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Resumo

O crescimento do poder de processamento dos computadores tem renovado o interesse na
área de virtualização. Através da técnica de virtualização, um único servidor tem seus recursos
particionados em diversos ambientes de execução separados, aumentando a eficiência no uso
dos recursos computacionais. Para aplicar virtualização de servidores, é preciso selecionar
uma abordagem de virtualização, que pode variar desde a completa emulação do hardware,
como a técnica de virtualização total, até alternativas mais leves, como a virtualização baseada
em contêineres, que particiona os recursos físicos de um servidor em múltiplas instâncias
isoladas de processamento. Independentemente da abordagem de virtualização, a aplicação
de virtualização de servidores leva a um aumento da sobrecarga do sistema. Desta forma, a
melhoria da eficiência supracitada tem gerado um novo desafio: mesmo com a sobrecarga
adicional proveniente da virtualização, é possível fornecer um serviço em ambiente virtualizado
com desempenho similar, ou até mesmo superior, ao de infraestruturas não virtualizadas?
Esta dissertação propõe uma avaliação de desempenho baseada em medições para investigar
quantitativamente o comportamento de um agrupamento de servidores web cache em ambientes
virtualizados e não virtualizados. Os primeiros resultados analisados não somente endorsaram
o impacto sobre o desempenho, mas também revelaram uma degradação da disponibilidade
no fornecimento do serviço web cache em agrupamentos virtualizados. Para combater esse
problema, a metodologia proposta aplica redução de sobrecarga com o objetivo de alcançar 5
noves de disponibilidade para o fornecimento do serviço web cache em ambientes virtualizados.
Além disso, a aplicação da técnica de experimentos fatoriais fracionados resultou em métricas de
desempenho favoráveis em ambientes virtualizados. Os resultados dos estudos de caso que foram
conduzidos permitiram identificar cenários nos quais os agrupamentos de servidores web cache
virtualizados se comportaram de maneira favorável em comparação com os não virtualizados,
produzindo recomendações sobre o uso otimizado dos agrupamentos virtuais investigados.

Palavras-chave: Avaliação de Desempenho. Virtualização de Servidores. Virtualização
baseada em Contêineres. Análise de Performabilidade



Abstract

The growth of computers processing power have been renewing the interest in virtual-
ization area. Through virtualization technique, a single server has its resources partitioned into
multiple separated execution environments, increasing computer resources usage efficiency. To
apply server virtualization, it is necessary to select a virtualization approach, which may differ
from complete emulation of entire underlying hardware, as full virtualization, to lightweight
alternatives, such as container-based virtualization, that partitions the physical machine resources
into multiple isolated user-space instances. Regardless of virtualization approach, application
of server virtualization drives to increase of system overhead. So, aforementioned efficiency
improvement has led to a new challenge: even with additional overhead of virtualization, is it
possible to provide a service on virtualized environment with similar, or even better, performance
of non-virtualized infrastructures? This dissertation proposes a measurement performance evalu-
ation to quantitatively investigate the behavior of web cache server clusters on virtualized and
non-virtualized environments. First analyzed results not only endorsed impact over performance,
but also revealed availability degradation on providing virtualized web cache server clusters.
To tackle this issue, proposed methodology focused on overhead reduction to reach five 9’s of
availability when providing web cache server cluster on virtualized infrastructure. Additionally,
applying screening fractional factorial experiment technique resulted in favorable performance
metrics on virtualized environments. Results of executed use cases enable to identify scenarios
in which virtualized web cache server clusters perform better in comparison with non-virtualized
ones, producing recommendations about optimized usage of investigated virtualized clusters.

Keywords: Performance Evaluation. Server Virtualization. Container-based Virtualization.
Performability Analysis
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1
Introduction

Interest in virtualization has resurged since computers have enough processing power to
use virtualization as a technique of partitioning the resources of a single server into multiple sep-
arated execution environments (MEDINA; GARCÍA, 2014). Computing resources of providers
are pooled to serve multiple clients through a multi-tenant model, with dynamically assigned
and reassigned resources, whether physical or virtual, following to consumer demand. Such
characteristic is called resource pooling, one of essential features of cloud computing. (MELL;
GRANCE, 2011). With virtualized infrastructures, resources can be readily allocated and re-
leased in an elastic way, even automatically, to scale rapidly outward and inward proportional
with necessary demand.

Since resumption of virtualization usage, efforts have been directing to improve the
performance of infrastructures that employ virtualization. Such efforts aim to achieve a similar
performance of native non-virtualized environments with the remarkable challenge of trying to
overcome it, even with one additional abstraction layer: the hypevisor.

Also called Virtual Machine Monitor (VMM), the hypervisor places on top of physical
resources, enabling their collective use by multiple systems, aiming to increase efficiency of
such physical resource. Fortunately, the software and hardware technologies have significantly
developed to bring the overheads of virtualization down, so that virtualization is considered
acceptable for almost every workload (MCDOUGALL; ANDERSON, 2010). Even with such
improvements, hypervisor virtualization solutions, such as full virtualization and paravirtualiza-
tion, when applied to reach similar performance of non-virtualized environments, have presented
overhead levels that prevent this goal. A third option, called container-based operating system
virtualization, claims to have lower performance overheads of virtualization solutions. It creates
multiple isolated user-space instances, partitioning physical machines resources and directly
using OS system calls, while concurrent hypervisor solutions are required to provide a complete
emulation of entire underlying hardware. On web environment, virtualization refers to operating
system abstraction, yielding virtualized servers. An outstanding advantage of using virtual
servers is the possibility of a more granular control of how the hardware resources are used.
The technology, thus, reduces the number of needed servers, thereby saving money and using
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resources more efficiently.
Both hypervisor and container-based virtualization solutions provide a great opportu-

nity to build elastically scalable systems, which are able to provide additional capability with
minimum costs. A solid approach, called server virtualization, efficiently permits software to
be separated from the physical hardware, presenting logical servers of computing resources,
in which they can be accessed with more advantages over the original configuration (TOPE
et al., 2011). Server virtualization enables an improving technique, called server consolidation.
Originally deployed on different servers, it aggregates multiple services and applications on one
physical server, allowing to reduce the power consumption of underlying facilities and to resolve
hardware underutilization.

At same time that server consolidation enables cost reduction of equipments, it also
promotes a further challenge: reduce virtualization overheads to keep agreed performance levels
of provided virtualized services. Additionally, although a substantial amount of research works
on virtualization copes with performance analysis, no results about impacts over availability in
conjunction with performance analysis through measurements evaluations were identified: even
if any obstacles occur, service should be provided smoothly so users can use cloud computing
services. Availability is intrinsically defined as the probability that a system is operating
satisfactorily at any point in time when used under stated conditions (STAPELBERG, 2009).
Reach high availability having influence on profit losses avoidance and negative consequences
from service down times.

As described by Zavarsky et al. (TOPE et al., 2011), server virtualization has created
some growing problems and disorder on virtualized components, such as unresponsive virtualized
systems, crashed virtualized server, and misconfigured virtual hosting platforms. From these
variations for the normal operational conditions, one key factor that can impact on server
virtualization availability is a phenomenon of unresponsiveness, called software hang, that is a
major threat to software dependability (SONG; CHEN; ZANG, 2010). It causes time intervals of
system’s inability to produce appropriate reacting, resulting in ungiven responses.

To struggle against such undesirable behavior, iterative infrastructure refining methodol-
ogy is used. It aims to reduce overheads and improve availability by tackling unresponsiveness
phenomenon, drives to an innovative approach on server virtualization performability analysis.
The methodology applied in this dissertation uses measurements to evaluate performance of
an I/O bound network service when failures are considered. On such scenarios, the impacts of
server virtualization overhead on availability, through measurements, were not established by
previous known related researches.

To drive this research, a web cache cluster will be used as aforementioned I/O bound
network service. Web cache clusters will enable to evaluate the behavior of both intensive
disk I/O and network I/O operations. Web cache systems are applied on network environments
to improve the quality of users access when requests are performed. Web caches have been
deploying to reduce network traffic and provide better response times. A web cache cluster is a
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group of separated caching proxies configured to act like a single server (WESSELS, 2001). It is
a powerful solution to enhance capability and availability of web cache system. Many networks
present cache clusters to serve more objects and provide redundant services. There are many
advantages on using clustering machines as a single server, such as: scalability, maximization of
resource efficiency (while caching more objects), avoiding single point of failure when using
some specific caching configurations (like transparent proxying (AGUILAR; LEISS, 2006)),
reliability, and reduce response times (DUAN; GU, 2010).

The adopted methodology was based on replication of experiments, aiming at measure
performance metrics of cluster environments. It requires an impactful amount of configuration.
The tuning volume is even wider on virtualized infrastructures. To overcome this issue, employed
methodology applies automation of experiments replications. It is also desired to produce a
statistically significant number of samples, aiming to output relevant conclusions about analyzed
performability factors. Such approach is resembling to proposed experiments automation
performed by Huber et al. (HUBER et al., 2010), where each set of experiments is executed
multiple times to characterize the impact of considered factors.

Based on previous stated arguments, this research aims to use measurement performance
evaluation technique to verify the possibility of executing a virtualized web cache cluster with
similar availability and performance levels, or even higher, when compared with native non-
virtualized infrastructure. A methodology that applies intensive effort in overheading reduction
of virtualized environments was used. It employs system capacity optimization using replication
of automated experiments.

1.1 Motivation

Internet and infrastructure service providers conduct researches to minimize computa-
tional resources costs on their data centers. With the rise in energy costs and the advancement
of computer processing power and memory capacity, running separate, under-utilized server
hardware with specific roles is no longer a luxury (AHMED, 2014), and thus technologies such
as server virtualization and server consolidation have arisen.

Even within the narrower context of computer I/O, focused on this research, virtualization
has a long, diverse history, exemplified by logical devices that are deliberately separate from their
physical instantiations. For example (WALDSPURGER; ROSENBLUM, 2012), in computer
storage, a logical unit number (LUN) represents a logical disk that may be backed by anything
from a partition on a local physical drive to a multidisk RAID volume exported by a networked
storage array.

Server and network virtualization enable to truly create a virtual infrastructure. Virtual
data centers, virtual storage systems, and virtual desktop PCs are just a few real-world applica-
tions where virtualization is being heavily used. As one of the core components, virtual machine
monitor affects the performance of virtualization systems to a great extent, so it’s important to
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measure and analyze the performance of systems when provided over virtual machine monitors.
The initial goal of this research would be to accomplish a performance evaluation

between virtualized and non-virtulalized environments, motived by the possibility of execute
services over former infrastructure with similar, or even higher, performance of latter one.
Nevertheless, a deeper issue took place: initial experiments results revealed a usual incapacity of
analyzed virtualized system to response on expected time. Such incapacity had been attributing to
virtualization infrastructure: in non-virtualized scenarios, such problem did not arise. Thus, the
initial performance evaluation evolved to a performability analysis, due to system’s unavailability.

1.2 Objectives

The main objective of this research is to analyze quantitatively the behavior of web
cache server cluster on virtualized and non-virtualized environments, proposing approaches to
provide such service on virtualized environment with similar, or even higher, performance than
on non-virtualized one.

The following collection of specific objectives were identified:

� to distinguish workload characteristics of web cache traffics based on previous
academic researches;

� to identify workload generation tools that best fit to web cache environment stimulus,
based on their workload characteristics;

� to identify behavior differences between web services over virtualized and non-
virtualized environments through conducted experiments;

� set up and manage of private cloud computing test environment to execution of
measurement experiments;

� to implement an automated mechanism for experiments configuration in order to
minimize the work due to the high number of required tuning steps;

� to compare and to explain why some metrics produce different behaviors under
virtualized and non-virtualized scenarios;

� to investigate which factors produce behavior differences between virtualized and
non-virtualized web cache server clusters.

1.3 An overview

This section presents an overview of the applied activities and methods aimed at reaching
the proposed goals of the dissertation.
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To perform a quantitative analysis of the behavior of web cache server clusters, the first
activity carried out was to conduct a state of the art study about web cache server behavior,
intending to identify which probability distributions best fit to web objects’ popularity pattern and
size. In this context, the Arlitt and Williamson research (ARLITT M.F.; WILLIAMSON, 1997)
presented a workload characterization study for Internet Web servers. Through collected data
from six different web server access logs, three from academic environments, two from scientific
research institutions, and one from a commercial Internet provider, and subsequent study about
file sizes, it could be observed that file size distributions are heavy-tailed, i.e., distribution
matches well with the Pareto distribution. Regarding web objects’ popularity pattern, Breslau
et. al (BRESLAU et al., 1999), through the analysis of six traces from proxies at academic
institutions, corporations and Internet Service Providers, found that the distribution of page
requests generally follows a Zipf-like distribution.

Aware of the distributions that should be used, a workload generation tool was selected
and configured to excite the web cache server cluster with an I/O bound workload. Two web
cache server clusters were configured: a non-virtualized one, that was used to yield the baseline
results, and a virtualized one, whose behavior was investigated.

Two different virtualization infrastructures were analyzed: a full virtualization one, based
on a KVM hypervisor managed by OpenNebula (OPENNEBULA, 2014), and a container one,
based on OpenVZ managed by Proxmox (PROXMOX, 2014). The first series of virtualized
experiments were conducted in the KVM based infrastructure, aiming at investigating the
performance metrics of the web cache cluster. Their results presented a high level of unavailability.
It was detected that a KVM-based virtualized web cache server cluster was unable to answer
due to the overload of the full virtualization infrastructure, resulting in the phenomenon of
unresponsiveness.

The observed issue of unresponsiveness, tackled in this research, was explored by
Song, Chen, and Zang (SONG; CHEN; ZANG, 2010). Software hang, a phenomenon of
unresponsiveness, is still a major threat to software dependability. Their work presented a survey
of hang-related bugs on three server-side and one client-side applications. 5.58% of studied
software hangs were related to carelessly configuring software, and 16.74% were due to the
environment, caused by unexpected environments that applications were depending on. So,
precise software configuration and environment set up were deeply explored recommendations
in this research, as approaches for the avoidance of the unresponsiveness phenomenon.

From these first results, the availability of the web cache server cluster began to be
monitored. For non-virtualized cluster, no unresponsiveness failures were observed. Based
on this observation, a target availability of five 9’s was established as a goal for virtualized
environments. So, a fair comparison between both non-virtualized and virtualized cluster might
be conduced, and the five 9’s of availability was stated as a requirement for the performance
analysis. Several techniques of overhead reduction were investigated and applied to reach this
goal. The scenarios that were evaluated through conducted experiments, and that presented the
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required five 9’s of availability, had their performance metrics studied and discussed through
several case studies.

The procedure of overhead reduction enables to reach five 9’s of availability, however
a large number of configuration activities must be performed, so that executing them without
automation will increase the runtime in a prohibitive way. Also the monitoring process, as
well as storage of the results, must be automated to reduce the time spent in the execution of
experiments. The chosen alternative to automate the experiments was the development of a
lightweight solution. The TISVEP (Tuning Infrastructure for Server Virtualization Experiment
Protocol) protocol was design, implemented and subsequently applied to automatically manage
the execution of the experiments.

1.4 Dissertation Structure

The remaining parts of the dissertation are organized as follows:
Chapter 2 presents fundamental concepts about performability, all necessary details

about explored web cache server functionalities, including its related workload characterization,
different clustering architectures, replacement policies and inter-cache communication protocols.
Concepts about virtualization technology are also explored. Together, this triad constitutes the
foundations of current research.

Chapter 3 presents TISVEP - Tuning Infrastructure for Server Virtualization Experiment
Protocol. It was developed as a solution to automate experiments replications, whose execution
time costs, due to amount of required configuration tunings, reach a prohibitive level due to the
amount of replications that would be performed.

Chapter 4 presents adopted methodology for performability analysis of both studied
virtualized and non-virtualized web cache cluster infrastructures, the complete made actions
to reach high availability for web cache server cluster on virtualized environments, as well
as performance results on these high available virtualized scenarios, compared with baseline
non-virtualized configuration. Furthermore, case studies and results obtained from automated
experiments are also discussed. Covered scenarios enable to: analyze scalability of containers
for provisioning of high available web cache server cluster; profile hardware events to investigate
causes of some better performance metric levels on virtualized environments; and solutions of
high available full storage capability of web cache server clusters on testbed infrastructure.

Chapter 5 presents the related works, as well as a comparative discussion between them
and this work.

Chapter 6 draws some conclusions, shows reached contributions and possible future
works.
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2
Background

This chapter presents the theoretical basis over which the present Master’s dissertation
was developed. First, performability concepts are held, highlighting the concepts of availability
interval, User-Perceived Service Availability. Afterwards, web cache proxy service, and its fea-
tures, are presented. Lastly, server virtualization and cloud computing are discussed, completing
the necessary knowledge to understand the fundamentals that compound presented work.

2.1 Applied Performability Concepts

The term performability was originally used by Meyer (MEYER, 1980), mainly to
reflect attributes like reliability and other associated performance attributes like availability, and
maintainability. Meyer states that if the performance of a computing system is “degradable”,
performance and reliability issues must be dealt with simultaneously in the process of evaluating
system effectiveness. For this purpose, a unified measure, called performability was introduced
and the foundations of performability evaluation and modeling are established. For performability
analysis, both availability as reliability metrics can be combined with performance metrics
aiming at assess the system capacity of deliver its service. As described in (VARGAS; BIANCO;
DEETHS, 2001), depending on a customer’s situation, system requirements may favor reliability
or availability.

Reliability is the continuity of correct service. It measures the ability of a system to
function continuously without interruptions. The academic definition of reliability, R(t), is the
probability of a system performing its intended function over a given time period, t (AVIZIENIS;
LAPRIE; RANDELL, 2001).

On the other hand, availability is the readiness for correct service. It is intrinsically
defined as the probability that a system is operating satisfactorily at any point in time when used
under stated conditions, where the time considered includes the operating time and the active
repair time.

One example of a customer’s situation: reliability must have a higher precedence in
cases where systems are placed in remote areas and maintenance is expensive. Nevertheless, the
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availability is always required (AVIZIENIS; LAPRIE; RANDELL, 2001).
Availability ratings are commonly quantified as the number of nine’s. Five 9’s, also

called by high availability, is a common expectation availability for critical systems. Table 2.1
presents the maximum service downtime for traditional availability ratings (BAUER; ADAMS,
2012).

Table 2.1: Service availability and downtime ratings

Number
of 9’s

Service
Availability

(%)
System
Type

Annualized
Down

Minutes
Practical
Meaning

1 90 Unmanaged 52596.00
Down 5 weeks

per year

2 99 Managed 5259.60
Down 4 days

per year

3 99.9 Well managed 525.60
Down 9 hours

per year

4 99.99 Fault tolerant 52.60
Down 1 hour

per year

5 99.999 High availability 5.26
Down 5 minutes

per year

6 99.9999 Very high availability 0.53
Down 30 seconds

per year

7 99.99999 Ultra availability 0.05
Down 3 seconds

per year

The interval availability (RUBINO; SERICOLA, 1993) concept is applied for estimat-
ing availability during the adopted experiments. It is a dependability measure defined as the
fraction of time during which a system is operational over a finite observation period. For this
research, the interval availability is measured at client-side. Conceptually, such approach is
called user-perceived service availability (SHAO et al., 2009). The user-perceived service
availability is the system availability observed by the user, with the system operational or not.
The system can be working, however may be unresponsive due to, for example, overheading,
yielding some time out events. Considering such scenario, the system is not working properly
for the viewpoint of the users.

The following relationship model is used to calculate availability(A) during finite obser-
vation periods of adopted experiments:

A =
up time

operational cycle
=

up time
up time+down time

�
 �	2.1

The operational cycle is the overall time period of operation being investigated, whereas up time

is the total time in which the system was working properly, to user viewpoint, during the
operational cycle.

The unresponsiveness events are collected, in preset finite observation periods, summed,
and used as the down time factor of Equation 2.1. The events in which the service answered
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correctly are also collected and summed. This summed value is used as up time factor in the
aforementioned equation. For example, consider a web application that performs requests to a
web server. It is used a finite observation period of 1 hour. If 4 failures are observed, the interval
availability, with the service unresponsiveness being checked every second, will be equal to:

A =
up time

up time+down time
=

3596
3596+4

= 99.888%
�
 �	2.2

The result of expression 2.2, A=99.888%, shows that two nines of availability were
achieved. Similarly, if 3 failures are observed, A = 99.916%, i.e., three 9’s of availability. An
availability of 100% is reached if the service is able to answer all 3600 requests, one per second,
without response failures.

Table 2.2 summarizes above results. It shows the number of failures and the resulting
availability.

Table 2.2: Number of failures X Resulting Availability

Finite
observation period

(h)
Number of

failures
Resulting

availability

1 4 99.888%

1 3 99.916%

1 0 100%

The target percentage of availability on analyzed system is five nines: 99.999%, equiva-
lent to a down time of 6.05 seconds per week.

2.1.1 Performance

Users, administrators, and designers of computer systems are all interested in perfor-
mance evaluation. Their goal is to obtain or provide the highest performance at the lowest
cost. This goal has resulted in continuing evolution of higher performance and lower cost
systems (JAIN, 1991).

When one is confronted with a performance-analysis problem, there are three fundamen-
tal techniques that can be used to find the desired solution. These are measurements of existing
systems, simulation, and analytical modeling (LILJA, 2005). The key consideration in deciding
the evaluation technique is the life-cycle stage in which the system is (JAIN, 1991).

Measurements are possible only if the evaluated system already exists, or at least some-
thing similar to it. They generally provide the best results since, given the necessary measurement
tools, no simplifying assumptions need to be made. This characteristic also makes results based
on measurements of an actual system the most believable in comparison with the other techniques.
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If the evaluated system is a new concept, analytical modeling and simulation are the
appropriated techniques to be used. Analytical modeling and simulation can be used for situations
where measurement is not possible, but in general it would be more convincing to others if the
analytical modeling or simulation is based on previous measurement (JAIN, 1991).

The analytical modeling uses a set of mathematical descriptions of the system, such
as equations and functions, to describe its behavior. Despite these models consider specific
parameters of a system, they can be easily adapted to other systems. During the construction of
the models, one should take into account their complexity and practicality.

A simulation of a computer system is a program written to model important features of
the system under analysis. Since simulators are nothing more than computer programs, they
can be easily modified to study the impact of changes made to almost any of the simulated
components (LILJA, 2005).

The choice of an appropriate evaluation technique depends on the problem being solved.
Some key differences among presented solutions are flexibility, cost, believability and accuracy.
The flexibility of a technique is an indication of how easy it is to change the system to study
different configurations. Analytical modeling and simulation are high flexible, whereas measure-
ment technique provide information about only the specific system being measured. Regarding
to the cost, that corresponds to the time, effort, and money necessary to perform the appropriate
experiments, analytical modeling and simulations are the preferred techniques, in comparison
with measurements, due to the simplifications that they can offer to evaluate the system under
analysis. On the other hand, believability and accuracy are higher for measurement, since no
simplifying assumptions need to be made (LILJA, 2005).

2.1.2 Software Hang

Almost every user of modern computer software has had the annoying experience of the
unresponsiveness problem known as soft hang (WANG et al., 2008). Also known as software
hang, it forms a major threat to the dependability of many software systems.

Increasing complexity of large software systems introduces several sources of non
determinism, which may lead to hang failures: the system appears to be running, but part of its
services is perceived as unresponsive. As described by Zavarsky et al. (TOPE et al., 2011), server
virtualization has created some growing problems and disorder, such as unresponsive virtualized
system.

According to Song et al. (SONG; CHEN; ZANG, 2010), 5.58% of reported software hang
bugs are related to misconfiguration due to carelessly configured software; 15.88% are related
to design problems, caused by application design errors, maintenance mistakes or unexpected
working scenarios; and 16.84% issues related to unforeseen environments applications depending
on. Such troubles sum 38.80% of total reports collected from bug databases of three web server
applications.
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Aiming to avoid previously experienced aforementioned issues related to applications
misconfiguration and unforeseen working scenarios, automating configuration and execution of
experiments, as well as posterior storage of generated results, were employed. Experiments au-
tomation is a powerful tool for minimizing appearance of human errors due to manual replication
of setup procedures.

Along this research, such unresponsiveness phenomenon on web cache server provided
on virtualized environments was observed. An aggressively tuning approach was mandatory to
overcome such problem when aiming to reach high available web cache server clusters.

2.1.3 Profiling

There are a set of tools that computer systems experts can use to investigate the perfor-
mance of the such systems. They can be categorized as providing system-wide or per-process
informations (GREGG, 2013). Most of the tools are based on either counters, regarding to
several statistics maintained by the operating systems, or tracing, that collects per-event data for
analysis. However, there are also performance tools that are based on profiling.

A profile provides an overall view of the execution behavior of a program (LILJA,
2005). It aims at revealing interaction between software and underlying machine. Profiling tools
characterizes a target by collecting samples of its behavior.

Based on how profilers collects information, they are classified in event-based or statisti-
cal profilers. Event-based profiling is triggered by any performance monitor event that occurs on
the processor. Statistical profilers checks the Program Counter (PC) at regular intervals to deter-
mine the state of the executing software. Profiling can also be used on untimed hardware events,
such as CPU hardware cache misses (GREGG, 2013). One main advantage of hardware events
is its lightweight approach to collect execution profiles in production environments, resulting in
negligible overhead.

Manufacturers of modern processors include performance event counters registers. They
are used to count specific processor events, such as data-cache misses, or the duration of events,
such as the number of clock cycles that an application spent outside of halt state (DEVICES,
2010). The events provided are architecture-specific. The hardware manuals available for the
processors are the core reference for the available events.

Profiling can be used as a technique of performance tuning, as well as to investigate
possible bottlenecks that can result in system’s overheads. Several research works have been
using profiling of hardware events as a technique to compare performance between virtualized
and non-virtualized infrastructures (YE et al., 2010; DU; SEHRAWAT; ZWAENEPOEL, 2011;
APPARAO; MAKINENI; NEWELL, 2006; APPARAO et al., 2008).
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2.2 Web Cache Service

The goal of cache systems utilization is store data and programs most recently accessed,
in a faster memory. This principle is used on web proxy cache systems. Web caching is a crucial
technology in Internet because it represents an effective means for reducing bandwidth demands,
improving web server availability, and reducing networks latencies (DUAN; GU, 2010).

Web proxy cache systems are applied on network environments to improve the quality
on access from users when requests are performed. They act as application-level intermediaries
for Web requests which retain copies of previously requested resources in the hope of improving
overall quality of service by serving the content locally (COOPER; DILLEY, 2001). They store
requested objects nearest of end user, usually inside local area network, so that if same objects
are requested again, by any host belonging to the network, it will not be necessary to yield
another request to the origin server, since a copy of considered object is already stored on the
web cache server (WESSELS, 2004).

Immediate advantages of employ web cache services is as much save external link
bandwidth utilization as reduce latency on response times to requests from internal network
users, since requested objects are served from the cache instead of the original server.

The term cache hit refers to the situations when a web client requests an object and it
is stored on cache. Otherwise, it is called a cache miss. One way to measure the effectiveness
of a web cache system is through hit ratio (G., 2001.)(WESSELS, 2001). Hit ratio, also called
cache hit ratio (or document hit ratio) (TOTTY et al., 2002) is the percentage of requests that are
satisfied as cache hits (WESSELS, 2001) , measured as the ratio of the total number of hits to
the total number of all transactions. Usually, this includes both validated and invalidated hits.
Validated hits can be tricky because these requests are forwarded to origin servers, incurring
slight bandwidth and latency penalties. Note that the cache hit ratio tells only how many requests
are hits - it doesn’t tell how much bandwidth or latency was saved. Other metrics that can be
analyzed to measure the benefits of web cache utilization are byte hit ratio, saved bandwidth,
and response times.

Byte Hit Ratio (BHR) is a more appropriate metric to analyze bandwidth consumption,
since different objects will vary in size. Byte hit ratio represents the fraction of all bytes
transferred that were served from cache. It is measured by the ratio of total volume (a sum of
response sizes) of hits to the total volume of all transactions. Quantitative values of BHR shows
the bandwidth saved by the cache (GONZALEZ-CANETE; CASILARI; TRIVINO-CABRERA,
2006).

2.2.1 Replacement Policies

The cache replacement policy parameter determines which objects are evicted (replaced)
when disk space is needed (CACHE.ORG, 2013). Replacement policies aims to maximize the hit
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ratio. Usually a cache assigns some kind of value to each object and removes the least valuable
ones (WESSELS, 2001). Caching researchers and developers have proposed and evaluated
numerous replacement algorithms. Those discussed here are policies supported by Squid web
proxy cache server (WESSELS, 2001):

� Least Recently Used (LRU): most popular replacement algorithm used by web caches.
LRU removes the objects that have not been accessed for the longest time. Every time
that an object is accessed, his replacement priority is restarted, meaning that it will be
the last object selected to be replaced by web proxy cache server. Squid provides two
versions of LRU: one implemented of linked list (original list based LRU policy) and
one implemented on heap. The latter, according to (DILLEY; ARLITT; PERRET,
1999), has a better performance, considering hit ratio and byte hit ratio, than the
former.

� Least Frequently Used (LFU): similar to LRU, but instead of selecting based on
time since access, the significant parameter is the number of accesses. LFU replace
objects with small access counts and keeps objects with high access counts. One
drawback of this algorithm is cache pollution: if a popular object becomes unpopular,
it will remain in the cache a long time, preventing other newly popular objects from
replacing it. One possibility to overcome this debit, Squid supports an enhanced
version of Last Frequently Used algorithm, called heap LFU with Dynamic Aging
(heap LFUDA) (DILLEY; ARLITT; PERRET, 1999). This variant of LFU uses a
dynamic aging policy to accommodate shifts in the set of popular objects. In the
dynamic aging policy, the cache age factor is added to the reference count when an
object is added to the cache or an existing object is modified. This prevents previously
popular documents from polluting the cache. Instead of adjusting all key values in
the cache, the dynamic aging policy increments the cache age when evicting objects
from the cache, setting it to the key value of the evicted object. This has the property
that the cache age is less than or equal to the minimum key value in the cache.

� Greedy-Dual Size (GDS): it assigns value to cached objects based on the cost of a
cache miss and the size of the object. GDS does not specify exactly what cost means,
offering a great optimization flexibility. Some values that can be applied as cost
are latency (time it takes to receive a response), number of packets transmitted over
the network or the number of hops between the origin server and the cache. Squid
uses a variant implementation of GDS, called heap GDS-Frequency (heap GDSF). It
takes into account frequency of reference. Furthermore, Squid keeps popular objects
with smaller size in the cache: if two cached objects are with same popularity, the
object with larger size will be purged. It optimizes object hit ratio by keeping smaller
popular objects. On the other hand, it achieves a lower byte hit ratio, since it evicts
larger (possibly popular) objects.
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(a) Hierarchical Architecture

(b) Mesh Architecture

Figure 2.1: Web Cache Cluster Architectures

2.2.2 Web Cache Clusters

A web cache cluster is a group of separated caching proxies configured to act like a
single server (WESSELS, 2001). It is a potent solution to enhance capability of web cache
system. Many networks presents cache clusters to serve more objects and provide redundant
services. In truth, there are many advantages on using clustering machines as a single server, as:
scalability, maximization of resource efficiency (while cache more objects), avoiding single point
of failure when using some specific caching configurations, like transparent proxying, reliability
and reduce response times (DUAN; GU, 2010).

Because of the endless growth of Internet, the Web proxy cache system using single
computer could not meet the increasing client demand. Web proxy cache cluster, a typical
cooperative proxy system, is a powerful solution to enhance Web proxy cache system’s capacity
(DUAN; GU, 2010). On local network cache, two typical architectures are applied: mesh and
hierarchical. They differ on communication approach performed among nodes that composes
cluster.

Caching hierarchy is the name generally given for a collection of web proxy cache servers
that forward requests to one another (WESSELS, 2001). Members of a hierarchy have either
parent or siblings relationship. Parent nodes can forward cache misses for their children, whereas
sibling nodes are not allowed to forward them, as can be seen in Figure 2.1a. Groups of siblings
nodes can not compound a hierarchy at all. In these cases, where there is not a hierarchical sense,
the collection of servers is called a cache mesh, as shown in Figure 2.1b.

Although hierarchies usually yield high hit ratios for the intermediate and topmost nodes,
they possess two main drawbacks: (i) the benefit (in terms of response time) for end-users is
not always possible (especially if the topmost cache lies behind a slow link), (ii) the upper
level nodes may become overloaded (BAKIRAS; LOUKOPOULOS; AHMAD, 2003). Mesh
architectures have the merit of join equal systems homogeneously, nevertheless they present
some drawbacks: (i) organizing N proxies in a mesh topology introduces scalability problems,
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since the number of queries is of the order of N2, (ii) the contents of some nodes may extensively
overlap.

2.2.3 Intercache Protocols

Intercache protocols aims to enable communication among servers that compose a
collection of web proxy caches. There are some different roles that a server can perform on
such environment, like parent or sibling. Whatever the role, it is necessary the presence of
a communication protocol that enables the exchange of information about objects stored in
cache. Without communication protocols, mechanisms to query nearby caches about a given
document are impracticable. Therefore, avoid using intercache protocols on web cache cluster
environments precludes information exchange among nodes that compounds a cluster.

Squid provides implementation of four different intercache protocols: Internet Cache
Protocol (ICP), Cache Array Routing Protocol (CARP), Hypertext Caching Protocol (HTCP),
and Cache Digests. Their performance features related to hit ratio, response times and bandwidth,
that allow optimization on web cache cluster environment, are discussed below, focusing on
drawbacks and advantages presented on each protocol.

Internet Cache Protocol: ICP (WESSELS; CLAFFY, 2014a,b) is a lightweight protocol
of URL’s location. It is used to message exchange about URLs existence between neighbors
caches. Nodes that composes the cache exchange requests and ICP answers to catch information
about the most appropriate local to recovery objects. ICP was designed to be simple, small, and
efficient. Although it is possible to maintain cache hierarchies without using ICP, the lack of
ICP or something similar prohibits the existence of mechanisms to query nearby caches about a
given document.

Known issues that affect ICP performance includes:

� scaling problems (COOPER; DILLER, 2014), since ICP exhibits O(n2) scaling
properties, where n is the number of participating peer proxies. This can lead ICP
traffic to dominate HTTP traffic within a network, resulting in a large number of
messages that need to be exchanged to gather object presence on another cluster
nodes. This issue represents a negative impact on response time and increasing on
local bandwidth consumption, nevertheless, it does not presents drawback, to the
local application of web cache cluster;

� peer selection problems (COOPER; DILLER, 2014): caching proxy peer selection
in networks with large variance in latency and bandwidth between peers can lead to
non-optimal peer selection. On hierarchical architecture, nodes with high bandwidth
could be used as a parent and, not be used as siblings, of slower nodes. In such
situation, mesh architectures are not recommended.
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Cache Array Routing Protocol: CARP (VALLOPPILLIL; ROSS, 2014) was designed
to address the issue of how to achieve efficient and scalable load balancing while maximizing
hit ratios and minimizing latency (WESSELS, 2001). CARP use a algorithm which subdivides
the objects with URLs joint in different cache nodes, with the goal to optimize the hit ratio
and minimize the objects duplication between nodes that make up the grouping. It proposes to
increase hit ratio by allocate and intelligently route requests for the correct URLs to any member
of the proxy array. Due to the resulting sorting of requests through these proxies, duplication of
cache contents is eliminated and cache hit rates can be improved. Once that main goal of CARP
protocol is increasing hit ratio, it consequently improves response time and saved bandwidth.

Knowns issue that affect CARP performance includes:

� CARP is not usable in a sibling relationship: mesh architectures that use CARP will
not work properly, since the complementary memories used on this architecture is
fully restrictive to main features of CARP. So, hit ratio shows a clear downward trend.

Hypertext Cache Protocol: HTCP (VIXIE; WESSLES, 2014) was designed for dis-
covering HTTP caches and cached data, managing sets of HTTP caches, and monitoring cache
activity. HTCP main improvement, related to another intercache protocols, is the capacity to
send full HTTP headers (not just the URL) in requests and responses. This makes it possible
to improve responses made to servers, since valuable informations about objects age can be
transmitted on HTCP messages. So, HTCP servers are able to reply correctly with a hit or miss.

Known issues that affect HTCP performance includes:

� necessity for additional system resources: due to the capacity of transmit HTTP
headers, processing a more complex message requires additional processor power.
This may affect the rate at which a cache can send and receive HTCP queries,
negatively impacting on response times and hit ratios;

� test messages: HTCP includes a test message type, called TST, that aims to test for
the presence of a specified content entity in a proxy cache. If HTTP header are stored
on disk, it may take a significant amount of time to read them from disk, increases
response times.

Cache Digest: Cache Digests (HAMILTON; ROUSSKOV; WESSELS, 2014) provide a
mechanism for (primarily) WWW cache servers to cooperate without the latency and congestion
problems associated with previous discussed protocols. Cache Digests are summaries of the
contents of an web cache server. It contains an indication of whether or not particular URLs are
in the cache in a compact format. Its using is motivated by lack of capacity of other intercache
protocols in provide a prediction about presence of a object in cache. Cache servers periodically
exchanges their digests with each other. Once peer objects are known, checks performed on
digests are fast, eliminating the need for individual emission of queries to another peer servers.
This feature represents differential behavior with respect to other intercache protocols: it is
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proactive. Summaries are created through an algorithm called Bloom filter (BLOOM, 1970).
It uses a collection of hash function that uses URI object and HTTP method provided by web
cache server client to create keys. These keys are used for state if required object is available on
some web cache server that composes cluster servers.

Positive features of cache digest on cluster environments are:

� reduce latency on searching by stored objects: Once that a faster searching method is
used to state presence of cached objects, response times can be decreased;

� reduce congestion problems: previous intercache protocols, like ICP, presents trans-
mission problems due to overload the network with request/response messages. Once
that the need for such messages are eliminated, bandwidth consumption during
querying the peers is saved.

Known issue that affect cache digest performance includes:

� increasing on processor power. During generation of summaries, there are peak loads
of CPU utilization due to execution of hash functions used for keys generation;

� presence of peaks of bandwidth utilization: cache digest protocol uses bandwidth
in proportion to the size of a cache. Furthermore, during summaries transmissions,
cache digest presents a peak of bandwidth utilization, that increases as it grows
memory.

2.3 Workload for Web Cache Service

An understanding of how users typically behave when interacting with a system helps
to identify system features that are more useful and attractive (ALMEIDA; ALMEIDA, 2011).
Such understanding can be achieved through the concept of workloads. The requests made by
the users of the system are called workloads (JAIN, 1991). Formally, a workload of a system can
be defined as a set of all inputs that it receives from its environment, during any given period of
time.

Following (JAIN, 1991): “In order to test multiple alternatives under identical conditions,
the workload should be repeatable. Since a real-user environment is generally not repeatable, it
is necessary to study the real-user environments, observe the key characteristics, and develop a
workload model that can be used repeatedly. This process is called workload characterization.
Once a workload model is available, the effect of changes in the workload and system can be
studied in a controlled manner by simply changing the parameters of the model.”

Workload characterization of web cache proxy servers was performed through study
of previous research works that kept track of the operation on web servers and clients’ traffic.
This survey allowed to identify features and behaviors of such servers, in order to enable the
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reproduction of similar behavior artificially. Several web traffic workload characterization studies
have been conducted (ARLITT M.F.; WILLIAMSON, 1997; ARLITT; WILLIAMSON, 1996;
DYKES; JEFFERY; DAS, 1999), aiming to state common properties that can be measured and
analyzed to yield configuration recommendations of web proxy cache servers. This careful
analysis of web workloads performed on literature reveals that request streams performed to web
servers follow Zipf and Zipf-like distribution (ADAMIC; HUBERMAN, 2002; BRESLAU et al.,
1999), while file size distribution are heavy-tailed, like Pareto’s one (ARLITT; WILLIAMSON,
1996). Workloads based on such probability distributions were applied during experiments
that were conducted to analyze the behavior of selected metrics of virtual web cache cluster
environment.

2.3.1 Probability Distributions

There are specific characteristics of web traffic, that were previously observed on other
fields of research, like word frequencies in texts and city sizes (ADAMIC; HUBERMAN, 2002):
few sites consist of millions of pages, but millions of sites only contain a handful of pages; few
sites contain millions of links, but many sites have one or two; millions of users access few select
sites, giving little attention to millions of others. Main findings about web traffic behavior can be
extracted by observation that the requests made by web users follows zipf law. In other words,
this behavior can be mathematically stated by a Zipf power law model and the frequency of
accessed web pages can be expressed by Zipf probability distribution.

A careful analysis of web workloads was performed on literature, revealing that request
streams follow Zipf-like distribution(BRESLAU et al., 1999)(CHLEBUS; OHRI, 2005)(ADAMIC;
HUBERMAN, 2002) and file size distribution are heavy-tailed, following Pareto’s distribu-
tion (ARLITT M.F.; WILLIAMSON, 1997)(PITKOW, 1998). Zipf’s law, which gives rise to
Zipf distribution, when applied to web traffic, states that the relative probability of a request for
the i’th most popular page is proportional to 1/i, i.e., the probability of an object being requested
is proportional to its ranking. Breslau et al. (BRESLAU et al., 1999) proposes the nomenclature
used on this paragraph, calling Zipf’s law to refer to request distributions following:

Ω/iα
�
 �	2.3

with α typically taking on some value less than unity. Graphically, on a log-log scale,
it represents the slope of data distribution. Zipf-like probability distribution was used along
experiments to adjust incoming web page requests on benchmarking tool.

The Cumulative Distribution Function (CDF) of Pareto’s Distribution was used as basis
to model file size provided by web servers. It is defined as:

F(x;a,b) = 1− (b/x)a
�
 �	2.4
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Pareto’s CDF was implemented on Web Polygraph benchmarking tool, used on experi-
mental steps, to model file size of traditional web traffic objects. The larger a parameter value,
called shape, the smaller the proportion of very high file sizes.

2.4 Server Virtualization

The term server virtualization describe the ability to run an entire virtual machine,
including its own operating system, on another operating system (HAGEN, 2008). To apply
server virtualization, it is necessary to select a virtualization approach. By the end of the 1990s,
virtualization was unheard in the x86 industry. In the middle half of the 2000s, there has been a
exponential growth in the virtualization market both in terms of customer adoption as in terms of
the rise of the number vendors in the virtualization space.

For industry standard x86 systems, virtualization approaches use either a hosted or a
hypervisor(also called Virtual Machine Monitor - VMM) architecture. A hosted architecture
installs and runs the virtualization layer as an application on top of an operating system and
supports the broadest range of hardware configurations. In contrast, a hypervisor (bare-metal)
architecture installs the virtualization layer directly on a clean x86-based system.

Originally, on 1976, Goldberg (GOLDBERG, 1973) stated Virtual Computer Sys-
tems(VCS), as an important construct which arises a solution to a particularly vexing problem:
with multi-access, multi-programming, multi-processing systems has simplified and improved
access to computer systems by the bulk of the user community, there has been an important class
of users unable to profit from these advantages: system programmers, whose programs must be
run on a bare metal machine and not on an extended machine, e.g., under the operating system.

On Goldberg work, it was highlighted the problem of addressing: system programs,
e.g., other operating system or different versions of the same operating system, require direct
addressability to the resources of the system and do not call upon the operating system to manage
these resources. Thus, system programs may not co-exist with normal production uses of the
system.

And concludes: Recently, a technique for resolving these difficulties has been advised.
The solution utilizes a construct called virtual computer system or virtual machine which is,
basically, a very efficient simulated copy (or copies) of the bare host machine. These copies
differ from each other and from the host only in their exact configurations, e.g., the amount
of memory of particular I/O devices attached. Therefore, not only standard user programs but
system programs and complete operating systems that run on the real computer system will run
on the VCS with identical results. Thus, the VCS provides a generalization over familiar systems
by also being multi-environment system. Since a VCS is a hardware-software duplicate of a "real
existing computer system" there is always the notion of a real computer system, RCS, whose
execution is functionally equivalent to the VCS. The program executing on the host machine that
creates the VCS environment is called Virtual Machine Monitor, VMM.
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Two categories of VMMs are defined by Goldberg:

� type 1 - the VMM runs on a bare metal;

� type 2 - the VMM runs on a extended host, under the host operating system.

Actually, there are four main accepted approaches that can be applied to implement
server virtualization in x86 architecture:

i. Full Virtualization: That is the particular kind of virtualization that allows an un-
modified operating system, with all of its installed software, to run in a special
environment, on top of existing operating system. This environment, called a virtual
machine, is created by the virtualization software by intercepting access to certain
hardware components and certain features. The physical computer is usually called
the host, while the virtual machine is often called a guest. Most of the guest code
runs unmodified, directly on the host computer, and it runs transparently on real
machine: the guest is unaware that it is being virtualized. Virtual Box (ORACLE,
2014), VMWare Virtualization (VMWARE, 2014) softwares and (QEMU, 2014) are
examples of full virtualization products approach. KVM (KVM, 2014) kernel-level
virtualization is a specialized version of full virtualization, where the linux kernel
serves as the hypervisor. It is implemented as a loadable kernel module that converts
linux kernel into a bare-metal hypervisor. It was designed after the advent of hardware
assisted virtualization, it did not have to implement features that were provided by
hardware. So, it requires Intel VT-X or AMD-V (see Hardware Virtualization below)
enabled CPUs.

ii. Paravirtualization: the approach with paravirtualization is to modify the guest operat-
ing system running in the virtual machine and replace all the privileged instructions
with direct calls into the hypervisor. In this model, the modified guest operating
system is aware that is running on a hypervisor and can cooperate with it for improved
scheduling and I/O: it includes code to make guest-to-hypervisor transitions more
efficient. Paravirtualization does not require virtualization extensions from the host
CPU. Xen hypervisor (XEN, 2014) was the precursor of paravirtualization products.

iii. Container-based Operating System virtualization, also known as operating system
level virtualization, is a lightweight alternative. This kind of virtualization partitions
the physical machines resources, creating multiple isolated user-space instances.
While hypervisor-based virtualization provides abstraction for full guest OS’s (one
per virtual machine), container-based virtualization works at the operation system
level, providing abstractions directly for the guest processes. OpenVZ (OPENVZ,
2014), LXC(LXC, 2014), and Linux V-Servers (POTZL et al., 2014) are examples of
container-based virtualization solutions.
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iv. Hardware Virtualization: this approach is only available on systems that provide
hardware support for virtualization. Virtual machines in a hardware virtualization
environment can run unmodified operating systems because the hypervisor can use
the native hardware support for virtualization to: handle privileged and protected
operations and hardware access requests; to communicate with and manage the
virtual machines (HAGEN, 2008). Both AMD and Intel implement this approach,
that are called, respectively, AMD-V and Intel VT-X.

Relevant improvements achieved by server virtualization includes:

� Raise hardware utilization: many data centers have machines running at only 10
or 15 percent of total capacity . Nevertheless, a lightly loaded machine still takes
up room and draws electricity. The operating cost of actual underutilized machine
can be nearly the same as if it were running in top capacity. Virtualization performs
a better way to match computing capacity with load, enabling a single piece of
hardware to seamlessly support multiple systems and making much more efficient
use of corporate capital (GOLDEN, 2007).

� Better energy efficiency: The impact of green initiatives has meant that companies
are increasingly looking for ways to reduce the amount of energy they consume. The
cost of running computers, coupled with the fact that many of the machines filling up
data centers are running at low utilization rates, means that ability of virtualization to
reduce the total number of physical servers can significantly reduce the overall cost
of energy for companies (GOLDEN, 2007).

� Contain physical expansion of data centers: virtualization, by offering the ability
to host multiple guest systems on a single physical server, allows organizations to
reclaim data center territory, thereby avoiding the expense of building out more data
center space. This is an enormous benefit of virtualization, because data centers can
cost in the tens of millions of dollars to construct (GOLDEN, 2007).

� Reduce overall system administration cost: virtualization can reduce system ad-
ministration requirements drastically, making it an excellent option to address the
increasing cost of operations personnel (GOLDEN, 2007).

� Reduce difficult to deploy applications: since virtualization adds a layer of abstraction
that eliminates the need to configure the necessary software environment to all
physical machines on which all applications will be run, a single VM image is created
and deployed on any machine with a compatible VMM (DELGADO et al., 2011).
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2.4.1 Applied Virtualization Solutions

2.4.1.1 KVM

Kernel-based Virtual Machine is a full virtualization solution for Linux on x86 hardware
containing virtualization extensions (Intel VT or AMD-V). It consists of a loadable kernel
module, kvm.ko, that provides the core virtualization infrastructure and a processor specific
module, kvm-intel.ko or kvm-amd.ko. KVM also requires a modified QEMU although work is
underway to get the required changes upstream(KVM, 2014).

KVM intermediates code execution of guest operating systems. It relies on Intel-VT
and AMD-V hardware virtualization technologies to achieve a better performance. As a full
virtualization solution, there are no requirements about kernel similarity between guest OS and
Host OS. KVM creates virtual machines as Linux processes which can then run either Linux or
Windows as a guest operating system.

2.4.1.2 OpenVZ

OpenVZ is an container-based virtualization solution for Linux. OpenVZ allows a
physical server to run multiple isolated domains, through operating system instances, called
containers(CTs), Virtual Private Servers(VPS), or Virtual Environments(VE) over a single host
operating system modified kernel. Each CT performs and executes exactly like a stand-alone
server for its users and applications, as it can be rebooted independently and has its own
root access, users, IP addresses, memory, processes, files, applications, system libraries, and
configuration files (KOLYSHKIN, 2014a). OpenVZ claims to be the virtualization tool that
introduces less overhead, because each container shares the same host operating system kernel,
providing a high-level virtualization abstraction. Despite the small overhead introduced by
OpenVZ, it is less flexible than other virtualization software solutions, such as KVM, VMWare
and Xen, because OpenVZ execution environments must be a Linux distribution, based on same
operating system kernel of physical host server.

The OpenVZ kernel is a modified Linux kernel which adds the following functionality
(KOLYSHKIN, 2006):

� virtualization and isolation: various containers within a single kernel;

� resource management, that limits subsystem resources(and in some cases guarantees),
such as CPU, RAM and disk access, on a per-container basis. It is composed by three
components:

1. Two-level disk quota: OpenVZ server administrator can set up per-container
disk quotas in terms of disk space and number of inodes. This is the first
level of disk quota. The second level of disk quota lets the container
administrator (container root) use standard UNIX quota tools to set up
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per-user and per-group disk quotas. OpenVZ virtual disk is a partition of
the host file system.

2. "Fair" CPU scheduler: The OpenVZ CPU scheduler is also two-level. On
the first level it decides which container to give the time slice to, taking
into account the container’s CPU priority and limit settings. On the second
level, the standard Linux scheduler decides which process in the container
to give the time slice to, using standard process priorities.

3. User Beancounters: This is a set of per-container counters, limits, and
guarantees. There is a set of about 20 parameters which are carefully
chosen to cover all the aspects of container operation, so no single VE can
abuse any resource which is limited for the whole computer and thus cause
harm to other containers. The resources accounted and controlled are
mainly memory and various in-kernel objects such as IPC shared memory
segments, and network buffers.

� checkpointing: it saves container’s state to a disk file, making container migration
possible.

Figure 2.2 represents software architectural structure of the 3 physical server. Regardless
of number of servers, each one have similar architecture. OpenVZ can be installed on an already
installed Linux system, or it can be provided by ready to go distributions, such as Proxmox.
Its customized configuration shall include the creation of a /vz partition, which is the basic
partition for hosting containers and which must be way larger than the root partition. OpenVZ
Layer, highlighted on Figure 2.2, is responsible for providing aforementioned functionalities.
Nevertheless, to enable containers creation, it is necessary to install a OpenVZ OS template.
Templates are a set of package files to be installed into a container. Operating system templates
are used to create new containers with a pre-installed operating system. Therefore, it is necessary
to download at least one OS template and save it on the Hardware Node. After install at least one
OS template, creation of containers is enabled. It is possible to create any number of containers
with the help of standard OpenVZ utilities, configure their network and/or other settings, and
work with these containers as with fully functional Linux servers. On Figure 2.2, resulting
containers are depicted on top of each physical server, labelled as VPS, where unmodified
applications softwares can be executed.

OpenVZ allows containers to directly access memory, in a flexible way: during its
execution, the memory amount dedicated to one container can be dynamically changed by host
administrator. OpenVZ kernel manages containers memory space in order to keep in physical
memory the block of the virtual memory corresponding to the container that is currently running.

Each container has their own network stack. This includes network device(s), routing
table, firewall rules, network caches, and hash tables. From the perspective of container owner, it
looks like a standalone Linux box. OpenVZ offers three major networking modes of operation,
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Figure 2.2: OpenVZ Architecture

as depicted on Figure 2.3:

� Route-based (venet)

� Bridge-based (veth)

� Real network device (eth) in a container

The main differences between them is the layer of operation. While Route-based works
in Layer 3 (network layer), Bridge-based works in Layer 2 (data link layer) and Real Network in
Layer 1 (physical layer). In the Real Network mode, the host system administrator can assign a
real network device (such as eth0) into a container, providing the better network performance.

For the two modes of virtual network interfaces offered by OpenVZ to a container, virtual
network device (venet) has lower overhead, but with limited functionality, serving simply as a
point-to-point connection between a container and the host OS. It does not have a MAC address,
has no ARP protocol support, no bridge support, and no possibility to assign an IP address inside
the container. By contrast, a virtual Ethernet device (veth) has slightly higher (but still very
low) overhead, but it behaves like an Ethernet device. A virtual Ethernet device consists of a pair
of network devices in the Linux system, one inside the container and one in the host OS. Such
two devices are connected via Ethernet tunnel: a packet goes into one device will come out from
the other side (XAVIER et al., 2013).
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Figure 2.3: Containers networking: modes of operation

Host system administrator can assign a network device (such as eth0, as showed on
Figure 2.3) into a container. Container administrator can then manage it as usual. Although it
provides best performance, container assignment to a network device ties it to hardware.
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3
TISVEP - Tuning Infrastructure for Server
Virtualization Experiment Protocol

My favorite things in life don’t cost any money. It’s really clear that the most

precious resource we all have is time.

—STEVE JOBS .

Activities associated with configuration of physical host machines, guest virtual machines and
containers, analyzed services, and monitoring machines, to produce desired high availability,
are tremendously time consuming. Automating these activities, and reducing configuration time
intervals, becomes a core feature for this research. Without automating the necessary steps to
execute measurement experiments, it would not be possible to perform the presented Chapter 4
experiments, due to time constraints.

The current chapter describes TISVEP - Tuning Infrastructure for Server Virtualization
Experiment Protocol. Due to the large number of procedures for execution of an experiment, it
was of paramount importance to automate such activities. TISVEP was designed to enable fast
configuration and execution of experiments, performing automatic:

� configuration of all necessary levels of analyzed factors, such as those presented in
Table 4.7, concerned with execution of experiments;

� initialization of the web cache servers, Web Polygraph tool, and monitor processes
responsible for gathering system status;

� export of all results of the experiments for further analysis.

Regardless of the physical or virtual feature of the destination server, TISVEP is able to
perform the aforementioned functionalities automatically. It decreases the time required for the
previous manual experiment configuration sharply, from not less than 40 minutes, to not more
than 3 minutes.
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3.1 TISVEP Features

The improvement of the performability in virtualized servers, at first, required a large
number of configuration tunings. as will be seen in Chapter 4, changes in the provided service
are not rare, such as increasing storage capacity, and may result in additional improvements
to maintain target availability of five 9’s. Therefore, in such scenarios aimed at automatically
providing resources to conduct experimental evaluations related to performability, these key
design features were proposed:

� Lightweight: it should be assumed that computational resources are scarce. TISVEP
Protocol is characterized by low overhead in the processes of message generation
and transmission. It was developed in the Bash Script Language, applying netpipes
TCP/IP streams sockets (FORSMAN, 1999; BERNIER, 2004) as the communication
technology between the Cloud NMS node (refer to Figure 4.3) and destination targets.
In addition, except for Internal Field Separators (IFSs), all transmitted data in the
application layer is formed by payload, minimizing meta-data.

� Extensibility: due to the nature of the issue tackled, it is necessary to deal with new
functionalities frequently. In the experimental environment of this research, based
on the tuning of virtualized servers, it is common to perform adjustments, as well as
to analyze new factors and their respective levels. Extensibility, the ability to have
new functionality, taking future changes into consideration, was a key requirement
identified due to the purpose of the protocol.

� Simplicity: the communication process among physical machines, virtual machines,
and containers presented in the testbed (a representative of private clouds) that
supports execution of experiments, can be accomplished simply, even in the context
of such sophisticated infrastructure. The simpler the generation, transmission and
processing of the messages remains, the more conducive the environment will be to
accommodate the two aforementioned key features.

Previously in TISVEP development, netpipes was employed in a simple approach during
the initialization of experiments: through a Bash script executed on a Web Polygraph server
machine, a polygraph-server process was started and thereafter, the Web Polygraph
client machine received a start call from a netpipes stream socket, beginning the experiment
through the execution of a polygraph-client process. All other required procedures, like
configurations and data export, were made manually.

The previous communication process performed between Web Polygraph machines
was extended and applied through TISVEP, broadly employing netpipes to perform automatic
configuration, execution, monitoring, and storage routines of the experiments.
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The proposed approach of automatic experiment execution is similar to that of many
previous approaches, as discussed in Chapter 1.

Small capacity infrastructures are interesting because they force us to reinvestigate
problems that are already thought to be solved. Instead of proceeding with the installation
of several third-party tools, it was decided to design and develop a single protocol that is
suitable for the testbed infrastructure and is able to perform all required functionalities through
the configuration of one unique centralized file. With a simple and lightweight underlying
infrastructure, TISVEP is able to configure and monitor all required resources, as well as start all
required services and export resulting data. Furthermore, the proposed methodology of TISVEP
is so generic that it can be applied to configure, monitor and store results of any applications that
can be executed on systems with support for netpipes. So, it was expected that it would maintain
low overhead over the testbed.

3.1.1 Implementation Technology

The TISVEP communication technology is based on the netpipes software package. The
netpipes package makes TCP/IP streams usable in shell scripts. It is a suite of utilities built on
the idea of conventional pipes, allowing different processes to communicate and share data using
TCP sockets across the network (BERNIER, 2004). The main realized advantage consists of
simplifying client/server implementation, allowing people to skip the programming related to
sockets and concentrate on writing services. From this suite, TISVEP is based on the following
commands:

� faucet: it is the server end of a TCP/IP stream. It listens on a port of the local
machine, waiting for connections. Every time it gets a connection, it forks a process
to perform a service for the connecting client.

� hose: it is the client end of a TCP/IP stream. It actively connects to a remote port
and executes a process to request a service.

� sockdown: selectively shuts down all or a portion of a socket connection; it is used
to close the output half of the network pipe, releasing the processing flow to the
destination target.

Aiming at detailing the netpipes software package, the first used TISVEP message,
hdsConfig, will be used as an example and can be observed in Appendix B.5.

For the conducted experiments, there are four possible destination targets where web
cache server are provided and TISVEP server end is executed(script autExperiment.sh).
They are exhibited in Figure 3.1.

For physical machines (PM - represented by Nodes 01, 02, and 03) and multiple in-
stance (I) destination targets, the server end of TISVEP runs directly on the host operating system.
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Figure 3.1: Supported web cache servers: physical machines(Nodes 01, 02, and 03),
containers(CT), virtual machines(VM), and multiple-instances(I)

For virtual machines (VM), the server end of TISVEP runs on the KVM guest operating system.
Finally, for containers (CT), the server end of TISVEP runs on an OpenVZ guest container.

3.1.2 Start up and halt flows

Functionally, to execute one replication of an experiment, TISVEP has a start up flow,
depicted in Figure 3.2, and a halt flow, showed in Figure 3.3. The flows presented in such Figures
depict transmitted messages for container-based virtualization experiments (the message flows
to all other types of experiments are subsets of the container-based experiment flow).

A start up message flow is responsible to configure web cache storage, configure and
initialize web cache servers, start monitoring functionalities, and configure and execute Web
Polygraph processes.

A halt flow is responsible to stop the Web Polygraph server-side, stop monitoring tools,
export generated data that will be analyzed, and clean up all necessary storage for posterior
experiment executions.

Both start up and halt flows are controlled by autExperimentNMS.sh shell script
executed on cloud NMS (Figure 3.1). In Figures 3.2 and 3.3, the central vertical time line
labeled by NMS represents the execution flow of the autExperimentNMS.sh script. All
necessary messages are forwarded to their destination components: physical machines (PMs),
containers (CTs), for NMS machine itself, and to Web Polygraph machines. An introduction
to TISVEP messages is provided in Section 3.3 and complete descriptions of the above shown
TISVEP messages are provided in Appendix B.
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Figure 3.2: TISVEP startup flow for CTS experiment
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Figure 3.3: TISVEP halt flow for CTS experiment
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3.2 TISVEP Static Entities

An experiment is designed in a simple and unique centralized text file, config.proper
ties, that contains all the configuration parameters used to execute an experiment. The syntax
applied in the config.properties file matches the Bash scripting language, aiming at ex-
porting its content in the autExperimentNMS.sh script that is responsible for the execution
of experiments. It is a simple method to import experiment configurations. So, to explain the
contents of the config.properties file is of paramount relevance for understanding how
an experiment is executed.

3.2.1 TISVEP config.properties file

The parameters that define the configurations of experiments are declared in the config.
properties file as Bash variables of the following types: integer, string, and array (as well as
associate arrays, that employ strings as indexes of the arrays). Such an approach in the definition
of parameters was favorable to simplify the generation process of TISVEP messages, since it
is only necessary to reference the variable identifier to use the parameter during the message
assembling process, meeting the proposed key design feature of simplicity.

Based on their applicability, the configuration parameters were classified and divided
into 6 different groups. Each of them is described and explained below.

1. Physical Machines Section: the parameters of this section store the required features
of physical machines as well as their components that can be modified between the
executions of different experiments. For example: hard disk formatting is required
between experiments. Parameters such as disk label and partition size are imperative
to perform this routine. All the parameters that make up Physical Machines Section
are listed and explained below:

� PMs: an array of IP addresses of the testbed physical machines. This
parameter is used as source to get IP addresses of destination PMs when
TISVEP messages must be sent to them.

� HD_LABELS: string that contains the file names of hard drives as defined
by the operating system.

� PARTITIONS_NUMBER: it is the size of the partition that will be created
during the first iteration of a set of experiments. For the current version of
TISVEP, all partitions would have the same size.

� PARTITION_SIZE: it is the size of the partition that will be created during
first iteration of a set of experiments. For current version of TISVEP, all
partitions would have the same size.
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� FS_CONSISTENCY: logical value; defines if the file system consistency
mechanism will be enabled or disabled. Possible values are:

� 0: disabled;

� 1: enabled.

� FS_TYPE: file system type to be applied during its building. Two file
systems were used during the execution of experiments: ext3 and ext4.

� NO_CONSISTENCY_MOUNT_OPTIONS: this parameter contains the
mounting options for the file system when the FS_CONSISTENCY pa-
rameter was equal to 0 (zero).

� SPOOL_LABEL: web cache server spool label, applied during the routine
of partition mounting.

2. Service Section: The configuration parameters of the web cache server cluster
are declared in this section. Regardless of whether the experiment runs in a non-
virtualized or virtualized cluster, its configuration parameters are defined here.

� SQUID_CONF_FILE: full pathname for the web cache server configu-
ration file, used to perform required adjustments on provided web cache
servers.

� SQUID_BIN: full pathname for web cache server binary file. It is deter-
mined in the compilation of the Squid web cache server and is sent to
destination servers aiming at executing such service.

� CACHE_LOG_DIR: ull pathname for log web cache directory. It is
mapped to a partition that is not on the same hard disk of spools used by
the web cache server. It aims at reducing the concurrency of hard disk
access over hard disks used as web cache server spools.

� ENABLE_CACHE_LOG: as described in Section 4.2.3, disabling the
cache log functionality was also favorable to reducing the concurrency of
hard disk access. This parameter is applied with such a goal. It must be
set as 0 (zero) to disable a cache log and as 1 (one) to enable it.

� DEFAULT_PORT: states the default web cache server listen port. In
experiments that applied multi-instances of the web cache server in a
unique physical machine, several port numbers were required. Otherwise,
the default port 3128 was applied.

� CACHE_DIR_SUFFIX: it is used to form the full pathname of the web
cache server spool directory in experiments that apply several hard disks
and directories. As the spool’s full pathname is formed programmatically,
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through a loop during the message generation process, this suffix is used to
complete the full pathname. An example was /spool3/squid3, where
squid3 is the suffix.

� CACHE_SIZE: volume of disk space (MB) to be used as spool by a web
cache server. Increasing this value was one of the main challenges of this
research.

� L1_CACHE_LEVEL: number of first-level subdirectories which will be
created under CACHE_DIR, as explained in 4.3.3.

� L2_CACHE_LEVEL: number of second-level subdirectories which will be
created under each first-level subdirectory, also explained in Section4.3.3.

� MI_AMOUNT: number of multiple instances of a web cache server, per
physical machine. Used for execution of multi-instance experiments.

3. Benchmarking Tool Section: all the parameters that are required to establish com-
munication with Web Polygraph machines, as well as to configure their functional
properties that may be changed between experiments are defined in this section.

� WP_SERVER_IP: IP address of Web Polygraph server physical machine;
it is used to establish communication with the Web Polygraph server-side
machine and start the polygraph-server process.

� WP_CLIENT_IP: IP address of Web Polygraph client physical machine.
It is of similar use to the WP_SERVER_IP, however on the client side. It
aims at executing the polygraph-client process.

� EXPERIMENT_DURATION: amount of time for each experiment replica-
tion; it is used to configure this value in the Web-polygraph configuration
file.

� WP_CONFIG_FILE: full pathname for Web Polygraph configuration file.
It is used during configuration of Web Polygraph’s parameters.

4. Virtual Section: the parameters presented in this section are formed by associate
arrays that map physical machines to the virtual servers as well as to their required
resources.

� PMsServerIPs: associative array with physical machine IP addresses as
indexes and strings that contain virtual IP server addresses, associated
with each physical machine, as values.

� PMsCT_IDs: associative array with physical machine IP addresses as
indexes and strings that contain a set of pairs of spool directory and
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numeric identifiers of containers as values. It is used in experiments
in which a web cache server has been provided in a container-based
virtualization infrastructure, through OpenVZ.

� VMsSPOOLs: associative array with virtual machine IP addresses as
indexes and strings that contains a set of pairs of spool directory and
numeric identifiers of virtual machines as values. It is used in experiments
in which a web cache server has been provided in a full virtualization
infrastructure, through KVM.

5. Management Section: it contains parameters that configure the experiment itself, such
as type of experiment, IP address of Cloud NMS, and more. They are all described
below.

� SIMULATION_TYPE: core parameter; it defines which type of experi-
ment will be performed. TISVEP supports 4 types of experiments:

� physical machines (PMS): web cache servers are provided on
physical machines, with a relationship of one to one (1:1);

� containers (CTS): web cache servers are provided through con-
tainers, applying container-based virtualization. It is possible
to form a one to many (1:n) relationship between physical ma-
chines and containers;

� virtual machines (VMS): web cache servers are provided through
virtual machines, applying full virtualization. It is possible to
form a one to many (1:n) relationship between physical machines
and virtual machines;

� multiple-instances (MIs): web cache servers are provided on
physical machines, with a relationship of one to many (1:n).

� MOUNTPOINT_NAMES: used to query for mounted partitions, as search
keys.

� NMS_IP: IP address of Network Management Server machine.

� CACHE_MONITORING_STEP: time interval for external monitoring
function that gathers performance metrics through web cache servers.

� LOCAL_STORAGE: full pathname of the storage directory on NMS.

� REMOTE_STORAGE:full pathname of the storage directory on web
cache servers (physical of virtual).

� ITERATIONS: number of replications of the configured experiment to be
performed. Example: to test modes of operation of network in OpenVZ,
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five replications were performed per mode of operation. The number 5
was the value of the ITERATIONS parameter.

6. Profiling Section: it contains oprofile related parameters, used to perform profil-
ing of hardware events.

� PROFILING_EXP: associative array with CPU’s performance counter
event types as indexes, and their respective counters as values.

� OPERF: full pathname for the binary file of the operf profile tool, used
on physical machines to start the profiler.

� OCOUNT: full pathname for binary file of the ocount profile tool. It is
used specifically to count hardware events of processes.

� PROFILE_COD: numerical code for oprofile instrumentation tools. Possi-
ble codes are:

� 1: operf tool;

� 2: ocount tool.

� OCOUNT_INTERVAL_LENGTH: time interval for printing collected
results on output when ocount tool is used.

The Cloud Network Management System (NMS) is the entity responsible for yielding the
TISVEP messages, using static data from the config.properties file, and for transmitting
them to testbed components, as described in the following section that covers the dynamic
functionalities of TISVEP. A complete example of an instance of the config.properties
file is presented in Appendix A.2.

3.3 TISVEP Messages

For each replication of an experiment, there is a set of components that must be configured.
These components were classified according to their roles in the experiments. According to
these intrinsic component roles, messages transmitted by TISVEP were categorized, yielding the
following Message Code Definitions:

� 1-100: Infrastructure Configuration Messages: they are intended to transmit hardware
and system host parameters to configure web cache storage.

� 101-200: Service Configuration Messages: applied to configure web cache service
settings and manage their life cycles.

� 201-300: Benchmarking Configuration Messages: used to configure Web Polygraph
server and client machines, as well as their life cycles.
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� 301-400. Experiment Monitoring and Management Messages: class of messages
responsible for managing the system’s monitors and injection of TISVEP updates (up-
load of newer versions).

TISVEP messages, that comprise the message code class, are reported in the Appendix
B.
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4
Performability Analysis of Virtual Web Cache
Services

The current chapter presents contributions on how to achieve high performability for web
cache server clusters provided in virtualized environments. First of all, the main issue tackled
was reduce overhead in virtualized environments, aiming at eliminating the unresponsiveness
phenomenon, reaching a similar value of five 9’s of availability of the non-virtualized environ-
ments. The availability was chosen over reliability for performability analysis because the main
interest is related time losses. With availability of five 9’s, a fair comparison with non-virtualized
and virtualized clusters can be performed.

Thereafter, a tuning performance phase was conducted, during which measurement
experiments were executed until some analyzed performance metrics presented better results in
virtualized environments when compared with non-virtualized ones. The application of screening
fractional factorial experiment design was remarkable on reaching this goal.

Furthermore, this chapter also presents case studies and their findings regarding com-
parisons between virtualized and non-virtualized web cache server clusters. Initial experiments,
that used a limited amount of storage space, were performed without TISVEP automation.
Subsequently, for experiments applying larger amounts of storage space, until it reaches the
total capacity, TISVEP was used to load scenario parameters and control the replication of
experiments.

For TISVEP managed experiments, each scenario is presented on their case studies with
particular features that differ on:

� The TISVEP config.properties file, as exemplified on Appendix A.2;
� testbed tunings.

4.1 Performability Analysis Methodology

Dealing with server virtualization environments requires the execution of a wide range
of service configuration, administration, and even implementation actions. Development of
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current performability analysis methodology aims at guiding the feasibility and execution of
experiments. The proposed methodology is general enough to be used in both non-virtualized
and in virtualized environments.

The proposed methodology is depicted in Figure 4.1. During workload characteriza-
tion of analyzed web service, a state of the art study about web cache server behavior was
conducted, intending to identify which probability distributions best fit to web objects’ popu-
larity pattern and size. Since web cache server studies have been widespread in the scientific
community, analysis of related studies allow the identification of which probability distributions
should be used to model workloads during performance evaluation experiments. As a result of
the conducted study, Zipf distribution was identified for modeling web objects’ popularity and
Pareto distribution for modeling the size of web objects.

Figure 4.1: Methodology for Performability Analysis

As can be noted in Figure 4.1, a conditional step may be required: if the selected workload
generation tool did not support the required workloads, it must be extended. There are several
available workload generation tools intended to excite web servers. For web cache servers, three
of them were identified: curl-loader (IAKOBASHVILI; MOSER, 2012), ApacheBench (FUN-
DATION, 2013), and Web Polygraph (POLYGRAPH, 2012). Due to the fine-tuning feature of
Web Polygraph, it was selected as the web traffic workload generation tool used during conducted
experiments. From two identified workloads for web cache servers, only Zipf is supported. It
was necessary to implement a workload module tool. The workload based on Pareto Distribution
was not implemented. So, Web Polygraph was extended with Pareto distribution to make it
compatible with such a requirement of the current research.

With the required workloads available on Web Polygraph, they must be configured to
excite the web cache server cluster whose performability will be analyzed. The Configure
workload generation tool step of the proposed methodology illustrates this activity. Parameters
that represent web objects’ popularity frequency, web objects’ types (such html and image files),
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object sizes, level of file recurrence (how often a cached object will be revisited), variability of
object modification (how often a cached object will be modified), and probability distribution
models can be tuned on using the workload generation tool.

The next activity, illustrated as tuning web service configuration environment in
Figure 4.1, aims at configuring web cache server cluster. As described in Section 2.2, web
cache servers have several configuration parameters. As architectures, replacement policies
and inter-cache protocols can impact on performability, they were identified as factors of the
experiments. All supported levels of these factors were also described in Section 2.2. All
combinations of levels from the aforementioned configuration factors were evaluated during a
screening fractional factorial experiment (DOUGLAS C. MONTGOMERY, 2011). Furthermore,
hardware tunings, as supply RAM and disk requirements for different cluster configurations, as
well as network adjustments, were also performed during this step. Such procedure enabled the
improvement of web cache server cluster performability in virtualized environments.

Stressing experiments can be executed after the configuration of the workload generation
tool and of the web cache server cluster. Such configurations aim at filling all storage capacity
of a web cache server cluster, submitting it to the stress of operating with the interaction of
replacement policy for configured workloads. This procedure of methodology is illustrated as
Stressing experiment execution in Figure 4.1.

Availability analysis is a core procedure of the proposed methodology. During adopted
time intervals for analysis of the availability, the user experience was applied to measure
downtime factor of expression 2.1. As described in Section 2.1, the User-Perceived Service
Availability was adopted. It is the availability that the customer actually experiences: that
under the point of view of the user receiving the service. All the presented availability ratings
throughout this dissertation were measured in the client-side. The availability analysis evaluates
whether or not 99.999% of availability was reached. The means for providing availability
improvements, such as overhead reduction, have been investigated and applied to web cache
server clusters. To the best of our knowledge, results greater than or equal to this threshold
have not been presented in performability research into server virtualization. Results under such
threshold were considered as unsatisfactory, triggering new iterations of “Tuning web service
configuration environment” and “Stressing experiment execution” procedures, since the research
time constraints are not violated. If so, the performance analysis will not be conducted and the
recommendations will be related to availability only. Such threshold was hard to be reached on
virtualized clusters due to reasons presented throughout this chapter. Five 9’s of availability on
virtualized clusters typify an important contribution of this research.

Having reached five 9’s of availability, performance analysis takes place. Several
performance metric comparisons, between non-virtualized and virtualized scenarios, were
achieved. The objectives of this procedure are twofold: (i) to analyze hit ratio, response
time, throughput, and byte hit ratio performance metrics on virtualized and non-virtualized
environments to state the conditions that result in favorable metrics for virtualized web cache
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clusters; (ii) to select, among non-virtualized (e.g. single instance and multi-instance) and
virtualized (e.g. full virtualization and container-based virtualization) web cache server cluster
configuration, those that present better performance, aiming at reducing the number of evaluated
scenarios based on such performance features. Performance comparisons of confronted non-
virtualized and virtualized scenarios are made during this procedure.

After all previous procedures of proposed methodology, it will be possible to produce
recommendations on best practices to reach a better performability on virtualized web cache
server clusters, in comparison with non-virtualized environments.

4.2 Application of Proposed Methodology: High Availability

One of the major efforts performed in this research was to reach five 9’s of availability
for web cache servers, when they were provided in environments in which server virtualization
was applied.

The main steps of the process to reach high availability are described throughout follow-
ing sub-sessions. A sequence of the key experiments, depicting its virtualization technology,
time of execution and resulting availability, is portrayed in Figure 4.2, and is used to perform the
presented elucidations.

Figure 4.2: Summarized sequence of performed experiments

4.2.1 Non-virtualized initial experiments

Before conducting experiments on clusters of web cache servers over virtualized envi-
ronments, a series of experiments on non-virtualized cluster scenarios was performed.

Initial experiments were performed on a testbed composed of 7 machines, as portrayed
in Figure 4.3.

First configuration of the testbed for non-virtualized cluster scenarios was composed
of 4 clusters’ physical servers (Frontend and Nodes01-03), powered by AMD Phenom x86_64
Quad-Core 2.3 GHz processors, 4 GB RAM, with posterior upgrading for 8GB, discrete L1 and
L2 cache structures for each core, with 128KB and 512KB each, respectively, in a total of 512KB
for L1 and 2048KB for L2, shared L3 cache size of 2048KB, Gigabit Ethernet adapter, SATA
hard disks (250GB of capacity, 7200RPM, transmission rate of 6Gb/s) and Linux Ubuntu Server
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Figure 4.3: Testbed for initial non-virtualized warm up experiments

12.04 as operating system. Squid Web Cache 3.1.20 binary release was installed. Default ICP
inter-cache protocol and LRU cache replacement policy were applied. Aiming at simplifying
configuration on warm up stage, mesh architecture was selected. A Cloud Network Management
System workstation was used to perform all necessary configurations and commands to execute
the experiments, in addition to gathering resulting data and to performing data analysis from
those experiments.

The Web Polygraph tool was installed on two other testbed workstations. The tool’s
client-side is responsible for generating workload that excites web cache servers running on the
cluster’s nodes. When the requested objects were not stored on the server’s caches, these requests
were forwarded to the Web Polygraph server-side, which represents the Internet, and contains all
requested objects. Another feature of the client-side is that it is able to state the number of users
that will make requests. Table 4.1 depicts a summary of configured parameters as well as the
availability result of the first experiment performed with 100 web cache server clients.

Table 4.1: Warm up availability experiment parameters and result

Architecture
Inter-Cache

Protocol
Replacement

Policy
Cache size
(per node)

Duration
(h) Availability

Mesh ICP LRU 1GB 6 100%

Aiming at fast observing the behavior of replacement policy during proposed time
interval of 6 hours for this experiment, a limited cache size of 1GB per node was employed:
once all the cluster’s 3GB capacity had been filled, replacement policy starts to flush less used
objects according to policy rules. Without free spool, the web cache server cluster reaches the
steady state operation.

Availability is stated by the output log of the client-side Web Polygraph, that contains
runtime statistics. If no responses were received during the configured output time interval, Web
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Polygraph would log “-1.00” in the hit ratio field. The shorter the time interval was configured,
the higher was going to be the probability of receiving no responses during such time interval.
The default Web Polygraph time interval was 6 seconds. During execution of experiments,
resolution was adjusted to 1 second. A successful response of a web cache client request is
logged as shown below:

013.00| i-FirstRound 230310 151.57 258 53.29 0 100

There are 9 fields in each registered line:

1. Minutes since start (013.00);

2. “i-” and “p-” stand for interval and phase-based statistics(-i): conducted experiments
are based on time interval statistics;

3. current phase name (FirstRound): identify phase name, a prerequisite of Web
Polygraph. It can be configured aiming at favoring the identification of output based
on previous configuration;

4. number of replies received so far (230310);

5. reply rate (151.57): received replies, per second;

6. mean response time in milliseconds (258): for each log event, hundreds of responses
can be received;

7. hit ratio in percents (53.29);

8. number of transaction errors during that interval or phase(0);

9. number of open sockets(100). It includes UDP and other housekeeping sockets if
any. This number is usually close to the number of pending transactions.

In cases where no responses are received, Web Polygraph log line is similar to:

013.02| i-FirstRound 230310 0.00 -1 -1.00 0 100

The two log lines presented above are consecutive. As there are no responses in time
interval between the first and second presented log lines, the fourth field value, number of replies
received, is not incremented. The reply rate is logged as 0.00, mean response time is logged
as -1, and hit ratio is logged as -1.00. Only in failure occurrences, in which no responses are
received, such values are logged on those fields. The availability is assessed as 100% when
no lines with unresponsiveness events, such as that showed in the frame above, are reported.
The resulting summed seconds of unresponsiveness, logged by any one of these fields with
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failure values, can be used as the downtime factor of the availability expression. It was quite
common to observe such log lines in virtualized experiments, due to the previously discussed
unresponsiveness phenomenon 1.

Similar experiments to the one shown in the Table 4.1 were conducted. They aim
at stating availability of web cache server clusters with various combinations of architecture,
replacement policies, inter-cache protocol, number of users, and cache size. During such initial
execution of the experiments, a small amount of cache size was provided by the cluster, intended
to evaluate the behavior of the clusters in reduced time intervals, enabling to perform availability
analysis in a wide range of scenarios. No more than 10GB of cache storage was applied per node
of the cluster. For such described environments, conducted experiments based on non-virtualized
web cache cluster invariability result on A=100%. These results are meaningful evidences of the
high availability on non-virtualized environments. As they are above of established availability
goal of 99.999%, non-virtualized clusters were enabled to performance evaluation, as was defined
on proposed methodology depicted in Figure 4.1.

Since non-virtualized environments showed no unresponsiveness failures so common in
virtualized environments, it is possible to proceed with performance analysis. With registered
outputs of Web Polygraph log lines, it is possible to achieve performance analysis of the following
metrics: hit ratio, response time, and throughput.

So, another round of experiments was performed, by varying the cluster’s architectures.
Such experiments aiming at stating whether or not some of the architectures will operate better
according to selected metrics. Ten replications of the designed experiment were performed for
each one of the distinct architectures: Mesh and Hierarchical.

The mean values of hit ratio for each replication were collected for the construction of
the Confidence Intervals(CIs) shown in Table 4.2. Confidence intervals were obtained from
R tool (FUNDATION, 2014; TEETOR, 2011). Several functions provided by R are able to
produce confidence intervals, such as t.test(x). For provided vector “x”, this function
outputs confidence interval for the mean of “x” values. All results of the experiments are suitably
represented by a normal distribution, enabling the use of t.test function.

Lower Bounds(LB), Mean value, and Upper Bounds(UB) of the CIs are shown for each
architecture in Table 4.2. As can be seen, the confidence intervals for the evaluated architectures
do not overlap. Moreover, mesh architecture presented better performance for the hit ratio. The
average for the Mesh architecture presented 15:31% most hit ratio compared to the hierarchical
architecture.

1See section 2.1.2
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Table 4.2: 95% Confidence Intervals for Hit Ratio(%) Means

95% Confidence Intervals for HRs(%)
LB Mean UB

Mesh 56.33541 56.66463 56.99385

Hierarchical 41.25849 41.35311 41.44773

With identical configuration for both architectures, this unfavorable performance differ-
ence related to hierarchical cluster is due to fact that parent nodes, those in the root position
of cluster hierarchy (illustrated as Parent Cache in Figure 2.1a), can forward cache misses for
their children (nodes in the leaf positions). However, sibling nodes are not allowed to forward
cache misses. That is the fundamental difference between the two analyzed architectures. For the
scenario illustrated in Figure 4.3, node labeled as Frontend was configured as parent, whereas
Node 01, 02, and 03, were configured as children.

For response time, presented as milliseconds(ms) and throughput, presented as responses
per second (resp/s), results were inconclusive, once that shown 95% confidence intervals of
Tables 4.3 and 4.4 overlap. Such confidence intervals did not present meaningful evidences about
which architecture performs better based on results of the experiment replications.

Table 4.3: 95% Confidence Intervals for Response Time (ms) Means

Confidence Intervals for Response Times(95%)
LB Mean UB

Mesh 295.0757 306.6300 318.1843

Hierarchical 291.6923 304.7958 317.8994

Table 4.4: 95% Confidence Intervals for Throughput (resp/s) Means

Confidence Intervals for Throughput(95%)
LB Mean UB

Mesh 313.0671 326.4681 339.8692

Hierarchical 308.9077 325.7344 342.5612

Based on presented evidence that hit ratio performs better with mesh architecture in a
non-virtualized web cache cluster, the experiments of following sections 4.2.2 and 4.2.3 were
performed applying Mesh architecture.

4.2.2 Full Virtualization High Availability Results

First configured virtualized web cache server cluster scenario was formed by full virtual-
ization technology. KVM was used as hypervisor.
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Aiming at managing virtual machines, OpenNebula was employed as the Virtual Infras-
tructure Manager. OpenNebula is able to orchestrate storage, network, virtualization, monitoring,
and security technologies to deploy multi-tier services as virtual machines on distributed in-
frastructures. It offers a flexible solution to build and manage enterprise clouds and virtualized
data centers. There are two server roles in the OpenNebula model: the Frontend server executes
OpenNebula services, and the Nodes are used to execute virtual machines. Such OpenNebula
server roles are shown in Figure 4.5.

Figure 4.4: Full Virtualization Initial Analysis

Figure 4.4 highlights the initial reached availability (A=58.67%) for OpenNebula/KVM
solution during 6 hours. The experiment was originally planned to be executed during 100 hours,
nevertheless, with detected low availability, it was interrupted.

As there were 3 Server Nodes, to enable a future fair comparison between non-virtualized
and virtualized environments performance metrics, and with server consolidation as a benefit
towards virtualized servers, 3 VMs were created on one of these physical Node machines, as
shown in Figure 4.5.

At least one experiment was executed for several full virtualization configurations of the
web cache server cluster formed by 3 VMs, as exhibited in Figure 4.5, by varying:

� Squid web cache server, OpenNebula, and KVM versions;

� RAM amount associated to VM (with values from 32MB to 256MB);

� VCPU associated to VMs(from 1 to 4);

� storage infrastructure, with SSH and NFS protocols, used to distribute virtual ma-
chines images from FrontEnd to Nodes;

� web cache server architectures, inter-cache protocols and replacement policies.
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Figure 4.5: Virtualization Testbed Configuration: 3 VMs instantiated on 1 Physical
Machine

Such variations of the cluster’s configuration compound the procedure of Tuning web
cache configuration environment of the proposed methodology (refer to Figure 4.1).

Even with those variations in full virtualization solution provided by OpenNebula/KVM,
the highest availability reaches 86.35%, below of the five 9’s goal. The time intervals used to
execute the experiments are reduced, reaching only 1 hour, once the availability was increasingly
degrading over time.

For fair comparison, all those variations that also could be applied on non-virtualized
scenarios were tested, resulting in A=100% for similar evaluated time intervals of virtualized
clusters. As depicted on Figure 4.6, initial applied time interval for experiments was of 6 hours.
As goal availability of five 9’s had not been reaching, the time interval of the experiments was
reduced to 1 hour.

Figure 4.6: Full Virtualization Final Analysis

As shown in the next section, migration of the virtualization technology, from full virtual-
ization to Container-based Operating System (COS) virtualization, causes a ready approximation
to targeting the availability of five 9’s.
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4.2.3 Container-based Virtualization High Availability Results

Container-based Operating System virtualization enables multiple isolated execution
environments within a single operating system kernel, partitioning physical machines resources
and directly using OS system calls, while concurrent hypervisor solutions are required to provide
a complete emulation of entire underlying hardware. A container is the proper isolated program
execution environment, acting like a separate physical server.

To manage containers, Proxmox Virtual Environment (VE) was installed on testbed
physical nodes. Proxmox VE is an open source software virtualization management solution
for servers, optimized for performance and usability. It uses a Linux kernel and is based on the
Debian GNU/Linux Distribution.

Physical nodes were assembled in a cluster configuration. In Proxmox parlance, cluster
arrangement is called a data center. It can be used to quickly set up a virtualized datacenter,
creating and managing:

� OpenVZ containers: preferred technology due to its low overhead, high performance
and high scalability, compared with full virtualization solutions (XAVIER et al.,
2013) and/or;

� KVM: Kernel-based Virtual Machine: provides robust flexibility, as it can host several
guest operating systems (KVM, 2014).

A highlighted Proxmox VE feature is that it’s easy to start; it is only necessary to
download an ISO image and install Proxmox VE on the server hardware. The time required to
create the first virtual machine or container was far less than with OpenNebula.

Initial COS Virtualization phase was conducted for OpenVZ Containers. The change
from Full Virtualization technology to COS Virtualization technology brought us closer to the
goal of achieving five 9’s high availability. Applying an identical web cache server configuration
file, just changing the virtualization technology from KVM to OpenVZ improves the availability
from 86.35% to 96.85%, as depicted in Figure 4.7.

Figure 4.7: Container-based Operating System Virtualization Initial Analysis

As web cache systems are I/O bound (WESSELS, 2001), the web cache server spent
most of the time performing disk access. The more concurrency on hard disks access exists, the
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worse will be the capacity of the web cache server to answer requests from clients. To tackle this
issue, the next tuning step aims at optimizing hard disk access, reducing overheads from any
concurrent process.

The intermediate COS virtualization phase occurred with the reduction in hard disk
access overheads. Once only the fundamental processes for kernel operation were enabled, in
addition to the Squid web cache server, the primary solution to reduce the concurrency level for
disk access was the shutting down Squid web cache server logs.

Figure 4.8: Container-based Operating System Virtualization Intermediate Analysis

Such tuning approached the desired five 9’s of availability, going from 96.85% to 98.23%,
as depicted in Figure 4.7. This improvement also enabled a higher time interval of the experiment:
the degradation of the availability happened late.

The final COS virtualization phase occurred when an one-to-one CT to hard disk
relationship was established. Without additional possibilities of decreasing hard disk access
overhead, the final insight leading to the aimed availability of five 9’s was:

� to associate one hard disk to each container that provides web cache service.

Previously, web cache I/O read and write flows were concurrent with kernel ones, where all
3 containers and the kernel perform operations with a unique host hard disk. With the new
structure, depicted in Figure 4.9, running with a small cache capacity (web cache server spool
was set to 1GB), the five 9’s of availability were reached.

Figure 4.9: COS Virtualization Final Results: one-to-one CTs and Hard Disks
relationship
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Figure 4.10: Container-based Operating System Virtualization Final Analysis

Each container shall have a unique hard disk, where each web cache server can perform
read and write operations without interruptions from another web cache server.

To reach a high available service, with 99.999% of availability, only 3 seconds of
unavailability are tolerated during an experiment of 100 hours. However, the combination
of container-based virtualization, decrease of disk I/O operations, and containers performing
exclusive disk I/O operations, led to 100 hours (as originally planned) of experiment without
logged misresponses (absence of lines with -1.00 value in the log file of the Web Polygraph).
The resulting availability is highlighted in Figure 4.10: A = 100%.

4.3 Tuning Performance Phase

With a viable infrastructure environment to provide high availability for an I/O bound
virtualized web cache server cluster, it was the moment to proceed with the comparative perfor-
mance analysis between the non-virtualized scenarios and virtualized ones, as well as to increase
the size of disk space allocated for web cache storage. A small cache capacity of 1GB per cluster
node is insufficient for a production web cache server, and must be upgraded. Furthermore, the
time interval for each experiment was decreased from 100 hours to 80 hours, due to research
time constraints. To reach five 9’s of availability, only 2 seconds of unavailability are tolerated
during an experiment of 80 hours.

4.3.1 Initial Metrics Analysis

The client-side of Web Polygraph logs three metrics of interest that were used for
performance analysis: hit ratio, response time and throughput.

These metrics were analyzed and compared from two conducted experiments: the first
with a baseline non-virtualized cluster, performed in 3 physical machines, and the latter with
a container-based virtualized cluster, performed in a cluster with 3 containers in one physical
machine, employing a relationship of 1:1 between containers and hard disks. The testbed was
adjusted with similar configurations to those described in Section 4.2.1, with experiment time
interval of 80 hours. Log time interval was configured to 1 second, and mean values of hit ratio
were generated for each time interval of 1 hour.
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Figure 4.11 shows mean points of hit ratios for time intervals of 1 hour. As can be
observed, the hit ratio behaved better for baseline (non-virtualized) cluster. When cache storage
was provided by a bind-mounted (virtualized) approach, the hit ratio presents a mean degradation
of 11.64% compared to baseline. Due to the isolation properties of containers, it is not possible
to mount external devices in a container’s file system. Instead of mounting a block device into
a particular path, the bind mount technique makes directories of the hardware node, which are
attached to the host OS, visible to containers.

Figure 4.11: Performance metric: non-virtualized baseline storage presented better hit
ratio than bind-mounted COS virtualization

Considering the mean values presented in Table 4.5, virtualized bind-mounted storage
response time was 9.43% greater than baseline. The degradation of the response time in the
virtualized cluster, can be observed in the CIs depicted in Figure 4.12a.

Table 4.5: Comparison of performance metrics

Throughput(responses/s) Min Mean Max

Baseline 228.74 280.01 314.56

Containers (bind-mounted) 211.83 262.08 295.13

Response Time(ms) Min Mean Max

Baseline 316.27 360.80 479.17

Containers (bind-mounted) 344.51 394.66 477.62

Virtualized bind-mounted storage degradation of throughput, compared to baseline, was
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6.40%. The throughput degradation level can be observed in the CIs depicted in Figure 4.12b.

(a) Response Time comparative with
confidence level of 95%.

(b) Throughput comparative with confidence
level of 95%.

Figure 4.12: Performance metrics. (a) . Similar behavior was observed to (a) response
time and (b) throughput.

Then, for the experiments configured as described in Table 4.6, the results depict that all
metrics presents better performance for non-virtualized environment. Additional experiments
should be conducted aiming at identifying possible causes of the deficit performance in the
virtualized environments.

Table 4.6: Initial configuration of experiments during tuning performance

Architecture
Inter-Cache

Protocol
Replacement

Policy
Cache size
(per node)

Duration
(h) Availability

Mesh ICP LRU 1GB 80 100%

From this point, it was necessary to investigate potentialities that could lead to improve-
ments in the virtualized clusters. First of all, the web cache server features were investigated. As
web cache server cluster have a wide range of parameters that can be exploited, performance
analysis follows two phases:

1. A screening fractional factorial experiment (DOUGLAS C. MONTGOMERY, 2011)
was designed and executed in a non-virtualized environment. It aimed to state which
is the most appropriate combination, for performance optimization, maintaining
high availability, of the web cache server factors used: architecture, replacement
policy, and inter-cache protocol. The possible levels of each factor can be observed
in Table 4.7. A complete discussion about them was performed on Section 2.2.

2. It is necessary to apply the better combination obtained in the first phase to state the
impacts on availability and performance over an I/O bound web cache application
provided in a virtualized cluster, when compared with an identical configuration over
a non-virtualized cluster.
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Table 4.7: Web Cache observed factors and levels

Factor Levels

Web Cache Architecture Mesh, Hierarchical

Web Cache Replacement Policy LRU, heap LFUDA, heap GDSF, heap LRU

Intercache Protocols ICP, HTCP, Cache Digest, CARP

4.3.2 Phase 1: screening fractional factorial experiment

The first phase of the performance experiments was executed, always observing the high
availability requirement. During the screening fractional factorial phase, all supported Squid
inter-cache protocols and replacement policy factors were combined and tested in a scenario
without virtualization (baseline). Factor combinations result in twenty eight different scenarios
(CARP protocol was not designed to work in mesh architecture), which are executed for 1 hour
each (yielding 3600 samples for each combination) with resulting availability shown in Table 4.8.

Table 4.8: Availability for each evaluated scenario

Hierachical Mesh

heap GDSF heap LFUDA heap LRU LRU All

ICP 97.6112% 99.6945% 98.9167% 98.8889%

100%

CARP 99.8612% 99.9445% 99.7778% 99.9723%

Digest 97.3056% 97.1112% 97.9445% 98.1389%

HTCP 98.1112% 97.9723% 98.6112% 98.3334%

As can be seen, for hierarchical architecture, none of the web cache server factor combi-
nations reached the five 9’s availability requirement. For mesh architecture, all combinations
were executed without unresponsiveness failures. Figure 4.13 presents the achieved confidence
intervals of the hit ratio means only for mesh architecture scenarios: as stated by the applied
methodology, performance evaluation for scenarios that violate the requirement of five 9’s of
availability must not be performed.

As shown in Figure 4.13, the combination of inter-cache protocol and replacement
policies that maximized the hit ratio was ICP and heap GDSF. A similar result for heap GDSF
replacement policy was achieved by Dilley et al. (DILLEY; ARLITT; PERRET, 1999). Thus,
during the further analysis of the performance optimization, only mesh architecture was applied.
With a mean hit ratio of 47.15%, this combination of factors was used to set up web cache
clusters provided in a virtualized environment: the most favorably performability parameters,
indicated in Phase 1 (without virtualization), were used as input for Phase 2 (with virtualization).
The goal is to observe if the best combination of factors in non-virtualized cluster can improve
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Figure 4.13: Hit ratio means 95% confidence intervals for factor’s combination with
mesh architecture

the performance of virtualized environments.

4.3.3 Phase 2: applying most favorable performability parameters

With level factors properly tuned, impact analysis on the performance of I/O bound web
cache service, when offered in a virtualized environment, reached the second stage, in which it
was decided to increment the analysis with one more non-virtualized web cache configuration:
Multi-instance. Instead of only one Squid process, three of them were executed on an unique
physical machine, as depicted in Node 03 of the Figure 3.1. With this new scenario, it was
expected that greater coverage and fairness in comparisons would occur, especially regarding
the implementation of server consolidation. A multi-instance configuration was employed with
similar cache disk designs to the virtualized one, as shown in Figure 4.9: 4 disks, one for the
local OS and others exclusively for each cache process instance.

A new round of experiments, with 1 GB of cache capacity per disk was applied. Results
of hit ratio are shown in Figure 4.14a.

As can be observed, the screening fractional factorial experiment performed on Phase
1, with subsequent application of better levels of the factors, results in a higher hit ratio for
a virtualized environment, both compared with baseline and as compared to multi-instance
configurations.

Figures 4.15a and 4.16a are resultant confidence intervals for response time and through-
put, respectively. The response time for virtualized storage technique was the lowest, whereas
the throughput of virtualized solution was higher than multi-instance, although lower than the
baseline one.

After, the disk cache capacity was increased by 10 times, resulting in 30GB of total cache
space. This increment drops availability to 94.5366%. As a consequence, a deep investigation of
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(a) Hit Ratio - 3GB of total cache (b) Hit Ratio - 30GB of total cache

Figure 4.14: Hit Ratios comparative: 3GB and 30GB scenarios

possible performance improvements was made and a large combination of tunings was performed
for several performance factors:

i. web cache server: it was updated, with the newest stable squid-3.4.2 release source
code compiled and installed. Default configuration parameters were superseded. L1
and L2 cache levels of Squid server were tuned to contain a balanced number of
stored files, resulting in a reduced search time for cached objects. Default values of
16 and 256 were replaced by 32 and 512, respectively, for higher cache size of 10GB
per cluster’s node.

ii. file systems in which the web cache server stores objects were updated. ext3 was
replaced by ext4. Journaling feature, that is responsible for data consistency, was
disabled. Without jbd2 (journaly process) running, it was noted that there was a
significant lightening of overhead. As this work is related to cache systems, journaling
can be disabled without catastrophic consequences of possible data corruptions.
Furthermore, extents, delayed block allocation (delalloc), and multiblock allocation
(mballoc) (KUJAU, 2013), that are performance improvements of ext4 that reduce
latency, were also applied. noatime and nodiratime options were used during cache
file system mounting. They avoid the update of inode access times on these file
system, aiming at faster access.

iii. SMP affinity of IRQs: Foong et al.(FOONG; FUNG; NEWELL, 2004) presents the
benefits of SMP affinity of IRQs. Interrupt-only affinity to NICs driver was applied,
avoiding the use of CPU3, identified as the busier node’s core. This movement was
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(a) Response Times - 3GB of total cache (b) Response Times - 30GB of total cache

Figure 4.15: Response Times comparative: 3GB and 30GB scenarios

performed because CPU3 was presented with the most load during the execution of
experiments. NICs driver affinity was set to not use CPU3.

iv. increase of web cache server processes scheduled priority: nice parameter was
configured with the maximum allowed scheduled priority value, to heighten their
time-slice.

After implementation of all performance improvements, none of 3 used storage tech-
niques had failures caused by unresponsiveness, reaching 100% of availability during 80 hours
of experiments.

As happened in the cluster with 3GB of storage capacity, hit ratio, depicted in Figure
4.14b, and response times, depicted in Figure 4.15b, presented a better performance with bind-
mounted virtualized storage technique. The response times were, considering the average value,
27.36% higher in the non-virtualized baseline cluster and 29.81% higher in the non-virtualized
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(a) Throughput - 3GB of total cache (b) Throughput - 30GB of total cache

Figure 4.16: Throughput comparative: 3GB and 30GB scenarios

multi-instance cluster.
Throughput’s behavior was also similar, with non-virtualized baseline cluster presenting a

higher performance, as shown in Figure 4.16b. The average value of throughput in non-virtualized
scenario was 4.02% higher than in virtualized cluster, and 5.76% higher than non-virtualized
multi-instance cluster.

Following sections will present and discuss the case studies that were executed auto-
matically, through the use of TISVEP protocol. The first case study analyzes the maximum
number of containers that can be executed while five 9’s availability is maintained. Moreover,
through the acquired experience from the execution of the previous experiments, it was possible
to reactivate the log mechanism of the web cache servers. The second case study was performed
in order to determinate which of the three OpenVZ network modes of operation is most favorable
to virtualized cluster performance. The third case study presents a comparison between the
virtualized and non-virtualized clusters when half of the total storage capacity, 900GB, was used.
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(a) 3 CTs to 1 HD relationship: A=99.0597%
(b) 2 CTs to 1 HD relationship: A=100%

Figure 4.17: Maximum number of CTs per HD for High Availability

Profiling of hardware events was used to improve the analysis of this case study. The fourth and
final case study presents the behavior of both virtuliazed and non-virtualized clusters considering
the total storage capacity: 1.8TB.

4.4 Case study 1: CTs per HD

This case study aims at defining the maximum number of containers that can be served
by a single hard disk while maintaining the five 9’s of availability. As shown in Figure 4.9, to
reach five 9’s of availability, a relation of 1:1 between containers and hard disks was required.
The scenario of 3 CTs per hard disk, as depicted in Figure 4.17a, was previously tested, with a
resulting availability of 99.0597%. This case study evaluated the scenario of 2 CTs per hard disk,
as depicted in Figure 4.17b.

An experiment, as described in Table 4.9, was configured and executed. Their results are
discussed below.

Table 4.9: Configuration for virtualized scenario: aiming at maximum number of CTs per
HD for High Availability

Architecture Inter-Cache
Protocol

Replacement
Policy

Cache size
(per CT)

Duration
(hs)

Mesh ICP heap GDSF 10GB 80

4.4.1 Two CTs per hard disk: discussion of the results

During the experiments of Section 4.2.3, the web cache server log functionality was
disabled. The goal was to reduce the concurrence overhead to hard disks: the log files and the
cached objects had been saving in the same hard disk. Without log files, it was not possible to
make several performance analysis, such as determine bandwidth savings and Byte Hit Ratio.

In order to reactive the logging of the web cache servers, three actions were carried out:

1. the log files were stored on the hard disk of the host OS, eliminating the concurrency
of disk access between the procedure to write the objects in the web cache and the
writing of the log files;
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2. a dedicated file system was created for storing log files;
3. the journal consistency mechanism of this dedicated file system was disabled, in

order to eliminate the overhead associated with such a mechanism.

Together, these three actions enable to collected informations about Byte Hit Ratio (BHR),
and in bandwidth savings. A better elucidation about the behavior of the analyzed web cache
server clusters could be performed.

An experiment with the configurations shown in Table 4.9 was executed on the web
cache cluster displayed in Figure 4.18. A=100% was reached during 80 hours of operation of
such virtualized web cache server cluster.

Figure 4.18: Testbed configuration with maximum number of CTs for high availability

All the SATA ports of the cluster were used to accommodate the twelve hard disks
employed in the experiment: for the concerned cluster, it is no longer possible to include
additional hard drives.

This hardware configuration allowed us to instantiate 18 containers, as depicted in
Figure 4.18, resulting in a relationship of 2:1 between containers and hard disks. Even with
two containers competing for the access of one hard disk, the availability remained at five 9’s,
proving the high availability of the proposed configuration.

The behavior of hit ratio, response time and throughput during the 80 hours of the
experiment execution are shown in Figure 4.19.

The following similarities regarding the hit ratio behavior were identified between the
current experiment (refer to Figure 4.19a) and that presented in Figure 4.14b:



4.4. CASE STUDY 1: CTS PER HD 75

1. hit ratio presented an initial behavior with low values, followed by an increasing
trend to later reach a peak and finally show a declining tendency.

2. after 40 hours of operation, both clusters showed a hit ratio between 40% and 50%,
with smooth variations inside this range.

These similarities will also be examined in Case Studies 3 and 4, in order to determine
whether these hit ratio behavior patterns are maintained.

(a) Hit ratio behaviour (b) Response Time behaviour (c) Throughput behaviour

Figure 4.19: Performance metrics for 180GB of total storage cache capacity with 18
containers

Regarding the response time and the throughput, a steep degradation of these metrics can
be seen in Figures 4.19b and 4.19c, respectively. Two possible factors that can lead to the reported
degradation are: a high usage of the cache storage space and the consequent initialization of the
replacement policy operation. Such arguments led us to the following hypothesis:

� in virtualized environments, as web cache storage space is depleted and replacement
policy starts its operation, response time and throughput features a clear degradation.

Such hypothesis will be investigated in the 3rd and 4th case studies: additional parameters
that can prove such hypothesis will be monitored.

To obtain the bandwidth savings and BHR, the message 305 exportCacheLogs of
TISVEP was employed. It triggers a process responsible for storing the Squid log files on an
external machine, as described in Chapter 3. These files contain information about the bandwidth
savings and BHR.

The Squid log files have been processed through the use of the calamaris tool (BEER-
MANN; POPHAL, 2013), in order to determine the total bandwidth saving provided by the web
cache cluster. Calamaris parses the log files of web proxy servers, including Squid, and generates
reports about performance metrics.

The bandwidth savings of each container (CT1 to CT6), each physical machine (PM1 to
PM3) that hosts the sets of six containers, as well as the cluster’s bandwidth savings are displayed
in the Table 4.10.
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Table 4.10: Bandwidth savings for 18 containers and 180GB of cache

Bandwidth savings (GB)
CT1 CT2 CT3 CT4 CT5 CT6 TOTAL

PM1 61.852 85.156 80.033 81.546 81.147 82.374 472.108

PM2 50.734 83.882 66.320 80.262 73.656 74.061 428.915

PM3 47.545 63.666 53.830 55.931 53.185 53.145 327.302

Total Cluster Savings (TB) 1.228

The Containers that were executed on PM1 saved 472.108GB of bandwidth; on PM2,
428.915GB; on PM3 327.302GB. With 18 containers and 180GB of overall cache storage
capacity, a total of 1.228 Terabytes were saved during the 80 hours of conducted experiment.
The total bandwidth savings will be used as a comparison factor regarding to following case
studies of 80 hours.

Regarding byte hit ratio, the results are shown, in Table 4.11. The containers that were
executed on PM1 presented a BHR of 13.20%, on average. For the containers executed on PM2
and PM3, the average BHR was 12.52% and 10.62%, respectively. The average BHR of the
whole cluster was 12.11%.

Table 4.11: Byte Hit Ratio for 18 containers and 180GB of cache on cluster

Byte hit ratio(%)
CT1 CT2 CT3 CT4 CT5 CT6 Average

PM1 13.11 13.91 12.98 12.92 13.29 13.02 13.20
PM2 12.52 13.01 12.54 12.83 12.24 12.01 12.52
PM3 10.56 11.14 10.63 10.87 10.39 10.15 10.62

Cluster Average BHR (%) 12.11

4.5 Case study 2: Analysis of OpenVZ network modes of op-
eration

The network virtualization of OpenVZ can be provided by 3 different modes of operation:
bridge-based, routed-based, and through real network devices (a complete discussion about
OpenVZ network modes of operation was performed in Section 2.4.1). This Case Study aims at
determining which of these network mode of operation presents best performance for hit ratio,
response time, throughput, and bandwidth savings of a web cache server cluster. Then, a set of
experiments was designed, as shown in Table 4.12.

The column “Cache size per container(GB)” depicts that each container that forms the
cluster provided 3GB of cache space. The second column, “number of replications”, shows that
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Table 4.12: OpenVZ modes of operation experiment design

Cache size
per container(GB)

number of
replications

number of
CTs per PM

number of
PMs

Duration
(min)

3 5 3 1 30

each of the OpenVZ network modes of operation (routed, bridged, and real device) experiment
was replicated 5 times. They were executed on a web cache cluster of 3 containers deployed
on a single PM. This restriction was applied because, to evaluate real network device mode of
operation, a relationship of 1:1 is required between containers and network cards. Only one
physical machine (Node 01 in Figure 4.3) of the testbed contained 4 network cards (one NIC
was exclusively dedicated to administrative purposes).

The TISVEP configuration file was tuned to the designed scenario. Each experiment re-
sulted in 1800 samples for each analyzed performance metric. Each sample mean was calculated.
The results are presented through 95% confidence intervals of the means for each network mode
of operation, as depicted in Figure 4.20.

Figure 4.20a shows that, for hit ratio, the most favorable OpenVZ mode of operation is
the bridged-based (veth). The hit ratio for the bridged-based mode had its lower bound of the
confidence interval above 54%. It is a higher value in comparison with routed-based (venet),
whose upper bound of the hit ratio confidence interval were below 54%. The worst performance
was observed for real network devices, whose upper bound of the confidence interval was below
50%.

Regarding response times, a similar ranking of modes of operation was observed, as
shown in Figure 4.20b. The bridged-based mode of operation answered faster: below 260ms.
The routed-based operational mode was was the second fastest, with bounds of the confidence
interval between 260ms and 280ms. Real network devices presented slower response times, with
the lower bound of the confidence interval above 280ms.

Finally, throughput obeys the previous performance metric behaviors, as depicted in
Figure 4.20c. The virtualized web cache cluster is capable of generating the highest throughputs
using bridged-based network operational mode, with more than 1175resp/s, followed by routed-
based, with bounds of the CI between 1150resp/s and 1075resp/s, and by real network devices,
whose upper bound of the CI was below 1075resp/s.
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(a) Hit Ratio(%) (b) Response Time(ms) (c) Throughput(resp/s)

Figure 4.20: OpenVZ modes of operation analysis through web cache performance
metrics behaviour

Regarding bandwidth savings, 95% confidence intervals are depicted in Figure 4.21. As
was observed to all the other performance metrics, bandwidth savings also presented the best
results to bridge-based mode of operation.

The mean values of bandwidth savings are depicted in Figure 4.21. The relative difference
of the means between bridge-based and route-based modes of operation reveals that bridge-based
performed 12.55% better than route-based mode, whereas, regarding real network devices,
bridge-based presented a 34.51% better performance.

Then, as the goal of this Case Study was to determining which of the network mode of
operation would present best performance for hit ratio, response time, throughput, and bandwidth
savings of a web cache server cluster, based on the performed analysis, it is possible to say that
bridge-based operation mode performs better for all the performance metrics. It will continue to
be used in the further case studies.

4.6 Case study 3: Scaling and profiling web cache server

In previous experiments, a maximum of 10GB of storage per HD was employed. It
corresponds to less than 10% of available space. In this case study, it was decided: (i) to increase
the HD size from 10GB to 100GB in order to analyze the behavior when scaling the cache server
storage; and (ii) to increase the memory from 4GB to 8GB, in order to avoid Out of Memory
(OOM) failures2.

2The OOM failure means that there was not enough available memory to execute the process.
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Figure 4.21: Bandwidth savings for OpenVZ network modes of operation

4.6.1 Performability analysis with 900GB of storage

The purpose of this experiment is to answer the following questions: (i) is it possible
to maintain five 9’s of availability with 900GB of cache storage? (ii) will the virtualized
environments produce better performance metrics with storage scaling? and (iii) is profiling a
suitable technique to investigate the overheads of virtualized environments?

The Table 4.13 depicts the design of the experiment. 9 containers (3 CTs per PM) with
100GB were employed, and the experiment was executed during 80 hours. The workload is the
same of previous experiments in order to make a fair comparison.

Table 4.13: 900GB experiment design

Cache size
per containers(GB)

number of
PMs

number of
CTs per PMs

number of
replications

Duration
(h)

100 3 3 1 80

As result of this scenario, the observed virtualized web cache server cluster, in a relation-
ship of 1:1 between containers and DAS hard disks, had no failures, obtaining A=100%, i.e., five
9’s of availability was accomplished in a virtualized environment. Next, the same experiment
was executed in a non-virtualized cluster, also resulting A=100%.

Regarding to performance analysis, the hit ratio is shown in Figure 4.22a. Here, a
transient state means that the cache is not full (during the first 10 hours of our experiment). As
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it can be seen, the 9CTs presented worst hit ratio than 3 PMs in non-virtualized environment
during the transient state, and after the 30th hour, their behavior can be considered similar.

The response time is shown in Figure 4.22b and 9 CTs had better response time than 3
PMs during almost all experiment. Figure 4.22c shows the throughput and 9 CTs also presented
better performance when compared to 3 PMs.

(a) Hit ratio behaviour (b) Response Time behaviour (c) Throughput behaviour

Figure 4.22: Performance metrics for 900GB of total storage cache capacity

In order to understand the sharp variation in CT behaviors after the transient state, an
analysis of the Storage Swap capacity was performed, that is one of many parameters monitored
using TISVEP (refer to Chapter 3), and reports the amount of data cached by each server.

Figure 4.23 shows Storage Swap reached 95% of capacity in the period between the 9th

and 10th hours for all CTs. Comparing Figure 4.22a and Figure 4.23, one can note storage swap
capacity affected the metrics behavior.

Figure 4.23: Cache storage capacity over time - Containers (CTs) configuration

Storage swap capacity of 95% also affects response time and throughput. After 9 hours
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of virtualized experiment, when the storage threshold of 95% was reached, response time and
throughput suffer a steep degradation, as observed in Figures 4.22b and 4.22c, respectively.

To normalize how each performance metric behaves in non-virtualized and virtualized
environment, the following equations to calculate the relative change (LILJA, 2005) was used,
expressed in percent:

RC_HR=
(HR_NV−HR_V)

HR_V
×100

�
 �	4.1

RC_RT=
(RT_V−RT_NV)

RT_NV
×100

�
 �	4.2

RC_THR=
(THR_V−THR_NV)

THR_NV
×100

�
 �	4.3

In Eq. 4.1, the RC_HR stands for relative change of hit ratio, where HR_NV and HR_V
are hit ratio values for non-virtualized and virtualized clusters, respectively. The same is applied
to response time in Eq. 4.2 and to throughput in Eq. 4.3.

Figure 4.24 depicts relative changes related to hit ratio. The 80 points related to each
1 hour of experiment. Non-virtualized clusters presented hit ratio better than virtualized. On
the other hand, regarding to response time and throughput, virtualized cluster outperforms
non-virtualized one.

(a) Hit ratio behaviour (b) Response Time behaviour (c) Throughput behaviour

Figure 4.24: Relative Changes of performance metrics for 900GB of total storage cache
capacity

Table 4.14 show the results about bandwidth savings for the current experiments. During
80 hours of experiments, non-virtualized clusters saved 2.609% terabytes more than virtualized
solution: a better total absolute saving of 67GB.

During 80 hours of experiments, non-virtualized web cache server clusters saves 2.609%
more terabytes than virtualized solution: a better total absolute saving of 67GB.
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Table 4.14: Saved bandwidth(TB)

Cache infrastructure Bandwidth savings (TB)

non-virtualized cluster 2.568

virtualized cluster 2.501

4.6.2 Profiling web cache server clusters

Three TISVEP messages are related to enabling profiling on Squid processes. Processing
of a 306 message startupProfiling in a target destination triggers an ocount process.
It is an event counting tool of the oprofile system-wide profiler for Linux systems. Pro-
cessing of a 307 message stopProfiling in a target destination halts ocount processes,
whereas processing of message 308, exportProfileData, saves resulting profiling data in
an external storage for further analysis.

Two hardware events were collected: CPU_CLK_UNHALTED and L2_CACHE_MISSES.
For each time interval of one minute, the resulting counts from such hardware events are collected
and stored.

� CPU_CLK_UNHALTED

This event collects the number of CPU cycles running outside of halt state. The number of
samples collected in this routine is proportional to the time spent by the processor to execute
instructions. The more samples collected, the more time the processor has spent executing those
instructions.

Figure 4.25 depicts the CPU cycles comparison between web cache server on containers
and on physical machines, node by node. The container results were grouped in the same bar in
order to make a clear comparison with physical performance. As can be observed, each container,
singly, presents less unhalted clocks than the physical machine; and all together sums more.
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Figure 4.25: CPU_CLK_UNHALTED: 3PMs x 9CTs on 3PMs - 900GB of total cache
space

Analyzing the Figure 4.25, it is possible to conclude that virtualized web cache server
processes are able to execute their instructions in a smaller time than non-virtualized.

In Node 1, comparing containers individually, the CT2 presents the highest clock achiev-
ing 336.535 x 1012 events, while PM marks 636.465 x 1012. Unhalted clock of physical machine
in Node 1 was 89.12% bigger than CT2. A similar behavior can be observed in Nodes 2 and 3,
where PM unhalted clocks perform 87.73% and 91.64% worst than the higher container results.
The better results of unhalted clocks in web cache server cluster on container clusters represent
an impact factor for better response times and throughput in this case study.

For virtualized servers, web server processes are executed simultaneously consuming
more clocks and avoiding resource idleness; consequently it results in a better usage efficiency.

The cumulative CPU_CLK_UNHALTED represent the second advantage of virtualized
cluster: a better efficiency in resources usage, which is favorable to the server consolidation
process. For Node 1, cumulative CPU_CLK_UNHALTED for containers cluster is 57.6% better
than the non-virtualized cluster. For Nodes 2 and 3, the better efficiency of CPU usage for
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containers cluster reached 56.36% and 54.61%, respectively.

� L2_CACHE_MISSES

This hardware event counts the number of times that a search in an L2 cache level results in a
missing.

Figure 4.26 shows the L2_CACHE_MISSES for each node. Each virtualized server
presented L2_CACHE_MISSES smaller than each physical machine.

Figure 4.26: L2_CACHE_MISSES: 3PMs x 9CTs on 3PMs - 900GB of total cache space

The results of Node01 showed CT3 reached the highest value of L2_CACHE_MISSES,
with 1.625 x 1012, while PM presented 4.002 x 1012, a 147.48% higher value of L2 cache
misses. Similar behavior was observed on Nodes 02 and 03, where CT2 presented smaller
L2_CACHE_MISSES values. Node02 and Node03 behaviors were 144.47% and 149.86%
higher than CT2s servers, respectively.

As can be noted, L2_CACHE_MISSES event has an inversely proportional relationship
with response times and throughput for a container-based cluster. It is another evidence for better
behavior of response time and throughput in comparison with a non-virtualized cluster.
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The behavior of the L2_CACHE_MISSES event, during the 80 hours of experiments, is
shown in Figure 4.27. Each point in Figure 4.27. represents the average of 60 collected values,
one per minute, of L2_CACHE_MISSES. As one can noted, Node 01 and Node 03 presented the
lowest L2 cache misses during all experiments, whereas Node02, presented the worst averages
during the transient state, and in other two moments.

Such analysis reinforce the evidence of a relationship between lower L2_CACHE_MISSES
and better behavior of response time and throughput for virtualized web cache cluster, in com-
parison with non-virtualized.

(a) Node 01 (b) Node 02 (c) Node 03

Figure 4.27: L2 cache miss hardware events behaviour for 900GB of total cache capacity

4.7 Case study 4: Full spool performability analysis

This case study aims to answer the following questions: (i) is it possible to maintain five
9’s of availability for all the storage capacity? (ii) will virtualized environments produce better
performance with full storage capacity? and (iii) what can profiling reveal about overheads of
virtualized environments in the full storage capacity scenario?

According to Squid web cache documentation3, one recommends saving 20% of the disk
space for operational purposes; and according to (WESSELS, 2004), a Squid web cache server
requires a small amount of memory for objects on the disk since it uses the memory as an index
to the on-disk data. For instance, in systems with 64 bit CPUs, each object takes 112 bytes. As
mentioned in Section 3.2.3, each physical machine was composed of 3 dedicated hard drives for
cache storage, each one with 250GB. In this way, to answer the previous questions, experiments
were elaborated using all storage capacity of our cache servers in order to verify their behaviors.

A default applied practice is to evaluate the non-virtualized before the virtualized scenar-
ios in order to create a baseline reference without virtualization. Take this into consideration,
in this case study with full storage capacity per hard disk, were executed the same experiments
done in Section 4.6, but following these steps:

3http://www.squid-cache.org/Doc/config/cache_dir/

http://www.squid-cache.org/Doc/config/cache_dir/
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1. PM-1: two replications with 3PMs, restarting the cluster nodes;
2. VIRT-1: one replication with 9CTs, restarting the cluster nodes;
3. PM-2: one replication with 3PMs, without restarting the cluster nodes.

In order to monitor the cache server operation, the following steps were defined:

� application of a TISVEP message, named startCacheMonitor, for starting a
cache monitoring process in each PM;

� the Resident Set Size (RSS) for a Squid process was stored. The maximum RSS is
the maximum amount of physical memory used by the process at any time. Squid’s
process size may be larger than the RSS, in which case some parts of the process are
actually swapped to disk (WESSELS, 2004).

As result, it was observed the PM-1 replications did not reach the five 9’s of availability
due to the amount of primary memory in each PM. Table 4.15 shows the Maximum RSS and
the Final RSS for each node in both replications of PM-1. At the end of the first replication,
the Maximum RSS reached 11.32GB, 11.54GB, and 11.56GB, for Node 01, Node 02, and
Node 03, respectively. Therefore, the availability decreased from A=100% to A=99.9754%,
registering 71 failures. Here, it is important to highlight only 2 failures can occur to reach five
9’s of availability during 80 hours of experiment.

For the second replication, the maximum RSS reached 8.09GB on Node 01, 10.96GB
on Node02, and 11.11GB on Node03 when the first failure occurred. In total, 34 failures were
registered during the 80 hours of this second experiment, resulting in A=99.987%.

Table 4.15: Maximum RSS for non-virtualized full spool experiments

Squid Maximum RSS Analysis - PMs
1.8 TB - First Replication

Max RSS on first failure (GB) Final Max RSS(GB)

Node 01 3.78 11.32

Node 02 3.01 11.54

Node 03 5.09 11.56

1.8 TB - Second Replication

Node 01 8.09 11.26

Node 02 10.96 11.53

Node 03 11.11 11.56

As can be noted in Table 4.15, at the end of experiments, the Squid processes of all
physical machines presented maximum RSS largest than the available memory, requesting for
swap utilization. So, the source of the failures was environmental, as discussed in Section 2.1.2.

Contrary to the default procedure of evaluating the virtualized environment after checking
five 9’s of availability in the non-virtualized one, the next experiment of this case study was
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conducted in a virtualized environment. VIRT-1 resulted in availability of A=100% even without
a corresponding non-virtualized cluster reaching such result. It was the first experiment using
1.8TB of cache and successfully resulted in five 9’s of availability.

Finally, the PM-2 was conducted; remembering the main difference is the node restarting
process that was not executed. The main objective of restarting cluster nodes is to flush primary
memory. Even performing a set of well known commands to drop caches (MORREALE, 2008),
the amount of free primary memory did not return to higher values than 7GB, that was the
observed free RAM after machines restarting. In this experiment, PM-2 reached A=100%. So, it
was possible to compare the performance of full spool capacity on virtualized and non-virtualized
clusters.

Figure 4.28 shows the behavior of hit ratio, as well as response times and throughput.
During the transient state, the hit ratio presented a similar behavior to the previous case study.
Nevertheless, when cache spool was completely filled, the hit ratio for the non-virtualized cluster
presented a better performance (Figure 4.28a). In contrast, response time and throughput were
favorable to the virtualized cluster in both transient and persistent states, as can be noted in
Figures 4.28b and 4.28c, respectively.

(a) Hit ratio behaviour (b) Response Time behaviour (c) Throughput behaviour

Figure 4.28: Full Spool performance metrics - 1.8TB of total cache capacity

Through the monitoring of Maximum RSS on the PM-2, a different result was obtained
in comparison with the PM-1: the maximum RSS did not increase beyond the machine’s total
RAM. The Maximum RSS for Nodes 01, 02, and 03 reached 4.727GB, 4.834GB, and 4.866GB,
around 17th, 15th, and 15th hours of experiment, respectively, and remained stagnant in these
values until the end of the experiment. During these periods, response time and throughput were
sharply degraded. So, although availability reached 100%, the performance of non-virtualized
cluster was lower than expected, due the stagnation of maximum RSS.

With maximum RSS stagnation, the response times for the non-virtualized cluster grew
boundlessly, and throughput was below 100 responses per second after the 38th hour of the
experiment.

The bandwidth savings for the non-virtualized cluster were also impacted. Table 4.16
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summarizes the total bandwidth savings for virtualized cluster, which reached 1.571TB, while
Table 4.17 is related to non-virtualized cluster, which reached 801TB. Virtualization cluster was
93.95% better than non-virtualized.

Table 4.16: Bandwidth savings for 9CTs on 3PMs with 1.8TB of total cache storage

Bandwidth savings (GB)
CT1 CT2 CT3 Total

PM1 178 168 170 507
PM2 176 177 177 530
PM3 177 179 178 534

Total Cluster Savings (TB) 1.571

Table 4.17: Bandwidth savings for 3PMs with 1.8TB of total cache storage

Bandwidth savings (GB)
PM1 252
PM2 277
PM3 281

Total Cluster Savings 810

4.7.1 Profiling web cache server clusters with storage capacity of 1.8TB

This Section presents the analysis of CPU_CLK_UNHALTED and L2_CACHE_MISSES
events for web cache server clusters with storage capacity of 1.8TB.

� CPU_CLK_UNHALTED

Table 4.18 shows a comparison with CPU_CLK_UNHALTED results from Case Study 3.
Such comparison aims to describe how RAM stagnation on non-virtualized cluster with storage
capacity of 1.8TB affects the behavior of cycles outside of halt state. As can be noted, whereas
CPU_CLK_UNHALTED for CTs cluster decreased 54.97% on average, for non-virtualized
(PM) cluster, the decrease was 256.57%. Such outstanding difference also happens due to RAM
stagnation on 1.8TB non-virtualized cluster.
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Table 4.18: CPU_CLK_UNHALTED comparison: 900GB x 1.8TB of spool storage
capacity. Values on columns 900GB and 1.8TB are multiplied by 1012

CPU_CLK_UNHALTED Comparison

900GB 1.8TB Decrease

PM CTs PM CTs PM CTs

Node 1 636.4652 998.088 187.9870 641.2819 238.57% 55.64%

Node 2 619.7525 947.704 153.4187 618.8516 303.96% 53.14%

Node 3 615.0589 942.447 187.9869 603.668 227.18% 56.12%

Average Decrease 256.57% 54.97%

Figure 4.29 shows the comparison of CPU_CLK_UNHALTED between web cache
server processes in containers and physical machines with cache capacity of 1.8TB, node by
node.

Figure 4.29: CPU_CLK_UNHALTED sum for 9CTs x 3PMs with 1.8TB of cache
capacity
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With 900GB of cache capacity, CPU_CLK_UNHALTED presented better performance
for each of the individual virtualized servers than non-virtualized. However, for 1.8TB of cache
capacity, non-virtualized cluster marked smaller summed values for cycles outside of halt state.

Aiming to explain reversal behavior of non-virtualized cluster for 1.8TB, the following
evidences are presented:

� the difference in decreasing CPU_CLK_UNHALTED behavior between 900GB and
1.8TB experiments, presented in Table 4.18;

� strictly increasing response times for the 1.8TB non-virtualized scenario;
� low throughput in 1.8TB non-virtualized scenario;
� 93.95% worst behavior in bandwidth savings in the 1.8TB non-virtualized scenario.

Indeed, all these arguments are side effects of RAM stagnation.
Still in Figure 4.29, one can see that PM of Node1 presented 187.987 x 1012 CPU_CLK_

UNHALTED, whereas CT2 (that marked lower summed value) reached 215.671 x 1012; PM
outperformed CT in 11.95%. Similar results were reached for Node1 and Node2, with better
behavior for PM: 36.77% and 8.13%, respectively.

As expected, cumulative analysis of CPU_CLK_UNHALTED is more favorable for
virtualized cluster. For Node1, summed values of the 3 containers reached 641.2819 x 1012 .
For Node2, 618.8516 x 1012 and, for Node3, 603.668 x 1012 . So, comparing nodes web cache
servers in a virtualized cluster with non-virtualized, CPU_CLK_UNHALTED of virtualized
performs better for 1.8TB scenario.

So, per node web cache servers’ joint behavior of CPU_CLK_UNHALTED that com-
pound a virtualized cluster, in comparison with individual non-virtualized nodes, performs better
for 1.8TB scenario, with a favorable behavior of 241.17%, 303.37%, and 221.11% for Nodes 01,
02, and 03, respectively.

� L2_CACHE_MISSES

Concerning to L2_CACHE_MISSES, the behavior was similar in both 900GB and 1.8TB clusters:
the summed values by each container were smaller than the summed values of each physical
machine.

A decreasing comparison between these two scenarios was also conducted , aiming
to observe how large was the difference in L2 cache miss behavior. Table 4.19 presents this
comparison with decreasing percentage values expressed as average. As can be noted, percentage
decreasing values of L2_CACHE_MISSES are similar to ones presented by CPU_CLK_UNHAL
TED in Table 4.18: the decrease for non-virtualized cluster was about 5 times greater than
containers cluster.
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Table 4.19: L2_CACHE_MISSES summed values comparison: 900GB x 1.8TB of spool
storage capacity. Values on columns 900GB and 1.8TB are multiplied by 1012

L2_CACHE_MISSES Summed Values Comparison

900GB 1.8TB Decrease

PM CT1 CT2 CT3 PM CT1 CT2 CT3 PM CTs

Node 1 4.022 1.608 1.624 1.625 1.345 1.042 1.069 1.088 199.03% 51.86%

Node 2 4.003 1.596 1.638 1.516 1.092 1.044 1.055 1.024 266.57% 52.06%

Node 3 4.022 1.577 1.610 1.542 1.087 1.037 1.035 1.033 270.01% 52.30%

Average Decrease 245.20% 54.97%

Figure 4.30 shows the sum of L2_CACHE_MISSES by nodes. Each virtualized web
cache server presented total of L2_CACHE_MISSES lower than each physical machine.

Figure 4.30: L2_CACHE_MISSES sum for 9CTs x 3PMs with 1.8TB of cache capacity

In Node 01, the higher summed value of L2_CACHE_MISSES for the virtual cluster was
reached by CT3, with 1.088 x 1012 events, while PM marked 1.345 x 1012. So, PM presented
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a L2 cache misses value 23.62% higher. Nodes 02 and 03 presented a similar behavior, with
CT3 of Node 02 reaching the smallest summed values of L2 CACHE MISSES. Concerning the
L2 cache misses, the PM behaviors of Node02 and Node03 were 3.51% and 4.82% higher than
CT3s servers.

As depicted in Figure 4.31, the behavior of the L2_CACHE_MISSES,during the transient
state, was better for virtualized servers. L2_CACHE_MISSES, after the transient state, decreased
sharply for non-virtualized cluster. Apart from reducing performance due to replacement policy
operation, L2_CACHE_MISSES also decreased due to limited resources, specifically primary
memory.

(a) Node 01 (b) Node 02 (c) Node 03

Figure 4.31: L2 cache miss hardware events behaviour for 1.8TB of total cache capacity

During the transient state, when spool capacity was not yet completely filled, the behav-
ior of the L2_CACHE_MISSES was better for virtualized servers. After the transitory state,
L2_CACHE_MISSES decreases sharply for non-virtualized cluster. Apart from reducing perfor-
mance due to replacement policy operation, L2_CACHE_MISSES also decreased due to limited
resources, specifically primary memory.

4.8 Summary of recommendations

The two main reasons for adoption of a web cache server system are:

� to reduce response times of requested objects, improving user experience;
� to save external bandwidth.

Regarding these two reasons and based on experimental results presented in the current chapter,
the following list of recommendations about operational behavior of studied I/O bound web
cache server clusters are made:

1. Use of server virtualization favors faster response times on I/O bound web cache
server clusters, since increasing the number of nodes in a cluster results in the
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decrease of response time for the provided service. Through the application of server
virtualization, it was possible to reach 18 virtualized servers, in contrast to the limited
number of 3 physical servers. After initial comparative experiments, described in
Section 4.3.1, all others resulted in better response times for virtualized clusters.

2. As Internet Cache Protocol (ICP) scales accordingly to growth of virtualized servers,
it is a suitable option of intercommunication between web cache servers that forms
the cluster. Even with the increasing number of web cache servers that form the
cluster, the response times perform better for the studied scenarios of 9 web cache
servers provided on containers versus 3 web cache servers provided on physical
machines.

3. Regarding bandwidth savings, container-based virtualized web cache clusters perform
similarly and even better, in comparison with non-virtualized clusters. For the two
studied large scale storage web cache clusters, with 900GB and 1.8TB of cache space,
a virtualized cluster saves:

� 2.609% less bandwidth than non-virtualized with the former (900GB);

� 93.95% more bandwidth than non-virtualized with the latter (1.8TB). This
is due to RAM stagnation problem of non-virtualized cluster that had not
been arising with virtualized cluster.

Additionally for the main reasons of web cache server usage, the following implications
are also relevant:

� In comparison with full virtualization technology, the use of container-based virtual-
ization is preferred to I/O bound clustering due to its lower overhead.

� It was not possible to reject profiling hardware events as an effective investigative
technique to justify better performance of virtualized environments. In contrast,
the concerned hardware events were useful as a way to evidence reasons of better
performance in virtualized environments when compared to non-virtualized ones.
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5
Related Works

This chapter presents a set of works whose subjects are related to this dissertation.
Section 5.1 presents works that applies measurements aiming at evaluating the performance in
environments of server virtualization. To demonstrate the infrastructure on which each work
was performed, the physical components of the testbeds are presented with as much detail as
provided. Next, Section 5.2 presents works related to experiments automation in virtualized
environments. Finally, a discussion comparing this dissertation and related works is conducted
in Section 5.3.

5.1 Performance Evaluation of Server Virtualization through
Measurements

In (DUAN; GU, 2010), the authors proposed a hybrid Web proxy cache cluster. The
nodes that form the cluster were divided in two groups: local and cloud nodes. When the use of
resources in the local nodes exceeds the established threshold, the proposed system adds cloud
nodes to the Web proxy cache cluster. A performance comparison of response times between
8 local only nodes and 16 hybrid nodes (8 local and 8 from cloud) clusters was achieved, with
favorable response times for the hybrid cluster. Even arguing that the proposed solution has high
availability, the authors did not present clear results about availability.

In the Xavier et al. (XAVIER et al., 2013) work, they argued that container-based
virtualization can be a powerful technology for HPC environments and proposed a performance
and isolation evaluation of recent container-based implementations. Moreover, the use of
virtualization technologies in high performance computing (HPC) environments had traditionally
been avoided due to their inherent performance overhead. However, with the rise of container-
based virtualization implementations, such as Linux V-Server, OpenVZ and Linux Containers
(LXC), it is possible to obtain a very low overhead leading to near-native performance. They
conducted a number of experiments in order to perform an in-depth performance evaluation of
container-based virtualization for HPC, analyzing CPU, memory, disk and network resources.
The setup consisted of four identical Dell PowerEdge R610 with two 2.27GHz Intel Xeon E5520
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processors (with 8 cores each), 8M of L3 cache per core, 16GB of RAM and one NetXtreme II
BCM5709 Gigabit Ethernet adapter. Some depicted scenarios presented better performance for
a container-based virtualization solution, such as disk write operations for Linux V-Server. As
future work, they planned to study the performance and isolation of container-based systems
for other kinds of workloads, including I/O bound applications that were performed in this
dissertation.

Ye et. al (YE et al., 2010) performed an evaluation of the virtualization cost aiming at
finding the performance bottlenecks when running HPC applications in a virtual cluster. Their
work applied hardware profiling analysis through the use of oprofile and xenoprof. They used the
HPC Challenge Benchmark suite to investigate the performance of several aspects of a cluster.
The experiments were conducted on Dell 2900 PowerEdge servers, with 2 Quad-core 64-bit
Xeon processors at 1.86 GHz. No information about the total RAM amount was provided. They
investigated the virtualization overhead comparing the performance of Xen virtual machines,
running both in para-virtualized and full virtualized modes, with a physical machine. The
first results showed that paravirtualization caused a little performance loss in comparison with
physical machine and that the L2 cache miss rate is one of the major reasons for degrading
the performance of the virtualized environment. Furthermore, 5 repetitions of experiments in
16 nodes cluster was performed, aimed at investigating possible bottlenecks in a scalability
study: the number of VMs scales from 1 to 16. Both full virtualization and paravirtualization
had an increase in the L2 cache misses rate. The performance penalties, considering L2 cache
misses, were 13.97% and 16.40% for paravirtualization and full virtualization, respectively. They
concluded that virtualization does bring performance overheads for HPC applications, but within
an acceptable range. Their work was entirely CPU-bound, applying the Xen hypervisor, and no
observation about disk workloads was cited. No information was provided about the duration of
the experiment. No analysis about failures or system downtimes was reported.

Huber et. al (HUBER et al., 2010) summarized the performance-influencing factors
of several virtualization platforms. They presented an interesting classification of the major
performance-influencing factors of virtualization platforms, dividing them into 3 classes: virtual-
ization type, resource management configuration and workload profile. Aiming at evaluating
such factors, two different scenarios were used during the conducted experiments, with Windows
Server 2003 as both Host and Guest OSs: (i) to evaluate the overhead of the virtualization layer,
an HP Compaq dc5750 machine with an Athlon64 dual-core 4600+, 2.4 GHz, 4 GB DDR2-5300
of main memory, a 250 GB SATA HDD and a 10/100/1000-BaseT-Ethernet connection; (ii)
to evaluate the performance when scaling the number of VMs, a SunFire X4440 x64 Server,
with 4*2.4 GHz AMD Opteron 6 core processors with 3MB L2, 6MB L3 cache each, 128 GB
DDR2-667 main memory, 8*300 GB of serial attached SCSI storage and 4*10/100/1000-BaseT-
Ethernet connections. For the first scenario (directly related to this dissertation), the performance
degradation when switching from a native to a virtualized system remains around 4%. Even
arguing that I/O virtualization suffers from significant performance overheads, they did not
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conduct specific experiments with workloads for disk I/O evaluation, just for network I/O.

Che et al. (CHE et al., 2010) measured and analyzed the performance of three open
source virtualization solutions: OpenVZ, Xen and KVM, which adopt the container-based
virtualization, paravirtualization and full-virtualization, respectively. Measures regarding macro-
performance and micro-performance were realized. Macro-performance considers the overall
performance of a subsystem or whole system, whereas micro-performance mainly means the
fine performance of some specific operations or instructions. All experiments were conducted on
a Dell OPTIPLEX 755, with a 2.33GHz E6550 Intel Core2 DUO processor, 2GB DDRII 667
RAM, and 250GB 7200 RPM SATA II disk. They adopted the Gentoo Linux 2008.0 AMD64
with kernel 2.6.18 as both host operating system and guest. To investigate the macro-performance
of disk virtualization, they ran IOzone to read and write operations of 2MB files. The results were
expressed as bandwidth, in Mbps. OpenVZ held a partial read and write bandwidth compared
with native Gentoo. Xen followed OpenVZ with a slight degradation in most experiments,
while KVM had apparently lower performance than OpenVZ and Xen. No information was
provided about the duration of the experiment, as well as any information about failures or
system downtimes.

Padala et al. (PADALA et al., 2007) consolidated multi-tiered systems in several nodes
using hypervisor based virtualization (Xen) and container-based virtualization (OpenVZ). Fur-
thermore, both technologies were compared with a non-virtualized base system, in terms of
application performance and low-level system metrics (like cache misses). An HP Proliant
DL385 G1 was used for servers and client machines. Every server has two 2.6 GHz processors,
each with 1MB of L2 cache, 8 GB of RAM, and two Gigabit network interfaces. No infor-
mation about the hard disk technology was provided. The performance hardware events were
collected through oprofile. Their experiments were conducted during a 15 minute period. The
results depict that the throughput presented a similar behavior in the virtualized (hypervisor and
container based) and non-virtualized environments, whereas for response times, the virtualized
environment based on a hypervisor solution (Xen) presented an increase of over 600%, from
18ms to 130ms, when the number of threads was increased from 500 to 800. For the analysis of
hardware counters in the OpenVZ-based system, each of the counter values was assigned for the
whole system, including the shared kernel and all the virtual containers. This work differs on
this point: it was able to isolate the hardware event counter for the application being provided.
The counter values for CPU_CLOCK_UNHALTED and L2_CACHE_MISSES in the OpenVZ
environment were less than twice the corresponding values for the base case. Compared to our
work, the time intervals applied for the experiments were small and no considerations regarding
availability were performed.

In (SOLTESZ et al., 2007), the authors discuss the features of Container-based Operating
System virtualization, performing a comparison of the isolation and efficiency among hypervisor-
based virtualization solution (Xen), a COS solution (Linux V-Server) and non-virtualized native
Linux. For this purpose, a series of experiments was executed on an HP Proliant DL360 G4p,
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assembled with 4GB RAM and two 160GB 7.2k RPM SATA disks, formatted on an ext3 file
system with the journal recovery mechanism enabled. In the proposed experiments, each guest
operating system was assigned to partitions of 2GB. For the DBench macro-benchmark that
is disk I/O intensive and represents the throughput experienced by a single client performing
around 90,000 file system operations, the Linux V-Server uniprocessor slightly exceeds the Linux
native performance. With partitions of 2GB of size and journal recovery mechanism enabled,
the unresponsiveness issue may have been hidden. Moreover, no considerations regarding
availability were made.

Pu et. al (PU et al., 2010) presented their experimental study on the performance
interference in parallel processing of CPU and network intensive workloads in a Xen VMM.
The experiments were performed in IBM ThinkCentre A52 Workstations with two 3.2GHz Intel
Pentium 4 CPUs (both have 16KB L1 caches and 2MB L2 caches), 2 GB 400MHz DDR RAM,
a 250 GB 7200 RPM SATA2 disk, and an Intel e100 PRO/100 network interface. Their work
is exclusively on network I/O bound workloads: no disk reading was involved. Additionally,
even stating that multiplexing/demultiplexing of bridge and I/O channel may incur memory page
management interferences, such as packets lost for high latency, fragmentations and increased
data coping overhead, there were no narratives about such known failures sources. The workload
generator tool used, httperf, is able to report errors on its output results. It was not elucidated if
failures were not tracked or did not emerge. Neither of the assumptions can be refuted.

5.2 Experiments Automation

In the context of automatic monitoring, Ganglia (MASSIE; CHUN; CULLER, 2004) has
a large set of qualities. It is a distributed monitoring system for high performance computing
systems and is based on a multicast listen/announce protocol. The most influential consideration
shaping Ganglia’s design is scale (MASSIE et al., 2012). It provides traditional parameters, such
as CPU, memory, disk and network. Nevertheless, Ganglia does not detect software hangs of
applications that are being provided in the monitored nodes. It focuses on nodes and network
failures. Moreover, it is composed of a series of configuration files and daemons, resulting in a
sharp learning curve.

For automatic configuration of experiments, CloudBench (SILVA et al., 2013) is an
existing alternative. It enables the automation of cloud evaluation through the running of
controlled experiments. The applications used in the experiments are predefined benchmarks.
CloudBench developers argue that, to port a new application, it typically requires the writing of
approximately 150 lines of Bash script. The monitoring of resources is carried out with Ganglia.
In our testbed, managing an experiment through CloudBench will make it a competitor, once our
environment is sensitive to overloads. Moreover, it would be necessary to port Web Polygraph as
a new application, since it is not an available benchmark tool. So, even presenting a sophisticated
and extensible framework, the time cost to integrate CloudBench, as well as the risks associate
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with its processing requirements, were judged as prohibitive.

5.3 Discussion

From the features and results of the aforementioned related works, Table 5.1 presents
a summary of most relevant points aiming at comparing them. The goal is to highlight the
strengths and limitations of this work compared to the others that have been published.

A remarkable point of this work was to monitor the availability of the provided service
during the execution of experiments. As can be observed in the second column in Table 5.1, this
feature was not contemplated by any other related work.

Regarding the use of hardware events counting, (PADALA et al., 2007) and (YE et al.,
2010) applied this technique aiming at justifying why virtualized scenarios presented bottlenecks
and overheads in comparison with non-virtualized environments. However, they did not obtain
favorable results in virtualized environments, whereas the other five works presented them, as
can be noticed in the last column of the Table 5.1.

The work that most closely matches the goals of this dissertation is the one conducted
by Padala et. al (PADALA et al., 2007), since they evaluated I/O bound workloads in OpenVZ
container-based virtualized cluster while counting hardware events. Nevertheless, they did not
perform any procedures of overhead reduction in the conducted experiments on virtualized
environments. This fact is pointed to here as the main cause of difference in the presented results
in comparison with those presented in this dissertation. A point in favor of the work of these
authors, and which appears as a limitation of this dissertation, was to monitor the execution
of experiments through profiling. Some preliminary experiments performed by us that applied
profiling yielded more than 80GB of resulting data, when they were interrupted due to the lack of
storage space. Moreover, as the use of measurements to evaluate performability in virtualization
environments is a highly time consuming activity, it presents risks to meeting deadlines. The
experiments performed by Padala et. al were 15 minutes long, in contrast to the dozens of hours
performed by us. As counting hardware events requires a volume of storage that is compatible
with our testbed capacity, it was adopted.

A singularity of this work can be noted from Table 5.1: it was unique in that it joined
favorable performance metric results in a virtualized environment with the technique of hard-
ware event counting as a mechanism to investigate favorable performance in the virtualized
environments.
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Table 5.1: Related Works

Work Monitoring avail-
ability during the
performance eval-
uations?

COS Virtu-
alization?

I/O bound
workload?

Monitor hard-
ware events?

Favorable performance metric
in virtualized environment?

(SOLTESZ et al., 2007) No Yes Yes No Yes, for network throughput and
for dbench file system bench-
mark

(CHE et al., 2010) No Yes Yes No Yes, network TCP tx for 4k pack-
ages

(HUBER et al., 2010) No No No No No
(PADALA et al., 2007) No Yes Yes Yes, through

counting and
profiling

No

(DUAN; GU, 2010) No N/A Yes No Yes, response times
(XAVIER et al., 2013) No Yes No No Yes, disk write operation
(YE et al., 2010) No No No Yes, through

counting
No

(PU et al., 2010) No No Yes, network ex-
clusively

No Yes

This dissertation Yes Yes Yes Yes, through
counting

Yes, hit ratio, response times,
throughput and Byte Hit Ratio
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6
Conclusions

Is it possible to execute a service with similar or even better performance, in a virtualized
environment in comparison with a non-virtualized one? That was the central point of this
conduced research. During the survey of state of the art studies, it was found that most of the
related research was focused on CPU-bound applications analysis. Moreover, the performance
evaluations based on collected measurements have highlighted the overheads of virtualized
infrastructures, but without regarding their implications on availability.

Conducting performance evaluations of virtualized servers without regarding availability
can lead to results that hide failures and, thereafter, compromise the results of evaluations
concerned. Furthermore, the current work focuses on an I/O bound application, aiming at
following an alternative path to most studies.

Through an extensive collection of experiments, the applied workload generation tool
was able to identify occurrences of failures directly. Such failures were characterized as software
hangs due to the unresponsiveness phenomenon and to tackle them was the main challenge faced.
So, before analyzing performance, it was necessary to take care of system availability, featuring
the research as a performability study. During all executed experiments, a goal of five 9’s of
availability was stated as a condition to proceed with the performance evaluation.

After overcoming the issue of availability below five 9’s, the screening fractional factorial
experiment proved itself to be a successful technique to tackle the issue of discovering favorable
performance metrics in virtualized server clusters, in comparison with non-virtualized ones.
After applying it, two of three performance evaluated metrics behaved favorably for a small
storage capacity web cache server cluster based on container-based virtualization: hit ratio and
response time.

The larger the storage space of the web cache server clusters became, greater was the
unresponsiveness issue. For all the conducted experiments, one common factor was most often
presented in the results whose availability was below five 9’s: journal consistency mechanism.

The journal consistency mechanism of the ext3 and ext4 file systems was detected as
the main source of overhead during the activity of tackling the issue of unresponsiveness. For
the evaluated scenarios, when the journal mechanism was enabled, only environments with very
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small cache storage capacity were able to provide high available I/O bound virtualized web
cache server clusters, with a total storage capacity of 3GB. Any other tested virtualized scenarios
were able to reach five 9’s of availability with journal mechanism enabled, regardless of the
applied tunings. So, the disabling of the consistency mechanism was shown to be a requirement
of reaching five 9’s of availability.

The discussed case studies presented recommendations on the using of I/O bound web
cache server cluster solutions, both for non-virtualized and virtualized scenarios. The profiling of
hardware events was successfully applied as a technique to provide evidence of possible reasons
for a better performance in the virtualized clusters, even with the known intrinsic overhead. For
full spool web cache servers, the virtualized cluster is recommended as the most stable solution,
that is not impacted by the RAM stagnation issue due to the granularity of primary memory
provided by the applied virtualization solution.

As a result of the work presented in this dissertation, the following contributions can be
highlighted:

� the innovative approach in the performability analysis, that applied measurements to
evaluate performance when failures were considered;

� the design and implementation of the TISVEP protocol, that applied a unique ap-
proach to establish communication with physical machines, virtual machines, con-
tainers, benchmarking machines, and storage machines during the execution of
experiments;

� a methodology that leads to favorable performance metrics results on web cache
server clusters provided in container-based virtualized environments, in a fair com-
parison with the non-virtualized ones.

In addition to the mentioned contribution, the following paper presenting findings of this
dissertation was produced:

� Erico Guedes, Luis Silva and Paulo Maciel. Performability Analysis of I/O Bound
Application on Container-based Server Virtualization Cluster. In: Proceedings of
the IEEE 19th Symposium on Computers and Communications (IEEE-ISCC 2014).
Madeira, Portugal.

6.1 Future Works

A series of further activities was identified as future works of the current research results.
The activity perceived as more challenging and with greater innovation is the development

of a higher performance solution for the consistency mechanism of the ext3 and ext4 file systems.
For virtualized environments, when the journal mechanism was enabled, the provided web cache
server cluster was invariably affected by the unresponsiveness issue.
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Disabling the consistency mechanism of the file systems prevents them to recovery in
an automatic way and may lead to high downtimes: after some possible system failure, the
time spent checking the consistency of a file system depends mainly on the number of files and
directories that must be verified. Therefore, it also depends on the disk size. With terabytes of
capacity, a single consistency check may take hours or even days. The involved downtime is
unacceptable for any production environment of a high availability server.

Furthermore, to increase the number of I/O bound applications that could benefit from
the use of container-based virtualization, it is of paramount importance to deploy solutions with
consistency file system mechanism enabled to provide high availability for I/O bound services.

The evaluation of additional storage techniques would stretch the set of recommenda-
tions regarding the providing of I/O bound applications. The investigated underlying storage
infrastructure was based on SATA Direct-Attached Storage (DAS). The adoption of different
underlying storage technologies, such as SCSI, Solid State Drive (SSD), or even Storage Area
Network (SAN), would yield benefits regarding the unresponsiveness issue? With such an
outperform technologies, would be possible to provide the storage service with journal enabled?
These are relevant questions that should be investigated aiming at tackling the overheads of
virtualized infrastructures.

Additionally, according to 2014 ISOC Global Internet Report KENDE (2014), the
proportion of fixed Internet traffic originating from video applications reached 50% in June 2012
and can reach 67% in 2017. Then, caching of Video on Demand (VoD) traffic should be better
understood. All the proposed and applied methodology regarding web objects caching can be
applied, and improved whether necessary, to investigated VoD caching.

Faced with these aforementioned challenges, a summary of the future works was per-
formed below, ranked in order of priority:

1. to research solutions about file system consistency mechanisms that do not impact
the responsiveness of I/O bound applications. As it is an activity with a high degree
of sophistication, since it involves changing the operating system kernel on which
the file system is used, it can be high time consuming.

2. to use alternative underlying storage technologies, such as SCSI, SSD, and Storage
Area Network (SAN), and to state whether similar issues over the performability, as
unresponsiveness, will be presented.

3. to evaluate the behavior of Video on Demand (VoD) workloads in cache systems.
As they present greater file sizes, even more intense data flows, and represent the
largest percentage of Internet traffic, larger storage devices will be required. With
larger storage devices, new challenges regarding the management of resources will
take place.

4. to increase the number of monitoring factors supported by the TISVEP protocol,
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aiming at supporting the additional tuning elements that can lead to performance
improvements in the virtualized clusters.
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A
Codes

A.1 Web-polygraph Pareto Distribution Implementation

// File polygraph-4.3.1/src/base/opts.cc

if (type == "pareto") {

if (splitVal(params, s[0], s[1], ’,’) &&

isRTX(s[0], p[0]) && isRTX(s[1], p[1]))

distr = new ParetoDistr(gen, p[0], p[1]);

} else

// File polygraph-4.3.1/src/xstd/rndDistrs.h

class ParetoDistr: public RndDistr

{

public:

ParetoDistr(RndGen *aGen, double aShape, double aScale):

RndDistr(aGen), theShape(aShape), theScale(aScale) {}

virtual const char *pdfName() const { return "pareto"; }

virtual double mean() const { return -1; }

virtual double sdev() const { return 0; }

virtual double shape() const { return theShape; }

virtual double scale() const { return theScale; }

virtual double trial();

virtual ostream &print(ostream &os, ArgPrinter p =

&RndDistr_DefArgPrinter) const;

protected:

double theShape;

double theScale;

};
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// File polygraph-4.3.1/src/xstd/rndDistrs.cc

double ParetoDistr::trial() {

return theScale * pow(1 - theGen->trial(), (-1/theShape));

}

ostream &ParetoDistr::print(ostream &os, ArgPrinter p) const {

os <pdfName() <’(’;

p(os, theShape, 0);

p(os <", ", theScale, 1);

return os <’)’;

}

// File polygraph-4.3.1/src/pgl/PglSemx.cc

if (cname == "pareto") {

checkArgs(cname, 2, args);

return new DistrSym(dType, new ParetoDistr(gen, dargs[0],

dargs[1]));

} else

A.2 TISVEP config.properties file instance

# PHYSICAL MACHINES SECTION

PMs=(192.168.15.23 192.168.15.19 192.168.15.18)

HD_LABELS="/dev/sdb /dev/sdc /dev/sdd"

PARTITIONS_NUMBER=1

PARTITION_SIZE=+2G

FS_CONSISTENCY=0

FS_TYPE="ext4"

NO_CONSISTENCY_MOUNT_OPTIONS="defaults,noatime,nodiratime,barrier=0"

SPOOL_LABEL="/spool"

# SERVICE SECTION

SQUID_CONF_FILE="/usr/local/squid/etc/squid.conf"

SQUID_BIN="/usr/local/squid/sbin/squid"

CACHE_LOG_DIR="/usr/local/squid/var/logs"

ENABLE_CACHE_LOG=1

DEFAULT_PORT=3128

CACHE_DIR_PREFIX="/var"
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CACHE_DIR_SUFFIX="/squid3"

CACHE_SIZE=1024

L1_CACHE_LEVEL=16

L2_CACHE_LEVEL=256

MI_AMOUNT=3

# BENCHMARKING TOOL SECTION

WP_SERVER_IP=192.168.15.10

WP_CLIENT_IP=192.168.15.25

EXPERIMENT_DURATION=600sec

WP_CONFIG_FILE=/opt/scripts/WebWorkload.pg

# VIRTUAL SERVERS SECTION

declare -A PMsCT_IDs=(

["${PMs[0]}"]="/spool1_100+/spool2_101+/spool3_102"

["${PMs[1]}"]="/spool1_106+/spool2_107+/spool3_108"

["${PMs[2]}"]="/spool1_112+/spool2_113+/spool3_114"

)

declare -A VMsSPOOLs=(

["192.168.15.113"]="/spool1_118"

["192.168.15.114"]="/spool2_119"

["192.168.15.115"]="/spool3_120"

["192.168.15.119"]="/spool1_124"

["192.168.15.120"]="/spool2_125"

["192.168.15.121"]="/spool3_126"

["192.168.15.125"]="/spool1_130"

["192.168.15.126"]="/spool2_131"

["192.168.15.127"]="/spool3_132"

)

declare -A PMsServerIPs=(

["${PMs[0]}"]="192.168.15.113 192.168.15.114 192.168.15.115"

["${PMs[1]}"]="192.168.15.119 192.168.15.120 192.168.15.121"

["${PMs[2]}"]="192.168.15.125 192.168.15.126 192.168.15.127"

)

# MANAGEMENT SECTION

SIMULATION_TYPE="CTS"

MOUNTPOINT_NAMES="spool_squid"
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NMS_IP="192.168.15.22"

CACHE_MONITORING_STEP=300

LOCAL_STORAGE="/experiments/"

REMOTE_STORAGE="/experiments/"

ITERATIONS=30

# PROFILING SECTION

declare -A PROFILING_EXP=(

["CPU_CLK_UNHALTED"]=50000

["L2_CACHE_MISS"]=500

["L3_CACHE_MISSES"]=500

)

OPERF="/usr/local/bin/operf"

OCOUNT="/usr/local/bin/ocount"

PROFILE_COD=2

OCOUNT_INTERVAL_LENGTH=60000 # miliseconds
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B
Specification of TISVEP Messages

TISVEP messages, that comprise the message code class, with their respective goals and
textual descriptions of a message instance, are presented int the following Sections. As described
below, each transmitted message has the MSG_ID parameter in the first field. Each message is
easily identified by a bold Message Code and name.

B.1 Infrastructure Configuration Messages

1: hdsConfig: the processing of this message results in the formatting and configuration
of the partitions and its respective file systems, and also mounts these partitions on the directories
that will be used as Directed-Attached Storage spools by web cache servers.

Example:

MSG_ID=1:HD_LABELS="/dev/sdb/dev/sdc/dev/sdd":PARTITION_NU

MBER=2:PARTITION_SIZE=+115G:FS_CONSISTENCY=0:FS_TYPE=ext4:NO_CO

NSISTENCY_MOUNT_OPTIONS="defaults,noatime,nodiratime,barrier=0":

SPOOL_LABEL="/spool":ITERATION=2

In the above example, three hard disks (/dev/sdb/dev/sdc/dev/sdd) will be
used per destination physical machine during the execution of the configured experiment. Each
of them will contain two partitions of 115GB, configured without the journal consistency mecha-
nism of the ext4 file system. Moreover, each of the partitions will be mounted in the destination
directory with a spool prefix. There will be 2 replications of this configured experiment.
The formatting routine will be performed only in the first replication. In the subsequent ones,
the partition will only have its file system rebuilt. This will reduce the time spent between
replications.

2: mountVirtualSpool: it is the message responsible for mounting partitions in ex-

MSG_ID=1 : HD_LABELS="/dev/sdb /dev/sdc /dev/sdd" : PARTITION_NU
MBER=2 : PARTITION_SIZE=+115G : FS_CONSISTENCY=0: FS_TYPE=ext4 : NO_CO
NSISTENCY_MOUNT_OPTIONS = "defaults,noatime,nodiratime,barrier=0" : 
 SPOOL_LABEL="/spool":ITERATION=2
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periments whose web cache spools were provided by virtual servers. It uses a bind-mounted
technique when container-based virtualization is applied, and external block partitions, for KVM
virtual machines. Web cache objects are stored on these partitions.

Example:
MSG_ID=2:SIMULATION_TYPE=CTS:SPOOL_VID_SET=/spool1_100+

/spool2_101

In the above example, an experiment with container-based virtualization was conducted
(CTS). It involves containers with numerical identifiers of 100 and 101. In the container 100, the
spool directory used was /spool1, whereas the /spool2 directory was used by container 101.

3: mountCacheLog: it is the message responsible for mounting web cache log partition.
It is used to store Squid log files during the execution of experiments. It uses a bind-mounted
technique when container-based virtualization is applied, and external block partitions for KVM
virtual machines as well as for PMs.
Example:
MSG_ID=3:CACHE_LOG_DIR=/usr/local/squid/var/logs:CT_IDS:100+101+

102

The example above exhibit a mountCacheLog message sent during an experiment that
applies containers. The directory /usr/local/squid/var/logs was applied as the stor-
age point of the Squid log files.

4: getMountedPartitions: it returns a list of mounted partitions, according to a trans-
mitted directory key.

Example:
4:spool

In the above example, the keyword spool was used to search for mounted partitions at a
remote destination. It returns the output of the command as it would be executed locally.

5: umountSpool: between the execution of experiments, the partitions must be un-
mounted before formatting, enabling this routine. A mounted partition cannot be formatted.

Example:
5:/spool/squid1

MSG_ID=2:SIMULATION_TYPE=CTS:SPOOL_VID_SET=/spool1_100+
/spool2_101
MSG_ID=3:CACHE_LOG_DIR=/usr/local/squid/var/logs:CT_IDS:100+101+102
MSG_ID=3:CACHE_LOG_DIR=/usr/local/squid/var/logs:CT_IDS:100+101+102
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The example above will result in the unmounting of the partition referenced by the
/spool/

squid1 directory.

B.2 Service Configuration Messages

102: configureService: it is the message whose processing results in a tuned configura-
tion file of the Squid web cache server. Through the use of the sed FENLASON et al. (2004)
stream editor, it was possible to perform automatic modifications to the required parameters in
the configuration file of each Squid web server that forms the cluster.

Example:
MSG_ID=102:SIMULATION_TYPE=CTS:ACCESS_LOG_FILE=/usr/local/squid

/var/logs/accessC1.log:CACHE_LOG_FILE=/usr/local/squid/var/logs/

accessC1.log:CACHE_DIR_SPEC(CACHE_DIR=/spool/squid3,CACHE_SIZE=

1024+L1_CACHE_LEVEL=16+L2_CACHE_LEVEL=256):PEERS_LIST=192.168.15

.126_192.168.15.127_192.168.15.128:SQUID_CONF_FILE=/usr/local/

squid/etc/squid.conf

The above message example is sent during a container-based virtualization (CTS) ex-
periment. The Squid access log file (/usr/local/squid/var/logs/accessC1.log),
used to store the transactions performed by the web cache server (it is through the processing of
this file that a Byte Hit Ratio value is obtained), as well as the cache log file (/usr/local/
squid/var/logs/cacheC1.log), that stores the behavior of the server itself, form the
list of required parameters aimed at executing an instance of a web cache server. Similarly,
the directory where the web objects are /spool/squid3, the capacity of the cache storage,
and the number of directories that form L1 (16) and L2 (256) cache levels of Squid server are
sent as well. The peers list (192.168.15.126_192.168.15.127_192.168.15.128)
contains the IP addresses of servers that form the cluster. Finally, the full pathname of the Squid
configuration file (/usr/local/squid/etc/squid.conf) is transmitted to inform the
exact location of the file that is tuned on the destination server.

103: startupService: it performs the required tunings on the web cache server configu-
ration that are external to the configuration file and starts the servers.

Example: MSG_ID=103:CACHE_DIR=/spool1/squid3:SQUID_CONF_FILE=/usr/
local/squid/etc/squid.conf:SQUID_BIN=/usr/local/squid/sbin/squid

MSG_ID=102:SIMULATION_TYPE=CTS:ACCESS_LOG_FILE=/usr/local/squid
/var/logs/accessC1.log: CACHE_LOG_FILE=/usr/local/squid/var/logs/
accessC1.log : CACHE_DIR_SPEC (CACHE_DIR=/spool/squid3 , CACHE_SIZE=
1024+L1_CACHE_LEVEL=16+L2_CACHE_LEVEL=256) : PEERS_LIST=192.168.15
.126_192.168.15.127_192.168.15.128 : SQUID_CONF_FILE=/usr/local/
squid/etc/squid.conf
MSG_ID=103 : CACHE_DIR=/spool1/squid3: SQUID_CONF_FILE=/usr/local/squid/etc/squid.conf : SQUID_BIN=/usr/local/squid/sbin/squid
MSG_ID=103 : CACHE_DIR=/spool1/squid3: SQUID_CONF_FILE=/usr/local/squid/etc/squid.conf : SQUID_BIN=/usr/local/squid/sbin/squid
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It is necessary to perform three external configurations before the starting of the Squid
process: (i) create the spool directories (/spool1/squid3); (ii) assign the correct permis-
sions to these spool directories; and (iii) create the Squid L1 and L2 cache subdirectories inside
the spool directories. All these routines are performed during the processing of message 103,
enabling the initialization of the Squid process: it is the last step of the processing of this message.

104: stopService: it is responsible for gracefully stopping the web cache server, aimed
at avoiding data corruption of the saved log files.

Example: MSG_ID=104:SQUID_BIN=/usr/local/squid/sbin/squid

The processing of the above message, at its destinations, results in gathering all numerical
identifications of Squid processes, subsequently halting them.

105: cleanUpServiceLog: the processing of this message cleans up the cache log files
between experiments.

Example: MSG_ID=105:CACHE_LOG_DIR:/usr/local/squid/var/logs

Messages such as those in the above example are transmitted after the finalization of a
replication of an experiment. It drives the destination to delete the log files in the /usr/local/
squid/var/logs directory as soon as they are copied to the external storage. Moreover, it
recreates empty instances of these files for the next experiment that will be conducted.

B.3 Benchmarking Configuration Messages

201: startWPServer: it aims at starting a Web Polygraph Server-side, with specified
configuration parameters.

Example
MSG_ID=201:EXPERIMENT_DURATION=30min:HTTP_PROXIES=192.168.15.

113_3128+192.168.15.114_3128+192.168.15.115_3128:WP_CONFIG_

FILE=/opt/scripts/WebWorkload.pg:STORAGE_PREFIX=CTS_2014-09-

10_05h36m_I10

The above message example results in the configuration of an experiment with 30 minutes
of duration (30min). The Web Polygraph server-side process will answer to the three web cache
servers (192.168.15.113_3128+192.168.15.114_3128+192.168.15.115
_3128) when they do not have the requested objects. when they do not have the requested

MSG_ID=201 : EXPERIMENT_DURATION=30min : HTTP_PROXIES=192.168.15.
113_3128+192.168.15.114_3128+192.168.15.115_3128 : WP_CONFIG_
FILE=/opt/scripts/WebWorkload.pg: STORAGE_PREFIX=CTS_2014-09-
10_05h36m_I10
192.168.15.113_3128+192.168.15.114_3128+192.168.15.115
_3128
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objects. Besides, the full pathname configuration file of the Web Polygraph is sent as well.
Similarly to the Squid configuration file, the sed stream editor is used to perform all necessary
modifications in the Web Polygraph configuration file (/opt/scripts/WebWorkload.pg),
such as to adjust the duration time of the experiment. Web Polygraph log files, that are used
to obtain the numerical values of the hit ratio, response time, and throughput, are stored in
the CTS_2014-09-10_05h36m_I10 directory. The last step produced by the processing
of the startWPServer message is the launching of polygraph-server process, that is
initialized in background, releasing start up TISVEP flow to the next message.

202: startWPClient: it aims at starting the Web Polygraph client-side, with specified
configuration parameters. The processing of this message results in the initialization of the
experiment.

Example:
MSG_ID=202:EXPERIMENT_DURATION=60min:HTTP_PROXIES=192.168.15.113

_3128+192.168.15.114_3128+192.168.15.115_3128:WP_CONFIG_FILE=/opt

/scripts/WebWorkload.pg:STORAGE_PREFIX=CTS_2014-09-10_05h36m_I20

Except for the value of MSG_ID, this message is similar to startWPServer message.
Web Polygraph requires that both the server and client sides have an identical configuration file.
However, the client-side of Web Polygraph is not started in the background. The experiment
will stay in this state as long as the polygraph-client process remains alive. The Web
Polygraph client-side process will send requests to the three web cache servers (192.168.15.
113_3128+192.168.15.114_3128+192.168.15.115_3128), filling its spools.

203: stopWPServer: it is responsible for gracefully stopping the Web Polygraph server-
side.

Example: MSG_ID=203

The processing of the above message by the Web Polygraph server-side machine identifies
the PID of the polygraph-server process and kills it gracefully, with a -TERM signal. A
process that is killed through a -TERM signal can catch it and perform natively implemented
shutdown routines before exit.

B.4 Experiment Monitoring and Management Messages

301: startCacheMonitoring: it launches the process that monitors web cache server
performance metrics used for performability analysis. This message is asynchronous: it is

MSG_ID=202 : EXPERIMENT_DURATION=60min : HTTP_PROXIES=192.168.15.113
_3128+192.168.15.114_3128+192.168.15.115_3128 : WP_CONFIG_FILE=/opt
/scripts/WebWorkload.pg : STORAGE_PREFIX=CTS_2014-09-10_05h36m_I20
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executed in the background during the same time interval as the experiment, as defined in the
EXPERIMENT_DURATION parameter.

Example: MSG_ID=301:STORAGE_PREFIX=CTS_2014-09-10_05h36m_I20:SIMU
LATION_TYPE=CTS:EXPERIMENT_DURATION:1800:CACHE_MONITORING_STEP=

300

The above example of the message startCacheMonitoring will monitor a CTS
experiment, storing its resulting data in the CTS_2014-09-10_05h36m_I20 directory. Such
an experiment will have 1800 seconds and at every 300 seconds a sample of the performance
metrics will be captured.

302: exportBenchmarkingData: as soon as the experiment is over, several routines of
data exporting are performed. exportBenchmarkingData is one of them. Log files from
the Web Polygraph client side machine are exported to the Cloud NMS machine, where they are
stored for further analysis.

Example: MSG_ID=302:SOURCE_DIR=/opt/scripts/CTS_2014-07-23_12h00m
/:DESTINATION_DIR=/experiments/CTS_2014-07-23_12h00m:NMS_IP=

192.168.15.22

The above exportBenchmarkingData message will export all files of the /opt/
scripts/CTS_2014-

07-23_12h00m/ directory to the /experiments/CTS_2014-07-23_12h00m/ direc-
tory that lies on Cloud NMS whose IP address is 192.168.15.22.

303: updateFunctionalities: this message aims at updating the autSimulation.sh
file to virtual destinations (containers or virtual machines), physical destinations, and Web
Polygraph servers.Cloud NMS itself sends and receives this message, triggering the upload
process of autSimulation.sh. The upload is performed through scp command, that uses
SSH protocol to upload autSimulation.sh file.

304: restartFunctionalities: this message is responsible for restarting the socket that is
bound to the autSimulation.sh script file after an update. So, the new version of TISVEP
protocol will be automatically available, without manual interaction of the experimenter.

Example: MSG\_ID=304

305: exportCacheLogs: this message is responsible for exporting the log files of the

MSG_ID=301 : STORAGE_PREFIX=CTS_2014-09-10_05h36m_I20: SIMU
LATION_TYPE=CTS : EXPERIMENT_DURATION: 1800 : CACHE_MONITORING_STEP=
300
MSG_ID=302 : SOURCE_DIR=/opt/scripts/CTS_2014-07-23_12h00m
 /:DESTINATION_DIR=/experiments/CTS_2014-07-23_12h00m:NMS_IP=
192.168.15.22
/opt/scripts/CTS_2014-
/opt/scripts/CTS_2014-
07-23_12h00m/
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web cache servers. The Cloud NMS machine must receive the resulting cache log data files, for
further analysis.

Example:
MSG_ID=305:SOURCE_DIR=/opt/scripts/CTS_2014-07-23_12h00m/:DESTI

NATION_DIR=/experiments/CTS_2014-07-23_12h00m:NMS_IP=192.168.15.

22

The above exportCacheLogs produces a similar result to the exportBenchmark
ingData message.

306: startProfiling: to perform profiling of hardware events, startProfiling mes-
sages are sent to Physical Machines. The processing of startProfiling messages results in
the initialization of profiling over web cache server processes.

Example:
PROFILE_COD=2:SIMULATION_TYPE=CTS:EXPRESSIONS=CPU_CLK_UNHALTED~

L2_CACHE_MISS:SESSION_DIR=/experiments/CTS_2014-07-23_12h00m/

192.168.15.23/:EXTENSION=60000

The above startProfiling message of code 2 will launch an ocount process that
will report, in time intervals of 60000ms (per minute), how many instances of CPU_CLK_UNH
ALTED and L2_CACHE_MISSES hardware events were accounted. The results will be stored
in the /experiments/CTS_2014-07-23_12h00m/192.168.15.23/ directory.

307: stopProfiling: this message is responsible for gracefully halting the process of the
oprofile.

Example: MSG\_ID=307:PROFILE\_COD=2

The receiver PMs will kill the oprofile process gracefully, through -SIGINT signal,
as recommended in the oprofile manual.

308: exportProfileData: this message is responsible for exporting the files containing
profiling results. The Cloud NMS machine must receive such files and store them for further
analysis.

Example:
MSG_ID=308:SOURCE_DIR=/opt/scripts/CTS_2014-07-23_12h00m/:DESTI

NATION_DIR=/experiments/CTS_2014-07-23_12h00m:NMS_IP=192.168.15.22
NATION_DIR=/experiments/CTS_2014-07-23_12h00m:NMS_IP=192.168.15.22
PROFILE_COD=2 : SIMULATION_TYPE=CTS : EXPRESSIONS=CPU_CLK_UNHALTED~
L2_CACHE_MISS: SESSION_DIR=/experiments/CTS_2014-07-23_12h00m/
192.168.15.23/ : EXTENSION=60000
MSG_ID=308:SOURCE_DIR=/opt/scripts/CTS_2014-07-23_12h00m/ : DESTI
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NATION_DIR=/experiments/CTS_2014-07-23_12h00m:NMS_IP=192.168.15.

22

The above exportProfileData produces a similar result to exportBenchmark
ingData and exportCacheLogs messages.

309: waitServiceStartup: this message is responsible for synchronizing the profiler
process with the Squid processes. The initialization of Squid processes are non blocking: as
soon as the message is received, the TISVEP start up flow goes ahead. As can be noted in
Figure 3.2, after startupService, waitServiceStartup is sent and its corresponding
functionality is performed. It will prevent the non-profiling of any Squid process that has not
completed its initialization.

Example: MSG_ID=309:SERVERS_AMOUNT=3

In the above example of waitServiceStartup message, 3 web cache server pro-
cesses must be executed on each physical machine. The receiver PM will monitor the number of
initialized servers and will return as soon as the 3 server processes are running.

B.5 TISVEP Operation

Aiming at detailing the netpipes software package, the first used TISVEP message,
hdsConfig, will be used as an example. The faucet server end command is executed during
bootstrap, both in the physical machine and in the virtual machine destinations, as described
below:

faucet 9997 --in --out bash -c "/opt/scripts/autSimulation.sh; cat /opt/scripts/status.dat"&

The above command creates a two-way data flow. The traditional piping inter-process
communication mechanism feeds the output of one process as input to the other, in a simplex
way. So, it lacks the ability to run bidirectional communications. Using --in and --out

switches, a two-way network data flow becomes possible. Specifically, each parameter of the
faucet server end command has the following objectives:

� 9997: TCP listen port;

� --in: assigned functionality to input data flow;

� --out assigned functionality to output data flow;

� bash: default shell script language used to execute the following commands;

NATION_DIR=/experiments/CTS_2014-07-23_12h00m:NMS_IP=192.168.15.22
NATION_DIR=/experiments/CTS_2014-07-23_12h00m:NMS_IP=192.168.15.22
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� -c: specifies a list of commands that will be assigned to each data flow;

� /opt/scripts/autSimulation.sh: shell script that will receive input data
flow;

� cat /opt/scripts/status.dat: command that will be executed after the
end of the shell script associated with received input data flow. The /opt/scripts/
status

.dat file content will be returned through output data flow;

� &: starts server end /opt/scripts/autSimulation.sh script file, that con-
tains TISVEP message processing functionalities, in background.

The hose client end command is executed during message forward on NMS, as the
following describes:

hose $PM 9997 --out --in bash -c "(echo $MESSAGE1;sockdown 1 1); cat » status.dat"

The above command will send the $MESSAGE1 message to the $PM destination server.
Each parameter of the hose client end command has a similar objective to the server end one.
The command associated with --out output data flow is echo $MESSAGE1;sockdown.
Netpipes permits the user to choose whether it’s the client or server that sends or receives
data upon connection by using the --in and --out switches in a specific order. For the two
aforementioned and described commands, which define the hdsConfig message transmission
and reception, the following data flow is performed:

1. NMS sends an hdsConfig $MESSAGE1 message through the output data flow
and closes the output half of the network pipe (sockdown);

2. the destination server gathers the input data flow, processing the hdsConfig

$MESSA

GE1 message through /opt/scripts/autSimulation.sh script;
3. the destination server sends the standard output of the cat /opt/scripts/stat

us.

dat command through the output data flow;
4. NMS receives the output of the destination server through the input data flow associ-

ated with the command cat » status.dat.

Each destination server answers with a STATUS message. It contains the outputs of the
executed commands from each destination. The STATUS messages transmit the outputs of the
commands to the NMS administration terminal, enabling easy and centralized monitoring of the
configuration procedures that were performed at the destinations.
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Figure B.1: NMS Monitoring Terminal: gathering real time commands results from
remote servers. Specifically, the result of execution of the partition formatting command
fdisk is depicted. It is used on the remote servers to configure the web cache server

spools.

To illustrate such centralized monitoring, refer to Figure B.1. It depicts the output of
the above discussed hdsConfig message as well as the output of mountVirtualSpool
message on the NMS administrator terminal. As can be noticed, the file status.dat stores the
contents of the STATUS messages. The output file lines were enumerated to favor the following
elucidations:

Lines 1 to 9 list the output of the fdisk command, responsible for formatting partitions
that will be used by a web cache server as spools. As shown in line 4, the primary partition type
was selected (default p). The end of line 5 shows the numerical value of the first sector in
the current partition under configuration (31459328). The numerical value of final partition
sector can be observed as last value on line 6: 488397167. Lines 7, 8, and 9, depict the
finalization process of the fdisk command. Lines 10 to 15 show the output of the execution of
mount mount commands. As can be noticed, six particular partitions were mounted as spools.
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