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Resumo

Sistemas de Computação em Nuvem (SCNs) permitem a utilização de aplicações como
serviços para usuários em todo o mundo. Um importante desafio para provedores de SCN
corresponde ao fornecimento de serviços de qualidade mesmo na presença de eventuais falhas,
sobrecargas e desastres. Geralmente, um acordo de nível de serviço (ANS) é estabelecido
entre fornecedores e clientes para definição dos requisitos de disponibilidade, desempenho e
segurança de tais serviços. Caso os parâmetros de qualidade definidos no ANS não sejam
satisfeitos, multas podem ser aplicadas aos provedores. Nesse contexto, uma estratégia para
aumentar a disponibilidade de SCNs e mitigar os efeitos de eventuais desastres consiste em
utilizar subsistemas redundantes e adotar de centros de dados distribuídos geograficamente.
Considerando-se esta abordagem, os serviços de centros de dados afetados podem ser transferidos
para outros centros de dados do mesmo SCN. Contudo, o tempo de sincronização entre os
diferentes centros de dados aumenta com a distância entre os mesmos, o que pode afetar a
performance do sistema. Além disso, o provisionamento excessivo de recursos pode afetar a
rentabilidade do serviço, dado o alto custo dos subsistemas redundantes. Portanto, uma avaliação
que contemple desempenho, disponibilidade, possibilidade de desastres e alocação de centro de
dados é de fundamental importância para o projeto de SCNs.

Este trabalho apresenta um framework para avaliação de SCNs distribuídos geografi-
camente que permite a estimativa de métricas de desempenho, disponibilidade e capacidade
de recuperação de desastres (naturais ou causados pelo homem). O framework é composto
de um processo de avaliação, conjunto de modelos, ferramenta de avaliação e ferramenta de
injeção de falhas. O processo de avaliação apresentado pode auxiliar projetistas de SCNs desde
a representação do sistem de computação em nuvem até a obtenção das métricas de interesse.
Este processo utiliza uma modelagem formal híbrida, que contempla modelos de SCN de alto
nível, redes de Petri estocásticas (RPEs) e diagramas de bloco de confiabilidade (DBCs) para
representação e avaliação de SCNs e seus subsistemas. Uma ferramenta de avaliação é proposta
(GeoClouds Modcs) que permite fácil representação e avaliação de sistemas de computação em
nuvem. Por fim, uma ferramenta de injeção de falhas em SCN (Eucabomber 2.0) é apresentada
para estimar métricas de disponibilidade e validar os modelos propostos. Vários estudos de
caso são apresentados e estes analisam a capacidade de recuperação de desastres, desempenho e
disponibilidade de SCNs distribuídos geograficamente.

Palavras-chave: Avaliação de performabilidade. Capacidade de recuperação de desastres.
Computação em nuvem. Redes de Petri estocásticas. Diagramas de blocos de confiabilidade.





Abstract

Cloud Computing Systems (CCSs) allow the utilization of application services for users
around the world. An important challenge for CCS providers is to supply a high-quality service
even when there are failures, overloads, and disasters. A Service Level Agreement (SLA)
is often established between providers and clients to define the availability, performance and
security requirements of such services. Fines may be imposed on providers if SLA’s quality
parameters are not met. A widely adopted strategy to increase CCS availability and mitigate
the effects of disasters corresponds to the utilization of redundant subsystems and the adoption
of geographically distributed data centers. Considering this approach, services of affected data
centers can be transferred to operational data centers of the same CCS. However, the data
center synchronization time increases with the distance, which may affect system performance.
Additionally, resources over-provisioning may affect the service profitability, given the high
costs of redundant subsystems. Therefore, an assessment that includes performance, availability,
possibility of disasters and data center allocation is of utmost importance for CCS projects.

This work presents a framework for geographically distributed CCS evaluation that
estimates metrics related to performance, availability and disaster recovery (man-made or natural
disasters). The proposed framework is composed of an evaluation process, a set of models,
evaluation tool, and fault injection tool. The evaluation process helps designers to represent
CCS systems and obtain the desired metrics. This process adopts a formal hybrid modeling,
which contemplates CCS high-level models, stochastic Petri nets (SPN) and reliability block
diagrams (RBD) for representing and evaluating CCS subsystems. An evaluation tool is proposed
(GeoClouds Modcs) to allow easy representation and evaluation of cloud computing systems.
Finally, a fault injection tool for CCSs (Eucabomber 2.0) is presented to estimate availability
metrics and validate the proposed models. Several case studies are presented and analyze
survivability, performance and availability metrics considering multiple data center allocation
scenarios for CCS systems.

Keywords: Performability evaluation. Disaster recovery. Cloud computing. Stochastic Petri
nets. Reliability block diagrams.





List of Figures

1.1 Importance of business drivers to costumers. . . . . . . . . . . . . . . . . . . . 17

1.2 Cloud computing outages over providers and years . . . . . . . . . . . . . . . 17

3.1 Distributed Cloud System Example . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 RPO and RTO requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Reliability Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 SPN representing a cell phone charging/discharging process. . . . . . . . . . . 34

3.5 Reachability Graph of the SPN model of Figure 3.4. . . . . . . . . . . . . . . . 34

3.6 Hyperexponential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Hypoexponential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Markov Chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Proposed Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Evaluation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Generic component SPN model . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Token flow related to a generic component . . . . . . . . . . . . . . . . . . . . 49

4.5 VM availability component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 VM availability component representation . . . . . . . . . . . . . . . . . . . . 51

4.7 Example Convertion to VM availability component . . . . . . . . . . . . . . . 53

4.8 Token Flow Availability Component [CHANGE MY NAME] P1 . . . . . . . . 54

4.9 Token Flow Availability Component P2 . . . . . . . . . . . . . . . . . . . . . 55

4.10 VM Performance Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 VM performance component representation . . . . . . . . . . . . . . . . . . . 58

4.12 Token Flow of Performance Component . . . . . . . . . . . . . . . . . . . . . 59

4.13 VM performability model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.14 Example Convertion to VM performability component . . . . . . . . . . . . . 62

4.15 Token Flow of Performability Component . . . . . . . . . . . . . . . . . . . . 64

4.16 VM Transmission component . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.17 Token Flow of Transmission Component . . . . . . . . . . . . . . . . . . . . . 68

4.18 RPO Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.19 RPO worst case scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.20 RTO Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Performability or Availability SPN model generation Algorithm . . . . . . . . 76

5.2 Performance SPN model generation algorithm . . . . . . . . . . . . . . . . . . 77

5.3 Motivational Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Step 1: SPN Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . 78



5.5 Step 2: SPN Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Step 3: SPN Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Step 4: SPN Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.8 Step 5: SPN Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.9 Step 6: SPN Generation Example . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.10 Step 7: Performability Model for two data centers . . . . . . . . . . . . . . . . 83
5.11 Availability Model for two data centers . . . . . . . . . . . . . . . . . . . . . . 84
5.12 Performance Model for two data centers . . . . . . . . . . . . . . . . . . . . . 85
5.13 Place renaming example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.14 Net Union Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 GeoClouds Tool’s Screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Data Flow Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 EucaBomber Textual Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5 EucaBomber Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.6 Monitoring agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1 Utilization decrease of different distributed cloud configurations . . . . . . . . 107
7.2 P increase for different cloud configurations . . . . . . . . . . . . . . . . . . . 107
7.3 Availability for different cloud configurations. . . . . . . . . . . . . . . . . . . 109
7.4 Recovery probability along the time . . . . . . . . . . . . . . . . . . . . . . . 111
7.5 Backup probability along the time . . . . . . . . . . . . . . . . . . . . . . . . 111
7.6 Eucalyptus Cloud Computing Architecture. . . . . . . . . . . . . . . . . . . . 112
7.7 Structural components of testbed environment. . . . . . . . . . . . . . . . . . 113
7.8 SPN model for Eucalyptus testbed environment . . . . . . . . . . . . . . . . . 114
7.9 Basic component SPN submodel . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.10 VM Utilization results of performance model. . . . . . . . . . . . . . . . . . . 118
7.11 VM throughput results of performance model. . . . . . . . . . . . . . . . . . . 119



List of Tables

1.1 Main Disastrous Events (adapted from (24)) . . . . . . . . . . . . . . . . . . . 18

2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Even more similar works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Guard Expressions for VM availability component. . . . . . . . . . . . . . . . 52
4.2 Guard Expressions for VM performance component. . . . . . . . . . . . . . . 57
4.3 Guard Expressions for VM performability component. . . . . . . . . . . . . . 63
4.4 Guard Expressions for VM transmission component. . . . . . . . . . . . . . . 66

7.1 Distance of facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Case study scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3 Dependability parameters for Case study I. . . . . . . . . . . . . . . . . . . . . 105
7.4 Case study I results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Distance of facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.6 P and U for the baseline architecture (Rio de Janeiro-Brasilia) . . . . . . . . . 107
7.7 Distance of facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.8 Availability values for the baseline architecture (Budapest-Barcelona) . . . . . 109
7.9 Distance of facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.10 Transfer rates between BS and each data center. . . . . . . . . . . . . . . . . . 110
7.11 Probability to recover the service for different data centers . . . . . . . . . . . 110
7.12 Probability to backup the service for different data centers . . . . . . . . . . . 111
7.13 Transition attributes associated with a component. . . . . . . . . . . . . . . . . 114
7.14 Submodels for representing no redundancy components. . . . . . . . . . . . . 115
7.15 Transitions of VM life-cycle model. . . . . . . . . . . . . . . . . . . . . . . . 115
7.16 Condition to enable immediate transitions. . . . . . . . . . . . . . . . . . . . . 116
7.17 Parameters of Scenarios A1 and A2. . . . . . . . . . . . . . . . . . . . . . . . 116
7.20 Availability evaluated from experiments. . . . . . . . . . . . . . . . . . . . . . 117
7.18 Parameters of Scenario B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.19 Up-time and Downtime from experiments. . . . . . . . . . . . . . . . . . . . . 117
7.21 Utilization and Execution throughput values for different VM life-times. . . . . 119





List of Acronyms

IaaS Infrastructure-as-a-Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

CCS Cloud Computing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

VM Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

QoS Quality-of-Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

SLA Service Level Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

SPN Stochastic Petri Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CDA Cloud Dependability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

GOOD Given-Occurrence-of-Disaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

DDSFIS Debug-based Dynamic Software Fault Injection System . . . . . . . . . . . . . . . . . . . . 23

NC Node Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

CC Cluster Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

CLC Cloud Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

NAS Network Attached Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

SAN Storage Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

PM Physical Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

BCM Business Continuity Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

BCP Business Continuity Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

DRP Disaster Recovery Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

RPO Recovery Point Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

RTO Recovery Time Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

RP Recovery Point

RT Recovery Time

PN Petri net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CTMC Continuous Time Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

MTT Mean Time to Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67





Contents

1 Introduction 15
1.1 Motivation and Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Expected Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Related Works 21
2.1 Model-Based Approaches for Cloud System Evaluation . . . . . . . . . . . . . 21

2.2 Experiment-Based Techniques for Cloud Evaluation . . . . . . . . . . . . . . . 23

2.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Background 27
3.1 System Architecture of Reliable Distributed Data Centers . . . . . . . . . . . . 27

3.2 Performance and Dependability Evaluation . . . . . . . . . . . . . . . . . . . 28

3.3 Survivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 RBD Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 SPN Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2.1 Place Invariants (P-Invariants) . . . . . . . . . . . . . . . . . 35

3.4.2.2 Transition Invariants (T-Invariants) . . . . . . . . . . . . . . 35

3.4.2.3 Juxtaposition of Invariants . . . . . . . . . . . . . . . . . . . 35

3.4.2.4 Distribution Moment Matching . . . . . . . . . . . . . . . . 37

3.5 Fault Injection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Confidence interval of availability estimation . . . . . . . . . . . . . . 40

3.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Modeling Approach 43
4.1 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Evaluation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 High-Level IaaS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Performance and Availability Models . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 SPN block: generic component . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 SPN block: VM availability component . . . . . . . . . . . . . . . . . 50

4.3.3 SPN block: VM performance component . . . . . . . . . . . . . . . . 57

4.3.4 SPN block: VM performability component . . . . . . . . . . . . . . . 61

4.3.5 SPN block: VM transmission component . . . . . . . . . . . . . . . . 66

4.4 Survivability Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



4.4.1 RPO Evaluation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 RTO Evaluation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Mapping High-Level Models to Evaluation Models 75
5.1 Mapping Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Mapping HLM to SPN: Example . . . . . . . . . . . . . . . . . . . . 76

5.2 Model Composition Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Place Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Net Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Basic Models Combination Proof . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Availability Models: Structural Properties . . . . . . . . . . . . . . . . 89

5.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Evaluation Environment 93
6.1 GeoClouds Modcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 MTT estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Eucabomber 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Operation and Methodology . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.2 Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.3 Flex Load Generator Package . . . . . . . . . . . . . . . . . . . . . . 99

6.2.4 EucaBomber’s Tool Core . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.5 Monitoring and Data analysis . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Case studies 103
7.1 Case Study I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Case Study II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Case Study III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Case Study IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5 Case Study V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5.1 Eucalyptus IaaS Platform . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5.2 Experiment Environment . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5.3 Availability Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5.4 Scenarios and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.6 Case Study VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Conclusion 121
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



8.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

References 125

Appendix 131

A Juxtaposition of P-Invariants 133
A.1 Base Case: Juxtaposition of P-Invariants . . . . . . . . . . . . . . . . . . . . . 133

A.1.1 Two Dependability Components . . . . . . . . . . . . . . . . . . . . . 133
A.1.2 SPN Dependability Component and Transmission Component . . . . . 134
A.1.3 Two Performability Components . . . . . . . . . . . . . . . . . . . . . 134
A.1.4 SPN Performability Component and Transmission Component . . . . . 135
A.1.5 Two Performance Components . . . . . . . . . . . . . . . . . . . . . . 135

A.2 Inductive Step: Juxtaposition of P-Invariants . . . . . . . . . . . . . . . . . . . 136
A.2.1 A VM dependability component and m VM dependability submodels. . 136
A.2.2 A VM transmission component and m VM dependability submodels . . 137
A.2.3 A VM performability component and m VM performability submodels. 138
A.2.4 A VM transmission component and m VM performability submodels. . 139
A.2.5 A VM performance component and m VM performance submodels. . . 140

B Properties of Net Union Operator 143





151515

1
Introduction

Both academia and industry have proposed various definitions for cloud computing. A
remarkable definition comes from National Institute of Standards and Technology (1). According
to it, cloud computing is a paradigm to allow on-demand network access to a shared set of
computing resources that can be provided in a fast and easy way. That resources are released
with minimal user effort or service provider interaction. Cloud computing has driven the new
wave of Internet-based applications by providing computing as a service (2). The concepts of
cloud computing were inspired by other technologies, such as grid computing, utility computing,
and virtualization (3). By opting for cloud computing, customers do not need to invest heavily in
hardware/software platforms to create and maintain an IT infrastructure. Instead, they use cloud
services and pay according to the resource utilization (4). Thus, cloud computing platforms
represent a viable solution to scalability issues for business in general. Nowadays, common
business applications (e.g., spreadsheets) are provided as cloud computing services, in the sense
that they are often accessed using a Web browser, and their respective software/data reside on
remote servers. This approach has affected all fields of the computational research, from users to
hardware manufacturers (5). Such a paradigm is attractive for many reasons and presents the
following characteristics (6):

� Shared resources such as CPU, storage or software can be utilized instantaneously
without human interaction. It frees users from installing, configuring and updating
software applications. Heterogeneous clients platforms like laptops, smartphones and
tablets can be adopted to access cloud resources via network access (e.g. Internet).

� Cloud providers utilize a multi-tenancy model, in which computing resources are
grouped in a virtualization pool. According to client needs, the pool allocates and
reallocates virtual and physical resources to attend requests. As a result, clients have
no control where the requested resources located or which machine execute his/her
programs.

� For users, resources provisioning is virtually not limited, in the sense that request
peaks can be rapidly provisioned. Computing resources can be used as much as it
is required and released once the request peak scales down. Although computing
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resources are provided in pooled and shared way, users can measure the resource
usage and control its utilization according to their needs.

In addition to these characteristics, it is possible to classify cloud computing based on the
service model. The most prominent service models are Software as a Service (SaaS), Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS). SaaS represents a service model in
which software is released on a host environment, which can be accessed simultaneously through
several clients via a network connection. This service model is also known as “on-demand
software”. Important SaaS applications include SalesForce (7), Google App Services (8), and
Microsoft Office online (9). Platform as a Service is a software development platform entirely
hosted on the cloud. This service model supports the entire software development life-cycle. In
this sense, software developers are able to implement cloud services and applications directly
on the cloud. PaaS platforms for software development include Google App Engine (10), AWS
Elastic Beanstalk (11), Mendix (12), and Heroku (13). Last but not least, Infrastructure-as-a-
Service (IaaS) delivers, on-demand, computing resources in the form of Virtual Machines (VMs)
running on the cloud provider’s data center, satisfying user needs. User requests are provisioned
depending on the data center capacity concerning physical machines. According to (14), the IaaS
cloud market will see a growth of 31.7% in a five-year period. Important IaaS infrastructures
include Amazon EC2 (15) and IBM Smart Business Cloud (Softlayer) (16).

1.1 Motivation and Justification

Cloud system’s performance, availability, and survivability represent key aspects for
IaaS providers and their customers (17). These metrics consider the effects of system load
and failure/recovery behavior of data center subsystems. To define the provider’s Quality-of-
Service (QoS), an agreement is negotiated between cloud providers and their customers (18). This
agreement is often presented as a business warranty contract, such as Service Level Agreements
(SLAs), which specifies a list of rules and requirements for cloud services (e.g., maximum annual
downtime) (17). The enterprises’ reputation can be affected and penalties may be applied if the
defined quality level is not satisfied. Thus, to meet SLA requirements, IaaS providers need to
evaluate their environment, considering, also, the possibility of disasters.

There were several natural disasters in the last decade. Among them, we can cite the great
floods in Thailand in 2011, Hurricane Sandy in the United States (US) in 2012, and Typhoon
Haiyan in the Philippines in 2013 (20). In the last decades, the frequency of natural disasters
recorded in the US Emergency Events Database (EM-DAT) has increased almost three-fold, from
over 1,300 events in 1975–1984 to over 3,900 in 2005–2014 (20). Therefore, cloud computing
designers must consider eventual disasters to plan these infrastructures.

According to (19), the most important business driver investment in cloud computing
technology is associated with business continuity (Figure 1.1). The report shows that 84% of
interviewed cloud managers believe that enabling business continuity is a very or somewhat
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Figure 1.1: Importance of business drivers to costumers.

Source: (19).

important investment to cloud environments. For cloud computing providers, even a few minutes
of service interruption may cause important cost impact. For instance, in August 2013, a five-
minute downtime in Google services led to an estimated revenue loss of over US-$ 500,000 and
an Internet traffic decrease of 40% (21).

Figure 1.2 as pointed out in (22) shows the cloud computing outages during the 2007-
2012 period for the major cloud computing providers. It is possible to see that almost all
providers had outages every year, except Rackspace in 2012 and Salesforce in 2008. Regarding
the cloud service outage duration, the same study (22) shows that 43% of outages lasted from
one to six hours, and just 14% of outages took more than 24 hours (not shown in figure).

Figure 1.2: Cloud computing outages over providers and years

Source: (22).
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Table 1.1: Main Disastrous Events (adapted from (24))

Avalanche Flood Shooting

Severe Weather Natural Gas Leak
Fuel Shortage (associated

with a loss of main electrical power)

Biological Hazard
Temperature Control
Failure Bomb Threat

Civil Disorder Hostage Situation Kidnapping

Telecom Outage Acts of Terrorism Theft

Robbery Train Crash or Derailment Lightning Strike

Computer/Software Failure or
Virus Employee/Union strike Acts of Vandalism

Pandemic Hacker Attack Power Outage

Fire Damage Water Damage Radiological Hazard

The main purpose of a business continuity (or disaster recovery) plan is to mitigate the
impact of interruption events that may affect business process (23). This plan contains activities
or processes for avoiding, preparing and recovering the system in case unforeseen events that
may affect the service operation. These events range from natural disasters (such as floods or
avalanches) to human-made attacks (e.g., terrorism, hacker attacks). Table 1.1 presents a list of
the main potentially disastrous events (24) for information technology companies.

A disaster recovery plan requires the utilization of different data centers located far
enough apart to mitigate the effects of unforeseen disasters (25). Considering these systems,
backup services can be adopted to receive copies of VM data during data center operation. Hence,
whenever a disaster makes one data center unavailable, affected VMs can be re-instantiated
in another operational data center. Unfortunately, some data between the last VM backup and
the disaster may be lost and it is necessary some time to restart the operation after a failure.
However, this may be traded off by changing the time between backups and the distance
between data centers. If multiple data centers are located in different geographical locations
(considering disaster independent places), the availability level of whole system should improve.
On the other hand, VM synchronization time increases due to distance between data centers.
Additionally, failures and overloads can lead to system downtime considering cloud computing
systems. Consequently, a cloud system evaluation considering VM data backup time and different
user loads levels is of utmost importance when considering the analysis of distributed cloud
systems. Modeling techniques, with a strong mathematical foundation, such as Stochastic Petri
Nets (SPNs) (26) can be adopted to evaluate dependability, performance and survivability in
complex infrastructures.
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1.2 Objectives

Considering the previously stated issues, this work proposes a framework to evaluate per-
formance, dependability and survivability metrics in IaaS systems deployed into geographically
distributed data centers. More specifically, the objectives of this research are:

� To construct a high level model that represents geographically distributed IaaS cloud
architectures. This model represents cloud systems structure in terms of number of
data center, hardware and software components as well as transmission, dependability,
performance and disaster parameters. By using this model, designers may have a
complete and unified description of system architecture and the relationship between
its components. It serves as a base for the creation of the final evaluation model.

� To propose a set of stochastic Petri net models for estimating survivability, depend-
ability and performance metrics of disaster tolerant IaaS cloud infrastructures. The
presented models capture important aspects of distributed cloud systems, such as: (i)
VM data transfer, (ii) VM data replication time, (iii) disaster occurrences.

� To develop a tool (GeoClouds Modcs) which automatically creates and evaluates the
aforementioned models and allows IaaS designers to conduct a joint evaluation of
survivability, dependability and performance. The proposed tool presents a simple
graphical interface that permits users to create the evaluation models in a user-friendly
way.

� To propose algorithms that translate high level IaaS models into SPN dependability,
performance and survivability models. The proposed algorithms are implemented
in GeoClouds Modcs tool and users perform the translation process in a transparent
way.

� To propose an evaluation process that allows IaaS designers to assess IaaS cloud
systems. The system is evaluated in parts and the evaluation results are combined to
create the final results.

� To develop a validation tool, namely Eucabomber 2.0, which provides fault injection
to cloud system components (software and hardware) and estimates dependability
related metrics. The estimated results are adopted to validate the SPN evaluation
models.

1.2.1 Expected Contributions

The main contribution of the proposed work is to provide a framework (including
tools, models, evaluation and validation process) for assessing performance, dependability and
survivability metrics for disaster tolerant cloud computing systems. The estimated metrics
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include (but are not limited to) availability, probability to complete a request, server utilization,
probability to recover the service, and probability to finish a backup in a given time. Additionally,
an evaluation process is also proposed for helping designers to obtain the desired metrics. This
process adopts a hybrid formal modeling, which contemplates RBD/SPN and a tool to perform
automatic generation and evaluation of the proposed models.

By providing the expected results, the proposed work will have valuable importance for
cloud computing companies and academic community. Regarding the academic community, the
results of this research have been published in academic journals and conferences. Taking into
account the importance of this work to cloud computing research area, academic works (e.g.,
master’s thesis) have been extending this research. Considering cloud computing companies, we
expect that the proposed framework will be adopted to improve their systems QoS and reduce
the impact of disasters.

1.3 Outline

The document is organized as follows. Initially, Chapter 2 shows the related works
and presents the contribution of the proposed thesis compared to the current state of the art.
Chapter 3 presents some background concepts related to this research. Chapter 4 depicts the
framework models. Chapter 5 describes the formal composition rules adopted in the proposed
modeling approach. Chapter 6 shows GeoClouds Modcs and Eucabomber 2.0 tools’ overview
and infrastructure. Chapter 7 presents the case studies. Finally, Chapter 8 concludes this work
and introduces future works.
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2
Related Works

In the last few years, some research has been done on dependability, performance and
survivability assessment of cloud computing systems and a subset of them has also considered
the impact of failures, workloads and disaster as well as some model validation techniques. The
following sections present some of those research efforts.

2.1 Model-Based Approaches for Cloud System Evaluation

Over the last years, some authors have been devoting efforts to study dependability
issues on cloud computing systems. Longo et al. (27) proposed an approach to quantify the
availability of cloud computing systems based on Petri nets and Markov chains. The authors
adopt interacting Markov chain models and closed-form equations to evaluate large systems.
Their results show that the solution time reduces when compared to a single monolithic model.
Notwithstanding the paper’s contributions, the authors do not consider the possibility of disasters
neither the utilization of distributed clouds. In (28), a performability analysis for cloud systems
is presented. The authors quantify the effects of variations in workload, failure rate and system
capacity on service quality.

The paper presented in (29) proposes a stochastic model (based on stochastic reward
net) to evaluate Quality of Service (QoS) metrics of IaaS cloud systems. The proposed work
assess system availability, utilization, and responsiveness. A resiliency analysis is provided to
take into account periodic and burst loads. The proposed stochastic model does not represent
the occurrence of disasters and component failures (e.g., server failure) which may have a great
impact on system behavior.

Bradford et al (30) describe a system design approach for supporting transparent mi-
gration of VMs adopting local storage for their persistent state. The approach is transparent
to the migrated VM, and it does not interrupt open network connections during VM migration.
In (31), the authors present a case study that quantifies the effect of VM live migrations in
the performance of an Internet application. Such study helps data center designers to plan
environments in which SLAs determine a desired level for the specified metrics, such as service
availability and responsiveness.
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Dantas et al. (32) present a study on warm-standby mechanisms in Eucalyptus-based
private clouds. Their results demonstrate that replacing machines by more reliable counterparts
would not produce significant improvements in system availability, whereas some techniques of
fault-tolerance can indeed increase dependability levels. The work presented in (33) describes
an experiment-based approach for studying the dependability of a disaster recovery solution
supported by a private cloud. The authors employed fault injection and obtained dependability
measures, in an approach that can be used to cross-check analytical and simulation models, as
well as to give foundations for the definition of service level agreements with customers.

In (34), the authors present an sensitivity analysis for a variant of Hadoop Distributed File
System (HDFS), which contemplates energy saving techniques. The proposed system divides the
cluster data in Hot and Cold Zones. In this approach, data that present long periods (i.e., several
days) of idleness are allocated in the Cold Zone. That analysis also shows the energy-saving
behavior considering the variation of file system parameters.

The work presented in (35) adopts a two-level hierarchical modeling approach for
virtualized systems which uses fault trees in the upper level, and CTMC in the lower level. The
support for sensitivity analysis in these analytical models is important for detecting bottlenecks
in system availability.

In (36), the authors show four different sensitivity analysis techniques to determine the
parameters that cause the greatest impact on the availability of a mobile cloud system. The
authors use a combined evaluation of results from different analysis techniques to deal with the
evaluation of the system. Their results show that the availability can be effectively improved by
changing a reduced set of parameters.

An approach for dependability modeling of cloud environments is also found in (37).
The authors propose a model called CDSV (Cloud Dependability by using System-level Vir-
tualization), which uses a combinatorial technique for computing metrics such as availability
and reliability. Their approach enables computing the maximum number of VMs that can be
hosted on a physical node while keeping a certain desired dependability level. Although, the
combinatorial modeling imposes many restrictions for representing in detail mechanisms such as
the live migration of VMs, that may affect the accuracy of results achieved through the CDSV
model.

CloudSim Toolkit (38) quantifies resource allocations policies and scheduling algorithms
in cloud computing environments. The environment considers different service models as well as
evaluates energy and performance related metrics based on cloud characteristics. However, the
proposed toolkit does not takes into account dependability assessment or disaster occurrences. In
(39), the authors adopted model checking algorithms to decide if a given system is survivable or
not. By using this approach, the system behavior right after the disaster occurrence is evaluated.
CSL logic and continuous time Markov chain models are adopted to represent and estimate
survivability metrics in Given-Occurrence-of-Disaster (GOOD) models.

Cloth et al. (40) propose stochastic reward nets (SRNs) for availability evaluation of
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cloud architectures by using consumers perspective. A calibration phase is proposed by authors
to improve model results accuracy. Important aspects such as disaster recovery issues and
availability zones are considered in this work. Despite the work’s remarkable quality, the authors
do not consider high level tools to create the proposed models.

The work proposed by (41), introduces an approach for mitigating the impact of failures
in distributed systems due to provider’s outages by using cloud computing technology. The
authors suggest a so-called Cloud Standby as a new method for disaster recovery of distributed
systems in the Cloud. The work adopts a disaster recovery process for monitoring a standby
site. Whenever a disaster occurs, the recovery process activates the standby system and initiates
the emergency operation. Although this work presents a relevant contribution to the scientific
and industrial communities, this work does not evaluate the impact of the proposed approach
adoption regarding availability issues.

2.2 Experiment-Based Techniques for Cloud Evaluation

Fault injection tools have been largely adopted for the evaluation of dependable systems.
Zhang et al. (42), presents a fault injector tool for real time embedded systems called Debug-based
Dynamic Software Fault Injection System (DDSFIS). The authors validated the effectiveness
and performance of DDSFIS adopting real world experiments.

The work proposed in (43) presents a Cloud Dependability Analysis (CDA) framework
that adopts fault injection techniques to evaluate cloud computing dependability. The authors
designed different failure metrics to model and quantify the correlation of performance metrics
with failure events in virtualized and non-virtualized systems. It is important to stress that the data
collecting task can be time consuming. Additionally, the tool just can evaluate infrastructures
that are already deployed. Hence, it is not possible to perform system evaluation at project design
time.

In (44), the authors present a benchmark for performance tests in databases for cloud-
based systems. The authors defined a set of benchmarks and report results for four widely
used databases (e.g., MySQL). Although the proposed benchmark also intend to be a tool for
evaluating availability in databases for cloud systems, only performance and elasticity aspects
are addressed in the work.

Souza et al. (45) initiate the study of fault injection into Eucalyptus cloud with Eu-
cabomber (version 1.0). Despite the important contribution, this version does not consider
dependencies between components and user-oriented metrics are not taken into account.

In (46), the authors investigate software aging effects on Eucalyptus framework (47),
and they also propose a strategy to mitigate such issues during system execution. (48) describes
a software testing environment, using cloud computing technology and virtual machines with
fault injection facility. The software injects failures in cloud environments in order to evaluate its
dependability metrics by using measurements activities.
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2.3 Final Remarks

Table 2.1 summarizes the main characteristics of this thesis and compare them to previous
works. The aspects explored in this thesis are the following: (i) adoption of analytical/simulation
models, (ii) evaluation tool proposition, (iii) disaster recovery issues, and (iv) fault injection
aspects. The first column (analytical/simulation models) shows that some works deal with
dependability, performance, performability, energy, and survivability. The works indicated with
hierachical heterogeneous present combined modeling techniques that adopt more than one
formalism (e.g., RBD and SPN). Most works are interested in evaluating some quality aspect
of the cloud system. Just a few works provide a tool to make the system evaluation process
easier. Most of evaluation works do not consider the occurrence of disaster for cloud systems.
Additionally, some works adopt fault injection techniques to evaluate the system under real-world
conditions.

Table 2.2 presents a more detailed view of the most related previous works. It is possible
to observe that all of them deals with VM transmission, and some are related to availability,
performance, and survivability evaluation. Among all of the previous work, (40) is the most
similar. The main differences between these works are the following. The work presented in (40)
does not consider performance issues in the evaluation. Another important difference is related
to the cloud’s utilization level. Whereas this thesis considers failures/repairs at infrastructure and
application levels, (40) works only with application level’s failures and repairs. (40) also does
not consider the impact of data transmission latency due to the distance between data centers.

Different from the previous, this work proposes a framework for evaluating cloud
computing systems deployed into geographically distributed data centers, concerning VM
migration, disasters occurrence and different user loads. Moreover, performability metrics
taking into account user and provider perspectives are adopted. A set of stochastic models is
proposed to support the evaluation. The models are divided into blocks that can be combined to
create larger models. A software tool (GeoClouds Modcs) is introduced to allow designers to
evaluate geographically distributed clouds systems even if the designer does not have experience
with stochastic models. To the best of our knowledge, no other software contemplates all the
before-mentioned characteristics in a single platform. Additionally, a validation method for
cloud computing system is proposed which considers VM life-cycle operations and dependency
between cloud components. The availability results contemplate user perspective, in which the
service is available as long as the contracted VMs are operational. Model results are validated by
adopting Eucabomber 2.0 in a real world environment.
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Table 2.1: Related Works

Analytical /
Simulation Models

Evaluation
Tool

Disaster
Recovery

Fault
Injection

Longo et al. 2011 (27) Dependability no no no

Gosh et al. 2010 (28) Hierachical
Heterogeneous no no no

Bruneo et al. 2014 (29) Performability no no no
Bradford et al. 2007 (30) no no yes no
Voorsluys et al. 2009 (31) Performance no yes no
Dantas et al.2012 (32) Dependability no no no
Mattos et al. 2014 (1) (33) Dependability no no yes
Kaushik et al. 2010 (34) Energy Model no no no

Kim et al. 2009 (35) Hierachical
Heterogeneous no no no

Matos et al. 2014 (2) (36) Hierachical
Heterogeneous no no no

Sun et al. 2010 (37) Dependability no no no

Buyya et al, 2009 (38) Performance and
Energy Models yes no no

Cloth, 2005 (39) Survivability
Models no yes yes

Xu et al, 2013 (40) Availability no yes yes
Lenk et al, (41) no no yes no
Zhang, 2011 (42) no no no yes
Guan et al. 2012 (43) no yes no yes
Cooper, 2010 (44) no no no yes
Souza, 2013 (45) no no no yes
Araujo, 2011 (46) no no no yes
Banzai, 2010 (48) no no no

This Thesis Hierachical
Heterogeneous yes yes yes

Table 2.2: Even more similar works

VM
Transmission

Availabilty
Evaluation

Performance
Evaluation

Survivability
Evaluation

Bradford et al. 2007 (30) yes no no no
Voorsluys et al. 2009 (31) yes no yes no
Cloth et al, 2005 (39) yes no no yes
Lenk et al, 2014 (41) yes no yes no
Xu et al, 2013 (40) yes yes no yes
This Thesis yes yes yes yes
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3
Background

This chapter shows a summary of the background information needed for a better
understanding of this work. First of all, an overview of disaster tolerant cloud computing
infrastructures is presented. After that, dependability, performance and survivability concepts
are shown. Next, the adopted formalism such as SPN and RBD are explained. Finally, fault
injection and availability monitoring concepts are discussed.

3.1 System Architecture of Reliable Distributed Data Centers

This section presents an overview of the cloud computing system considered in this
work, which contemplates a set of components, distributed over distinct data centers (Figure 3.1).
The Infrastructure-as-a-Service model is adopted, considering delivery of computing resources
on-demand as virtual machines. The proposed system is composed of a set of facilities that can
be a data center or a Backup Server (BS). There are d data centers to serve client requests. In
this work, a single Backup Server is responsible for providing backup of VM data. Data centers
are composed of physical machines and network components. We consider a limited number of
users requests during system operation. Each user request should result in a new instantiated
VM.

BS periodically receives a copy of each VM image during data center operation. Hence,
whenever a disaster makes one data center unavailable, BS sends VM copies to an operational
data center. We assume the BS as an external service and its internal components are not known.
The only perceived behavior of a BS is related to its operational state (failed/working). The
system is composed of d data centers. Each data center contains a two machine sets (hot and
warm pools). The hot pool is composed of n Physical Machines (PMs), which are active and
running VMs. The warm pool consists of m PMs that are active, but without running VMs. A
disaster can happen to a facility at any time during system operation. After that, we assume that
the recovery operation starts immediately after the disaster occurrence.

Depending on the capacity of physical machines, multiple VMs can run in the same
host. In this study, we assume that each machine is able to run l virtual machines. PMs may
share a common Network Attached Storage (NAS) or a Storage Area Network (SAN) to provide
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Figure 3.1: Distributed Cloud System Example

Source: Made by author.

distributed storage and to allow the migration of a virtual machine from one server to another in
the same data center (49). In the case of failure, a VM must be instantiated in another physical
machine of the same data center. If there is no available PM in the current data center, the VM
image is moved to another data center.

The following list summarizes the assumptions taken to represent disaster tolerant IaaS
systems.

� All physical machines identical as well as the VMs have the same characteristics.

� A VM can be started on any PM machine if it is not broken.

� The number of requests that the system can attend at a given time is limited. If the
system is overloaded, new requests are discarded.

� All users requests are identical. For each user request, a VM should be instantiated.
Therefore, each client requests corresponds to a VM instantiation request.

� A facility can always be repaired after a disaster.

3.2 Performance and Dependability Evaluation

Generally, for evaluating computing systems, performance, and dependability metrics
have been adopted considering different perspectives. Performance evaluation takes into account
“how well the systems performs” and dependability assessment considers “probabilities of a
system executing successfully”. However, in degradable systems (i.e., the system does not
necessarily interrupt the service in case of faults) performance and dependability issues must
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be evaluated simultaneously to estimate system effectiveness (50). Performance evaluation
refers to a set of techniques and methods which permits the assessment of temporal system
behavior. More specifically, performance evaluation involves the system assessment under a
workload (51). Performance metrics (e.g., throughput and response time) can be evaluated
by adopting measurement approaches and modeling techniques. The most suitable models to
evaluate performance metrics are: Temporal Logics, Networks of Queues and Markov Chain
based models (e.g., SPN) (26).

The dependability of a system can be understood as the ability to deliver a set of services
that can be justifiably trusted (52). Indeed, dependability is also related to disciplines, such as
security, survivability, reliability and availability. For instance, the reliability of a system at
time t ′ is the probability of such a system have not failed from t = 0 until t = t ′, whereas its
steady state availability is the probability of such a system being operational. Dependability
metrics can be calculated either by combinatorial models, such as RBD, or state-based models
(e.g., SPN). RBDs are networks of functional blocks connected according to the effect of each
block failure (and repair) on the system reliability (and availability) (26). Combinatorial models
capture conditions that make a system fail (or to be working) in terms of structural relationships
between the system components. It is assumed that the failure or recovery of a component is not
affected by the behavior of any other component.

State-based models (53) represent a more suitable choice to model complex interactions
between components such as dynamic redundant mechanisms and maintenance policies. These
models represent the system behavior (failures and repair activities) by its states and the event
occurrence are expressed as labelled state transitions. Labels can be probabilities, rates or distri-
bution functions. Some state-based models may also be evaluated by discrete event simulation
in case of intractable large state spaces or when combination of non-exponential distributions
prohibits an analytic solution. In some special cases (e.g., dynamic redundant mechanisms),
state-based analytic models cannot be solved by closed-form equations. The adoption of a
numerical solution is required to solve those cases. The most prominent combinatorial model
types are Reliability Block Diagrams, Fault Trees and Reliability Graphs. Markov Chains,
Stochastic Petri nets, and Stochastic Process algebras are most widely used state-based models.
The reader should refer to (26) for more details about dependability and performance concepts
and metrics.

3.3 Survivability

Survivability can be defined as the ability of a system to recover a predefined service
level in a timely manner after the occurrence of disasters (39). In this context, companies
adopt Business Continuity Management (BCM) (54) to support the ability to operate in spite of
unforeseen events and recover in a short time frame. The main BCM’s outcome is the Business
Continuity Plan (BCP) or Disaster Recovery Plan (DRP), which is a document that describes the
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business continuity process in order to reduces or minimizes impact of events that disrupt critical
services and their supporting resources (54). Two indexes are utilized to define survivability
objectives: (i) Recovery Point Objective (RPO), which corresponds to the time limit of the
most recent backup prior to disaster and (ii) Recovery Time Objective (RTO) that specifies the
maximum time to repair the service after a disaster occurs. These objectives are based on business
decisions that contemplate costs of inactivity periods and data loss. Additionally, technological
factors (e.g., system performance) must be considered to stablish these parameters (55)(56).

Figure 3.2: RPO and RTO requirements.

Source: Made by author.

Figure 3.2 illustrates the backup operation along the time for a general system. During
the system operation, a backup is periodically performed and whenever a disaster happens, the
last backup should be recovered. If the age of the last backup (Recovery Point - RP) is higher
than the RPO or the time to recover the system (Recovery Time - RT) is higher than the RTO,
then the survivability requirements are not satisfied. In this case (Figure 3.2), the system meet
the requirements. It is important to state that the amount of data that should be restored or
backed up is not fixed for some applications. Consequently, the time to perform backup and
restore operations is stochastic and depends on the amount of data involved and the technology
utilized (56). Additionally, for some applications (e.g., financial trading systems) the RPO and
RTO should not be higher than a few minutes. On the other hand, for other applications (e.g.,
static websites) these requirements are not so critical.

3.4 Modeling

This section presents two important models for evaluating dependability and perfor-
mance in general systems. Firstly, basic concepts about RBD model are presented. Then, the
fundamentals of stochastic Petri nets are shown. It is important to emphasize that RBD models
in this work are only adopted to estimate dependability metrics whereas SPN models evaluate
system using survivability, dependability and performance metrics.

3.4.1 RBD Models

Reliability Block Diagram (57) is a combinatorial model that was initially proposed as a
technique for calculating reliability on large and complex systems using intuitive block diagrams.
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The blocks (e.g., components) are usually arranged using the following composition mechanisms:
series, parallel, bridge, k-out-of-n blocks, or, even, a combination of previous approaches.

Figure 3.3: Reliability Block Diagram

Source: Made by author.

Figure 3.3 depicts two examples, in which blocks are arranged through series (Fig-
ure 3.3(a)) and parallel (Figure 3.3(b)) compositions. In the series arrangement, if a single
component fails, the whole system is no longer operational. Assuming a system with n compo-
nents, the reliability (availability) (57) is obtained by

Ps(t) =
n

∏
i=1

Pi(t)
�
 �	3.1

in which Pi(t) is the reliability or the availability of block bi.
For a parallel arrangement (see Figure 3.3(b)), at least, one component must be operation

in order to the system be operational. Taking into account n components, the system reliability
(availability) is

Pp(t) = 1−
n

∏
i=1

(1−Pi(t))
�
 �	3.2

in which Pi(t) is the reliability or the availability of block bi. For other examples and closed-form
equations, the reader should refer to (57).

3.4.2 SPN Models

Petri nets (PNs) (58) are a family of formalisms very well suited for modeling several
system types, since concurrency, synchronization, communication mechanisms as well as de-
terministic and probabilistic delays are naturally represented. This work adopts a particular
extension, namely, Stochastic Petri Nets (59), which allows the association of stochastic delays to
timed transitions, and the respective state space can be converted into Continuous Time Markov
chain (CTMC) (60). SPN models present a strong mathematical foundation, and they are suitable
for representing and analyzing parallel systems with heterogeneous components and that exhibit
concurrency and synchronization aspects. (26). Therefore, this formalism represent a prominent
choice to model cloud computing systems. In SPNs, Places are represented by circles, whereas
transitions are depicted as filled rectangles (immediate transitions) or hollow rectangles (timed
transitions).
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Arcs (directed edges) connect places to transitions and vice-versa. Tokens (small filled
circles) may reside in places, which denote the state (i.e., marking) of a SPN. An inhibitor arc
is a special arc type that depicts a small white circle at one edge, instead of an arrow, and they
usually are used to disable transitions if there are tokens present in a place. The behaviour of
a SPN is defined in terms of a token flow, in the sense that tokens are created and destroyed
according to the transition firings (61). Immediate transitions represent instantaneous activities,
and they have higher firing priority than timed transitions. Besides, such transitions may contain
a guard condition, and a user may specificy a different firing priority among other immediate
transitions. SPNs also allow the adoption of simulation techniques for obtaining system metrics,
as an alternative to the generation of a CTMC. The extended stochastic Petri net (61) definition
adopted in this work is:

Let N = (P,T, I,O,H,Π,M0,Atts) be a stochastic Petri net (SPN), where:

� P = {p1, p2, ..., pn} is the set of places, which may contain tokens and form the
discrete state variables of a Petri net. ordpN corresponds to a bijective function
(ordpN : P→{1,2, ...,n}) that maps each place to a unique natural number.

� T = {t1, t2, ..., tm} is the set of transitions, which model active components. ordtN is
a bijective function (ordtN : T →{1,2, ...,m}) that maps each transition to a unique
natural number.

� I ∈ (Nn→N)n×m is a matrix of marking-dependent multiplicities of input arcs, where
I[ordpN (p j),ordtN (tk)] gives the (possibly marking-dependent) arc multiplicity of
input arcs from place p j to transition tk [A ⊆ (P×T )∪ (T ×P) — set of arcs]. A
transition is only enabled if there are enough tokens in all input places.

� O ∈ (Nn→ N)n×m is a matrix of marking dependent multiplicities of output arcs,
where O[ordpN (pk),ordtN (t j)] specifies the possibly marking-dependent arc multi-
plicity of output arcs from transition t j to place pk. When a transition fires, it removes
the number of tokens specified by the input arcs from input places, and adds the
amount of tokens given by the output arcs to all output places.

� H ∈ (Nn→ N)n×m is a matrix of marking-dependent multiplicities describing the in-
hibitor arcs, where H[ordpN (p j),ordtN (tk)] returns the possibly marking-dependent
arc multiplicity of an inhibitor arc from place p jto transition tk. In the presence of
an inhibitor arc, a transition is enabled to fire only if every place connected by an
inhibitor arc contains fewer tokens than the multiplicity of the arc.

� Π ∈ Nm is a vector that assigns a priority level to each transition. Whenever there are
several transitions fireable at one point in time, the one with the highest priority fires
first and leads to a state change.
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� M0 ∈ Nn is a vector that contains the initial marking for each place (initial state). In
this work, M(pn) denotes the number of tokens of place pn at marking M.

� Atts : (Dist,W,G,Policy,Concurrency)m comprises a set of attributes for the m tran-
sitions, where

� Dist ∈ Nm→F is a possibly marking dependent firing probability distri-
bution function. In a stochastic timed Petri net, time has to elapse between
the enabling and firing of a transition. The actual firing time is a random
variable, for which the distribution is specified by F . We differ between
immediate transitions (F = 0) and timed transitions, for which the domain
of F is (0,∞).

� W ∈ R+ is the weight function, that represents a firing weight wt for
immediate transitions or a rate λt for timed transitions. The latter is only
meaningful for the standard case of timed transitions with exponentially
distributed firing delays. For immediate transitions, the value specifies a
relative probability to fire the transition when there are several immediate
transitions enabled in a marking, and all have the same probability. A
random choice is then applied using the probabilities wt .

� G ∈Nn→{true, false} is a function that assigns a guard condition related
to place markings to each transition. Depending on the current marking,
transitions may not fire (they are disabled) when the guard function returns
false. This is an extension of inhibitor arcs.

� Policy ∈ {prd,prs} is the preemption policy (prd — preemptive repeat

different means that when a preempted transition becomes enabled again
the previously elapsed firing time is lost; prs — preemptive resume, in
which the firing time related to a preempted transition is resumed when
the transition becomes enabled again),

� Concurrency ∈ {ss, is} is the concurrency degree of transitions, where ss

represents single server semantics and is depicts infinity server semantics
in the same sense as in queueing models. Transitions with policy is can be
understood as having an individual transition for each set of input tokens,
all running in parallel.

In many circumstances, it might be suitable to represent the initial marking as a mapping
from the set of places to natural numbers (m0 : P→N), where m0(pi) denotes the initial marking
of place pi and m(pi) denotes a reachable marking (reachable state) of place pi. In this work, the
notation #pi has also been adopted for representing m(pi). For more detail about SPN concepts
and semantic, the reader is referred to (59).
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SPN modeling example
A simple cellphone charging/discharging process can be modeled through SPN. Initially, the
cellphone battery is discharged and takes some time to start the charging process (mean duration
1/λ ). Then, the cellphone is connected to a charger and the charging process begins. The
duration of charging process is assumed to be 1/r on average. After the charging process, the
charger is removed and the discharging process is started (mean duration 1/µ). We can model
the behavior of the charging/discharging process by using the SPN depicted in Figure 3.4. Figure
3.5 shows the correspondent reachability graph for that SPN model. Considering this SPN:

Figure 3.4: SPN representing a cell phone charging/discharging process.

ChargedDischarged

Charger

Charging

Charge

Source: Made by author.

� place Discharged represents the local state of the cellphone when it is discharged;

� place Charging corresponds to the state of the cellphone when it is in charging
process;

� place Charged is the state that models the situation when the cellphone is charged;

� place Charger represents the local state of the charger when it is not in use;

� transition Start models the action starting the cellphone charging process. The rate
of this transition is λ ;

� transition Charge represents the cellphone charging process itself. The rate of this
transition is r;

� transition Consuming represents the cellphone discharging process. The rate of this
transition is µ .

Figure 3.5: Reachability Graph of the SPN model of Figure 3.4.
λ

μ

1, 0, 0, 1 0, 1, 0, 0 0, 0, 1, 1

Source: Made by author.
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3.4.2.1 Place Invariants (P-Invariants)

In Petri nets, invariants are related to the conservative and repetitive stationary compo-
nents, which are denoted by place invariants and transition invariants. Both invariants are useful
to determine properties in Petri nets, but in this work the focus is on places invariants.

Definition 1 (Place Invariant - P-semiflow or P-Invariant). Assume a Petri net N with m places
and its incidence matrix A. A vector of non-negative integers

Ip =
[ p0 p1 ... pm

x0 x1 ... xm

]
T

is a P-semiflow or place invariant (P-invariant), if and only if Ip
T ×CN = 0. A value xm is the

weight associated with place pm.

CN corresponds to the Petri net incidence matrix, where CN = ON − IN . If there is
a vector Ip > 0 and Ip

T ×CN ≤ 0, N is structurally bounded. A Petri net N is structurally

conservative if only if there is a P-invariant Ip, such that Ip > 0 (all elements are positive integers)
and Ip

T ×CN = 0.

3.4.2.2 Transition Invariants (T-Invariants)

Definition 2 (Transition Invariant - T-semiflow or T-invariant). Assume a Petri net N with n
transitions and its incidence matrix A. A vector of non-negative integers

It =
[ t0 t1 ... tn

y0 y1 ... yn

]
T

is a T-semiflow or transition invariant (T-invariant), if and only if CN × It = 0. A value yn is the
weight associated with transition tn.

If there is a P-invariant (or T-invariant) such that all weights are not null, a Petri net is said
to be covered with P-invariants (or T-invariants). A net is consistent if exists a T-invariant It > 0
and CN × It = 0. If there is a vector It > 0 and CN × It ≥ 0, the net is structurally repetitive.

3.4.2.3 Juxtaposition of Invariants

The composition of Petri net basic building blocks can be adopted to represent large and
complex systems. For instance, model generation tools (e.g., GeoClouds Modcs (62)) can be
adopted to automatically create high level models by merging basic building blocks. In this thesis,
a proof is provided to demonstrate that the proposed modelling approach always create models
with structural properties (see Section 5.3). Place and transition invariants represent important
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methods to determine structural properties in Petri net models. The following definition present
a technique for obtaining P-invariants of Petri nets composed by union of Places of other Petri
nets (63).

Definition 3 (Juxtaposition of P-invariants - J ). Let N1 and N2 be two Petri nets, and P1 and
P2 be the respective sets of places, such that P1∩P2 = Ps 6= /0.

Ip(1) =
[ p1

0 ... p1
n pk0 ... pkq

x1
0 ... x1

n x1
k0

... x1
kq

]
T

is a P-invariant of net N1 and

Ip(2) =
[ pk0 ... pkq p2

0 ... p2
m

x2
k0

... x2
kq

x2
0 ... x2

m

]
T

is a P-invariant of net N2. Finally, assume a Petri net N3 generated by merging places of subnets
N1 and N2, more specifically, P1

shared and P2
shared . A P-invariant Ip(3) of net N3 may be obtained

from Ip(1) and Ip(2) via juxtaposition, Ip3 =J (Ip(1),Ip(2)), if the following condition holds:
∀p ∈ P1∩P2,Ip(1)(p) = Ip(2)(p). Thus, assuming x1

k0
= x2

k0
= xk0 , ... ,x1

kq
= x2

kq
= xkq ,

Ip3 =
[ p1

0 ... p1
n pk0 ... pkq p2

0 ... p2
m

x1
0 ... x1

n xk0 ... xkq x2
0 ... x2

m

]
T .

For the condition stated in Definition 3 to be satisfied, sometimes the invariants need to
be multiplied by positive integers. For instance, assume a net N3 composed by merging places
of subnets N1 and N2. Additionally, consider the P-invariant Ip(1) = [x1 xk1 ] of net N1, in
which xk1 represents the weights associated to the merged places and x1 the weights associated
to the untouched ones. Similarly, Ip(2) = [xk2 x2] represents a P-invariant of net N2, in which
xk2 represents the weights associated to the merged places. If xk1 6= xk2 , it is necessary to find
a,b ∈ N such that a.xk1 = b.xk2 , which will result in Ip(3) = J (a.Ip(1),b.Ip(2)). If it is not
possible to find a,b ∈ N that satisfy the condition, the juxtaposition of these P-invariants can not
be performed.

Consider this example of juxtaposition technique (64). Assume a net Nc composed by
merging a common place of subnets Na and Nb (Pa∩Pb = {pshared}). Additionally, consider
the following basic P-invariants for each subnet:

� Na: Ip(a)(1) =
[ p0 p1 pshared

1 1 0
]

T and Ip(a)(2) =
[ p0 p1 pshared

1 0 1
]

T ;

� Nb: Ip(b)(1) =
[ pshared p2 p3 p4

5 1 1 0
]

T and Ip(b)(2) =
[ pshared p2 p3 p4

5 1 0 1
]

T .

The following lines demonstrate the P-invariants obtained through juxtaposition for net
Nc :
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� Ip(c)(1) = J (Ip(a)(1),0.Ip(b)(1)) =
[ p0 p1 pshared p2 p3 p4

1 1 0 0 0 0
]

T ;

� Ip(c)(2) = J (Ip(a)(1),0.Ip(b)(2)) =
[ p0 p1 pshared p2 p3 p4

1 1 0 0 0 0
]

T ;

� Ip(c)(3) = J (5.Ip(a)(2),Ip(b)(1)) =
[ p0 p1 pshared p2 p3 p4

5 0 5 1 1 0
]

T ;

� Ip(c)(1) = J (5.Ip(a)(2),Ip(b)(2)) =
[ p0 p1 pshared p2 p3 p4

5 0 5 1 0 1
]

T .

A general P-invariant for Nc (as well as for Na and Nb) can be obtained as follows:

� Ip(a) = α.Ip(a)(1)+β .Ip(a)(2) =
[ p0 p1 pshared

α +β α β

]
T , where α,β ∈ N;

� Ip(b) = γ.Ip(b)(1)+δ .Ip(b)(2) =
[ pshared p2 p3 p4

5γ +5δ γ +δ γ δ

]
T , where γ,δ ∈ N;

� Assuming β = 5γ +5δ , Ip(c) = J (Ip(a),Ip(b)) =

[ p0 p1 pshared p2 p3 p4

α +5γ +5δ α 5γ +5δ γ +δ γ δ

]
T .

Since ∃α,γ,δ ∈N∗,Ip(c)
T ×Ac = 0, in which Ac is the incidence matrix of net Nc , Nc

is conservative as well as structurally bounded, in other words, for any initial marking, the state
space size is finite.

3.4.2.4 Distribution Moment Matching

A well-established method that considers expolynomial distribution random variables is
based on distribution moment-matching . The moment matching process presented in (65) and
considers that Hypoexponential and Erlangian distributions have the average delay (µ) greater
than the standard-deviation (σ ) -µ > σ -, and Hyperexponential distributions have µ<σ , in order
to represent an activity with a generally distributed delay as an Erlangian or a Hyperexponential
subnet referred to as s-transition. One should note that in cases where these distributions have
µ = σ , they are, indeed, equivalent to an exponential distribution with parameter equal to 1

µ
.

Therefore, according to the coefficient of variation associated with an activity’s delay, an appro-
priate s-transition implementation model could be chosen. For each s-transition implementation
model (see Figure 3.6), a set of parameters should be configured for matching their first and
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second moments. In other words, an associated delay distribution (it might have been obtained
by a measuring process) of the original activity is matched with the first and second moments of
s-transition (expolynomial distribution). According to the aforementioned method, one activity
with µ<σ is approximated by a two-phase Hyperexponential distribution with parameters

r1 =
2µ2

(µ2 +σ2)
,

�
 �	3.3

r2 = 1− r1
�
 �	3.4

and
λ =

2µ

(µ2 +σ2)
.

�
 �	3.5

where λ is the rate associated to phase 1, r1 is the probability of related to this phase, and r2

is the probability assigned to phase 2. In this particular model, the rate assigned to phase 2 is
assumed to be infinity, that is, the related average delay is zero.

Figure 3.6: Hyperexponential Model

P1 P2 P1 P2

r2=1-r1

r1 λ

Source: Made by author.

Activities with coefficients of variation less than one might be mapped either to Hypo-
exponential or Erlangian s-transitions. If µ

σ
/∈ N, µ

σ
6= 1,(µ,σ 6= 0), the respective activity is

represented by a Hypoexponential distribution with parameters λ1, λ2(exponential rates); and
γ , the integer representing the number of phases with rate equal to λ2, whereas the number of
phases with rate equal to λ1 is one. In other words, the s-transition is represented by a subnet
composed of two exponential and one immediate transitions. The average delay assigned to the
exponential transition t1 is equal to µ1 (λ1 = 1/µ1), and the respective average delay assigned to
the exponential transition t2 is µ2 (λ2 = 1/µ2). γ is the integer value considered as the weight
assigned to the output arc of transition t1 as well as the input arc weight value of the immediate
transition t3 (see Figure 3.7). These parameters are calculated by the following expressions:

(
µ

σ
)2−1≤ γ < (

µ

σ
)2,

�
 �	3.6

λ1 =
1
µ1

and 2 =
1
µ2

,
�
 �	3.7

where
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µ1 =
µ±

√
γ(γ +1)σ2− γµ2

γ +1
,

�
 �	3.8

µ2 =
γµ∓

√
γ(γ +1)σ2− γµ2

γ +1

�
 �	3.9

If µ

σ
∈ N, µ

σ
6= 1,(µ,σ 6= 0), an Erlangian s-transition with two parameters, γ = (µ

σ
)2

is an integer representing the number of phases of this distribution; and µ1 = µ/γ , where
µ1(1/λ1) is the average delay value of each phase. The Erlangian model is a particular case of
a Hypoexponential model, in which each individual phase rate has the same value. The reader
should refer to (65) for details regarding the representation of expolinomial distributions using
SPN.

Figure 3.7: Hypoexponential Model

P1 P2 P1 P2

λ λ2 λ2

...

γ

Source: Made by author.

3.5 Fault Injection Techniques

In general, a fault injection and monitoring based strategy encompasses a workload
generator (random fault and repairing activities generator), a fault injector, a system monitor and
the target system. The fault injector is responsible to inject faults/repairs events to the target
system. The workload generator generates commands (faults and repairing actions) and drives
the fault injector, whilst the system monitor observes the target system status and behavior,
collects data and provides measures and statistics (66)(67)(68).

A hardware fault injector requires specific hardware components to be added to the
system which operate at the physical level (e.g., circuits that modify electrical components).
A software fault injector, on the other hand, employs programed software to interact with the
target system, and is therefore more flexible than the hardware injector (68). Simulation-based
fault injection implies the creation of models, the introduction of faults into the model, and
observation to discover what effect the fault has on the model. Finally, the execution-based
injector requires the real system, introducing faults into it (67).
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3.5.1 Confidence interval of availability estimation

This section presents the approach to calculate the confidence interval of availability of a
general system (69). This method observes system failures and repairs to estimate the availability
confidence interval. In this particular work, this method is adopted for evaluating the system
availability confidence interval under fault injection.

Figure 3.8: Markov Chain.

λ

μ

S0 S1

Source: Made by author.

The Markov Chain (26) depicted in Figure 3.8 represents a top down view of system
behaviour. State S0 represents the system at normal condition and State S1 denotes the system
failure. The transition from State S0 to State S1 denotes a failure. The repair activity is depicted
by the transition from State S1 to State S0. The failure rate is λ and the repair rate is specified by
µ . System availability can be calculated by Equation 3.10.

A =
µ

λ +µ
=

1

1+ λ

µ

=
1

1+ρ
,

�
 �	3.10

Here ρ is the ratio λ/µ . If it is assumed that n failure and repair events were observed
during the experiment, then the total failure time is Sn and the total repair time is Yn. Therefore,
the maximum-likelihood estimator for λ is defined in Equation 3.11

Λ̂ =
n
Sn

�
 �	3.11

A 100x(1−α) confidence interval for λ is given by Equation 3.12.

(
C2

2n;1−α

2

2Sn
,
C2

2n; α

2

2Sn
)

�
 �	3.12

An analogous process is performed estimate µ (Equation 3.13).

M̂ =
n
Yn

�
 �	3.13

The 100x(1−α) confidence interval for µ is defined in Equation 3.14.

(
C2

2n;1−α

2

2Yn
,
C2

2n; α

2

2Yn
)

�
 �	3.14
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Consequently, the maximum-likelihood estimator for the ratio λ/µ is ρ̂ and is defined
by Equation 3.15.

ρ̂ =
Λ̂

M̂
=

n
Sn
n

Yn

=
Yn

Sn

�
 �	3.15

The 100x(1−α) confidence interval for ρ is given by (ρL,ρu), through F-distribution
probability function as specified in Equation 3.16.

ρl =
ρ̂

f2n;2n; α

2

and ρu =
ρ̂

f2n;2n;1−α

2

�
 �	3.16

Finally, the maximum-likehood estimator to availability is Â = 1/(1+ ρ̂). Since the
availability A is a monotonically decreasing function of ρ , the 100x(1−α) confidence interval
for A is:

(
1

1− pu
,

1
1− pl

)
�
 �	3.17

3.6 Final Remarks

This chapter presented the basic concepts related to the proposed framework, ranging
from the definition of system architecture to the estimation of availability confidence interval.
Initially, disaster tolerant IaaS system infrastructures were presented focusing on its internal
components and behavior.

Afterwards, the concept of performance and dependability were presented. Next, sur-
vivability was conceptualized in the context of cloud computing systems. After that, attention
was devoted to the adopted models (RBD and SPN), giving particular focus to stochastic Petri
nets. Finally, a small review on the concepts related to Fault injection and confidence interval of
availability was presented.
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4
Modeling Approach

This chapter presents the adopted model in this work. Firstly, the proposed evaluation
process is shown. Next, the high-level IaaS model is presented. Then, the performability models
are detailed. Finally, the survivability models are discussed.

4.1 Evaluation Process

The main purpose of this work is to propose a set of models, framework, and modeling
process for evaluating geographically distributed cloud computing systems taking into account
disaster occurrences.

A hybrid modeling strategy which combines combinatorial and state-based models is
adopted for evaluating availability, performance and survivability in cloud computing systems.
RBD models allow designers to evaluate system dependability by using closed-form equa-
tions (26). However, components dependencies are hard to represented in RBD models. On the
other hand, state-based models (e.g., SPNs) can represent those dependencies in a simple way.
Nevertheless, these models may suffer from state-space explosion problem (59).

This thesis proposes a combined modeling approach based on RBD and SPN models
to represent geographically distributed cloud computing systems. RBD models are solved by
adopting closed-form equations and analysis or simulation is utilized for computing SPN results.
Figure 4.1 depicts an overview of the proposed approach for evaluating geographically distributed
cloud computing systems.

Requirements Definition. The evaluation approach’s first step concerns requirements
definition. In this phase, users provide a set of quality parameters that define the system proper
behavior. In this approach, a disaster tolerant cloud computing system can be evaluated to check
the satisfaction of the following requirements (26):

� Minimum availability.

� Minimum Capacity Oriented Availability (COA).

� Minimum probability of finishing a request.

� Maximum system utilization.



44

Figure 4.1: Proposed Approach Overview
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� Minimum probability of recovering the system after a disaster. This value is checked
at a user specific time.

System Design. The evaluation’s second step is related to the system design. In this
phase, the disaster tolerant cloud computing system is defined (Section 3.1). The result (artifact)
of this evaluation step is a document containing the set of facilities (data centers and backup
server), its characteristics (servers and network devices configuration), the disaster characteristics
of each location, and the VM transmission characteristics.

High-Level Model Generation. The next stage involves the creation of high-level
models that represent the system infrastructure and interactions (Section 4.2). The artifact of this
phase corresponds to an instance of high-level model.

Generate Evaluation Model. High-Level Models can be converted to performability
or survivability models. It is important to state that submodels may be generated to mitigate
the complexity of the SPN final model. The submodels are combined to create the evaluation
model. The result of this stage corresponds to an evaluation model (availability, performance,
performabilty or survivability). It is important to stress that Geoclouds can be adopted to help
the users to automatically create the high-level models, translate them to stochastic models and
evaluate the metrics.

Evaluation Process. The next step involves the final model evaluation, which estimates
the user defined metrics. The evaluation can be performed by SPN analysis or simulation through
Mercury (70) (71) or Timenet (72) tools. A list of evaluated metrics is provided as the output of
this phase.

Requirements Checking. The requirements are checked, and the process finishes if
the evaluated results meet the user needs. If the modelled system does not comply with the
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requirements, the system must be redesigned.

Sensitivity Analysis. A sensitivity analysis can be performed to stablish the model
parameter that most affect the user metrics. The sensitivity analysis approach proposed by Matos
et al (73) can be adopted to determine the parameters that cause the greatest impact on system

Figure 4.2: Evaluation Example
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metrics.

4.1.1 Evaluation Example

Figure 4.2 presents an example of IaaS disaster tolerant cloud evaluation. In this example,
the cloud system is deployed into two data centers (DC1 and DC2). After the system design (see
Figure 4.1), a high-level is created for representing each system component and the relationship
between them (Section 4.2). As stated before, users can create the high-level models from scratch
or utilize GeoClouds Modcs (Section 6) to guide the model construction. In this example, G

corresponds to a tuple that represents data centers DC1 and DC2 as well as the backup server.
The next phase involves the definition of an evaluation model that represents the system

behavior and allow users to estimate system metrics. The proposed translation algorithm guide
users to create and evaluate the system models. This translation process creates basic SPN
components for representing each system component. As long as new basic blocks are created,
the algorithm combines that components to the final model. Observe that, in this figure DC1 and
DC2 are represented in the final model. Section 5.1 presents details on how the evaluation model
is created based on the high-level model.

A list of evaluated metrics is generated and these metrics are compared to the require-
ments. If the requirements are not satisfied the system must be redesigned. Next section presents
details related to the models adopted to access availability, performance and survivability in
disaster tolerant IaaS cloud computing systems.

4.2 High-Level IaaS Model

This section presents a high-level model to represent an IaaS disaster tolerant cloud
system. These models are adopted to represent the IaaS system design considering a mathematical
modeling. This model includes representation of facilities (data centers and backup server),
disaster characteristics, VM synchronization function, and survivability parameters. The tuple
G = (Flt ,Tdi,Tre,MT T,CV M,Treq,Lt ,Sv) corresponds to a geographically distributed IaaS system
representation in which:

� Flt is a finite set of data centers including the backup server (facilities), such that
Flt = D∪BS. D is a finite set of data centers and BS represents the set of backup
servers;

� Tdi : Flt → fdi denotes the disaster occurrence function. For each facility dc ∈ Flt , a
probability distribution function (pdf) fdi is associated. The function fdi provides the
probability of a disaster for each instant t;

� Tre : Flt → fre represents the disaster recovery function. Similarly to the previous
function, it associates a PDF ( fre) with each facility dc ∈ Flt . For each time t a
probability of disaster recovery is provided;
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� MT T : Flt×Flt → fMT T denotes the VM transmission function. The function relates
a pair of facilities (dc1,dc2) ∈ Flt ×Flt to a PDF fMT T . The resulted function fMT T

provides the probability of finishing the data transmission between dc1 and dc2 at
time t;

� CV M ∈ N is the maximum number of VM requests that can be performed by users.

� Treq : [0,∞)→ [0,1] corresponds to the VM request time probability function, which
provides a PDF that associates each time t ∈ [0,∞) with the probability to perform a
VM request.

� Lt : [0,∞)→ [0,1] is the VM life-time probability function. It corresponds to a PDF
that relates each VM execution time with a probability.

� Sv = (vbd,bpd,rvd) corresponds to survivability parameters. vbd is the number of
VMs that must be periodically backed up, bpd represents the backup period and rvd

is the number of VMs that should be recovered to restore the service.

A data center dc ∈ D corresponds to the ordered pair (Pd,Cd), where Pd represents a
physical machine finite set. Cd represents the finite set of basic components related to the network
infrastructure. A physical machine p ∈ Pd corresponds to the tuple (Vp,Sp,os,hw,m) where:

� Vp represents a virtual machine finite set assigned to the physical machine at cloud
system start up;

� Sp : Vp→ fp provides the virtual machine set up time probability distribution function;

� os ∈ Op corresponds to the physical machines’s software component;

� hw ∈ Hp represents the hardware of the physical machine;

� m ∈ N denotes the maximum number of VMs that the physical machine can execute;

Op and Hp are finite sets of software and hardware components related to physical
machines. C (C = Cd ∪Op ∪Hp ∪Vp) corresponds to a finite set of all data center’s basic
components. Tf r : C→ f f r represents the failure probability distribution function associated
with component c ∈C, and Trp : C→ frp represents the repair PDF associated with component
c ∈C.

4.3 Performance and Availability Models

This section presents the performance, availability, and performability models adopted in
this work. Five SPN submodels are detailed and they represent the system behavior considering
disasters, VM transfer, user requests and failures characteristics. Section 5.1 describes how
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to combine the submodels to estimate availability and performance metrics. This modeling
approach allows the creation of four different models to evaluate the IaaS system.

Three different model representations can be utilized to estimate performance, depend-
ability, and performability metrics of IaaS disaster tolerant clouds. Depending on the user metrics,
performance, availability or performability models can be created to evaluate the system. For
instance, if only availability metrics are considered, the availability model should be adopted. It
is important to highlight that the following models do not consider backup time and frequency.
In the following models, we assume that the backup is always updated. Section 4.4 presents
models that represent the backup process for IaaS cloud systems.

4.3.1 SPN block: generic component

Generic component (Figure 4.3) is adopted for availability and performability models
to represent devices that have no redundancy and might be in two states, either functioning or
failed.

Figure 4.3: Generic component SPN model
X_ON

X_OFF

X_FailureX_Repair

Source: Made by author.

The respective SPN model of this component is shown in Figure 4.3. Places X_ON

and X_OFF are the model component’s activity and inactivity states, respectively. In this
representation, a subsystem can be operational (X_ON marked) or failed (X_OFF marked).
Label “X” is instantiated according to the component name, for instance, for a component named
HW1 these places will be HW1_ON and HW1_OFF. A component is operational only if the
number of tokens in place X_ON is greater than zero. Equation 4.1 can be adopted to estimate
system availability (Av) of generic components.

Av = P{#X_ON > 0}
�
 �	4.1

Dynamic Behavior of Generic Component.

Figure 4.4 presents the flow of tokens to represent failure/repair behavior of a given subsystem
(e.g., Server). The dynamic behavior of this component is represented as follows:
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Figure 4.4: Token flow related to a generic component
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� System Operational - Figure 4.4(a). Initially, place X_ON has one token indicating
that the system is operational. When X_Failure fires (failure action), the token is
removed from pace X_ON, and a new token is created in X_OFF.

� System Failed - Figure 4.4(b). In this situation, the system is failed and a repair
activity is enabled. When the repair activity is finished (i.e., X_Repair fires), the
system returns to the initial state.

Formal Description of Generic Component.

A generic component is modeled by a SPN Bge = (Pge,Tge, Ige,Oge,Hge,Πge,Mge,Attsge), in
which:

� Pge = {X_ON,X_OFF}. These places model the following situations:

� X_ON: component operational.

� X_OFF: component failed.

� Tge = {X_Failure,X_Repair}. These transitions model the following actions:

� X_Failure: failure action.

� X_Repair: repair action.
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� The component’s structure can be represented by the matrix Cge = Oge− Ige =

[ X_Failure X_Repair

X_ON −1 1
X_OFF 1 −1

]
� This component has no inhibitor arcs, i.e. Hge =

[ X_Failure X_Repair

X_ON 0 0
X_OFF 0 0

]
� All transitions have the same priority level: Πge = (1,1).

� Mge = (res,0), where res ∈N represents the number of resources that can be opera-
tional or failed.

� Attsge = (Distge,Wge,Gge,Polge,Conge)
2 corresponds to attributes for the two model

transitions:

� Distge corresponds to the firing probability distribution function associated
to each transition. These probability distribution functions depend on the
pdf adopted in the high-level model.

� Wge corresponds to the weight function. In the case of the transition with
exponential distributed firing delay, this weight model the rate λt for the
transition.

� Polge is preemptive resume for all transitions (74).

� Conge is infinite server is for all transitions (74).

This component contains a P-invariant covering all places given by:

Ige =
[ X_ON X_OFF

w w
]

T .

Since, Ige
T ×Cge = 0 and Ige

T > 0 , the generic block is structurally conservative as
well as structurally bounded.

4.3.2 SPN block: VM availability component

VM availability component can be adopted in availability models (see Section 4.1) and
represent failures and repairs of running VMs on a particular server. Figure 4.5 presents the
SPN block, which is composed of two parts: (i) VM_PART that represents the behavior of
running VMs on a single machine; and (ii) DC_PART which expresses the waiting VMs to be
instantiated.
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Figure 4.5: VM availability component
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Figure 4.6 presents how failure/recovery behavior of VMs and the underlying server can
be represented by using a generic component (for the server) and a VM availability component
(for virtual machines). Each server is modeled by a generic component, and the VMs that run on
this server are represented by a VM availability component.

Figure 4.6: VM availability component representation
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Considering this SPN submodel, if the external infrastructure or the physical machine
fails during the virtual machine execution, the affected VMs should be migrated to another
physical machine (in the same data center or in another). If there is no available physical machine
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in the system, failed VMs wait to be instantiated in a physical machine after the repair activity.
This component interacts with three generic components: (i) one representing the occurrence
of disasters (DC); (ii) the network infrastructure (NAS_NET); and (iii) the physical machine
(OSPM).

Regarding VM_PART, places VM_UP, VM_DOWN, VM_STRTD and VM_WAIT denote,
respectively, the amount of VMs in states operational, failed, starting, and waiting for request.
Transitions VM_F, VM_R and VM_STRT represent the failure, repair and starting activities
related to the virtual machines. The association with the underlying infrastructure is carried
out by immediate transitions EXT_FAIL, VM_Subs and the respective guard conditions (see
Table 4.1). EXT_FAIL transition verifies external problems that occurs whenever a disaster has
occurred (i.e., #DC_UP=0) or the underlying physical machine is broken (#OSPM_UP=0) or the
network is not working (#NAS_NET_UP=0). A VM fails whenever the respective infrastructure
is not capable to provide the service. Transition VM_Subs denotes the opposite idea, in the sense
that virtual machines start only if the required infrastructure is operational ((#OSPM_UP>0)

AND (#NAS_NET_UP>0) AND (#DC_UP>0)).

Table 4.1: Guard Expressions for VM availability component.

Transition Condition Description

EXT_FAIL
(#OSPM_UP=0) OR (#NAS_NET_UP=0)

OR (#DC_UP=0) AND
((#VM_UP + #VM_DOWN + #VM_STRTD) > 0)

Failure of physical
machine or infrastructure

VM_Subs
(#OSPM_UP>0) AND (#NAS_NET_UP>0)

AND (#DC_UP>0)
Physical machine

and infrastructure working

EXT_FAIL presents input arcs from VM_UP, VM_DOWN and VM_STRTD. If there were
not arc multiplicities, the transition would fire if the respective guard expression was evaluated to
true and all input places had tokens. However, the multiplicity of input and output arcs associated
with EXT_FAIL allows a different behavior. In this case, the transition fires if at least one input
place has tokens ((#VM_UP + #VM_DOWN + #VM_STRTD) > 0) and a dependency is failed
(i.e., #OSPM_UP=0 OR #NAS_NET_UP=0 OR #DC_UP=0), see Table 4.1.

Whenever an external failure occurs, tokens of input places are instantaneously eliminated
and the sum of removed tokens is inserted in VM_WAIT. DC_PART of different VM availability
components are merged if the respective physical machines are located in the same data center. In
other words, just one DC_PART is represented for each data center. Place CHC_RES represents
the VMs represents waiting VMs to be instantiated in a data center.

For instance, Figure 4.7 presents the merging of two VM availability components to
represent two servers of the same data center. Observe that place CHC_RES1 represent the VMs
that should be started. Therefore, whenever a VM cannot be started in one server, the other
server can start this VM if the server is operational.
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Figure 4.7: Example Convertion to VM availability component
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VM availability component: Metrics.

By adopting this component, users can evaluate the following metrics: (i) availability, (ii)
VM utilization, and (iii) capacity oriented availability. Availability (Av) is given by Equation 4.2,
where #VM_UP represent the number of tokens in place VM_UP, and REQ_VMS is the number
of VMs required to consider the system operational. Basically, this expression estimates the
probability of the system is running, at least, the required VMs (REQ_VMS) to consider the
system operational.

Av = P{#VM_UP≥ REQ_VMS}
�
 �	4.2

Equation 4.3 presents the expression to evaluate the server utilization (Ut). The expression
is given by the ratio of the expected number of running VMs (E{#VM_UP}) to the maximum
number of VMs that the server can execute (N).

Ut = E{#VM_UP}/N
�
 �	4.3

Different from availability that takes into account the probability of the system is up or
down, the capacity oriented availability (Coa) evaluates how much service is available to the
users (60). The metric is presented in Equation 4.4, where P{#VM_UP = i} it the probability
to have i running VMs, and M corresponds to the number of required VMs. The number of
required VMs (M) is represented as the initial marking of place CHK_RES.

Coa =
M

∑
i=1

(P{#VM_UP = i}× i/M)
�
 �	4.4

Dynamic Behavior of VM availability Component.

Two token flows are presented to represent the dynamic behavior of this component. The
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Figure 4.8: Token Flow Availability Component [CHANGE MY NAME] P1
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first token flow is presented in Figure 4.8 and considers the situation where a VM performs its
life-cycle with no external interruption (e.g., server failures). The second token flow (Figure
4.9) illustrates a VM life-cycle and an external event (e.g., disaster occurrence) interrupts its
execution. The dynamic behavior of this component is represented as follows:

VM life-cycle with no external failure (Figure 4.8).

� Initial configuration - Figure 4.8(a). Initially, a VM is required to start (place
CHC_RES is marked), and this particular server is able to instantiate a VM (VM_WAIT

has one token). If the underlying infrastructure is operational (VM_Subs guard is
evaluated as true), a new VM can be started and transition VM_Subs fires.

� VM instantiation - Figure 4.8(b). In this stage, the VM is instantiating (VM_STRTD

is marked). When transition VM_STRT fires, the VM becomes operational. If the
underlying infrastructure fails during the instantiation (e.g., a Disaster occurrence),
EXT_FAIL fires and the process must be restarted.

� VM execution - Figure 4.8(c). In this situation, the VM is running (VM_UP) has
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one token) and only stops in case of VM error or external failures. In this particular
flow, the VM stops working due to an error in the VM itself (VM_F fires).

� VM failed - Figure 4.8(d). A VM repair activity is conducted in this phase. When
VM_R fires, the component returns to the initial configuration (Figure 4.8(a)).

Figure 4.9: Token Flow Availability Component P2
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VM life-cycle with external failure (Figure 4.9).

� Initial configuration - Figure 4.9(a). Like the previous token flow, in the initial
configuration of this component, a VM required to start (place CHC_RES is marked),
and the server is able to start a new VM (VM_WAIT has one token).

� VM instantiation - Figure 4.9(b). After VM_Subs fires, the VM instantiation pro-
cess starts. In this case, VM_STRTD gets a new token, and when VM_STRT fires the
VM becomes operational.
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� VM execution - Figure 4.9(c). When the VM is running (VM_UP is marked), an
external failure happens. In this case, the underlying server is down (OSPM_DOWN

is marked). In this situation the system returns to the initial condition. It is important
to stress that other external event could lead to the VM failure (e.g., a disaster).

� VM is waiting external repair - Figure 4.9(d). In this configuration, an external
device is failed (i.e., server). Therefore, a new VM can be started only when the
underlying infrastructure is operational again. VM_Subs guard function enables a
new VM to start only if all the related components are operational (See Table 4.1).

Formal Description of VM availability Component.

The SPN Bd p = (Pd p,Td p, Id p,Od p, Hd p,Πd p,Md p,Attsd p) represents the VM availabil-
ity component, in which:

� Pd p = {VM_UP, VM_DOWN, VM_WAIT, VM_STRTD, CHC_RES}.

� Td p = {VM_F, VM_R, VM_Subs, VM_STRT, EXT_FAIL}.

� The model’s structure can be represented by the matrix Cd p = Od p− Id p =



VM_F VM_R VM_Subs VM_STRT EXT_FAIL

VM_UP −1 0 0 1 −m1

VM_DOWN 1 −1 0 0 −m2
VM_WAIT 0 1 −1 0 m1+m2+m3

VM_STRTD 0 0 1 −1 −m3
CHC_RES 1 0 −1 0 m1+m3

 .

Where m1, m2, and m3 are non negative integers that represent the marking dependent
arc multiplicities of input and output arcs of EXT_FAIL.

� This component has no inhibitor arcs, i.e. Hd p is an empty matrix with five lines and
five columns.

� All transitions have the same priority level: Πd p = (1,1,1,1,1).

� Md p = (0,0,mx,0,0), where mx represents the maximum number of VMs that can be
executed at the same time on the underlying physical machine.

� Attsd p = (Distd p,Wd p,Gd p,Pold p,Cond p)
5 corresponds to attributes for the model

transitions:



4.3. PERFORMANCE AND AVAILABILITY MODELS 57

� Distd p. These values come from high level model.

� Wd p corresponds to the weight function. In the case of the transition with
exponential distributed firing delay, this weight model the rate λt for the
transition.

� Pold p is preemptive resume for all transitions.

� Cond p is single server ss for all transitions.

This component contains a P-invariant covering all places given by:

I(d p)(1) =
[ VM_UP VM_DOWN VM_WAIT VM_STRTD CHC_RES

d p1 d p1 d p1 d p1 0
]

T .

I(d p)(2) =
[ VM_UP VM_DOWN VM_WAIT VM_STRTD CHC_RES

d p2 0 0 d p2 d p2

]
T .

I(d p)(t) =
[ VM_UP VM_DOWN VM_WAIT VM_STRTD CHC_RES

d p2 +d p1 d p1 d p1 d p2 +d p1 d p2

]
T .

Since, I(d p)(t)
T ×Cd p = 0 and I(d p)(t) > 0 , this block is structurally conservative as

well as structurally bounded.

4.3.3 SPN block: VM performance component

VM performance component is adopted in performance models and represent the incom-
ing of VM requests as well as data center and server selection. Figure 4.10 presents the VM
performance model, which is composed of three main parts: (i) VM_PART that represents the
behavior of running VMs on a single machine; (ii) DC_PART which expresses the incoming
requests to data center; and (iii) CLOUD_PART that models the requests generation.

Figure 4.11 presents how performance behavior of VMs can be represented by using
a VM performance component. Whenever performance models are created, the failure/repair
behavior of VMs and other components are not represented (e.g., generic component for a server).
Therefore, just the performance characteristics of VMs are represented.

Table 4.2: Guard Expressions for VM performance component.

Transition Condition Description
VM_Subs no guard start virtual machine

DC_CH (#VM_WAIT>0)
request acceptance

to data center

Whenever a VM is requested in CLOUD_PART, a data center is selected in DC_PART,
and a VM is instantiated in VM_PART if the server is not full (i.e., #VM_WAIT > 0). In



58

Figure 4.10: VM Performance Component
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Source: Made by author.

Figure 4.11: VM performance component representation
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this component, failures and repairs of VMs are not modelled. All the remaining places and
transitions present the same semantics and characteristics of VM availability component except
VM_Subs and DC_CH. Table 4.2 details the guard expressions related to these transitions.

For this component, only one DC_PART is represented for each data center and just one
CLOUD_PART is represented for the whole system. DC_PART of different server are merged if
the machines are in the same data center and CLOUD_PART of all system servers are merged.

VM performance component: Metrics.

This component can be adopted to evaluate the following metric: (i) VM Utilization, and
(ii) VM execution throughput. The expression shown in Equation 4.3 is utilized to evaluate the
VM utilization. The VM execution throughput is given by Equation 4.5, where E{#VM_UP}
represents the expected number of executing VMs, and Lt is the VM execution mean time.
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Figure 4.12: Token Flow of Performance Component
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Vt p = E{#VM_UP}× (1/Lt)
�
 �	4.5

Dynamic Behavior of VM Performance component.
The token flow that represents the performance characteristics of VMs in a disaster tolerant cloud
system is represented in Figure 4.12. The behavior of this component is described as follows:

� User request - Figure 4.12(a). When CLTS has a token, a user request should be
performed to the system. The firing of transition USER_RQ represents a new VM
request that was performed to the cloud system.

� Data Center Selection - Figure 4.12(b). In this phase, the request is passed to one
data center of the cloud. As there is just one data center in this configuration, the
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request is passed to the current data center. However, if the cloud is composed of
several data centers, there will be a DC_CH place associated with each data center.
In this case, any data center can be selected (i.e., a DC_CH transitions will fire) if it
is not overloaded (i.e., VM_WAIT has tokens).

� VM Start Checking - Figure 4.12(c). Now, a new VM should be started in this data
center as CHC_RES is marked and the current server has enough resources to start
a new VM (VM_WAIT has one token). When VM_Subs fires, the VM instantiation
process begins.

� VM Instantiation - Figure 4.12(d). Just like VM availability component, in this
configuration (VM_STRTD marked) a new VM is instantiating. When VM_STRT

fires, the VM becomes fully operational.

� VM Execution - Figure 4.12(e). Finally, in this component, a VM is no longer
running when the user decide to stop its execution. Therefore, transition VM_LT fires
and the component returns to its initial state Figure 4.12(f).

Formal Description of VM Performance component.

The VM performance component is modeled by a SPN Bp f = (Pp f ,Tp f , Ip f ,Op f , Hp f ,

Πp f , Mp f ,Attsp f ), in which:

� Pp f = {CLTS, DC_CHC, CHC_RES, WM_WAIT, VM_STRTD, VM_UP}.

� Tp f = {VM_LT, USER_RQ, DC_CH, VM_SUBS, VM_SRT}.

� The model’s structure can be represented by the matrix Cp f = Op f − Ip f =



VM_LT USER_RQ DC_CH VM_SUBS VM_SRT

CLTS 1 −1 0 0 0
DC_CHC 0 1 −1 0 0
CHC_RES 0 0 1 −1 0
WM_WAIT 1 0 0 −1 0
VM_STRTD 0 0 0 1 −1

VM_UP −1 0 0 0 1


� This component has no inhibitor arcs, i.e. Hp f is an empty matrix with six lines and

five columns.

� All transitions have the same priority level. Πp f = (1,1,1,1,1).
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� Mp f = (0,0,0,mx,0,0), where mx represent the maximum number of VMs that can
be executed at the same time on the underlying physical machine.

� Attsp f = (Distp f ,Wp f ,Gp f ,Polp f ,Conp f )
5 corresponds to attributes for the model

transitions:

� Distp f These values come from high level model.

� Wp f corresponds to the weight function. In the case of the transition with
exponential distributed firing delay, this weight model the rate λt for the
transition.

� Polp f is preemptive resume for all transitions.

� Conp f is single server ss for all transitions, except for VM_LT that is
infinite server is.

This component contains a P-invariant covering all places given by:

I(p f )(1) =
[ CLTS DC_CHC CHC_RES WM_WAIT VM_STRTD VM_UP

p f 1 p f 1 p f 1 0 p f 1 p f 1

]
T .

I(p f )(2) =
[ CLTS DC_CHC CHC_RES WM_WAIT VM_STRTD VM_UP

0 0 0 p f 2 p f 2 p f 2

]
T .

I(p f )(t) =
[ CLTS DC_CHC CHC_RES WM_WAIT VM_STRTD VM_UP

p f 1 p f 1 p f 1 p f 2
p f 1+
p f 2

p f 1+
p f 2

]
T .

Conclusion Since, I(p f )(t)
T ×Cp f = 0 and I(p f )(t) > 0 , this block is structurally con-

servative as well as structurally bounded.

4.3.4 SPN block: VM performability component

VM performability component is adopted in performability models and represents VM
requests on a single physical machine considering failures and repairs on the underlying in-
frastructure. Whenever a user request is performed, a new VM is started (considering that the
infrastructure is operational) and becomes available for some time. If the external infrastructure
or the VM fail during the virtual machine execution, the VM should be migrated to another
physical machine. If there is no available physical machine in the system, the task is rejected and
a new request must be performed. As VM availability component, this component (Figure 4.13)
interacts with three generic components: (i) DC, (ii) NAS_NET and (iii) OSPM. Similar to VM
performance component, this SPN submodel is composed of three main parts: (i) VM_PART, (ii)
DC_PART and (iii) CLOUD_PART.
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Figure 4.13: VM performability model
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Figure 4.14: Example Convertion to VM performability component
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Figure 4.14 presents the representation of servers and VMs by adopting a VM per-
formability component. Observe that this model is a combination of VM performance and
dependability components to represent system performability characteristics.

Considering VM_PART, places and transitions are analogous to VM availability compo-
nent, except VM_LT that represents the period in which the VM is operational. As the previous
submodels, DC_PART of different VM performability components are merged if the respec-
tive physical machines are located in the same data center. Place CHC_RES represents the
incoming requests to the current data center. In case of no available machine in the system, the
request is cancelled. The task cancellation is represented by the transition DC_IRJC. A task
is rejected whenever one of the following conditions is satisfied: the network infrastructure is
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failed (#NAS_NET_UP=0), a disaster happened (#DC_UP=0), or the respective server cannot
instantiate a new VM (#VM_WAIT=0), the underlying physical machine is not operational
(#OSPM_UP=0). Table 4.3 presents the guard expressions related to this submodel. DC_CH

represents the opposite idea, in the sense that a task is received only if the respective infrastructure
is working.

CLOUD_PART represents the load generation and request rejection. The CLOUD_PART

of different VM performability submodels are merged, just one CLOUD_PART is represented
for the whole system.

Table 4.3: Guard Expressions for VM performability component.

Transition Condition Description

DC_IRJC
(#NAS_NET_UP=0) OR (#DC_UP=0)

OR (#VM_WAIT=0) OR (#OSPM_UP=0) task rejection

DC_CH
(#NAS_NET_UP>0) AND (#DC_UP>0)

AND (#VM_WAIT>0) AND (#OSPM_UP>0)
request acceptance

to data center

DC_RJC
(#NAS_NET_UP=0) OR (#DC_UP=0)

OR (#VM_WAIT=0) OR (#OSPM_UP=0) task rejection

CLTS and DC_CH model clients that are about to perform requests and the requests that
entered into the system, respectively. It is assumed that each client requests a single VM. The
transition USER_RQ means the request process. Finally, DC_RJC denotes the request rejection
when all data centers are unavailable. A data center is unavailable if the underlying infrastructure
is broken or the servers are full. It is important to stress that the guard expressions of DC_IRJC,
DC_CH and DC_RJC can vary depending on the number of physical machines and the number
of data centers. In this case, we assume just one physical machine in one data center. However,
this approach is generic enough to consider several machines in multiple data centers.

VM performability component: Metrics.

The following metric can be assessed by adopting this component: (i) capacity oriented
availability, (ii) VM utilization, (iii) VM execution throughput, (iv) probability to finish a request.
The metrics i-iii can be evaluated by using the Equations 4.4, 4.3, and 4.5, respectively.

Pf s =
E{#VM_UP}× (1/Lt)

P{#CLTS > 0}× (1/ReqTime)

�
 �	4.6

The probability to finish a request is given by Equation 4.6, where E{#VM_UP} repre-
sents the expected number of executing VMs, Lt is the VM execution mean time, P{#CLTS > 0}
is the probability of having VM requests, and ReqTime is the mean time between VM requests.

Dynamic behavior of VM performability component.
Figure 4.15 presents the token flow that represents the performance and availability
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Figure 4.15: Token Flow of Performability Component
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characteristics of VMs in a disaster tolerant cloud computing system. The steps presented in
Figures 4.15(a)-(e) are analogous to the steps presented in Figure 4.12(a)-(e). The main differ-
ence between the presented flows is that VM performability component allows component’s
failures/repairs, and external events (e.g., disasters) may affect VM behavior.

Formal Description of VM performability component.

The VM performability component is modeled by a SPN Bpb = (Ppb,Tpb, Ipb,Opb,

Hpb,Πpb,Mpb,Attspb), in which:

� Ppb = {CLTS, DC_CHC, CHC_RES, VM_DOWN, VM_WAIT, VM_STRTD, VM_UP}.

� Tpb = {USER_RQ, DC_RJC, DC_CH, DC_IRJC, VM_R, VM_SUBS, VM_SRT,
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VM_LT, VM_F, EXT_FAIL}.

� The model’s structure can be represented by the matrix Cpb = Opb− Ipb =



USER_RQ DC_RJC DC_CH DC_IRJC VM_R VM_SUBS VM_STRT VM_LT VM_F EXT_FAIL

CLTS −1 1 0 1 0 0 0 1 0 0
DC_CHC 1 −1 −1 0 0 0 0 0 0 0
CHC_RES 0 0 1 −1 0 −1 0 0 1 m1 +m3

VM_DOWN 0 0 0 0 −1 0 0 0 1 −m2
WM_WAIT 0 0 0 0 1 −1 0 1 0 m1+m2

+m3
VM_STRTD 0 0 0 0 0 1 −1 0 0 −m3

VM_UP 0 0 0 0 0 0 1 −1 −1 −m1


Where m1, m2, and m3 are non negative integers that represent the marking dependent
arc multiplicities indicated in Cd p.

� This component has no inhibitor arcs, i.e. Hpb is an empty matrix with seven lines
and ten columns.

� All transitions have the same priority level. Πpb = (1,1,1,1,1,1,1,1,1,1).

� Mpb = (0,0,0,0,mx,0,0), where mx represent the maximum number of VMs that
can be executed at the same time on the underlying physical machine.

� Attspb = (Distpb,Wpb,Gpb,Polpb,Conpb)
10 corresponds to attributes for the model

transitions:

� Distpb These values come from high level model.

� Wpb corresponds to the weight function. In the case of the transition with
exponential distributed firing delay, this weight model the rate λt for the
transition.

� Polpb is preemptive resume for all transitions.

� Conpb is single server ss for all transitions, except for VM_LT that is
infinite server is.

This component contains a P-invariant covering all places given by:

I(pb)(1) =
[ CLTS DC_CHC CHC_RES VM_DOWN WM_WAIT VM_STRTD VM_UP

0 0 0 pb1 pb1 pb1 pb1

]
T .

I(pb)(2) =
[ CLTS DC_CHC CHC_RES VM_DOWN WM_WAIT VM_STRTD VM_UP

pb2 pb2 pb2 0 0 pb2 pb2

]
T .

I(pb)(t) =
[ CLTS DC_CHC CHC_RES VM_DOWN WM_WAIT VM_STRTD VM_UP

pb2 pb2 pb2 pb1 pb1 pb1 + pb2 pb1 + pb2

]
T .

Since, I(pb)(t)
T ×Cpb = 0 and I(pb)(t) > 0 , this block is structurally conservative as

well as structurally bounded.
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4.3.5 SPN block: VM transmission component

A VM should migrate to another data center whenever the current data center is over-
loaded or the underlying infrastructure is failed. Moreover, Backup Server is responsible for
transmitting VM images in case of disaster, network error and server failure. VM transmis-
sion component (Figure 4.16) has four transitions that represent the VM data transfer and four
immediate transitions that depict the enabling of VM migrations. TRE_21 represents the VM
transmission between two generics data centers, in this case, Data Center 2 and Data Center 1;
TRE_12 characterizes the migration from Data Center 1 to Data Center 2; TBE_21 corresponds
to data transfer from Backup Server to Data Center 1, and TBE_12 characterizes the data transfer
from Backup Server to Data Center 2.

Figure 4.16: VM Transmission component
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TRI_12 TRE_12

TBE_21

TBE_12

TBI_21
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CHC_RES2
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Source: Made by author.

Table 4.4: Guard Expressions for VM transmission component.

Transition Condition

TRI_12

(#VM_WAIT1=0 OR #OSPM_UP1=0) AND
(#VM_WAIT2=0 OR #OSPM_UP2=0)

AND NOT(((#VM_WAIT3=0 OR #OSPM_UP3=0)
AND (#VM_WAIT4=0 OR #OSPM_UP4=0))

OR #NAS_NET_UP2=0 OR #DC_UP2=0)

TRI_21

(#VM_WAIT3=0 OR #OSPM_UP3=0) AND
(#VM_WAIT4=0 OR #OSPM_UP4=0)

AND NOT(((#VM_WAIT1=0 OR #OSPM_UP1=0)
AND ( #VM_WAIT2=0 OR #OSPM_UP2=0))

OR #NAS_NET_UP1=0 OR #DC_UP1=0)

TBI_12

(#BKP_UP=1 AND #NAS_NET_UP1=0 OR #DC_UP1=0)
AND NOT(((#VM_WAIT3=0 OR #OSPM_UP3=0)

AND ( #VM_WAIT4=0 OR #OSPM_UP4=0))
OR #NAS_NET_UP2=0 OR #DC_UP2=0)

TBI_21

(#BKP_UP=1 AND #NAS_NET_UP2=0 OR #DC_UP2=0)
AND NOT(((#VM_WAIT1=0 OR #OSPM_UP1=0)

AND ( #VM_WAIT2=0 OR #OSPM_UP2=0))
OR #NAS_NET_UP1=0 OR #DC_UP1=0)
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Table 4.4 presents the guard expressions of VM transmission component. It is assumed
that Data Center 1 contains the physical machines OSPM_UP 1 and OSPM_UP2, and Data
Center 2 includes OSPM_UP3 and OSPM_UP4. Mean Time to Transmit (MTT) represents the
mean time to transfer one virtual machine from one location to another. MTT depends on the
physical link speed, the distance between the data centers and the VM size (75). In this block,
there are three MTTs: mean time to transmit a VM from the data center to another (MTT_DCS)
and the mean times to transfer the VM image from Backup Server to Data Centers 1 and 2
(MTT_BK1 and MTT_BK2). The MTT_DCS parameter is associated to transitions TRE_12 and
TRE_21, while MTT_BK1 and MTT_BK2 are related to TBK_21 and TBK_12, respectively.

TRE_12 guard expression is set true whenever both physical machines of Data Center 1
are unavailable ((#VM_WAIT1=0 OR #OSPM_UP1=0) AND (#VM_WAIT2=0 OR #OSPM_UP2

=0)), the machines of Data Center 2 are not failed NOT((#VM_WAIT3 =0 OR #OSPM_UP3=0)

AND (#VM_WAIT4 =0 OR #OSPM_UP4=0)), the network is operational NOT(#NAS_NET_UP2

=0) and a disaster did not occur NOT(#DC_UP2=0). The guard expression of TBK_12 is
evaluated as true whenever Backup Server is operational (#BKP_UP =1) and Data Center 1 is
not accessible due to disasters (#DC_UP1 =0) or networking issues (#NAS_NET_UP1=0). Addi-
tionally, the Data Center 2 must be operational i.e., NOT(((#VM_WAIT3=0 OR #OSPM_UP3=0)

AND ( #VM_WAIT4=0 OR #OSPM_UP4=0)) OR #NAS_NET_UP2=0 OR #DC_UP2=0). The
guard expressions related to TRE_21 and TBK_21 are analogous to TRE_12 and TBK_12.

VM Transmission component: Metrics.

Two metrics can be accessed by using the VM Transmission component: (i) VM data
center transmission throughput (ii) VM backup server transmission throughput. Equation 4.7
presents the VM data center transmission throughput (Tp_dc). This metric corresponds to
the throughput of transmitted VMs due to failures or overloads in a given data center. In
this expression, E{#TRF_P2} corresponds to the expected number of transmitted VMs, and
MT T _DC represents the mean time to transmit a VM from Data center 1 to Data center 2.

Tp_dc = E{#TRF_P2}× (1/MT T _DC)
�
 �	4.7

Equation 4.8 presents the VM backup server transmission throughput (Tp_bs). This
metric is analogous to (Tp_dc), in which E{#TBK_P2} corresponds to the expected number of
transmitted VMs, and MT T _BS is the mean time to transmit a VM from backup server to Data
center 2.

Tp_bs = E{#TBK_P2}× (1/MT T _BS)
�
 �	4.8

Dynamic Behavior of VM Transmission component.
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Figure 4.17: Token Flow of Transmission Component
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The token flow that represents the VM transmission between cloud systems in a disaster
tolerant cloud environment is represented in Figure 4.17. This token flow represents two
situations: (i) all servers of a given data center are failed or overloaded (Figures 4.12(a)-(c)),
and (ii) a disaster happened to a data center or it is inaccessible (Figures 4.12(d)-(f)). In the first
situation, VMs are transmitted form Data center 1 to Data center 2. Considering the second
scenario, VMs are transmitted from Backup Server to Data center 2. The behavior of this
component is described as follows:

� Servers of Data center 1 are overloaded or failed - Figure 4.17(a). In this situa-
tion, Data center 1 has no resources to run virtual machines. Therefore, VMs of Data
center 1 (CHC_RES1 tokens) are transmitted to Data center 2 (if it is operational).
TRI_12 guard function (see Table 4.4) ensures the VM transmission process only
starts if Data center 2 is operational and has enough resources to start new VMs.
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After TRI_12 firing, the VM transmission should start.

� VM transmission - Figure 4.17(b). In this phase, VMs transmitted from Data center
1 to Data center 2 are represented as TRE_12 firings. As long as VMs are transmitted
from Data center 1 to Data center 2, the VM instantiation process can be started on
Data center 2 (Figure 4.17(c)).

� VMs can be started on Data center 2 - Figure 4.17(c). Transmitted VMs from
Data center 1 can be started on Data center 2. Observe that, place CHC_RES2

corresponds to an instance of CHC_RES place of VM availability, performance, or
performability components. This place represents VM instance requests for a given
data center.

� A disaster happened to Data center 1 or it is inaccessible - Figure 4.17(d). This
picture represents the second way to utilize a VM transmission component. In this
case, Data center 1 is not operational due to a disaster or network failure. In this
case, VM backups should be transmitted from backup server to Data center 2 (if it is
operational). Similar to Figure 4.17(b), a VM can only be sent to Data center 2 if this
data center is able to receive VM requests. This behavior is represented by TBI_12

guard function (see Table 4.4).

� VMs can be started on Data center 2 - Figure 4.17(e). This phase is analogous to
the presented in Figure 4.17(c).

Formal Description of VM transmission component.

The VM transmission component is modeled by a SPN Btr = (Ptr,Ttr, Itr,Otr,Htr,

Πtr,Mtr,Attstr), in which:

� Ptr = {CHC_RES1, TRF_P1, TRF_P2, TBK_P1, TBK_P2, CHC_RES2}.

� Ttr = {TRE_21, TRI_21, TRE_12, TRI_12, TBE_21, TBI_21, TBE_12, TBI_12}.

� The model’s structure can be represented by the matrix Ctr = Otr− Itr =



TRE_21 TRI_21 TRE_12 TRI_12 TBE_21 TBI_21 TBE_12 TBI_12

CHC_RES1 1 0 0 −1 1 0 0 −1
TRF_P1 −1 1 0 0 0 0 0 0
TRF_P2 0 0 −1 1 0 0 0 0
TBK_P1 0 0 0 0 −1 1 0 0
TBK_P2 0 0 0 0 0 0 −1 1

CHC_RES2 0 −1 1 0 0 −1 1 0


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� This component has no inhibitor arcs, i.e. Htr is an empty matrix with six lines and
eight columns.

� All transitions have the same priority level. Πtr = (1,1,1,1,1,1,1,1).

� Mtr = (0,0,0,0,0,0).

� Attstr = (Disttr,Wtr,Gtr,Poltr,Contr)
8 corresponds to attributes for the model transi-

tions:

� Disttr These values come from high level model.

� Wtr corresponds to the weight function. In the case of the transition with
exponential distributed firing delay, this weight model the rate λt for the
transition.

� Poltr is preemptive resume for all transitions.

� Contr is single server ss for all transitions.

This component contains a P-invariant covering all places given by:

I(tr) =
[ CHC_RES1 TRF_P1 TRF_P2 TBK_P1 TBK_P2 CHC_RES2

tr tr tr tr tr tr
]

T .

Since, I(tr)
T ×Ctr = 0 and I(tr) > 0 , this block is structurally conservative as well as

structurally bounded.

4.4 Survivability Models

This section presents the adopted models to evaluate system survivability. The proposed
approach (Figure 4.1) adopts SPN models for estimating survivability parameters in IaaS clouds.
Although this work is focused on cloud computing systems, the approach is generic enough to
be applied for other disaster recovery systems. Two models are proposed to evaluate system
survivability. The first model (RPO Evaluation model) estimates the probability of finishing
a backup at RPO time. The second survivability models evaluates the probability to recover a
disaster tolerant IaaS cloud at RTO time.

It is important to emphasize that the performance, dependability and performability
models are not combined with the survivability models (they represent distinct models). In
other words, these models are evaluated in different times of cloud system assessment. Only
performance, availability performability models are created by joining basic building blocks to
create the final models. The survivability models do not have this characteristic in the sense that
they always have the same structure.
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4.4.1 RPO Evaluation Model

The RPO evaluation model is presented in Figure 4.20. It represents the backup process
in which a data center transmits VM images to BS. This model is composed of three main
sub-models: (i) Data Center Backup, (ii) Transmission and (iii) Store. The first sub-model
represents the start of backup operation in a given data center. A token in BSTR means that the
backup process should start and the firing of BK_ST leads to the creation of new tokens (VMs)
representing new VM images to be backed up. The new tokens are stored in DC_TMT.

Figure 4.18: RPO Model
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Source: Made by author.

Regarding Transmission submodel, DC_TRS represents the transmission of VMs from the
data center to BS. It is important to stress that the moment matching approach (Section 3.4.2.4)
can be adopted to represent expolinomial distributions for this transition. Once the VMs are
transmitted, the data integrity of each VM is checked (VM_CHK). If the process presents
errors, the process is restarted (ERR). In case of correct transmission, the VMs should be
stored/replicated (Store submodel). Finally, the Store submodel represents the storing/replication
process of the transmitted VMs. It is composed of two places, one that represents the VM images
that are about to be stored (STR) and another one to model the saved images (STRED). The
transition STRNG models the store/replication process. If the BS has not replication mechanisms,
SUCC may be connected directly to STRED. In this case, STR and STRNG must be discarded.

In order to perform a disaster recovery evaluation, the following parameters are collected
from the high level model: (i) the number of VMs must be periodically backed up, (ii) the backup
period, (iii) the number of VMs that should be recovered to restore the service and (iv) the data
center transmission characteristics. The system is evaluated using transient evaluation, which is
adopted to observe the behavior of the disaster recovery mechanisms along the time (26). The
system can be evaluated taking into account backup and recovery characteristics as detailed as
follows.

Recovery Point Evaluation. To evaluate the system survivability in terms of RPO, a
transient evaluation must be performed adopting the metric P{#STRED = VMs} in the time
RPO−Bp. In other words, we are interested in evaluate the probability of finish the backup
process in a specific time (RPO−Bp).

In this study, we are interested in evaluating the recovery point considering the worst-case
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scenario (Figure 4.19). According to (76), this situation happens when the disaster occurs during
the backup process. Observe that, in this case, the Recovery Point (Rp) is equal to the sum of the
Backup Period (Bp) and the actual Backup Time (Bt). Consequently, the probability of meeting
the RPO (PRPO) in the worst-case scenario is given by:

PRPO = P{Rp ≤ RPO}= P{Bt ≤ RPO−Bp}.

As Bp and the RPO are project decision parameters, the cloud designer must evaluate the
behavior of the backup process to check the PRPO metric. If the assessed probability is less than
the user defined level, the system is not survival.

Figure 4.19: RPO worst case scenario.

Source: Made by author.

4.4.2 RTO Evaluation Model

Figure 4.20 shows the RTO evaluation model which represents the recovery process
immediately after the disaster occurrence. The model is composed of two basic submodels,
one representing the disaster detection and other modeling the transmission of VM images to
operational data centers. The first submodel is composed of a place that represents the start of
recovery process (DSTR), a transition which models the disaster detection (DDCT) and a place
that denotes the data center selection (DC_SL). The number of VM images that will be recovered
is represented by VMs (arc multiplicity from DDCT to DC_SL). The other components of DC
Transmission block are analogous to the components of RPO model (Figure 4.20) and will not
be explained in details. The difference is that the three last components (STRT1, STTNG1 and
STTED1) represents virtual machine instantiation instead of data store.

Recovery Time Evaluation. The process of checking the survivability in terms of RTO
is similar to the recovery point evaluation. While the last considers the worst-case scenario, the
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Figure 4.20: RTO Model
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Source: Made by author.

recovery time evaluation is calculated directly. The probability of the recovery time meet the
objective (PRTO) is calculated as follows:

PRTO = P{Rt ≤ RTO}.

Where Rt denotes the recovery time. Similarly to RPO evaluation model, a transient
evaluation should be conducted to assess the probability to recover the system respecting the
RTO limit. The observed metric is P{#STTED1 = VMs} in time RTO. If the evaluated probability
is less than the requirement, the system is not survival.

4.5 Final Remarks

This chapter presented the evaluation process and the models adopted in this work.
Initially, the evaluation process was presented, and an example was provided to illustrate the
proposed approach. Afterward, The high-level model was detailed. By using high-level models to
represent the IaaS disaster tolerant clouds, users can describe precisely the system characteristics
and interactions. Then, performance and availability models were described as well as its features.
Finally, the survivability models were presented.





757575

5
Mapping High-Level Models to Evaluation Models

This chapter describes the formal composition rules adopted in the proposed modeling
approach for creating the final SPN model as well as model composition example. Initially,
the mapping algorithm that translates HLM into the final SPN evaluation is presented. Next,
modeling examples are given and, the adopted composition rules are demonstrated. Finally, The
properties of the proposed operators are proved.

5.1 Mapping Algorithms

The proposed framework has two algorithms for SPN model generation, one for per-
formability and availability models and other for performance models. As the survivability
models do not adopt the composition of SPN components to create the final SPN model, there
is no translation algorithm applied to these models. The presented algorithms are responsible
for translating the high-level models into SPN evaluation models. The first algorithm translates
high-level models into availability, and performability models, whereas the second generates
performance models from high-level models.

Figure 5.1 presents the adopted algorithm for performability and availability SPN model
generation, which creates a SPN model based on high level IaaS model. Firstly, a SPN model
with no places and transitions is created (line 3). The result model is incremented with new places
and transitions from new SPN blocks (e.g., increment function in line 5). The increment function
corresponds to the net union operator, which merges two SPNs into a new SPN (Section 5.2.2).
Let N1 and N2 be two SPNs, then N1.increment(N2) corresponds to the net union of N1 and
N2 and the result is saved in N1. The composition of all new SPN components is returned in
line 19.

Function getBackupServer (line 4) returns the backup server element (bs). Next, the
SPN model is incremented with a new generic component for representing the backup server.
Function parseGenericComponent (line 5) creates a generic component. The first and second
arguments (Tdi(bs), Tre(bs)) respectively represent probability distribution functions associated
with failure and repair transitions of resulted SPN component.

For each data center element (d), a generic component is created for representing disaster
and recovery events (line 7). A new loop is created (line 8) for representing the creation of
SPN generic components for representing operating system, hardware and VM behavior of each
server (lines 9 to 11). parseVmBehaviorComponent receives the parameters for creating VM
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Figure 5.1: Performability or Availability SPN model generation Algorithm
01 SPN parseModel(G =< Flt ,Tdi,Tre,MT T,CV M,Treq,Lt ,Sv >)

02 {

03 SPN result = EMPTY_SPN;

04 bs = getBackupServer(Flt);

05 result.increment(parseGenericComponent(Tdi(bs), Tre(bs)));
06 for each(d = < Pd ,Cd > ∈ D){
07 result.increment(parseGenericComponent(Tdi(d), Tre(d)));
08 for each(pm = <Vp,Sp,os,hw,m > ∈ Pd){

09 result.increment(parseGenericComponent(Tf r(os), Trp(os)));
10 result.increment(parseGenericComponent(Tf r(hw), Trp(hw)));
11 result.increment(parseVmBehaviorComponent(Vp, Sp, m, CV M, Treq, Lt));

12 }

13 networkDependabilityParams := RBDEvaluation(Cd);

14 result.increment(parseGenericComponent(networkDependabilityParams));

15 }

16 for each (( f 1, f 2) | f 1, f 2 ∈ Flt and f 1 6= f 2){
17 result.increment(parseDataCenterTransmission( f 1, f 2, MT T));
18 }

19 return result;

20 }

Source: Made by author.

availability or VM performability components. If the parameters CV M, Treq, Lt are not assigned,
a VM availability component is created. Otherwise, the function creates a VM performability
component. Finally, a new transmission component for each pair of facilities (line 17). The MTT
between facilities is updated and the result is incremented in the model.

Figure 5.2 shows the SPN generation algorithm for performance models. The algorithm
is a shortened version of the performability/availability algorithm that creates VM performance
components for all servers in the model (line 6). Only VM performance components are modeled
in this algorithm as failures/repairs are not represented in performance models.

5.1.1 Mapping HLM to SPN: Example

In this section, we present an example that translates a high level model G1 into a SPN
evaluation model. Figure 5.3 presents the cloud system to be represented as a high level model
and then translated to a SPN model. The high level model related to this example is G1 = (Flt ,
Tdi, Tre, MT T , CV M, Treq, Lt , Sv) where:

� Flt = {DC1,DC2,BS} is a finite set of facilities. DC1 and DC2 are two data centers
and BS represents the backup server.

� Tdi means the disaster occurrence function, such that Tdi(DC1) = DD1, Tdi(DC2) =
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Figure 5.2: Performance SPN model generation algorithm
01 SPN parsePerformanceModel(G =< Flt ,Tdi,Tre,MT T,CV M,Treq,Lt ,Sv >)

02 {

03 SPN result = EMPTY_SPN;

04 for each(d = < Pd ,Cd > ∈ D){
05 for each(pm = <Vp,Sp,os,hw,m > ∈ Pd){

06 result.increment(parseVmBehaviorComponent(Vp, Sp, m, CV M, Treq, Lt));

07 }

08 }

09 return result;

10 }

Source: Made by author.

DD2 and Tdi(BS) = DBS. DD1, DD2 and DBS represent the disaster probability distri-
bution function related to DC1, DC2 and BS.

� Tre represents the disaster recovery function, where Tre(DC1)=RD1, Tre(DC2)=RD2

and Tre(BS) = RBS. RD1, RD2 and RBS represent the recovery probability distribution
function related to DC1, DC2 and BS.

� MT T denotes the VM transmission function. MT T (DC1,DC2) = T12, MT T (BS,DC1)
= TB1, MT T (BS,DC2) = TB2. T12, TB1 and TB2 represent probability distribution
function related to transmitting VMs between DC1 and DC2; BS and DC1; and BS
and DC2.

� CV M =C means the maximum number of requested VMs at a given time.

� Treq = Req corresponds to the request time probability function.

� Lt = Lt is the VM life-time probability function that corresponds to a PDF that relates
each VM duration time with a probability.

� Sv = (vbd,bpd,rvd) corresponds to survivability parameters, where vbd is the number
of VMs must be periodically backed up. bpd represents the backup period and rvd is
the number of VMs that should be recovered to restore the service.

DC1 = (PM1,PM2,NAS1,ROUT 1,SWT 1) is composed of two physical machines PM1
and PM2. NAS1,ROUT 1,SWT 1 are network components and denote the NAS, router and
switch related to DC1. DC2 = (PM3,PM4,NAS2,ROUT 2,SWT 2) has an analogous structure
of DC1 and will not be explained in details.

PM1 = ( /0,Sp1,os1,hw1,N) is the tuple that represents the components associated with
PM1. This physical machine has no VMs started at system startup. Sp1 denotes the virtual
machine set up time probability distribution function. os1 and hw1 represent the PM1’s software
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Figure 5.3: Motivational Architecture.

São Paulo

Recife Rio-de-Janeiro

Source: Made by author.

and hardware. N is maximum number of VMs that PM1 can execute. The others physical
machines of this system have analogous structures. The following lines presents a step-by-step
demonstration to explain how the final SPN is obtained.

Step 1: Backup Server Creation.

Figure 5.4: Step 1: SPN Generation Example
BACKUP

Source: Made by author.

This step concerns the creation of a generic component to represent failure/repair behav-
ior of backup server. Line 4 of parseModel algorithm (Figure 5.1) is responsible for obtaining
the HLM element that represents the backup server. In line 5, a new generic component is
created to represent the backup server, and this component is incremented to the final SPN model.
Functions Tdi and Tdi are adopted to provide the generic component parameters related failure
and repair of backup server (DBS and RBS). Figure 5.4 presents the result SPN model for this
algorithm step.
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Step 2: Disaster Representation.

In the second step, a generic component is created to represent disasters for data center
1. Line 7 of parseModel algorithm is adopted to create a new generic component to represent
disasters and recoveries on data center 1. The disaster and recovery parameters are obtained by
Tdi and Tre functions (DD1 and RD1). The final SPN model is presented in Figure 5.5

Figure 5.5: Step 2: SPN Generation Example
BACKUPDISASTER1

Source: Made by author.

Step 3: Server 1 Representation.

In this phase, two component are incremented to the final model: (i) a generic component
to represent the server (OSPM1), and (ii) a VM availability or performability component to
model the behavior of related VMs (in this case, performability component). Lines 9 and 10 of
parseModel algorithm create two generic components, one for representing the server’s operating
system and other to model the server’s hardware.

For this particular example, we consider the servers’ failure/repair events exponentially
distributed. Therefore, an intermediate RBD evaluation is performed (not shown in the algorithm)
to create a new SPN sub-model to represent the server’s hardware and operating system in a
single generic component (i.e., OSPM1). The intermediate RBD model is composed of server’s
hardware and operating system in a series configuration. The RBD evaluation assesses the mean
time to failure (MTTF) and mean time to repair (MTTR) related to the intermediate RBD model,
and these values are assigned to the OSPM1 component (see Figure 5.6).

Therefore, instead of having two generics components (hardware and operating system),
the resulting model considers just one generic component to represent the server. It is important
to stress that this simplification is optional, and users can adopt two distinct generic components
to represent hardware and operating system of a given server. Line 11 of parseModel algorithm
is adopted to create a VM performability to represent the life-cycle of VMs on OSPM1 server.
The SPN representation of result model related to this step is presented in Figure 5.6.
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Figure 5.6: Step 3: SPN Generation Example
BACKUP

DC_IRJ C1

OSPM1DISASTER1

DATA_CENTER1 LOAD_GEN

Source: Made by author.

Step 4: Server 2 Representation.

This step aims at representing the second server of data center 2. Lines 9-11 of parse-

Model algorithm will be repeated for each server in a given data center. As this step is analogous
to Step 3, it will not be presented in details. However, it is important to observe how VM
performability components are combined to represent the possibility to instantiate a VM in any
server of the data center. As place CHC_RES1 is merged for VM performability components
of Servers 1 and 2, a VM request can be served by any server of this data center. It is also
important to note that the LOAD_GEN part is unique for the whole system, and whenever a new
VM performability component is created the respective LOAD_GEN part is merged with the
existing one in the final model (Figure 5.7).

Step 5: Network components Representation.

In this phase, the network components representation is added to the final model (Lines
13-14 of parseModel algorithm). This step is analogous to the Step 3, in the sense that an
intermediate RBD evaluation is performed to decrease the model complexity. Initially, an RBD
evaluation is conducted to assess the availability parameters of the network infrastructure (as
a single component). Then, a generic component (NAS_NET1) is added to the final model
(Figure 5.8) to represent the network failure/repair characteristics.

Step 6: Data Center 2 Representation.
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Figure 5.7: Step 4: SPN Generation Example
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Source: Made by author.

This step aims at representing the second data center of the disaster tolerant cloud system
infrastructure. Although this step is represented as just one step, it represents a replication of
Steps 2-4 for data center 2. The algorithm steps are analogous. Therefore, this step will not be
detailed. Figure 5.9 presents the resulting SPN for this step. Observe that just one LOAD_GEN

part is represented for the whole system, and a new CHK_RES place is created for representing
VM requests of data center 2.

Step 7: VM Transmission Representation.

This is the last phase of the SPN result model creation. It involves the creation of VM
transmission components for representing the transmission of VMs in case of disasters of data
center overloads. For each pair of data centers, a new VM transmission component is created
(Line 17 of parseModel algorithm). The final SPN model can be observed in Figure 5.10.

The process to create availability and performance models is similar to one presented
previously. The main difference is that performance models adopt the algorithm presented in
Figure 5.2. As failures, repairs, and disasters are not represented, generic and transmission
components are not represented for performance models. Figures 5.11 and 5.12 show analogous
output models of availability and performance of a cloud system with two data centers with two
servers each, respectively.
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Figure 5.8: Step 5: SPN Generation Example
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Source: Made by author.

Figure 5.9: Step 6: SPN Generation Example
OSPM2OSPM1 OSPM3 OSPM4DISASTER2DISASTER1 NAS_NET_1 NAS_NET_2BACKUP

DATA_CENTER1 DATA_CENTER2LOAD_GEN

DC_IRJ C1

Source: Made by author.

5.2 Model Composition Rules

This section presents the formal composition rules adopted in this work to compose the
proposed SPN components for creating the final SPN model. In this section, the composition
rules will be shown and the respective properties are proved. In this section, we prove that
by using the proposed SPN models and the composition rules, the final model will be always
structurally bounded as well as conservative.

The proposed modeling approach adopts two operators to compose SPN basic component
(e.g., SPN generic component): (i) place renaming, and (ii) net union. Place renaming is an
operator that renames a subset of places of a given SPN. This operator represents an auxiliary
operator for net union operator that generates a new SPN by merging two existing SPNs. In this
section, place renaming is presented, and, next, net union is detailed.
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5.2.1 Place Renaming

This section defines the place renaming operator and provides an example. Before
presenting the operator, a notation is provided to simplify the SPN representation. Let N ′ =

(P′,T ′, I′,O′,H ′,Π′,M0
′,Atts′) be a SPN, the following notation is adopted:

� IN ′(p, t) is equivalent to I′[ord pN ′(p),ordtN ′(t)].

� ON ′(p, t) represents O′[ord pN ′(p),ordtN ′(t)].

� HN ′(p, t) is adopted to represent H ′[ord pN ′(p),ordtN ′(t)].

� ΠN ′(t) is equivalent to Π′[ordtN ′(t)].

� M0N ′(p) represents M0
′[ord pN ′(p)].

� AttsN ′(t) is equivalent to Atts′[ordtN ′(t)].

ord pN ′ and ordtN ′ are the mapping functions presented in SPN definition (Section
3.4.2). The Following sets are adopted to define the the domain and codomain of net union/place
renaming operators.

Definition 4. Set of all SPNs - SSPN.
Let SSPN = {Ni | i ∈ N∗}, in which Ni = (Pi,Ti, Ii,Oi, Hi,Πi,M0i,Attsi). SSPN corresponds to
the set of all stochastic Petri nets (SPNs).

Definition 5. Restricted RSSPN - RSSPN
Let RSSPN ⊂ SSPN be a restricted set of SPNs, in which ∀Ni,Nn ∈ RSSPN,

1. (Ti∩Tn = /0 ∧ Pi∩Pn = /0) ∨

2. (Ti∩Tn = /0 ∧ Pi∩Pn 6= /0→ ∀p ∈ Pi∩Pn,M0Ni(p) = M0Ni(p)) ∨

3. (Ti∩Tn 6= /0 ∧ Pi∩Pn 6= /0→∀p∈Pi∩Pn∧∀t ∈ Ti∩Tn, INi(p, t)=INn(p, t),ONi(p, t)=
ONn(p, t),HNi(p, t) = HNn(p, t),ΠNi(t) = ΠNn(t),M0Ni(p) = M0Nn(p),AttsNi(t) =
AttsNn(t))

RSSPN is a subset of SSPN considering the following situations.

1. Disjoint SPNs.

2. SPNs that have no common transition, but with common places. In this case, the
common places must have the same initial Marking (M0).

3. SPNs with common transitions and places. The common transitions and places must
have the following characteristics, i.e.:

3.1 Same input arcs (INi(p, t) = INn(p, t)).

3.2 Same output arcs (ONi(p, t) = ONn(p, t)).

3.3 Same inhibitor arcs (HNi(p, t) = HNn(p, t)).
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3.4 Same initial marking (M0Ni(p) = M0Nn(p)).

3.5 Same transition attributes (AttsNi(t) = AttsNn(t)).

In this work, we identify elements of a given SPN by its name. Therefore, when two
elements have the same name, they actually represent the same entity.
Definition 6. Place Renaming. Place renaming is a function denoted by

ρ : (P∪T )→
⋃

N ∈SSPN

{PN ∪TN },

that renames places of a SPN N = (P,T, I,O,H,Π,M0,Atts), such that a new isomorphic SPN
N ′ = (P′,T ′, I′,O′,H ′,Π′,M′0,Atts′) is obtained.

� P’ = {ρ(p) | ∀p ∈ P};

� T’ = {ρ(t) | ∀t ∈ T };

� I′ ∈ (Nn→ N)n×m is a matrix of input arcs where each entry i jk ∈ I′ corresponds
to the arc multiplicity (possibly marking-dependent) from place ρ(p j) to transition
ρ(tk).

� O′ ∈ (Nn→ N)n×m is a matrix of output arcs where each entry o jk ∈ O′ corresponds
to the arc multiplicity (possibly marking-dependent) from transition ρ(t j) to place
ρ(pk).

� H ′ ∈ (Nn→N)n×m is a matrix of inhibitor arcs where each entry h jk ∈H ′ corresponds
to the possibly marking-dependent arc multiplicity of an inhibitor arc from place
ρ(p j) to transition ρ(tk).

� ∀t ∈ T,Π′(ρ(t)) = Π(t);

� ∀p ∈ P,M′0(ρ(p)) = M0(p);

� ∀t ∈ T,Atts′(ρ(t)) = Atts(t);

The notation adopted is N ’ = N /ρ , which represents the application of function ρ in
N , obtaining as result N ’. In this work, the place renaming function (ρ) is bijective. Therefore,
the construction of a respective inverse operation is allowed.

Place Renaming: Example

The following renaming function (ρ1) is adopted to convert the SPN N into N ′. The
following renaming function is adopted:

∀px ∈ PN

ρ1(px) =

p2, i f (px = p1)

px, otherwise
The result of N ′ = N / ρ1 is depicted in Figure 5.13.
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Figure 5.13: Place renaming example
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Source: Made by author.

5.2.2 Net Union

This section describes the net union operator, which merges places and transitions (if
exist) of the SPNs. The proposed operator considers the characteristics of the adopted SPN
components to create new SPNs. Moreover, a mathematical proof is presented to demonstrate
that this operator conserves properties of original nets (e.g., structural conservation).
Definition 7. Net Union Operator. Net union is a function represented by t : RSSPN× RSSPN
→ RSSPN that merges two RSSPN. Let N1 = (P1,T1, I1,O1,H1,Π1,M01,Atts1) and N2 =
(P2,T2, I2,O2,H2,Π2,M02,Atts2) ∈ RSSPN. N3=(P3,T3, I3,O3,H3,Π3,M03,Atts3) is obtained
by N3 = N1tN2, such that:

∀pi ∈ P3∧ ti∪T3 :

� P3 = P2∪P1

� T3 = T2∪T1

� IN3(pi, tt) =


IN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

IN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

0, otherwise

� ON3(pi, tt) =


ON1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

ON2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

0, otherwise

� HN3(pi, tt) =


HN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

HN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

0, otherwise

� ΠN3(ti) =

ΠN1(ti), i f ti ∈ T1

ΠN2(ti), i f ti ∈ T2
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� M0N3(pi) =

M0N1(pi), i f pi ∈ P1

M0N2(pi), i f pi ∈ P2

� AttsN3(ti) =

AttsN1(ti), i f ti ∈ T1

AttsN2(ti), i f ti ∈ T2

For the sake of readability, the infix notation of t is adopted (as presented before). An
example of net union operator utilization is shown in Figure 5.14. In this example, two RSSPN
nets are merged (N1 and N2) to generate a new RSSPN N3. The Appendix B presents properties
of net union operator. These properties are adopted to demonstrate that all generated models,
using net union operator and the proposed building block models, are structurally bounded and
conservative.

Figure 5.14: Net Union Example

p1 p2t1 p2

p3

p4

t1 t2

p2

p3

p4

t1 t2p1

N1

N2

N3

Source: Made by author.

5.3 Basic Models Combination Proof

This section presents the proofs that all SPN generated by using net union operator and
the proposed basic components are structurally bounded and conservative. As presented in
Section 4.3, the created SPN models can be divided into three categories: (i) availability, (ii)
performance, and (iii) performability models. As the demonstrations are analogous, just the
properties of the composition of availability models will be proved. The demonstrations for
performance and performability model follow the same steps.

5.3.1 Availability Models: Structural Properties

The proposed availability models are structurally bounded and conservative. The corre-
sponding proof is composed of two steps. Initially, the set of all generated availability models by
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using the net union operator is defined. Then, an inductive proof is presented to demonstrate
the aforementioned properties. The same steps are conducted to the proposed performance and
performability models.

Definition 8. Set of All availability models generated from proposed SPN components and
net union operator - D∗.

Let Ge the set of all existing generic components, De the set of all VM availability
components, and Tr the set of all transmission components. Then, D = Ge∪ De∪ Tr represents
all the possible components that can be adopted to create the proposed availability models. Let
N /0 be the identity element, D∗ represents the set of all proposed availability models using net
union operator and D . D∗ =

⋃
i∈N

Di = D0∪D1∪D2∪ ..., in which D0 = N /0, Di+1 = {atb|a ∈

Di∧b ∈D} and i≥ 0.

Theorem 1. D∗ is Composed of Structurally Conservative and Bounded Models.
Let N be a SPN ∈ D∗, then N is structurally conservative as well as structurally

bounded.

Proof. Base Cases:

1. N ∈D0. As D0 = {N /0}, N corresponds to the identity element, which has no state
space. Therefore, N is structurally conservative as well as structurally bounded.

2. N ∈D1. D1 = {NatNb|Na ∈D0∧Nb ∈D}. Since N tN /0 = N , D1 is only
composed of the proposed SPN components which are structurally conservative as
well as structurally bounded models (see Section 4.3).

3. N ∈ D2. D2 = {Na tNb|Na ∈ D1 ∧Na ∈ D}. This base case involves all the
possible unions of D elements. The possible combinations are shown as follows.

i Nc = Nd tNe, in which d = e. Nc is structurally bounded as well as
structurally conservative, since the net union of a building block with itself
results in the same building block. As presented previously, all building
blocks are structurally bounded and conservative.

ii Nc = Nd tNe, such that d 6= e∧Pd ∩Pe = /0∧Td ∩Te = /0. Nc is struc-
turally bounded and conservative, since the net union of disjoint nets
preserves the P-invariants of each subnet in the generated model.

iii Nc = Nd tNe, in which d 6= e∧ (Pd ∩ Pe 6= /0∨ Td ∩ Te = /0). Nc is
structurally bounded and conservative, since all possible mergings of two
components to create availability models result in structurally bounded
and conservative nets. Possible combinations are shown in Appendix A.1.1
and A.1.2.

Inductive Step: Nx ∈Di+1 is structurally conservative and structurally bounded (Ix
T ×

Ax = 0, in which Ax is the respective incidence matrix and Ix
T is a vector of positive integers).

The recursive definition of D∗ indicates that each N ∈ Di is composed using one or
more base cases presented previously: D∗ =

⋃
i∈NDi = D0∪D1∪D2∪D3∪ ..., such that
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� D1 = {atb|a ∈D0∧b ∈D}

� D2 = {atb|a ∈D1∧b ∈D}= {(b0tb1)tb|b0 ∈D0∧b1,b ∈D}

� Di = {atb|a ∈Di∧b ∈D}= {(((b0tb1)...)tbi−1)tb|b0 ∈D0∧b1, ...,bi−1,b ∈
D}

As all base cases do generate structurally conservative as well as structurally bounded nets
(the conservative components are preserved and, also, the places that allow the fusion with other
building blocks); and net union operator is a commutative monoid (the composition order does not
matter), N is a structurally bounded net. Since Di+1 = {((((b0)tb1)...)tbi−1)tbi)tb|b0 ∈
D0∧b1, ...,bi−1,bi,b ∈ D}) also utilizes the base cases and net union operator, Nx ∈ Di+1 is
structurally bounded as well as conservative. Moreover, all possible mergings of components
to create availability models result in structurally bounded and conservative nets. Possible
combinations are shown in Appendix A.1.1 and A.1.2. Thus, for any Ny ∈D∗, Ny is structurally
bounded and conservative. This concludes the proof �.

A similar demonstration method is adopted for performability and performance models.
By using the previous steps, it is possible to demonstrate that all generated performability and
performance models are structurally bounded and conservative nets. In this case, the remainder
demonstrations presented in Appendix A.1 for base cases and Appendix A.2 for inductive steps
are adopted.

5.4 Final Remarks

This chapter described the main algorithm of this thesis and the formal composition
rules adopted in the proposed modeling approach. An example was presented to illustrate the
translation of an HLM into a final SPN model. Additionally, The structural properties of the
generated models by using the proposed composition rules were proved. Therefore, it is possible
to state that the generated models will not suffer from state space explosion problem (26). Then,
no matter how big the evaluated system is, the final model will always result in a structural
bounded and conservative model.
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6Evaluation Environment

This chapter presents an overview of the proposed tools to evaluate disaster tolerant
cloud computing systems. Two tools are presented in this chapter: (i) Geoclouds Modcs, and (ii)
Eucabomber 2.0. GeoClouds Modcs is an environment for providing support to automatic model
generation and evaluation of geographically distributed cloud computing systems. Eucabomber
2.0 supports dependability studies by injecting fault/repair events into the components of cloud
systems. Geoclouds Modus supports the proposed modeling approach (Section 4.1) by providing
a user-friendly way to create the evaluation models and assess the user metrics. On the other
hand, Eucalyptus 2.0 is adopted to validate the generated models by conducting experiments
in real-world environments.Initially, Geoclouds Modcs’ architecture and data flow are detailed.
Then, Eucabomber’s architecture, tool’s layers and usability overview are presented.

6.1 GeoClouds Modcs

GeoClouds Modcs is an integrated environment for performance, availability and sur-
vivability evaluation of geographically distributed IaaS systems taking into account disaster
tolerance. The presented environment adopts RBD and SPN models for performability and
survivability assessment. By using the tool, cloud system designers can create, edit and evaluate
SPN and RBD models through a high-level user interface. Therefore, users need to provide
only structural and failure/repair data to perform an evaluation and details related to SPN model
composition are not required. In addition to this, the proposed environment exports the generated
models to external evaluation tools such as Mercury (77) or TimeNET (72). Then, advanced
users can modify exported models to consider a customized evaluation.

Figure 6.1 presents the environment’s structure. The framework is written in Java® (78),
therefore it is portable to any operating system that supports Java Virtual Machine (79). The tool’s
Graphical User Interface (GUI) adopts Google Maps API® (80) to estimate the transmission
parameters and allow users indicate data center locations. The high level model updating process
follows the model view controller design pattern, consequently the SPN models are automatically
updated whenever the user performs GUI changes.

GeoClouds Controller manages the translation process that is responsible for creating
SPN basic components based on High Level Model. Translator creates intermediate RBD models
and combines SPN basic components to generate the final SPN model. Translator utilizes a
Layout Manager to organize the graphical positions of places and transitions of final SPN model.
Hence, experienced users can edit the SPN final model according to their needs. Generated SPN
models can be exported to Mercury or TimeNET. A tool screenshot is presented in Figure 6.2,
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Figure 6.1: System Structure
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Source: Made by author.

which is composed of three main Panels. Panel 1 - for representing the IaaS infrastructures and
subcomponents. Panel 2 - in which architecture and evaluation parameters are detailed, and
Panel 3 - where users can select data center positions.

Figure 6.2: GeoClouds Tool’s Screenshot

Source: Made by author.

For a better understanding of the tool’s internal evaluation process, Figure 6.3 depicts
the tool data flow. Basically, this picture summarizes how the models are created and evaluated
considering the tool internal steps. Firstly, the user configures the High Level IaaS model by
providing the parameters and the evaluation details. After the user’s evaluation request, the tool
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creates and evaluates an internal RBD model. The RBD results are utilized in the SPN model to
configure the servers and network infrastructures. Finally, the SPN model is evaluated and the
results are provided.

Figure 6.3: Data Flow Model
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Source: Made by author.

6.1.1 MTT estimation

The default approach adopted to assess the network throughput considers the distance
between the communication nodes (81) (75). Nevertheless, other methods may also be adopted,
for instance, experiments can be conducted to estimate the available bandwidth between sites.
Expressions 6.1, 6.2 and 6.3 estimate an upper bound on the transfer rate.

Rate < (MSS/RT T )× (1/
√

p),
�
 �	6.1

where Rate (kbps) is the TCP transfer rate, MSS (bytes) is the maximum segment size
per package, RTT (ms) is the round trip time, and p is the packet loss ratio. To estimate the RTT,
the following equation is adopted:

RTT =
Dist

α×100
,

�
 �	6.2

where Dist means the distance in kilometers. α ∈ (0,1] represents the network directness.
α is the ratio of the hop distance (HD) and the end-to-end distance (EED) of two nodes, where
EED ≤ HP. α values close to one mean the path between the hosts follows a direct path. Values
much smaller than one mean the path is very indirect. The values of α , MSS and p are user
configurable. The distance (Dist) is taken from Google Maps API.
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α =
EDD
HD

�
 �	6.3

6.2 Eucabomber 2.0

This section presents an overview of Eucabomber 2.0. This tools has been developed
in this work to support dependability model estimation through fault injection techniques. The
fault injector focuses on high-level components such as VMs, server’s hardware, and cloud
management applications. The following sections present Eucabomber’s architecture, tool’s
layers and usability overview.

6.2.1 Operation and Methodology

This section discusses Eucabomber’s features and implementation. Considering the
proposed tool, failure and repair commands are injected into the target system at runtime. During
system execution, failures and repair are injected by using software commands (e.g., process
kill) and the system behavior is analysed from a user point of view (operational VMs). In this
work, the system is considered working if the requested VMs by the user are operational. Then,
even if parts of the system are not operational, whenever the user requested VMs are running,
users consider the system is working.

To compute the time between failures and repairs, a clock records downtime and uptime
of each component during system execution. System behavior is observed considering two
possible states: UP when it is working properly and DOWN, when it is not.

The time between failures and repairs is generated by the FlexLoadGenerator package
(Section 6.2.3). Eucabomber tool also offers a textual interface and the possibility to customize
the test environment by using XML files. The library XML Stream for Java (XStream) (82) is
adopted to describe the system components and its dependencies. By using this library, users are
able to determine the Eucabomber experiments parameters, that includes:

� Experiment Time. This parameter determines the experiment duration time in
milliseconds.

� Components list. This parameter corresponds to the list of parameters that will be
adopted in this experiment.

� IP address of each component. This parameter assigns an IP address for each
component.

� Relationship between components. For each component, a dependency list is
created. If any component of this list fails, the dependent component fails.

� Failure/Repair characteristics of each component. For each component, the fail-
ure/repair probability distribution function and its parameters are updated.
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Figure 6.4: EucaBomber Textual Menu.

Source: Made by author.

Eucabomber presents a simple textual interface as illustrated in Figure 6.4. The first
two Eucabomber options are related to loading and creating XML configuration files. The third
option is to design the experiment. For this purpose, the tester is required to input the total time
(in seconds) of the experiment. Then, IP addresses of each machine (physical and virtual) is set.
Next, all the necessary data to access the host is provided (e.g., passwords) and the probability
distribution data for each component is parametrized. The last three options allows running the
experiment, cleaning previous experiment data, and exiting the Eucabomber menu.

6.2.2 Architecture Model

Eucabomber 2.0 presents a new architecture when compared to the previous version (45).
The internal tool’s infrastructure needed to be redesigned to support dependency between
components. For instance, whenever a physical machine fails, all software running on that
machine fails too and the new Eucabomber’s architecture supports these characteristics.

The Eucabomber 2.0 architecture is presented in Figure 6.5. This picture presents a class
diagram that illustrates the Eucabomber 2.0 internal Java classes and the interaction between
them. Component class represents a high-level entity in the real system that can either fail or
repair and can be implemented as HardwareComponent or SoftwareComponent. For instance, a
server is instantiated as a HardwareComponent and it is a special case of Component class. Each
component is associated with a DistributedFunction which controls event generation times. This
component is responsible for generating the failure/repair events to the components based on the
probability distribution function assigned by users.

HardwareComponent represents hardware components and is independent of other com-
ponents. Different from software components that may be affected by external failures, the failure
of any other component does not affect the functioning of the hardware component. Software-

Component, on the other hand, requires a physical infrastructure and possibly other software to
run properly, and therefore depends on HardwareComponents and/or other SoftwareComponents.
VMComponent has specific relationships with the cloud manager tool (e.g., Eucalyptus Cloud
Controller (47)) of each IaaS infrastructure because it deals directly with the VM. To achieve this,
it extends the SoftwareComponent by expanding its attributes and associating with a DataCenter.
DataCenter corresponds to an entity that hosts the API Eucaplytus interface.

HardwareComponents, SoftwareComponents and VMComponents are related to one
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entity called Experiment. This component manages the behavior of the experiment, for example
by controlling timers and threads of Eucabomber’s execution.

6.2.3 Flex Load Generator Package

The Eucabomber tool adopts FlexLoadGenerator (83) for generating failure and repair
random times following a user-specified probability distribution. Although there are many
support functions included in FlexLoadGenerator framework, this section presents only the ones
employed in Eucabomber core functions.

In order to generate the fault/repair events, a Connection module is adopted for providing
network communication between the host running the fault injector and the hosts that will be
affected by events. This module employs the SSH2 protocol (84) supported by a Java package
which enables the execution of remote commands (85).

The Random Variate Generation module generates random numbers given by a probabil-
ity function. The FlexLoadGenerator supports the following probability distribution functions:
Erlang, Exponential, Geometric, Lognormal, Normal, Pareto, Poisson, Triangular, Uniform, and
Weibull.

6.2.4 EucaBomber’s Tool Core

As previously explained, the Eucabomber tool was designed to generate events that
emulate faults/repairs in high-level cloud components. It is important to state that Eucabomber
is only capable of executing repair events in the target environment if the previous fault event
was generated by Eucabomber. To simulate real system behavior, the events of fault and repair
follow random distributed times supported by the FlexLoadGenerator package (83). Eucabomber
supports fault and repair events in the following categories:

� Infrastructure. The events generated in this category simulate hardware failures.
These failures are implemented by hibernation commands to the operating system,
which actually stop the activity of the machine for a limited period. When the
hibernation time is over, the machine previous state is restored, thereby performing a
repair. Other alternative presented in Eucabomber 2.0 to simulate physical machine
failures and repairs corresponds to: (i) shutdown events to emulate failures and (ii)
wake on lan (network restart) procedure (86) to emulate repairs.

� Cloud Infrastructure Components. This mode is focused on interacting with the
high-level cloud components (i.e., servers, VMs, and cloud management applications).
Fault events of this type are activated by using service commands (e.g., VM start or
kill) for Linux distributions and the SSH2 protocol.
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6.2.5 Monitoring and Data analysis

The Eucabomber’s core has no mechanism to monitor the experiment since the project
scope does not include this feature. However, Unix scripts are adopted to monitor the VM state
during system execution. These scripts were implemented to periodically check the state of VMs.
The scripts run on VMs and a monitoring server machine to verify the status of running VMs.

To monitor the service status, the server script need to check if the amount of operational
virtual machines is higher than the number of required VMs to provide the user service. From
this point of view, the service availability will be measured adopting a user perspective (number
of active VMs). Figures 6.7(a) and 6.7(b) illustrate how the monitoring agent works. First, a new
VM image is created and loaded into the cloud system (87). A VM image was prepared with
the client monitoring daemon as illustrated in Figure 6.7(a). The VM client sends a message to
the server informing that the it is operational. On the server side (Figure 6.7(b)), the program
loops around and periodically checks each message sent from the user’s VMs to calculate the
number of available VMs. If the server receives the message from the VM, the VM is considered
operational (UP), and this event is registered in the system log. Otherwise, a DOWN event for
this VM is registered in the system log. The monitoring mechanisms is replicated to all new
VMs, and each new VM knows in advance the monitoring server IP address.

Figure 6.6: Monitoring agents.

(a) Client inserted in the VM image. (b) Previous configured host server.
Source: Made by author.

By applying this process, at the end of the experiment there will be a log containing
an assortment of UP and DOWN strings. Each one these entries is a measure of server status
at a given time. Therefore, it is possible to approximate this discontinuous data to continuous
data by normalizing the values between points, and finally estimate the confidence interval of
availability. By using Equation 3.15, it is possible to calculate the ρ estimator from the number
of UP (uptime or Sn) and DOWN (downtime or Yn) entries in the log file.

The number of errors (n) is easily calculated by comparing the number of UP and DOWN
states. Adopting the ρ estimator, the n number of faults, and the confidence level (α), the
availability can be computed with the Equations 3.16 and 3.17.
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6.3 Final Remarks

This chapter presented the proposed tools to support cloud system evaluation. The first
tool (GeoClouds Modcs) is adopted for creating and evaluating IaaS disaster tolerant systems by
composing basic submodels. By using these tools, modeling details are hidden to the final users.
Then, even users that have no skills on SPN-RBD modeling will be able to perform a system
evaluation. However, he/she should provide availability and performance parameters to perform
the system evaluation.

The second tool was presented (Eucabomber 2.0) is adopted to perform availability
evaluation for IaaS cloud systems. The tool utilizes fault injection and monitoring scripts to
perform system evaluation.





103103103

7Case studies

To illustrate the feasibility of the proposed work, we present six case studies considering
survivability, performance and dependability metrics to evaluate geographically distributed
disaster tolerant cloud computing systems. The purpose of each case study is summarized as
follows:

� Case Study I. This case study corresponds to a simple availability evaluation example
to illustrate how IaaS system can be evaluated by using our proposed framework.

� Case Study II. The second case study presents a disaster tolerant cloud system
evaluation taking into account dependability and performance metrics in a single
model (performability model).

� Case Study III. The third case study shows an availability evaluation considering
large cloud computing systems. The central idea of this case study is to demonstrate
how the proposed models can scale to represent large cloud computing systems.

� Case Study IV. This case study is proposed to show how the proposed framework can
be adopted to evaluate how IaaS systems behave in case of disasters. A survivability
evaluation is performed by using the proposed models.

� Case Study V. This case study presents a comparison between the results of the pro-
posed availability models and fault injection experiments performed by Eucabomber
2.0.

� Case Study VI. The last case study provides a performance evaluation of a small cloud
computing system. The evaluation results are compared to experiments performed in
a real test-bed environment.

7.1 Case Study I

This section presents a case study that illustrates how the proposed framework can be
adopted to estimate availability metrics in cloud computing systems. The evaluated infrastructure
is composed of two data centers and a Backup Server. The data centers are respectively located in
Paris-France and Frankfurt-Germany. The designer has two location options for Backup Server
(London-England or Brussels-Belgium). Distances between data centers and possible backup
servers are presented in Table 7.1. The distances between locations for all case studies were
taken from (88).
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Table 7.1: Distance of facilities.

Location 1 Location II Distance (Km)
Paris Frankfurt 478.4
Paris Brussels 264.2
Paris London 343.9
Frankfurt Brussels 317.5
Frankfurt London 771.1

Each data center is composed of servers and a network infrastructure. The servers can
execute up to two virtual machines. In order to consider the cloud system available, at least two
virtual machines must be operational.

Table 7.2: Case study scenarios.

Scenario Disaster Mean Time (months) Number of servers (total) BS_location
A1 6 2 London
A2 6 2 Brussels
A3 6 4 London
A4 6 4 Brussels
A5 12 2 London
A6 12 2 Brussels
A7 12 4 London
A8 12 4 Brussels

As mentioned in Section 3.1, VMs can be instantiated in another physical machine or
data center in case of failure. For this example, eight scenarios will be evaluated considering
diverse disaster mean time, total number of servers and Backup Server locations (Table 7.2). For
this example, we assume the number of servers is the same for each data center.

For the following case studies (except Case Study IV), we considered the approach
presented in (81) to estimate the MTT value. This approach assesses network throughput based
on the distance between the communication nodes. As stated before (Section 6.1.1), this approach
corresponds to the default approach adopted to evaluate MTT values. However, another approach
can be utilized for estimating the time to transmit VM data. For instance, actual measurements
can be performed to estimate MTT. Real experiments to estimate data transmission rates were
conducted in Case Study IV. The equation associates a constant α with the network speed, which
can vary from 0 (no connection) up to 1.0 (fastest connection). We assume the package loss
ratio 1%, MSS 1460 bytes, α as 0.45 and the size of VMs as 4GB. For the next case studies, we
considered the mean time between disaster to be 100 years and the data center to take 30 days to
be repaired. The mean time to start a VM is five minutes.

To evaluate the system, the designer must provide architecture parameters, such as
the data center and Backup Server locations as well as the dependability parameters (i.e.,
failure/repair rates) for each component (see Table 7.3). Table 7.4 presents the results associated
with this example. Scenario A8 presents the highest availability and consequently the lowest
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Table 7.3: Dependability parameters for Case study I.

Component MTTF(h) MTTR(h)
Server Operating System 4000 1
Server Hardware 1000 12
Switch 43000 4
Router 14077 4
NAS 20000 2
VM 2880 0.5
Backup Server 50000 0.5

Table 7.4: Case study I results.

Scenario Availability Annual downtime(h)
A1 0.97103 253.7
A2 0.97217 243.7
A3 0.97644 206.3
A4 0.97694 202.0
A5 0.99404 52.2
A6 0.99411 51.5
A7 0.99739 22.8
A8 0.99742 22.6

annual downtime. This result is not a surprise since it presents the highest disaster mean time,
number of servers, and nearest BS location in relation to the data centers. Scenario 1 shows
analogous results, but considering low availability results. Although these results are relatively
straightforward, larger and complex IaaS cloud infrastructures may present non-trivial results.

7.2 Case Study II

In order to present how performability models can be evaluated by using the proposed
approach, this case study evaluates a set of cloud system scenarios in which IaaS cloud systems
are deployed into two different data centers. Each data center is composed of two physical
machines and each physical machine can execute up to two VMs. Therefore, the maximum
number of running VMs is eight.

We have conducted an availability evaluation considering distance between data centers
and disaster mean time. We assume data centers located in the following pairs of cities: Rio
de Janeiro (Brazil)-Brasilia (Brazil), Rio de Janeiro-Recife (Brazil), Rio de Janeiro-NewYork
(USA), Rio de Janeiro-Calcutta (India) and Rio de Janeiro-Tokyo (Japan). We assume that the
Backup Server is located in São Paulo (Brazil). Table 7.5 presents the distances between the
adopted locations to place data centers or backup servers.

We assume the mean time between disaster to be 100 years and the data center to take
30 days to be repaired. Moreover, a VM takes five minutes to start and the mean time between
requests is half an hour. The mean time for using a VM is 720 hours. Previous work (89) presents
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Table 7.5: Distance of facilities.

Location 1 Location II Distance (Km)
Rio Brasilia 1335.1
Rio Recife 1875.5
Rio New York 7767.7
Rio Calcuta 15085.34
Rio Tokyo 18587.80
São Paulo Rio 224.4
São Paulo Brasilia 1176.8
São Paulo Recife 2132.1
São Paulo New York 7694.2
São Paulo Calcuta 15446.1
São Paulo Tokyo 18554.9

the dependability parameters associated with the devices. GeoClouds Modcs Framework was
adopted to perform the evaluation. To perform system evaluation we created a performability
model (see Section 4.3.4) with metrics oriented to providers and clients.

The provider-oriented metric is the machine utilization in terms of maximum number of
VMs (U) and the user-oriented metric is the probability of a task to be completed without error
(P). U is calculated as follows:

U =
∑

M
j=1 E{#VM_UPj}

M×N

�
 �	7.1

.

Where M corresponds to the number of PMs and N is the maximum number of VMs per
physical machine. P corresponds to:

P =
(∑Pm

j=1 E{#VM_UPj})× (1/T )

P{#CLTS > 0}× (1/R)

�
 �	7.2

.

In which T and R correspond to the times associated with transitions VM_LT and
USER_REQ. This expression divides the throughput of completed requests by the incoming
requests throughput to compute the percentage of completed requests.

Figure 7.1 shows that utilization percentage decreases for each different pair of cities
and number of clients (C). The results show that the utilization decreases with the distance if
the system is not stressed. In case of high system load (C > 6), the effect of distance on the
utilization is reversed. In this case, the distance variation has no effect on system utilization as
the system is overloaded.

A task rejection considering the proposed approach happens if the infrastructure is broken
or the servers are full. Figure 7.2 presents the P percentage increase considering the same set of
scenarios. It is possible to observe that, in this particular case, P rises with the distance between
the data centers (until C = 6). With the growth of system load (C > 6), P decreases depending on
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Figure 7.1: Utilization decrease of different distributed cloud configurations
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the data centers distance. Therefore, for this particular system we can conclude that P is highly
impacted by server utilization.

Figure 7.2: P increase for different cloud configurations
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Table 7.6: P and U for the baseline architecture (Rio de Janeiro-Brasilia)

.

Client load U P
C=2 0.2497989 0.9999299
C=4 0.4989833 0.9952341
C=6 0.7471487 0.9338905
C=8 0.9861435 0.4542866
C=10 0.9867157 0.2934411

Table 7.6 presents the values for U and P of the baseline architecture (Rio de Janeiro-
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Brasilia) considering different user loads.

7.3 Case Study III

In order to demonstrate the scalability of the proposed framework, we evaluated a set of
cloud system scenarios with a high number of servers. As the previous case study, the proposed
scenarios consider a cloud system with two data center. We assume that the Backup Server is
located in London (UK). The following pairs of cities were considered to place the data centers:
Budapest (Hungary)-Barcelona(Spain), Paris(France)-Amsterdam(Netherlands), Crawley(UK)-
Basildon(UK), Bristol-Nottingham(UK). This configuration was selected because each pair
of cities have data centers with similar distances to the backup server. Table 7.7 presents the
distances between the adopted locations to place data centers or backup servers.

Table 7.7: Distance of facilities.

Location 1 Location II Distance (Km)
Budapest Barcelona 1499.1
Paris Amsterdam 430.3
Bristol Nottingham 193.3
Crawley Basildon 70.1
London Budapest 1450.8
London Barcelona 1140.3
London Amsterdam 357.7
London Paris 343.9
London Nottingham 175.7
London Bristol 170.6
London Crawley 44.5
London Basildon 43.3

This case study evaluates the cloud system in terms of system availability by using the
proposed availability model (see Section 4.3.2). Each data center is composed of 40 servers and
each one can execute up to two VMs. As the previous case study, we estimate the MTT value
by adopting the approach presented in (81) with the same parameters. The dependability and
disaster parameters are the same of the previous case study.

Figure 7.3 presents the availability increasing for the different pair of cities. The configu-
ration with data centers located in Budapest and Barcelona was adopted as baseline architecture.
For each scenario, we changed the required number of VMs to consider the system operational
(20, 25, ..., 40). It is possible to observe that, for this particular example, the system availability
increases as the distance decreases. However, when the number of required VMs to consider
system operational decreases, the distance of data centers becomes less significant. Table 7.8
presents the availability values for the baseline infrastructure. As expected, the availability
increases as the number of required VMs decreases.
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Figure 7.3: Availability for different cloud configurations.
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Table 7.8: Availability values for the baseline architecture (Budapest-Barcelona)

.

Number of required VMs Availability (%)
40 96.956
35 97.683
30 98.152
25 98.173
20 98.178

7.4 Case Study IV

This case study is proposed to demonstrate how survivability metrics can be evaluated
in cloud computing systems by using the proposed approach. The environment is composed of
five data centers and a BS. The data centers are located in the following cities: (i) New York
(USA), (ii) Rio de Janeiro (Brazil), (iii) Zurich (Switzerland), (iv) Vienna (Austria) and Sydney
(Australia). The backup server is located in Ilmenau (Germany). Table 7.9 presents the distances
between the adopted locations to place data centers or backup servers.

Table 7.9: Distance of facilities.

Location 1 Location II Distance (Km)
Ilmenau Zurich 407.1
Ilmenau Vienna 480.9
Ilmenau New York 6326.7
Ilmenau Rio de Janeiro 9756.5
Ilmenau Sydney 16330.5

This experiment evaluates the recovery and backup process by using the modelling
approach presented in Section 4.4. In this case study, we assume that 512 MB should be
transmitted to BS to synchronize the VM data (backup process) and each VM image has 4
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GB (recovery process). To estimate the time to transmit the VM data between the data centers
and BS, a measurement process has been conducted to characterize the transfer rate between
the backup server and the data centers. Mercury-ASTRO (77) and TimeNET (72) tools have
been adopted to perform the evaluation. The transfer rates between BS and each data center is
presented in Table 7.10.

Table 7.10: Transfer rates between BS and each data center.

Data Center Location Rate (MB/s) Standard Deviation (MB/s)
Zurich 2.0701 0.4019
Vienna 1.7412 0.3270
New York 1.1253 0.2126
Rio de Janeiro 0.6859 0.1351
Sydney 0.5659 0.1088

To evaluate the recovery process, the behavior of each data center to receive and instan-
tiate five VM images (4 GB each) is considered. The mean time to detect the disaster is 30
minutes and the mean instantiation time is five minutes. The transmission success probability
considered is 99.9%. For this particular experiment, the transition DC_TRS was converted to
Hypoexponential subnets for all data centers (Section 3.4.2.4). The evaluation results for each
data center are presented in Figure 7.4 and some important points are summarized in Table 7.11.
For instance, considering that the RTO is two hours, the data center located in Zurich can be a
good option to recover the service if we assume that probability to recovery should be higher
than 93%. On the other hand, if the RTO is four hours and the minimum probability to recovery
is 99%, all data centers can be adopted to restart the affected VMs.

Table 7.11: Probability to recover the service for different data centers

Time(h) Zurich Vienna New York Rio de Janeiro Sydney
1.0 0.5539 0.4370 0.2028 0.0027 0.0003
2.0 0.9369 0.9187 0.9183 0.6636 0.5424
3.0 0.9946 0.9909 0.9837 0.9501 0.9326
4.0 0.9998 0.9989 0.9973 0.9913 0.9903

A similar evaluation was performed considering the backup process. In this case, each
data center synchronizes the data of five VMs (512 MB each) to BS and the replication process
takes one minute. Figure 7.5 presents the evaluation results. Additionally, Table 7.12 shows
important points considered in this evaluation. For the worst case scenario, if the difference
between the RPO and the backup period is 0.2 hours and minimum probability to backup the
VMs is equal to 0.98, only the data center of Zurich can be adopted. On the other hand, if the
difference between the RPO and the backup period is one hour and minimum probability is equal
to 0.99, all data centers respect the requirement.
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Figure 7.4: Recovery probability along the time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Switzerland

Austria

EUA

Brazil

Australia

P
ro

b
a

b
il

it
y

 t
o

 f
in

is
h

 t
h

e
 r

e
co

v
e

ry

Time (h)

Source: Made by author.

Figure 7.5: Backup probability along the time
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Table 7.12: Probability to backup the service for different data centers

Time(h) Zurich Vienna New York Rio de Janeiro Sydney
0.2 0.9801 0.7715 0.0449 0.0019 0.0001
0.4 0.9999 0.9998 0.7235 0.3062 0.0019
0.6 ∼1.000 ∼1.000 0.9771 0.7928 0.4980
0.8 ∼1.000 ∼1.000 0.9988 0.9545 0.9100
1.0 ∼1.000 ∼1.000 ∼1.000 ∼1.000 0.9911

7.5 Case Study V

This case study compares the results of the proposed availability models with fault
injection experiments performed by Eucabomber 2.0. Eucalyptus cloud platform is adopted
for this case study. However, the proposed models can be adopted to evaluate other cloud
infrastructures.

This section is presented as follows. First, the Eucalyptus cloud platform is briefly
presented. Then, the experiment environment is presented. Next, the availability model to
represent the experiment environment is presented. Finally, the results are presented.



112

7.5.1 Eucalyptus IaaS Platform

Eucalyptus IaaS platform is a popular open source solution for cloud software. The
environment adopts an API compatible with AWS/EC2 (90) and is one of the most utilized
software solutions for building private or hybrid clouds.

Figure 7.6: Eucalyptus Cloud Computing Architecture.

Source: Made by author.

As illustrated in Figure 7.6, Eucalyptus clouds are composed of the following components:
one or more Node Controller (NC); one or more Cluster Controllers (CCs); one Cloud Controller
(CLC) and a storage (Walrus). NC is the component that controls the VM life-cycle operations
(e.g. run, terminate) which is adopted in conjunction with an external hypervisor (e.g., VMware,
Xen, Kvm).

CC manages the local network and the elastic memory resources of NC sets, generally
in the same data center. It corresponds to the front-end for a cluster within Eucalyptus cloud
and controls the node controllers and walrus. CLC and Walrus correspond to the components
responsible for providing an API for user management and system property control (e.g. VM
image control, data base management) (91). CLC is front-end of the entire cloud and provides
web services interface compatible with Amazon EC2/S3 to the client tools. Additionally, interacts
with the rest of the components of the Eucalyptus infrastructure on the other side.
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7.5.2 Experiment Environment

The test environment consists of four machines (Figure 7.7). A fault injector and monitor
(Machine 4), front-end (Machine 1) that contains the Eucalyptus Cloud Controller (CLC) and
Cluster Controller (CC). Machines 2 and 3 execute Eucalyptus Node Controller (NC and KVM
hypervisor) and host virtual machines.

Figure 7.7: Structural components of testbed environment.

Source: Made by author.

All servers are in the same private network and Eucabomber’s server accesses other com-
ponents using SSH commands. Eucabomber’s machine runs the monitoring server (Section 6.2.5)
and the virtual machines hosted in the node controllers (NC 1 and NC 2) are pre-loaded with the
monitoring client daemon. With this testbed environment, faults can be injected in the principal
Eucalyptus resources (e.g., physical and virtual machines), as well as service status can be traced
by means of monitoring scripts.

7.5.3 Availability Model

This section presents the proposed availability model to evaluate availability in Euca-
lyptus infrastructure. In this case, CC, NC, and CLC should be considered in the evaluation
model to represent the Eucalyptus components. This section presents the SPN availability model
for representing the proposed testbed environment. This model is divided in five main parts
(Figure 7.8): Eucalyptus Front-End Services for modeling CC, CLC and Front-end hardware
(Machine 1); NC1 SERVER and NC2 SERVER for representing the hardware and software of
Machines 2 and 3 (see Figure 7.7); VMS_NC1 and VMS_NC2 that correspond to running VMs
on Machines 2 and 3. As the components of Machine 4 (Eucabomber and monitoring scripts)
are not part of cloud system, these entities are not represented in the model.
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Figure 7.8: SPN model for Eucalyptus testbed environment
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Components with no redundancy mechanisms or dependency relations (e.g., NC hard-
ware) are represented as submodels (see Figure 7.9), which are composed of two states and two
transitions. Assuming CC as the represented component, this submodel might be in two states,
operational (CC_UP) or failed (CC_DOWN). Transitions CC_F and CC_R denote respectively
the component’s failure and repair.

Figure 7.9: Basic component SPN submodel
X_UP

X_DOWN

X_FX_R

Source: Made by author.

This submodel has two parameters (not shown in Figure 7.9), namely X_MTTF and
X_MTTR, which represent delays associated to transitions X_F and X_R, respectively. Table 7.13
depicts the attributes related to these transitions. In this context, a component is working if there
is no tokens in place X_DOWN. Therefore, to represent a failed component, the number of tokens
in X_UP must be zero. Table 7.14 shows the submodels adopted in Figure 7.8 for representing
components with no dependency relations.

Table 7.13: Transition attributes associated with a component.

Transition Delay Description
X_F MTTF Component failure event
X_R MTTR Component repair event

In Figure 7.8, VMS_NC1 and VMS_NC2 submodels represent the set of VMs that run on
NC1 and NC2 servers, and whenever a dependent device (e.g., underlying hardware) fails, the
respective VMs fail too. VMS_NC1 and VMS_NC2 are analogous, then just VMS_NC1’s structure
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Table 7.14: Submodels for representing no redundancy components.

Submodel’s name Description
NC_HW1 NC1’s hardware
NC_SW1 NC1’s software
NC_HW2 NC2’s hardware
NC_SW2 NC2’s software
FE_HW Front-end’s hardware

CC Cloud controller software
CLC Cluster controller software

will be detailed. VMS_NC1 is composed of places VM1_UP, VM1_DOWN, VM1_STRTD and
VM1_RDY. These places denote, respectively, the amount of VMs in states operational, failed,
starting, and waiting for request. Place VM_REQUESTs represent requested VMs, which can be
executed on NC1 or NC2 server.

Exponential transitions VM1_DET_FAIL, VM1_F and VM1_STRT model fault detection
time, failure and starting activities related to NC1 virtual machines (see Table 7.15). The
association with the underlying infrastructure is carried out by immediate transitions EXT1_FAIL

and VM1_START, and the respective guard conditions are shown in Table 7.16. It is important
to state that the virtual machine stops working whenever the respective physical machine fails.
To start a VM, the respective physical machine, NC, CC, CLC and front-end machine must be
operational. Therefore, EXT1_FAIL fires if the respective physical machine fails. Transition
VM1_START denotes the opposite idea in the sense that virtual machines start only if the required
infrastructure is operational.

Table 7.15: Transitions of VM life-cycle model.

Transition Delay Description
VM1_F VM_MTTF VM failure

VM1_DET_FAIL Detection_Time VM fault detection
VM1_STRT VM Start Time VM Start

Variables X , M and N represent the number of requested VMs, the maximum number of
running VMs on NC1 and NC2 servers, respectively. Considering the presented environment,
the values of M and N are the same and equal to four. Availability is calculated based on the
total amount of virtual machines running in both node controllers. Consequently, the availability
is estimated as P{(#V M1_UP+#V M2_UP)≥ X}.

7.5.4 Scenarios and Results

Four validation scenarios (A1, A2, B1, and B2) are proposed to evaluate the experimental
environment. Scenarios A1 and B1 require one running VM to consider the system operational.
Scenarios A2 and B2 need two operational VMs to assume the system working. No experiment
included a backup instance to user service and both employed exponential distributions to
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Table 7.16: Condition to enable immediate transitions.

Transition Condition

VM1_START

(#NC_HW1_UP>0) AND
(#NC_SW1_UP>0) AND

(#CC_UP>0) AND
(#CLC_UP>0) AND

(#FE_HW_UP>0) AND
(#VM1_RDY>0) AND
(#VM_REQUESTs>0)

EXT1_FAIL
(#NC_HW1_UP=0)

AND
(#VM1_UP+#VM1_STRTD) >0

represent mean time to fail (MTTF) and mean time to repair (MTTR). Finally, the results were
compared with the respective results obtained from SPN models.

As stated before, faults were injected in all testbed components, including the physical
machine hardware. This case study aim to evaluate the service availability (running VMs)
considering the cloud environment behavior.

Scenarios A1 and A2 employs literature parameters (32) (accelerated by a constant
factor) for Eucalyptus high-level components and hardware (see Table 7.17). In this table, MTTR
experimental values are actually adopted in the Eucabomber. These values corresponds the the
literature values (Real Values) divided by 60 (acceleration factor). On the other hand, MTTF
values corresponds to the literature values divided by a 16,6. These acceleration factor were
introduce to speed up the evaluation process. Otherwise, the evaluation process would take a
very long time to be performed.

Table 7.17: Parameters of Scenarios A1 and A2.

Component Type (Scenario A) Experimental Values Real Values
MTTF MTTR MTTF MTTR

Hardware 31536 s 1.6 s 8760 h 100 min
Cloud Controller 2838 s 1 s 788 h 1 h
Cluster Controller 2838 s 1 s 788 h 1 h
Node Controller 1 2838 s 1 s 788 h 1 h
Node Controller 2 2838 s 1 s 788 h 1 h
Virtual Machines 10414 s 0.25 s 2893 h 15 min

Scenario B1 and B2 adopt hypothetical values where the MTTF is closer to the MTTR
value. Therefore, a lower value for availability would be expected in this case.
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Table 7.20: Availability evaluated from experiments.

Scenario Number of Faults Confidence interval of availability Estimated value
A1 14 (0.9934 , 0.9986) 0.9935
A2 20 (0.9876 , 0.9935) 0.9879
B1 9 (0.8074 , 0.9658) 0.8279
B2 20 (0.6509 , 0.8676) 0.7921

Table 7.18: Parameters of Scenario B.

Component Type (Scenario B) Experimental Values
MTTF MTTR

Hardware 5600 s 1200 s
Cloud Controller 7200 s 1200 s
Cluster Controller 5600 s 600 s
Node Controller 1 3600 s 600 s
Node Controller 2 2700 s 300s
Virtual Machines 2700 s 900 s

Table 7.19 shows uptime and downtime results of the experiments executed over a 24
hour period. As expected, the scenarios that require more virtual machines to be operational have
higher downtime values. This behavior is easily understood since each VM is another component
that the user applications depends on and therefore failure here would further impact the total
downtime. In this case, a comparison of B1 (dependent on one VM) with B2 (dependent on two
VMs) exhibits an increase in downtime of over 266 percent.

Table 7.19: Up-time and Downtime from experiments.

Scenario Number of VMs Uptime Downtime
A1 1 23.93 h 4.2 min
A2 2 23.89 h 6.6 min
B1 1 21.98 h 121.2 min
B2 2 18.66 h 320.4 min

Table 7.20 presents the comparison between the experiment results and the model
evaluation. As predicted, Scenario B produced lower availability values when compared to
the Scenario A. As the estimated results (SPN model) are contained in the Eucabomber results
confidence interval, there is no evidence to reject the hypothesis that the results are equivalent
for this case study.

7.6 Case Study VI

This case study presents an evaluation of a distributed cloud computing system consider-
ing performance issues. The objective of this case study is to compare the results of performance
models and experiments. For this purpose, we constructed a script that simulates VM requests.
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The experiments architecture is similar to the structure presented in Figure 7.7. In this case
study, each node controller can run up to four VMs. Therefore, our experiment environment can
execute at maximum eight VMs.

To simulate the user behavior, we created scripts to generate user requests and finalize
the VM execution (VM release). As only performance issues were considered in this case study,
failures and repairs are not generated. Ten clients are considered in this case study, and each
client can request a single VM. When the VM execution is finished, a new VM can be requested.
We assume the mean time between requests is one hour. The assumed time to start a VM is one
minute.

Two metrics are considered to verify system performance, VM utilization and execution
throughput (See Section 4.3.3). The performance model is analogous to the model presented in
Figure 5.12 but with only two VM performance components and one data center. Figures 7.10
and 7.11 presents the results of performance related to aforementioned model.

Figure 7.10: VM Utilization results of performance model.
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Regarding the chart presented in Figure 7.10, the VM utilization metric presents values
close to 100% for VM life-time value is higher than four hours. When the life-time value is
getting close to the VM request time (one hour), the utilization values decrease drastically. In
this case, if the user-load usually presents VM life-time values higher than four hours, it is
recommended to acquire more machines to provide a less stressed service.

Figure 7.11 presents the number of VMs executed per hour. In this chart, when the VM
life-time is high, the VM throughput value is low as a running VM takes a long to leave the
cloud. However, when the VM life-time is getting low, the VM throughput becomes close to
one VM per hour (request mean time). For instance, when the VM life-time is 0.0006 the VM
throughput is 1.0004. Based on this chart, we can conclude that the highest throughput value
occurs when the VM life-time is close to two hours.

Table 7.21 presents the comparison between the experiment results and the model
evaluation. We conducted experiments of 72 hours for 32 and 16 hours of life-time. The rest
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Figure 7.11: VM throughput results of performance model.
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of the experiments taken 24 four hours. The experiments were evaluated by adopting a script
analogous to the previous case study (by using heart beat functions). As the model results (SPN
model) are contained in the experiment results confidence interval, there is no evidence to reject
the hypothesis that the results are equivalent for this case study.

Table 7.21: Utilization and Execution throughput values for different VM life-times.

VM life-time (h)
Execution Throughtput (VMs/h)

Model
Execution TP (VMs/h)

Experiments VM Util (%)
VM Util (%)
Experiments

32 0.2478 (0.2335, 0.2581) 99.154 (99.107, 99.306)
16 0.4908 (0.4682, 0.5175) 98.163 (97.770, 97.965)
8 0.9578 (0.9129, 1.0090) 95.785 (95.762, 95.954)
4 1.7697 (1.6968, 1.8755) 88.487 (88.201, 88.377)
2 2.5390 (2.4275, 2.6830) 63.475 (62.941, 63.067)
1 2.3898 (2.2773, 2.5170) 29.873 (28.857, 30.117)
0.5 1.7061 (1.6202, 1.7907) 10.663 (10.553, 10.574)
0.25 1.3241 (1.2657, 1.3989) 4.1379 (4.1614, 4.1698)
0.125 1.1477 (1.0845, 1.1987) 1.7934 (1.8057, 1.8093)
0.0625 1.0523 (1.0050, 1.1108) 0.8221 (0.8294, 0.8311)

7.7 Final Remarks

This chapter presented several case studies to illustrate the feasibility of the proposed
framework. Modeling and experiments were provided to provide results related to availability,
performance and survivability evaluation of disaster tolerant clouds computing systems.
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8
Conclusion

With increased dependence on computing services, cloud computing performance, de-
pendability and survivability has become serious requirements. For companies that heavily
depend on the Internet for their operations, service outages can be very expensive, easily running
into millions of dollars per hour.

A widely adopted design principle to provide cloud computing survivability is to in-
troduce geographical distribution of data centers to mitigate the impact of disasters. However,
geographical distances leads to additional time to transmit VM data and may affect system
recovery. At present stage, system designers do not have many mechanisms to support the
integrated performance, dependability and survivability evaluation of data center infrastructures.

This work aims at reducing this gap by proposing a framework (GeoClouds Modcs) to
evaluate performance, dependability and survivability of cloud computing systems deployed into
geographically distributed data centers taking into account disaster occurrence. The framework
allows the impact assessment of disaster occurrence, VM transmission time and different client
loads on system performability. The proposed approach also allows survivability assessment of
cloud systems taking into account the distance between data centers, RPO and RTO requirements.
The following sections highlight the thesis’ contributions and future works that will be conducted
based on the results presented in this document.

8.1 Contributions

This document presented a set of formal models to allow the integrated evaluation of
dependability, performance and survivability issues on cloud computing. The main contribution
of this thesis corresponds to the set of models and the modeling approach to evaluate performance,
availability and survivability in the context of disaster tolerant cloud computing systems. To
accomplish that objective, a set of activities intermediate activities were conducted and the main
points are detailed as follows.

The proposed modeling strategy also takes the advantage of both RBD and SPN formal-
ism. For instance, to estimate dependability metrics, RBD submodels can be created to mitigate
the system complexity. RBD considers closed-form equations, the results are exact and usually
obtained faster than using SPN evaluation. However, to represent the final model which is not
trivial, SPN represent a more feasible modeling choice. The default approach to evaluate the
proposed SPN models is based on simulation. However, the models can be assessed by adopting
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numerical techniques such as SPN analysis (26).
A high-level model is proposed to precisely define the system structure and the interac-

tions between the cloud computing components. Important aspects of a disaster tolerant cloud
computing are described. For instance, the data transmission is represented by a mathematical
function and is adopted to evaluate the time to recover the cloud system after a disaster. Based
on this formal specification, cloud computing designers are able to create the evaluation models
or adopt tools (e.g., GeoClouds Modcs) to generate them automatically.

Two algorithms are proposed to translate high-level models to performance, and depend-
ability models. This translation process allows non-specialized users to automatically create
evaluation models. Therefore, the system designer needs to provide the system structure and
parameters and the evaluation can be done transparently through GeoClouds Modcs tools. We
proof that the generated models are always structurally conservative and bounded by providing
an inductive demonstration. In this way, the models can scale to represent larger cloud computing
infrastructures. An evaluation considering large data center systems is presented in Case Study
III.

This document has proposed GeoClouds Modcs tool that considers RBD, SPN and
high level models, to support distributed cloud evaluation. The tool adopts Java programming
language, therefore it can be executed in any operating system that runs Java Virtual Machine.
The proposed tool executes in conjunction with Mercury tool that is responsible for evaluating the
generated evaluation models. An interesting features of GeoClouds corresponds to the exporting
of generated models to TimeNET and Mercury. Therefore, users with modeling skills can edit
the models to consider a more advanced evaluation.

Eucabomber 2.0 was proposed to support dependability studies on cloud platforms using
fault injection techniques. The tool generates faults events and the system behavior is monitored
to check system dependability and the system models can be validated. Additionally, several
case studies were proposed to demonstrate the feasibility of the proposed framework.

8.2 Future works

Although this work tackles some issues regarding dependability, performance and sur-
vivability for distributed cloud systems, there are many possibilities to improve and extend the
current work. The following items summarize some possibilities:

� In this work, we adopt one backup server to provide cloud system backup in case of
disaster. However, other backup policies (e.g., multiple backup servers) can be adopt
to provide VM data redundancy. Future works can evaluate various backup strategies
and assess the impact of these approaches on the system metrics.

� As a future work, we can adopt the evaluation models to estimate the costs related
to data center allocation. As the energy cost may vary from place to place, the data
center allocation may represent a significant aspect of cloud system.
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� An evaluation considering different priorities for data center user utilization can
adopted in future works. In this case, users may preferentially utilize an specific data
center rather than others, and in case of disasters the users may adopt a different data
center.

� Eucabomber tool is designed to evaluate system dependability in cloud infrastructures.
However, it can be extended to estimate performance and survivability by generating
system load and disaster events.

� This work can be also extended to consider maintenance policies as well as different
service level agreements (SLAs). For instance, the operational cost can consider
different maintenance policies, as well as fines associated in case the contracted
maintenance company does not provide the required availability.

8.3 Final remarks

This work presented GeoClouds Modcs Framework for performance, dependability and
survivability evaluation of cloud computing systems deployed into geographically distributed
data centers taking into account disaster occurrence. Modeling strategies, specification models,
automatic evaluation model generation and evaluation tools are important contributions of this
work. The proposed framework allows the impact assessment of disaster occurrence, VM
transmission time and different client loads on system performability. The case studies results
demonstrate the different cloud configurations on performance, survivability and dependability
metrics taking into account disaster occurrence.

Academic works are extending this work by proposing a more detailed evaluation of
survivability scenarios. For instance, the possibility of having more than one backup server and
the impact of this allocation in the system metrics.
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A
Juxtaposition of P-Invariants

The adopted modeling approach utilize models that are structurally bounded and con-
servative. To prove that properties, it is necessary to demonstrate that the combination of basic
SPN components generate structurally conservative as well as structurally bounded models. The
preservation of these properties are demonstrated by using juxtaposition of P-invariants. From
now on, assume that all variables in each vector corresponds to positive integers.

A.1 Base Case: Juxtaposition of P-Invariants

The following section present the resulting P-invariant related to the net union of two
SPN components. It is demonstrated that the resulting SPN is structurally conservative and
bounded.

A.1.1 Two Dependability Components

In our approach, there are two possibilities of merging two dependability components.
The dependability components can be related to servers of the same data center or different data
centers. If the components are related servers of different data center there will be no common
place or transition between them. In this case, the union of these SPNs will be structurally
bounded and conservative as net union of disjoint nets preserves the P-invariants of each subnet
in the generated model (64). Therefore, this section presents only the P-Invariants of merged
dependability submodels (N(1)andN(2)) related to servers from the same data center.

I(d p)(1) =
[ VM_UP(1) VM_DOWN(1) VM_WAIT(1) VM_STRTD(1) CHC_RES

d p2(1)+d p1(1) d p1(1) d p1(1) d p2(1)+d p1(1) d p2(1)

]
T .

I(d p)(2) =
[ VM_UP(2) VM_DOWN(2) VM_WAIT(2) VM_STRTD(2) CHC_RES

d p2(2)+d p1(2) d p1(2) d p1(2) d p2(2)+d p1(2) d p2(2)

]
T .

N(1)t(2) = N(1)tN(2). By juxtaposition I(1)t(2) =J (I(d p)(1),I(d p)(1)) and d p2(2) =

d p2(1) = d p :

I(1)t(2) =
[ VM_UP(1) VM_DOWN(1) VM_WAIT(1) VM_STRTD(1)

d p+d p1(1) d p1(1) d p1(1) d p+d p1(1)
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VM_UP(2) VM_DOWN(2) VM_WAIT(2) VM_STRTD(2) CHC_RES

d p+d p1(1) d p1(1) d p1(1) d p+d p1(1) d p
]

T

Since I(1)t(2) > 0 and I T
(1)t(2)×A(1)t(2) = 0, in which A(1)t(2) is the incidence matrix,

N(1)t(2) is structurally conservative as well as structurally bounded.

A.1.2 SPN Dependability Component and Transmission Component

In this example, a SPN Dependability Component (N(1)) and a transmission component
(N(2)) are merged.

I(d p) =
[ VM_UP VM_DOWN VM_WAIT VM_STRTD CHC_RES

d p2 +d p1 d p1 d p1 d p2 +d p1 d p2

]
T .

I(tr) =
[ CHC_RES TRF_P1 TRF_P2 TBK_P1 TBK_P2 CHC_RES2

tr tr tr tr tr tr
]

T .

N(1)t(2) = N(2)tN(1). By juxtaposition I(1)t(2) = J (I(d p),I(tr)) and d p2 = tr =

d p :

I(1)t(2) =
[ VM_UP VM_DOWN VM_WAIT VM_STRTD CHC_RES

d p+d p1 d p1 d p1 d p+d p1 d p

TRF_P1 TRF_P2 TBK_P1 TBK_P2 CHC_RES2

d p d p d p d p d p
]

T

Since I(1)t(2) > 0 and I T
(1)t(2)×A(1)t(2) = 0, in which A(1)t(2) is the incidence matrix,

N(1)t(2) is structurally conservative as well as structurally bounded.

A.1.3 Two Performability Components

Just like the union of dependability components, this section presents the P-Invariants of
merged performability submodels (N(1)andN(2)) related to servers from the same data center.

I(pb)(1) =

[ CLTS DC_CHC CHC_RES VM_DOWN(1) WM_WAIT(1) VM_STRTD(1) VM_UP(1)

pb2(1) pb2(1) pb2(1) pb1(1) pb1(1) pb1(1)+ pb2(1) pb1(1)+ pb2(1)

]
T .

I(pb)(2) =

[ CLTS DC_CHC CHC_RES VM_DOWN(2) WM_WAIT(2) VM_STRTD(2) VM_UP(2)

pb2(2) pb2(2) pb2(2) pb1(2) pb1(2) pb1(2)+ pb2(2) pb1(2)+ pb2(2)

]
T .

N(1)t(2) = N(2)tN(1). By juxtaposition I(1)t(2) =J (I(pb)(1),I(pb)(2)) and pb2(1) =

pb2(2) = pb :
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I(1)t(2) =
[ VM_DOWN(1) WM_WAIT(1) VM_STRTD(1) VM_UP(1) VM_DOWN(2)

pb1(2) pb1(1) pb1(1)+ pb pb1(1)+ pb pb1(2)

WM_WAIT(2) VM_STRTD(2) VM_UP(2) DC_CHC CHC_RES CLTS

pb1(2) pb1(2)+ pb pb1(2)+ pb pb pb pb
]

Since I(1)t(2) > 0 and I T
(1)t(2)×A(1)t(2) = 0, in which A(1)t(2) is the incidence matrix,

N(1)t(2) is structurally conservative as well as structurally bounded.

A.1.4 SPN Performability Component and Transmission Component

In this example, a performability component (N(1)) and a transmission component (N(2))
are merged.

I(pb) =

[ CLTS DC_CHC CHC_RES VM_DOWN WM_WAIT VM_STRTD VM_UP

pb2 pb2 pb2 pb1 pb1 pb1 + pb2 pb1 + pb2

]
T .

I(tr) =
[ CHC_RES TRF_P1 TRF_P2 TBK_P1 TBK_P2 CHC_RES2

tr tr tr tr tr tr
]

T .

N(1)t(2) = N(2)tN(1). By juxtaposition I(1)t(2) = J (I(pb),I(tr)) and pb2 = tr =

pb :

I(1)t(2) =
[ CLTS DC_CHC VM_DOWN WM_WAIT VM_STRTD VM_UP

pb pb pb1 pb1 pb1 + pb pb1 + pb

CHC_RES TRF_P1 TRF_P2 TBK_P1 TBK_P2 CHC_RES2

pb pb pb pb pb pb
]

T

Since I(1)t(2) > 0 and I T
(1)t(2)×A(1)t(2) = 0, in which A(1)t(2) is the incidence matrix,

N(1)t(2) is structurally conservative as well as structurally bounded.

A.1.5 Two Performance Components

Similar to the union of dependability and performability components, this section presents
the P-Invariants of merged performance submodels (N(1)andN(2)) related to servers from the
same data center.

I(p f )(1) =

[ CLTS DC_CHC CHC_RES WM_WAIT(1) VM_STRTD(1) VM_UP(1)

p f 1(1) p f 1(1) p f 1(1) p f 2(1)
p f 1(1)+

p f 2(1)

p f 1(1)+

p f 2(1)

]
T .
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I(p f )(2) =

[ CLTS DC_CHC CHC_RES WM_WAIT(2) VM_STRTD(2) VM_UP(2)

p f 1(2) p f 1(2) p f 1(2) p f 2(2)
p f 1(2)+

p f 2(2)

p f 1(2)+

p f 2(2)

]
T .

N(1)t(2) = N(2)tN(1). By juxtaposition I(1)t(2) =J (I(p f )(1),I(p f )(2)) and p f 2(1) =

p f 2(2) = p f :

I(1)t(2) =
[ WM_WAIT(1) VM_STRTD(1) VM_UP(1) WM_WAIT(2)

p f 1(1) p f 1(1) p f 1(1)+ p f p f 1(1)+ p f p f 1(2)

VM_STRTD(2) VM_UP(2) DC_CHC(d) CHC_RES(d) CLTS

p f 1(2)+ p f p f 1(2)+ p f p f p f p f
]

T

Since I(1)t(2) > 0 and I T
(1)t(2)×A(1)t(2) = 0, in which A(1)t(2) is the incidence matrix,

N(1)t(2) is structurally conservative as well as structurally bounded.

A.2 Inductive Step: Juxtaposition of P-Invariants

The following section present the resulting P-invariant related to the net union of a
SPN component with a previously merged SPN. It is demonstrated that the resulting SPN is
structurally conservative and bounded.

A.2.1 A VM dependability component and m VM dependability submodels.

In this section, a block representing m merged VM dependability components (N(m))

is combined with a new dependability model (N(n)). It is important to emphasize that in this
example all dependability components are related to servers of the same data center. The
P-invariants of the result model are presented as follows:

I(m) =
[ VM_UP(1) VM_DOWN(1) VM_WAIT(1) VM_STRTD(1)

d p2(m)+d p1(1) d p1(1) d p1(1) d p2(m)+d p1(1)

VM_UP(2) VM_DOWN(2) VM_WAIT(2) VM_STRTD(2) ···

d p2(m)+d p1(2) d p1(2) d p1(2) d p2(m)+d p1(2) · · ·

VM_UP(m) VM_DOWN(m) VM_WAIT(m) VM_STRTD(m) CHC_RES

d p2(m)+d p1(m) d p1(m) d p1(m) d p2(m)+d p1(m) d p2(m)

]
I(n) =

[ VM_UP(n) VM_DOWN(n) VM_WAIT(n) VM_STRTD(n) CHC_RES

d p2(n)+d p1(n) d p1(n) d p1(n) d p2(n)+d p1(n) d p2(n)

]
T .
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N(m)t(n) = N(m) tN(n). By juxtaposition I(m)t(n) = J (I(m),I(n)) and d p2(m) =

d p2(n) = d p :

I(m) =
[ VM_UP(1) VM_DOWN(1) VM_WAIT(1) VM_STRTD(1) ···

d p+d p1(1) d p1(1) d p1(1) d p+d p1(1) · · ·

VM_UP(m) VM_DOWN(m) VM_WAIT(m) VM_STRTD(m)

d p+d p1(m) d p1(m) d p1(m) d p+d p1(m)

VM_UP(n) VM_DOWN(n) VM_WAIT(n) VM_STRTD(n) CHC_RES

d p+d p1(n) d p1(n) d p1(n) d p+d p1(n) d p
]

Since I(m)t(n) > 0 and I T
(m)t(n)×A(m)t(n) = 0, in which A(m)t(n) is the result block

incidence matrix, N(m)t(n) is structurally conservative as well as structurally bounded.

A.2.2 A VM transmission component and m VM dependability submodels

In this section, a block representing k = m+o merged VM dependability components
(N(m)) is combined with a VM transmission component (N(n)). As previously stated, VM
transmission components represent the transmission of VM data between two data center. In
this example, the first data center has m dependability components and the second data center o

dependability components. The P-invariants of the result model are presented as follows:

I(m) =
[ VM_UPd1(1)

VM_DOWNd1(1)
VM_WAITd1(1)

VM_STRTDd1(1)
···

d pd1
+d pd1(1) d pd1(1) d pd1(1) d pd1

+d pd1(1) · · ·

VM_UPd1(m) VM_DOWNd1(m) VM_WAITd1(m) VM_STRTDd1(m) CHC_RESd1

d pd1
+d pd1(m) d pd1(m) d pd1(m) d pd1

+d pd1(m) d pd1

VM_UPd2(1)
VM_DOWNd2(1)

VM_WAITd2(1)
VM_STRTDd2(1)

···

d pd2
+d pd2(1) d pd2(1) d pd2(1) d pd2

+d pd2(1) · · ·

VM_UPd2(o)
VM_DOWNd2(o)

VM_WAITd2(o)
VM_STRTDd2(o)

CHC_RESd2

d pd2
+d pd2(o) d pd2(o) d pd2(o) d pd2

+d pd2(o) d pd2

]

I(n) =
[ CHC_RESd1 TRF_P1 TRF_P2 TBK_P1 TBK_P2 CHC_RESd2

tr tr tr tr tr tr
]

T .

N(m)t(n) = N(m)tN(n). By juxtaposition I(m)t(n)=J (I(m),I(n)) and d pd1
= d pd2

=

tr = d p :
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I(m)t(n) =
[ VM_UPd1(1)

VM_DOWNd1(1)
VM_WAITd1(1)

VM_STRTDd1(1)
···

d p+d pd1(1) d pd1(1) d pd1(1) d p+d pd1(1) · · ·

VM_UPd1(m) VM_DOWNd1(m) VM_WAITd1(m) VM_STRTDd1(m) CHC_RESd1

d p+d pd1(m) d pd1(m) d pd1(m) d p+d pd1(m) d p

VM_UPd2(1)
VM_DOWNd2(1)

VM_WAITd2(1)
VM_STRTDd2(1)

···

d p+d pd2(1) d pd2(1) d pd2(1) d p+d pd2(1) · · ·

VM_UPd2(o)
VM_DOWNd2(o)

VM_WAITd2(o)
VM_STRTDd2(o)

CHC_RESd2

d p+d pd2(o) d pd2(o) d pd2(o) d p+d pd2(o) d p

TRF_P1 TRF_P2 TBK_P1 TBK_P2

d p d p d p d p
]

T

Since I(m)t(n) > 0 and I T
(m)t(n)×A(m)t(n) = 0, in which A(m)t(n) is the result block

incidence matrix, N(m)t(n) is structurally conservative as well as structurally bounded.

A.2.3 A VM performability component and m VM performability submodels.

In this section, a block representing m merged VM performability components (N(m))

is combined with a new performability component (N(n)). In this example, all performability
components are related to servers of the same data center. The P-invariants of the result model
are presented as follows:

I(m) =
[ VM_DOWN(1) WM_WAIT(1) VM_STRTD(1) VM_UP(1)

pb1(1) pb1(1) pb1(1)+ pb2(m) pb1(1)+ pb2(m)

VM_DOWN(2) WM_WAIT(2) VM_STRTD(2) VM_UP(2) ···

pb1(2) pb1(2) pb1(2)+ pb2(m) pb1(2)+ pb2(m) · · ·

VM_DOWN(m) WM_WAIT(m) VM_STRTD(m) VM_UP(m)

pb1(m) pb1(m) pb1(m)+ pb2(m) pb1(m)+ pb2(m)

DC_CHC(d) CHC_RES(d) CLTS

pb2(m) pb2(m) pb2(m)

]
I(n) =

[ VM_DOWN WM_WAIT VM_STRTD VM_UP CLTS DC_CHC CHC_RES

pb1(n) pb1(n)
pb1(n)+

pb2(n)

pb1(n)+

pb2(n)
pb2(n) pb2(n) pb2(n)

]
T .

N(m)t(n) = N(m) tN(n). By juxtaposition I(m)t(n) = J (I(m),I(n)) and pb2(m) =
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pb2(n) = pb :

I(m)t(n) =
[ VM_DOWN(1) WM_WAIT(1) VM_STRTD(1) VM_UP(1) ···

pb1(1) pb1(1) pb1(1)+ pb pb1(1)+ pb · · ·

VM_DOWN(m) WM_WAIT(m) VM_STRTD(m) VM_UP(m)

pb1(m) pb1(m) pb1(m)+ pb pb1(m)+ pb

VM_DOWN(n) WM_WAIT(n) VM_STRTD(n) VM_UP(n)

pb1(n) pb1(n) pb1(n)+ pb pb1(n)+ pb

DC_CHC(d) CHC_RES(d) CLTS

pb pb pb
]

Since I(m)t(n) > 0 and I T
(m)t(n)×A(m)t(n) = 0, in which A(m)t(n) is the result block

incidence matrix, N(m)t(n) is structurally conservative as well as structurally bounded.

A.2.4 A VM transmission component and m VM performability submodels.

In this section, a block representing k = m+o merged VM performability components
(N(m)) is combined with a VM transmission component (N(n)). As previously stated, VM
transmission components represent the transmission of VM data between two data center. In
this example, the first data center has m performability components and the second data center o

performability components. The P-invariants of the result model are presented as follows:

I(m) =
[ VM_UPd1(1)

VM_DOWNd1(1)
VM_WAITd1(1)

VM_STRTDd1(1)
···

pbd1
+ pbd1(1) pbd1(1) pbd1(1) pbd1

+ pbd1(1) · · ·

VM_UPd1(m) VM_DOWNd1(m) VM_WAITd1(m) VM_STRTDd1(m) CHC_RESd1

pbd1
+ pbd1(m) pbd1(m) pbd1(m) pbd1

+ pbd1(m) pbd1

DC_CHCd1 CHC_RESd1 CLTSd1

pbd1
pbd1

pbd1

VM_UPd2(1)
VM_DOWNd2(1)

VM_WAITd2(1)
VM_STRTDd2(1)

···

pbd2
+ pbd2(1) pbd2(1) pbd2(1) pbd2

+ pbd2(1) · · ·

VM_UPd2(o)
VM_DOWNd2(o)

VM_WAITd2(o)
VM_STRTDd2(o)

pbd2
+ pbd2(o) pbd2(o) pbd2(o) pbd2

+ pbd2(o)

]
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DC_CHCd2 CHC_RESd2 CLTSd2

pbd2
pbd2

pbd2

]

I(n) =
[ CHC_RESd1 TRF_P1 TRF_P2 TBK_P1 TBK_P2 CHC_RESd2

tr tr tr tr tr tr
]

T .

N(m)t(n) = N(m)tN(n). By juxtaposition I(m)t(n) =J (I(m),I(n)) and pbd1
= pbd2

=

tr = pb :

I(m)t(n) =
[ VM_UPd1(1)

VM_DOWNd1(1)
VM_WAITd1(1)

VM_STRTDd1(1)
···

pb+ pbd1(1) pbd1(1) pbd1(1) pb+ pbd1(1) · · ·

VM_UPd1(m) VM_DOWNd1(m) VM_WAITd1(m) VM_STRTDd1(m)

pb+ pbd1(m) pbd1(m) pbd1(m) pb+ pbd1(m)

DC_CHCd1 CHC_RESd1 CLTSd1

pb pb pb

VM_UPd2(1)
VM_DOWNd2(1)

VM_WAITd2(1)
VM_STRTDd2(1)

···

pb+ pbd2(1) pbd2(1) pbd2(1) pb+ pbd2(1) · · ·

VM_UPd2(o)
VM_DOWNd2(o)

VM_WAITd2(o)
VM_STRTDd2(o)

pb+ pbd2(o) pbd2(o) pbd2(o) pb+ pbd2(o)

DC_CHCd2 CHC_RESd2 CLTSd2

pb pb pb

TRF_P1 TRF_P2 TBK_P1 TBK_P2

pb pb pb pb
]

T

Since I(m)t(n) > 0 and I T
(m)t(n)×A(m)t(n) = 0, in which A(m)t(n) is the result block

incidence matrix, N(m)t(n) is structurally conservative as well as structurally bounded.

A.2.5 A VM performance component and m VM performance submodels.

In this section, a block representing m merged VM performance components (N(m))

is combined with a new performance component (N(n)). In this example, all performance
components are related to servers of the same data center. The P-invariants of the result model
are presented as follows:

I(m) =
[ WM_WAIT(1) VM_STRTD(1) VM_UP(1)

pb1(1) pb1(1)+ pb2(m) pb1(1)+ pb2(m)
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WM_WAIT(2) VM_STRTD(2) VM_UP(2) ···

pb1(2) pb1(2)+ pb2(m) pb1(2)+ pb2(m) · · ·

WM_WAIT(m) VM_STRTD(m) VM_UP(m)

pb1(m) pb1(m)+ pb2(m) pb1(m)+ pb2(m)

DC_CHC(d) CHC_RES(d) CLTS

pb2(m) pb2(m) pb2(m)

]
I(n) =

[ WM_WAIT VM_STRTD VM_UP CLTS DC_CHC CHC_RES

pb1(n)
pb1(n)+

pb2(n)

pb1(n)+

pb2(n)
pb2(n) pb2(n) pb2(n)

]
T .

N(m)t(n) = N(m) tN(n). By juxtaposition I(m)t(n) = J (I(m),I(n)) and pb2(m) =

pb2(n) = pb :

I(m)t(n) =
[ WM_WAIT(1) VM_STRTD(1) VM_UP(1) ···

pb1(1) pb1(1)+ pb pb1(1)+ pb · · ·

WM_WAIT(m) VM_STRTD(m) VM_UP(m)

pb1(m) pb1(m)+ pb pb1(m)+ pb

WM_WAIT(n) VM_STRTD(n) VM_UP(n)

pb1(n) pb1(n)+ pb pb1(n)+ pb

DC_CHC(d) CHC_RES(d) CLTS

pb pb pb
]

Since I(m)t(n) > 0 and I T
(m)t(n)×A(m)t(n) = 0, in which A(m)t(n) is the result block

incidence matrix, N(m)t(n) is structurally conservative as well as structurally bounded.
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B
Properties of Net Union Operator

The following properties are adopted to demonstrate that all generated models, using
net union operator and the proposed building block models, are structurally bounded and
conservative. As the net union operator is associative, commutative and contains an identity
element, it represents a commutative monoid. The proofs are presented as follows.

Definition 9. Commutative Monoid Let X be a binary operation defined for a domain D
(X : D×D→D). < D,X > is a commutative monoid if X is associative ((aXb)Xc = aX(bXc),∀
a,b,c ∈ D), commutative ( aXb = bXa,∀a,b ∈ D) and contains an identity element /0 ∈ D
( /0Xa = aX /0 = a,∀a ∈ D).

Theorem 2. (Net Union: Associative Property). Net union operation is associative, since its
internal operations are associative.

Proof. Let N1 = (P1,T1, I1, O1, H1,Π1,M01 ,Atts1), N2 = (P2, T2, I2, O2, H2, Π2,

M02,Atts2) and N3 = (P3,T3, I3,O3,H3,Π3,M03,Atts3) ∈ RSSPN.

If Na = (Pa,Ta, Ia,Oa,Ha,Πa,M0a,Attsa) is a RSSPN obtained by Na = N1tN2, then:

� Pa = P2∪P1

� Ta = T2∪T1

� ∀pi, ti ∈ Pa∪Ta :

� INa(pi, tt) =


IN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

IN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

0, otherwise

� ONa(pi, tt) =


ON1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

ON2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

0, otherwise

� HNa(pi, tt) =


HN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

HN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

0, otherwise
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� ΠNa(ti) =

ΠN1(ti), i f ti ∈ T1

ΠN2(ti), i f ti ∈ T2

� M0Na(pi) =

M0N1(pi), i f pi ∈ P1

M0N2(pi), i f pi ∈ P2

� AttsNa(ti) =

AttsN1(ti), i f ti ∈ T1

AttsN2(ti), i f ti ∈ T2

Let Nb = NatN3 = (N1tN2)tN3 is given by:

� Pb = Pa∪P3 = (P1∪P2)∪P3

� Tb = Ta∪T3 = (T1∪T2)∪T3

� ∀pi, ti ∈ Pb∪Tb :

� INb(pi, tt) =


INa(pi, ti), i f pi ∈ Pa∧ ti ∈ Ta

IN3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� INb(pi, tt) =



IN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

IN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

IN3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� ONb(pi, tt) =


ONa(pi, ti), i f pi ∈ Pa∧ ti ∈ Ta

ON3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� ONb(pi, tt) =



ON1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

ON2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

ON3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� HNb(pi, tt) =


HNa(pi, ti), i f pi ∈ Pa∧ ti ∈ Ta

HN3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise



145

� HNb(pi, tt) =



HN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

HN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

HN3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� ΠNb(ti) =

ΠNa(ti), i f ti ∈ Ta

ΠN3(ti), i f ti ∈ T3

� ΠNb(ti) =


ΠN1(ti), i f ti ∈ T1

ΠN2(ti), i f ti ∈ T2

ΠN3(ti), i f ti ∈ T3

� M0Nb
(pi) =

M0Na(pi), i f pi ∈ Pa

M0N3(pi), i f pi ∈ P3

� M0Nb
(pi) =


M0N1(pi), i f pi ∈ P1

M0N2(pi), i f pi ∈ P2

M0N3(pi), i f pi ∈ P3

� AttsNb(ti) =

AttsNa(ti), i f ti ∈ Ta

AttsN3(ti), i f ti ∈ T3

� AttsNb(ti) =


AttsN1(ti), i f ti ∈ T1

AttsN2(ti), i f t2 ∈ T2

AttsN3(ti), i f ti ∈ T3

If Nc = (Pc,Tc, Ic,Oc,Hc,Πc,M0c,Attsc) is a RSSPN obtained by Nc = N2tN3, then:

� Pc = P2∪P3

� Tc = T2∪T3

� ∀pi, ti ∈ Pc∪Tc :

� INc(pi, tt) =


IN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

IN3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise
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� ONc(pi, tt) =


ON2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

ON3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� HNc(pi, tt) =


HN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

HN3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� ΠNc(ti) =

ΠN2(ti), i f ti ∈ T2

ΠN3(ti), i f ti ∈ T3

� M0Nc(pi) =

M0N2(pi), i f pi ∈ P2

M0N3(pi), i f pi ∈ P3

� AttsNc(ti) =

AttsN2(ti), i f ti ∈ T2

AttsN3(ti), i f ti ∈ T3

Let Nd = N1tNc = N1t (N2tN3) is given by:

� Pd = Pc∪P1 = P1∪ (P2∪P3)

� Td = Tc∪T1 = T1∪ (T2∪T3)

� ∀pi ∈ Pc∧ ti ∈ Tc :

� INd(pi, tt) =


IN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

INc(pi, ti), i f pi ∈ Pc∧ ti ∈ Tc

0, otherwise

� INd(pi, tt) =



IN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

IN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

IN3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� ONd(pi, tt) =


ON1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

ONc(pi, ti), i f pi ∈ Pc∧ ti ∈ Tc

0, otherwise
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� ONd(pi, tt) =



ON1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

ON2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

ON3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� HNd(pi, tt) =


HN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

HNc(pi, ti), i f pi ∈ Pc∧ ti ∈ Tc

0, otherwise

� HNd(pi, tt) =



HN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

HN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

HN3(pi, ti), i f pi ∈ P3∧ ti ∈ T3

0, otherwise

� ΠNd(ti) =

ΠN1(ti), i f ti ∈ T1

ΠNc(ti), i f ti ∈ Tc

� ΠNd(ti) =


ΠN1(ti), i f ti ∈ T1

ΠN2(ti), i f ti ∈ T2

ΠN3(ti), i f ti ∈ T3

� M0Nd
(pi) =

M0N1(pi), i f pi ∈ P1

M0Nc(pi), i f pi ∈ Pc

� M0Nd
(pi) =


M0N1(pi), i f pi ∈ P1

M0N2(pi), i f pi ∈ P2

M0N3(pi), i f pi ∈ P3

� AttsNd(ti) =

AttsN1(ti), i f ti ∈ T1

AttsNc(ti), i f ti ∈ Tc

� AttsNd(ti) =


AttsN1(ti), i f ti ∈ T1

AttsN2(ti), i f t2 ∈ T2

AttsN3(ti), i f t3 ∈ T3

Thus, net union operation is associative, since Nb = (N1tN2)tN3 and Nd = N1t
(N2tN3), and Nb = Nd .
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Theorem 3. Net Union: Commutative Property. Net union operation is commutative, since
its internal operations are commutative.

Proof. Let N1 =(P1,T1, I1,O1,H1,Π1,M01,Atts1) and N2 =(P2,T2, I2,O2,H2,Π2,M02,Atts2)∈
RSSPN.

If Na = (Pa,Ta, Ia,Oa,Ha,Πa,M0a,Attsa) is a RSSPN obtained by Na = N1tN2, then:

� Pa = P1∪P2

� Ta = T1∪T2

� ∀pi, ti ∈ Pa∪Ta :

� INa(pi, ti) =


IN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

IN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

0, otherwise

� ONa(pi, ti) =


ON1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

ON2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

0, otherwise

� HNa(pi, ti) =


HN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

HN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

0, otherwise

� ΠNa(ti) =

ΠN1(ti), i f ti ∈ T1

ΠN2(ti), i f ti ∈ T2

� M0Na(pi) =

M0N1(pi), i f pi ∈ P1

M0N2(pi), i f pi ∈ P2

� AttsNa(ti) =

AttsN1(ti), i f ti ∈ T1

AttsN2(ti), i f ti ∈ T2

If Nb = (Pb,Tb, Ib,Ob,Hb,Πb,M0b,Attsb) is a RSSPN obtained by Nb = N2tN1, then:

� Pb = P2∪P1

� Tb = T2∪T1

� ∀pi, ti ∈ Pb∪Tb :
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� INb(pi, ti) =


IN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

IN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

0, otherwise

� ONb(pi, ti) =


ON2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

ON1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

0, otherwise

� HNb(pi, ti) =


HN2(pi, ti), i f pi ∈ P2∧ ti ∈ T2

HN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

0, otherwise

� ΠNb(ti) =

ΠN2(ti), i f ti ∈ T2

ΠN1(ti), i f ti ∈ T1

� M0Nb
(pi) =

M0N2(pi), i f pi ∈ P2

M0N1(pi), i f pi ∈ P1

� AttsNb(ti) =

AttsN2(ti), i f ti ∈ T2

AttsN1(ti), i f ti ∈ T1

Thus, net union operation is commutative, since Na = N1tN2 = Nb = N2tN1.

Let N /0 = (P/0,T/0, I/0,O /0,H/0,Π /0,M0 /0,Atts /0) ∈ RSSPN, where P/0 = T/0 = /0 and the other
components are empty matrices. An empty matrix corresponds to a matrix whose number of
rows or columns (or both) is equal to zero (92).

Theorem 4. N /0 is the identity element of net union operation, since ∀N ∈ RSSPN,N =
N tN /0

Proof. If Na = (Pa,Ta, Ia,Oa,Ha,Πa,M0a,Attsa) and N1 = (P1,T1, I1,O1,H1,Π1,M01,Atts1)

are RSSPNs, and obtained by Na = N1tN /0, then:

� Pa = P1∪ /0

� Ta = T1∪ /0

� ∀pi, ti ∈ P1∪T1 :

� INa(pi, ti) =

IN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

0, otherwise

as P1 = Pa and T1 = Ta, INa(pi, ti) = ON1(pi, ti)
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� ONa(pi, ti) =

ON1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

0, otherwise

as P1 = Pa and T1 = Ta, ONa(pi, ti) = ON1(pi, ti)

� HNa(pi, ti) =

HN1(pi, ti), i f pi ∈ P1∧ ti ∈ T1

0, otherwise

as P1 = Pa and T1 = Ta, HNa(pi, ti) = HN1(pi, ti)

� ΠNa(ti) =
{

ΠN1(ti), i f ti ∈ T1

as T1 = Ta, ΠNa(ti) = ΠN1(ti)

� M0Na(pi) =
{

M0N1(pi), i f pi ∈ P1

as P1 = Pa, M0Na(pi) = M0N1(pi)

� AttsNa(ti) =
{

AttsN1(ti), i f ti ∈ T1

as T1 = Ta, AttsNa(ti) = AttsN1(ti)

Therefore, net union operation has an identity element, since Na = N1.
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