
“Software Aging Monitoring Strategies and Rejuvenation
Policies for Eucalyptus Cloud Computing Platform”

By

Jean Carlos Teixeira de Araujo

M.Sc. Dissertation

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE-PE, MARCH/2012

www.cin.ufpe.br/~posgraduacao

Federal University of Pernambuco

Informatics Center
Post-Graduation in Computer Science

Jean Carlos Teixeira de Araujo

“Software Aging Monitoring Strategies and Rejuvenation
Policies for Eucalyptus Cloud Computing Platform”

A M.Sc. Dissertation presented to the Informatics Center of

the Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science in

Computer Science.

Advisor: Paulo Romero Martins Maciel

RECIFE-PE, MARCH/2012

 Catalogação na fonte
Bibliotecária Monick Raquel Silvestre da Silva, CRB4-1217

Araujo, Jean Carlos Teixeira de
 Software aging monitoring strategies and rejuvenation
policies for Eucalyptus cloud computing platform / Jean
Carlos Teixeira de Araujo. - Recife: O Autor, 2013.
 xxiv, 96 p.: il., fig., tab.

 Orientador: Paulo Romero Martins Maciel.
 Dissertação (mestrado) - Universidade Federal de
Pernambuco. CIn, Ciências da Computação, 2013.

 Inclui bibliografia e apêndice.

 1. Avaliação de desempenho. 2. Redes de computadores e
sistemas distribuídos. 3. Computação nas nuvens. I. Maciel, Paulo
Romero Martins (orientador). II. Título.

 004.029 CDD (23. ed.) MEI2013 – 016

Dissertação de Mestrado apresentada por Jean Carlos Teixeira de Araujo à Pós-

Graduação em Ciência da Computação do Centro de Informática da Universidade Federal

de Pernambuco, sob o título “Software Aging Monitoring Strategies and Rejuvenation

Policies for Eucalyptus Cloud Computing Platform”, orientada pelo Prof. Paulo

Romero Martins Maciel e aprovada pela Banca Examinadora formada pelos

professores:

 __

 Prof. Nelson Souto Rosa

 Centro de Informática / UFPE

 __

 Prof. Rivalino Matias Júnior

 Faculdade de Computação / UFU

 __

 Prof. Paulo Romero Martins Maciel

 Centro de Informática / UFPE

Visto e permitida a impressão.

Recife, 2 de março de 2012.

Prof. Nelson Souto Rosa

Coordenador da Pós-Graduação em Ciência da Computação do

Centro de Informática da Universidade Federal de Pernambuco.

I dedicate this dissertation to my grandfather José

Domingos and my grandmother Maria Pereira, essentials in

my growing and presents in all moments of my life. You are

my personal examples of dedication and love to family.

Acknowledgements

First of all, I would like to thank God for the gift live and all moments that you are with

me. Also, I am very grateful my family, friends and professors who gave me all necessary

support to get here. In special to my advisor Paulo Maciel that believed me and my work,

there are few words that can express my esteem and appreciation.

Thanks to my mother Josinete, present in every moment of my life and for teach-

ing me to fight and never give up of my personal objectives. A thanks to my girlfriend

Danise Vivian, for your patience, comprehension, love and support in my decisions.

I would like to thank to Rivalino Matias and Ibrahim Beicker to help me on some

experiments. I am very grateful to magistrates Ícaro Matos, Glautemberg Bastos and

Cláudio Pantoja and my boss and friend Daniel Malta for their support.

Thanks to my dear friend and young researcher Rubens Matos, for their help

in anytime. It is a great honor to work with you; I can’t forget Álvaro Ribas, my best

friend and the brother that I never had; Also, I am very grateful to Cristiano and Nira, for

opening the doors of your home. You are my family too.

I would like to thank the National Council for Scientific and Technological De-
velopment – CNPq and for everyone of MoDCS Research Group for their support.

vii

Do not rush

Tomorrow anything can happen

including anything

Do not rush

The caterpillar crawls up the day

That creates wings

Do not rush

Than the little donkey of happiness

Never late

Do not rush

Tomorrow she stops at the door

Your home

Do not rush

Every journey begins

In the first step

Nature does not hurry

Follow your compass

Inexorably get there

Do not rush

Look who’s going up the hill

Be Princess or valet

To go higher will have to sweat

—ACCIOLY NETO (Adapted from: The Nature Of Things)

Resumo

A necessidade de confiabilidade e disponibilidade tem aumentado em aplicações modernas a
fim de lidar com a crescente demanda da utilização de serviços de TI, proporcionando um
serviço ininterrupto. Sistemas de computação em nuvem fundamentalmente fornecem acesso
a grandes conjuntos de recursos computacionais através de uma variedade de interfaces, de
forma semelhante a gestão de recursos grid e HPC, que também permitem a implantação
flexível de aplicativos por meio de máquinas virtuais. Este trabalho investiga o vazamento de
memória, a fragmentaćão da memória e outros efeitos do envelhecimento sobre a infraestru-
tura de computação em nuvem Eucalyptus, considerando as cargas de trabalho composta
por intensas solicitações para a implantação de máquinas virtuais, mostrando a existência
destes “sintomas” no ambiente estudado. Estratégias de rejuvenescimento são propostas e
seus benefícios são destacados através de um experimento que ativa o mecanismo quando o
processo de rejuvenescimento do Eucaliptus atinge níveis críticos de utilização de memória
virtual. Esta dissertação apresenta também uma abordagem que utiliza séries temporais para
estimar o tempo de rejuvenescimento, de modo a reduzir o tempo de inatividade prevendo
o momento apropriado para realizar o rejuvenescimento. Nós mostramos os resultados da
nossa abordagem através de experimentos usando o framework de computação nas nuvens
Eucalyptus.

Palavras-chave: Envelhecimento e rejuvenescimento de software; computação nas nuvens;
platforma Eucalyptus; análise de dependabilidade; vazamento e fragmentação de memória;
séries temporais

xi

Abstract

The need for reliability and availability has increased in modern applications, in order
to handle rapidly growing demands the use of IT services while providing uninterrupted
service. Cloud computing systems fundamentally provide access to large sets of data and
computational resources through a variety of interfaces, similarly to existing grid and HPC,
which also enable the flexible deployment of applications by means of virtual machines.
This work investigates the memory leak, memory fragmentation and others aging effects
on the Eucalyptus cloud computing infrastructure considering workloads composed of
intensive requests for deployment of virtual machines, showing the existence of these
“symptoms” in the studied environment. Rejuvenation strategies are proposed and its benefits
are highlighted through an experiment that activates the rejuvenation mechanism when the
eucalyptus process reaches critical levels of virtual memory utilization. This dissertation
presents too an approach that uses time series to estimate the time to rejuvenation, so as
to reduce the downtime by predicting the proper moment to perform the rejuvenation. We
show the results of our approach through experiments using the Eucalyptus cloud computing
framework.

Keywords: Software aging and rejuvenation; cloud computing; Eucalyptus platform;
dependability analysis; memory leak and fragmentation; time series

xiii

Contents

List of Figures xix

List of Tables xxi

List of Acronyms xxiii

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives . 4
1.3 Justification . 5
1.4 Aimed contributions . 5
1.5 Related works . 6
1.6 Structure of the dissertation . 8

2 Background 9
2.1 Cloud computing . 9

2.1.1 Business model . 10
2.1.2 Cloud types . 11
2.1.3 Related technologies . 12
2.1.4 Open source clouds . 13

2.2 Dependability: Basic concepts . 14
2.2.1 Fault versus failures . 15

2.3 Software aging and rejuvenation . 15
2.3.1 Software aging . 15
2.3.2 Software rejuvenation . 17

2.4 Performance measurement . 18
2.5 Time series . 23

2.5.1 Trend analysis . 24

3 Eucalyptus cloud computing infrastructure 27
3.1 Cloud Controller (CLC) . 27
3.2 Cluster Controller (CC) . 28
3.3 Node Controller (NC) . 28
3.4 Storage Controller (SC) . 29
3.5 Walrus . 29
3.6 Other additions . 29

xv

4 Sofware aging in Eucalytpus cloud computing environment 31
4.1 General resources monitoring . 33

4.2 Specific resources monitoring . 33

4.3 Log files . 34

4.4 Memory leaking monitoring . 35

4.5 Memory fragmentation monitoring . 37

4.5.1 SystemTap . 38

4.6 Testbed environment . 40

4.6.1 Workload . 42

4.7 Performance data analysis . 44

5 Rejuvenation strategies to Eucalytptus cloud computing environment 45
5.1 Rejuvenation strategy based on virtual memory utilization 47

5.2 Threshold and predictions based rejuvenation strategies 49

5.3 Considerations . 52

6 Case studies 53
6.1 Case study one . 53

6.1.1 General resources . 54

6.1.2 Specific resources . 55

6.2 Case study two . 58

6.2.1 Memory leaking monitoring . 58

6.2.2 Memory fragmentation monitoring 62

6.3 Case study three . 65

6.4 Case study four . 67

7 Conclusions 71
7.1 Statement of the contributions . 72

7.2 Future works . 73

Bibliography 75

Appendices 83

A Eucalyptus workload generator 85
A.1 Workload script . 85

xvi

B Monitoring scripts 89
B.1 CPU utilization monitoring script . 89
B.2 Disk utilization monitoring script . 90
B.3 Memory usage monitoring script . 91
B.4 Eucalyptus-cloud process monitoring script 92
B.5 Eucalyptus-nc process monitoring script 93
B.6 Zombie process monitoring script . 93
B.7 Memory leaking monitoring script . 94
B.8 Memory fragmentation monitoring script 95

xvii

List of Figures

2.1 Cloud Types (Furht and Escalante, 2010) 12

2.2 Examples of variance - adapted from (Laird and Brennan, 2006) 20

2.3 A illustration plot showing the differences between accuracy and precision
(Lilja, 2000) . 21

2.4 Distributions of X with and without systematic error - adapted from (Laird
and Brennan, 2006) . 21

2.5 Distributions of X with and without random error - adapted from (Laird and
Brennan, 2006) . 22

2.6 Measurement error - adapted from (Laird and Brennan, 2006) 22

3.1 Five Eucalyptus high-level components (Eucalyptus, 2010b) 28

4.1 Approach overview software aging . 32

4.2 Memory state transition diagram . 36

4.3 Memory map ilustration - A) Continguous memory and B) Fragmented
memory . 37

4.4 SystemTap processing steps - adapted from (Prasad et al., 2005) 39

4.5 SystemTap operations overview - Adapted from (Jacob et al., 2009) 40

4.6 Components of the test bed environment - adapted from Murari et al. (2010) 41

4.7 Workload Illustration . 42

5.1 Approach overview software rejuvenation 47

5.2 Apache process model (Matias and Filho, 2006) 47

5.3 Classification of rejuvenation strategies 49

5.4 Schematic representation of a Time Series 50

5.5 Chart projection . 51

5.6 Approaches of rejuvenation strategies . 51

6.1 CPU utilization in the cloud controller machine 54

6.2 Swap memory used in the CLC machine 55

6.3 Virtual memory usage of the NC process at Host3 55

6.4 Virtual memory usage of the NC process in a 64-bits machine 56

6.5 Resident memory usage of the NC process at Host3 57

6.6 Resident memory usage of the NC process in a 64-bits machine 58

6.7 Resident memory usage of the cloud controller process 59

6.8 Number of zombie process in the cloud controller machine 60

xix

6.9 Memory usage in the Eucalyptus-cloud process at Host2 60
6.10 Memory usage in the Apache (eucalyptus-cc) process at Host2 61
6.11 Memory usage of the Apache (eucalyptus-nc) process in a 32-bits OS(Host3) 61
6.12 Memory usage of the eucalyptus-nc process in a 64-bits OS(Host4) 62
6.13 Fragmentation per processes in Host2 . 63
6.14 Fragmentation for processes in Host3 . 64
6.15 Fragmentation for processes in Host4 . 64
6.16 Virtual memory used in the NC process at Host3 (previous experiment) . . 66
6.17 Virtual memory used in the NC process at Host3, during rejuvenation exper-

iment . 66
6.18 Time to instantiate 8 VMs in each workload cycle 67
6.19 Quadratic Trend Analysis of Virtual Memory 69

xx

List of Tables

6.1 Regression-based estimates for resident memory usage in NC process . . . 57
6.2 Regression-based estimates of resident memory usage by the NC process -

Case study two . 62
6.3 Comparison between measurements and estimates for resident memory

usage in NC process . 63
6.4 Regression-based estimates for fragmentation occurrences in the Host2 . . 65
6.5 Regression-based estimates for fragmentation occurrences in Ksmd process 65
6.6 Statistical summary of instantiation times 67
6.7 Summary of the accuracy indices for each model (NC virtual memory) . . . 68
6.8 Comparison of Experiments . 69
6.9 Comparison of virtual memory predictions and actual values 70

xxi

List of Acronyms

API Application Programming Interface

AWS Amazon Web Services

CC Cluster Controller

CLC Cloud Controller

CPU Central Processing Unit

EBS Elastic Block Store

EC2 Amazon Elastic Compute Cloud

FTP File Transfer Protocol

GB Gigabyte

GCM Growth Curve Model

HPC High-Performance Computing

KVM Kernel-based Virtual Machine

LTM Linear Trend Model

MAD Mean Absolute Deviation

MAPE Mean Absolute Percentage Error

MB Megabyte

MSD Mean Squared Deviation

NC Node Controller

NIST US National Institute of Standards and Technology

OS Operating System

PID Process Identifier

QTM Quadratic Trend Model

SC Storage Controller

xxiii

SCTM S-Curve Trend Model

S3 Simple Storage Service

UID User Identifier

VM Virtual Machine

xxiv

1
Introduction

A mente que se abre a uma nova ideia jamais voltará ao seu tamanho

original.

The mind that opens to a new idea never returns to its original size.

—ALBERT EINSTEIN (Phrase)

Information systems are present in all activities of our daily lives, from commu-
nication, education, health, finance, security and entertainment. Hence, unavailability,
low reliability and poor performance of such systems have been taken attention of ser-
vice providers, infrastructure managers, application designers and users, thus demanding
solutions from the scientific community.

Our society is becoming increasingly dependent on computer systems and the
interconnection of their networks. Computer systems are complex and implemented by
hardware and software layers. In specific circumstances, external or natural events can cause
the expected behavior is not executed. In these circumstances, the system may not provide
the services for which it was specified.

The development of software applications, from client-server architectures to multi-
level architectures, and recently web services, led to the creation of increasingly distributed
applications. Such applications usually require large data center infrastructures, with a
large amount of available resources such as CPU, memory, storage, and network bandwidth.
All this processing power requires intensive use of refrigeration, resulting in high-energy
consumption and other related costs. Hence, service providers need to use flexible computing
infrastructures in order to reduce costs and easily adapt the service to the different levels of
workload demand. Cloud computing enables the use of computing resources by means of

1

CHAPTER 1. INTRODUCTION

providers that may be in any geographic location, accessible through de Internet, i.e., in the
clouds.

Deployment of cloud-based architectures has grown over recent years, mainly be-
cause they constitute a scalable, cost-effective and robust service platform. Such features
are made possible due to the integration of various software components that enable reser-
vation and access to computational resources mainly based on web services, by means of
standard interfaces and protocols. Virtualization is an essential requirement to build a typical
cloud-computing infrastructure (Armbrust et al., 2009).

Eucalyptus (Eucalyptus, 2009) is a software framework used to implement private
clouds and hybrid-style Infrastructure as a Service - IaaS. Its architecture is quite modular
and its internal components use web services, easing their replacement and expansion. It
implements the API AWS (Amazon Web Services), allowing interoperability with other
AWS-based services.

In the distributed system area, the study of software reliability and availability is
required, since the consequences of software failures very often cause enormous economic
and reputational losses (Thein and Park, 2009). To Avizienis et al. (2004) a system failure is
an event that occurs when the delivered service deviates from correct service. A fault is thus
a transition from correct service to incorrect service, i.e., to not implementing the system
function. The delivery of incorrect service is a system outage. A transition from incorrect
service to correct service is service restoration.

Cloud-oriented data centers allow the success of massive user-centric applications,
such as social networks, even for start-up companies that would not be able to provide, by
themselves, the performance and availability guarantee needed for those systems. Although
availability and reliability are major requirements for cloud-oriented infrastructures, an aspect
usually neglected by many service providers is the effect of software aging phenomenon
(Grottke et al., 2008), which has been verified (e.g.,(Grottke et al., 2008; Matias and
Filho, 2006; Bao et al., 2005)) to play an important role to the reliability and performance
degradation of many software systems.

While flexible and essential to the concept of “elastic computing”, the usage of
virtual machines and remote storage volumes requires memory and disk intensive operations,
mainly during virtual machines initialization, reconfiguration or destruction. Such operations
may speed up the exhaustion of hardware and operating system resources in the presence of
software aging due to software faults or poor system design (Grottke et al., 2008).

An important threat for availability is the phenomenon of software aging, an
inevitable process where the application processes suffer from performance degradation

2

1.1. MOTIVATION

throughout their use. Some proactive actions may be taken to minimize the aging effects,
but these solutions are very specific to each environment under analysis. The aging phe-
nomenon in cloud systems deserves special attention, since such environment should provide
characteristics such as high availability, high stability, high fault tolerance and dynamical
extensibility.

In order to counteract this problem, there is the technique of software rejuvenation,
which involves occasionally stopping the software application, removing the accrued error
conditions and then restarting the application in a clean environment. The procedures
remove the accumulated errors and frees up or defragments operating system resources,
thus preventing, in a proactive manner, unplanned and potentially expensive future system
outages (Huang et al., 1995).

This dissertation presents a study on the software aging effects in Eucalyptus
cloud computing infrastructure. We detect and demonstrate the aging effects in this system,
by monitoring the usage of resources such as CPU, memory and disk space, as well as
other indirect consequences of software aging that could cause performance degradation or
service failures as well. The case studies is carried out by using repeated virtual machines
instantiations as our workload.

We aim to evaluate the aging effects in a cloud-computing platform, focusing
on memory-related aging effects such as memory fragmentation and leaking, which are
proven to cause serious undesired consequences on system performance and availability
(Matias et al., 2010). We also propose rejuvenation strategies to Eucalyptus cloud computing
infrastructure.

The remainder of this chapter describes the focus of this dissertation and starts by
presenting its motivation in Section 1.1 and a clear definition of the objectives in Section 1.2.
A justification of this research is presented in Section 1.3. Section 1.4 presents the main
contributions. Section 1.5 describes some related works and, finally, Section 1.6 describes
how this dissertation is organized.

1.1 Motivation

Deployment of cloud-based architectures has grown over recent years. Features such as
scalability, cost-effectiveness and robustness has been widely requested by the market of
Information Technology. Usage of virtual machines and remote storage volumes requires
memory and disk intensive operations. Such operations may speed up the exhaustion of
hardware and operating system resources in the presence of software aging: Software faults,
Poor system design.

3

CHAPTER 1. INTRODUCTION

Researchers worldwide have investigated the factors of software aging and in some
cases proposed action of rejuvenation in various environments, such as web servers (Grottke
et al., 2006; Matias and Filho, 2006), OS kernel (Matias et al., 2010), clustered systems
(Vaidyanathan et al., 2001), telecommunication billeting applications and safety-critical
military equipment (Marshal, 1992; Office, 1992), and strategies to improve rejuvenation,
such as the use of Regenerate Markov Stochastic Petri Nets. However, this is the first work
that studies software aging and rejuvenation in a cloud computing platform.

To identify the occurrence of software aging is not so simple, especially when it
comes to something that was never published by other researchers. If it was not detected
in time to a proactive action to be activated, the software aging effects can be catastrophic,
causing inestimable damage and losses. So, what we would like to do is to identify the
software aging and rejuvenation to bring an action in a cloud computing environment.

To propose a rejuvenation strategy it requires a good knowledge of the system, and
specially of their resources aging, because this technique looks for reducing the aging effects
during the software runtime until the aging causes are fixedin a new version of the software.

Therefore, research and combat to an important factor in occurrence of unavailabil-
ity by important services as used by hundreds of thousands of users, is the case of cloud
computing, and to be the first research in the study of software aging and rejuvenation in the
cloud computing is an important motivation for conducting this dissertation.

1.2 Objectives

This section describes the general and specific objectives of this research. The overall
objective is to investigate software aging effects and strategies to rejuvenate the Eucalyptus
cloud computing environment.

The specific objectives are:

• To assemble a test environment to investigate the software aging effects;

• Definition of procedures for monitoring and analyse of computacional resources;

• To evaluate the aging effects in a cloud-computing platform;

• Identification of resources that age more quickly;

• To propose rejuvenation actions to avoid the system outages due to aging;

4

1.3. JUSTIFICATION

• To use strategies of time prediction for activating the rejuvenation action;

• To propose strategies to reduce system downtime during the execution of the rejuvena-
tion action.

1.3 Justification

The study of software aging is a very important factor to be considered, especially in systems
that receive a lot of user requests, which is the case of a cloud computing platform, because
a system failure can affect thousands of customers.

The choice of Eucalyptus software has been done because of its advanced stage of
development, with bug fixes and regular updates and mainly because its open source version
of the software has been used by Amazon Elastic Compute Cloud (EC2). The fact that
Eucalyptus is an open source software, makes it easy to access and to control the platform
and hence the development of monitoring scripts and workloads.

Proposing a rejuvenation action is not trivial, given that each software has specific
characteristics, therefore the action of rejuvenation should consider these differences. This
action will directly influence the functioning of the system, correcting flaws, fixing errors
or taking any action to avoid disrupting the system. Thus, the thorough knowledge of the
environment is essential.

1.4 Aimed contributions

In this research, we obtained results that can confirm the existence of the software aging
phenomenon in the Eucalyptus cloud computing infrastructure, a factor that degrades the
system and causes, among other things, loss of performance, failure to perform activities
and can result in system downtime.

Identifying such occurrence in a software system, we then propose a proactive
action that allows the software rejuvenation, making it returns to its previous state, where it
performs its functions normally without unwanted stopping.

The bringing of a rejuvenation action may not be enough, because the system may
be unavailable for a few moments during the execution of this action, in addition to the time
of its activation that would be related to the administrator empirical knowledge. Time series
is used to estimate the growth in the resources usage, allowing the system administrator to
identify the most suitable moment for activation of the rejuvenation action.

5

CHAPTER 1. INTRODUCTION

To identify the occurrence of aging in Eucalyptus software allow users and develop-
ers to take knowledge of this degrading factor, enabling them to take preventive measures
and/or proactive to avoid downtime. The proposal of the rejuvenation action can be used in
similar architecture environments, in order to be a specific action. But the use of time series
can be applied in any environment in order to be a general methodology, where the history
of any monitored software can be used not only to predict the rejuvenation activation but
also to reduce the system downtime during the execution of the rejuvenation action.

1.5 Related works

The characteristics, architectures and applications of several popular cloud computing plat-
forms are analyzed and discussed in (Peng et al., 2009), that aims to clarify the differences
among the considered platforms. The authors conclude that though each cloud computing
platform has its own strength, one thing should be noticed is that there is lots of unsolved
issues in all platforms. Such issues include the continuously high availability, dealt mech-
anisms of cluster failure in cloud environment, consistency guarantee, synchronization in
different clusters, interoperation, standardization, and security.

In (Cordeiro et al., 2010), a comparative description about three most popular cloud
computing solutions - Xen Cloud Platform, Eucalyptus and OpenNebula - is presented. The
work also describes examples of use for each platform, and it supposes that by understanding
some of the main differences between them, one may decide where and when each solution
may be more appropriate.

The enhancement of communication performance, robustness, and security of
services using cloud concepts is addressed in (Mckinley et al., 2006). It describes Service
Clouds, a distributed infrastructure designed to facilitate rapid prototyping and deployment
of services. The infrastructure combines adaptive middleware functionality with an overlay
network substrate in order to support dynamic instantiation and reconfiguration of services.
The Service Clouds architecture includes a collection of lowlevel facilities that can be
either invoked directly by applications or used to compose more complex services. Two
experimental case studies were conducted to improve throughput of bulk data transfer
and to enhance the robustness of multimedia streaming. These case studies demonstrate
the usefulness of the Service Clouds infrastructure in deploying new services, and the
performance results indicate the benefits of the services themselves.

A great number of technologies have been developed to provide comprehensive
high availability to virtualized systems, by means of fast fault detection and replication
based on checkpointing techniques. The problem of application fault resilience in virtualized

6

1.5. RELATED WORKS

environments is addressed by (Lan et al., 2008), which presents an on-going project on the
design and development of adaptive fault tolerance for HPC applications. It aims to enable
parallel applications to avoid anticipated failures via preventive migration, and in the case of
unforeseeable failures, to minimize their impact through selective checkpointing.

Mihailescu et al. (2011) proposes improvements for the resilience of cloud applica-
tions to infrastructure anomalies, by means of OX, a runtime system that uses application-
level availability constraints and application topologies discovered on the fly. This system
allows application owners to specify groups of highly available virtual machines. To discover
application topologies, OX monitors network traffic among virtual machines transparently,
and based on this information dynamically implements VM placement optimizations to
enforce application availability constraints and reduce and/or alleviate application exposure
to network communication anomalies, such as traffic bottlenecks.

An important technique for providing high availability in virtualized environments
is presented in (Cully et al., 2008), under the name of Remus, an extension to the Xen
hypervisor that works by continually live-migrating a VM from the primary physical host
to the backup. Such approach prevents outages due to hardware failures and unusual
software bugs, but it cannot avoid or fix problems commonly caused by software aging.
In fact, a continuous software replication mechanism may copy bad aspects of system
state, such as memory fragmentation or garbage resulting from application’s faulty resource
(de-)allocation.

By considering software aging related to application domains other than cloud
computing, (Matias et al., 2010) presented a study where they explored OS Linux kernel
using instrumentation techniques to measure software aging effects.

Matias and Filho (2006) adopted SIGUSR1 Linux signal for the rejuvenation
purpose in web servers. When this signal is sent to the master httpd, it indicates that it must
reinitialize each of its slaves. However this action only takes place when the slave finishes
the request processing that it is currently in progress. The authors state that the downtime
during rejuvenation is nonexistent, because the master httpd - by continuing execution -
ensures the setting of new connections on port 80, even in those situations in which all slaves
are being rejuvenated at the same time. The experiment was performed along the period of 9
hours. It was defined so that when the memory usage by the httpd processes reaches 395
megabytes, the rejuvenation mechanism would be activated.

Carrozza et al. (2010) proposes a practical approach to detect aging phenomena
caused by memory leaks in distributed objects Off-The-Shelf middleware, which are com-
monly used to develop critical applications. The approach, which is validated on a real-world
case study from the Air Traffic Control domain, defines algorithms and support tools to

7

CHAPTER 1. INTRODUCTION

perform data filtering and for trading off experimentation time and statistical accuracy of
aging trend estimates.

The work in (Iosup et al., 2011) analyses the performance of cloud computing
services for scientific computing workloads, quantifying the presence in real scientific
computing workloads of Many-Task Computing (MTC) users, that is, users who employ
loosely coupled applications comprising many tasks to achieve their scientific goals. That
study was followed by an empirical evaluation of the performance of four commercial cloud
computing services. Last, trace-based simulation was used to compare the performance
characteristics and cost models of clouds and other scientific computing platforms, for
general and MTC-based scientific computing workloads. The results indicate that the
current clouds need an order of magnitude in performance improvement to be useful to the
scientific community, and show which improvements should be considered first to address
this discrepancy between offer and demand.

1.6 Structure of the dissertation

The remaining parts of the dissertation are organized as follows:

In Chapter 2 we present fundamental concepts about software aging, software
rejuvenation, cloud computing, dependability, measurement and time series. Chapter 3
presents the main aspects of the Eucalyptus framework. Chapter 4 presents Sofware Aging
in Eucalytpus Cloud Computing Environment. Chapter 5 describes Rejuvenation Strategies
to Eucalytptus platform. In Chapter 6 we presents the case studies and results obtained from
the experiments. Chapter 7 draws some conclusions, shows aimed contributions and possible
future works.

8

2
Background

Não é preciso ter olhos abertos para ver o sol, nem é preciso ter ouvidos

afiados para ouvir o trovão. Para ser vitorioso você precisa ver o que não

está visível

No need to open eyes to see the sun or you to have ears sharp to hear the

thunder. To be successful you need to see what is not visible.

—SUN TZU (The Art of War)

This chapter presents fundamental concepts about Cloud Computing, Dependability,
Software Aging and Rejuvenation, Performance Measurement and Time Series.

2.1 Cloud computing

Cloud computing is the access to computers and their functionalities via the Internet or a
local area network. It is called “cloud computing” because the user can not actually see or
specify the physical location and organization of the equipment hosting the resources they
are ultimately allowed to use (Eucalyptus, 2012).

Although several researchers have tried to define cloud computing, no single,
agreed-upon definition exists yet. The US National Institute of Standards and Technology -
NIST (NIST, 2011), defines cloud computing as follows: “Cloud computing is a model for

enabling convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction”.

Numerous advances in application architecture have helped to promote the adoption
of cloud computing. These advances help to support the goal of efficient application

9

CHAPTER 2. BACKGROUND

development while helping applications to be elastic and scale gracefully and automatically
(Microsystems, 2009). Cloud computing is seen by some as an important forward-looking
model for the distribution and access of computing resources because it offers these potential
advantages:

• Scalability: Applications designed for cloud computing need to scale with workload
demands so that performance and compliance with service levels remain on target
(Eucalyptus, 2012; Microsystems, 2009).

• Security: Applications need to provide access only to authorized, authenticated users,
and those users need to be able to trust that their data is secure (Microsystems, 2009).

• Availability: Regardless of the application being provided, users of Internet applica-
tions expect them to be available every minute of every day (Microsystems, 2009).

• Reliability and fault-tolerance: Reliability means that applications do not fail and
most important they do not lose data (Microsystems, 2009) i.e. this is the ability to
perform and maintain its functions in unexpected circumstances.

• As-needed availability: Aligns resource expenditure with actual resource usage thus
allowing the organization to pay only for the resources required, when they are required
(Eucalyptus, 2012).

2.1.1 Business model

Cloud computing employs a service-driven business model. In other words, hardware and
platform-level resources are provided as service an on-demand basis. The most common
services styles are referred to by the acronyms IaaS (Infrastructure as a Service), PaaS
(Platform as a Service), and SaaS (Software as a Service):

IaaS (Infrastructure as a Service) style clouds provide access to collections of
virtualized computer hardware resources, including machines, network, and storage. With
IaaS, users assemble their own virtual cluster on which they are responsible for installing,
maintaining, and executing their own software stack (Eucalyptus, 2012). IaaS is the delivery
of computer infrastructure as a service. This layer differs from PaaS in that the virtual
hardware is provided without a software stack. Instead, the consumer provides a VM image
that is invoked on one or more virtualized servers (Jones, 2008). Examples of IaaS providers

10

2.1. CLOUD COMPUTING

include Amazon EC2 (Amazon, 2011b), GoGrid (GoGrid, 2011) and Flexiscale (FlexiScale,
2011).

PaaS (Platform as a Service) style clouds provide access to a programming or
runtime environment with scalable computing resources and data structures embedded in
it. With PaaS, users develop and execute their own applications within an environment
offered by the service provider (Eucalyptus, 2012). PaaS can be described as an entire
virtualized platform that includes one or more servers (virtualized over a pool of physical
servers), operating systems, and specific applications (such as Apache and MySQL for Web-
based applications) (Jones, 2008). Examples of PaaS providers include Google App Engine
(Google, 2011), Microsoft Windows Azure (Microsoft, 2011) and Force.com (SalesForce,
2011a).

SaaS (Software as a Service) style clouds deliver access to collections of software
application programs. SaaS providers offer users access to specific application programs con-
trolled and executed on the provider’s infrastructure. SaaS is often referred to as “Software
on Demand” (Eucalyptus, 2012). SaaS is the ability to access software over the Internet as a
service. Another perspective on SaaS is the use of software over the Internet that executes
remotely. This software can be in the form of services used by a local application (defined
as Web services) or a remote application observed through a Web browser (Jones, 2008).
Examples of SaaS providers include Salesforce.com (SalesForce, 2011b) and Rackspace
(RackSpace, 2011).

2.1.2 Cloud types

There are many issues to consider when moving an enterprise application to the cloud envi-
ronment. For example, some service providers are mostly interested in lowering operation
cost, while others may prefer high reliability and security. Accordingly, there are different
types of clouds, each with its own benefits and drawbacks (Zhang et al., 2010). Cloud types
(including public, private, and hybrid - see Figure 2.1) refer to the nature of access and
control with respect to use and provisioning of virtual and physical resources.

Public clouds refers to a cloud service delivery model in which a service provider
makes massively scalable IT resources, such as CPU and storage capacities, or software
applications, available to the general public over the Internet. Public cloud services are
typically offered on a usage-based model (Furht and Escalante, 2010). The basic model for a
public cloud is similar to that for a public power utility: a third-party vendor manages the
infrastructure necessary to deliver computing capability to customers who pay usage fees

11

CHAPTER 2. BACKGROUND

Figure 2.1 Cloud Types (Furht and Escalante, 2010)

(Eucalyptus, 2012). However, public clouds lack fine-grained control over data, network and
security settings, which hampers their effectiveness in many business scenarios (Zhang et al.,
2010).

A Private cloud is a cloud that implements the “cloud computing” model in a
“private” setting where only a single organization has access to the resources that are used to
implement the cloud (Marks and Lozano, 2010; Eucalyptus, 2012). It means, this is a cloud
that an organization implements using its own resources (machines, networks, storage, data
centers, etc.). Recent advances in virtualization and data center consolidation have allowed
corporate network and datacenter administrators to effectively become service providers that
meet the needs of their customers within their organization (Furht and Escalante, 2010).

A Hybrid cloud, as the name implies, is a combination of the two types of clouds
(Eucalyptus, 2012; Furht and Escalante, 2010). Combines computing resources (e.g., ma-
chines, network, storage, etc.) drawn from one or more public clouds and one or more
private clouds at the behest of its users. Hybrid clouds offer more flexibility than both public
and private clouds. Specifically, they provide tighter control and security over application
data compared to public clouds, while still facilitating on-demand service expansion and
contraction (Zhang et al., 2010).

2.1.3 Related technologies

Cloud computing is often compared to the following technologies, which share certain
aspects with cloud computing:

Grid computing: This is a distributed computing paradigm that coordinates net-
worked resources to achieve a common computational objective. Cloud computing is similar

12

2.1. CLOUD COMPUTING

to Grid computing, since it also employs distributed resources to achieve application-level
objectives. However, cloud computing takes one step further by leveraging virtualization
technologies at multiple levels (hardware and application platform) to realize resource
sharing and dynamic resource provisioning (Zhang et al., 2010; Stanoevska-Slabeva et al.,
2009).

Utility computing: Utility computing represents the model of providing resources
on-demand and charging customers based on usage rather than a flat rate. With on-demand
resource provisioning and utility-based pricing, service providers can truly maximize re-
source utilization and minimize their operating costs. Cloud computing can be perceived as
a realization of utility computing (Zhang et al., 2010; Stanoevska-Slabeva et al., 2009).

Virtualization: One of the most important ideas behind cloud computing is scalabil-
ity, and the key technology that makes that possible is virtualization (Menken and Blokdijk,
2009). Virtualization is the emulation of hardware within a software platform. This allows a
single computer to take on the role of multiple computers. A virtual machine behaves exactly
like a physical computer and contains its own virtual CPU, RAM hard disk and network
interface card (NIC). In practical terms, virtualization provides the ability to run applications,
operating systems, or system services in a logically distinct system environment that is
independent of a specific physical computer system (von Hagen, 2008). The virtualization
technology has existed since the early days of computer science and attracts a heavy attention
from the research community even today (Thein and Park, 2009).

2.1.4 Open source clouds

Exists some open source clouds that can be used to provide services in a private or a hybrid
cloud. Three open platforms are listed: Eucalytptus, Nimbus and OpenNebula:

Eucalyptus is a software platform for the implementation of private cloud com-
puting on computer clusters. There is an open-core enterprise edition and an open-source
edition. Currently, it exports a user-facing interface that is compatible with the Amazon
EC2 and S3 services but the platform is modularized so that it can support a set of different
interfaces simultaneously (Eucalyptus, 2012). Eucalyptus can use a variety of virtualiza-
tion technologies including VMware, Xen and KVM hypervisors to implement the cloud
abstractions.

Nimbus Platform is an integrated set of open source tools that allow users to
easily leverage IaaS cloud computing systems. This includes application instantiation,
configuration, monitoring, and repair. Nimbus is an open source project focused on cloud

13

CHAPTER 2. BACKGROUND

computing, it is built around three goals targeting three different communities: Enable
resource owners to provide their resources as an infrastructure cloud; Enable cloud users
to access infrastructure cloud resources more easily; Enable scientists and developers to
extend and experiment with both sets of capabilities. The Nimbus project has been created
by an international collaboration of open source contributors and institutions (Nimbus, 2012;
Sempolinski and Thain, 2010).

OpenNebula is an open-source cloud computing toolkit for managing heterogeneous
distributed data center infrastructures. The OpenNebula toolkit manages a data center’s
virtual infrastructure to build private, public and hybrid IaaS clouds. OpenNebula orchestrates
storage, network, virtualization, monitoring, and security technologies to deploy multi-tier
services as virtual machines on distributed infrastructures, combining both data center
resources and remote cloud resources, according to allocation policies (OpenNebula, 2012).
OpenNebula, by default, uses a shared file system, typically NFS, for all disk images files
and all files for actually running the OpenNebula functions (Sempolinski and Thain, 2010).

2.2 Dependability: Basic concepts

Many of the wished features of a cloud system are related to the concept of dependability.
There is no unique definition of dependability. By one definition, it is the ability of a system
to deliver the required specific services that can justifiably be reliable (Nurmi et al., 2009).
It is also defined as the system property that prevents a system from failing in an unexpected
or catastrophic way (Avizienis et al., 2004).

Indeed, dependability is also related to disciplines, such as availability and reliability.
Availability is the ability of the system to perform its slated function at a specific instant of
time or over a stated period of time. It is generally expressed in the form of a ratio of the
units of time when service was available and the agreed service period (Trivedi et al., 2009).

In general, the basic reliability concept is defined as the probability that a system
will perform its intended function during a period of running time without any failure (Musa,
1998). A failure causes the system performance to deviate from the specified performance
(Xie et al., 2004).

Dependability is a very important property for a cloud system as it should provide
services with high availability, high stability, high fault tolerance and dynamical extensibility.
Because cloud computing is a large-scale distributed computing paradigm and its applications
are accessible anywhere, anytime, and in anyway, dependability in cloud system becomes
more important and more difficult to achieve (Sun et al., 2010).

14

2.3. SOFTWARE AGING AND REJUVENATION

Software aging effects in cloud systems may affect the performance of communi-
cation among their components, what in a critical level would also have an impact on the
system dependability. Therefore, the presence of many software layers in cloud systems
raise the need of monitoring aging effects and proposing proper rejuvenation mechanisms in
order to assure the requered dependability aspects cited here.

2.2.1 Fault versus failures

Software engineers use the terms defects, faults, and bugs interchangeably and occasionally
interject the term failures when speaking about undesirable system behavior. Faults are
defects that are in the system at some point in time. Failures are faults that occur in operation.
Defects metrics measure faults. Reliability metrics measure failures. Bugs are synonymous
with defects and faults (Laird and Brennan, 2006).

If the code contains faults but the faults are never executed in operation, then the
system never fails. The mean-time-between-failures (MTBF) for the system will approach
infinity and software availability will be 100% (Laird and Brennan, 2006).

2.3 Software aging and rejuvenation

This section presents some aspects about Software Aging and Rejuvenation.

2.3.1 Software aging

Software aging is the deterioration in the availability of system or application resources, data
corruption, or numerical error accumulation (Castelli et al., 2001). Potential fault conditions
gradually accumulate over time, leading to either performance degradation or transient
failures, or both. Some of the frequent culprits of aging are memory leaks, unreleased file
locks, hanging threads, data corruption, storage space fragmentation, and accumulation of
round-off errors (Laird and Brennan, 2006).

Software aging can be defined as a growing degradation of software’s internal state
during its operational life (Grottke et al., 2008). The causes of software aging have been
verified as the accumulated effect of software faults activation (Avizienis et al., 2004) during
the system runtime (Huang et al., 1995; Shereshevsky et al., 2003). Aging in a software
system, as in human beings, is an accumulative process (Huang et al., 1995; Trivedi et al.,

15

CHAPTER 2. BACKGROUND

2000). The accumulating effects of successive error occurrences directly influence the
aging-related failure manifestation. Software aging effects are the practical consequences
of errors caused by aging-related fault activations (Matias and Filho, 2006). These faults
gradually lead the system towards an erroneous state (Trivedi et al., 2000; Huang et al.,
1995).

This gradual shifting is consequence of aging effects accumulation, being the
fundamental nature of the software aging phenomenon. It is important to highlight that
a system fails due to the consequences of aging effects accumulated over the time. For
example, considering a specific load demand, an application server system may fail due to
unavailable physical memory, which may be caused by the accumulation of memory leaks
related to the lack of some variables deallocation, or similiar software faults. In this case,
the aging-related fault is a defect in the code (e.g., erroneous use of malloc& f ree functions)
that causes memory leaks; the memory leak is the observed effect of an aging-related fault
(Matias and Filho, 2006).

The aging factors (Grottke et al., 2008) are those input patterns that exercise the
code region where the aging-related faults may be activated. The occurrence of such faults
may lead the system to erroneous states. Considering such memory leakage per aging-
related error occurrence, the server system may fail due to the main memory unavailability.
Nevertheless, the related effect may be observable only after long run of the system.

The time to aging-related failure (TTARF) is an important metric for reliability
and availability studies of systems suffering from software aging (Grottke et al., 2008).
Previous studies on the aging-related failure phenomenon show that the TTARF probability
distribution is deeply influenced by the intensity with which the system gets exposed to
aging factors, such as system workload (Bao et al., 2005).

Due to the cumulative property of the software aging phenomenon, it occurs more
intensively in continuously running software systems that are executed over a long period
of time (Castelli et al., 2001), such as cloud-computing framework software components
(Matias et al., 2010). In a long-running execution, a system suffering from software ag-
ing increases its failure rate due to the aging effect accumulation caused by successive
aging-related error occurrences, which monotonically degrades the system internal state
integrity (Castelli et al., 2001; Matias and Filho, 2006). Problems such as data inconsistency,
numerical errors, and exhaustion of operating system resources are examples of software
aging consequences (Grottke et al., 2008; Garg et al., 1998).

Since the notion of software aging was introduced (Huang et al., 1995), many
theoretical and experimental researches have been conducted in order to characterize and

16

2.3. SOFTWARE AGING AND REJUVENATION

understand this important phenomenon. Monitoring the aging effects is an essential part
of any aging characterization study (Avritzer and Weyuker, 1997). Many past-published
studies have implemented aging monitoring in different system levels, however to the best
of our knowledge this is the first work discussing the aging effects in a cloud-computing
environment.

2.3.2 Software rejuvenation

Software rejuvenation is a proactive fault management technique aimed at cleaning up the
system’s internal state to prevent the occurrence of more severe crashes or failures in the
future (Huang et al., 1995; Laird and Brennan, 2006; Kourai and Chiba, 2011).

Once the aging effects are detected, mitigation mechanisms might be applied in
order to reduce the impact of the aging effects on the applications or the operating system.
The search for aging mitigation approaches resulted in the so-called software rejuvenation
techniques (Matias and Filho, 2006; Vaidyanathan and Trivedi, 2005).

Since the aging effects are typically caused by hard to track software faults, software
rejuvenation techniques look for reducing the aging effects during the software runtime, until
the aging causes (e.g., a software bug) are fixed definitively (Huang et al., 1995; Grottke
et al., 2008). Examples of rejuvenation approaches may be software restart or system reboot.
In the former, the aged application process is killed and then a new process is created to
substitute it (Matias and Filho, 2006). Replacing an aged process by a new one, we remove
the aging effects accumulated during the application runtime. The same applies to the
operating system in a system reboot.

A common problem during rejuvenation is the downtime caused during restart or
reboot, since the application or system is unavailable during the execution of the rejuvenation
action. In (Matias and Filho, 2006) is presented a zero-downtime rejuvenation technique for
the apache web server, which was adapted for this work.

The methods of software rejuvenation are (Laird and Brennan, 2006):

• System restarts;

• System cleanups (partial rejuvenation);

• Application/process restart (partial rejuvenation);

• Node/application failover (in a cluster system).

17

CHAPTER 2. BACKGROUND

Although reboots are dreaded by most of us, below are shown three important
properties that make them desirable (Candea and Fox, 2001) :

1. a restart will unequivocally return software to its start state, which is usually the best
understood and best tested state of the system. For example, the Patriot missile defense
system (Office, 1992), used during the Gulf War, had a bug in its control software that
could be circumvented only by rebooting every 8 hours. It was due to an error in a
mathematical computation, which would accumulate and eventually render the system
ineffectively (Marshal, 1992);

2. reboots provide a high confidence way to reclaim resources that are stale or leaked.
At a major Internet portal, the front end Apache web servers are routinely quiesced,
killed and restarted, in order to control known memory leaks that quickly accumulate
under heavy load.

3. rebooting is easy to understand and employ. Simple mechanisms, in general, benefit
from being easy to implement, easy to debug, and easy to automate.

System cleanups are processes that execute in the background, which monitor the
ongoing resource consumption and clean up the internal state. Releasing file locks, garbage
collection, flushing operating system kernel tables, and killing zombie processes are all
examples of system cleanups (Laird and Brennan, 2006).

Rejuvenation action can occur either on a regularly scheduled (such as once every
ten days, for example) or as needed, triggered by the monitoring of resource exhaustion or
performance degradation.

2.4 Performance measurement

Performance analysis as applied computer science and engineering should be thought
of as a combination of measurement, interpretation, and communication of a computer
system’s ‘speed’ or ‘size’ (sometimes referred to as ‘capacity’) (Lilja, 2000). Performance
measurement can be done only if the actual system or a prototype exists.

Measurements of real systems are not very flexible, however, they provide informa-
tion about the specific system being measured. A common goal of performance analysis is
to characterize how the performance of a system changes as certain parameters are varied
(Lilja, 2000).

18

2.4. PERFORMANCE MEASUREMENT

There are many metrics that are commonly used in performance analysis. For
instance, the system response time is the amount of time that elapses from when a user
submits a request until the result is returned from the system. System throughput is a measure
of the job numbers or operations that are completed per unit time (Lilja, 2000). However,
the standard and simplest measures of variability are range, deviation, variance, standard

deviation, and index of variation (Laird and Brennan, 2006).

• Range: The range of values for the mapping of the data that is calculated by subtracting
the smallest from the largest.

• Deviation: The distance away from the mean of the measurement.

• Variance: A measurement of spread, which is calculated differently if it is for a full
population or a sample population. For a full population, where N is the number of
data points,

Variance = ∑(Deviations2)/N,
�
 �	2.1

For a sample population,

Variance = ∑(Deviations2)/(N−1),
�
 �	2.2

• Standard Deviation (SD): The “typical” distance from the mean.

SD =
√

Variance,
�
 �	2.3

• Index of Variation (IV): An index that indicates the reliability of the measurement.

IV = SD/mean
�
 �	2.4

Figure 2.2 illustrates lower and higher variance. With low variance, the values
cluster around the mean. With higher variance, they spread farther out.

The time is a fundamental quantity that needs to be measured to determine almost
any aspect of a computer system’s performance.

Any measurement tool has three important characteristics that determine the overall
quality of its measurements (Lilja, 2000):

19

CHAPTER 2. BACKGROUND

Figure 2.2 Examples of variance - adapted from (Laird and Brennan, 2006)

1. Accuracy. In the case of the timer, accuracy is an indication of the measurement
timer closeness to a standard measurement of time defined by a recognized standards
organization. More generally, accuracy is the absolute difference between a measured
value and the corresponding reference value.

2. Precision. Relates to the repeatability of the measurements made with the tool. It
is sometimes easier to think of precision in terms of its inverse. Imprecision is the
amount of scatter in the measurements obtained by making multiple measurements of
a particular characteristic of the system being tested.

3. Resolution, is the smallest incremental change that can be detected and displayed. The
finite resolution of a measuring tool introduces a quantization effect into the values it
is used to measure.

To obtain an intuitive view of the differences between accuracy and precision,
Figure 2.3 shows an illustration plot using hypothetical measurements.

The accuracy of a measurement is the degree to which a measurement reflects
reality. Precision of a measurement represents the size of differentiation possible with a
measurement (Laird and Brennan, 2006).

There are some types of errors in experimental measurements. Presents two more
important errors: systematic error and random error (Laird and Brennan, 2006).

• systematic error, meaning it is an error in the measurement system. It will show
up every time. It affects the validity of the measurement. It is the “bias” with a
measurement.

Figure 2.4 is a graph of systematic error. Systematic errors change the mean but not
the variance.

20

2.4. PERFORMANCE MEASUREMENT

Figure 2.3 A illustration plot showing the differences between accuracy and precision (Lilja, 2000)

Figure 2.4 Distributions of X with and without systematic error - adapted from (Laird and Brennan,
2006)

• random error, meaning it is an error in the measurement itself, which will appear
“at random”. It affects the reliability of the measurement. It is the “noise” within a
measurement.

Figure 2.5 is a graph of random error. Random errors increase the variance but do not
change the mean.

Figure 2.6 is a final look at measurement error. If reality is the vertical line on the
left, then the distance from the actual mean to reality is the bias, or systematic error.

One important concern with any measurement strategy is how much it perturbs the
system being measured. We list yet four measurements strategies (Lilja, 2000):

1. Event-driven. This measurement strategy records the information necessary to calcu-
late the performance metric whenever the preselected event or events occur. One of the

21

CHAPTER 2. BACKGROUND

Figure 2.5 Distributions of X with and without random error - adapted from (Laird and Brennan,
2006)

Figure 2.6 Measurement error - adapted from (Laird and Brennan, 2006)

advantages of an event-driven strategy is that the system overhead required to record
the necessary information is incurred only when the event of interest actually occurs.
If the event never occurs, or occurs only infrequently, the perturbation to the system
will be relatively small. This characteristic can also be a disadvantage, however, when
the events being monitored occur very frequently.

2. Tracing. A tracing strategy is similar to an event-driven strategy, except that, rather
than simply recording that fact that the event has occurred, some portion of the system
state is recorded to uniquely identify the event. For example, instead of simply
counting the number of page faults, a tracing strategy may record the addresses that
caused each of the page faults.

3. Sampling. In contrast to an event-driven measurement strategy, a sampling strategy

22

2.5. TIME SERIES

records at fixed time intervals the portion of the system state necessary to determine
the metric of interest. As a result, the overhead due to this strategy is independent of
the number of times a specific event occurs.

4. Indirect. An indirect measurement strategy must be used when the metric that is to
be determined is not directly accessible. In this case, you must find another metric
that can be measured directly, from which you then can deduce or derive the desired
performance metric.

2.5 Time series

To Chatfield (1996) a time series is a collection of observations made sequentially in time.
Examples occurs in a variety of fields, ranging from economics to engineering, and methods
of analysing time series constitute an important area of statistics.

A time series can be represented by a set of observations of a random variable,
arranged sequentially over time (Kedem and Fokianos, 2002). The value of the series at a
given instant t can be described by a stochastic process, i.e. a random variable X(t), for each
t ∈ T , and T is an arbitrary set and its associated probability distribution. In most situations,
t represents time, but can also represent another physical quantity, for example, space. The
applications of time series analysis are mainly: description, explanation, process control and
prediction.

• Description: series properties as, for example, the trend pattern, the existence of
structural changes, etc.

• Explanation: to build models that explain the behavior observed during the series.

• Process control: for example, statistical quality control.

• Prediction: predict future values based on past values.

Time series enables one to build models that explain the behavior of the observed
variable and the types of time series analyses may be divided into frequency-domain (Bloom-
field, 2000; Kedem and Fokianos, 2002) and time-domain methods (Akaike, 1969; Box and
Jenkins, 1970; Chatfield, 1996).

The modeler must decide how to use the chosen model according to her goals.
Many forecasting models are based on the “least squares” method. The most common time
series models are based on errors (or regression), autoregressive moving average (ARMA)

23

CHAPTER 2. BACKGROUND

models, the autoregressive integrated moving average (ARIMA) models, the long memory
ARIMA (also called ARFIMA models), the structural models and the nonlinear models
(Kedem and Fokianos, 2002).

2.5.1 Trend analysis

To model a time series, the first thing to do is a graphical representation of the series, because
through the graph we can identify the characteristics that may be relevant to the study of that
series. The next step is an analysis of the observed data in order to identify possible trends.

This work adopts five models, namely: the linear model, the quadratic model, the
exponential growth model, the model of the Pearl-Reed logistic, and the ARIMA model.
These models are briefly described as follows, based on Yt = E[X(t)]:

• Linear Trend Model (LTM): this is the default model used in the analysis of trends.
Its equation is given by Yt = β0 +β1 · t + et where β0 is known as the y-intercept, β1

represents the average of the exchange of one time period to the next, and et is the
error of fit between the model and the real series (Montgomery et al., 2008).

• Quadratic Trend Model (QTM): this model takes into account a smooth curvature in the
data. Its representation is given by Yt = β0 +β1 · t +β2 · t2 + et where the coefficients
have similar meanings as the previous item (Montgomery et al., 2008).

• Growth Curve Model (GCM): this is the model of trend growth or fallen in exponential
form. Its representation is given by Yt = β0 ·β t

1 · et .

• S-Curve Trend Model (SCTM): this model fits the logistics of Pearl-Reed. It is usually
used in time series that follow the shape of the curve S. Its representation is given by
Yt = 10a/(β0 +β1β t

2).

• ARIMA: in general, an ARIMA model is characterized by the notation ARIMA(p,d,q)
where p,d and q denote orders of auto-regression, integration (differencing) and moving
average, respectively. Such parameters may be estimated by means of autocorrelation
analysis and verification of differencing steps needed to transform the series in a
stationary series (Box and Jenkins, 1970).

Error measures (Schwarz, 1978) are adopted for choosing the model that best fits
the observed data. MAPE, MAD and MSD were the error measures adopted in this work:

24

2.5. TIME SERIES

• MAPE (Mean Absolute Percentage Error) represents the precision of the estimated
values of the time series expressed in percentage. This estimator is represented by:

MAPE =
∑

n
t=1 |(Yt− Ŷt)/Yt |

n
·100,

�
 �	2.5

where Yt is the actual value observed at time t (Yt 6= 0), Ŷt is the estimated value and n

is the number of observations.

• MAD (Mean Absolute Deviation) represents the accuracy of the estimated values of
the time series. It is expressed in the same unit of data. MAD is an indicator of the
error size and is represented by the statistics:

MAD =
∑

n
t=1 |(Yt− Ŷt)|

n
,

�
 �	2.6

where Yt , t, Ŷt and n have the same meanings index MAPE.

• MSD (Mean Squared Deviation) is a more sensitive measure than the MAD index,
especially in large forecasts. Its expression is given by

MSD =
∑

n
t=1 |(Yt− Ŷt)|2

n
,

�
 �	2.7

where Yt , t, Ŷt and n have the same meanings of the previous indexes.

25

3
Eucalyptus cloud computing infrastructure

O que fazemos em vida, ecoa na eternidade.

What we do in life echoes in eternity.

—MAXIMUS (Gladiator Movie)

EUCALYPTUS - Elastic Utility Computing Architecture Linking Your Programs To

Useful Systems - is a software that implements scalable IaaS-style private and hybrid clouds
(Eucalyptus, 2010a). It was created with the purpose of cloud computing research and it is
interface-compatible with the commercial service Amazon EC2 (Jones, 2008; Eucalyptus,
2012). The API compatibility enables to run an application on Amazon and on Eucalyptus
without modification. Eucalyptus was developed at the University of California, Santa
Barbara, for the purpose of cloud computing research.

In general, the Eucalyptus cloud computing platform uses the virtualization ca-
pabilities (hypervisor) of the underlying computer system to enable flexible allocation of
computing resources decoupled from specific hardware (Eucalyptus, 2010a). Eucalyptus
(Eucalyptus, 2009) is compatible with and packaged for multiple distributions of Linux
including Ubuntu, RHEL, OpenSuse, Debian, Fedora, and CentOS.

There are five high-level components in the Eucalyptus architecture (Figure 3.1),
each with its own web service interface: Cloud Controller, Cluster Controller, Node Con-

troller, Storage Controller, and Walrus (Eucalyptus, 2010a). A brief description of the
components within the Eucalyptus system follows.

3.1 Cloud Controller (CLC)

The Cloud Controller (CLC) is the front-end to the entire cloud infrastructure. The CLC
is responsible for exposing and managing the underlying virtualized resources (servers,

27

CHAPTER 3. EUCALYPTUS CLOUD COMPUTING INFRASTRUCTURE

Figure 3.1 Five Eucalyptus high-level components (Eucalyptus, 2010b)

network, and storage) via Amazon EC2 API (Microsystems, 2009). This component uses
web services interfaces to receive the requests of client tools on one side and to interact with
the rest of Eucalyptus components on the other side.

3.2 Cluster Controller (CC)

The Cluster Controller (CC) usually executes on a cluster front-end machine (Eucalyptus,
2010a) (Eucalyptus, 2009), or on any machine that has network connectivity to both the
nodes running Node Controllers (NC) and to the machine running the Cloud Controller.
CCs gather information on a set of VMs and schedules VM execution on specific NCs. The
Cluster Controller has three primary functions: schedule incoming instance run requests to
specific NCs, control the instance virtual network overlay, and gather/report information
about a set of NCs (Eucalyptus, 2009).

3.3 Node Controller (NC)

Node Controller (NC) runs on each node and controls the life cycle of instances running on
the node. The NC interacts with the operating system and with the hypervisor running on
the node. The actions of a NC are managed by the Cluster Controller (CC).

28

3.4. STORAGE CONTROLLER (SC)

NCs control the execution, inspection, and termination of VM instances on the
host where it runs, fetches and cleans up local copies of instance images. It queries and
controls the system software on its node in response to queries and control requests from the
Cluster Controller (Eucalyptus, 2010a). A NC makes queries to discover the node’s physical
resources - number of CPU cores, size of memory, available disk space - as well as to learn
about the state of VM instances on that node (Eucalyptus, 2009; Murari et al., 2010).

3.4 Storage Controller (SC)

Storage controller (SC) provides persistent block storage for use by the virtual machine
instances. It implements block-accessed network storage, similar to that provided by Amazon
Elastic Block Storage - EBS (Amazon, 2011a), and it is capable of interfacing with various
storage systems (NFS, iSCSI, etc.). An elastic block storage is a Linux block device that can
be attached to a virtual machine but sends disk traffic across the locally attached network to
a remote storage location. An EBS volume can not be shared across instances (Murari et al.,
2010).

3.5 Walrus

Walrus is a file-based data storage service, that is interface compatible with Amazon’s
Simple Storage Service (S3) (Eucalyptus, 2009). Walrus implements a REST interface
(through HTTP), sometimes termed the “Query“ interface, as well as SOAP interfaces that
are compatible with S3 (Eucalyptus, 2009; Murari et al., 2010). Users that have access to
Eucalyptus can use Walrus to stream data into/out of the cloud as well as from instances that
they have started on nodes. In addition, Walrus acts as a storage service for VM images.
Root filesystem as well as kernel and ramdisk images used to instantiate VMs on nodes can
be uploaded to Walrus and accessed from nodes.

3.6 Other additions

Here some additions to Eucalyptus:

Command Line Tools (Euca2ools) - Euca2ools from Eucalyptus provide a bunch
of command line tools to manage the eucalyptus setup (Murari et al., 2010; Eucalyptus,
2012). These commands help you manage images, instances, storage, networking etc. The
tools were inspired by command-line tools distributed by Amazon (api-tools and ami-tools)

29

CHAPTER 3. EUCALYPTUS CLOUD COMPUTING INFRASTRUCTURE

and largely accept the same options and environment variables. However, these tools were
implemented from scratch in Python, relying on the Boto library and M2Crypto toolkit
Eucalyptus (2012).

Elasticfox - This is an open source Mozilla Firefox extension for interacting with
Amazon Compute Cloud (Amazon EC2): Launch new instances, mount Elastic Block
Storage volumes, map Elastic IP addresses, and more. This was originally written for
EC2, but, since version 1.7, Elasticfox added Eucalyptus support as well, because API of
Eucalyptus is compatible with that of EC2. The source code also functions as an example of
how to use the Amazon EC2 Query API from JavaScript.

Hybridfox was forked from Elasticfox to make it usable with Eucalyptus, when
Elasticfox worked only with AWS. Hybridfox can be used as the single interface to AWS
and Eucalyptus. The interface of Hybridfox is similar to Elasticfox. Even after the recent
release of Elasticfox (version 1.7) with support for Eucalyptus, Hybridfox has the following
additional features that make it attractive for users of Eucalyptus: Raising instances with
Private IP; Some quirks related to hard coded mapping of instance types and architecture
types addressed; Support for Eucalyptus 1.5.x as well as 1.6.x; Other usability enhancements
Murari et al. (2010).

30

4
Sofware aging in Eucalytpus cloud

computing environment

Se soubéssemos o que era que estávamos fazendo, não seria chamado

pesquisa, seria?

If we knew what it was we were doing, it would not be called research,

would it?

—ALBERT EINSTEIN (Phrase)

To investigate the software aging effects of Eucalyptus platform can be quite
complicated in view of the environment that is very complex and have many resources to be
monitored, where each one could show signs of aging. Therefore, the system administrator
should be familiar with the environment. It was decided to look at all possible resources, such
as CPU, disk and memory of the entire environment, beyond the use of specific resources of
Eucalyptus processes such as eucalyptus-cloud and eucalyptus-nc (Apache2), besides the
existence of zombie processes.

It is necessary to use a strategy or mechanism to monitore automatically all infras-
tructure resources. As there is no only one specific software to obtain all data needed but a
lot of software, the creation of scripts with specific functions is required. Some programming
languages could be used for this task.

Languages like Python and Shell Script can be used (Mitchell et al., 2001; Blum,
2008) to monitore system resources. Tests using Python and Shell script language shows
that the both options are effectives in capturing and manipulating data, but for this moment
Shell Script was chosen. The first one shows problems in converting string to integer data
and others problems with data capture in rows and columns. Each script was built using

31

CHAPTER 4. SOFWARE AGING IN EUCALYTPUS CLOUD COMPUTING
ENVIRONMENT

native Linux programs, such as: date, mpstat, pidstsat, f ree, ps, du, among others.

Some steps are required during a software aging investigation. Thess steps are show
in Figure 4.1 and enumerated below:

1. The first step is the implementation of monitoring scripts, your function is to collect
system information during the evaluation period.

2. The second step is to choose the workload that will be used during the experiment.
The workload is essential in the software aging investigation, because will accelerate
the software lifetime and, thus, to present the degradation effects that occurs in the
system. After, the script with the workload choosed is implemented.

3. In the third step, a stressful test is executed. This test is performed in a short period,
the objective is to stress all environment resources. If any aging effect is observed in
this preliminary experiment, then passes it to the next step. Otherwise, the cycle ends.

4. Where aging effects were observed, a stressful experiment is performed, this time for
an extended period.

5. This step is to analyze the experimental data obtained by monitoring. All data are
analyzed to verify the aging occurrences.

6. This step gathers all results obtained with this experiment, ending the cycle.

Figure 4.1 Approach overview software aging

32

4.1. GENERAL RESOURCES MONITORING

4.1 General resources monitoring

The resources below were monitored using custom scripts to capture only useful data to
research. They all contain the date−−r f c−3339 = seconds command to obtain the exactly
moment that the resource information was captured. The historic was collected every 60
seconds and stored in a text document for further data analyse. This frequency for data
collection was chosen to not miss any important events in system behavior, and also to
avoid interference by monitoring mechanism in the system behavior. All general resources
monitored and their major commands are shown below:

• CPU utilization is monitored by mpstat command. This command shows the total use
of CPU applied by the User, System, I/O wait and idle. The complete script can be
seen in Appendix B.1.

• Disk utilization is monitored by df (disk free) command. This command shows
informations about all disk partitions, disk space used and available. The complete
script can be seen in Appendix B.2.

• Memory - free command. This command returns information about the overall memory
of the machine, such as free memory, used and buffer cache, in addition to free memory
and swap used. The complete script can be seen in Appendix B.3.

4.2 Specific resources monitoring

The resources here named specifics are so called precisely because they do not look at the
overall system, but only for specific processes of Eucalyptus. Knowing that these processes
change the PID (Process Identifier) often, all processes below were located using the ps

command plus basic information about the column position of a particular line caught with
awk command, which allows to obtain the PID of each process. Even changing their PID,
the process will be monitored in the same way because the new PID is detected automatically
by the script.

Like the previous scripts, they are also followed by the date−−r f c− 3339 =

seconds command to obtain the date and time the process was monitored. The information
from these resources are also obtained every 60 seconds and stored in a text document for
later data analysis. All specific resources monitored and their major commands are shown
below:

33

CHAPTER 4. SOFWARE AGING IN EUCALYTPUS CLOUD COMPUTING
ENVIRONMENT

• Eucalyptus-cloud process utilization resources is monitored by pidstat command.
After locating this process using ps command, the pidstat command is used to obtain
specific informations from resources used by this process, such as CPU, virtual
memory and resident memory. Eucalyptus-cloud process is only found in the cloud
controller. The complete script can be seen in Appendix B.4.

• Eucalyptus-nc (Apache2) process utilization resources is monitored by pidstat com-
mand. After locating this process using ps command, the pidstat command is used to
obtain specific informations from resources used by this process, such as CPU, virtual
memory and resident memory. Eucalyptus-nc (Apache2) process only exists on node
controllers. The complete script can be seen in Appendix B.5.

• Zombie processes occurrences are monitored by ps command. A zombie or defunct
process is a process that has completed execution but still has an entry in the process
table. Also found in a similar way to the previous cases, but in this case the ps
command capture the letter “Z” in the “STAT” column on data field of this process.
The complete script can be seen in Appendix B.6

Zombies that exist for more than a short period of time typically indicate a bug
in the parent program, or just an uncommon decision to reap children Herber (1997). If
the parent program is no longer running, zombie processes typically indicate a bug in the
operating system. The presence of a few zombies is not worrisome in itself, but may indicate
a problem that would grow serious under heavier loads. Since there is no memory allocated
to zombie processes except for the process table entry itself, the primary concern with many
zombies is not running out of memory, but rather running out of process ID numbers.

4.3 Log files

Another way to get information from the environment is to use the logs generated by the
Eucalyptus. The activity log contains comprehensive information about the operations being
performed. The log provides an audit trail of all tasks performed (with the latest activities
related to last one) and can be useful for solving problems that may occur.

Usually when an issue arises in Eucalyptus, records can suggest the nature of the
problem either in the eucalyptus log files or in the system log files. Assuming Eucalyptus
is installed in the root (/) directory, the Eucalyptus log files by default are located on each
machine hosting a component in the following directory: var/log/eucalyptus/. Here are
the relevant logs for each component:

34

4.4. MEMORY LEAKING MONITORING

• Cloud Controller (CLC): cloud-debug.log, cloud-error.log, cloud-output.log, axis2c.log

• Node Controller (NC): nc.log, httpd-nc_error.log, euca_test_nc.log

• Cluster Controller (CC): cc.log, httpd-cc_error_log, registration.log

• Storage Controller (SC): sc-stats.log, registration.log

• Walrus: walrus-stats.log, registration.log

4.4 Memory leaking monitoring

Memory leaking in long running programs can cause system performance degradation, and
even system crash (Xu and Zhang, 2008).

Many memory leaking problems are subtle and hard to be detected. They have few
symptoms other than the slowing down system’s performance and steady increase in memory
consumption (Xu and Zhang, 2008). Memory leaks occur because a block of memory was
not freed when it should, hence it is a primary cause for possible further system failure
(Hastings and Joyce, 1992).

To Ni et al. (2008) memory leak has been exposed to be one of the most serious
bugs which are hard to locate and fix in computer programs. Eventually, in the worst case,
too much of the available memory may become allocated and all or part of the system or
device stops working correctly, the application fails, or the system slows down unacceptably
due to thrashing.

Considering the large number of resources in the system a priority list of resources
to be monitored had to be defined. The top list processes chosen to be monitored were
eucalyptus-cloud and eucalyptus-cc (Apache2) in the Cloud Controller, and the eucalyptus-

nc (Apache2) process in both 32-bit and 64-bit machines. These processes have been chosen
since they are the main Eucalyptus process running on each machine.

Python was chosen as the language to write the scripts due to its support for
concatenating monitored information and its fast learning curve. The script allows finding
the PID of the process through the ps command, after it carried out the monitoring directly
from /proc (/proc/“+pid+”/status), where it is possible check a lot of information. In this
case, the objective is memory consumption of each process.

A history of the memory usage is stored in a spreadsheet which allows its analysis
and detection of possible anomalies. As already mentioned, the time interval between
measures is 60s.

35

CHAPTER 4. SOFWARE AGING IN EUCALYTPUS CLOUD COMPUTING
ENVIRONMENT

The memory leaking, in short, occurs when a process uses the memory required
for their execution and continues after several requests by allocating more memory without
deallocating the previously one, which may cause the machine resource depletion. The three
possible memory states and their transitions are shown in Figure 4.2.

Figure 4.2 Memory state transition diagram

The allocation algorithm first searches for blocks of pages of the size requested.
It follows the chain of free pages that is queued on the list element of the f ree_area data
structure. If no blocks of pages of the requested size are free, blocks of the next size are
looked for. This process continues until all of the f ree_area has been searched or until a
block of pages has been found matias2010-measur, Rusling:1999. Allocating blocks of
pages tends to fragment memory with larger blocks of free pages being broken down into
smaller ones. The page deallocation code recombines pages into larger blocks of free pages
whenever it can. Each time two blocks of pages are recombined into a bigger block of free
pages the page deallocation code attempts to recombine that block into a yet larger one. In
this way the blocks of free pages are as large as memory usage will allow.

A write to memory that contains any bytes that are currently in an unwritable state
causes a diagnostic message be printed; a similar message printed if the program-under-test
reads bytes marked unreadable. Writing uninitialized memory causes memory’s state to
become initialized. When malloc allocates memory, the memory’s state is changed from
unallocated to allocated-but-uninitialized. Calling f ree causes the affected memory to enter
the unallocated state (Hastings and Joyce, 1992).

36

4.5. MEMORY FRAGMENTATION MONITORING

4.5 Memory fragmentation monitoring

Fragmentation is a phenomenon in which memory space is used inefficiently, so that the
system is not able to reuse memory that is free (Baker, 1995). Memory fragmentation may
reduce system capacity and performance and it is considered a software aging effect (Grottke
et al., 2008).

Memory fragmentation is one of the serious problems that occurs in software. The
system reports a memory full message even if the total free space is more than the requested
memory slot. This might be related to the lack of contiguous memory space for the respective
allocation (Baishnab et al., 2010). In this contiguous memory allocation, each process is
contained in a single contiguous section of memory, for example memory addresses 1000-
2000, as opposed to "fragmented allocation" where the memory comes as several smaller
blocks in different places, for example memory addresses 1000-1050, 2050-2125. Memory
fragmentation exists when there is enough total memory space to satisfy a request, but
the available spaces are not contiguous. Figure 4.3 shows a memory map illustration of
contiguous memory and fragmented memory.

Figure 4.3 Memory map ilustration - A) Continguous memory and B) Fragmented memory

Internal Fragmentation may be quantified by the extra unused memory that a policy
or system has allocated beyond actual memory size requested by the program (Skotiniotis
and Chang, 2002).

By using SystemTap (SystemTap, 2012), memory fragmentation events were mea-

37

CHAPTER 4. SOFWARE AGING IN EUCALYTPUS CLOUD COMPUTING
ENVIRONMENT

sured during the experiment, by means of a Linux kernel tracepoint named mm_page_alloc_extfrag

(Matias et al., 2010). Kernel tracepoints are a static kernel instrumentation support mecha-
nism for Linux kernel source code, allowing special tools such as LTTng (LTTng, 2012) or
SystemTap (SystemTap, 2012) to trace information exposed by these probe points.

A fragmentation monitoring script was developed using the specific language of
SystemTap (Jacob et al., 2009). Each time that occurs a fragmentation event in the OS
kernel, the script identifies and records such occurrence in a spreadsheet for further data
analysis. The collected data are the name of parent process, PID and UID, and the same
information from child processes.

The use of this strategy is somewhat different from those previously used, because
there is no telling at what time it will occur fragmentation on an event. This means that
within a minute both may be several records of fragmentation, but none of them can occur
during this period.

As during the testing phase various fragmentation events were found in a short
period of time, the log events generated by the SystemTap was very extensive and, therefore,
difficult to analyze. In this sense, to facilitate analysis of data, such information had to be
filtered by a second script written just for this purpose, i.e, to filter only the data of the
research interest. Another possible strategy is to use an array that stores the records and only
from time to time (every ten minutes for example), write the information to the spreadsheet.

In the case of memory fragmentation, the mere fact of its existence does not
immediately suggest the occurrence of software aging. However, a large amount of memory
fragmentation events caused by the same process is a symptom that may explain an aging
phenomenon.

4.5.1 SystemTap

SystemTap is a tool for the Linux Operating System that allows developers and system ad-
ministrators to deeply investigate the behavior of the kernel and even user space applications
in order to discover error conditions, performance issues, or just to understand how the sys-
tem works (Jacob et al., 2009; Eigler, 2010; Domingo and Cohen, 2011; SystemTap, 2012).
Data may be extracted, filtered, and summarized quickly and safely, to enable diagnoses of
complex performance or functional problems (Eigler, 2010).

SystemTap is a command line application that utilizes a plain text file (a script)
as input and generates plain text output. The input file is a script created with the specific
SystemTap language, which is similar to the C language (Jacob et al., 2009). Figure 4.4
shows SystemTap processing steps.

38

4.5. MEMORY FRAGMENTATION MONITORING

Figure 4.4 SystemTap processing steps - adapted from (Prasad et al., 2005)

Elaboration is a processing phase that analyzes the input script and resolves refer-
ences to the kernel or user symbols and tapsets. Tapsets are libraries of script or C code used
to extend the capability of a basic script. Once a script has been elaborated, it is translated
into C. A compiler converts the instrumentation script and tapset library into C code for
a kernel module. After compilation and linking with the SystemTap runtime, the kernel
module is loaded to start the data collection. Data is extracted from module into userspace via
reliable and high performance transport. Data collection ends when the module is unloaded
from the kernel (Prasad et al., 2005).

A kernel event could be a function name, a specific line of code, an exception or
interruption, meaning that when this event happens the handler will be executed (Mitchell
et al., 2001).

Two types of Kprobes are utilized by SystemTap, Kprobes and return probes Jacob
et al. (2009):

1. A Kprobe is a general purpose hook that can be inserted in the kernel code to probe an
instruction. The first byte of the instruction is replaced with the breakpoint instruction
for the architecture being used (Dandamudi, 2005). When this breakpoint is hit, Kprobe

39

CHAPTER 4. SOFWARE AGING IN EUCALYTPUS CLOUD COMPUTING
ENVIRONMENT

takes over execution, executes its handler code for the probe, and then continues
execution at the next instruction (Jacob et al., 2009).

2. A return probe, also called a kretprobe, attaches to the entry point of a function like a
regular Kprobe. When the function is called, the return probe gets the return address
and replaces it with a trampoline address. When the function exits, it returns to the
trampoline address instead of where it was originally set to return, and the handler
code for the probe is called. Return probes have access to the return values from
functions (Jacob et al., 2009).

Figure 4.5 provides a graphical representation of how a kretprobe works.

Figure 4.5 SystemTap operations overview - Adapted from (Jacob et al., 2009)

4.6 Testbed environment

In order to analyze possible aging effects in the Eucalyptus cloud-computing framework,
we use a test bed composed of six Core 2 Quad machines (2.66 GHz processors, 4 GB
RAM) running the Ubuntu Server Linux 10.04 (kernel 2.6.35-24) and the Eucalyptus System
version 1.6.1. The operating system running in the virtual machines is based on a custom
image of the Ubuntu Linux 9.04 that runs a simple FTP server. The cloud environment under
test is fully based on the Eucalyptus framework and the KVM hypervisor.

40

4.6. TESTBED ENVIRONMENT

Figure 4.6 Components of the test bed environment - adapted from Murari et al. (2010)

The Figure 4.6 shows the components of our experimental environment.

The Cloud Controller, Cluster Controller, Storage Controller and Walrus have been
installed on the same machine, and the VMs were instantiated on four physical machines, so
that each of them run a Node Controller. Three of those machines have installed a 32-bit
(i386) Linux OS, whereas one has the 64-bit (amd64) Linux OS, which allow us to capture
possible different aging effects related to the system architecture. A single host is used to
monitor the environment and also to perform requests to the Cloud Controller. That single
host is a client for the cloud-computing infrastructure in our testbed. This infrastructure
represents a small cloud with different system architectures.

In order to verify whether it occurs or not the phenomenon of software aging in
Eucalyptus, we decide to monitor the environment in full operation during a certain time, so
that it would be prone to constant failures. Thus, it is necessary to generate a workload able
to stress the system and accelerates the failure process.

The impact caused by the monitoring mechanism is irrelevant to affect the system
behavior, because the most affected processes are related to the Eucalyptus functioning .

41

CHAPTER 4. SOFWARE AGING IN EUCALYTPUS CLOUD COMPUTING
ENVIRONMENT

4.6.1 Workload

Monitor the environment and “wait” that it presents the aging effects can take months or even
years, maybe never occur. Thus, it was necessary to generate a workload able to stress the
system and accelerates the failure process. According to the empirical knowledge acquired
in the testing phase, it was found that activities such as instantiate, terminate and restart
VMs increased the resources consumption and, therefore, could be used for generating the
workload required to accelerate possible aging effects.

The workload chosen is the use of some of the Eucalyptus features to accelerate the
life cycle of the VMs, which is composed by four states: Pending, Running, Shutting Down

and Terminated, as shown in Fig. 4.7.

Figure 4.7 Workload Illustration

Scripts are used in order to start, reboot and terminate the VMs in a short time
period. Such operations are central for scaling up and down the so-called elastic computing
(Amazon, 2011b).

Cloud-based applications adapt themselves by instantiating new virtual machines,
and save resources by terminating underused VMs when the load of requests is low. VM
reboots are also essential to high availability mechanisms (VMware, 2007). The workload

42

4.6. TESTBED ENVIRONMENT

cycle was implemented by means of shell script functions that perform the operations we
have just mentioned, as it may be seen below:

• Instantiate VMs Function: This function uses euca-run-instances command to instan-
tiate 8 VMs using type m1.xlarge in a cluster named cluster-modcs. Those VMs are
instances of an Ubuntu Server Linux running a FTP server. This function is represented
by a Shell script that is shown below:

1 Ins tancesVMs () {
2 i =0
3 whi le [$ i − l t 8]
4 do
5 euca−run− i n s t a n c e s − t m1 . x l a r g e −z c l u s t e r −modcs −k admin emi−3

FDE12D4
6 i = ‘ exp r $ i + 1 ‘
7 done
8 s l e e p 10
9 }

• Terminate VMs Function: This function uses euca-describe-instances command to
find out which instances are running in the cloud and terminate them all with euca-

describe-instances command.

1 t e rminateVMs () {
2 i n s t a n c e s = ‘ euca−d e s c r i b e− i n s t a n c e s | g r ep INSTANCE | awk ’{print

$2}’ ‘
3 euca−t e r m i n a t e− i n s t a n c e s $ i n s t a n c e s
4 }

• Reboot VMs Function: Much like the previous function, it also finds all existing
instances (euca-describe-instances command), but instead of terminating, it requests
their reboot (euca-reboot-instances).

1 rebootVMs () {
2 i n s t a n c e s = ‘ euca−d e s c r i b e− i n s t a n c e s | g r ep INSTANCE | awk ’{print

$2}’ ‘
3 euca−r e b o o t− i n s t a n c e s $ i n s t a n c e s
4 }

Every ten minutes the script checks whether more than five hours have passed from
the beginning of the last initialization. If so, all VMs are killed, otherwise all VMs are

43

CHAPTER 4. SOFWARE AGING IN EUCALYTPUS CLOUD COMPUTING
ENVIRONMENT

rebooted. Empirically, was decided to use ten minutes to reboot eucalyptus service and five
hours to execute the terminate command and, after, this cycle is started again. This amount
of executions generates a workload that can stress the Eucalyptus infrastructure. The times
used here were chosen just to accelerate the aging effects and do not represent values from
the "real life". The complete script can be seen in Appendix A.

It is important to highlight that the workload was set just to speed up the effects of
aging, so that the time values that we have chosen do not attempt to illustrate real cases. For
this experiment, monitoring scripts were implemented using Linux utilities, such as date,

mpstat, free, ps and du (Blum, 2008). These scripts monitor the utilization of resources such
as CPU, disk and memory usage. Those resources were monitored for the entire system as
well as specific services like eucalyptus-cloud (in the Cloud Controller) and eucalyptus-nc

(in the Node Controllers).

Once the experiment starts, information is gathered from the monitored resources
every sixty seconds. Nevertheless, in the first two hours, no workload is provided to the
system. After this first two hours, then, the scripts that instantiate the virtual machines are
executed and the workload cycle (previously described) starts.

4.7 Performance data analysis

Data analysis is a process of inspecting, cleaning, transforming, and modeling data with the
goal of highlighting useful information, suggesting conclusions, and supporting decision
making.

Identifying the growth in the use of a particular resource alone may not characterize
the occurrence of software aging, but it may indicate that this resource deserves attention,
since patterns and/or abnormalities is a key issue for detecting aging phenomenon.

44

5
Rejuvenation strategies to Eucalytptus

cloud computing environment

As oportunidades multiplicam-se à medida que são agarradas.

Opportunities multiply as they are seized.

—SUN TZU (The Art of War)

In few words, the software rejuvenation strategy aims to restore the state of the soft-
ware when the beginning of its execution, acting proactively to avoid unwanted interruptions
or failures. The software rejuvenation technique best known and perhaps generic for all
applications is system restart, which theoretically restores the original state of the software
by forcing it to start again from the beginning.

The big problem with this technique is the large downtime for the application. The
downtime includes the time to restart the machine and the time to start again the same
application. However, even in a pessimistic view, such an action is effective and it causes
less damages than an unplanned service disruption. Usually, the restoration of the system
is much easier in preventive actions than in corrective actions. A web server is an example
where a large system downtime can affect a lot of user and cause catastrophic results. In
the Case Studies Chapter is explained with more details about the downtime caused by the
rejuvenation strategy adopted.

It is important to stress that the mere fact of finding an effective rejuvenation
mechanism may not be enough. It is necessary to implement the action with minimum
downtime. The software restart is always a valid technique, but each application has specific
functions and characteristics, which may require a rejuvenation action that takes into account
these characteristics. Other actions might bring the system to a previous (and better) state

45

CHAPTER 5. REJUVENATION STRATEGIES TO EUCALYTPTUS CLOUD
COMPUTING ENVIRONMENT

with less service unavailability than the simple restart.

The proposal of a rejuvenation action to the Eucalyptus environment requires a
good knowledge of the platform, and specially of the aging of their resources. Such an
understading about the platform under analysis is essential to develop a suitable rejuvenation
strategy. The knowledge acquired in the previous experiments enabled the identification of
some characteristics of Eucalyptus to propose the most appropriate rejuvenation action.

Many resources were monitored and several indications about aging effects were
found. Although, the memory utilization of the node controller was the resource that
deserved more attention, since the NC process has crashed at certain times, in the 32-bit
machines, while the 64-bit machine remained in full operation. At the end of the preliminary
experiments, analyzing data from each machine, it was noted the high growth of the virtual
memory usage by eucalyptus-nc (Apache2) process, reaching the maximum allowed by the
32-bit architecture in Linux (3 GB), which led to the inability of VMs instantiation on those
machines. In the 64-bit machine, even with no problems in the instantiation of new VMs,
the virtual memory usage by the same process continued to grow. The non-occurrence of the
same problem that occurred in the 32-bit machines is explained by the fact that the 64-bit
architecture enables up to 250 TB of virtual memory usage per process. However, this does
not mean that this exaggerated growth may not reach critical levels. Specifically in this case
the depletion of disk space is imminent, given this is also a limited resource.

By means of a preliminar analysis of the virtual memory usage of the eucalyptus-nc

process, it was noted that after the restart command there was a decrease on its use. Although
it returned to grow until the limit of 3 GB, requiring another restart of the process. This
behavior remained until the end of the experiment. As the restart process times coincided
with the times when the virtual memory usage fell, it was noticed that a restart was a possible
rejuvenation action to be adopted. It is noteworthy that this command does not restart the
machine, nor the operating system, but only one Eucalyptus process, which returns to normal
operation within a few seconds, which is an important factor to choose such an action.

Figure 5.1 shows the steps to be followed during the software rejuvenation exper-
iments. The first step is to define a resource limit to activate the rejuvenation action. The
second step is to implement a script that going execute the rejuvenation action when the
resource utilization reach the limit defined previously. The third step is to execute a rejuve-
nation test. This preliminar experiment is performed in a short period time, the objective
is verify if the resource utilization decreased. If any reduction is observed in the resource
consumption, then passes it to the next step. Otherwise, the cycle ends. However, when any
reduction is observed, the rejuvenation experiment is performed, this time for an extended

46

5.1. REJUVENATION STRATEGY BASED ON VIRTUAL MEMORY UTILIZATION

Figure 5.1 Approach overview software rejuvenation

Figure 5.2 Apache process model (Matias and Filho, 2006)

time. The next step is to analyze the experimental data obtained by monitoring. All data
are analyzed to verify the rejuvenation executions number and if the scripts was correctly
executed. The end step gathers all results obtained with the experiment, ending the cycle.

The problem now was to minimize the system downtime system caused by this
rejuvenation action or find another solution that does not cause the system down. Considering
that the eucalyptus-nc process is an Apache process, it was decided test a rejuvenation
technique to web server proposed by Matias and Filho (2006), whose rejuvenation downtime
during the action is absent.

5.1 Rejuvenation strategy based on virtual memory uti-
lization

The eucalyptus-nc process is primarily responsible for the high utilization of virtual memory
in the node controllers. As this is an Apache process, the rejuvenation solution should be
proposed taking into consideration the Apache process characteristics. Figure 5.2 shows the
Apache process model.

47

CHAPTER 5. REJUVENATION STRATEGIES TO EUCALYTPTUS CLOUD
COMPUTING ENVIRONMENT

The Apache implements the handling of software signals for general purposes. One
of these Apache-manipulated signals is SIGUSR1. This signal, when sent to the master
httpd, indicates that it must reinitialize each of its slaves, however this action only takes
place when the slave finishes the request processing that is currently in progress (Laurie and
Laurie, 2002). Apache uses SIGUSR1 to request a “graceful” process restart/shutdown.

Based on the software aging symptoms observed in the Eucalyptus environment,
an automated method is proposed for triggering a rejuvenation mechanism in private cloud
environments that are backed up by the Eucalyptus cloud computing framework. This
method is based on the rejuvenation mechanism presented in (Matias and Filho, 2006), that
sends a signal (SIGUSR1) to the apache master process, so that all slave idle processes
are terminated and new ones are created. This action cleans up the accumulated memory
and has a small impact on the service, since the master process waits for the established
connections to be closed. Creating a new process to replace the old one causes a delay of
around 5 seconds, due to the load of eucalyptus configurations during process startup, as
observed in previous experiments.

With an effective rejuvenation strategy, another important step is to define the exact
moment when the action will be executed. As the most critical resource observed is the
virtual memory, so the rejuvenation mechanism should be activated by the size of virtual
memory. This proposal is simple. When the virtual memory usually reaches a threshold
considered ideal, before reaching the failure threshold (3 GB for example), the rejuvenation
action is performed. The limit chosed should be not too close to the critical limit.

For this purpose, it was needed a constant monitoring of the resource. To not
interfering in the system performance with constant requests, it was decided to collect
information every 1 minute. To automate the sending of the SIGUSR1 command, a script
was implemented to check every minute if the virtual memory usage has reached to the 2
GB (empirically chosen limit) . If so, an immediate rejuvenation action is performed. The
rejuvenation mechanism can be activated every time is necessary.

A good point of this strategy is that the virtual memory utilization never will reach
the critical limit of the 32-bit architeture (3 GB). However, one downside of this strategy is
that there is no way to know which day and time the rejuvenation will occur.

48

5.2. THRESHOLD AND PREDICTIONS BASED REJUVENATION STRATEGIES

Figure 5.3 Classification of rejuvenation strategies

5.2 Threshold and predictions based rejuvenation strate-
gies

In a production environment, the interval between process restarts should be as large as
possible, in order to reduce the effects of summing up small downtimes during a large runtime
period. One approach to achieve that maximum interval is based on a high-frequency
monitoring of process memory usage. At the exact moment when the memory limit is
reached, the rejuvenation is triggered. Since a small sampling interval may affect system’s
performance, so we consider that a 1-minute interval is the minimum time duration to avoid
interference in the system.

Despite the ability to provide good results, a problem can be identified in such
approach. It is possible that the node controller process reaches its memory limit between
two monitoring points in time. An additional downtime is introduced in this way, described
now as “monitor-caused downtime”.

The proposed triggering mechanism aims to remove this additional downtime, as
it tries to keep the interval between process restarts as large as possible. The prediction
about when the critical memory utilization (CMU) will be reached is used for that purpose.
Therefore, considering the classification of rejuvenation strategies presented in Figure 5.3,
our approach has characteristics of two categories, since it is a threshold based rejuvenation
but it is aided by predictions.

The rejuvenation activation is the prediction of when the critical or ideal threshold
is reached. That way you can know which day and time the rejuvenation action is activated.
Analyzing again the virtual memory uses graphics, we find that growth follows an almost
linear pattern. Therefore, it is fully possible to predict the approximate time that the virtual
memory usage will reach the limits of interest. For this purpose, it is necessary to use Time

49

CHAPTER 5. REJUVENATION STRATEGIES TO EUCALYTPTUS CLOUD
COMPUTING ENVIRONMENT

Figure 5.4 Schematic representation of a Time Series

Series.

A time series is a time-oriented or chronological sequence of observations on a
variable of interest (Montgomery et al., 2008). Given an observed time series, one may want
to predict teh future values of the series (Chatfield, 1996).

A Time Series uses information previously existent (database) and from these
data it is possible estimate a future value. In this case, the data resources collected during
the experiment will be used to find the rejuvenation moment that the mechanism will be
activated. Using this strategy, the resource utilization can be used in full operation, activating
the machanism only when it is needed. Figure 5.4 shows a schematic representation of a
Time Series

This strategy is a bit more complex than before. Initially, we have to figure out
which time series is best suited to perform the prediction (LTM, QTM, ACG, or SCTM). For
this purpose, the data obtained a few hours monitored were used to calculate with time series
mentioned above. The series to be chosen is the one that showed the best rates MAPE, MAD
and MSD. After finding the time series with the best results, this was be used to predict the
rejuvenation moment activation.

Time-series fitting enables us to perform a trend analysis and therefore state, with
an acceptable error, the time remaining until the process reaches the CMU. This information
makes it possible to schedule the rejuvenation to a given time (Tre j), which takes into account
a safe limit (Tsa f e) to complete the rejuvenation process before the CMU is reached. The
safe limit should encompass the time spent during the rejuvenation and the time relative
to the time-series prediction error. Therefore, we can state Tre j = TCMU −Tsa f e = TCMU −
(Trestart +TPredError).

As seen in Figure 5.5, it is important to highlight that the trend analysis is started
only after the monitoring script detects the node controller process has grown over a time
series computation starting point, T SCSP, that in our case is 80% of the critical memory
utilization. This starting point was adopted to avoid unnecessary interference on the system
due to the computation of time series fitting.

When a limit of 95% of CMU is reached, the last prediction generated by the trend
analysis is used to schedule the rejuvenation action, i.e., the last computed TCMU will be used

50

5.2. THRESHOLD AND PREDICTIONS BASED REJUVENATION STRATEGIES

Figure 5.5 Chart projection

Figure 5.6 Approaches of rejuvenation strategies

to assess the Tre j and the system will be prepared so that the rejuvenation occurs gracefully
in time Tre j. We see that by reaching this time series computation final point, T SCFP, there
is no benefit in continuing computing new estimates, and it would be a risk to postpone the
scheduling of rejuvenation mechanism. It is important to stress that the values adopted for
T SCFP and T SCSP are specific to our environemnt, and therefore may vary if this strategy is
instantiated for other kinds of systems.

Figure 5.6 shows two approaches of rejuvenation strategies: Threshold-based
(critical limit) and Prediction-based (time series). In both cases it is necessary to start the
monitoring scripts to collect the data of the resources utilization. After, the rejuvenation
script can be executed. The next step is start the workload to stress the environment. In
this moment, the rejuvenation strategy should be chose. If based on critical limit, when the
critical limit is reached, the rejuvenation action is activated immediatly. If based on time
series, when activation limit is detected, there is a prediction using a time series computation.
After, the rejuvenation mechanism is executed based on this prediction.

51

CHAPTER 5. REJUVENATION STRATEGIES TO EUCALYTPTUS CLOUD
COMPUTING ENVIRONMENT

5.3 Considerations

The rejuvenation strategy used to reduce the growth of virtual memory can also be used in
other resources such as resident memory. In this study, it was decided to adopt its use only
in the virtual memory because this feature has been the most critical due to its fast growth,
reaching the maximum allowed in 32-bit architecture. It is evident that the resident memory
is also scarce and that its growth may also reach critical levels, especially in the case of
machines with modest settings.

No rejuvenation experiment using the amount of zombie processes was performed.
However, if it was necessary, it could bring an action in sending consistent rejuvenation
manual (or via script) signal SIGCHLD, using the kill command. If the parent process still
refuses to reap the zombie, the next step would be to remove the parent process. When a
process loses its parent, init1 becomes its new parent. The reason we did not find one even
higher number of zombie processes is because init periodically executes the wait system call
to reap any zombies with init as parent.

1Init is the parent of all processes on the system, it is executed by the kernel and is responsible for starting
all other processes; it is the parent of all processes whose natural parents have died and it is responsible for
reaping those when they die. Processes managed by init are known as jobs and are defined by files in the
/etc/init directory.

52

6
Case studies

Você não sabe o quanto eu caminhei pra chegar até aqui...

You do not know how I walked to get here...

—CIDADE NEGRA (A Estrada)

This chapter presents some case studies and the respective results. The requirements,
characteristics, methods and strategies used in these experiments were explained in the
previous two chapters.

We analyzed the utilization of hardware and software resources in a scenario where
the adopted workload performs operations related to instantiation of virtual machines.

We have used the testbed environment described in the previous chapter to perform
experiments aiming at finding out aging symptoms characterized by anomalous usage of
the following resources: CPU, memory space, hard disk space, and process IDs. These
experiments provided the basis for the rejuvenation method presented and other experiments
were used to test the proposed approach.

6.1 Case study one

The main goal of the case sutdy one was to verify the existence of software aging symptoms
in the Eucalyptus cloud computing infrastructure. Some indicators of software aging had
already been observed, but there was a need for confirmation and characterization of this
phenomenon. Therefore, the experiment was performed during a 30 days period. The
duration of the experiment was based on empirical observation of the time elapsed until the
appeareance of some possible aging symptoms, considering the workload that was adopted
to stress the system.

53

CHAPTER 6. CASE STUDIES

The virtual and resident memory usage, for the Eucalyptus node controller process,
are the most representative results found in this experimental study. Other important results
found were the number of zombie processes, CPU utilization and swap memory in the cloud
controller host. Disk usage metrics did not show any perceptible aging behavior, so they
have not been included in this study.

6.1.1 General resources

Figure 6.1 shows the CPU utilization results of the cloud controller machine. In almost
all experiment the CPU usage did not exceed 5%. However, some major growth spurts
following a nearly linear pattern can be observed throughout the experiment. We realize that
such peaks of resource usage will increase over time, which may be a sign of performance
degradation.

Figure 6.1 CPU utilization in the cloud controller machine

There was also a considerable growth in swap memory use on the cloud controller
machine. In Figure 6.2 we can see that this growth has come close to 14 GB. The growth
is constant, without drops, since the host continued responding to the request of VM
instantiation throughout all the experiment. However, even without stopping the service,
this behavior deserves attention because the swap space is a limited resource and in a longer
period the growth of its usage may lead to resource depletion, then to the system crash.

54

6.1. CASE STUDY ONE

Figure 6.2 Swap memory used in the CLC machine

6.1.2 Specific resources

Figure 6.3 shows the virtual memory utilization of the node controller process at host3. It is
worth emphasizing the significant memory utilization growth that was observed during the
reboots, shutdowns and instantiations of VMs. Such behavior continues until the process
reaches about 3055 MB of virtual memory, time at which the process stops growing. At that
point, the node controller can no longer instantiate VMs, probably due to the virtual memory
exhaustion related to the limitations of the 32-bits operating system. A manual restart of the
process responsible for the Eucalyptus node controller makes the memory utilization to drop
to about 110 MB.

Figure 6.3 Virtual memory usage of the NC process at Host3

55

CHAPTER 6. CASE STUDIES

After restarting the process, the same behavior pattern is observed. The virtual
memory grows until reaching about 3064 MB and again the node controller is not able to
handle virtual machines instantiation requests. Nodes 5 and 6 (the other nodes with 32-bit
OS) showed the same behavior as node 3.

In the 64-bit enabled host, a monotonic growth of virtual memory utilization was
also observed, as shown in Figure 6.4. In this case, no drops were observed because the node
controller process never failed, so the process was not restarted. The 64-bit operating system
architecture allows up to 256 TB of virtual memory addressing, however in a long period,
the virtual memory usage would exhaust the hard disk space available for this purpose.

Figure 6.4 Virtual memory usage of the NC process in a 64-bits machine

Another monitored resource was the use of resident memory of the node controllers.
Figure 6.5 shows an evident growth of resident memory. The drops are related to the
moments when the node controller process is restarted. However, the observed growth does
not take a larger proportion because the virtual memory reaches its limit, about 3GB, as
previously mentioned.

The resident memory usage in the 64-bit OS, depicted in Figure 6.6, has an un-
interrupted growth. The almost linear behavior in Figure 6.6 motivated the execution of
a regression study for the resident memory usage of NC process in that 64-bit machine.
We have found the following relation: rm = 44,157+2.850 · t, where rm is the amount of
resident memory (in kilobytes) used by the node controller process, and t is the time of
execution for the process. The obtained equation enables one to estimate the amount of
memory used by the process at a given time.

56

6.1. CASE STUDY ONE

Figure 6.5 Resident memory usage of the NC process at Host3

Table 6.1 Regression-based estimates for resident memory usage in NC process
Time (months) Estimative (MB)

2 283.591
4 524.060
6 764.528
8 1004.997

10 1245.466
12 1485.935

Table 6.1 shows the estimates for distinct time periods, expressed in months. Ac-
cording to the regression, after 8 months of uninterrupted execution, this single process
would reach 1 GB of resident memory, approximately 1/4 of the available resource. This
prediction is an example of the worry rised by this increasing memory utilization.

Figure 6.7 shows the usage of resident memory by the cloud controller process. We
can see some peaks of growth, probably related to the fact that some node controller stopped
working at a given instant, and the cloud controller was trying to instantiate new VMs, but it
was not successful in this task. The amount of virtual memory used by the cloud controller
process did not present a significant increase, so it is not shown here.

The number of zombie processes is another measure that highlights an aging effect
in the machine that hosts the cloud controller. Figure 6.8 shows that the number of zombie
processes in cloud controller machine grows in some periods. The major part of processes
that fall to the zombie state are apache processes which are executed by the Eucalyptus
services. The native Linux cleaning mechanism is executed periodically and removes
zombies from the process table, so the amount of zombie processes detected does not cause

57

CHAPTER 6. CASE STUDIES

Figure 6.6 Resident memory usage of the NC process in a 64-bits machine

problems to system activities. Nevertheless, the number of zombie process may become a
critical issue when the system is operating under a heavier workload.

6.2 Case study two

In order to confirm the previously described software aging effects, and identify new symp-
toms, another experiment was conducted. This case study uses a similar workload, but
memory fragmentation is an additional focus in the measurements, besides the memory leak
problems. Kernel instrumentation (Matias et al., 2010), by means of the SystemTap infras-
tructure, was used to collect the occurence of fragmentation events, whereas the memory
usage was collected directly from the /proc pseudo-filesystem.

6.2.1 Memory leaking monitoring

A Python script has been implemented for detecting memory leaking of Eucalyptus-related
processes, collecting the data in the file /proc/pid/stat, where pid is the Linux id of the process
being monitored. Figure 6.9 depicts the resident memory size used by the eucalyptus-cloud

process in the machine Host2 - that holds the Cloud Controller. The reader may observe
the memory usage increase when the workload begins - two hours after the start of the
experiment, but the process seems to reach a steady behavior as the time goes by. Therefore,
we can not point out an aging phenomenon related to this specific process.

The subsequent experiment conducted was monitoring the apache2 process, also

58

6.2. CASE STUDY TWO

Figure 6.7 Resident memory usage of the cloud controller process

in machine Host2. Figure 6.10 shows sharp increases in memory usage, mainly due to
problems in NCs, which can be understood in details by analyzing the memory leak results
for the machines Host3, Host4, Host5, and Host6.

Since Host3, Host5 and Host6 are similar 32-bit OS, the results presented are those
related to Host3.

Figure 6.11 shows the memory related to the node controller process at Host3,
during the reboots, shutdowns and instantiations of VMs. The increase in memory usage is a
typical symptom of software aging, since it seems that the process does not free memory
space, even when the virtual machines running in that node are terminated.

During the experiment, the 32-bit node controllers (machines Host3, Host5 and
Host6) stopped responding to requests of VM instantiation. This phenomenon occured
as soon as the virtual memory utilization of the corresponding process (apache2) reached
about 3064 MB (limit of this architecture). In order to continue the experiment, the process
responsible for the node controller was restarted every time this problem happened.

The drop in memory usage, seen in the middle of Figure 6.11, is due to the restart
process. There are also time intervals when memory usage is almost constant. They
correspond to the moments when that process reached the maximum virtual memory allowed
in 32-bit operating systems, or when other node controllers reached their own limits, what
temporarily paused the workload.

The machine Host4 did not failed running VM instances in any time. This fact
gives more strength to the hypothesis that the service problems in the other NCs were caused

59

CHAPTER 6. CASE STUDIES

Figure 6.8 Number of zombie process in the cloud controller machine

Figure 6.9 Memory usage in the Eucalyptus-cloud process at Host2

by the limitations of a 32-bit operating system. In the machine with the OS using 64-bit
architecture (Host4), there was a monotonic growth of memory usage for the eucalyptus-nc

process, as shown in Figure 6.12. While this behavior did not lead to failures during the
observed time period, problems similar to those seen in 32-bit machines may happen in a
longer time interval.

A regression study was conducted for the resident memory usage of NC process in
the 64-bit machine. It produced the following equation: rm = 41,695+4.084 · t, where rm

is the amount of resident memory (in kilobytes) used by the node controller process, and t is
the time of execution of that process. That equation enables one to estimate the amount of
memory used by that process in a specific time instance, and the other way around.

60

6.2. CASE STUDY TWO

Figure 6.10 Memory usage in the Apache (eucalyptus-cc) process at Host2

Figure 6.11 Memory usage of the Apache (eucalyptus-nc) process in a 32-bits OS(Host3)

Table Table 6.2 shows estimates for distinct time periods, expressed in months.
Those estimates indicate that the memory usage deserves attention. The usage of resident
memory of is supposed to reach about 1 GB after 6 months of uninterrupted execution and 2
GB after one year. Those values are high because they are related to just one process running
in that machine. The node controller process is using too much resources, that should be
available for the virtual machines executing on top of that host.

To validate this model, a comparison was made between experimental measure-
ments and the estimates obtained from the regression equation. Table 6.3 presents some
points of the comparison and its analysis suggests that the regression-based estimates are
accurate.

61

CHAPTER 6. CASE STUDIES

Figure 6.12 Memory usage of the eucalyptus-nc process in a 64-bits OS(Host4)

Table 6.2 Regression-based estimates of resident memory usage by the NC process - Case study two
Time (months) Estimative (MB)

2 385,305
4 729,893
6 1074,480
8 1419,068

10 1763,655
12 2108,243

6.2.2 Memory fragmentation monitoring

The fragmentation occurrences produced by each running process in the testbed environment
were recorded at 1-minute time interval between measurements.

Figure 6.13 shows the cumulative amount of fragmentation occurrences for two
processes related to Eucalyptus running in Host2 for a 24-hours period. The cloud controller
runs in this host. The processes named Eucalyptus-cloud and Apache2 have suffered
fragmentation along all time of the experiment.

As it can be seen in Figure 6.14, the measures obtained from Host3 show an
even more intense fragmentation behavior than that for Host2. The Apache2 process that
implements the node controller service has presented about three times more fragmentation
occurrences than the Apache2 process corresponding to the cloud controller. Ksmd and
Libvirtd are the other processes that were the most affected by memory fragmentation.

Libvirtd is tightly related to the management of virtual machines, since it is the
daemon for the Linux standard virtualization API. Ksmd is a daemon in the kernel that

62

6.2. CASE STUDY TWO

Table 6.3 Comparison between measurements and estimates for resident memory usage in NC
process

Time (hours) Measurements (MB) Estimates (MB)
24 45.76 46.46
48 53.24 52.20
72 57.59 57.95
96 65.09 63.69

120 68.59 69.43

Figure 6.13 Fragmentation per processes in Host2

periodically performs page scans to identify duplicate pages and merges duplicates to free
pages for other uses (Arcangeli et al., 2009). Ksmd can perform the consolidation of identical
memory pages from concurrent virtual machines, managed by KVM. Ksmd is specially
stressed by the workload, because two identical VMs start in each cycle, therefore many
memory pages may likely be shared by them.

Figure 6.15 depicts the fragmentation results for the Host4 - the machine that runs a
64-bit operating system. The process Ksmd was highly affected by the fragmentation, despite
the amount of occurrences was smaller than in Host3. Libvirtd and Apache2 processes also
had their space memory fragmented, resulting in more than 5000 occurrences after the
24-hours period. This is a lot of occurrences in a very small time.

A regression study was carried out for the fragmentation occurrences in Apache2

and Eucalyptus-Cloud processes that run at the Cloud Controller (host2). The regression
equations are f oa = 1359+14.3 · t and f oec = 2150+12.4 · t to Apache2 and Eucalyptus-

Cloud processes, respectively. Those equations demonstrate the similarity in the occurrence
of fragmentation for both processes along the time, since the coefficients corresponding to
their slopes (14.3 and 12.4) are close one to each other.

63

CHAPTER 6. CASE STUDIES

Figure 6.14 Fragmentation for processes in Host3

Figure 6.15 Fragmentation for processes in Host4

Table 6.4 shows the regression-based estimates for distinct time periods, expressed
in months. Those estimates highlight again the need for attention to the increase of fragmen-
tation occurrences. Some action should be taken in order to avoid that only two processes
fragment the overall memory space, degrading system performance and making difficult the
memory allocation for other processes.

The linear regression analysis was also carried out to find the growth pattern of
fragmentation for the process Ksmd, at host3 (32-bit) and host4 (64-bit) machines (see Table
6.5). Apache2 process was not included in this analysis because it fragmented in a lesser
extent in comparison to Ksmd.

Similarly as it was previously performed for the host2, the first two hours (period
without workload) were not considered in the computation of linear regression for host3.
However, as the host4 showed stronger growth in the second half of the experiment, the
first half was discarded for the calculation of linear regression. The regression equations
obtained for Ksmd are f oh3 = 8757+290 · t and f oh4 = 56660+167 · t, where f oh3 and

64

6.3. CASE STUDY THREE

Table 6.4 Regression-based estimates for fragmentation occurrences in the Host2
Time (months) Apache2 Eucalyptus-Cloud

2 1,236,879 1,073,510
4 2,472,399 2,144,870
6 3,707,919 3,216,230
8 4,943,439 4,287,590

10 6,178,959 5,358,950
12 7,414,479 6,430,310

Table 6.5 Regression-based estimates for fragmentation occurrences in Ksmd process
Time (months) Fragmentation (Host3) Fragmentation (Host4)

2 25,064,757 14,485,460
4 50,120,757 28,914,260
6 75,176,757 43,343,060
8 100,232,757 57,771,860

10 125,288,757 72,200,660
12 150,344,757 86,629,460

f oh4 are the amounts of fragmentation ocurrences in the node controllers process (at host3

and host4), and t is the time of execution for the process. The values in Table 6.5 and the
slopes in the regression equations reveal that the fragmentation in more intense in the Ksmd
process located in the host3 than it is in the host4. The difference between 32-bit and 64-bit
architectures may be the reason for this phenomenon, since the allocatable memory space is
higher in the latter.

6.3 Case study three

The case study one showed that increasing usage of virtual memory stops the node controller
process, that was not able to respond to VM instantiation commands. A manual restart of
Eucalyptus node controller service, in 32-bit hosts, made the virtual memory usage falls to
less than 110 MB.

The objective of this case study is to implement a rejuvenation strategy e demon-
strate that a proactive action can be to avoid systems downtime.

After restarting the service, the same behavior pattern was resumed. As seen in
Figure 6.16, the process’s virtual memory has grown until about 3064 MB and again the
node controller was not able to service the requests of virtual machines instantiation.

A proactive action is needed to prevent the failure of the cloud environment. Since

65

CHAPTER 6. CASE STUDIES

Figure 6.16 Virtual memory used in the NC process at Host3 (previous experiment)

the node controller activities are performed by an Apache process, the rejuvenation strategy
adopted in (Matias and Filho, 2006) was adapted to this environment. The adopted method
sends the Linux signal SIGUSR1 to the master httpd process, when a memory usage threshold
is reached. When this signal is sent, the httpd process restarts each of its slave processes.
This strategy has less impact than restarting the Eucalyptus node controller service, because
it only takes place when the slave finishes the request processing that is currently in progress.
In our case, Apache processes are named apache2, and we send SIGUSR1 signal to the
Apache master (also called parent) process.

In order to test this strategy, a new experiment was performed using the same
environment previously described, but using a more intense workload in order to accelerate
the virtual memory growth.

We implemented a script that every five seconds checks if the apache2 process has
reached 2 GB, which is our chosen rejuvenation threshold. If so, SIGUSR1 signal is sent to
the apache2 master, reducing the use of virtual memory without effects to service availability.
Figure 6.17 shows the effect of rejuvenation mechanism, which limits the growth of memory
usage by the node controller’s apache2 process. This time needs to be short to the resource
consumption monitored not reach high levels.

Figure 6.17 Virtual memory used in the NC process at Host3, during rejuvenation experiment

66

6.4. CASE STUDY FOUR

Table 6.6 Statistical summary of instantiation times
Without rejuvenation With rejuvenation

Mean 462 min. 73 min.
Minimum 24 min. 23 min.
Maximum 3847 min. 194 min.
Std. Dev. 1,269 64

Figure 6.18 shows the evolution of the time to instantiate all VMs in a sequence of
9 workload cycles, during the first experiment, without a rejuvenation process, as well as in
the second experiment, with the execution of the rejuvenation method.

Figure 6.18 Time to instantiate 8 VMs in each workload cycle

The largest instantiation time occurs when Eucalyptus fails starting VMs, when
the virtual memory usage reaches the maximum allowed by the 32-bit architecture. Such
failure causes repeated instantiation attempts by the workload generator script, demanding
human interaction to restart the Eucalyptus service. As seen in the same figure, the measured
instantiation time in the rejuvenation experiment does not present big increases.

Table 6.6 presents the mean, minimum, maximum, and standard deviation values
of instantiation times, considering both experiments, with and without rejuvenation. This
statistical summary shows the benefits of the adopted rejuvenation mechanism. We confirm
that the maximum instantiation time is more than 20 times smaller when the rejuvenation
is performed in comparison to the other experiment. The minimum and mean times are
also smaller when the proposed approach is used. In especial, we consider that the reduced
standard deviation highlights that proactive action turns the system more stable and prevents
problems caused by large times waiting for virtual machines instantiation.

6.4 Case study four

The knowledge acquired in the previous case studies enabled the proposal of an enhancement
to the rejuvenation method presented in Section 6.3. The previous method only triggers

67

CHAPTER 6. CASE STUDIES

Table 6.7 Summary of the accuracy indices for each model (NC virtual memory)
Model Ŷt MAPE MAD MSD
LTM 44157.1+2.85t 1% 900 1472447
QTM 43354.8+2.95830t−0.000002t2 1% 872 1343698
GCM 53013.6(1.00003t) 6% 6014 52619294
SCTM (106)/(4.70218+16.8036(0.999942t)) 2% 1259 3449812

the rejuvenation action after a critical level of resource utilization is reached (e.g. 3 GB of
virtual memory for a given process). Due to this characteristic, the rejuvenation may take
place after the system has already denied service to a client request. Therefore, there is room
to improvements aiming to reduce the downtime. The approach proposed in this case study
is based on the computation of time series to forecast the moment when the critical level of
resource utilization will be reached.

The objective of this case study is use Time Series to estimate the critical utilization
of resources and when the rejuvenation action needs to be activated. The rejuvenation of the
Node Controller process is the focus in the experiments, since it has shown the major aging
effects among all monitored components.

It is noteworthy that the use of time series to reduce the system downtime during
the execution of a rejuvenation action may also be applied to other computing environments.
The time series itself is not involved directly in the system, but indicates the appropriate time
at which an action should be taken.

The data collected in preliminary experiments were used to find out which kind of
time series has the better fitting for the growth of virtual memory usage in Node Controller
processes.

The trend analysis included four models: LTM (Linear), QTM (Quadratic), GCM
(Exponential growth), and SCTM (S-Curve). A summary of the results of the series and
their error rates are shown in Table 6.7, where Ŷt is the predicted value of the memory
consumption at time t.

It can be seen in Table 6.7 that the values of the indices MAPE, MAD and MSD are
smaller for the LTM and QTM models. So the choice must be made in relation to these two
models. It is also observed that despite the MAPE values of the indices are the same for these
two models, the index values of the QTM model are smaller than for the LTM model. So the
QTM model was chosen as the best fit for the trend analysis of virtual memory utilization in
Eucalyptus node controllers, therefore it was adopted in the rejuvenation scheduling.

68

6.4. CASE STUDY FOUR

Table 6.8 Comparison of Experiments
Experiment #1 Experiment #2

Availability 0.999584 0.999922
Number of nines 3.38 4.11

Downtime 108 seconds 20 seconds

The actual experimental study for verifying the rejuvenation method was performed
in two parts. In the first, the cloud environment was stressed with the workload described in
Section 4.6, and the rejuvenation mechanism was triggered only when the critical limit was
reached. In the second experiment, the same workload was used, but the rejuvenation was
scheduled based on the time-series predictions.

Figure 6.19 Quadratic Trend Analysis of Virtual Memory

Figure 6.19 shows the trend analysis for the growth of virtual memory utilization,
fit by a quadratic function Ŷt = 94429+ 3825.3t− 0.0686t2. This analysis results in 809
minutes for the TCMU , i.e., the predicted time to reach the 3 GB limit. Considering a
prediction error of 5 minutes and the time spent during the rejuvenation action as 5 seconds,
the safety margin (Tsa f e) was subtracted from TCMU , so the rejuvenation was scheduled to
Tre j = 803,9 minutes, counting up from the beginning of the experiment. After rejuvenation,
the memory usage is reduced, and other trend analysis is carried out when the 80% limit is
reached again.

The results show that the proposed rejuvenation triggering method implies in a
higher system availability, when compared to the method that did not consider time trend
analysis. The number of nines increases from 3.38 to 4.11 (see Table 6.8). In a time-lapse of
one year, such difference means a decrease from 218 minutes to 40 minutes of downtime, i.e.
the downtime was reduced about 80%.

69

CHAPTER 6. CASE STUDIES

Table 6.9 Comparison of virtual memory predictions and actual values
Time (min) Predicted (KB) Actual (KB) Error (%)

120 608181 695624 12.57%
240 1069185 1064728 0.42%
360 1530189 1433776 6.72%
480 1991193 1977272 0.70%
600 2452197 2601880 5.75%

Table 6.9 presents the absolute percent error between the predictions and the actual
values for the virtual memory utilization in this experiment. That error varies in this range
from two to ten hours, but it is below 10% in most analyzed points and it may be enhanced
by using the last prediction errors to adjust the related threshold.

The best approximations are obtained at four and eight hours of experiment, that
are the points were the “fit” line intercepts the “actual” line in Figure 6.19. The largest error
was 12.57% at 120 minutes. Such a maximum error in the predictions enable the use of this
approach in other environments which have similar aging characteristics.

70

7
Conclusions

O importante é não parar de questionar. A curiosidade tem sua própria

razão de existir.

The important thing is not to stop questioning. Curiosity has its own

reason for existing.

—ALBERT EINSTEIN (Phrase)

The provisioning of services in a cloud computing environment requires high
availability of both hardware and software components. Software aging may have a huge
impact on cloud systems, due to their variety of components and interactions.

In this dissertation, we have investigated the evolution of resources utilization
in a Eucalyptus-based cloud infrastructure over operation time. Data collected during
experiments indicated the presence of software aging, mainly related to virtual and resident
memory usage.

Some software aging effects were detected in Eucalyptus-based cloud comput-
ing infrastructure. Indicators of memory leak and memory fragmentation in Eucalyptus
processes and other processes directly related to virtual machine management were found.
Such problems may be harmful to system dependability, as well as they probably cause
performance degradation, e.g. impacting the speed of virtual machines startup.

Crashes were observed when Eucalyptus processes reach about 3.0 GB of virtual
memory use. The use of virtual memory falls when the service eucalyptus-nc is restarted.
Therefore, the periodical reboot of the eucalyptus-nc process before reaching critical levels,
in this case 3.0 GB, may be considered as a kind of incidental software rejuvenation. Systems
using a 64-bit architecture will have a larger limit for virtual memory usage, so they had no

71

CHAPTER 7. CONCLUSIONS

crashed during the observed period, but the aging process occurs is similar way to that seen
in 32-bit machines.

Considering the studies conducted, a mechanism was adopted for avoinding aging
phenomenom through mechanisms that reduce memory fragmentation and leaking.

An approach based on time series trend analysis to reduce downtime during the
execution of rejuvenation actions was proposed too. The rejuvenation scheduling adopted
here is thus primarily threshold based but aided by predictions. A private cloud environment
built with Eucalyptus framework running a specific workload, which reached critical limits
of virtual memory usage in the node controllers was monitored. A rejuvenation strategy is
used to avoid system unavailability, by scheduling the process restart to a proper time before
the system stops due to the memory utilization limit.

In order to minimize downtime caused by the action of rejuvenation, a time series
was generated from sample data obtained at the beginning of the experiment. With the time
series, we estimate in advance the time in which the rejuvenation action should be performed,
considering that virtual memory usage follows a certain pattern of growth.

The experimental results show the accuracy of our strategy, as well as a decrease of
80% in the downtime of the adopted Eucalyptus cloud computing environment.

7.1 Statement of the contributions

As a result of the work presented in this dissertation, the following contributions can be
highlighted:

• Software aging occurences in the Eucalyptus cloud computing environment were
verified. Several features have degraded over the experiments, but some were more
critical than others.

• An efficient rejuvenation action that reduces the use of the most critical resource, the
virtual memory, avoiding the system stopping was proposed.

• It was proved that the use of time series is effective to predict the failure time and to
reduce system downtime.

In addition to the contribution mentioned, some papers presenting the findings of
this dissertation were produced:

72

7.2. FUTURE WORKS

1. Jean Araujo, Rubens Matos, Paulo Maciel and Rivalino Matias (2011). Software
Aging Issues on the Eucalyptus Cloud Computing Infrastructure. In Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC

2011). Anchorage, Alaska, USA.

2. Jean Araujo, Rubens Matos, Paulo Maciel, Francisco Vieira, Rivalino Matias and
Kishor S. Trivedi (2011). Software Rejuvenation in Eucalyptus Cloud Computing
Infrastructure: a Method Based on Time Series Forecasting and Multiple Thresholds.
In Proceedings of the Third International Workshop on Software Aging and Rejuvena-

tion (WoSAR’11) in conjunction with 22nd annual IEEE International Symposium on

Software Reliability Engineering (ISSRE’11), Hiroshima, Japan.

3. Jean Araujo, Rubens Matos, Paulo Maciel, Rivalino Matias and Ibrahim Beicker
(2011). Experimental Evaluation of Software Aging Effects on the Eucalyptus
Cloud Computing Infrastructure. In Proceedings of the Industrial Track at ACM/I-

FIP/USENIX 12th International Middleware Conference, Lisboa, Portugal.

4. Rubens Matos, Jean Araujo, Paulo Maciel, F. Vieira De Souza, Rivalino Matias
and Kishor Trivedi (2011). Software Rejuvenation in Eucalyptus Cloud Computing
Infrastructure: A Hybrid Method Based on Multiple Thresholds and Time Series
Prediction. Journal International Transactions on Systems Science and Applications -

ITSSA, Vol. 7, No. 3/4, December 2011, pp. 278-294

Other publication:

1. Jean Carlos Teixeira de Araujo and Paulo Romero Martins Maciel (2010). Redes de
Petri na Modelagem de Sistemas Computacionais: Análise de Propriedades e Apli-
cações. A book chapter published in VIII Escola Regional de Redes de Computadores

(ERRC’10), Alegrete, Rio Grande do Sul, Brazil.

7.2 Future works

As future works, intends to monitor the impact that different rejuvenation policies have on
the availability of similar cloud environments. Other possibility to future work, intends to
adress the impact of such mechanisms on dependability measures of Eucalyptus platform.

To investigate the existence of software aging in file systems is another objective.
The criteria will be based on open source options and great use in real environment, such as
web servers and cloud computing platforms.

73

CHAPTER 7. CONCLUSIONS

As another future work, intends to improve our approach using a larger range of
time series models, including wavelets models. The minimization of downtime in different
environments, such as data centers and traditional application servers is also planned.

Finally, intends to use the control charts (X, R, S, CUSUM and EWMA) to analyze
and detect small variations in the utilization of resources that are almost imperceptible to the
“naked eye”.

74

Bibliography

Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of

Statistical Mathematics, 21(1), 243–247.

Amazon (2011a). Amazon Elastic Block Store (EBS). Amazon.com, Inc. Available in:
http://aws.amazon.com/ebs.

Amazon (2011b). Amazon Elastic Compute Cloud (EC2). Amazon.com, Inc. Available in:
http://aws.amazon.com/ec2.

Arcangeli, A., Eidus, I., and Wright, C. (2009). Increasing memory density by using ksm.
In Proc. of The Ottawa Linux Symposium (OLS ’09), pages 19–28, Montreal, Quebec,
Canada.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2009). Above the clouds: A
berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, UC Berkeley
Reliable Adaptive Distributed Systems Laboratory.

Avizienis, A., Laprie, J., Randell, B., and Landwehr, C. (2004). Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure

Computing, 1, 11–33.

Avritzer, A. and Weyuker, E. J. (1997). Monitoring smoothly degrading systems for increased
dependability. Empirical Softw. Engg., 2(1), 59–77.

Baishnab, K. L., Dev, S., Choudhury, Z. H., and Nag, A. (2010). An efficient heap manage-
ment technique with minimum fragmentation and auto compaction. In Proc. of the 5th

International Conference on Industrial and Information Systems - ICIIS, Silchar, India.
IEEE Computer Society.

Baker, H. (1995). Memory management: international workshop, IWMM ’95, Kinross, UK,

September 27-29, 1995 : proceedings. Lecture notes in computer science. Springer.

Bao, Y., Sun, X., and Trivedi, K. S. (2005). A workload-based analysis of software aging
and rejuvenation. IEEE Transactions on Reliability, 54, 541–548.

Bloomfield, P. (2000). Fourier Analysis of Time Series: An Introduction. Wiley Series in
Probability and Statistics.

Blum, R. (2008). Linux Command Line and Shell Scripting Bible. Wiley Publishing, Inc.

75

BIBLIOGRAPHY

Box, G. and Jenkins, G. (1970). Time series analysis. Holden-Day series in time series
analysis. Holden-Day, San Francisco, CA.

Candea, G. and Fox, A. (2001). Designing for high availability and measurability. In
Proceedings of the 1st Workshop on Evaluating and Architecting System Dependability

(EASY), page 42.

Carrozza, G., Cotroneo, D., Natella, R., Pecchia, A., and Russo, S. (2010). Memory
leak analysis of mission-critical middleware. The Journal of Systems and Software, 83,
1556–1567.

Castelli, V., Harper, R. E., Heidelberger, P., Hunter, S. W., Trivedi, K. S., Vaidyanathan, K.,
and Zeggert, W. P. (2001). Proactive management of software aging. In IBM Journal of

Research and Development, volume 45, pages 311–332.

Chatfield, C. (1996). The Analysis of Time Series: An introduction. Chapman & Hall/CRC,
New York, USA, 5th edition edition.

Cordeiro, T., Damalio, D., Pereira, N., Endo, P., Palhares, A., Gonçalves, G., Sadok,
D., Kelner, J., Melander, B., Souza, V., and Mangs, J.-E. (2010). Open source cloud
computing platforms. In Proc. of 9th International Conference on Grid and Cloud

Computing (GCC’2010), pages 1–5, Jiangsu, China.

Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., and Warfield, A. (2008).
Remus: High availability via asynchronous virtual machine replication. In Proceedings of

the 5th USENIX Symposium on Networked Systems Design and Implementation, pages
161–174, San Francisco, California.

Dandamudi, S. P. (2005). Guide to Assembly Language Programming in Linux. Springer.

Domingo, D. and Cohen, W. (2011). Systemtap 1.4 - SystemTap Beginners Guide: Introduc-
tion to SystemTap (for Fedora). Technical report, Red Hat, Inc.

Eigler, F. C. (2010). Systemtap tutorial. Technical report, Red Hat, Inc.

Eucalyptus (2009). Eucalyptus Open-Source Cloud Computing Infrastructure - An Overview.
Eucalyptus Systems, Inc., 130 Castilian Drive, Goleta, CA 93117 USA.

Eucalyptus (2010a). Cloud Computing and Open Source: IT Climatology is Born. Eucalyptus
Systems, Inc., 130 Castilian Drive, Goleta, CA 93117 USA.

76

BIBLIOGRAPHY

Eucalyptus (2010b). Eucalyptus cloud computing platform - administrator guide. Technical
report, Eucalyptus Systems, Inc. Version 1.6.

Eucalyptus (2012). Eucalyptus - the open source cloud platform. Eucalyptus Systems, Inc.
Available in: http://open.eucalyptus.com/.

FlexiScale (2011). Flexiscale cloud comp and hosting. FlexiScale.com, Inc. Available in:
http://www.flexiscale.com.

Furht, B. and Escalante, A. (2010). Handbook of Cloud Computing. Springer Sci-
ence+Business Media, LLC.

Garg, S., van Moorsel, A., Vaidyanathan, K., and Trivedi, K. S. (1998). A methodology
for detection and estimation of software aging. In Proc. of the The Ninth International

Symposium on Software Reliability Engineering (ISSRE’98), pages 283–292, Paderborn,
Germany.

GoGrid (2011). Gogrid cloud hosting. GoGrid.com, Inc. Available in:
http://www.gogrid.com.

Google (2011). Google app engine. Google.com, Inc. Available in:
http://code.google.com/appengine.

Grottke, M., Vaidyanathan, K., and Trivedi, K. S. (2006). Analysis of software aging in a
web server. In IEEE Transactions on Reliability, volume 55, pages 411–420.

Grottke, M., Matias, R., and Trivedi, K. (2008). The fundamentals of software aging. In
Proc 1st Int. Workshop on Software Aging and Rejuvenation (WoSAR), in conjunction with

19th IEEE Int. Symp. on Software Reliability Engineering (ISSRE’08), Seattle, WA.

Hastings, R. and Joyce, B. (1992). Purify: Fast detection of memory leaks and access errors.
In In Proc. of the Winter 1992 USENIX Technical Conference, pages 125–138.

Herber, R. J. (1997). UNIX System V (Concepts). The Collider Detector at Fermilab (CDF).
Defunct, zombie and immortal processes.

Huang, Y., Kintala, C., Kolettis, N., and Fulton, N. D. (1995). Software rejuvenation:
Analysis, module and applications. In Proc. of 25th Symp. on Fault Tolerant Computing,

FTCS-25, pages 381–390, Pasadena, CA.

Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., and Epema, D. (2011).
Performance analysis of cloud computing services for many-tasks scientific computing.

77

BIBLIOGRAPHY

IEEE Transactions on Parallel and Distributed Systems (TPDS), Special Issue on Many-

Task Computing, 22, 931–945.

Jacob, B., Larson, P., ao, B. H. L., and da Silva, S. A. M. M. (2009). SystemTap: Instru-

menting the Linux Kernel for Analyzing Performance and Functional Problems. IBM
RedBook, first edition. International Technical Support Organization.

Jones, M. T. (2008). Cloud computing with linux - cloud computing platforms and applica-
tions. page 12. IBM Corporation.

Kedem, B. and Fokianos, K. (2002). Regression Models for Time Series Analysis. John
Wiley & Sons, Inc., Publication.

Kourai, K. and Chiba, S. (2011). Fast software rejuvenation of virtual machine monitors.
IEEE Trans. Dependable Secur. Comput., 8(6), 839–851.

Laird, L. M. and Brennan, M. C. (2006). Software Measurement and Estimation A Practical

Approach. John Wiley & Sons, Inc.

Lan, Z., Li, Y., Zheng, Z., and Gujrati, P. (2008). Enhancing application robustness through
adaptive fault tolerance. In Proc. of the NSFNGS Workshop in conjunction with 22nd

IEEE International Symposium on Parallel and Distributed Processing (IPDPS’08), pages
1–5.

Laurie, B. and Laurie, P. (2002). Apache: The Definitive Guide. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 3rd edition.

Lilja, D. J. (2000). Measuring Computer Performance: A Practitioner’s Guide. Cambridge
University Press, New York, NY.

LTTng (2012). Linux trace toolkit - next generation. LTTng Project. Available in:
http://lttng.org.

Marks, E. A. and Lozano, B. (2010). Executive’s Guide to Cloud Computing. John Wiley &
Sons, Inc., Hoboken, New Jersey.

Marshal, E. (1992). Fatal error: How patriot overlooked a scud. page 1347. Science. vol.
255.

Matias, R. and Filho, P. J. F. (2006). An experimental study on software aging and rejuvena-
tion in web servers. In Proc. of 30th Annual Int. Computer Software and Applications

Conference (COMPSAC’06), Chicago, IL.

78

BIBLIOGRAPHY

Matias, R., Beicker, I., Leitao, B., and Maciel, P. (2010). Measuring software aging effects
through os kernel instrumentation. In Proc. Second International Workshop on Software

Aging and Rejuvenation (WoSAR), in conjunction with 21th IEEE International Symposium

on Software Reliability Engineering (ISSRE’10), San Jose, CA.

Mckinley, P. K., Samimi, F. A., Shapiro, J. K., and Tang, C. (2006). Service clouds: A
distributed infrastructure for composing autonomic communication services. In Proc. of

the 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing

(DASC’06), pages 341–348, Indianapolis, IN, USA.

Menken, I. and Blokdijk, G. (2009). Cloud Computing Virtualization Specialist Complete

Certification Kit - Study Guide Book and Online Course. The Art of Service.

Microsoft (2011). Windows azure. Microsoft Corporation. Available in:
http://www.windowsazure.com.

Microsystems, S. (2009). Introduction to Cloud Computing Architecture. Sun Microsystems,
Inc., 1 edition.

Mihailescu, M., Rodriguez, A., and Amza, C. (2011). Enhancing application robustness
in infrastructure-as-a-service clouds. In Proc. First International Workshop on Depend-

ability of Clouds, Data Centers and Virtual Computing Environments (DCDV 2011) in

conjunction with The 41st Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN 2011), Hong Kong, China.

Mitchell, M., Oldham, J., and Samuel, A. (2001). Advanced Linux Programming. New
Riders.

Montgomery, D. C., Jennings, C. L., and Kulahci, M. (2008). Introduction to Time Series

Analysis and Forecasting. Wiley series in probability and statistics.

Murari, K., D, J., Raju, M., RB, S., and Girikumar, Y. (2010). Eucalyptus Beginner’s Guide,
uec edition. For Ubuntu Server 10.04 - Lucid Lynx, v1.0.

Musa, J. D. (1998). Software Reliability Engineering: More Reliable Software, Faster

Development and Testing. McGraw-Hill, 2 edition.

Ni, Q., Sun, W., and Ma, S. (2008). Memory leak detection in sun solaris os. In Proceedings

of the 2008 International Symposium on Computer Science and Computational Technology

- Volume 02, pages 703–707, Washington, DC, USA. IEEE Computer Society.

79

BIBLIOGRAPHY

Nimbus (2012). Opennebula: The open source solution for data center virtualization.
Nimbus.org Project. Available in: http://www.nimbusproject.org.

NIST (2011). National Institute of Standards and Technology, Information Technology
Laboratory, U.S. Department of Commerce. Available in: http://csrc.nist.gov.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., and Zagorod-
nov, D. (2009). The eucalyptus open-source cloud-computing system. In Proc. the 9th

IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid), pages
124–131, Washington, DC, USA. IEEE Computer Society.

Office, U. S. G. A. (1992). Patriot missile defense: Software problem led to system failure
at dhahran, saudi arabia. Technical report. GAO/IMTEC-92-26.

OpenNebula (2012). Opennebula: The open source solution for data center virtualization.
OpenNebula.org Project. Available in: http://opennebula.org.

Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W., and Li, Q. (2009). Comparison of several
cloud computing platforms. In Proc. of Second International Symposium on Information

Science and Engineering (ISISE), pages 23–27, Shanghai, China. IEEE Press.

Prasad, V., Eigler, F. C., Keniston, J., Cohen, W., Hunt, M., and Chen, B. (2005). Locat-
ing system problems using dynamic instrumentation. In Proceedings of Ottawa Linux

Symposium, Ottawa, Canada.

RackSpace (2011). Dedicated server, managed hosting, web hosting by rackspace hosting.
RackSpace.com, Inc. Available in: http://www.rackspace.com/.

SalesForce (2011a). Social & mobile application development platform - force.com. Sales-
Force.com, Inc. Available in: http://www.force.com.

SalesForce (2011b). The social enterprise platform - salesforce.com. SalesForce.com, Inc.
Available in: http://www.salesforce.com/platform.

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics.

Sempolinski, P. and Thain, D. (2010). A comparison and critique of eucalyptus, opennebula
and nimbus. In Proceedings of the 2010 IEEE Second International Conference on Cloud

Computing Technology and Science, CLOUDCOM ’10, pages 417–426, Washington, DC,
USA. IEEE Computer Society.

80

BIBLIOGRAPHY

Shereshevsky, M., Crowell, J., Cukic, B., Gandikota, V., and Liu, Y. (2003). Software aging
and multifractality of memory resources. In Proc. Int. Conf. on Dependable Systems and

Networks (DSN’03), pages 721 – 730, San Francisco, California.

Skotiniotis, T. and Chang, J. M. (2002). Estimating internal memory fragmentation for java
programs. Journal of Systems and Software, 64(3), 235 – 246.

Stanoevska-Slabeva, K., Wozniak, T., and Ristol, S. (2009). Grid and Cloud Computing:

A Business Perspective on Technology and Applications. Springer Publishing Company,
Incorporated, 1st edition.

Sun, D., Chang, G., Guo, Q., Wang, C., and Wang, X. (2010). A dependability model to
enhance security of cloud environment using systemlevel virtualization techniques. In
Proc. First International Conference on Pervasive Computing, Signal Processing and

Applications (PCSPA 2010), Harbin Institute of Technology, China.

SystemTap (2012). Systemtap tool. RedHat, Inc. Available in:
http://sourceware.org/systemtap.

Thein, T. and Park, J. S. (2009). Availability analysis of application servers using software
rejuvenation and virtualization. Journal of Computer Science and Technology, pages
339–346.

Trivedi, K. S., Vaidyanathan, K., and Goseva-Popstojanova, K. (2000). Modeling and
analysis of software aging and rejuvenation. In IEEE Annual Simulation Symposium,
pages 270–279, Greece.

Trivedi, K. S., Kim, D. S., Roy, A., and Medhi, D. (2009). Dependability and security
models. In Proc. of 7th International Workshop on the Design of Reliable Communication

Networks (DRCN 2009), Washington, DC, USA.

Vaidyanathan, K. and Trivedi, K. S. (2005). A comprehensive model for software rejuvena-
tion. IEEE Transactions on Dependable and Secure Computing, 2, 124–137.

Vaidyanathan, K., Harper, R. E., Hunter, S. W., and Trivedi, K. S. (2001). Analysis and
implementation of software rejuvenation in cluster systems. In Proceedings of the 2001

ACM SIGMETRICS international conference on Measurement and modeling of computer

systems, SIGMETRICS ’01, pages 62–71, New York, NY, USA. ACM.

VMware (2007). VMware Infrastructure Automating High Availability (HA) Services with

VMware HA. VMware. VMWARE Technical Note.

81

BIBLIOGRAPHY

von Hagen, W. (2008). Professional Xen Virtualization. Wiley Publishing, Inc., Indianapolis,
Indiana.

Xie, M., Poh, K., and Dai, Y. (2004). Computing System Reliability: Models and Analysis.
Kluwer Academic Publishers.

Xu, Z. and Zhang, J. (2008). Path and context sensitive inter-procedural memory leak
detection. In Proc. of The Eighth International Conference on Quality Software, pages
412–420, Washington, DC, USA.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 1(1), 7–18.

82

Appendices

83

A
Eucalyptus workload generator

A.1 Workload script

1 # ! / b i n / bash
2 # S c r i p t para r e i n i c i a r , matar e i n i c i a r a VM
3

4 # Funcao que i n s t a n c i a 8 VMs da imagem f t p−s e r v e r−img , com o t i p o m1 .
x l a r g e

5 i n s t a n c i a V M s () {
6 i =0
7 whi le [$ i − l t 8]
8 do
9 euca−run− i n s t a n c e s − t m1 . x l a r g e −z c l u s t e r −modcs −k admin emi−3

FDE12D4
10 i = ‘ exp r $ i + 1 ‘
11 done
12 s l e e p 10
13 medeTempoBootVMs
14 }
15

16 matarVMs () {
17 i n s t a n c i a s = ‘ euca−d e s c r i b e− i n s t a n c e s | g r ep INSTANCE | awk ’{print $2}

’ ‘
18 euca−t e r m i n a t e− i n s t a n c e s $ i n s t a n c i a s
19 }
20

21 r e i n i c i a r V M s () {
22 i n s t a n c i a s = ‘ euca−d e s c r i b e− i n s t a n c e s | g r ep INSTANCE | awk ’{print $2}

’ ‘
23 euca−r e b o o t− i n s t a n c e s $ i n s t a n c i a s
24 }

85

APPENDIX A. EUCALYPTUS WORKLOAD GENERATOR

25

26 medeTempoBootVMs () {
27 b o o t i n g =TRUE
28 f l a g =TRUE
29 whi le [$ b o o t i n g = TRUE]
30 do
31 t e m p o P r i n t = ‘ d a t e −−r f c −3339= seconds ‘
32 r u n n i n g = ‘ euca−d e s c r i b e− i n s t a n c e s | g r ep r u n n i n g | wc −l ‘
33 i f [$ r u n n i n g −g t 0]
34 t h e n
35 i f [$ f l a g = TRUE]
36 t h e n
37 echo "Pelo menos 1 VM foi iniciada: "$ t e m p o P r i n t >>boot−vm . t x t
38 echo "Pelo menos 1 VM foi iniciada: "$ t e m p o P r i n t
39 f l a g =FALSE
40 f i
41 f i
42

43 # Se nao houver maquinas p e n d e n t e s e forem menos de 8 em execucao ,
i n s t a n c i e novamente as que f a l t a m

44 pend ing = ‘ euca−d e s c r i b e− i n s t a n c e s | g r ep pend ing | wc −l ‘
45 i f [$pend ing −eq 0]
46 t h e n
47 i f [$ r u n n i n g − l t 8]
48 t h e n
49 num= ‘ exp r 8 − $runn ing ‘
50 i =0
51 whi le [$ i − l t $num]
52 do
53 euca−run− i n s t a n c e s − t m1 . x l a r g e −z c l u s t e r −modcs −k admin emi−3

FDE12D4
54 i = ‘ exp r $ i + 1 ‘
55 done
56 e l s e
57 b o o t i n g =FALSE
58 echo "Todas as VMs foram iniciadas: "$ t e m p o P r i n t >>boot−vm . t x t
59 echo "Todas as VMs foram iniciadas: "$ t e m p o P r i n t
60 f i
61 f i
62 s l e e p 5
63 done
64 }
65

86

A.1. WORKLOAD SCRIPT

66 # Obtem o tempo i n i c i a l da execucao do s c r i p t , no f o r m a t o RFC3339 : AAAA−
MM−DD HH:MM: SS

67 t e m p o P r i n t = ‘ d a t e −−r f c −3339= seconds ‘
68 t e m p o I n i c i a l = ‘ d a t e +%s ‘
69

70 echo "Inicio: "$ t e m p o P r i n t >> h i s t o r i c o −vm . t x t
71 echo "Inicio - Execucao do script: "$ t e m p o P r i n t
72 i n s t a n c i a V M s
73

74 whi le [True]
75 do
76 t e m p o P r i n t = ‘ d a t e −−r f c −3339= seconds ‘
77 tempo = ‘ d a t e +%s ‘
78

79 # REINICIAR TODAS AS VMS
80 # Se o tempo a t u a l f o r menor que o tempo i n i c i a l + 5 horas , REINICIA

t o d a s as VMs
81 i f [$tempo − l t $ (exp r $ t e m p o I n i c i a l + 18000)]
82 t h e n
83 #Comando para r e i n i c i a r t o d a s as VMs
84 echo "Reinicio VMs.: "$ t e m p o P r i n t >> h i s t o r i c o −vm . t x t
85 r e i n i c i a r V M s
86 f i
87

88 # MATAR TODAS AS VMS
89 # Se o tempo a t u a l f o r maior que o tempo i n i c i a l + 5 horas , MATA t o d a s

as VMs
90 i f [$tempo −ge $ (exp r $ t e m p o I n i c i a l + 18000)]
91 t h e n
92 #Comando para MATAR t o d a s as VMs
93 echo "Kill VMs: "$ t e m p o P r i n t >> h i s t o r i c o −vm . t x t
94 matarVMs
95

96 s l e e p 300
97

98 #Comando para i n i c i a r t o d a s as VMs
99 echo "Start VMs ...: "$ t e m p o P r i n t >> h i s t o r i c o −vm . t x t

100 i n s t a n c i a V M s
101 t e m p o I n i c i a l = ‘ d a t e +%s ‘
102 f i
103

104 s l e e p 600
105 done

87

B
Monitoring scripts

B.1 CPU utilization monitoring script

1 # ! / b i n / bash
2 # S c r i p t para mon i toramen to da u t i l i z a Ã § Ã £ o da CPU
3

4 # E s c r e v e o c a b e c a l h o de i d e n t i f i c a c a o dos dados
5 echo "%usr %sys %iowait %idle date time" >> moni toramento−cpu . t x t
6

7 echo "%usr %sys %iowait %idle date time"

8

9 whi le [True]
10 do
11

12 # Armazena somente os campos de i n t e r e s s e
13 cpu = ‘ m p s t a t 60 1 | g r ep a l l | head −n1 | awk ’{print $3,$5,$6,$11}’ ‘
14

15 # Obtem o tempo a t u a l , no f o r m a t o RFC3339 : AAAA−MM−DD HH:MM: SS
16 # O tempo c o r r e s p o n d e ao r e t o r n o do mps ta t ,
17 # p o r t a n t o o uso de cpu eh a media do u l t i m o minu to
18 tempo = ‘ d a t e −−r f c −3339= seconds ‘
19

20 # Separa da ta e hora do tempo o b t i d o
21 d a t a = ‘ echo $tempo | c u t −d \ −f1 ‘
22 hora = ‘ echo $tempo | c u t −d \ −f2 | gawk ’BEGIN{FS="-"}{print $1}’ ‘
23

24 # Mostre na t e l a as i n f o r m a c o e s c a p t u r a d a s p e l o s s c r i p t
25 echo $cpu $ d a t a $hora
26

27 # E s c r e v e no a r q u i v o as i n f o r m a c o e s do d i s c o
28 echo $cpu $ d a t a $hora >> moni toramento−cpu . t x t

89

APPENDIX B. MONITORING SCRIPTS

29

30 # Execu ta o s c r i p t a cada X un idade de tempo
31 # Comentado porque o m p s t a t j a e s p e r a os 60 segundos
32 # s l e e p 60
33

34 done

B.2 Disk utilization monitoring script

1 # ! / b i n / bash
2 # S c r i p t para mon i toramen to da u t i l i z a ç ã o do d i s c o
3

4 # E s c r e v e o c a b e ç a l h o de i d e n t i f i c a ç ã o dos dados
5 echo "Used(KB) Avail(KB) Use% Date Time" >> moni toramento−d i s c o . t x t
6

7 echo "Used(KB) Avail(KB) Use% Date Time"

8

9 whi le [True]
10 do
11 # Obtem o tempo a t u a l , no f o r m a t o RFC3339 : AAAA−MM−DD HH:MM: SS
12 tempo = ‘ d a t e −−r f c −3339= seconds ‘
13

14 # Armazena somente os campos de i n t e r e s s e : Free , A v a i l a b l e e %Used
15 d i s c o = ‘ d f | g r ep / dev / sda | awk ’{print $3,$4,$5}’ ‘
16

17 # Separa da ta e hora do tempo o b t i d o
18 d a t a = ‘ echo $tempo | c u t −d \ −f1 ‘
19 hora = ‘ echo $tempo | c u t −d \ −f2 | gawk ’BEGIN{FS="-"}{print $1}’ ‘
20

21 # Mostre na t e l a as i n f o r m a ç ã o e s c a p t u r a d a s p e l o s s c r i p t
22 echo $ d i s c o $ d a t a $hora
23

24 # E s c r e v e no a r q u i v o as i n f o r m a ç õ e s do d i s c o
25 echo $ d i s c o $ d a t a $hora >> moni toramento−d i s c o . t x t
26

27 # Execu ta o s c r i p t a cada X un idade de tempo
28 s l e e p 60
29

30 done

90

B.3. MEMORY USAGE MONITORING SCRIPT

B.3 Memory usage monitoring script

1 # ! / b i n / bash
2 # S c r i p t para mon i toramen to da u t i l i z a ç ã o da RAM
3

4 # E s c r e v e o c a b e ç a l h o de i d e n t i f i c a ç ã o dos dados
5 echo "Mem_used Mem_free Mem_buffers Mem_cached Swap_used Swap_free Date

Time" >> moni toramento−memoria . t x t
6 echo "Mem_used Mem_free Mem_buffers Mem_cached Swap_used Swap_free Date

Time"

7

8 whi le [True]
9 do

10

11 # Obtem o tempo a t u a l , no f o r m a t o RFC3339 : AAAA−MM−DD HH:MM: SS
12 tempo = ‘ d a t e −−r f c −3339= seconds ‘
13 memory= ‘ f r e e | g r ep Mem: ‘
14 swap = ‘ f r e e | g r ep Swap : ‘
15

16 # Armazena somente os campos de i n t e r e s s e : Free , Used , B u f f e r s , . . .
17 memfree = ‘ echo $memory | awk ’{print $4}’ ‘
18 memused= ‘ echo $memory | awk ’{print $3}’ ‘
19 membuff = ‘ echo $memory | awk ’{print $6}’ ‘
20 memcache = ‘ echo $memory | awk ’{print $7}’ ‘
21

22 s w a p f r e e = ‘ echo $swap | awk ’{print $4}’ ‘
23 swapused = ‘ echo $swap | awk ’{print $3}’ ‘
24

25 # Separa da ta e hora do tempo o b t i d o
26 d a t a = ‘ echo $tempo | c u t −d \ −f1 ‘
27 hora = ‘ echo $tempo | c u t −d \ −f2 | gawk ’BEGIN{FS="-"}{print $1}’ ‘
28

29 # Mostre na t e l a as i n f o r m a ç õ e s c a p t u r a d a s p e l o s s c r i p t
30 echo $memused $memfree $membuff $memcache $swapused $ s w a p f r e e

$ d a t a $hora
31

32 # E s c r e v e no a r q u i v o as i n f o r m a ç õ e s da RAM
33 echo $memused $memfree $membuff $memcache $swapused $ s w a p f r e e

$ d a t a $hora >> moni toramento−memoria . t x t
34

35 # Execu ta o s c r i p t a cada X un idade de tempo
36 s l e e p 60
37

91

APPENDIX B. MONITORING SCRIPTS

38 done

B.4 Eucalyptus-cloud process monitoring script

1 # ! / b i n / bash
2 # S c r i p t para mon i toramen to do p r o c e s s o e u c a l y p t u s no Cloud C o n t r o l l e r
3

4 # E s c r e v e o c a b e c a l h o de i d e n t i f i c a c a o dos dados
5 echo "%cpu %mem virt.mem res.mem data hora" >> moni toramento−p r o c e s s o−

c l c . t x t
6

7 echo "%cpu %mem virt.mem res.mem data hora"

8

9 whi le [True]
10 do
11 # Obtem o PID do p r o c e s s o e u c a l y p t u s−c l o u d
12 p i d = ‘ ps aux | g r ep e u c a l y p t u s−c l o u d | g r ep "107 " | awk ’{print $2}’ ‘
13

14 # Obtem os campos de i n t e r e s s e
15 cpu = ‘ p i d s t a t −u −h −p $p id −T ALL −r 60 1 | sed −n ’4p’ | awk ’{print

$6,$12,$10,$11}’ ‘
16

17 # Obtem o tempo a t u a l , no f o r m a t o RFC3339 : AAAA−MM−DD HH:MM: SS
18 tempo = ‘ d a t e −−r f c −3339= seconds ‘
19

20 # Separa da ta e hora do tempo o b t i d o
21 d a t a = ‘ echo $tempo | c u t −d \ −f1 ‘
22 hora = ‘ echo $tempo | c u t −d \ −f2 | awk ’BEGIN{FS="-"}{print $1}’ ‘
23

24 # Mostra na t e l a as i n f o r m a c o e s c a p t u r a d a s p e l o s s c r i p t
25 echo $cpu $ d a t a $hora
26

27 # E s c r e v e no a r q u i v o as i n f o r m a c o e s do d i s c o
28 echo $cpu $ d a t a $hora >> moni toramento−p r o c e s s o−c l c . t x t
29

30 # Execu ta o s c r i p t a cada X un idade de tempo
31 s l e e p 60
32

33 done

92

B.5. EUCALYPTUS-NC PROCESS MONITORING SCRIPT

B.5 Eucalyptus-nc process monitoring script

1 # ! / b i n / bash
2 # S c r i p t para mon i toramen to do p r o c e s s o e u c a l y p t u s no Node C o n t r o l l e r
3

4 # E s c r e v e o c a b e c a l h o de i d e n t i f i c a c a o dos dados
5 echo "%cpu %mem virt.mem res.mem data hora" >> moni toramento−p r o c e s s o−nc

. t x t
6

7 echo "%cpu %mem virt.mem res.mem data hora"

8

9 whi le [True]
10 do
11

12 # Obtem o PID do p r o c e s s o e u c a l y p t u s
13 p i d = ‘ ps aux | g r ep e u c a l y p t u s | g r ep "106 " | awk ’{print $2}’ ‘
14

15 # Obtem os campos de i n t e r e s s e
16 cpu = ‘ p i d s t a t −u −h −p $p id −T ALL −r 60 1 | sed −n ’4p’ | awk ’{print

$6,$12,$10,$11}’ ‘
17

18 # Obtem o tempo a t u a l , no f o r m a t o RFC3339 : AAAA−MM−DD HH:MM: SS
19 tempo = ‘ d a t e −−r f c −3339= seconds ‘
20

21 # Separa da ta e hora do tempo o b t i d o
22 d a t a = ‘ echo $tempo | c u t −d \ −f1 ‘
23 hora = ‘ echo $tempo | c u t −d \ −f2 | awk ’BEGIN{FS="-"}{print $1}’ ‘
24

25 # Mostra na t e l a as i n f o r m a c o e s c a p t u r a d a s p e l o s s c r i p t
26 echo $cpu $ d a t a $hora
27

28 # E s c r e v e no a r q u i v o as i n f o r m a c o e s do d i s c o
29 echo $cpu $ d a t a $hora >> moni toramento−p r o c e s s o−nc . t x t
30

31 # Execu ta o s c r i p t a cada X un idade de tempo
32 s l e e p 60
33

34 done

B.6 Zombie process monitoring script

93

APPENDIX B. MONITORING SCRIPTS

1 # ! / b i n / bash
2 # S c r i p t para mon i toramen to de p r o c e s s o s zumbis
3

4 # E s c r e v e o c a b e ç a l h o de i d e n t i f i c a ç ã o dos dados
5 echo "num_zumbis data hora" >> moni toramento−zumbis . t x t
6

7 echo "num_zumbis data hora"

8

9 whi le [True]
10 do
11 # Obtem o tempo a t u a l , no f o r m a t o RFC3339 : AAAA−MM−DD HH:MM: SS
12 tempo = ‘ d a t e −−r f c −3339= seconds ‘
13

14 # Armazena somente os campos de i n t e r e s s e
15 num= ‘ ps aux | awk ’{if ($8~"Z"){print $0}}’ | wc −l ‘
16

17 # Separa da ta e hora do tempo o b t i d o
18 d a t a = ‘ echo $tempo | c u t −d \ −f1 ‘
19 hora = ‘ echo $tempo | c u t −d \ −f2 | awk ’BEGIN{FS="-"}{print $1}’ ‘
20

21 # Mostre na t e l a as i n f o r m a ç õ e s c a p t u r a d a s p e l o s s c r i p t
22 echo $num $ d a t a $hora
23

24 # E s c r e v e no a r q u i v o as i n f o r m a ç õ e s do d i s c o
25 echo $num $ d a t a $hora >> moni toramento−zumbis . t x t
26

27 # Execu ta o s c r i p t a cada X un idade de tempo
28 s l e e p 60
29

30 done

B.7 Memory leaking monitoring script

1 import s u b p r o c e s s , re , t ime
2

3 o u t p u t _ f i l e = open ("resultado_leak.csv" ,"w")
4 PIPE = s u b p r o c e s s . PIPE
5

6 #mudar o tempo e n t r e cada c a p t u r a dos v a l o r e s
7 i n t e r v a l o _ s l e e p = 60
8

94

B.8. MEMORY FRAGMENTATION MONITORING SCRIPT

9 #mudar para o nome do p r o c e s s o que se d e s e j a m o n i t o r a r
10 p = s u b p r o c e s s . Popen ("ps -C apache2 --no-heading" , s h e l l =True , s t d o u t =PIPE

)
11

12 r e t u r n _ s t r i n g = p . s t d o u t . r e a d ()
13 p i d s = r e . f i n d a l l (r"\s(\d+)\s" , r e t u r n _ s t r i n g)
14

15 f o r p i d in p i d s :
16 o u t p u t _ f i l e . w r i t e (p i d +",")
17 o u t p u t _ f i l e . w r i t e ("\n")
18

19 whi le True :
20 f o r p i d in p i d s :
21 num = s u b p r o c e s s . Popen ("grep VmRSS /proc/"+ p i d +"/status"

, s h e l l =True , s t d o u t =PIPE) . s t d o u t . r e a d ()
22 v a l o r = r e . s e a r c h (r"(\d+)\s" , num)
23 o u t p u t _ f i l e . w r i t e (v a l o r . group (0) + ",")
24 o u t p u t _ f i l e . w r i t e ("\n")
25 t ime . s l e e p (i n t e r v a l o _ s l e e p)

B.8 Memory fragmentation monitoring script

1 g l o b a l a l l o c , f a l l b a c k , f r a g m e n t i n g = 0
2

3 g l o b a l who
4 probe k e r n e l . t r a c e ("mm_page_alloc_extfrag") {
5 who [execname () , p i d () , pexecname () , pp id () , u i d ()] <<<1
6 a l l o c = $ a l l o c _ o r d e r
7 f a l l b a c k = $ f a l l b a c k _ o r d e r
8 i f (f a l l b a c k < a l l o c) {
9 f r a g m e n t i n g ++

10 }
11 }
12

13 probe b e g i n {
14 p r i n t f ("\nProbing...\n")
15 }
16

17 probe end {
18 p r i n t f ("Processo,Pai,UID,ocorrencias\n")
19 f o r e a c h ([p r o c e s s , p id , pexecname , ppid , u i d] in who)

95

APPENDIX B. MONITORING SCRIPTS

20 p r i n t f ("%s(%d),%s(%d),%d,%d\n" , p r o c e s s , p id , pexecname ,
ppid , uid , @count (who [p r o c e s s , p id , pexecname , ppid , u i d]))
;

21 p r i n t f ("ocorrencia : %d\n" , f r a g m e n t i n g)
22 }

96

