay more for using the service. The proposed models offer evaluations that can result in
decisions that provide money savings and that meet the SLA.
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8.2 Case Study Two: A Heterogeneous MCC Infrastruc-
ture in the Cloud

In this case study, we evaluated distinct scenarios for deploying a face recognition sys-
tem in a public cloud. The purpose of the system is to process face recognition requests
sent by remote users. Face recognition determines the match-likelihood of each face to a
template element from a database of faces. The widely accepted Eigenfaces method was
employed (TURK; PENTLAND, 1991). This method extracts relevant informations in a face
image, encodes them, and compares the encoded face with a database of encoded faces
called face-space. Algorithm 8 presents the analyzed class FaceRecognitionService. The
heaviest method, recognize, contains two heavy method-calls. The first one, readFaceBun-
dles, constructs the face-spaces from a given directory. The second one, recognizeFace,
performs the comparison between one photo sent by a mobile device and the face-space.
This method-call identifies the name of the most similar photo from the face-space and a
Euclidean distance in that face.

We have implemented the mobile service in Java language using the face recognition
application as a benchmark. The server side adopts OpenCV (OPENCV, 2018) and JavaCV
(JAVACV, 2018b). Our project uses OpenCV as an auxiliary library for processing the faces
at the cloud side and the wrapper JavaCV to access the OpenCV. OpenCV and JavaCV
must be installed in each AMI attached to each SI that composes the infrastructure.
It is important to highlight that a system deployed on AWS EC2 may run multiple
VM instances on a single AMI when it is necessary multiple instances with the same
configuration. The remote system uses a database of 8,000 faces replicated in each SI.

Algorithm 8 FaceRecognitionService
1: function 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒(𝑓𝑎𝑐𝑒)
2: ...
3: 𝑟𝑒𝑎𝑑𝐹𝑎𝑐𝑒𝐵𝑢𝑛𝑑𝑙𝑒𝑠(𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒)
4: 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝐹𝑎𝑐𝑒(𝑓𝑎𝑐𝑒)
5: ...
6: end function

We have considered a heterogeneous MCC infrastructure composed of two types of VM
instances for supporting the face recognition system. We analyzed the costs of using VM
instances and the MRT for each scenario. It is important to highlight that the cost of using
the front-end instance was not considered in the cost evaluations. Since the infrastructure
has only one front-end and it represents a fixed cost (i.e. the front-end is a RI). We have
focused on the cost to maintain a set of SIs for requests processing — that represent
a scenario for deployment. Table 33 shows the two EC2 instance type that composes
all scenarios and the costs of using them as RIs and ODIs. Table 34 demonstrates the
parameter values for supporting the generation of scenarios. Scenarios were generated by
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varying the number of RIs for each type of instance. More specifically, each scenario has
at least 1 and at most 4 RIs for each instance type. Table 35 shows the number of RIs
for each scenario. The value for scaling out threshold (SOT) is 3 and the value for scaling
in threshold (SIT) is 1. It means that the system adds ODIs for service processing when
the number of requests in the queue is equal to or greater than four times its processing
capacity. As we have stated, the processing capacity refers to the number of requests that
the system can process at a time. The processing capacity for each type of VM instance
is defined by multiplying the number of SIs that are up and running by the number of
parallel requests each instance may process. We get the total processing capacity of the
system for a given moment by adding up the processing capacity of each instance type.
Considering our case study, the number of SIs running in the system defines its processing
capacity at a given time since each VM instance can process only one request at a time (𝛾
parameter). Performing a full factorial design we obtain sixteen scenarios for evaluation.

Table 33 – EC2 Instances Used by all Evaluated Scenarios (AWS, 2018b)

Model vCPU Memory (GiB) Reserved ($/year) On-demand ($/hour)

t2.micro 1 1 $ 59.00 $ 0.0116
t2.small 1 2 $ 118.00 $ 0.023

Table 34 – Parameters for Supporting the Generation of Scenarios

Parameter Instance Type 1 Instance Type 2

Value Value

Instance type t2.micro t2.small
RIs 1-4 1-4

Max ODIs (MNODIs) 3 3
SOT1 3 3
SIT2 1 1
𝛾𝑛

3 1 1
𝜔𝑛

4 1 1
1 Scaling Out Threshold.
2 Scaling In Threshold.
3 Maximum number of concurrent jobs for each n-type instance.
4The stepsize for launching n-type on-demand instances in each scale out request.

The analysis evaluated the performance of a remote MCC system and the resulting
cost over a period of one year. We have considered that mobile users perform requests at
a rate of 1/(5, 000 𝑚𝑠) which is exponentially distributed. The evaluated SLA establishes
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Table 35 – Evaluated Scenarios

Scenario Instance Type 1 Instance Type 2

t2.micro t2.small

#1 1 3
#2 3 4
#3 3 2
#4 2 2
#5 4 1
#6 3 3
#7 4 3
#8 1 2
#9 1 4
#10 4 2
#11 1 1
#12 2 1
#13 4 4
#14 2 3
#15 2 4
#16 3 1

a maximum MRT around 60 s. The system capacity related to the maximum number of
requests in the system consists of 100 requests.

The first step in the evaluation process is to collect the time required to process one
face recognition request in each instance type as well as the time the AWS EC2 takes to
launch our ODIs and make them available for service processing. As we can see in Table 34,
the 𝛾𝑛 parameter for each VM instance has one as its value. It means that each instance
in the system must process only one request at a time. In other words, there is no requests
processing occurring concurrently in the instances. Through a controlled experiment our
testbed collected the required times. The testbed executed all requests remotely using one
instance of each type as the target in order to obtain the processing time. The experiment
executed and monitored 80 times both the workload in each instance and the requests to
EC2 for scaling the system out. Our testbed collected the mean values of them at the end
of the process. Table 36 presents the time the EC2 spent to launch our ODIs and make
them available in the system. Table 37 shows the mean processing time registered for each
instance type to process one request. As we can see, the difference in the processing times
in each instance type is about 4 s.

We generated and refined the SPN models to calculate the desired metrics. Figure 50
shows the refined SPN model that represents the evaluated MCC infrastructure to be
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Table 36 – Time Required to Launch our ODIs

Instance Type Time for Launching (s)

t2.micro 175.06
t2.small 204.57

Table 37 – Processing Time Registered for Each Instance Type

Instance Type Processing Time (ms)
t2.micro 23,638
t2.small 19,075

deployed in a public cloud. The model considers two types of VM instances running in the
same infrastructure. Transition Arrival receives the interarrival time — 5, 000 𝑚𝑠 — and
the place Capacity receives the capacity of the system — 100 requests. Each parameter 𝛾𝑛

and 𝜔𝑛 receives 1 as value. Transitions PT1 and PT2 are exponential. They store the mean
processing times to process a single request in the instance type t2.micro and t2.small,
respectively. Places ACPR1, and ACPR2 receives the number of tokens related to the
number of RIs of the scenario (i.e. 𝛾1 = 1 and 𝛾2 = 1). Places ODIAL1 and ODIAL2

receives the number of tokens related to the maximum number of ODIs (MNODIs) the
system may use. Transitions LODI1 and LODI2 receive the time to launch one ODI of
type t2.micro and t2.small, respectively. We evaluated the sixteen scenarios by varying
the number of RIs (see Table 35).

Let us describe how to obtain the performance metrics for each scenario. Equation 8.2
obtains the expected number of requests waiting to receive service. Equation 8.3 gets
the expected number of requests that receive service considering the two SIs group in
the infrastructure. Finally, Equation 8.4 obtains the MSS. MSS corresponds to the mean
number of requests in the system. Equation 8.5 obtains the MRT of the system. This
equation considers the arrival rate (AR) — 1/(5, 000 𝑚𝑠) — and the probability of having
tokens at the place Capacity. That is, the probability of the system being able to handle
the request received. Equation 8.6 obtains the use of ODIs by the system. We obtain
the metric of “expected ODI usage” (EODIU𝑛) by subtracting the maximum number of
ODIs from each instance type 𝑛 that the system may use (i.e. 3 in this case study) by
the expected number of tokens in the place ODIAL𝑛. A stationary analysis in the model
obtains MSS, MRT, and EODIU𝑛.

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑞𝑢𝑒𝑢𝑒 =
𝑛∑︁

𝑖=1
𝑃 (𝑚(𝑄𝑢𝑒𝑢𝑒) = 𝑖)× 𝑖 (8.2)

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑒𝑟𝑣𝑖𝑐𝑒 =
𝑛∑︁

𝑡𝑦𝑝𝑒=1

(︃
𝑛∑︁

𝑖=1
𝑃 (𝑚(𝑅𝑅𝑆𝑡𝑦𝑝𝑒) = 𝑖)× 𝑖

)︃
(8.3)
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Figure 50 – Public Cloud MCC Infrastructure Model

𝑀𝑆𝑆 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑞𝑢𝑒𝑢𝑒 + 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (8.4)

𝑀𝑅𝑇 = 𝑀𝑆𝑆

𝐴𝑅× (1− 𝑃 (𝑚(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) = 0)) (8.5)

𝐸𝑂𝐷𝐼𝑈𝑛 = 3−
(︃

𝑛∑︁
𝑖=1

𝑃 (𝑚(𝑂𝐷𝐼𝐴𝐿𝑛) = 𝑖)× 𝑖

)︃
(8.6)

Now, using Equation 8.7 it is possible to obtain the total cost of using ODIs of type
𝑛 (TCODI𝑛). The cost calculation must be performed for each type of ODI in the in-
frastructure. To obtain TCODI𝑛 it is necessary multiplying: (i) the expected ODI usage
(EODIU𝑛); (iii) the period of time the system is up and running (Hours); and finally (ii)
the price per hour for using the evaluated ODIs (PricePerHour𝑛).

𝑇𝐶𝑂𝐷𝐼𝑛 = 𝐸𝑂𝐷𝐼𝑈𝑛 ×𝐻𝑜𝑢𝑟𝑠× 𝑃𝑟𝑖𝑐𝑒𝑃𝑒𝑟𝐻𝑜𝑢𝑟𝑛 (8.7)

Now, let us analyze the MRT and cost for each scenario. Table 50 and Figure 51
present the respective MRTs. We can extract some conclusions by analyzing the results.
As we can see in Figures 51b and 51c the costs are not inversely proportional to MRTs.
Scenario #11 offers the worst performance (106 s) considering all evaluated scenario and
its cost is $ 30 dollars higher than the cost for scenario #10. However, the difference
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between the MRTs is almost four times lower for scenario #10 (≡ 27 s). Scenario #11
is the most intensive scenario regarding the use of ODIs. Table 38 depicts that the use
of ODIs composes 64.7 % of the cost for this scenario whereas the use of RIs composes
99.95 % of the cost for scenario #10. Scenario #11 uses only one RI of type t2.micro and
one t2.small, and in scenario #10, the configuration uses six RIs. It means that the use
of ODIs makes up most of the cost for scenario #11 because the number of RIs is low
considering the workload. In this case, the analyst may add more RIs in the infrastructure
to try to reduce the cost. The MRT for scenario #1 is 30 s lower than scenario #8, but
both scenarios offer an equivalent cost. The difference between scenario #16 and #11
is almost 40 s and the cost of #11 is $ 118 higher. Let us now evaluate the scenarios
that offer the worst and best performance. Considering scenarios #8 and #10, the cost
difference is almost $ 10, but the performance of scenario #10 is three times faster than
#8. Scenario #1 is twice as fast as scenario #11 and #11 is $ 50 dollars higher than #1.
Scenario #11 is intensive in the use of ODIs and the use of ODIs is almost twice as large
in comparison to RIs. Scenario #14 is more than three times faster than #11 and the
difference between the cost is $ 25. Scenario #13 uses eight RIs in its configuration and
the use of RIS composes the entire cost for instance usage. It is important to highlight
that the time required to launch ODIs may degrade the system performance — scenario
#11. The use of ODIs for a long period of time may offer a higher cost compared to the
use of RIs. Our models enable an analyst to perform a myriad of performance and cost
evaluations.

Table 38 – MRT and Costs for Each Scenario

Scenario MRT (ms) Monetary Costs for One Year
On-demand $ Reserved $ Total $

#1 51,350 39.75 413 452.75
#2 22,128 0 649 649.00
#3 37,373 7.00 413 420.00
#4 59,247 57.13 354 411.13
#5 42,985 12.39 354 366.39
#6 25,251 0 531 531.00
#7 22,896 0 590 590.00
#8 81,716 165.70 295 460.70
#9 29,317 2.19 531 533.19
#10 26,998 0.25 472 472.25
#11 106,380 325.80 177 502.80
#12 89,205 196.85 236 432.85
#13 21,676 0 708 708.00
#14 32,893 3.91 472 475.91
#15 23,746 0 590 590.00
#16 67,424 79.10 295 374.10

Considering that the SLA accepts a maximum MRT around 50 s, the company may
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Figure 51 – MRTs and Costs Results for all Scenarios

adopt the configuration #2, #3, #5, #6, #7, #9, #10, #13, #14 or #15 as its remote
MCC configuration. Table 39 shows the scenarios that comply with the SLA performance.
Figure 52 compares MRTs and costs for those scenarios that have attended the SLA.
Looking at the graph we can see that the tendency is that as the cost decreases while the
MRT increases. Scenario #13 has eight RIs, whereas scenario #5 has five ones. In scenario
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#13 the cost is high, and MRT is low. In scenario #5, the interpretation is the inverse —
MRT is high, and cost is low. Perhaps there may be no advantage in choosing scenario #1
when considering scenarios #7 and #13. The difference between their MRTs and costs are
1 s and $ 118 (in one year), respectively. On the one hand, a response time of one second
more may do not negatively impacts on users’ QoE, and a small IT company may save one
hundred and twenty dollars — in one year, approximately. This difference may become
significant when the developer takes into account other resources consumed, such as data
traffic. It is important to highlight that both scenarios do not have ODIs consumption —
#7 and #13. It means that the number of RIs is sufficient to process all requests without
the need for requesting additional processing capacity. In other words, we can say that
this configuration prevents the MCC system from reaching the predefined SOT. Scenarios
#2 and #7 have similar performance (22 s) because both scenarios have seven RIs in their
infrastructure, but the difference between their cost is almost $ 60 dollars for one year.
The t2.small instances cost twice the value of the t2.micro instances and, considering our
workload, the performance gain is only 4 seconds for a t2.small instance. Scenarios #10
and #14 have equivalent costs and the difference in their MRTs is almost 6 s. For both
scenarios, the use of RIs composes almost 100 % of the costs. It means that the number of
RIs supports the workload well and the system does not reach the defined threshold. The
same occurs with scenarios #6 and #9. The difference between their MRTs are 4 s and
both have equivalent costs. As the performance of the two types of instances — t2.micro
and t2.small — was similar considering our workload we highlight that all configurations
that have at least five RIs have reached the performance defined in the SLA.

Table 39 – MRT and Cost of Scenarios that Comply with the SLA Orderered by MRT
Values

Scenario MRT (ms) Monetary Costs for One Year
On-demand $ Reserved $ Total $

#13 21,676 0 708 708.00
#2 22,128 0 649 649.00
#7 22,896 0 590 590.00
#15 23,746 0 590 590.00
#6 25,251 0 531 531.00
#10 26,998 0.25 472 472.25
#9 29,317 2.19 531 533.19
#14 32,893 3.91 472 475.91
#3 37,373 7.00 413 420.00
#5 42,985 12.39 354 366.39

Let us execute another evaluation from another perspective. The approach highlighted
a difference around $ 340 dollars in one year when we evaluate the most economical and
the most expensive scenario that meets the SLA – #5 and #13. The company will pay
more for the adoption of the scenario #13. On the other hand, this scenario will offer a
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Figure 52 – MRT and Cost of Scenarios that Comply with the SLA

higher probability for the MCC system to complete the request processing within 50 s as
defined in the SLA. In that case, the higher probability may reflect in higher financial cost
and depending on the application perhaps a lower MRT is more important than saving
money. As a result, end users may pay more for using the MCC service. Projecting this
amount over a period of three years we obtain a difference around $ 1,000 dollars.

Let us consider a MRT less than 30 s. Then, the company may decide to deploy its
MCC system adopting scenarios #2, #6, #7, #9, #10, #13 and #15. In another context
the company when comparing the MRT of scenarios #10 and #13, since these scenar-
ios have similar performances, it may choose the scenario #10. Therefore, considering a
remote MCC infrastructure that needs to attend multiple users, the performance gain is
minimal by comparing these scenarios (#10 and #13). Moreover, the company will pay
more for gain 5 s — almost $ 235 dollars more.

Figure 53 depicts that the costs of using ODIs are proportional to MRTs. It is im-
portant to highlight that for all scenarios that comply with the SLA — 50 s — the
consumption of ODIs was close to 0 —#2, #3, #5, #6, #7, #9, #10, #13, #14 and
#15. In other words, the higher the MRT, the higher the consumption of ODIs. The cost
for the fastest scenario #13 is composed only by the use of RIs. On the other hand, in the
slowest scenario #11 the use of ODIs composes 64.79 % of its total cost. Perhaps the time
spent to launch the ODIs may degrade the system performance. An MCC service provider
needs to pay attention to this. Considering this, an analyst may increase the stepsize (𝜔𝑛)
in order to add more ODIs at the same time. Figure 54 depicts the relation between MRTs
and costs for the use of RIs. As we can see, the cost of RIs tends to decrease the higher
the system response time. The number of RIs to support the expected workload in the
infrastructure is small when the cost of using ODIs is high. Figure 55 depicts the relation
between MRTs and the cost of RIs and ODIs for all scenarios. We may notice that there
is a tendency for MRT to increase as the use of ODIs increases.
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Figure 54 – Comparing MRTs and Costs for Reserved Instances
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Figure 55 – Comparing MRTs and Costs for ODIs and RIs

Our SPN-based modeling strategy makes it possible to evaluate the impact of the
threshold change on performance and cost metrics. Let us now investigate whether the
change in the SOT may impact the MRTs and costs by considering our workload. For that
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aim, we have changed the SOT from 2 to 5 and evaluated its impact on MRT and costs
for all scenarios. Table 40 shows the performance and costs by considering the upper and
lower SOTs (i.e. 2 and 5). Figure 57 highlights the impact on performance for all scenarios
considering the four SOT value. As we can see, for some scenarios, changing the threshold
may vary the MRT. However, for others, the performance remains the same. For example,
the MRTs for scenarios #2, #6, #7, #9, #10, #13 and #15 remain the same or change
slightly. On the other hand, there exist some scenarios in which the change of threshold
had a significant impact on the MRT at a low cost. Figure 56 depicts the performance
difference for scenarios where the difference in MRT is greater than 5 seconds considering
the upper and lower SOTs.
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Figure 56 – Difference in MRTs and Costs Considering Thresholds for Scaling Out

Let us take some considerations. The performance for scenario #1 complies with the
SLA — 50 s — when we adopt the SOT with value 2. However, by adopting other
thresholds, the MRT increases and performance becomes out of the SLA. More specifically,
changing SOT from 2 to 5 the MRT becomes 12 s higher and it only decreases the cost
in $ 9 dollars. That is, an economy of $ 0.75 dollar for a month is too small and the gain
of 12 s in MRT represents a great impact on performance. Changing SOT from 5 to 2 for
scenario #12 the MRT decreases — 12.5 s —- and the costs remains the same —- $ 0.06 a
year. The same occurs in scenario #8 by decreasing SOT from 5 to 2. It represents a gain
of 12.4 s in performance and the cost only increases by $ 0.19. The most impactful scenario
is the #16. The MRT increase in 17 s and the cost only decrease by $ 5 per year when we
change SOT from 2 to 5. The threshold changing may only impact on performance when
the evaluate scenarios are intensive in using ODIs. For example, the cost of using ODIs
in scenarios #2, #6, #7, #10, #13, and #15 is less than $ 1 dollar. For these scenarios,
the performance remains the same when changing the threshold. Based on our models,
an analyst may perform a myriad of evaluations.

We evaluate a simple infrastructure for supporting an MCC system with only a few
VM instances. However, in a real-world context, an MCC system can consist of hundreds
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Table 40 – MRTs and Costs Considering Two Thresholds for Scaling Out

Scenarios Threshold 2 Threshold 5 DIFF

MRT (ms) Cost ($) MRT (ms) Cost ($) MRT (ms) Cost ($)

#1 48,642 455.42 60,703 446.34 12,060 9.08
#2 22,126 649.00 22,128 649.00 0,002 0
#3 35,971 422.79 40,294 416.64 4,323 6.15
#4 56,078 413.31 70,907 405.90 14,829 7.40
#5 40,858 369.85 48,046 360.52 7,189 9.33
#6 25,137 531.46 25,259 531.00 0,122 0.45
#7 22,892 590.00 22,896 590.00 0,004 0
#8 79,648 460.79 92,104 460.59 12,456 0.19
#9 28,732 534.90 30,072 531.46 1,341 3.43
#10 26,847 472.79 27,084 472.00 0,237 0.79
#11 105,684 502.67 111,855 502.83 6,171 0.16
#12 87,175 432.89 99,792 432.96 12,617 0.06
#13 21,676 708.00 21,676 708.00 0 0
#14 31,986 478.10 34,372 473.16 2,385 4.94
#15 23,699 590.27 23,763 590.00 0,065 0.27
#16 63,823 375.83 81,015 370.30 17,192 5.53

or thousands of VM instances. If the MCC service provider does not properly evaluate the
trade-off between performance and costs, it may result in financial losses and performance
degradation. Projecting this amount over a period of one year or more we may obtain a
difference of thousands of dollars.
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8.3 Case Study Three: Evaluating Absorbing Probabili-
ties in the Cloud

MCC service providers should be aware at when their systems are more likely to fin-
ish execution. As we mentioned in this work, companies may calculate the likelihood of
completing the mobile application execution or a batch of requests on a remote MCC
infrastructure within a specified period when using CDFs. MTTA is another metric eval-
uated when a service provider needs to know the average time to conclude processing
considering a specific system configuration and an expected workload. For this purpose,
we need to refine our original SPN-based model that represents the remote MCC infras-
tructure, as shown in Figure 58. After that, an evaluator can configure in the model the
system parameters related to a specific configuration and calculate CDF and MTTA.
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Figure 58 – Public Cloud MCC Infrastructure Model Refined to Calculate CDFs and
MTTAs

Let us see the changes we made in the original model for supporting transient eval-
uations. Now the model has a new place named EW (Expected Workload). This place
receives the number of tokens related to the number of requests to be processed by the
evaluated MCC system considering a specific configuration. As we can see, the place EW
is the only input place of the Arrival transition. Place Capacity, in our original model,
becomes the place PR (Processed Requests) and there is no output arc connecting it to
any transition. Place PR must be the output place for all PT𝑛 transitions. It means that
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requests are processed and stored in this new place. A new variable named BATCH needs
to be defined and it receives the number of expected requests the system needs to process.
Thus, the place EW receives the value of the variable BATCH as its initial number of
tokens. After all these structural changes, an analyst needs to define the parameters of
the evaluated scenario in the model and perform a transient evaluation on it in order to
obtain MTTA and CDFs. A transient evaluation obtains the CDFs based on the time
interval defined by the evaluator and evaluating the metric P{#PR = BATCH}. Dur-
ing the metric evaluation, the place PR represents the absorbing state in the underlying
CTMC when the number of tokens in it is equal to the value of the variable BATCH. This
metric evaluates the probability for the PR place to have the number of tokens defined
in the BATCH variable as time passes within the predefined time interval. After all the
steps mentioned above, an analyst may compute transient metrics considering a myriad
of scenarios.

We evaluated distinct scenarios for deploying a face recognition system in a public
cloud. We have considered a heterogeneous MCC infrastructure composed of two types
of VM instances. The face recognition system uses a database of 8,000 faces replicated in
each service instance. The first step in the evaluation process is to collect the time required
to process one face recognition request in each instance type as well as the time the AWS
EC2 takes to launch our ODIs and make them available for service processing. As we can
see in Table 41, the 𝛾𝑛 parameter for each VM instance has one as its value. It means
that each instance in the system must process only one request at a time. Through a
controlled experiment our testbed collected the required times. The experiment executed
and monitored 80 times both the workload in each instance and the requests to EC2 for
scaling the system out. Our testbed collected the mean values of them at the end of the
process. Table 42 shows the mean processing time registered for each instance type to
process one request. Table 43 presents the time the EC2 spent to launch our ODIs and
make them available in the system.

We have computed CDFs, MTTAs and costs by taking into account five configurations
for deploying the system (see Table 41 and Figure 59). The evaluation considered the time
required to process a set of 2,000 requests. The evaluated SLA establishes a maximum
average processing time around 3,000 s (50 minutes). First, we have computed the prob-
abilities from t = 2,000 s to t = 4,000 s for all scenarios (see Figure 59a). After, as shown
by Figure 59b, the probabilities were computed from t = 2,400 s for t = 3,000 s only for
the scenarios that meet the SLA’s performance — #1, #2, #3 and #5. Table 44 shows
the mean time to process the 2,000 requests and the related cost for using RIs over a year
considering all scenarios. Figure 60 depicts the relation between MTTAs and costs.

According to Figure 59a, the distances between the probabilities regarding the scenario
#2 is larger than the probabilities regarding the scenarios #1, #3, #4 and #5. The
probability of finishing the processing for the scenarios that attend the SLA — #1, #2,
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Table 41 – Remote MCC Infrastructure Scenarios for Absorbing Probabilities Evaluation

Instance Type 1 Instance Type 2 SOT2 SIT3 𝜔4
Type RIs ODIs 𝛾1

1 Type RIs ODIs 𝛾2
1

Sc
en

ar
io

#1 t2.medium 1 1 1 t2.large 4 1 1

4 1 1
#2 t2.medium 3 1 1 t2.large 3 1 1
#3 t2.medium 4 1 1 t2.large 1 1 1
#4 t2.medium 1 1 1 t2.small 8 1 1
#5 t2.micro 5 1 1 t2.small 8 1 1

1 Maximum number of concurrent jobs for each n-type VM instance.
2 Scaling Out Threshold.
3 Scaling In Threshold.
4The stepsize for launching n-type on-demand instances in each scale out request.

Table 42 – Processing Time Registered for Each Instance Type

Instance Type Processing Time (ms)
t2.micro 23,638
t2.small 19,075

t2.medium 10,752
t2.large 8,761

Table 43 – Time Required to Launch our ODIs

Instance Type Time for Launching (s)

t2.micro 175.06
t2.small 204.57

t2.medium 239.46
t2.large 318.34

Table 44 – MTTA and Cost for each Scenario

Scenario MTTA (s) Cost ($)
#1 2,739 2,115
#2 2,505 2,115
#3 2,990 1,179
#4 3,134 1,239
#5 2,834 1,410

#3 and #5 — becomes 100 % for all of them only after 3,000 s, whereas for the scenario
that does not attend the SLA — #4 —, this happens around 3,400 s. Table 45 shows the
probability for absorption at 3,000 s considering all evaluated scenarios. As we can see,
the system is capable of completing workload processing at 3,000 s considering scenarios
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Figure 59 – Probability Analyses of the Scenarios Based on SPNs Transient Evaluations

#1 and #2. Scenario #5 completes processing of the entire workload 100 s after scenarios
#1 and #2 have ended. The cost for scenario #3 is $ 60 dollars less than scenario #4,
but the MTTA for #3 is 144 s smaller than #4 (see Table 44). And scenario #3 offers a
probability of 100 % for absorption at 3,200 s, while scenario #4 offers 89.74 %. In other
words, the performance of scenario #3 is better and its cost is lower. The best and worst
case scenario for absorbing at 3,000 s - #2 and #4 — reflects a difference between them
of 98.26 %.
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Figure 60 – MTTA and Cost for all Scenarios

Table 45 – Absorbing Probabilities at 3,000 s

Scenario Probability
#1 100
#2 100
#3 66.96
#4 1.74
#5 99.76

Best performance could be observed when adopting the scenario #1 and #2 (see
Figure 60). Figure 59 depicts that scenario #2 has the highest probabilities for finishing
execution faster and scenario #1 has the second highest one. Scenario #2 uses six powerful
RIs (three t2.medium and three t2.large) and scenario #1 uses five ones (one t2.medium
and four t2.large). On the other hand, it is important to highlight that scenario #3
uses five powerful RIs (four t2.medium and one t2.large) and it has the fourth highest
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probabilities for finishing execution faster. Hence we may say that scenarios that use
t2.large instances in more numbers offer the best processing times — #1 and #2 (see
Table 41). In other words, it means that the use of t2.large instances in a larger number
may help decrease all processing time. Thus, it may result in a higher financial cost to
the MCC service provider. In scenarios #1 and #2, the probability to finish service for all
requests at 3,000 s is equal to 100 %. They have similar cost, but there exists a difference
between their MTTAs around 234 s. Let us consider the probability for absorption at
2,6000 s. Although scenario #2 offers a probability of 100 % for absorption at 2,600 s,
the second best scenario —#1— offers only 31.78 %. Scenario #5 offers the third least
time to process the workload at 3,000 s. This scenario uses thirteen cheaper RIs and it
costs $ 705 less than scenarios #1 and #2. Scenario #5 offers a savings of 33 % over the
scenarios #1 and #2 in one year. Scenario #5 absorbs at 3,100 s and its MTTA is 96 s
higher than scenario #1. It means that, considering our workload, the use of less powerful
instances, but in a large number, may allow the system to comply with the SLA at a low
cost.

Now, let us execute an analysis from another point of view. Evaluating the absorbing
probability of the faster and the lower scenario that meets the SLA — scenarios #2 and
#3 — we can notice a difference of 33 % between them to absorbing at 3,000 s. The
difference between their MRTs is about 485 s (i.e. more than 8 min) and scenario #2
is able to complete the entire workload processing at 3,000 s. However, the scenario #3
offers savings of $ 936 per year. Given that scenario #3 is the most constrained, the
MCC service provider should specify the observation of scenario #3 in its SLA. If an
external customer of the MCC service provider requires the MCC system to complete the
workload processing at 3,000 s, the probability for scenario #3 will always be around
67 %. Therefore, the service provider could agree to deliver the service by charging low
prices due to the limitations of the system configuration. MCC service providers may
perform accurate performance and cost analyzes evaluating MTTAs and using CDFs.

Willing to obtain the probability of absorption, the MCC service provider may con-
sider any time within the range. Probability intervals can also be exploited using CDFs.
Aiming to better analyze the remote MCC infrastructure, Figure 61 depicts the respec-
tive probabilities obeying six intervals (see Table 46). These intervals do not elucidate the
cumulative probability starting from zero but rather the difference between two moments.

The probability of absorption is greater in the T4 range compared to the other intervals
(see Table 47). Table 48 depicts the probability of absorption for all scenarios with regard
to the interval 2,700 s to 2,800 s. As we can see, the probability of absorption is higher
for the scenario #1 in that interval — 54.94 %. The scenario #5 has the second highest
absorption probability in the T4 interval — 29.59 %. With regard to the interval T5 (see
Figure 61), the probability of absorption is higher for the scenario #5 — 57.82 %. Now,
the scenario #1 has the third highest absorption probability — 9.58 %. Scenario #3 has
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Table 46 – Time Intervals Analyzed

Time Interval (s)
T1 2,400 - 2,500
T2 2,500 - 2,600
T3 2,600 - 2,700
T4 2,700 - 2,800
T5 2,800 - 2,900
T6 2,900 - 3,000

the highest absorption probability with regard the T6 interval — 54.89 %. Due to such
a myriad of interpretations, the application developer or MCC service provider should
also pay attention to probability intervals. Perhaps by considering a time interval for
absorption rather than a specific time, more cost-effective configurations may be available
in order to support the expected workload.

Table 47 – Mean Absorbing Probabilities Related to Six Intervals

Time Interval Absorbing Probability
T1 10.69
T2 8.30
T3 7.44
T4 16.90
T5 15.89
T6 13.66

Table 48 – Absorbing Probabilities with T4 Interval

Scenario Probability
#1 54.94
#2 0
#3 0
#4 0
#5 29.59

8.4 Case Study Four: Deployment Planning of MCC Sys-
tems Considering Networking Requirements

In this case study, we evaluate an MCC service composed by an app that runs in mobile
devices and a system deployed on the cloud for supporting offloading generated by the
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mobile app. Networking requirements for supporting offloading to the remote infrastruc-
ture are considered in this last case study. We consider a mobile cloud facial recognition
service that follows the principles of method-call computation offloading (KOSTA et al.,
2012). The remote face recognition system uses a database of 8,000 faces replicated in
each service instance. Users offload human faces to the remote MCC infrastructure for
face recognition. Taking this into account, it is necessary to find a suitable configuration
for supporting offloading in the cloud. Evaluating the trade-off between performance and
costs in the decision-making process.

Now, let us describe the essential parts of the source code evaluated. Algorithm 9
presents the analyzed class FaceRecognitionService that runs in the cloud. The heaviest
method, recognize, contains two heavy method calls (lines 3 and 4) that perform the face
recognition. On the other hand, Algorithm 10 demonstrates the relevant part of the source
code that runs in the mobile device. Mobile App resides in the mobile device and it has
only one offloadable method call (line 3). The method recognize is an offloadable method.
As the mobile app offloads the method call to the cloud, it means that the mobile app
does facial recognition request to the remote MCC infrastructure by passing one argument
(that is, one human face). In this case, the app connects to the front-end machine and
performs the offloading of the workload.

Algorithm 9 FaceRecognitionService
1: function 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒(𝑓𝑎𝑐𝑒)
2: ...
3: 𝑟𝑒𝑎𝑑𝐹𝑎𝑐𝑒𝐵𝑢𝑛𝑑𝑙𝑒𝑠(𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒)
4: 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝐹𝑎𝑐𝑒(𝑓𝑎𝑐𝑒)
5: ...
6: end function

Algorithm 10 Mobile App
1: function 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝐹𝑎𝑐𝑒(𝑓𝑎𝑐𝑒)
2: ...
3: 𝑟𝑒𝑠𝑢𝑙𝑡← 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒(𝑓𝑎𝑐𝑒) ◁ m_call_1
4: ...
5: return 𝑟𝑒𝑠𝑢𝑙𝑡
6: end function

We have considered a heterogeneous elastic MCC infrastructure composed of two types
of VM instances. We analyzed the costs of using VM instances and data traffic and some
performance metrics for each scenario. We evaluate the performance of the MCC sys-
tem considering the remote infrastructure and the actual BW available for supporting
offloading operations. Our mobile app sends photos for face recognition to a remote in-
frastructure and, after that, it receives the processing result containing data about the
face recognized by the system. It is important to highlight that in the cost evaluation the



160

cost of using the front-end instance was not considered. We have considered only the cost
of using VM instances that compose a specific remote configuration for service processing.
Table 49 demonstrates the four EC2 instance type that composes all scenarios and the
costs of using them as RIs and ODIs. Table 50 shows the cost per gigabyte transferred
considering the AWS price table.

Table 49 – EC2 Instances Used by all Evaluated Scenarios (AWS, 2018b)

Model vCPU Memory (GiB) Reserved ($/year) On-demand ($/hour)

t2.micro 1 1 $ 59.00 $ 0.0116
t2.small 1 2 $ 118.00 $ 0.0230

t2.medium 2 4 $ 235.00 $ 0.0464
t2.large 2 8 $ 470.00 $ 0.0928

Now, let us describe the parameters for supporting scenarios generation. The analysis
considered a period of one year and a request rate of 1/(2, 500 𝑚𝑠). On device side the
mobile app has a single scenario composed by an offlodable method-call, represented here
as the recognize() method (see Algorithm 10). On the other hand, in the cloud side we have
defined eight scenarios for evaluation and Table 51 depicts them. The remote scenarios
correspond to the configuration regarding the number of VM instance for supporting the
MCC system, the number of simultaneous requests in each instance (𝛾), and scaling policy
to be adopted. Each scenario is composed by two type of VM instances and each type has
a fixed number of RIs as well as one ODI available for use. As we can see, as the number
of ODIs is one for all scenarios then the MCC system only start one ODI per scaling
out request (i.e. stepsize 𝜔 defined as 1). The parameters 𝛾 corresponds to the number
of parallel request running in a single instance. Only scenario #5 processes more than
one request per instance at a time (𝛾 = 2). The system capacity related to the maximum
number of requests in the system at a moment consists of 100 requests (i.e. 100 tokens in
the place Capacity). The MCC system needs to transfer data in and out for supporting the
offloading operation. Table 52 shows the amount of transferred data in each user request.
As we can see, regardless of the remote scenarios, the amount of data transferred does
not vary. As we mentioned in this work, the BW may impact the performance when the
volume of data to be transferred is high or the available BW is small. We have considered
that the available BW for offloading (upload) as well as receiving data (download) may

Table 50 – Amazon EC2 Prices per Transferred Bytes (AWS, 2017)

Data Transfer OUT To Internet Price/GB
First 10 TB / month $ 0.090
Next 40 TB / month $ 0.085
Next 100 TB / month $ 0.070
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vary within a specified limit impacting the metrics in each variation (see Table 53). We
have calculated the metrics on device side by varying the available bandwidth. Depending
on the volume of data sent and received in each user request, a high degree of bandwidth
variation may result in a significant impact on evaluated metrics.

Table 51 – Scenarios for Deploying the MCC System in the Cloud

Instance Type 1 Instance Type 2 SOT2 SIT3 𝜔4
Type RIs ODIs 𝛾1

1 Type RIs ODIs 𝛾2
1

Sc
en

ar
io

s

#1 t2.medium 1 1 1 t2.large 1 1 1

4 1 1

#2 t2.medium 3 1 1 t2.large 2 1 1
#3 t2.medium 4 1 1 t2.large 1 1 1
#4 t2.medium 2 1 1 t2.large 2 1 1
#5 t2.medium 1 1 2 t2.large 1 1 2
#6 t2.medium 1 1 1 t2.micro 4 1 1
#7 t2.medium 2 1 1 t2.small 2 1 1
#8 t2.micro 4 1 1 t2.small 4 1 1

1 Maximum number of concurrent jobs for each n-type instance.
2 Scaling Out Threshold.
3 Scaling In Threshold.
4The stepsize for launching n-type on-demand instances in each scale out request.

Table 52 – Bytes Transferred in Each Request

Operation Transferred Data
Offloading 512 KB

Receiving Result 1 MB

Table 53 – Bandwidth Variation (in Megabits/s)

BW Variation (Mb/s)
Operation Min BW Expected BW

Offloading Data (UP BW) 0.1 1.0
Receiving Data (DW BW) 0.1 1.0

The first step in the evaluation process is to collect the time required to process face
recognition requests in each instance type as well as the time the AWS EC2 takes to
launch our ODIs. Through a controlled experiment our testbed collected the required
times. The testbed executed all requests remotely using one instance of each type as the
target in order to obtain the processing time (i.e. service time). The experiment executed
and monitored 80 times both the workload in each instance and the requests to EC2 for
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scaling the system out. Our testbed collected the mean values of them at the end of the
process. Table 54 presents the time the EC2 spent to launch our ODIs. Table 55 shows
the service time registered for each instance type to process 𝛾𝑛 requests simultaneously.
Figure 62 shows the service time for each instance type considering a variable (𝛾𝑛 )
number of requests being processed simultaneously in each of them. As we can see, the
more simultaneous requests per VM instance, the higher the time necessary to process
each request.

Table 54 – Time Required to Launch our ODIs

Instance Type Time for Launching (s)

t2.micro 175.06
t2.small 204.57

t2.medium 239.46
t2.large 318.34

Table 55 – Service Time

Instance
Type

𝛾1 (ms)
1 2 3 4 5

t2.micro 23,638 48,123 75,608 104,568 133,039
t2.small 19,075 35,052 53,936 70,73 86,802

t2.medium 10,752 19,131 27,018 33,428 39,673
t2.large 8,761 15,154 21,155 26,170 30,960

1 Maximum number of simultaneous jobs for each n-type instance.

Now, it is necessary to analyze some metrics in the cloud for each scenario. We have
considered the same cloud model presented in the Section 8.2. No changes in the model
occur for metrics computation and we only set the values of each parameter in the model.
Equation 8.8 obtains the expected number of requests waiting to receive service. Equa-
tion 8.9 gets the expected number of requests that receive service considering the two SI
group in the infrastructure. Equation 8.10 obtains the MSS. Equation 8.11 obtains the
MRT of the system. This last equation considers the AR — 1/(2, 500 𝑚𝑠) — and the
probability of having tokens at the place Capacity. That is, the probability of the system
being able to handle the request received. Equation 8.12 obtains the waiting time in the
queue. This equation considers the expected number of tokens in the place Queue and
the effective arrival rate. Finally, Equation 8.13 obtains the use of ODIs. As we can see in
Table 51 all scenarios can use only one ODI for each instance type in the infrastructure.
Table 56 presents some performance metrics and utilization of ODIs for each scenario. A
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Figure 62 – Service Time for Each Instance Type

stationary analysis in the model obtains these performance metrics.

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑞𝑢𝑒𝑢𝑒 =
𝑛∑︁

𝑖=1
𝑃 (𝑚(𝑄𝑢𝑒𝑢𝑒) = 𝑖)× 𝑖 (8.8)

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑒𝑟𝑣𝑖𝑐𝑒 =
𝑛∑︁

𝑡𝑦𝑝𝑒=1

(︃
𝑛∑︁

𝑖=1
𝑃 (𝑚(𝑅𝑅𝑆𝑡𝑦𝑝𝑒) = 𝑖)× 𝑖

)︃
(8.9)

𝑀𝑆𝑆 = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑞𝑢𝑒𝑢𝑒 + 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (8.10)

𝑀𝑅𝑇 = 𝑀𝑆𝑆

𝐴𝑅× (1− 𝑃 (𝑚(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) = 0)) (8.11)

𝑊𝑇 =
∑︀𝑛

𝑖=1 𝑃 (𝑚(𝑄𝑢𝑒𝑢𝑒) = 𝑖)× 𝑖

𝐴𝑅× (1− 𝑃 (𝑚(𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) = 0)) (8.12)

𝐸𝑂𝐷𝐼𝑈𝑛 = 1−
(︃

𝑛∑︁
𝑖=1

𝑃 (𝑚(𝑂𝐷𝐼𝐴𝐿𝑛) = 𝑖)× 𝑖

)︃
(8.13)

Now, we need to evaluate MTTE for each MCC scenario considering bandwidth re-
quirements. MTTE represents the time required to execute a workload of a mobile app.
The app may process it locally or remotely. MTTE comprises the communication time and
the time a remote system spent to process a request when the mobile app offloads a task.
Figure 63 depicts the SPN model that represents our mobile app executing in user devices.
This model represents only one offloadable function running in the device. More specifi-
cally, it represents a face recognition request to the MCC system deployed in the cloud.
Transition processing_time receives the MRT related to a remote MCC configuration
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Table 56 – Performance Metrics and ODIs Utilization for all Scenarios

Performance Metrics ODIs Usage
MRT (ms) Waiting Time (ms) MSS IT11 IT22

Sc
en

ar
io

s
#1 138,197 128,536 55 0.9222 0.8980
#2 14,678 4,815 6 0.0022 0.0016
#3 16,770 6,492 7 0.0050 0.0039
#4 28,380 18,715 11 0.0805 0.0576
#5 119,842 102,881 47 0.7251 0.6407
#6 172,201 154,544 68 0.9599 0.9679
#7 100,252 86,474 40 0.7328 0.7689
#8 70,965 49,841 28 0.2849 0.2646

1 Instance Type 1.
2 Instance Type 2.

evaluated. That is, processing_time represents the time it takes for a remote infrastruc-
ture to process a user request. Considering the remote processing time, volume of data
transferred in each request and available bandwidth, we may estimate the performance of
the mobile application. The SPN-based model considers the Equations 8.14 and 8.15 as
the mean delay value of the transitions representing the offloading (upload process) and
result receiving (download process) processes, respectively. 𝐵𝑊𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔 represents the
actual bandwidth allocated to offloading a request (upload) — in bits/s. 𝐵𝑊𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 rep-
resents the actual bandwidth allocated to receive a remote processing result (download)
— in bits/s. 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒_𝑜 represents the amount of data the mobile application transfers
to offload a request — in bits. 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒_𝑟 represents the amount of data that the remote
MCC system transfers to the mobile device upon completion of processing of the request
— in bits. Table 57 and Figure 64 show the respective MTTEs considering all remote
scenarios for deployment the MCC system.

RECEIVING EXECUTINGOFFLOADING

trigger_time offloading_time

FINISHSTART

processing_time receiving_time

one offloadable method-call

Figure 63 – SPN with Absorbing State Used to Calculate MTTE of an Application With
Only One Offloadable Method-Call

𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 = 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒_𝑜

𝐵𝑊𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑖𝑛𝑔

(8.14)

𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 = 𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒_𝑟

𝐵𝑊𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔

(8.15)
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Table 57 – MTTEs and Related Metrics for all Scenarios

MTTE (ms) MRT (ms) Communication Time (ms)
Min BW Exp BW1 Min BW Exp BW1 Diff

Sc
en

ar
io

s

#1 258,197 150,197 138,197

120,000 12,000 108,000

#2 134,678 26,678 14,678
#3 136,770 28,770 16,770
#4 148,380 40,380 28,380
#5 239,842 131,842 119,842
#6 292,201 184,201 172,201
#7 220,252 112,252 100,252
#8 190,965 82,965 70,965

1 Expected BW.

We can extract some conclusions by analyzing the results. MTTE is close to MRT
for all evaluated scenarios when the connection between the MCC infrastructure and the
mobile device corresponds to the expected actual BW. It is important to highlight that
the amount of data transferred is equal for all scenarios. Considering this, the remote
MCC system spends 12 s to send the result to the mobile device when it finishes the
request processing. MRT is the main aspect that influences the mobile app performance
when we consider only the expected BW. However, in a real-world context, BW may vary.
The performance of a mobile app may degrade based on the network conditions. In the
scenario #1, the MTTE with the min BW represents 800 % of the MRT. In other words,
the time the mobile app spent to send and receive data corresponds to eight times the
time the remote system needs to process the request. More specifically, the MCC system
spends 199 s to finish data traffic. The difference between the MTTE of the best and worse
scenarios — #2 and #6 — corresponds to 157 s. As we can see, BW may degrade the
performance of the mobile app. Analysts may choose the MRT that offers the best times
taking into account the BW may vary. As the amount of data is equal for all scenarios
the difference in sec between the MTTE with the minimum and expected BW is 108 s.
It means that the MTTE may vary 108 s considering the minimum and expected BW.
Let us now considers the scenarios with the minimum BW. The best scenario #2 spend
89 % of its execution time in data transfer tasks. On the other hand, scenario #6 spend
41 % of its execution in data transfer tasks. When operating with the expected BW it
is possible to choose remote MCC configuration less expensive. It means configurations
that may offer MRT high. Let us now considers the scenarios with the expected BW. The
best scenario #2 spend 44 % of its execution time in data transfer tasks. On the other
hand, scenario #6 spend only 6 % of its execution in data transfer tasks.

Let us now analyze the impact of the BW variation on MTTEs considering two network
requirements for the application. Figure 65a shows how MTTEs changes when BW varies
from 0.1 to 1.0 Mb/s. Figure 65b shows how MTTEs changes when BW varies from
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Figure 64 – MTTEs and MRTs Results

1.1 to 2.0 Mb/s. It is important to highlight that Figures 65a and 65b demonstrate the
BW variation considering the changing of the download and upload bandwidth at the
same time. In other words, both bandwidth types assume the same value represented
on the x-axis in the above-mentioned figures. As we can see, the BW variation from
0.1 to 1.0 had a substantial impact on the MTTEs. The impact on MTTEs of the BW
variation considering the upper and lower limits aforementioned is 18 s for all scenarios.
The greatest impact on MTTEs occurs when BW ranges from 0.1 to 0.4 Mb/s. MTTEs
varies 60 sec when BW varies from 0.1 to 0.2 Mb/s. MTTEs varies 20 sec when BW
varies from 0.2 to 0.3 Mb/s. MTTEs varies 10 sec when BW varies from 0.3 to 0.4 Mb/s.
After that, the impact of BW variation on MTTEs tends to decrease. An MCC service
provider needs to pay attention to this. We can see that BW requirements from 0.1 to
0.4 Mb/s can degrade the app performance. Considering this, the service provider may
define in the SLA a network requirement with a maximum lower limit around 0.4 or 0.5
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Mb/s, for example. On the other hand, the BW variation from 1.1 to 2.0 had little effect
on the MTTEs of the scenarios (see Figure 65b). The impact on MTTEs of the BW
variation considering the upper and lower limits aforementioned is 4.9 s for all scenarios.
It is important to highlight that this behavior depends on the volume of data transferred.
Figure 66 depicts the impact of the bandwidth variation on the MTTEs considering the
worst BW condition and expected BW condition. Developers should carefully evaluate
the effect of the available BW variation on the performance metrics in order to define
network requirements.
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Figure 65 – MTTEs Considering BW Variation

The next step in the evaluation process is to identify the expected TP for each MCC
system configuration in the cloud. TP corresponds to the number of user requests the
remote MCC system process per unit of time. The arrival rate, system capacity, number
of SIs, and service time affect the system throughput. The TP for an n-type instance
service group corresponds to the product of the firing rate of the 𝑃𝑇𝑛 transition and
the expected number of tokens in the place 𝑅𝑅𝑆𝑛 (see Equation 8.16). Thus, the system
throughput is the sum of the throughput of all instance groups running in the cloud (see
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Equation 8.17). Little law states that we may obtain TP when we know the MSS — that
is, the mean number of requests in the system— and MRT (see Equation 8.18) (JAIN,
1990). A stationary analysis in the model obtains TP using Equations 8.17 or 8.18. TP
supports the analyst to estimate the volume of data traffic during a specific period.

𝑇𝑃𝑛 =
(︃

𝑧∑︁
𝑖=1

𝑃 (𝑚(𝑅𝑅𝑆𝑛) = 𝑖)× 𝑖

)︃
× 1

𝑃𝑇𝑛

(8.16)

𝑇𝑃 =
𝑧∑︁

𝑛=1
𝑇𝑃𝑛 (8.17)

𝑇𝑃 = 𝑀𝑆𝑆

𝑀𝑅𝑇
(8.18)

Now, let us estimate the volume of transferred data generated by each scenario. As
we have stated, Table 52 presents the number of bytes transferred for processing one user
request. Using Equation 8.19 it is possible to find out the TTB. TTB corresponds to the
data volume transferred during a period and, to obtain it, it is necessary multiplying: (i)
the system throughput (TP) — in requests/sec; (iii) the period of time the system is
up and running (Time) — in sec; and finally (ii) the volume of data transferred in each
request (Bytes).

𝑇𝑇𝐵 = 𝑇𝑃 × 𝑇𝑖𝑚𝑒×𝐵𝑦𝑡𝑒𝑠 (8.19)

Now, using Equation 8.20 it is possible to obtain the financial cost for data transfer
(FCDT) (see Section 7.3). The cost calculation should only include the outbound data
traffic generated by the remote infrastructure out to mobile devices. We have considered
that the data traffic sent from the cloud to a mobile device is 1 MB for each user request
considering all evaluated scenarios (see Table 52). For sake of conciseness, we have defined
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only the same amount of transferred data for all scenarios. However, in a real-world
context, each scenario may transfer a different number of bytes. The amount of data
that a system transfers over a period allows the service provider to estimate the FCDT
considering an MCC scenario for deployment.

𝐹𝐶𝐷𝑇 =
𝑛∑︁

𝑢𝑟=1
𝑇𝑇𝐵𝑢𝑟 × 𝑃𝑟𝑖𝑐𝑒𝑃𝑒𝑟𝐺𝐵𝑢𝑟 (8.20)

Table 58 summarizes the throughput, the number of requests per one month, the
TTB and its related cost for one month and one year for all scenarios. As we can see, the
difference between the cost for each scenario is only a few dollars. In our case study, it
means that the data traffic cost has an insignificant impact on the cost evaluation process
when deciding the most appropriate configuration since the volume of transferred data in
each request is the same for all scenarios. However, an analyst may trace decisions when
comparing MRT, MTTE, and cost of using VM instances.

Table 58 – Throughput, Data Traffic and its Related Costs for all Scenarios

Total Outgoing Transferred Bytes
Month Year

Tp / sec Req / month TB1 Cost ($) TB1 Cost ($)

Sc
en

ar
io

s

#1 0.395415059 1,024,916 0.98 90.08 11.89 1,086
#2 0.399999895 1,036,800 0.99 91.12 12.03 1,098
#3 0.399999813 1,036,800 0.99 91.12 12.03 1,098
#4 0.399999768 1,036,799 0.99 91.12 12.03 1,098
#5 0.396200287 1,026,951 0.98 90.26 11.92 1,088
#6 0.392362291 1,017,003 0.97 89.39 11.80 1,078
#7 0.399166600 1,034,640 0.99 90.94 12.00 1,096
#8 0.399987918 1,036,769 0.99 91.12 12.03 1,098

1 Terabyte.

Figure 67 depicts the relation between the use of ODIs and RIs for all scenarios.
Scenarios #2 and #6 are the best and worst scenario, respectively. MRT for scenario #2
is almost 12 times lower than MRT for #6. On the other hand, the costs of using RIs
in scenario #2 is 3.5 times higher then #6. The difference in their costs is about $ 690
dollars a year. The use of RIs accounts for most of the total cost of using VM instances
in #2. In this scenario, the system only uses ODIs for a few hours per year. Scenario
#6 offers the worst performance and is intensive in the use of ODIs. The cost of using
ODIs in #6 is a bit high when compared to the costs of using RIs in the same scenario.
The cost to use ODIs in #6 is 222 times greater than #2. The higher the cost of using
RIs, the smaller the MRT —#2, #3, #4, #8. The best scenarios #2 #3 #4 #8 are not
intensive in the use of ODIs (see Figure 70). The system performance worsens as the use
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of ODIs increases — #1, #5, #6, and #7. Given this context, an MCC service provider
may contract more RIs to handle the incoming requests. Perhaps the time it takes to
launch an ODI by the cloud provider may degrade performance while increasing the cost.
In scenarios #5, #1, and #6, the cost of using ODIs is high than the cost of using RIs.
Scenario #6 is the most intensive in using ODIs (see Table 56). However, the cost of using
ODIs in #6 is small compared with the scenarios #5 and #1. This is because #6 uses
one t2.micro ODI that is cheaper - $ 0.01 cent per hour - while #5 and #1 are intensive
in the use of one t2.large ODI — $ 0.09 cents per hour. Considering our case study, the
tendency is for MRT to increase as the cost per use of ODIs increases.
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Figure 67 – MRTs and Costs of Using VM Instances

Figure 68 depicts the relation between the costs of data traffic and use of VM instances.
As we can see, the cost of data traffic is similar for all scenarios. The cost of data traffic
is higher than the cost for using instances in scenarios #8 and #6. Performance in #3
is better than #4, but the cost of using VM instances is higher in #4. Scenario #3 uses
four t2.medium and one t2.large instances, while #4 uses two t2.medium and two t2.large
instances. The performance for processing a single request in t2.medium is similar to the
performance in t2.large — 2 s of difference. However, there exists a difference of $ 74
dollars between them when we compare only the cost of using the instances. One RI of
type t2.medium costs $ 235 dollars while one RI of typet2.large costs $ 470 dollars a year.
Scenario #2 uses three t2.medium and two t2.large instances as RIs. Scenario #3 uses
four t2.medium instances and only one t2.large as RIs. The difference between them is
only 2 s, but there exists a difference of $ 232 dollars. It may be more advantageous for an
MCC service provider to contract more t2.medium than t2.large instances. Considering
our case study and workload, we may say that there is no advantage in using t2.large
instances considering both performance and cost.

Figure 69 depicts the relation between MRT and total costs for one year (i.e. costs
for data traffic and use of VM instances) (see Table 59). The performance for scenario
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Figure 68 – MRTs and Costs for Data Traffic and use of VM Instances

#8 is 2.5 lower than #6. However, the difference in their costs is approximately $ 149
dollars less for #8. Scenario #8 uses less expensive instances but in a larger number.
More specifically, #8 uses four t2.micro and four t2.small as RIs and one instance of each
type as ODI. The utilization of ODIs for scenario #8 corresponds to 27 % and the cost
of using them for one year is approximately $ 82 dollars (see Tables 56 and 59). Scenario
#1 is the most expensive scenario and consists of one t2.medium and one t2.large RIs,
but this scenario is intensive in the use of ODIs. The utilization of the two ODIs (one
t2.medium and one t2.large) for this scenario corresponds to 90 %. AWS charges $ 0.04
cents per hour to use one t2.medium instance as ODI and it charges $ 0.09 cents per hour
to use one t2.large instance. For this scenario, the cost of using ODIs makes up 63.85 %
of the total cost of VM instances for one year (see Table 59). MRT for scenario #4 is 12
s larger than #3, but the difference in their costs is only $ 74 dollars per year. An MCC
service provider can lower the MRT in 12 s by choosing scenario #3 with an additional
$ 6 monthly. Let us look at the scenarios that offer MRT more than 100 s — #7, #5, #1,
#6. Scenario #6 offers the worst performance and is the most intensive scenario in the
use of ODIs. However, its cost is small when compared to scenarios #7, #5, #1. Scenario
#6 uses one t2.micro ODI and one t2.small ODI and the cost of using them is only $ 0.01
and $ 0.02 cents per hour, respectively. The use of ODIs is intensive by adopting this
scenario but the cost of them per hour is small.

Figure 70 depicts the utilization of ODIs for all scenarios considering the two types of
ODIs in the system. The first step in estimating the utilization of ODIs is to obtain the
expected use of ODIs in the system. The analyst obtains the expected use of ODIs by
subtracting the maximum number of n-type ODIs (MNODI𝑛) by the expected number of
tokens in the place ODIAL𝑛. After that, an analyst obtains the utilization of ODIs for a
given instance type by dividing the expected use of n-type ODIs by the MNODI𝑛 variable
(see Equation 8.21). The expected number of tokens in the ODIAL𝑛 place is obtained



172

M
RT

 (s
ec

)

200

180

160

140

120

100

80

60

40

20

0

3000

2500

2000

1500

1000

500

0

Co
st

 ($
)

#2 #3 #4 #8 #7 #5 #1 #6

Scenario

MRT Total Cost for One Year

Figure 69 – MRTs and Total Costs for one Year

Table 59 – MRTs and Costs for all Scenarios Considering a Period of One Year

MRT (ms) Costs ($) for
ODIs RIs Use of Instances Data Traffic Total

Sc
en

ar
io

s

#1 138,197 1,104 705 1,809 1,086 2,895
#2 14,678 2 1645 1,647 1,098 2,745
#3 16,770 5 1,410 1,415 1,098 2,513
#4 28,380 79 1,410 1,489 1,098 2,587
#5 119,842 815 705 1,520 1,088 2,608
#6 172,201 488 471 959 1,078 2,037
#7 100,252 452 706 1,158 1,096 2,254
#8 70,965 82 708 790 1,098 1,888

through a stationary analysis in the model. This metric “n-type ODI Utilization” (ODIU𝑛)
gives us the expected utilization of an n-type ODI. For this case study, the variable
MNODI𝑛 takes 1 as value. Using Equation 8.21 it is possible to obtain the utilization
considering more than one ODIs of the same type in the system. As we can see, scenarios
#1, #6, and #7 are the most intensive in the use of ODIs. The utilization of the two ODIs
types corresponds to 90 % for scenario #6. The cost of using one RI of type t2.medium
for one year is $ 235. The cost of using one RI of type t2.micro corresponds to $ 59 dollars
for the same period. The sum of them corresponds to $ 294 dollars per year. Table 59
demonstrates that the cost of using one t2.micro and one t2.medium as ODIs during one
year corresponds to $ 488 dollars for scenario #6. A difference of $ 194 compared to using
them as RIs. In this context, an analyst may contract them as RIs in order to save money.
Considering our SPN-based modeling strategies, a myriad of scenarios can be taken by
an MCC service provider for supporting accurate analyzes. Making possible to evaluate
the trade-off between performance and costs and to choose the best scenarios considering
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the requirements and limitations of the project.

𝑂𝐷𝐼𝑈𝑛 = 𝑀𝑁𝑂𝐷𝐼𝑛 − (∑︀𝑧
𝑖=1 𝑃 (𝑚(𝑂𝐷𝐼𝐴𝐿𝑛) = 𝑖)× 𝑖)
𝑀𝑁𝑂𝐷𝐼𝑛

(8.21)
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Figure 70 – Utilization of ODIs for all Scenarios
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Chapter

9
Conclusion

We have proposed two Stochastic Petri Net (SPN)-based modeling strategies to repre-
sent MCC systems running both on mobile devices as well as on a remote infrastructure
deployed in a public cloud. Through our modeling strategies, it is possible to evaluate
performance and requests making by mobile users at application design time considering
mobile devices and a remote infrastructure available for supporting offloading. In addi-
tion, our models can represent the communication process between both sides. Four per-
formance metrics are supported: Mean Time to Execute (MTTE), Mean Response Time
(MRT), Cumulative Distribution Function (CDF), and Throughput. The metrics related
to the mobile device are MTTE, CDF, and throughput. The metrics related to the cloud
are MRT, CDF, and throughput. MTTE comprises the time to process the application
running on a mobile device. On the other hand, MRT comprises the amount of time the
remote MCC infrastructure spends to process a request sent by a mobile device. Our
approach considers a large number of parameters and each parameter is a characteristic
of the MCC system or its environment that affects the system execution. This work con-
siders as parameters of an MCC system to be deployed in a public cloud its capacity in
terms of the number of requests that may be there at a time, arrival rates, number and
types of VM instances, number of simultaneous requests that each instance can process,
maximum number of available on-demand instances (ODIs), time spent by the cloud to
launch the system’s ODIs, thresholds for scaling the system in/out, and stepsizes. On the
other hand, as parameters on the device side, this work considers the application’s source
code, bandwidth (BW), and local and remotely processing times. Public clouds charge for
resource consumption and it is necessary to use resources appropriately. Our SPN-based
cloud modeling strategy makes it possible to represent remote MCC systems with variable
processing and buffers capacities, variable demands, scaling thresholds, stepsizes, and a
large number of VM instances running in the infrastructure. By combining different VM
instance types, simultaneous jobs per instance, stepsizes and scaling thresholds, it is pos-
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sible to offer different response times for each offloading scenario. However, each of these
variables affects resource consumption as well as the cost that an MCC service provider
pays to an IaaS provider. MCC service providers need to pay attention to the use of elastic
resources when using IaaS public clouds. An application may use an unlimited amount
of resources and this affects the amount of money that the service provider needs to pay
at the end of a period. For that aim, we have proposed an approach that supports the
evaluation of resource consumption and costs using SPNs. The cost metrics represent the
cost of resource consumption in the cloud. We consider the cost of using VM instances
and data traffic. The cost of using VM instances corresponds to the cost of using reserved
instances (RIs) and ODIs. The cost of data traffic depends on how much data the MCC
system in the cloud sends to mobile users. Each IaaS service provider has its own pricing
policy. This work adopted the AWS pricing model. However, another pricing model from
a provider other than AWS may be adopted. In addition, our approach considers the
available BW to send and receive data. In this way, representing the communication time
to transfer data. Our models demonstrate the impact of the available BW variation on the
metrics. Thus, considering that a large number of users may use the mobile application
with specific network conditions, it allows a more accurate evaluation by developers about
the performance of their applications taking into account specific network requirements,
offloading scenarios, and remote deployment configurations. We have evaluated four case
studies to demonstrate the feasibility of our approach. To validate our device modeling
strategy, we evaluated an image processing application. To validate our cloud modeling
strategy, we evaluated the deployment of a mobile cloud face recognition system on AWS.
Our approach has proven to be feasible and it highlights the most appropriate scenarios
for offloading and deploying an MCC system in a public cloud. Using the proposed models
enable companies to plan their mobile cloud infrastructures with minimal effort.

9.1 Contributions
Following, we list some contributions of this work:

An SPN-based modeling strategy that represents both applications running
on mobile devices and the use of the actual bandwidth available for sup-
porting offloading operations. Making it possible to predict the mobile application’s
performance by considering specific network requirements and remote configurations for
supporting offloading.

An SPN-based modeling strategy that may represent a heterogenous elastic
MCC infrastructure considering a set of parameters for deploying an MCC
system in public clouds. Our modeling strategy considers thresholds and stepsizes for
scaling the system and it supports the definition of scaling policies. Making possible to



176

evaluate system performance and resources consumption for each possible configuration
on the remote side. Using our approach, it is possible to represent an MCC infrastructure
composed of different types of VM instances. In addition, our approach makes it possible
to define scaling policies for each type of VM instances. A heterogeneous infrastructure
can deliver cost savings by combining expensive and less expensive instances at the same
time. We have validated our modeling strategy through the evaluation of the deployment
of a mobile cloud face recognition system on AWS. For other types of workloads, there
may be some refinement in the model in order to adapt it to more accurately represent
the architecture and system under consideration.

An approach supported by stochastic models for predicting resource consump-
tion and costs in public clouds. Using our approach, it is possible to perform the
trade-off between performance and costs when evaluating the most suitable configuration
for deploying an MCC system. For that aim, considering the cost of using reserved and on-
demand instances and data traffic for a given period. Our case studies depicted that some
expensive configurations may offer worse performance than less expensive configurations
and that small change in some parameters may have a great impact on performance.

9.2 Limitations and Future Works
Following, we list some limitations and possible future work:

Considering more than one workload in the same infrastructure. Our approach
considers only one type of workload running in the same infrastructure. It means that
the MCC service provider needs to maintain an infrastructure for each workload type. An
analyst may evolve our models in order to represent two or more types of workloads in
the same infrastructure.

Evolving our models considering a context-aware offloading approach. Making
possible the on-the-fly performance predictions and the choice of the best offloading sce-
nario for the moment. Our approach is not a context-aware offloading approach. Thus,
network congestion is not addressed in our approach and it is a limitation of our work.
However, our solution may be adapted considering strategies proposed by other authors.
Transforming the ideas presented herein in a context-aware approach.

Using optimization algorithms. Combining our modeling strategies with optimization
algorithms to automate the evaluation of the state space of the evaluated parameters.
Using optimization algorithms makes it possible to evaluate the state space of a set of
parameters and to find the most appropriate scenarios for offloading data and code and
deploying an MCC system in the public cloud. For that aim, considering performance and
financial requirements.
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Evaluating other consumable resources in the public cloud. In this work, we have
considered as consumable resources on the cloud the use of VM instances and volume of
data traffic. However, developers may evolve our approach to represent other services and
resources not supported by it.

Evaluating other types of workloads. In this work, we evaluate a mobile face recog-
nition system deployed on a public cloud. Perhaps for some type of workloads, there may
be necessary to refine the modeling strategy in order to represent more accurately other
aspects of the evaluated system. Considering this, the effectiveness of our approach may
be evaluated considering other types of workloads.

Using a hybrid infrastructure. As some public clouds APIs is compatible with other
cloud systems, for example, Eucalyptus (NURMI et al., 2009) and OpenNebula (MILOJIčIć;

LLORENTE; MONTERO, 2011), MCC systems may be deployed in private and public in-
frastructures at the same time. Thus, our cloud modeling strategy may evolve to represent
parts of the MCC system deployed in a public cloud and other ones in a private infras-
tructure. For example, sensitive data may be stored on private infrastructure, while a
public cloud provides processing power to handle the system’s workload. Using a hybrid
infrastructure may save money while meeting strict system security requirements.

Evaluating other metrics other than performance, such as dependability met-
rics. Using other metrics other than performance metrics may allow an MCC service
provider to more accurately evaluate other characteristics of its system. For example, us-
ing dependability metrics make it possible to evaluate the system’s ability to perform in
the presence of faults. In this context, analysts may evaluate the cost of using redundant
VM instances to ensure a specific level of availability or reliability for their systems.
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APPENDIX

A
JMETER

JMeter is an open source software, designed to perform load and functional tests. We
have used JMeter for supporting us during the validation process of the proposed mod-
eling strategies. Figure 71 depicts JMeter’s configuration screen. As we have pointed out
in this work, JMeter by default does not support the generation of requests considering
exponential times. Considering this, we have implemented a script to support the gener-
ation of exponential arrival times. Listening A.1 shows the custom add-on implemented
by us. The script has to be attached to a BS Timer and, as we can see, it considers a
predefined variable named beforeTime.

Figure 71 – JMeter’s Configuration Screen

1 // Ar r i va l r a t e ( in m i l l i s e c o n d s )
double lambda = 1 .0 / 1 0 0 0 0 . 0 ;

3



192

St r ing l o c = props . get ( " beforeTime " ) ;
5

i f ( l o c == n u l l )
7 props . put ( " beforeTime " , " 0 . 0 " ) ;

9 Double beforeTime = Double . parseDouble ( l o c ) ;

11 l og . i n f o ( "### value f o r the v a r i a b l e ' beforeTime ' = " + beforeTime ) ;

13 double uniform = Math . random ( ) ;

15 double exponentialRandomNumber = −Math . l og ( uniform ) / lambda ;

17 l og . i n f o ( "### value f o r the v a r i a b l e ' exponentialRandomNumber ' = " +
exponentialRandomNumber ) ;

19 exponentialRandomNumber = exponentialRandomNumber + beforeTime ;

21 // Store the new exponent i a l time generated in the prede f i ned beforeTime v a r i a b l e
to be used in the next Thread .

props . put ( " beforeTime " , exponentialRandomNumber . t o S t r i n g ( ) ) ;
23

l og . i n f o ( "### Next value f o r the v a r i a b l e ' beforeTime ' = " +
exponentialRandomNumber ) ;

25
re turn ( i n t ) exponentialRandomNumber ;

Listing A.1 – Code to Generate Requests in JMeter Considering Exponential Times
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APPENDIX

B
AWS EC2 API

import com . amazonaws . auth . AWSStat icCredent ia lsProvider ;
2 import com . amazonaws . auth . BasicAWSCredentials ;

import com . amazonaws . r e g i o n s . Regions ;
4 import com . amazonaws . s e r v i c e s . ec2 . AmazonEC2 ;

import com . amazonaws . s e r v i c e s . ec2 . AmazonEC2ClientBuilder ;
6 import com . amazonaws . s e r v i c e s . ec2 . model . ∗ ;

8 import java . i o . BufferedReader ;
import java . i o . F i l e ;

10 import java . i o . Fi leReader ;
import java . u t i l . ArrayList ;

12 import java . u t i l . L i s t ;

14 pub l i c c l a s s AwsEC2Client
{

16 p r i v a t e s t a t i c AwsEC2Client awsEC2Client = n u l l ;
p r i v a t e s t a t i c AmazonEC2 c l i e n t = n u l l ;

18 p r i v a t e BasicAWSCredentials c r e d e n t i a l s = n u l l ;
p r i v a t e s t a t i c f i n a l S t r ing CREDENTIALS_FILE = " s r c / c r e d e n t i a l s . txt " ;

20
p r i v a t e AwsEC2Client ( )

22 {
l o a d C r e d e n t i a l s ( ) ;

24 c l i e n t = AmazonEC2ClientBuilder .
standard ( ) .

26 withCredent i a l s (new AWSStat icCredent ia lsProvider ( c r e d e n t i a l s )
) .

withRegion ( Regions .US_EAST_1) .
28 bu i ld ( ) ;

}
30

/∗∗
32 ∗ This method l i s t s the i n s t a n c e in a given s t a t e

∗
34 ∗ @param s t a t e The s t a t e o f the i n s t a n c e

∗ Pr in t s the i n s t a n c e id , i n s t a n c e pub l i c IP & tags o f the i n s t a n c e in a
g iven s t a t e
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36 ∗∗/
pub l i c void l i s t I n s t a n c e s ( S t r ing s t a t e )

38 {
List <Reservat ion> r e s e r v a t i o n s = c l i e n t . d e s c r i b e I n s t a n c e s ( ) .

g e tRese rva t i ons ( ) ;
40

System . out . p r i n t l n ( " Here i s a l i s t o f EC2 i n s t a n c e s in " + s t a t e + "
s t a t e : " ) ;

42 f o r ( Reservat ion r e s e r v a t i o n : r e s e r v a t i o n s )
{

44 List <Instance > i n s t a n c e s = r e s e r v a t i o n . g e t I n s t a n c e s ( ) ;
f o r ( Ins tance i n s t a n c e : i n s t a n c e s )

46 {
i f ( s t a t e . equa l s IgnoreCase ( i n s t a n c e . g e tS ta t e ( ) . getName ( ) ) )

48 {
System . out . p r i n t f ( " Ins tance Id : %s | | In s tance Publ ic IP : %s

| | In s tance Tags : %s%n" ,
50 i n s t a n c e . g e t In s tance Id ( ) , i n s t a n c e . getPubl i c IpAddress

( ) , i n s t a n c e . getTags ( ) ) ;
}

52 }
}

54 }

56 /∗∗
∗ This method launches an EC2 i n s t a n c e

58 ∗
∗ @param imageId The ID o f the AMI

60 ∗ @param secur i tyGroup Secur i ty Group o f AMI
∗ @param key_name Name o f EC2 key pa i r

62 ∗ @param numOfInstances Maximum number o f i n s t a n c e s to be launched
∗ Launches an EC2 i n s t a n c e with g iven s p e c i f i c a t i o n

64 ∗∗/
pub l i c void launchEC2Instance ( S t r ing imageId , S t r ing securityGroup , S t r ing

key_name , i n t numOfInstances )
66 {

try
68 {

RunInstancesRequest runInstancesRequest = new RunInstancesRequest ( ) ;
70

runInstancesRequest .
72 withImageId ( imageId ) .

withInstanceType ( InstanceType . T2Micro ) .
74 withMinCount (1 ) .

withMaxCount ( numOfInstances ) .
76 withKeyName (key_name) .

withSecur ityGroups ( secur i tyGroup ) ;
78

RunInstancesResult runIns tance sResu l t = c l i e n t . runIns tances (
runInstancesRequest ) ;

80
System . out . p r i n t l n ( numOfInstances + " EC2 i n s t a n c e ( s ) c r ea ted

s u c c e s s f u l l y " ) ;
82 }

catch ( Exception e )
84 {

System . out . p r i n t l n ( e . getMessage ( ) ) ;
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86 }
}

88
/∗∗

90 ∗ This method s t a r t s an EC2 i n s t a n c e
∗

92 ∗ @param i n s t a n c e I d The ID o f the stopped i n s t a n c e
∗ S t a r t s the EC2 i n s t a n c e which i s in stopped s t a t e

94 ∗∗/
pub l i c void startEC2Instance ( S t r ing i n s t a n c e I d )

96 {
try

98 {
Star t Ins tance sReques t s t a r t In s t anc e s Req ue s t = new

Star t Ins tance sReques t ( ) ;
100 s t a r t In s t anc e sR eq ue s t . w i th Ins tance Ids ( i n s t a n c e I d ) ;

S t a r t I n s t a n c e s R e s u l t s t a r t I n s t a n c e s R e s u l t = c l i e n t . s t a r t I n s t a n c e s (
s t a r t In s ta nc e sR eq ue s t ) ;

102
System . out . p r i n t l n ( " Ins tance s t a r t e d s u c c e s s f u l l y " ) ;

104 }
catch ( AmazonEC2Exception e )

106 {
System . out . p r i n t l n ( e . getErrorMessage ( ) ) ;

108 }
}

110
/∗∗

112 ∗ This method s tops an EC2 i n s t a n c e
∗

114 ∗ @param i n s t a n c e I d The ID o f the i n s t a n c e
∗ Stops the EC2 i n s t a n c e

116 ∗∗/
pub l i c void stopEC2Instance ( S t r ing i n s t a n c e I d )

118 {
try

120 {
StopInstancesRequest s topInstancesReques t = new StopInstancesRequest

( ) ;
122 s topIns tancesRequest . w i th Ins tance Ids ( i n s t a n c e I d ) ;

S topIns tance sResu l t s t op In s tance sRe su l t = c l i e n t . s t o p I n s t a n c e s (
s topIns tancesReques t ) ;

124
System . out . p r i n t l n ( " Ins tance stopped s u c c e s s f u l l y " ) ;

126 }
catch ( AmazonEC2Exception e )

128 {
System . out . p r i n t l n ( e . getErrorMessage ( ) ) ;

130 }
}

132
/∗∗

134 ∗ This method reboot s an EC2 i n s t a n c e
∗

136 ∗ @param i n s t a n c e I d The ID o f the i n s t a n c e
∗ Reboots the EC2 i n s t a n c e

138 ∗∗/
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pub l i c void rebootEC2Instance ( S t r ing i n s t a n c e I d )
140 {

try
142 {

RebootInstancesRequest reboot Ins tancesReques t = new
RebootInstancesRequest ( ) ;

144 r eboot Ins tancesReques t . w i th Ins tance Ids ( i n s t a n c e I d ) ;
RebootInstancesResu l t r eboo t In s tance sResu l t = c l i e n t . r eb oo t In s tance s (

reboot Ins tancesReques t ) ;
146

System . out . p r i n t l n ( " Ins tance rebooted s u c c e s s f u l l y " ) ;
148 }

catch ( AmazonEC2Exception e )
150 {

System . out . p r i n t l n ( e . getErrorMessage ( ) ) ;
152 }

}
154

/∗∗
156 ∗ This method prov ides the complete d e s c i p t i o n o f EC2 i n s t a n c e

∗
158 ∗ @param i n s t a n c e I d The ID o f the i n s t a n c e

∗ Pr in t s i n s t a n c e id , image id , i n s t a n c e s ta te , i n s t a n c e type , i n s t a n c e
s t a t e & monitor ing s t a t e

160 ∗∗/
pub l i c void d e s c r i b e I n s t a n c e ( S t r ing i n s t a n c e I d )

162 {
List <Reservat ion> r e s e r v a t i o n s = c l i e n t . d e s c r i b e I n s t a n c e s ( ) .

g e tRese rva t i ons ( ) ;
164

f o r ( Reservat ion r e s e r v a t i o n : r e s e r v a t i o n s )
166 {

f o r ( Ins tance i n s t a n c e : r e s e r v a t i o n . g e t I n s t a n c e s ( ) )
168 {

i f ( i n s t a n c e . g e t In s tance Id ( ) . equa l s ( i n s t a n c e I d ) )
170 {

System . out . p r i n t f ( " Ins tance with id %s has the f o l l o w i n g
a t t r i b u t e s \n " +

172 "AMI: %s \n" +
" Type : %s \n" +

174 " Ins tance State : %s \n" +
" Monitoring s t a t e : %s \n" ,

176 i n s t a n c e . g e t In s tance Id ( ) ,
i n s t a n c e . getImageId ( ) ,

178 i n s t a n c e . getInstanceType ( ) ,
i n s t a n c e . g e tS ta t e ( ) . getName ( ) ,

180 i n s t a n c e . getMonitor ing ( ) . g e tS ta t e ( ) ) ;
r e turn ;

182 }
}

184 }

186 System . out . p r i n t l n ( "No i n s t a n c e with " + i n s t a n c e I d + " found " ) ;
}

188
/∗∗

190 ∗ This method s t a r t s the monitor ing o f an EC2 i n s t a n c e



197

∗
192 ∗ @param i n s t a n c e I d The ID o f the i n s t a n c e

∗ S t a r t s monitor ing on the i n s t a n c e with g iven i n s t a n c e id
194 ∗∗/

pub l i c void startMonitor ingAnInstance ( S t r ing i n s t a n c e I d )
196 {

try
198 {

MonitorInstancesRequest monitor InstancesRequest = new
MonitorInstancesRequest ( ) ;

200 monitorInstancesRequest . w i th Ins tance Ids ( i n s t a n c e I d ) ;
Moni tor Ins tancesResu l t mon i to r Ins tancesResu l t = c l i e n t .

moni tor Ins tances ( monitor InstancesRequest ) ;
202 System . out . p r i n t l n ( " Monitory i n s t a n c e with i n s t a n c e id : " +

i n s t a n c e I d ) ;
}

204 catch ( AmazonEC2Exception e )
{

206 System . out . p r i n t l n ( e . getErrorMessage ( ) ) ;
}

208 }

210 /∗∗
∗ This method s tops the monitor ing o f an EC2 i n s t a n c e

212 ∗
∗ @param i n s t a n c e I d The ID o f the i n s t a n c e

214 ∗ Stops the monitor ing on the i n s t a n c e with given i n s t a n c e id
∗∗/

216 pub l i c void stopMonitor ingAnInstance ( S t r ing i n s t a n c e I d )
{

218 t ry
{

220 UnmonitorInstancesRequest unmonitorInstancesRequest = new
UnmonitorInstancesRequest ( ) ;

unmonitorInstancesRequest . w i th Ins tance Ids ( i n s t a n c e I d ) ;
222 UnmonitorInstancesResult unmonitor InstancesResu l t = c l i e n t .

unmonitorInstances ( unmonitorInstancesRequest ) ;
System . out . p r i n t l n ( " Stopped monitor ing i n s t a n c e with i n s t a n c e id : " +

i n s t a n c e I d ) ;
224 }

catch ( AmazonEC2Exception e )
226 {

System . out . p r i n t l n ( e . getErrorMessage ( ) ) ;
228 }

}
230

pub l i c s t a t i c AwsEC2Client getEC2Client ( )
232 {

i f ( awsEC2Client == n u l l )
234 {

awsEC2Client = new AwsEC2Client ( ) ;
236 }

238 re turn awsEC2Client ;
}

240
p r i v a t e void l o a d C r e d e n t i a l s ( )
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242 {
try

244 {
F i l e f i l e = new F i l e (CREDENTIALS_FILE) ;

246 BufferedReader br = new BufferedReader (new Fi leReader ( f i l e ) ) ;

248 St r ing l i n e ;
L i s t <Str ing > items = new ArrayList <>() ;

250 whi le ( ( l i n e = br . readLine ( ) ) != n u l l ) {
items . add ( l i n e ) ;

252 }

254 St r ing accessKey = items . get (0 ) ;
S t r ing secretKey = items . get (1 ) ;

256
c r e d e n t i a l s = new BasicAWSCredentials ( accessKey , secretKey ) ;

258 }
catch ( Exception e )

260 {
System . out . p r i n t l n ( e . getMessage ( ) ) ;

262 }
}

264
pub l i c void d e l e t e I n s t a n c e ( Ins tance ins tance , AmazonEC2Client ec2 )

266 {
TerminateInstancesRequest t i r = new TerminateInstancesRequest ( ) ;

268 t i r . w i th Ins tance Ids ( i n s t a n c e . g e t In s tance Id ( ) ) ;
ec2 . t e rminate In s tance s ( t i r ) ;

270 }

272 pub l i c L i s t <Instance > s e a r c h I n s t a n c e s ( S t r ing template , S t r ing s tate , S t r ing ip ,
AmazonEC2Client ec2 )

{
274 List <Instance > i n s t a n c e s = new ArrayList<Instance >() ;

L i s t <Instance > a l l I n s t a n c e s = l i s t I n s t a n c e s ( ec2 ) ;
276

f o r ( Ins tance i n s t a n c e : a l l I n s t a n c e s )
278 {

i f ( ip == n u l l && i n s t a n c e . getImageId ( ) . equa l s ( template ) && i n s t a n c e .
g e tS ta t e ( ) . getName ( ) . c o n s t a i n s ( s t a t e ) )

280 {
i n s t a n c e s . add ( i n s t a n c e ) ;

282 }
e l s e

284 i f ( i n s t a n c e . getImageId ( ) . equa l s ( template ) && i n s t a n c e . ge tS ta t e ( ) . getName ( )
. c o n s t a i n s ( s t a t e ) && i n s t a n c e . getPr ivate IpAddress ( ) . conta in s ( ip ) )

{
286 i n s t a n c e s . add ( i n s t a n c e ) ;

}
288 }

290 re turn i n s t a n c e s ;
}

292

294 pub l i c void ins tant ia teTime ( St r ing templateID , s t r i n g cloudManagerHost , S t r ing
c r e d e n t i a l F i l e ) throws InterruptedExcept ion , Inval idKeyException ,
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NoSuchAlgorithmException , S ignatureExcept ion , UnsupportedEncodingException
{

296 ArrayList<Str ing > r e s u l t = new ArrayList <>() ;

298 Thread t ;
L i s t e n e r l i s t e n e r = new L i s t e n e r ( ) ;

300
t = new Thread ( l i s t e n e r ) ;

302 t . s t a r t ( ) ;

304 AmazonEC2Cliente ec2 = getEC2 ( cloudManagerHost , c r e d e n t i a l F i l e ) ;

306 ArrayList<Str ing > types = new ArrayList<Str ing >() ;

308 types . add ( " t2 . micro " ) ;
types . add ( " t2 . smal l " ) ;

310 types . add ( " t2 . medium" ) ;
types . add ( " t2 . l a r g e " ) ;

312
f o r ( S t r ing type : types )

314 {
f o r ( i n t i = 0 ; i < 80 ; i++)

316 {
r e s u l t . add ( " c r e a t i n g i n s t a n c e " + type + " " + i + " , " + (new Date ( ) ) .

getTime ( ) ) ;
318 runConversor ( templateID , type , ec2 ) ;

320
l i s t e n e r . accept ( ) ;

322

324 r e s u l t . add ( " r e c e i v i n g i n s t a n c e " + type + " " + i + " , " + (new Date ( ) ) .
getTime ( ) ) ;

In s tance i n s t a n c e = s e a r c h I n s t a n c e s ( templateID , " run " , nu l l , ec2 ) . get (0 ) ;
326

328 r e s u l t . add ( " removing i n s t a n c e " + type + " " + i + " , " + (new Date ( ) ) .
getTime ( ) ) ;

d e l e t e I n s t a n c e ( ins tance , ec2 ) ;
330

332 Thread . s l e e p (1000 ∗ 30 ∗ 1) ;
}

334
Thread . s l e e p (1000 ∗ 60 ∗ 5) ;

336 }
}

338 }

Listing B.1 – AWS EC2 API
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