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“If you optimize everything, you will always be unhappy."
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RESUMO

Considerando as características de provisionamento dinâmico e a ilusão de recursos
ilimitados, nuvens computacionais estão se tornando uma alternativa popular para executar
workflows científicos. Numa nuvem computacional para processamento de workflows,
o desempenho do sistema é altamente influenciado por dois fatores: a estratégia de
escalonamento e falhas de componentes. Falhas numa nuvem podem afetar vários usuários
simultaneamente e diminuir o número de recursos computacionais disponíveis. Uma
estratégia de escalonamento ruim pode aumentar o makespan e diminuir a utilização
das máquinas físicas. Neste trabalho, nós propomos um framework de modelagem e um
conjunto de modelos formais e métodos para auxiliar o planejamento de infraestrutura
de nuvens do tipo Workflow-as-a-Service. Este framework de modelagem provê auxílio às
tarefas de: i) planejar a implantação de aplicações de workflow em nuvens computacionais
a fim de maximizar métricas de desempenho e confiabilidade; ii) planejar os arranjos de
redundância na infraestrutura de nuvem a fim de reduzir o gasto de aquisição e, ao mesmo
tempo, garantir requisitos de disponibilidade; iii) identificar gargalos de disponibilidade e
habilitar a priorização dos componentes mais críticos. Nós conduzimos três estudos de caso
a fim de ilustrar e validar o framework de modelagem proposto. O primeiro estudo de caso
emprega um modelo hierárquico de disponibilidade usando modelos RBD e DRBD e aplica
métodos de análise de sensibilidade para detectar os parâmetros mais influentes na métrica
considerada. O segundo estudo de caso extende o anterior, ao modelar a infraestrutura
de nuvem como um problema de alocação de redundância (RAP - redundancy allocation
problem). Para minimizar o custo de aquisição enquanto a disponibilidade é maximizada,
nós combinamos o método de busca local com o algoritmo de bisecção. No último estudo
de caso, nós propomos um método para a otimização do escalonamento de workflows em
nuvem. Este estudo de caso adota um algoritmo meta-heurístico acoplado a um modelo
de performabilidade que provê a função fitness das soluções exploradas. Os resultados
experimentais obtidos nos estudos de caso demonstram a eficácia do framework em auxiliar
tarefas de planejamento de infraestrutura, permitindo que provedores de nuvem maximizem
a utilização de recursos, reduzam custos operacionais, e garantam requisitos de SLA.

Palavras-chaves: planejamento de infraestrutura, computação em nuvem, otimização
combinatória, modelagem estocástica, simulação de eventos discretos, redes de Petri,
diagramas de bloco de confiabilidade



ABSTRACT

Given the characteristics of dynamic provisioning and the illusion of unlimited re-
sources, “the cloud” is becoming a popular alternative for running scientific workflows.
In a cloud system for processing workflow applications, the performance of the system
is heavily influenced by two factors: the scheduling strategy and failure of components.
Failures in a cloud system can simultaneously affect several users and depreciate the
number of available computing resources. A bad scheduling strategy can increase the
expected makespan and the idle time of physical machines. In this work, we propose a
modeling framework, and a set of formal models and methods for supporting the infras-
tructure planning of Workflow-as-a-Service clouds. This modeling framework supports the
tasks of: i) planning the deployment of workflow applications in computational clouds
in order to maximize performance and reliability metrics; ii) planning the redundancy
arrangements in the cloud infrastructure in order to reduce the acquisition cost while
satisfying availability requirements; iii) identifying availability bottlenecks and enabling
the prioritization of critical components for improvement. We conducted three case studies
in order to illustrate and validate the proposed modeling framework. The first case study
employs a comprehensive hierarchical availability model using RBD and DRBD models
and applied sensitivity analysis methods in order to find the most influential parameters.
The second case study extends the previous one by modeling a cloud infrastructure as
an instance of the redundancy allocation problem (RAP). To minimize the acquisition
cost while maximizing the availability of the system, we proposed the combined use of
a local-search algorithm and the bisection method. In the last case study, we optimize
the scheduling of scientific cloud workflows. This case study comprises the use of a meta-
heuristic algorithm coupled with a performability model that provides the fitnesses of the
explored solutions. The experimental results obtained in all case studies have proven the
framework effectiveness on aiding planning infrastructures tasks, allowing cloud providers
to maximize resource utilization, reduce operational costs, and ensure SLA requirements.

Key-words: infrastructure planning, cloud computing, combinatorial optimization, stochas-
tic modeling, discrete event simulation, Petri nets, reliability block diagrams
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1 INTRODUCTION

In the past decades, computers become an invaluable asset for scientists in many fields
of human knowledge. Simulation models are useful when experiments in the real world
are too difficult or costly to execute, or when the phenomenon of interest is impossible
to reproduce (for instance, in studies about the origin of the universe). Such models
are often computationally intensive and require an execution environment composed of
many processing units. Many computational scientific applications can be expressed as
workflows, i.e., a set of subtasks with data and control-flow dependencies between them.
In such applications, the scheduling of tasks to the processing units plays a vital role in
the performance of the system, but finding an optimal schedule is an NP-Hard problem
(BOOK et al., 1980).

Nowadays, cloud computing has been attracting attention as a platform for running
scientific applications (HOFFA et al., 2008; VÖCKLER et al., 2011; JUVE et al., 2009). The
pay-per-use model eliminates the need for upfront investment on a cluster/supercomputer.
Moreover, cloud users do not need to worry about managing the underlying hardware
infrastructure. While this model makes things more convenient for the user, this task be-
comes a severe issue for cloud providers, who need to guarantee reliability and performance
levels specified by a Service Level Agreement (SLA).

The use of formal models from the earliest stages of development helps to ensure that
non-functional requirements such as performance, reliability, availability, and security are
met. (MENASCE et al., 2004). Formal models also can support the activities of infrastructure
and capacity planning of cloud environments (SOUSA; MACIEL; ARAÚJO, 2009; CALLOU

et al., 2012; DANTAS et al., 2015). More specifically, modeling techniques support the
tasks of: i) comparing multiple alternative designs concerning operational costs and SLA-
related quantitative metrics; ii) testing the system’s behavior under different combinations
of workload and configuration parameters as means of fine-tuning and identification
of performance and availability bottlenecks. By contrast, assessing cloud performance
and reliability metrics via measurement-based evaluation is often prohibitive in practice.
Furthermore, model-based evaluation is the only option in the early stages of development,
when a minimum viable deployment of the system is not available (JAIN, 1990).

Nevertheless, many technical challenges arise when carrying out model-based infras-
tructure planning of computational clouds, which are designed for workflow applications.
In this thesis, we identify those challenges and propose a modeling framework for the
infrastructure planning of Workflow-as-a-Service clouds (WaaS) (WANG et al., 2014).
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1.1 MOTIVATION AND JUSTIFICATION

Creating availability models of complex systems such as computational clouds requires
a proper set of techniques and methods. Using only combinatorial models such as Re-
liability Block Diagrams (RBD) (XU; XING, 2007) and Fault Trees (FT) (VESELY et al.,
1981) may introduce unrealistic assumptions and does not allow to represent interactions
between components, such as failure dependencies and redundancy arrangements. On the
other hand, state-space based models such as Continuous Time Markov Chains (CTMC)
(MARKOV, 1906) and Stochastic Petri Nets (SPN) (GERMAN, 2000) enable representing
such dependencies but suffer from state-explosion, and simplifications are often made to
avoid complex models. The literature often suggests hierarchical modeling as a means to
obtain the advantages of both categories.

The complexity of cloud infrastructures (i.e., the large number of hardware and software
components and their interdependence relationships) also raises the need for performance
evaluation methods that consider the failure of components. A performance study that
disregards reliability aspects may not give accurate results since failures of physical and
virtual machines can increase waiting times and decrease throughput (QIU et al., 2015).
Given the difficulties of assessing the performance degradation caused by failures in a
cloud environment via measurement-based evaluation, state-space based models are the
most commonly used technique in the literature for performability evaluation of cloud
and grid systems (GHOSH et al., 2010; QIU et al., 2015; WANG; CHANG; LIU, 2016; RAEI;

YAZDANI, 2017).
Evaluating the effects of both scheduling and hardware/virtual machine failures on the

performability of workflow applications in cloud environments is a challenging task for
space-state based models due to the high number of states to be considered. Moreover, the
exponential distribution may not be a good fit for computation times in workflows. Given
this intrinsic limitation of space-based models, many existing research efforts towards the
modeling of cloud applications employ discrete event simulators. CloudSim (CALHEIROS

et al., 2011) is the most widely adopted simulation framework in the cloud computing
literature. Thanks to its flexible architecture, many extensions were proposed to address
aspects not initially implemented by CloudSim. Some of the extensions feature auto-scaling
(CAI; LI; LI, 2017), federated clouds (KOHNE et al., 2014), fault tolerance mechanisms (DAVIS

et al., 2017; ZHOU et al., 2013; ALWABEL; WALTERS; WILLS, 2015), and workflow applications
(CHEN; DEELMAN, 2012; BUX; LESER, 2015; MALAWSKI et al., 2015).

Besides the intricacies of performance and availability modeling of cloud workflow
applications, there is a need for integrating formal model evaluation to infrastructure
planning methods and tools. To be more specific, a software modeling tool to be employed
in such study may offer the following features: i) multiple modeling formalisms and
hierarchical modeling; ii) high-level formalisms, such as high-level Petri nets, Dynamic
Reliability Block Diagrams (DRBD), and so on.; iii) support to symbolic evaluation (i.e., the
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ability to represent input parameters and output metrics as variables and expressions); iv)
and exporting the evaluator engine as a programmable interface. Hierarchical modeling and
high-level models offer means to alleviate the difficulties faced when modeling WaaS clouds.
Symbolic model evaluation and accessing the model evaluator engine via a programming
language allow to couple the modeling strategy to infrastructure planning methods and
tools.

1.2 OBJECTIVES

Reducing acquisition and operational costs while maintaining user’s agreements is a goal
pursued by cloud providers. The primary goal of this work is to propose a modeling
framework and a cohesive set of formal models and methods for assisting the infrastructure
planning of Workflow-as-a-Service clouds. The proposed modeling framework will support
the tasks of: i) planning the deployment of workflow applications in computational clouds
in order to maximize performability metrics; ii) planning the redundancy arrangements
in the cloud infrastructure to reduce the acquisition cost while satisfying availability
requirements; iii) identifying availability bottlenecks and enabling the prioritization of
critical components for improvement.

In order to accomplish the stated primary goal, the following list of specific goals is set:

• To propose a novel modeling runtime for the Mercury tool aimed at flexible hierar-
chical modeling and higher-level modeling formalisms;

• To develop a method for identifying performance and reliability bottlenecks of cloud
infrastructures supported by formal modeling and sensitivity analysis;

• To study and devise new modeling and meta-modeling techniques for performance
and availability modeling of cloud workflow applications;

• To investigate optimization methods for scientific workflows applications running in
a cloud environment;

For making the best use of the proposed framework, models and methods, knowledge
in both computer programming and formal modeling is required. Nonetheless, a cloud
engineer equipped with such a skillset can build software tools targeted at non-technical
cloud users and stakeholders. Such tools may provide a user-friendly interface and allow
users to modify specific model parameters and verify the expected changes in the response
metrics, without exposing the details about the adopted formal models.

1.3 ORGANIZATION OF THIS WORK

The remaining of this thesis is organized as follows. Chapter 2 provides an overview of the
concepts and theory covered in this work. Chapter 3 presents a literature review concerning
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the proposed framework, methodology, and conducted case studies. Chapter 4 describes
the proposed framework and its supporting methodology for infrastructure planning of
WaaS clouds.

Chapter 5 presents an overview of the WaaS cloud architecture and suggests formal
models for availability and performance evaluation of such environments. In Chapter 6,
we conduct a series of case studies for validating and illustrating the proposed approach.
Finally, in Chapter 7, we conclude this work and suggest work that can be done based on
this approach.
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2 BACKGROUND

This chapter presents the basic theory and concepts related to the contents of this work.
Section 2.1 gives an overview of cloud computing. Scientific workflows applications are
described in Section 2.2. Section 2.3 gives an introduction to dependability concepts.
Finally, sections 2.4, 2.5, and 2.6 introduce important formalisms for availability and
performance modeling, namely, Reliability Block Diagrams, Continuous Time Markov
chains, and Petri nets.

2.1 CLOUD COMPUTING

Cloud computing is a computational model in which resources such as processing, network,
storage, and softwares are offered via the Internet and can be accessed remotely (ARMBRUST

et al., 2010). This model allows users to obtain resources by demand, with elasticity, at a
low cost and delivered as traditional services such as water, gas, electricity, and telephony
(DINH et al., 2013). Among the many definitions of cloud computing existing in the literature,
we present the definition proposed by (VAQUERO et al., 2008):

Clouds are a large pool of easily usable and accessible virtualized resources
(such as hardware, development platforms, or services). These resources can
be dynamically reconfigured to adjust to a variable load (scale), also allowing
for optimum resource utilization. This pool of resources is typically exploited
by a pay-per-use model, in which guarantees are offered by the Infrastructure
Provider by means of a customized Service Level Agreement.

Cloud computing is a recent computational paradigm, but it was created using existent
technologies as its foundations: virtualization, grid computing, and utility computing. The
computational resources of a grid are provisioned to clients as virtual machines so each
customer only pays for the resources that he/she consume, instead of paying a fixed fee.

This computational model has some characteristics that turn it attractive to a significant
number of corporations. If a business wants to launch a service on the Internet, it can rent
some set virtual machines and deploy the service on them, without having to own the server
infrastructure. This provisioning model helps to reduce the time-to-market of services
and products and to make them more competitive. Moreover, the elastic provisioning of
resources by a cloud allows a system to react to changes in the workload, without the
need of an infrastructure oversizing. For instance, consider as an example the Amazon
Data Center before becoming a cloud provider. To support infrequent workload peaks,
the infrastructure was oversized in such a way that the average utilization was only 10%
(JEFF. . . , ). By relying on cloud elasticity, a system can allocate more virtualized resources
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on demand to handle a high workload and relinquish them when they are not necessary
anymore.

We can characterize cloud systems regarding two aspects. The first aspect defines if
the system is maintained by its user, by a third party agent, or by a combination of both.
By this point of view, we have three classes of clouds:

• A private cloud is designed to be used by a single organization. An external agent
can provide a private cloud infrastructure, or the organization itself can manage it.
The latter option is preferred to run critical data systems (e.g., banks, government,
and military agencies), in which data leakage is not tolerated. The disadvantage of
this approach is the significant monetary cost involved in purchasing the data-center
components. However, this option enables better management and consolidation of
resources, allowing more efficient usage of the available hardware (ZHAO; FIGUEIREDO,
2007; KIM; MACHIDA; TRIVEDI, 2009);

• Public clouds are clouds maintained by service providers that offer their compu-
tational resources to other organizations. The usage of public clouds removes the
need for upfront costs on physical servers and provides elasticity (the ability to
acquire more virtualized servers on demand to adapt to an increasing workload). An
additional advantage is that it is up to the cloud provider to maintain the system
and ensuring that SLAs are satisfied (CAROLAN et al., 2009);

• A hybrid cloud is a combination of both previous schemes to get the best of each
approach. Critical data can be stored in the private part of the cloud, at the same
time that it is possible to scale the service beyond the limits of a typical private cloud.
On the other hand, greater complexity in cloud management accompanies those
benefits and finding the better partitioning between public and private components
is challenging (ZHANG; CHENG; BOUTABA, 2010).

The other aspect in which clouds can be classified is regarding their business model:

• Infrastructure as a Service (IaaS) - This business model partitions the resources
of a data center among users as virtualized resources. The users of IaaS clouds get
raw virtual machines and are responsible for maintaining the whole software stack
of the services that will run on them;

• Platform as a Service (PaaS) - In this service model, the cloud provider abstracts
the virtual machines and the operating systems, and offers to its users a high-level
programming platform. The advantage of this design is the transparent scaling of
the underlying infrastructure at runtime (VAQUERO et al., 2008);

• Software as a Service (SaaS) - This business model targets everyday Internet
users, instead of system administrators and programmers. In this model, standard
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software and data are stored on the cloud and can be accessed by any computer
connected to the Internet via a Web interface.

Besides the models mentioned above, there is the Data as a Service (DaaS) model
(TRUONG; DUSTDAR, 2009), in which the cloud provides a secondary storage service,
ensuring high reliability and data integrity. A DaaS service can be viewed as IaaS or
SaaS, depending on the context in which it is used. For instance, consider the storage and
backup service of Dropbox 1. Its clients perceive this service as a SaaS cloud. However, the
Dropbox itself uses the Amazon S3 (Simple Storage) service 2 to store client data. From
the Dropbox viewpoint, the Amazon storage is an IaaS service.

2.2 SCIENTIFIC WORKFLOW APPLICATIONS

A scientific workflow consists of a set of computing and I/O intensive tasks with precedence
constraints between them. Scientific workflows can be represented by a directed acyclic
graph (DAG). A DAG 𝐺 is defined by a tuple {𝑇, 𝐸}, where 𝑇 = {𝑇1, 𝑇2, . . . , 𝑇𝑛} is the
set of tasks and 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} is the set of precedence constraints. Each 𝑒𝑖 = (𝑇𝑎, 𝑇𝑏)
tuple denotes that task 𝑇𝑏 starts to execute after 𝑇𝑎 finishes and have sent some input
data to 𝑇𝑏.

A scheduler should map tasks to a set of processors according to some predefined goals
such as utilization of resources, makespan (the total length of a schedule), throughput,
meeting of deadlines, etc. A scheduling algorithm can either require as input the number
of processing units or try to find an optimal/near-optimal number of processing units
in conjunction with the mapping of tasks. The latter case is harder since it leads to an
increased search space. Additionally, while increasing the number of processors can shorten
the makespan of an individual job, it also may increase the idle time of processors due to
the precedence constraints between tasks (RODRIGUEZ; BUYYA, 2017).

Figure 1 shows an example of an application modeled as a DAG (obtained from (XU

et al., 2015)). The node weights are the computing times, and the edge weights are the
communication times, i.e., the time for sending the results needed by a dependent task
running on a different processing node. Figures 2 a) and b) show two different schedulings
for the DAG of Figure 1.

Cloud computing provides computational resources such as servers, networks, storage,
applications, and services, with little management effort and few interactions with the
service provider (MELL; GRANCE et al., 2011). In this way, researchers without access to a
supercomputer or cluster can run scientific workflows by allocating virtualized resources in
a cloud for a given period (WANG et al., 2008). Since many practical scheduling problems
are either NP-Hard or NP-Complete, much effort is necessary to apply and adapt meta-

1 <https://dropbox.com>
2 <http://aws.amazon.com/s3/>

https://dropbox.com
http://aws.amazon.com/s3/
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Figure 1 – Example of Directed Acyclic Graph (XU et al., 2015)
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Figure 2 – Schedulings of the DAG shown in Figure 1

heuristic algorithms to schedule tasks in cloud computing environments. The contributions
made in this field include the following:

• Devising heuristics algorithms able to provide near-optimal solutions under certain
constraints (LIN; WU; WANG, 2016);

• Adapting nature inspired and evolutionary algorithms for this problem, such as
Genetic algorithm (GU et al., 2012) (ZHENG et al., 2011) (ZHAO et al., 2009), Honey
bee colony (LD; KRISHNA, 2013) (BITAM, 2012), ant colony (CHEN; ZHANG, 2013)
(TAWFEEK et al., 2013), and Fish Swarm (ZHAO; TIAN, 2014);

• Dealing with a heterogeneous system (processors with different computing power)
(PANDA; JANA, 2015);

• Dealing with conflicting aspects of a multi-cost objective function (e.g., energy versus
makespan) (MEZMAZ et al., 2011).

2.3 DEPENDABILITY

The idea of dependability is defined by a set of measures that indicate the capability of
a system to continue working correctly, despite the presence of failures and errors. We
consider that a system is free of failures when it delivers its intended, service regarding
functional and non-functional requirements, as perceived by the users. An error is a portion
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of the system state that can lead the system to the failure, and a fault is the hypothesized
cause of an error (RANDELL, 1998).

We can divide the dependability related concepts into three groups (AVIZIENIS et al.,
2001): attributes, means, and threats. The dependability attributes are the set of metrics
which enable obtaining quantitative measures that are fundamental for analyzing the
offered services. “Dependability means” are the techniques available for increasing the
dependability of a system, i.e., by removing/preventing/forecasting failures or making
the system tolerant to their presence. Fault tolerance mechanisms rely on redundancy
techniques since identical components can be used to replace failed ones at runtime (STORM,
2012). Finally, the threats correspond to the failures, errors, and faults of a system.

The dependability attributes are reliability, availability, maintainability, performability,
security, testability, confidentiality, and integrity (LAPRIE, 1992). Among these attributes,
the most commonly considered in dependability studies are reliability and availability. The
reliability metric measures the probability that a system will deliver its function correctly
during a specified time interval, without the occurrence of failures in this interval. The
following formula provides the reliability of a system:

𝑅(𝑡) = 𝑃{𝑇 > 𝑡} = 𝑒−
∫︀ 𝑡

0 𝜆(𝑡)𝑑𝑡, 𝑡 ≥ 0 , (2.1)

where 𝑇 is a random variable that represents the time to failure of the system and 𝜆(𝑡) is
known as the hazard function. We define the availability metric as (MACIEL et al., 2012a):

𝐴 = 𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝑅 + 𝑀𝑇𝑇𝐹
∼=

𝑀𝑇𝐵𝐹

𝑀𝑇𝑇𝑅 + 𝑀𝑇𝐵𝐹
(2.2)

where MTTF is the mean time to failure, MTBF is the mean time between failures, and
MTTR is the mean time to repair.

2.3.1 Dependability modeling

Formal models for dependability evaluation are classified into two categories: combinatorial
models and state-space based models (MACIEL et al., 2012b). Combinatorial models represent
the conditions that may result in an operational/failed state, based on the structural
relationships of its subcomponents. State-space based models describe the system behavior
by means of discrete states and the events that provoke transition between states. Some
examples of combinatorial models include Reliability Block Diagrams and Fault Trees.
Continuous Time Markov Chains, Queueing Networks, and Stochastic Petri nets are
examples of state-space based models.

There are tradeoffs between the mentioned modeling categories (MALHOTRA; TRIVEDI,
1994). Combinatorial models are more straightforward to create, and the analysis methods
are (in general) faster. However, their modeling capacity is more limited. When using
such models, the modeler should assume that components are stochastically independent.
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State-space based models are more complicated to create and evaluate, but they possess
more expressiveness power than combinatorial models. With state-space based models, a
modeler can represent more complex scenarios such as redundancy arrangements (in cold
and warm standby modes) (LOGOTHETIS; TRIVEDI, 1995).

By employing hierarchical modeling techniques, it is possible to combine combina-
torial and state-space models and achieve the best of both worlds (MALHOTRA; TRIVEDI,
1993). Different modeling formalisms, or different models within the same formalism, can
be combined in different abstraction levels, resulting in bigger hierarchical models. The top-
level model represents the system at an architectural level (the most significant modules in
the highest level), while lower level models describe the detailed behavior of each subsystem.
Hierarchical models have been used to deal with the complexity of many application areas,
such as sensor networks (KIM; GHOSH; TRIVEDI, 2010), telecommunication infrastructure
(TRIVEDI et al., 2006), and private clouds (DANTAS et al., 2012).

2.4 RELIABILITY BLOCK DIAGRAM

An RBD model specifies which combinations of failed and active components can yield a
proper system operation (i.e.: it specifies the operational mode of the system). Visually,
it is represented by a graph with a start vertex and an end vertex, connected to the
component vertices, which are represented by a rectangular shape and account for the
system components or subsystems. The nodes can be connected following specific structures,
such as series, parallel, bridge, k-out-of-n, or a combination of the previous structures
(KUO; ZUO, 2003). In an RBD model, the system is considered functional (available or
reliable) if there is at least one path composed of functional components, from the start
vertex to the end vertex.

Figures 3 a) to c) show some examples. Figure 3 a) show an RBD model with a series
arrangement of the components C1, C2 and C3, Figure 3 b) shows a parallel arrangement,
and Figure 3 c) shows a combination of series/parallel structures. It is important to stress
that the organization of the components in the RBD model does not necessarily represent
the physical topology of the real system. For a series structure composed of 𝑛 independent
components, the probability for the system to be operational is:

𝑃{𝜑(𝑥) = 1} = 𝑃{𝜑(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) = 1}

=
𝑛∏︁

𝑖=1
𝑃{𝑥𝑖 = 1} =

𝑛∏︁
𝑖=1

𝑝𝑖 (2.3)

where 𝑝𝑖 = 𝑃{𝑥𝑖 = 1} are the functioning probabilities of blocks 𝑏𝑖. For a parallel structure
composed of 𝑛 identical and independent components, the probability for the system to
be operational is:



Chapter 2. Background 26

𝑃{𝜑(𝑥) = 1} = 𝑃{𝜑(𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛) = 1}

= 1 −
𝑛∏︁

𝑖=1
𝑃{𝑥𝑖 = 0} = 1 −

𝑛∏︁
𝑖=1

(1 − 𝑃{𝑥𝑖 = 1})

= 𝑃{𝜑(𝑥) = 1} = 1 −
𝑛∏︁

𝑖=1
(1 − 𝑝𝑖) (2.4)

C2 C3C1
BEGIN END

(a)

C2

C3

C1

BEGIN END

(b)

C2

C1

C3

BEGIN
END

(c)

Figure 3 – RBD examples

In an RBD model, it is possible that one component appears in more than one place.
However, when there is a repeated component, the evaluation of the RBD will not be
straightforward. Instead, we must perform a pivotal decomposition in the block (KUO; ZUO,
2003). Consider the RBD of Figure 4. It can be noticed that the 𝐶 component appears in
two places. If we solve this model in a straightforward way, it will be as if the two 𝐶 blocks
are different components with the same failure and repair rates. To solve this model, we
must factor the 𝐶 component, generating two submodels. The first submodel represents
the case when 𝐶 is unavailable, and the second represents the case when 𝐶 is functional.
We obtain the availability of the original model using the expression:

𝐴 = 𝐴𝐶 × 𝐴1 + (1 − 𝐴𝐶) × 𝐴2,

where 𝐴𝐶 is the availability of the component, 𝐴1 is the availability of the first submodel,
and 𝐴2 is the availability of the second submodel.

2.4.1 Dynamic Reliability Block Diagram

Dynamic Reliability Block Diagrams are state-space based models used to evaluate
availability and reliability metrics, allowing the system to be specified using the RBD
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Figure 4 – Pivotal decomposition of an RBD

notation (DISTEFANO; XING, 2006). At the same time, DRBDs allows specifying the
dependency relationships between components according to failure and repair events.
Such relationships cannot be represented in pure combinatorial models like RBDs or
Fault Trees (XU; XING, 2007). The DRBD notation offers two special control blocks
for representing component dependencies: SDEP (state-based dependency) and SPARE
(spare-part relationship). The first block is used to specify that the failure of a component
causes the immediate failure of one or more components. The SPARE control block is used
to describe redundancy arrangements in hot, warm or cold standby. Those redundancy
strategies will be explained later in Section 4.2.2.

Figure 5 illustrates a DRBD model similar to a traditional RBD, in the sense that it
contains groupings of blocks in series and parallel. However, we can use the SDEP and
SPARE control blocks to make explicit the relationships between the blocks. In this model,
there is a dependency of failure between blocks A and B, which implies that the failure of
block A leads to the immediate failure of block B. The opposite is not true as the failure of
block B does not affect block A. Blocks C and D are configured to work in warm standby
redundancy. This indicates that block D, despite being functional, is not able to receive a
workload while block C is functioning. When block C fails, the system detects this event
and activates block D to receive the workload.

A B

D

SPARE

SDEP

C

Figure 5 – Example of DRBD model
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2.5 CONTINUOUS TIME MARKOV CHAINS

Markov chains are a special class of stochastic process that were first introduced by
Andrey Markov in 1906 (MARKOV, 1906). This formalism represents a convenient way
to represent dynamic properties of computational systems (BOLCH et al., 2006a). Markov
chains are a foundation where many performance and dependability evaluation techniques
are built (MENASCE et al., 2004). As it will be shown in Section 2.6, some stochastic Petri
nets can be evaluated by the analysis of the embedded Markov chain. Similarly, many
properties and theorems on the field of queueing theory are proven through Markovian
models (KLEINROCK, 1976).

Before introducing the definition of a Markov chain, we present the basic definition of
stochastic processes:

Definition 1 A stochastic process is defined by a family of random variables 𝑋𝑡 : 𝑡 ∈ 𝑇 ,
where each random variable 𝑋𝑡 is indexed by a parameter 𝑡, and the set of all possible
values for 𝑋𝑡 is the state-space of the stochastic process.

In general, the 𝑡 parameter is defined as a temporal parameter, if the following condition
is satisfied: 𝑇 ⊆ R+ = [0, ∞). If the set 𝑇 is discrete, the process is labeled as a discrete-
time stochastic process, otherwise it is a continuous-time process. Similarly, a stochastic
process can be labeled as continuous or discrete state process depending on its state-space
set 𝑆. A discrete-space stochastic process is classified as a chain.

A stochastic process is classified as a Markovian process if the following property
holds:

Definition 2 A stochastic process 𝑋𝑡 : 𝑡 ∈ 𝑇 is a Markovian process if, for each 0 =
𝑡0 < 𝑡1 < . . . 𝑡𝑛 < 𝑡𝑛+1 and, for each 𝑠𝑖 ∈ 𝑆, the probability 𝑃 (𝑋𝑡𝑛+1 ≤ 𝑠𝑛+1) depends only
on the last value for 𝑋𝑡𝑛, and does not depends on the previous values 𝑋𝑡0 , 𝑋𝑡1 , . . . 𝑋𝑡𝑛−1.
That is:

𝑃 (𝑋𝑡𝑛+1 ≤ 𝑠𝑛+1 | 𝑋𝑡𝑛 = 𝑠𝑛, 𝑋𝑡𝑛−1 = 𝑠𝑛−1, . . . , 𝑋𝑡0 = 𝑠0) =

𝑃 (𝑋𝑡𝑛+1 ≤ 𝑠𝑛+1 | 𝑋𝑡𝑛 = 𝑠𝑛)

In other words, this property defines that, once a system is in a specific state, the
transition to the next state depends only on this state. The history of previous states
the system traversed to reach the current state is completely forgoten. For this reason,
this fact is referred to as the memoryless property. Markovian process with a discrete
state-space 𝑆 are named Markov chains, and they are further classified into Discrete
Time Markov Chains (DTMC) and Continuous Time Markov Chains, according to the
time set 𝑇 .
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CTMCs can be represented by means of a state diagram. The graph nodes define the
states of the set 𝑆 and the directed arcs define the transition events for changing the current
state. In a CTMC, the weight 𝑤 of an arc directed from a state 𝑠𝑗 to a state 𝑠𝑖 defines
the migration rate from 𝑠𝑗 to 𝑠𝑖. The inverse of 𝑤 represents the expected sojourn
time in 𝑠𝑗. The only random variable that holds the memoryless property, and that is
therefore suitable for the analysis of continuous time Markov chains, is the exponential
distribution (BOLCH et al., 2006a).

A CTMC can be represented also by a transition rate matrix, also named the
CTMC’s 𝑄 matrix. A 𝑞𝑖𝑗 (𝑖 ̸= 𝑗) element from 𝑄 corresponds to the transition rate from
the state 𝑠𝑖 to the state 𝑠𝑗 . If this value is equal to zero, this means that the corresponding
state diagram has no arc from 𝑠𝑖 to 𝑠𝑗 . The diagonal elements 𝑞𝑖𝑖 are defined as the inverse
of the sum of all elements in the row 𝑖.

A CTMC is said to be ergodic if it is possible to reach every state from another
state in a finite number of steps. The stationary analysis of an ergodic continuous time
Markov chain consists of finding the vector of probabilities: 𝜋 = {𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑛}, where
𝜋𝑖 is the stationary probability of 𝑠𝑖, i.e., the probability of finding the system in the
state 𝑠𝑖 after a long execution time. This probability does not depend on the system’s
initial state.

The method for computing the stationary probabilities of a CTMC is described as
follows. Consider the 𝑄 matrix for the ergodic CTMC depicted in Figure 6:

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 * 𝜆 3 * 𝜆 0 0

𝑚𝑢 −𝑚𝑢 − 2 * 𝜆 2 * 𝑙𝑎𝑚𝑏𝑑𝑎 0

0 2 * 𝜇 −2 * 𝜇 − 𝜆 𝜆

0 0 3 * 𝜇 −3 * 𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 6 – CTMC example

BEGIN END

C1

C2

C3

Figure 7 – CTMC example

The CTMC of Figure 6 is equivalent to the RBD model of Figure 7. The 𝜆 parameter
represents the failure rate of a component and the 𝜇 parameter represents the repair
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rate. The numeric value inside each state represents the number of properly functioning
components.

The balance equations of Equation 2.5 means that the sum of all input rates for
every state is equal to the sum of all output rates for that state. The Equation 2.6 states
that the all stationary probabilities 𝑝𝑖𝑖 are mutually exhaustive and exclusive.

𝜋𝑄 = 0 (2.5)

𝑛∑︁
𝑖=1

𝜋𝑖 = 1 (2.6)

For the matrix 𝑄 displayed above, equations 2.5 and 2.6 combined produce the following
system of linear equations:

−3𝜆𝜋0 + 𝜇𝜋1 = 0

3𝜆𝜋0 + (−𝜇 − 2 * 𝜆)𝜋1 + 2 * 𝜇𝜋2 = 0

2𝜆𝜋1 + (−2 * 𝜇 − 𝜆)𝑝𝑖2 + 3 * 𝜇𝜋3 = 0

𝜆𝜋2 + −3 * 𝜇𝜋3 = 0

𝜋0 + 𝜋1 + 𝜋2 + 𝜋3 = 1

(2.7)

By solving the system of linear equations above and fixing the CTMC parameters as
𝜆 = 1/1200 and 𝜇 = 1/24, we can obtain the steady state availability by the following
expression:

𝐴 = 1 − 𝜋3 = 0, 99999246

, which is the same value obtained by solving the corresponding RBD model.

2.6 PETRI NETS

Petri nets are a family of mathematical formalisms suitable for representation and analysis
of concurrent/distributed systems. Petri nets enable the representation of characteristics
such as choice, parallel execution of activities, and resources sharing. It was proposed
initially in 1962 by Carl Adam Petri in his Ph.D. thesis, and since then the initial concept
has been expanding with many extensions, verification algorithms, and applications in
various fields of knowledge.

The most basic type of Petri nets is named Place/Transition nets (P/T nets). It also is
named elementary Petri nets (REISIG; ROZENBERG, 1998), or simply Petri nets (when the
specific type is omitted, we can consider that it is a Place/Transition net). Figure 8 shows
some important extensions to the basic Petri net class. Some extensions add the notion of
time to the net events. Other extensions include high-level features such as colored tokens,
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objects, or modularity concepts. In this section, we introduce the elementary, stochastic,
and object-oriented Petri nets.

Figure 8 – Petri nets variants

2.6.1 Place/Transition nets

A P/T net is represented by a bipartite digraph composed of two set of vertices: places
and transitions. Since it is a bipartite digraph, no arcs connects two vertices of the same
type: a place connected to another place, or a transition connected to other transition. In
Figure 9, we show an example of a Petri net, where this model represents a production
line. A machine manufactures a product, and it is composed of three nuts and three bolts.
After being assembled, it is stored into a deposit. The elements of a Petri net are described
as follows.

• Places are the circle-shaped vertices. They represent a passive element in the net
and, generally, they are used to store or accumulate things (nuts, bolts, products,
etc.), or to indicate a state in the model (like the availability of a resource, for
instance);

• Transitions are the rectangle-shaped vertices. They represent the active elements
in the net. Transitions can fire actions that lead to a change in the system state.
The firing of a transition changes the net marking according to the arcs connected
to the transition;

• Arcs impose relationships between places and transitions. Arcs that has a place as
source and a transition as target are classified as input arcs, otherwise, they are
classified as output arcs.

A transition 𝑡 relates to two sets of places. The pre-set of 𝑡 is composed of all places
connected to 𝑡 via output arcs. It is denoted by the notation ∙𝑡. The post-set of 𝑡, denoted
by 𝑡∙), is composed of all places connected to 𝑡 via input arcs. Figure 10 illustrates
the assembly-package transition with its pre/post-sets. We say that a transition 𝑡 is
enabled if each place of its pre-set has a number of tokens equal to or greater than the
weight of the arc connected to the transition. The firing of a transition is an event that
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nuts

bolts

package

machine

deposit

3

3

places
arc with weigth

equals to 3

arc with weight

equals to 1
transitions

tokens

assemble

package
deposit

package

Figure 9 – Petri net - example

changes the marking of the Petri net, i.e., it provokes a change in the system state. A
transition is allowed to fire if it is enabled. The firing of a transition decreases the number
of tokens in every place in its pre-set and adds tokens in every place in its post-set. The
number of tokens added/removed is given by the weight of the arc. Figure 11 illustrates the
state of the production line Petri net after and before the firing of assembly-package.
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package

machine

3

3 assembly_package  (post-set)

assemble

package

assembly_package (pre-set)

nuts
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package
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3

3
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Figure 10 – Pre and post-sets
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package

assemble

package
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Figure 11 – Firing of a transition - example

We explained the basic concepts of a P/T through of its visual mechanisms. The formal
definition of a Petri net is presented below.



Chapter 2. Background 33

Definition 3 A Place/Transition Petri net is a bipartite graph represented by a tuple
𝑅 = (𝑃, 𝑇, 𝐹, 𝑊, 𝑚0), such that:

• 𝑃 ∪𝑇 are the vertices of the graph. 𝑃 is the set of places and 𝑇 is the set of transitions
of the net;

• 𝑃 and 𝑇 are disjoint sets, i.e., 𝑃 ∩ 𝑇 = ∅;

• 𝐹 is the set of edges of 𝑅, such that 𝐹 ⊆ 𝐴 = (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 );

• 𝑊 : 𝐴 → N is the set that represents the weight of the arcs;

• 𝑚𝑖 represents a marking in the Petri net. It is represented by a function 𝑚𝑖 : 𝑃 → N.
𝑚0 represents the initial marking of the Petri net.

The (𝑃, 𝑇, 𝐹, 𝑊 ) tuple is defined as the structure of the Petri net and the tuple
𝑅 = (𝑃, 𝑇, 𝐹, 𝑊, 𝑚0) is referred as a marked Petri net. The reachability graph of a
Petri net is a directed graph with vertex set composed of the set of reachable markings of
a Petri net. The edge set of a reachability graph comprises the transitions that provoked
the marking change. This graph enables the modeler to assess properties and metrics of
a Petri net. The next subsection shows how the reachability graph of a Stochastic Petri
net can be used as a basis for obtaining an equivalent Continuous Time Markov Chain.
The Figure 12 shows the reachability graph for the production line Petri net of Figure
9. The marking of each state is represented in the vertex label. The numbers displayed
correspond to the number of tokens in the places bolts, nuts, package, deposit, and
machine, respectively.

{6,6,0,0,1}

assemble

package

{3,3,1,0,0}

deposit

package

{3,3,0,1,1}

assemble

package

{0,0,1,1,0}

deposit

package

{0,0,0,2,1}

Figure 12 – Reachability graph

2.6.2 Stochastic Petri nets

Stochastic Petri nets are a timed extension to the elementary Petri nets in which transitions
can be classified as timed or immediate (CHIOLA et al., 1993). Differently from Timed Petri
nets or Time Petri nets, that have deterministic firing times, the firing times of timed
transitions in an SPN are determined by random variables. Immediate transitions fire
automatically when they become enabled, without delay. If an SPN holds the following
properties, namely, reversibility 3, absence of deadlocks 4, the firing delays are exponentially

3 A Petri net is said to be reversible if, for any marking 𝑀𝑘 reachable from the initial marking 𝑀0, 𝑀0 is
reachable from 𝑀𝐾

4 A deadlock is a marking with no enabled transitions
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distributed, and if it has a finite marking reachability graph, then it has an embedded
Continuous Time Markov Chain associated with it.

The following list presents some concepts introduced by the SPN notation:

• Inhibitor arc is a special arc type. It is represented in the graphic notation by a
white circle in the end of the arc. An inhibitor arc is always directed from a place
towards a transition, and it can be weighted. Inhibitor arcs differ from regular arcs
since it does not cause changes in the net marking. Its function is to disable the
connected transition if the connected place has a number of tokens equals or greater
than the arc’s weight;

• Guard expressions are boolean expressions that can be associated with transitions.
A transition will not be enabled if its guard expression (if any) does not evaluate to
logical truth (according to the current marking);

• Priority associated with immediate transitions. Priorities are integer numbers
assigned to immediate transitions. When multiple immediate transitions are enabled
(according to its pre-set, connected inhibitor arcs, and guard expressions), only the
transitions with higher priority are eligible to fire;

• Weights associated with immediate transitions. When two or more immedi-
ate transitions with the same priority are enabled, one transition should be non-
deterministically selected for firing. The probability of choosing a transition is given
by its weight (a real number), and the weight of the other transitions enabled at the
same time, with the same priority, according to the formula:

𝑃𝑟𝑜𝑏 = Transition Weight
Sum of weights for all enabled immediate transitions

For example, if there are three enabled immediate transitions with the same priority,
two of them with weight equals to 1, and the third with weight equal to 2, the firing
probabilities are equal to 0.25, 0.25, and 0.5, respectively;

• Server semantics. A timed transition can be able to have multiple firings being
processed in parallel. The server semantics of the transition determines this behavior.
A single-server transition does not present any parallelism, and all firings occur
sequentially. K server or multiple server transitions allow up to 𝑘 parallel firings. An
infinite server transition allows as many firings as possible, according to the net’s
marking.

To illustrate the concepts mentioned above, we present SPN example in Figure 13. This
example, extracted from (GERMAN, 1996), represents a M/M/1/K queue. The generate
transition creates tokens that correspond to incoming requisitions. The generated place
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represents the waiting queue. This place is connected to two immediate transitions. The
enter transition moves the token from generated to the buffer place. The drop transition
represents the rejection of a request. The number of tokens in the free place dictates the
choice between the enter and the drop transitions. Each time a token is moved from
generated to buffer, a token is removed from free. When there are no tokens in this
place, the inhibitor arc no longer prevents the drop transition of being enabled. Also, the
enter transition is no longer active since there are no tokens in one of its input places.
The transition service represents the processing of requests by the server.

free

serviceentergenerated

loss
k

timed transitions

(exponentially distributed)

generate bu er

immediate

transitions

inhibitor arc

Figure 13 – Stochastic Petri net example (GERMAN, 1996)

If an SPN does not have immediate transitions, and all transitions follow the single
server semantics, the embedded CTMC can be obtained by the following rules (MARSAN

et al., 1994):

1. The CTMC state-space is equal to the SPN reachability graph. Each 𝑀𝑖 marking is
equivalent to the 𝑠𝑖 state of the embedded CTMC;

2. The transition rate from a 𝑠𝑖 to a 𝑠𝑗 state is equal to the sum of all (exponentially
distributed) firing rates of timed transitions that are enabled in the 𝑀𝑖 marking,
that lead to 𝑀𝑗.

For general SPNs, the process of obtaining the embedded CTMC is similar, but the
presence of immediate transitions makes it necessary to apply an additional step. In the
reachability graph of an SPN with immediate transitions, the nodes can be classified into
two types. If a marking has one or more immediate transitions enabled, it is labeled as
a vanishing marking. Otherwise, the marking is labeled as a tangible marking. The
sojourn time in a vanishing state is equal to zero and, therefore, such states must be
removed in order to obtain the embedded CTMC of an SPN. When removing a vanishing
state, the transitions point to/coming from it should be adjusted. The reader can refer to
the work done by (MARSAN; CONTE; BALBO, 1984) for the exact algorithm. In Figure 14a,
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we show a reachability graph (with vanishing states included) for the SPN of Figure 13.
The embedded CTMC obtained after removing the vanishing states is displayed in Figure
14b.
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(a) Reachability graph with vanishing markings
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Figure 14 – Reachability graph and embedded CTMC of an SPN

2.6.3 Object-Oriented Petri nets

Object Petri nets (OPN) are Petri net variants that borrow concepts from object-oriented
programming, namely, encapsulation, inheritance, and polymorphism. The Object Petri
Net definition from Valks (VALK, 2003) - the nets within nets paradigm - specifies Petri
nets with tokens that can contain nested subnets. This representation can be useful to
model the movement of elements with their internal events. Transitions of an object token
can fire independently from the upper-level net state, or they can fire synchronously with a
transition from the upper level. Object Petri Nets also introduce the concepts of reference
semantics and value semantics (VALK, 1999), analogous to the programming concept. In
the reference semantics, the same subnet can be referenced by two or more tokens in
different places, and the object token state will the same for all of them. In the value
semantics, it is created multiple copies of the same object token, and changing the state of
one of them does not change the others.

The Object Petri Net notation discriminates two categories of places, according to
the tokens they can contain: black tokens and object tokens. It also does not consider
object-oriented concepts such as polymorphism, inheritance, and encapsulation. In another
direction, the Object-Oriented Petri Net introduced by Lakos (LAKOS; KEEN, 1991) is
an extension of the Colored Petri Net (CPN) formalism in which the tokens can contain
not only data attributes but behavior as well. The token colors are now classes in an
object-oriented context, and the notions of inheritance and dynamic binding are now
present. This work presents the LOOPN language as a concrete implementation of this
paradigm.

The Object Petri Net notation from Lakos meets the nets within nets paradigm in an
extension to the LOOPN language called LOOPN++ (LAKOS; KEEN, 1994). The author
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presents the Russian Philosophers problem to illustrate the language concepts. This is a
variation of the dining philosophers problem in which each philosopher can be eating, or
thinking about a dining philosophers problem. It is possible to have many levels in this
problem, such as the Russian matryoshka dolls.

The PNTalk project (JANOUSEK, 1995) defines a modeling framework for the Smalltalk
language based on object-oriented Petri Nets. It defines a Petri net as a set of active
objects (LAVENDER; SCHMIDT, 1995) that can interact by exchanging messages. Those
objects can be object nets containing transitions, places, and tokens, or method nets,
that are similar to object nets, but they are dynamically created in response to a method
invocation. The Renew tool (KUMMER et al., 1999) provides the same level language level
integration for the Java language. This tool is a concrete implementation of the Reference
nets paradigm and provides access to all features existent on the Java language to the
reference net models.

2.7 FINAL REMARKS

This chapter presented the theoretical background needed for a better comprehension of
this work. First, it described the targeted study subject of this work - cloud computing and
scientific workflow applications. Then, it provided an introduction about dependability
evaluation and modeling. The joint analysis of dependability and performance aspects of
computational systems, namely, performability evaluation, is covered later in Section 5.4.
Finally, the presented chapter introduced the modeling formalisms adopted in this work
for performance and dependability models: Continous Time Markof Chains, Reliability
Block Diagrams, and Petri nets.
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3 RELATED WORK

This chapter presents a list of related works in the main topics covered in this work.
Modeling tools and frameworks proposed by the literature are discussed in Section 3.1.
Section 3.2 presents a list of works about cloud availability modeling and the redundancy
allocation problem. Section 3.3 presents works about performability modeling of cloud
and grid systems. In Section 3.4, we make a summary of existing simulation models for
representing workflow applications and the failure of workflow tasks and cloud components.
Finally, in Section 3.5, we describe the works related to the optimization of cloud workflow
applications.

3.1 MODELING TOOLS AND FRAMEWORKS

The TimeNET software package (GERMAN et al., 1995) is a specialized graphical tool to
model Petri nets. It provides support for two classes of Petri nets: Colored Petri nets,
and Extended Deterministic and Stochastic Petri nets (EDSPN). Colored Petri nets can
be solved only by simulation, and EDSPN models can be solved either by simulation
or numerical methods. CPN Tools (JENSEN; KRISTENSEN; WELLS, 2007) is a graphical
modeling framework focused on Colored Petri nets that provides support for space-state
based analysis methods and discrete-event simulation. It allows the use of the Standard
ML programming language for creating user-defined functions that can be used by the
models. The PIPE tool (BONET et al., 2007) implements more methods for structural
analysis (invariants, traps, siphons, etc.) of GSPNs than the TimeNET and Mercury tools,
but provides less support for obtaining metrics from the stationary and transient analysis.
The GreatSPN tool (CHIOLA et al., 1995) is another tool specialized on SPN and CPN
models that implements methods for structural analysis, Markov chain generation, and
discrete event simulation. Additionally, it allows the composition of two or more interacting
models.

The SHARPE tool (SAHNER; TRIVEDI, 1987) is a well-established software for per-
formance and dependability modeling that dates back to the year of 1987. It provides
support for many formalisms, namely: fault trees, reliability block diagrams, acyclic series-
parallel graphs, acyclic and cyclic Markov and semi-Markov models, Stochastic Petri nets,
and finally product-form queueing networks. The SHARPE software package provides
a graphical interface and a scripting language for creating and evaluating the models.
The Möbius tool (DALY et al., 2000) is a modeling framework enabled for multi formalism
hierarchical models. Its extensible architecture allows the incorporation of new formalisms
that can be solved by Markov chain generation or by discrete event simulation. The PRISM
(KWIATKOWSKA; NORMAN; PARKER, 2002) tool provides a modeling language for model
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verification of discrete and continuous time Markov chains.
Comparing the Mercury script language (MSL) with the SHARPE language, MSL is

more verbose but has a more intuitive syntax. While both languages have similar features
(e.g.: loops, symbolic evaluation, support to hierarchical models, etc.), both also have
unique features. The SHARPE tool provides more formalisms and solution algorithms and
it is especially useful when dealing with Markov chains, reliability graphs, and fault trees.
On the other hand, the Mercury tool is particularly useful when one must deal with SPNs,
providing some features that are not found in other SPN/CPN tools such as phase-type
distributions, meta-programming, and event-based programming. The TimeNet and CPN
tools offer support for hierarchical Petri net models, but only for Colored Petri nets. While
it can be argued that CPN is a superclass of P/T nets, both tools do not provide support
for using hierarchical transitions on models that can be solved by Markov chain generation.
The MSL language also offers more statistical distributions than CPN Tools, TimeNET,
and PIPE tools.

3.2 CLOUD AVAILABILITY INFRASTRUCTURE PLANNING

High availability is critical on cloud systems since downtime periods can lead to significant
losses of revenue and user dissatisfaction. Due to the scale of such systems, a series of
studies on literature employs hierarchical modeling for evaluating dependability attributes
(CHUOB; POKHAREL; PARK, 2011; DANTAS et al., 2012; WEI; LIN; KONG, 2011). In (CHUOB;

POKHAREL; PARK, 2011), Markov chains were used to create hierarchical availability
models for private cloud systems. A set of measurements was performed on a Eucalyptus
cloud to obtain the failure and repair rates for the model. A similar work, presented
in (DANTAS et al., 2012), proposes a hierarchical model that combines Reliability Block
Diagrams and Continuous Time Markov Chains to measure the availability of a Eucalyptus
private cloud with warm-standby redundancy support in the cloud controller. Wei et
al. (WEI; LIN; KONG, 2011) created a hierarchical model composed by Reliability Block
Diagrams with Stochastic Petri nets for evaluating the dependability of Virtual Data
Centers. The models were used to study how the consolidation backup and live migration
affect the reliability and consolidation ratio metrics of the virtualized data center.

The tradeoff between the complexity of state-space-based models and the inherent
limitations of combinatorial models have motivated the need for techniques that exploit
the best of both categories. Dynamic Fault Trees (DFT) were the first solution proposed
which extended combinatorial Fault Trees with dynamic gate elements (BOYD, 1992;
DUGAN; DOYLE, 1996). However, due to certain limitations of the DFT formalism, as
well some difficulties in using this technique, the Dynamic Reliability Block Diagram
formalism was proposed (DISTEFANO; PULIAFITO, 2007). To obtain the metrics of a DRBD
model, the author used continuous time Markov chains for models with exponential failure
and repair rates, and Monte Carlo simulation for models that use general distributions.
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Robidoux et al. (ROBIDOUX et al., 2010) proposed the use of colored Petri nets (CPN) as
a means of solving DRBDs models and verifying structural properties such as liveness
and deadlocks. A disadvantage of the adopted CPN model is that it can only be solved
by simulation. Following a similar strategy, Signoret (SIGNORET et al., 2013) shows how
to map an RBD to a Petri net, while introducing constructs for shared repair teams and
preventive maintenance. It also introduces the concept of a “RBD-driven Petri Net”, which
has the same objective as DRBD. This work used a modular high-level Petri net notation
that is solved only by simulation.

Redundancy is a widely used technique for achieving high availability. However, us-
ing redundant components increases the cost of the system. Optimizing the number of
redundant elements of a fault tolerant system is known in the literature as the redundancy
allocation problem (RAP), and it was proven to be NP-hard (COIT; SMITH, 1996b). This
fact led to the investigation of several meta-heuristic approaches to solve this problem
such as particle swarm (COELHO, 2009; GARG; SHARMA, 2013), bee colony (YEH; HSIEH,
2011; GARG; RANI; SHARMA, 2013), and genetic algorithms (COIT; SMITH, 1996a; GUPTA;

BHUNIA; ROY, 2009). In (HE et al., 2015), a novel fish swarm algorithm was proposed to
solve large-scale RAP problems. (BOSSE; SPLIETH; TUROWSKI, 2016) et al. studied the
RAP problem on IT Services with inter-component dependencies. They adopted Petri net
models because such dependencies cannot be represented with combinatorial models. The
authors employed Monte Carlo simulation to evaluate the Petri net models.

Our work brings the RAP problem to the topic of cloud dependability modeling.
We tried to take into account two crucial characteristics: being able to solve large-scale
problems (HE et al., 2015), and representing inter-component dependencies (BOSSE; SPLIETH;

TUROWSKI, 2016) existent on cloud systems. For steady-state availability optimization,
we used the pivot decomposition instead space state-based models to avoid the use of
simulation and the bisection algorithm to treat the optimization problem as a single
objective problem and to reduce the search space.

3.3 PERFORMABILITY MODELING OF CLOUD AND GRID ENVIRONMENTS

Performability is the study of systems performance when subjected to the effect of failures
on its subcomponents (MEYER, 1980). The performance of a system is said to be degradable
if failure events may affect it negatively. For instance, a mesh network of routers can
tolerate a certain number of failures, but the overall performance will be affected as some
routers may be subject to overheads. Similarly, failures on worker nodes in cloud and grid
environments can diminish the number of available processing resources, and therefore
increasing queueing times and decreasing throughput of jobs.

Due to a large number of components of cloud and grid environments, we can expect a
significant failure rate even if the mean time to failure of individual components is high.
Thus, neglecting the impact of failures in performance studies of such systems can lead to



Chapter 3. Related Work 41

misleading results. Space stated based models (Stochastic Petri Nets and Markov Chains)
is the most adopted method for joint performance/availability evaluation of clouds and
grids systems. Dealing with space state explosion is a recurrent problem handled by every
work in this category.

Ramakrishnan and Reed (RAMAKRISHNAN; REED, 2008) propose a qualitative frame-
work for the performability evaluation of scientific workflows running on grid systems.
The framework encompasses a Markov Reward Chain model (BOLCH et al., 2006b) and
simulations calibrated with data from real grid applications. Xia et al. (XIA et al., 2015)
describe a queuing network model for evaluating estimated service time and request rejec-
tion probability of an Infrastructure-as-a-Service cloud. This model represents features
such as request handling, job creation, job execution, job rejection due to insufficient
queue capacity, and failure and repair events of physical machines configured in hot/warm
standby mode. Ever et al. (EVER, 2017) propose a set of equations obtained from queuing
theory for evaluating the performability of clouds with large numbers of servers. Since the
underlying space-state model does not need to be generated, this model can represent a
large number of servers and simultaneous requests.

A strategy to avoid space state explosion is to adopt small models rather than use
a big monolithic one. For combining the results of the submodels, iteration methods
can be used (MAINKAR; TRIVEDI, 1996). Ghosh (GHOSH et al., 2010) uses interacting
homogeneous time Markov chains to perform end-to-end performability analysis of cloud
services. The proposed model is used to evaluate two essential metrics: service availability
and response time. Raei et al. (RAEI; YAZDANI, 2017) developed Stochastic Reward Net
models for representing a public cloud and a cloudlet providing virtual machines for mobile
applications. For avoiding space state explosion when modeling both performance and
availability aspects of the considered system, the authors divided the public cloud and
cloudlet parts into two separated models and used the fixed point iteration method to
obtain a joint result.

The performability models cited in this subsection are based on Markov Chain (RA-

MAKRISHNAN; REED, 2008) (BOLCH et al., 2006b), Stochastic Petri nets (with Markov chain
generation) (MAINKAR; TRIVEDI, 1996) (GHOSH et al., 2010) (RAEI; YAZDANI, 2017), and
Queuing Theory (XIA et al., 2015) (EVER, 2017). By contrast, our work adopts a discrete
simulation approach based on Stochastic Petri nets components and automatic generation
of models. The advantage of our model over the works mentioned above is the ability
to model DAGs as job requests and the relationship between VM and hardware failures.
Incorporating these features into space-state based models would lead to a space-state
explosion problem. Also, using the exponential distribution for representing job times can
introduce distortions when modeling the makespan of a stochastic DAG (as we demonstrate
in Subsection 6.3.3.2).
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3.4 SIMULATION OF WORKFLOW EXECUTION IN CLOUD ENVIRONMENTS

Simulation is a commonly used approach for evaluating the performance of load-balancing
algorithms, allocation policies, and scheduling strategies in cloud systems, considering
dynamic workload patterns. CloudSim (CALHEIROS et al., 2011) is the most adopted cloud
simulation software in the literature. The CloudSim simulator allows the representation of
data-center infrastructures, VM allocation policies, user level workloads, and coordination
between multiple cloud environments through a cloud broker service. After being released
as open source software, CloudSim was extended in many different ways by the research
community. Fault tolerance capabilities were introduced in (ZHOU et al., 2013). Federated-
CloudSim (KOHNE et al., 2014) extended CloudSim to represent SLA policies in federated
clouds. FailureSim (DAVIS et al., 2017) introduced failure prediction of cloud nodes based on
ANNs. Performance and usage levels (bandwidth, number of tasks running, the quantity of
available million of instructions per second per node) are used as predictors for training the
network. Alwabel et al. proposed DesktopCloudSim (ALWABEL; WALTERS; WILLS, 2015), a
CloudSim extension with a layer of failure injection for the physical nodes. Like our work,
DesktopCloudSim allows the investigation of failure events on system throughput.

CloudSim does not offer, by default, classes for representing workflows modeled as
DAGs. Given the importance of this application category, some extensions to CloudSim
were proposed for representing workflows. WorkflowSim (CHEN; DEELMAN, 2012) is a
CloudSim extension that includes support for workflow representation and management.
It also provides task aggregation capabilities and a fault generator at a job/task level.
It can generate recoverable transient failures that can be handled by task re-execution
and permanent job failures that cannot be recovered. DynamicCloudSim (BUX; LESER,
2015) is a CloudSim based simulator that includes workflow execution considering VM
inhomogeneity and failure of tasks at runtime. Malawski et al. (MALAWSKI et al., 2015)
developed a cloud workflow simulator for evaluating task scheduling and resource pro-
visioning algorithms for optimizing the execution of workflow ensembles under deadline
constraints in IaaS clouds. ElasticCloudSim (CAI; LI; LI, 2017) is a CloudSim extension
for evaluating workflow applications, that supports auto-scaling capabilities and considers
non-deterministic (stochastic) workflows.

Our work differs from WorkflowSim and DynamicCloudSim by modeling failures at
infrastructure level instead of representing transient/permanent failure on tasks. Failures
on node level are found on DesktopCloudSim and FailureSim, but they cannot represent
workflows. We opted to not creating another CloudSim extension as the employed SPN
based simulator presents some advantages. The proposed SPN models can be used sepa-
rately for obtaining other metrics than performability (e.g., availability, reliability, and
expected makespan). Using this simulation environment also allows us to use existing SPN
models in the literature for representing reliability and performance aspects of our system.
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3.5 CLOUD WORKFLOW OPTIMIZATION

The execution of workflow applications on clouds brings the need for new modeling
strategies, scheduling algorithms, and optimization metrics. The reason for this need is the
particular aspects of cloud systems when contrasted to traditional grid/cloud environments.
Kliazovich et al. (KLIAZOVICH et al., 2016) demonstrated how existent workflow models fail
to address the communication patterns typically found in cloud workflow applications. They
proposed CA-DAG (Communication-Aware DAG), a workflow model which represents
communication processes as vertices instead of edges. Arabnejad and Barbosa (ARABNEJAD;

BARBOSA, 2014) developed a Heterogeneous Budget Constrained Scheduling (HBCS) for
minimizing makespan and rental cost of cloud workflow applications. The HBCS algorithm
can reduce up to 30% of the execution time while maintaining the same budget level.

Many works in the scheduling literature consider deterministic computation and
communication times. However, using a deterministic objective function does not match
the non-deterministic nature of real-world applications (ANDO; NAKATA; YAMASHITA, 2009).
In this sense, Zheng et al. (ZHENG; SAKELLARIOU, 2013) proposed a Monte Carlo based
scheduling method for cloud/grid workflows which consider non-deterministic computing
and communication time. The method is not dependent on a particular heuristic algorithm,
and the HEFT (Heterogeneous Earliest Finish Time) is adopted in the evaluation. In
(ZHENG; WANG; ZHANG, 2016), a randomized version of HEFT was proposed. The algorithm
consists in running a deterministic HEFT for random predictions of the stochastic DAG,
generating a list of potential candidates for best scheduling. The scheduling from the list
with the smaller expected makespan is selected. Cai et al. (CAI et al., 2017) present a dynamic
algorithm for minimizing the rental cost (of VMs in a cloud) of bag-of-tasks workflows with
non-deterministic times. The Cloud Workflow Scheduling Algorithm (CWSA) (RIMAL;

MAIER, 2017) aims to optimize the scheduling of workflows in a multi-tenant cloud
environment. This algorithm considers non-deterministic times for task computation times.

The presence of failures in data centers can pose a threat to workflow applications with
strict deadlines. In (WANG et al., 2015), an original fault-tolerant scheduling algorithm
name FESTAL was proposed. It employs a primary/backup redundancy model and VM
migration to achieve high-availability and load balancing into a cloud workflow application.
Vinay et al. (VINAY; KUMAR, 2017) present a new heuristic for cloud scheduling named
CHEFT (Cluster-based Heterogeneous Earliest Finish Time). It uses the idle time of the
processors for resubmitting the failed tasks as a mean to achieve fault tolerance. FASTER
(ZHU et al., 2016) is another algorithm that employs the primary/backup redundancy model
for providing a fault tolerant scheduling mechanism for cloud applications. Performability
was first considered an objective function in (ENTEZARI-MALEKI et al., 2018). The authors
developed a performability model of a grid resource based on a stochastic reward net
model and the universal generating function. The proposed model is connected to a genetic
algorithm which aims to optimize the scheduling of a DAG into a set of grid resources.
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Our work aims to contribute to the research line opened by Entezari et al. (ENTEZARI-

MALEKI et al., 2018) - workflow scheduling optimization from a performability viewpoint.
To the best of our knowledge, no existing method covers simultaneously performability as
the objective function, multi-tenancy, non-deterministic computing/communication times,
and failures of hosts and VMs. Table 1 shows a comparison of our work to the state of the
art.

It is worthwhile to mention that ensuring an expected Service Level Agreement may be
done by the actual measurement of the system. Niehoster et al. (NIEHORSTER et al., 2010)
proposed an architecture for a scientific SaaS cloud that can enforce an expected SLA level.
By employing a set of sensors coupled to the running workflows applications, a reasoning
engine, and a set of actuators, the cloud is able to adjust its provisioning level aiming
to avoid SLAs violations while avoiding excessive overprovisioning. In (NIEHOERSTER;

BRINKMANN, 2011), Niehoster and Brinkmann extended the mentioned work by adding
predictive Support Machine Vector models in order to extend the accuracy of the actuators
further.

Table 1 – Comparison of the state of the art for cloud workflow scheduling

Work Metric Multi-tenancy Non-deterministic times Failure model
(KLIAZOVICH et al., 2016) Makespan No No Not considered
(ARABNEJAD; BARBOSA, 2014) Makespan and rental cost No No Not considered
(ZHENG; SAKELLARIOU, 2013) Makespan No Yes Not considered
(CAI et al., 2017) Rental cost Yes Yes Not considered
(RIMAL; MAIER, 2017) Makespan and resource usage Yes Yes Not considered
(WANG et al., 2015) Job reliability and resource usage Yes No Host failures
(ZHU et al., 2016) Job reliability and resource usage Yes No Host failures
(VINAY; KUMAR, 2017) Makespan and cost No No Task failures
(ENTEZARI-MALEKI et al., 2018) Performability Yes Yes (exponential times) Processor failures
Current work Performability Yes Yes Host, VM, and

cloud manager
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4 MODELING FRAMEWORK FOR INFRASTRUCTURE PLANNING OF
WORKFLOW-AS-A-SERVICE CLOUDS

In this work, we developed a modeling framework for model-based infrastructure planning
of Workflow-as-a-Service clouds. The main goals of this framework are: i) to facilitate the
composition of performance and availability models of WaaS clouds; and ii) to enable the
integration of the modeling approach into sensitivity analisys and discrete optimization
methods for infrastructure planning. This chapter presents the framework and a supporting
methodology for conducting a infrastructure planning project by making use of our
framework.

4.1 SUPPORTING METHODOLOGY

The fluxogram shown in Figure 15 describes the supporting methodology for conducting
an infrastructure planning project on WaaS clouds. Each step of this methodology is
described as follows.

Understanding the system and user requirements

In the first methodology phase, we gather knowledge about the functioning of the
system, its sub-systems/components, and how they interoperate. We should have precise
knowledge about the physical topology and the logical relationships of its modules. Relevant
performance and dependability metrics related to Service Level Agreements should
be determined in this phase. Datasheets provided by the manufacturers, experimental data,
and results published in the literature are the primary sources of information concerning
quantitative aspects of the system.

Proposal of performance and dependability models

By applying the knowledge gained in the initial stage, the modeler should then compose
and parametrize the formal models for evaluating the performance and dependability
metrics identified in the user SLAs. The modeler can employ hierarchical modeling to
deal with the complexity of cloud environments (MATOS et al., 2015). Within this approach,
the modeler divides the complete model into a top-level model for representing the
system at a high-level view, and submodels for representing the behavior of individual
modules.

The distribution of the identified random variables dictates the employed model-
ing technique. Fault trees, Reliability block diagrams, Continous Time Markov Chains, and
Stochastic Petri nets (solved by CTMC generation) assume exponential times. Phase-type
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Figure 15 – Support methodology for optimization of cloud infrastructures and services

distributions can approximate general distributions. This technique, however, can increase
the state-space of the underlying model considerably. If the phase-type approximation is
not feasible, it may be necessary to employ discrete event simulation for obtaining the
metrics of interest.

An important characteristic of model-based infrastructure planning projects is the
need for exhaustive evaluation of the models in order to select the best scenarios among a
large solution space or to discover the relative importance of various input parameters.
Therefore, the ability to solve an individual model and combination of parameters in a
timely manner is an issue to be addressed in this stage of the methodology.

Evaluate metrics

In the evaluate metrics stage, we compare the performance and reliability levels
measured from the models developed in the previous step to the expected values documented
in the SLAs. If the SLAs are met, we finish the project and wait for structural changes,
disruptions in the system or increases in the workload. Otherwise, we proceed to the next
step in the methodology.
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Identify infrastructure planning problems

When building, maintaining, or deploying cloud applications and infrastructures, there
are many non-trivial decisions to be made in order to satisfy Service Level Agreements
and avoiding the waste of budget, energy, and computational resources. In this stage,
we identify the infrastructure planning problems and the alternatives for improving non-
functional aspects. Partitioning a cloud into clusters, setting up redundancy arrangements,
and purchasing more reliable and powerful components are the main means for improving
performance and availability aspects of a cloud infrastructure.

To make the best use of the organization budget, we must find the relative order
of importance of the system components in the metric of interest. In this way, the
administrator can prioritize the aspects of the system that are prone to improvement,
and select the measures that will yield the best return, i.e, the bottlenecks regarding
the metric of interest. Alternatively, the administrator may need to select a deployment
configuration among a large number of possible scenarios. When the choice is not obvious,
heuristic and meta-heuristic algorithms can help the administrator to find near-optimal
solutions.

Apply sensitivity analysis methods to find performance and availability bottlenecks

Sensitivity analysis is the task of finding which components, when upgraded, promote
the maximum improvement on the metric of interest. It consists of evaluating the model
under many combinations of parameters and applying statistical methods to sort the model
parameters by the level of impact to the selected metric. Partial derivatives, design of
experiments (DoE) (JAIN, 1990), the percentage differences method (HOFFMAN; GARDNER,
1983), and variating one parameter at a time are examples of sensitivity analysis techniques.

Applying the design of experiments (DOE) technique consists of taking a parameter
list, a list of values (called levels) for each parameter (called factors), and performing a
series of experiments with all possible combinations of factors and values. There are various
possible designs for an experiment. One possible alternative is to run the experiment
for all combinations of levels using all factors, which is called a full factorial design. A
drawback of this alternative is that, even for a small number of parameters, the amount of
experiments to be performed could be very large. One solution is to use only two levels
which is called a two-level factorial design. The percentage difference technique consists of
changing one parameter over a list of values while holding the other parameters fixed, and
calculating the percentage difference in the output metric considered. We perform this
step for each parameter in our list and sort them from the highest difference to the lowest.
The formula for obtaining the percentage difference is shown in the following (HOFFMAN;

GARDNER, 1983):
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𝑆𝐼 = 𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥

, where 𝑆𝐼 is the sensitivity index for the selected parameter, 𝐷𝑚𝑎𝑥 is the maximum value
of the output metric, and 𝐷𝑚𝑖𝑛 is the minimum value.

The nature of the formal model and the number of parameters dictate the suitability of
each technique. Partial derivatives can be employed if the model can be represented by a
deterministic and differentiable function. DoE methods enable capturing the combined effect
of parameters, but they suffer from combinatorial explosion when testing a significant
number of parameters. Detailed hierarchical models are prone to this problem. One
alternative is applying sensitivity analysis in each submodel individually and then creating
a composite ranking (JúNIOR, 2016)

Apply optimization methods to select deployment scenarios

This activity consists of finding near-optimal deployment configurations that either
minimize or maximize some metric of interest (e.g., monetary cost, annual throughput,
steady-state availability, and so on). If the process of finding such configurations cannot
be guided by established procedures, and if the solution space of configurations is vast,
near-optimal configurations can be found by making use of meta-heuristic optimization
methods.

An example of model-based optimization method is depicted in the flow diagram of
Figure 16. This diagram represents the process of systematically exploring a solution space
𝑆 according to a strategy dictated by the optimization algorithm (e.g.: hill climbing, genetic
algorithm, ant colony, etc.). The objective function value for a solution 𝑠 ∈ 𝑆 is obtained
by the process described bellow. First, the solution 𝑠 is converted to a performance or
dependability model 𝑚, and a set of input parameters 𝑝. Then, the modeling framework
runtime is invoked to extract the performance/dependability metric of interest. The
obtained metric is the considered objective function value for the solution 𝑠. The algorithm
will update its state with the newly discovered solution and apply an iterative process until
some stopping criteria is reached. At the end of the process, a near-optimal deployment
configuration is obtained according to the chosen objective function.
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Figure 16 – Optimization method for selection of configuration/deployment scenarios in
WaaS clouds

4.2 PERFORMANCE AND DEPENDABILITY MODELING FRAMEWORK

When applying the methodology described in the previous section, the modeler should
rely on a capable and flexible modeling framework. In the introduction, we identified the
main features that such framework should provide for assisting model-based infrastructure
planning of WaaS clouds:

• Good support for hierarchical modeling and many different modeling paradigms;

• Good support for symbolic evaluation;

• Support for on-the-fly model generation and evaluation via third-party tools;

• Support for high-level modeling formalisms.

We developed our modeling framework as a new runtime and a set of extensions for the
Mercury tool. By doing so, we were able to reuse the modeling capabilities of the tool and
focus on the enhancements needed to meet the requirements listed above. The Mercury
tool (MACIEL et al., 2017) is an integrated platform for performance and dependability
modeling. This tool has been maintained by MoDCS research group 1 and supports the
following formalisms: discrete/continuous Markov chains, fault trees, stochastic Petri nets,
reliability block diagrams, and Energy Flow Models (EFMs). Mercury offers more than
25 probability distributions for discrete event simulation, SPN and CTMC transient and
steady-state analysis, many methods for computing sensitivity indices for CTMC, RBD,

1 <http://www.modcs.org/>

http://www.modcs.org/
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and SPN models, reliability-related importance indices, and moment matching of empirical
data. Figure 17 presents the layered architecture of the Mercury tool. The modeling
framework developed in this thesis is represented as the grey blocks in the diagram.

The bottom layer depicted in Figure 17 corresponds to the core of the tool, i.e., the
modules invoked for solving the user models. The numeric evaluators and the discrete
event simulator are implemented in this layer. Classes defined at this level provide the
following functionalities: linear algebra operations, ordinary differential equations solvers,
random number generators, and so on.

The middle layer corresponds to the runtime module for using the tool. The available
runtimes are the scripting runtime and the graphical user interface (GUI) runtime. The GUI
runtime offers drag-and-drop oriented builders for composing models. The scripting runtime
offers a convenient way to describe an experimental design and perform a batch execution
for each combination of parameters. In the uppermost layer, there are the graphical
and scripting constructs for composing and evaluating models. We have implemented a
translator module that converts graphical models to a script representation (Figure 18).
The modeler can use the GUI runtime to create and validate a model, and then convert
the graphical model to a script to perform a large set of experiments. The runtime engine
can be invoked from the command line, allowing the usage of shell utilities and other
scripting languages for processing the output metrics and producing charts and tables.

The upper layer exports the modeling capabilities of the tool to users through a runtime.
The user can compose and evaluate models graphically or via the command line interface.
In addition to the formalisms mentioned above, we implemented the object Petri net and
DRBD formalisms to facilitate the modeling of WaaS clouds. The modeling Application
Programming Interface (API) allows third-party software (written in the Java programming
language) to connect to the scripting runtime, load scripts, and evaluate model metrics.
The meta-modeling capabilities enable the creation of models with a variable structure.
Finally, the plugin system enables the user to add new capabilities to the Mercury tool
without having to recompile its source code.
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Figure 17 – Mercury tool layered architecture
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Figure 18 – Creating a script from the graphical user interface

4.2.1 Mercury Scripting Language

Graphical modeling tools allow users to compose formal models with ease, but they
complicate the creation of models with a dynamic/complex structure, the hierarchical
arrangement of different models, and the automatic evaluation of models with different
parameter configurations. To overcome this problem, we created a scripting language for
the Mercury tool that supports the combination of different modeling approaches into a
single project. Two important features added to Mercury by this language are listed below:

• Better support for hierarchical modeling. The resulting metrics of a model can
serve as an input parameter for top-level models;

• Better support for symbolic evaluation. The input parameters of models can
contain expressions and variables that are assessed at evaluation time;

Those features are also found in the SHARPE tool (SAHNER; TRIVEDI, 1987), that
features a scripting language as well. However, Mercury has some unique features as
compared to the other tools:

1. Hierarchical transitions on SPN models. While CPN Tools (JENSEN; KRIS-

TENSEN; WELLS, 2007) and TimeNet (GERMAN et al., 1995) offer support to hierar-
chical transitions, they only provide this feature for colored Petri net models;

2. Phase-type distributions (BREUER; BAUM, 2005). Phase-type distributions can
be used to approximate general distributions in a Markovian model. The drawback
of using it is that it complicates the structure of the model. The scripting language
now allows for the representation of a transition delay regarding phase-type models
and, therefore, simplifies the models;
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3. Event-based programming for Petri net simulations. The scripting language
allows the creation of user-defined functions, and those functions can be registered
as events associated with transitions. This feature allows to create and modify
simulation variables, the net marking, parameters, and even the Petri net structure
itself;

4. Object Petri nets. Our definition of object Petri nets allows not only the tokens
but all elements which form a Petri net to be treated as objects. This characteristic
implies that we can override the behavior of certain elements such as places or
transitions, and apply object-oriented principles when designing our models. This
formalism is covered in Section 4.2.3;

5. Support to meta-modeling constructs. MSL offers constructs that allow specifying
a class of Petri net models based on a model template. This feature is described in
Section 4.2.4.

6. Dynamic reliability block diagrams for reliability and availability modeling.
This formalism combines the simplicity of combinatorial models with the the ability
of representing failure dependencies and redundancy arrangements between model
blocks. DRBDs are presented in Section 4.2.2.

In (OLIVEIRA et al., 2017), we provide an introduction about the scripting language
and the items from 1 to 3 in the previous list. The remaining of this chapter describes
the items 3 to 6, as they are essential to the WaaS infrastructure planning case studies of
Chapter 6.

4.2.2 Dynamic reliability block diagrams

We implemented the DRBD formalism as an alternative to RBDs and SPNs for creating
availability and reliability models. It combines the simple graphical notation of RBDs with
the ability to represent failure relationships and redundancy arrangements. To extract
metrics from a DRBD model, however, it is necessary to convert it to state-based models
that can be solved by numerical or simulation methods.

In our implementation, DRBDs models are a particular case of SPN models. We
developed a method for converting the DRBD blocks and structure to SPN models. The
choice of SPNs offers some advantages. By converting DRBDs to SPNs models, it is
possible to employ numerical evaluation methods (based on CTMC generation) if the
model has a manageable state-space and the failure and repair rates are exponential. Large
or non-exponential DRBD models can be solved by discrete-event simulation. Additionally,
it is possible to use SPN reward rates to obtain metrics such as the Capacity Oriented
Availability (COA). This process is illustrated in Subsection 6.1.3.
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The following subsections describe the rules for converting DRBD constructs to SPN
structures.

4.2.2.1 Single Component

A DRBD block is converted to an SPN with two places and two transitions, as described in
Figure 19 (a). A token inside the place with suffix 𝑢𝑝 indicates that the block is functional;
otherwise, the block is in a non-functional state. Transition 𝑐_𝑓𝑎𝑖𝑙 causes the block to go
from the functional to non-functional state, and the 𝑐_𝑟𝑒𝑝𝑎𝑖𝑟 transition represents the
restoration of the component.

4.2.2.2 Series-Parallel Arrangement Mapping

Similar to classical RBDs, DRBD blocks can be arranged into series and parallel structures.
We use a pair of states for each series/parallel segment of the model, as shown in Figure
19 (b). In this example, we have three blocks mapped to SPN according to the rules for
single component mapping. The operational state of the whole arrangement is represented
by 𝑠_𝑢𝑝 and 𝑠_𝑑𝑜𝑤𝑛 states connected to two immediate transitions. Both transitions
are controlled by guard expressions. In this example, transition 𝑠_𝑓𝑎𝑖𝑙 has the following
guard expression:

(#𝑐1_𝑢𝑝 = 0)𝑂𝑅(#𝑐2_𝑢𝑝 = 0)𝑂𝑅(#𝑐3_𝑢𝑝 = 0)

The # operator followed by a place name indicates the number of tokens inside
the place. Therefore, this expression evaluates to true if some 𝑢𝑝 place loses its token,
since a series arrangement requires all components be working in order to be considered
operational. A parallel arrangement uses the same expression structure, but uses an 𝐴𝑁𝐷

logical operator, since this arrangement only fails if all components fail at the same time.
Transition 𝑠_𝑟𝑒𝑝𝑎𝑖𝑟 has as a guard expression the logical negation of the previous one:

𝑁𝑂𝑇 ((#𝑐1_𝑢𝑝 = 0)𝑂𝑅(#𝑐2_𝑢𝑝 = 0)𝑂𝑅(#𝑐3_𝑢𝑝 = 0))

4.2.2.3 SDEP block mapping

The SDEP construct is not present in the classical RBD formalism. A SDEP block is
connected to a source block and one or more target blocks, via directed arcs. The failure
of the source block provokes the immediate failure of all target blocks. This behavior is
represented by the SPN elements shown in Figure 19 (c). It was added an immediate
transition (𝑡𝑟𝑖𝑔𝑔𝑒𝑟_𝑓) that moves a token from 𝑐2_𝑢𝑝 to the 𝑐2_𝑑𝑜𝑤𝑛 place. Due to the
inhibitor arc connected to the 𝑡𝑟𝑖𝑔𝑔𝑒𝑟_𝑓 transition and the 𝑐1_𝑢𝑝 place, this transition
only fires in case the source component fails, causing the failure of the target components.
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4.2.2.4 K-out-of-N Mapping

A k-out-of-n structure is a block arrangement that requires at least 𝑘 out of 𝑛 components
(𝑘 <= 𝑛) be working properly, in order to the k-out-of-n group be considered functional.
Figure 19 (d) shows the mapping of a DRBD k-out-of-n mapping to an SPN. In this
case, we have two possible outputs. The SPN of the left side shows the mapping of a
k-out-of-n block with the traditional semantics of RBD: all blocks can fail or be repaired
simultaneously. The place up_components contains the number of functional elements
from the k-out-of-n structure. Each time the transition c_fail fires, it represents a failure
of a block. In this case, we assume that all blocks have the same failure rate. Transitions
c_fail and c_repair must be configured to have infinite server semantics, i.e., all tokens
can be processed in parallel by the transition.

In a scenario with a limited number of repair facilities to serve all failed components,
we use the SPN of the right-hand side. In this scenario, the number of components
that can be repaired in parallel is determined by the number of repair stations available
(𝑟𝑒𝑝𝑎𝑖𝑟_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 place). To facilitate the assessment of the availability of the whole
structure, we added the 𝑘_𝑢𝑝 and 𝑘_𝑑𝑜𝑤𝑛 places, with a pair of transitions configured
with guard expressions. The guard expression of c_fail transition is #𝑢𝑝_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 < 𝑘,
whilst the expression of c_repair transition is #𝑢𝑝_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 ≥ 𝑘.

4.2.2.5 SPARE Block Mapping (Cold-Standby)

SPARE blocks represent redundancy arrangements between two components and are useful
for representing the cold-standby and warm-standby modes. Hot-standby redundancy can
be represented by connecting blocks in parallel. In the cold- and warm-standby modes,
a component assumes the role of the primary, and another one acts as a spare. Under
normal conditions, the primary provides the specified service. When the primary fails,
the spare is activated and starts to provide the service until the primary is restored. In
cold-standby mode, the spare is maintained as deactivated, and it is assumed that it does
not suffer the effects of failures in this state.

Figure 19 (e) shows the mapping of a SPARE block configured to work in cold-standby
mode. Place 𝑐2_𝑜𝑓𝑓 represents the state when the spare component is deactivated. A
token is set in 𝑐2_𝑜𝑓𝑓 , and place 𝑐2_𝑢𝑝 has no tokens in the initial marking. Transition
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑠𝑝𝑎𝑟𝑒 is only enabled when the primary component fails, due to the inhibitor arc
connected to the 𝑐1_𝑢𝑝 place. When the primary component is repaired, the transition
𝑑𝑒𝑎𝑐𝑡_𝑠𝑝𝑎𝑟𝑒 fires and moves the token from place 𝑐2_𝑢𝑝 to 𝑐2_𝑜𝑓𝑓 place.

Similarly, as for the series/parallel constructs, we added the 𝑠_𝑢𝑝 and 𝑠_𝑑𝑜𝑤𝑛 places
to represent the operational state of the redundancy arrangement. We use the following
guard expression in the 𝑠_𝑓𝑎𝑖𝑙 transition: #𝑐1_𝑢𝑝 = 0 AND #𝑐2_𝑢𝑝 =. The logical
negation of this expression is the guard expression of transition 𝑠_𝑟𝑒𝑝𝑎𝑖𝑟 .
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4.2.2.6 SPARE block mapping (Warm-standby)

In the cold-standby mode, the system is unavailable between the moment when the
primary component fails and the activation of the spare. If the mean time to activate the
spare component is too long, the system availability may become compromised. In the
warm-standby mode, the spare component is kept activated; however, it does not receive
any workload if the primary component is working. If the primary fails, the spare assumes
the requests, with a very short switchover time when compared to the cold-standby mode.
The spare may fail while not processing a workload, but generally it has a lower failure
rate.

Figure 19 (f) shows the mapping from a SPARE block to a SPN using this redundancy
scheme. We added places 𝑐2_𝑜𝑓𝑓_𝑢𝑝 and 𝑐2_𝑜𝑓𝑓_𝑑𝑜𝑤𝑛 to represent the state when
the spare component is not configured to process a workload. The immediate transition
𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒_𝑠𝑝𝑎𝑟𝑒 becomes enabled when the token goes from 𝑐1_𝑢𝑝 to 𝑐1_𝑑𝑜𝑤𝑛. Notice
that the switchover is instantaneous since we are using an immediate transition. If we want
to represent the activation time in the model, we could use a timed transition instead.



Chapter 4. Modeling framework for infrastructure planning of Workflow-as-a-Service clouds 56

C_DOWN

C_UP

C

C_REPAIR C_FAIL

(a) Single component
C1_DOWN

C1_UP

C2

C1_REP. C1_FAIL

C1 C3

C2_DOWN

C2_UP

C2_REP. C2_FAIL

C3_DOWN

C3_UP

C3_REP. C3_FAIL

S_DOWN

S_UP

S_REPAIR S_FAIL

(b) Series/parallel arrangement

C1_DOWN

C1_UP

SDEP

C1_REP. C1_FAIL

C1 C2

C2_DOWN

C2_UP

C2_REP. C2_FAIL

trigger_f

(c) SDEP block

DOWN_COMPONENTS

UP_COMPONENTS

C_FAIL

C1

C2

C3

2/3

REPAIR_STATION1
REPAIR_STATION2

C_REPAIR2 C_REPAIR1

K_DOWN

K_UP

K_REP. K_FAIL

DOWN_COMPONENTS

UP_COMPONENTS

C_REPAIR C_FAIL

K_DOWN

K_UP

K_REP. K_FAIL

(d) K-out-of-n arrangement

C1_DOWN

C1_UP

SPARE

C1_REP. C1_FAIL

C1 C2

C2_DOWN

C2_UP

C2_REP. C2_FAIL

(cold)

C2_OFF

activate_spare

deact_spare

S_DOWN

S_UP

S_REP. S_FAIL

(e) Cold-standby SPARE

C2_OFF_UP

C1_DOWN

C1_UP

SPARE

C1_REP. C1_FAIL

C1 C2(warm)

C2_DOWN

C2_UP

C2_REP. C2_FAIL

C2_OFF_DOWN

C2_REP2. C2_FAIL2

activate_spare

deact_spare

S_DOWN

S_UP

S_REP. S_FAIL

(f) Warm-standby SPARE

Figure 19 – Mapping of DRBD structures to Stochastic Petri Nets submodels
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4.2.3 Object oriented Petri nets

Modelers can represent a potentially large Markov chain with an equivalent and concise
stochastic Petri net. Sometimes, however, even Petri nets can become fairly intricate when
trying to model complex real-world phenomena. High-level Petri nets such as colored and
object-oriented Petri nets have equivalent descriptive power than Place/Transition nets,
but they offer better descriptive comfort (LAKOS, 1993), i.e., they offer constructs for
creating less intricate models their the P/T nets counterparts. In this work, we adopt the
object Petri net formalism as the modeling language for creating performability models of
WaaS clouds.

In our Object Petri Net implementation, not only the tokens (as in (VALK, 2004)), but
all the elements that compose a Petri net are treated as objects (even the net itself). Thus,
we can pass a net-object reference to other objects and form composite structures. An
object Petri net instance, as it is defined in this work, is formed by the following tuple.

OPNNet = (𝑃, 𝐼𝑇, 𝑇𝑇, 𝐼𝐴, 𝑂𝐴, 𝐹 )

, where:

• P is a set of OPNPlace instances, 𝑃 = (𝑝1, 𝑝2, 𝑝3, ...),

• IT is a set of OPNImmediateTransition instances, 𝐼𝑇 = (𝑖𝑡1, 𝑖𝑡2, 𝑖𝑡3, ...),

• TT is a set of OPNTimedTransition instances, 𝑇𝑇 = (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, ...),

• IA is a set of OPNInputArc instances, 𝑇 = (𝑖𝑎1, 𝑖𝑎2, 𝑖𝑎3, ...),

• OA is a set of OPNOutputArc instances, 𝑇 = (𝑜𝑎1, 𝑜𝑎2, 𝑜𝑎3, ...),

• F is a set of OPNFilter instances, 𝐹 = (𝑓1, 𝑓2, 𝑓3).

Figure 20 shows the class diagram for the above-mentioned classes. All classes that
define a specific Petri net element (place, transition, arcs, filters), and the OPNNet
class itself, derive from an abstract class named OPNObject. The OPNObject class
implements a parent-child relationship to express part-whole structures in the model.
Certain classes define overridable methods that can be used to intercept certain events
during the construction of a Petri net object or during the simulation/space-state generation.
In the remaining of this section, we refer to these overridable methods as hook methods.

The OPNNet class defines the following methods:

• getEnabledTransitions - This method returns a list with all transitions that are
enabled in the current marking. A transition is enabled if it is possible to form at
least one binding with tokens from input places, satisfying the filters that are set for
the transition, if any. If there are any immediate transition enabled, no single timed
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Figure 20 – Object-oriented Petri net modeling framework - class diagram

transition is added to the result list. Additionally, only the immediate transitions
with priority equal to the higher priority among them are returned;

• preCreate and postCreate - The preCreate hook method is called after the
OPNNet instance is created, and before any element (place, transition, etc.) is
added to the net. The postCreate method is invoked after all elements are added
to the net. These methods can be overridden in order to specify custom behavior to
be triggered before a simulation or state-space generation process.

The places, transitions, arcs, and filters instances of an OPNNet are children elements
of the net object. Additionally, an OPNNet can contain nested nets as children. This
scheme allows for a modular representation of Object Petri nets.

The OPNPlace class defines common behavior for places. The tokens of a place
are kept in a queue structure. The overridable tokenAdded method can be used to
capture the event of adding a token to a place. By overriding this method it is possible to
manipulate the token instances as they move from one place to another. This feature can
be useful to synchronize nested nets with their enclosing nets.
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An OPNPlace instance should specify a queueing policy for the tokens that are kept
in its queue. The queueing policy defines how the tokens are removed from the place on
the occurrence of a firing event. Consider, for instance, a place 𝑝 with the following token
queue: (𝑡𝑘1, 𝑡𝑘2, 𝑡𝑘3, 𝑡𝑘4). By firing a transition 𝑡 that takes one token from 𝑝, the resulting
place queue can be:

• (𝑡𝑘2, 𝑡𝑘3, 𝑡𝑘4), by adopting the FIFO queueing policy;

• (𝑡𝑘1, 𝑡𝑘2, 𝑡𝑘3), by adopting the LIFO queueing policy;

• (𝑡𝑘1, 𝑡𝑘2, 𝑡𝑘4), by adopting the random policy and choosing the third token randomly;

An OPN transition can be an instance of the ONPTimedTransition or the OPN-
ImmediateTransition classes. The base abstract class OPNTransition provides the
common behavior shared among them. Timed and immediate transitions have the same
semantics they have in SPN models: timed transitions, when enabled, schedule a clock
and fire at a later point in time. Immediate transitions fire promptly after being en-
abled, without advancing the clock. The OPNTransition class define the following hook
methods:

• beforeFiring, called when the transition is about to fire;

• afterFiring, called after the transition fires;

• generateDelay, invoked to generate the firing delay;

• getBinding, invoked to select a binding with tokens available from input places;

The OPNToken class can be extended to allow the representation of tokens with
specific attributes and methods. Object tokens can respond to method invocations as they
move from place to place and when transitions process them. We provide three concrete
classes that extend the OPNToken class for providing black, colored and net tokens. A
net token keeps a reference to an OPNNet instance.

The OPNInputArc and OPNOutputArc instances represent the input and output
arcs of a transition, as explained in the background section. They do not define any
particular hook method. Since object token instances can contain meaningful data as colored
tokens in CPNs, OPNInputArc and OPNOutputArc should declare the bindings that
should be formed when a transition fires. The instances of the OPNFilter class represent
boolean expressions that restrict certain bindings to be formed. In the following subsection,
we discuss binding and timing semantics for OPN transitions.
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4.2.3.1 Binding semantics for OPN transitions

In elementary Petri nets, the enabling of a transition is dictated by numeric weights of arcs
connected to its pre-set, as described in Subsection 2.6. For colored and object Petri nets,
numeric weights are no longer sufficient for expressing the firing behavior of a transition.
Instead, we annotate input arcs with variable names. A binding is the association of
tokens from the pre-set of the transition to the variable names annotated on input arcs.
As in a colored Petri net, a transition in our object Petri net formalism is enabled if at
least one binding can be formed.

To illustrate the concept of bindings, consider the object Petri net of Figure 21. The
tokens in the places P0 and P1 are instances of the Person class, depicted in the class
diagram in the right side of the figure. To form a valid binding for the transition T0,
a token from P0 should be associated with the variable name x and a token from P1
should be associated with the variable name y. If T0 follows a random queueing policy,
the possible bindings for the initial marking are denoted by the set:

Bindings𝑇 0 = {(𝑥 → 𝑡1, 𝑦 → 𝑡2) | (𝑡1, 𝑡2) ∈ 𝑃0.𝑡𝑜𝑘𝑒𝑛𝑠 × 𝑃1.𝑡𝑜𝑘𝑒𝑛𝑠}

= {(𝑥 → 𝑡1, 𝑦 → 𝑡4), (𝑥 → 𝑡1, 𝑦 → 𝑡5), (𝑥 → 𝑡1, 𝑦 → 𝑡6), (𝑥 → 𝑡2, 𝑦 → 𝑡4), . . .}

:Person

- name = "Hans"

- city     = "Düsseldorf"

:Person

- name = "Johannes"

- city     = "Hanover"

:Person

- name = "Florian"

- city     = "Köln"

:Person

- name = "Katharina"

- city     = "Hanover"

:Person

- name = "Maria"

- city     = "Köln"

:Person

- name = "Anna"

- city     = "Düsseldorf"

t1

t2

t3

t4

t5

t6

(x,y)
x

y

P1

P0

P2T0

OPNToken 

Person

- name: String

- city    : String

Figure 21 – Example of object Petri net

A transition can be associated with one or more filter elements in order to restrict
the bindings that can be formed. A filter element is represented by a boolean expression
composed of relational/logic operators and binding elements. For instance, if the transition
T0 is associated with the filter expression 𝑥.𝑐𝑖𝑡𝑦 = 𝑦.𝑐𝑖𝑡𝑦, the list of possible bindings will
be equal to:
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{(𝑥 → 𝑡1, 𝑦 → 𝑡6), (𝑥 → 𝑡2, 𝑦 → 𝑡4), (𝑥 → 𝑡3, 𝑦 → 𝑡5)}

Our modeling framework allows modifying the default firing behavior by overriding
the beforeFiring hook method declared in the OPNTransition class. This mechanism
can be used either to create custom behavior associated with a specific transition or to
create reusable general purpose special transitions. To exemplify this feature, consider a
model that should route tokens to output places according to a label field in the token
object. This routing scheme is depicted in the object Petri net of Figure 22 a).

Suppose we want to implement the same behavior of all transitions and filters of
the model of Figure 22 a) within a single transition. We can implement this feature by
extending the OPNTransition class as in the Listing 4.1. The model depicted in Figure
22 b) employs the custom transition class. When using the RoutingTransition class, we
adopt the following convention: the name of the variable binding corresponds to the type
of the token to be routed through the corresponding arc. The other binding variables that
are not assigned to any valid token point to a null token. By default, this null token is
discarded by the output places.

A

t.type = "a"

t_a

B

t.type = "b"

t_b

C

t.type = "c"

t_c

..
.
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RouterTransition
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Figure 22 – Routing object tokens according to a type field

1 class RouterTransition extends OPNTimedTransition{

@Override

3 public void beforeFiring( Binding b ){

String type = b.token("t").getType ();

5

b.setBinding( type , b.token("t") );

7 }

}

Listing 4.1 – Extending the OPNTimedTransition class to implement routing behavior
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4.2.4 Meta-modeling

In the literature, meta-modeling is referred to the process of using higher level languages
to generate models for some fundamental modeling formalism (BRETON; BÉZIVIN, 2001).
For example, since UML is way more widespread than Petri nets, many works in literature
propose the conversion of UML diagrams to SPN models for facilitating the task of
modeling a particular application domain (BERNARDI; DONATELLI; MERSEGUER, 2002;
BENDER et al., 2008; ANDRADE et al., 2009). It is possible also to see Petri nets as meta-
models for automata or Markovian models. A particular (non-marked) Stochastic Petri
Net can define a class of related CTMC models. By changing the number of tokens of a
place, we change the topology of the underlying embedded CTMC.

In this work, we adopt a meta-modeling scheme that consists of defining parameters
that can change the structure of a model. In this work, we employ two meta-modeling
techniques. Conditional rules define parts of a model that can be included or removed
to the final model, based on the result of logical expressions. Repetition rules specify a
repeating structure that occurs in the model. The meta-model should be expanded in
order to obtain a concrete model which can be used for analysis.

To illustrate how our meta-modeling approach works, consider the classical problem of
the dining philosophers. 𝑁 philosophers are sitting around a circular table. The philosophers
alternate between eating and thinking, and they should use two forks for eating. The
forks are shared with neighbors, and a philosopher can eat only if the nearby philosophers
are thinking (and therefore both forks are free). A Petri net representation of the dining
philosophers problem is given in Figure 23. It can be observed that the model has a
recurring structure (highlighted in the figure).

The meta-model for creating dining philosophers models with any number of philoso-
phers is given in the script of Listing 4.2. We use two repeating rules, one for declaring
the places, and the other for declaring the transitions. The hash ( # ) symbol is used to
specify an identifier with a suffix that is given by a numeric expression, enabling us to
create the places 𝑓𝑜𝑟𝑘1, 𝑓𝑜𝑟𝑘2, 𝑓𝑜𝑟𝑘3 dynamically, and so on. The dollar ( $ ) operator is
used to retrieving the contents of a variable, similar to the Perl, PHP or Bash languages.
When we omit this operator, the value is not retrieved until the model is solved. In short:
we use the $ operator in temporary variables (like the i variable in the script), and we do
not use this operator when we want to declare a model parameter (the np variable, for
instance). We use a conditional rule in order to make each 𝑖-th philosopher refer to the
fork of the 𝑖 + 1-th philosopher, for 𝑖 = 1, 2, . . . , 𝑛𝑝 − 1. The last philosopher, however,
refers to the first philosopher’s fork, and closes the circle.

SPN Model{

2 for i in range(1, np){

place eating #($i);

4 place fork#($i)( tokens = 1 );
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Figure 23 – Dining philosophers Petri net model with 10 philosophers

place thinking #($i)( tokens = 1 );

6 }

8 for i in range(1, np){

10 if($i == $np){

$next = 0;

12 }else{

$next = $i + 1;

14 }

16 transition eat#($i)(

inputs = [fork#($i), thinking #($i), fork#($next)],

18 outputs = [eating #($i)],

);

20 transition think#($i)(

inputs = [eating #($i)],

22 outputs = [fork#($i), fork#($next), thinking #($i)],

);

24 }

}

Listing 4.2 – Mercury script for dining philosophers meta-model
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4.2.5 Model-generator algorithms

A crucial step of the method described in Figure 16 is connecting a heuristic or meta-
heuristic algorithm to the modeling framework to obtain a objective function value via
model evaluation. The algorithmic representation of a solution 𝑠 should be convertible to
a tuple 𝑡 = (𝑖, 𝑚), where 𝑖 is the a set of input parameters (e.g., transition/state rates,
probabilities, etc.), and 𝑚 is a performance or reliability model.

We identified three possible scenarios in which this conversion can happen. They are
represented in the Figures 24. The first scenario (Figure 24 a)) represents the simplest
scenario. Every tuple 𝑡 corresponding to a solution 𝑠 in the solutinon space 𝑆 share a same
fixed model 𝑚. Each particular solution represents a different combination of parameters.
In the second and third scenarios (Figures 24 b) and c)), each solution 𝑠 is associated with
a different model 𝑚 that should be generated at running time. The second scenario employs
meta-models, i.e., configurable templates that can be expanded to concrete models, and
the third scenario employs model generator algorithms.

solution s convert solution

to parameters

model m

objective function

value f(s)
model parameters

evaluate

model

(a) First scenario

solution s convert solution

to parameters

objective function

value f(s)
meta-model

parameters

evaluate

modelconvert solution

to meta-model

parameters

expand

meta-model

model m

meta-model m'

model

parameters

Modeling engine

(b) Second scenario (meta-modeling scheme)

solution s convert solution

to parameters

objective function

value f(s)
evaluate

modelconvert solution

to concrete

model

model m

model

parameters

(c) Third scenario (model-generator algorithm)

Figure 24 – Converting solution 𝑠 to pair (𝑝, 𝑚) - parameters and model

A model generator algorithm can use the modeling API for on-the-fly model generation,
or it can generate a script representation of the model to be loaded at runtime. It is also
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possible to combine model generators and meta-models. This approach is adopted in the
case study of Section 6.3.

4.3 FINAL REMARKS

This chapter presented the modeling framework proposed for assisting model-based infras-
tructure planning of Workflow-as-a-Service clouds. The framework supports the require-
ments of infrastructure planning activities by providing methods for coupling the model
evaluator engine to sensitivity analysis and combinatorial optimization tools. On the other
hand, it also enables the creation of sophisticated performance and availability models of
Workflow-as-a-Service clouds by providing good assistance for hierarchical modeling and
high-level modeling formalisms such as DRBDs and OPNs.
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5 MODELS

This chapter presents performance and availability models of Workflow-as-a-Service clouds.
Section 5.1 introduces the considered WaaS system. First, it provides a general overview of
a WaaS cloud, and then it describes the cloud underlying architecture in details. Section
5.2 presents the availability models for the first and second case studies presented in
Chapter 6. Section 5.3 presents a combinatorial-optimization model for solving the cloud
redundancy allocation problem studied in the second case study. In Section 5.4, we present
the object-oriented Petri net model for performability of a cloud workflow application,
used in the third case study of Chapter 6. Finally, in Section 5.5, we make some final
remarks about this chapter.

5.1 WORKFLOW-AS-A-SERVICE CLOUD - AN OVERVIEW

Figure 25 provides an overview of the modeled system. The cloud infrastructure consists
of a collection of hosts that acts either as workers or part of a cloud manager. A work
node is a server that runs the virtual machines of the users. The cloud manager is a
subsystem composed of the software components for handling the requests of the users
and orchestrating the cloud infrastructure. Employing more than one physical machine to
run the necessary services is recommended to avoid a single point of failure.

As in (CHRISTODOULOPOULOS et al., 2007), we assume that job requests arrive according
to a Poisson process. Each job is composed of a series of subtasks with precedence
constraints defined as a DAG. A predefined strategy establishes the scheduling of the
subtasks. This strategy determines the number of virtual machines allocated from the
cloud provider and the tasks executed on each of them. The scheduling can be generated
by some heuristic (First Come-First Served, Shortest Job First, Heterogeneous Earliest
Finish Time, etc.) or meta-heuristic algorithm (taboo search, genetic algorithm, ant colony,
etc.).

In order to reduce the complexity of the model and, therefore, reducing the simulation
time, we assume the instantaneous provisioning of machines to users. It is important to
stress, however, that different provisioning strategies could have been implemented in the
model in case of a need for evaluating the impact of such strategies on the output metric.
In (QUIROZ et al., 2009), for instance, a pool of pre-allocate VMs is suggested as a means
of reducing the responsiveness of a cloud platform.

In this work, we adopt the Eucalyptus platform (EUCALYPTUS, 2013) as the basis of
our cloud architecture. We chose the Eucalyptus platform since it was the most mature
open-source private cloud software at the time this project started. The focus of the
Eucalyptus platform enabling the creation of private cloud infrastructures that are fully
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Figure 25 – Modeled system

compatible with the Amazon Elastic Compute Cloud (EC2) and Simple Storage (S3)
services.

A Eucalyptus cloud is composed of a set of servers, each of them assuming different
roles. The frontend servers run the services that manage the entire cloud infrastructure,
namely: the Cloud Controller (CLC), responsible for the cloud management; Walrus, that
provides an object storage service compatible with Amazon S3; and a PostgreSQL database
management system, for storing information about the entire cloud, e.g., users credentials,
instances, volumes, and so on.

The worker nodes are the servers where the virtual machines will be deployed. They run
an instance of the Node Controller (NC) software from the Eucalyptus framework. This
service has the following functions: discovering the computational capabilities of the nodes
(i.e., memory size, number of processors, and disk capacity), sending this information to
the Cluster Controller (CC), and accepting requests from the CC (e.g., start a VM, kill a
VM, receive a VM image).

The worker nodes can be grouped into distinct clusters named Availability Zones.
Worker nodes and cluster managers form each cluster. A cluster manager runs the following
services: the Cluster Controller (CC) and the Storage Controller (SC). The CC manages a
set of worker nodes. It is responsible for balancing the requests sent by the CLC between
the worker nodes and monitoring the status and resources of each node. The SC provides a
service compatible with the Amazon EBS (Elastic Block Store) service, providing persistent
storage volumes to be attached to VMs deployed on worker nodes.

All Eucalyptus services (except the NC) can be configured to work in warm-standby
redundancy (BAUER; ADAMS; EUSTACE, 2011) with another instance of the same service
on a different machine to avoid single-point-of-failure problems (WOLSKI, ).
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Figure 26 – Eucalyptus cloud architecture with two availability zones

Figure 27 – Eucalyptus cloud architecture with one availability zone

Figure 26 shows an example of a Eucalyptus cloud with two frontend nodes, and two
clusters (or availability zones). Each cluster contains two cluster managers and four worker
nodes. Figure 27 presents a different cloud architecture with the same number of physical
servers, which includes only one availability zone. The point to be noted here is that, for a
certain number of physical servers, there are many different ways to create a Eucalyptus
cloud. Each possible architecture might have distinct characteristics regarding availability,
response time, and other performance and dependability metrics (MACIEL, 2016).

5.2 AVAILABILITY MODELS

In this section, we present the availability models for the cloud architecture described
in the previous section. Considering the complexity of a Eucalyptus private cloud, we
adopted hierarchical modeling to assess the availability of the entire system. Figure 28
shows the top level RBD model. This model describes the steady-state availability metric
from the viewpoint of the cloud administrator. The system is considered to be available if
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the infrastructure can support the deployment of a minimum number of VMs to the cloud
users. According to our top-level model, the system is available if the cloud controller is
functioning and at least one working availability zone is able to provide this minimum
number of VMs. The number of blocks for the parallel structure is treated as an input
parameter by employing the meta-modeling approach.

...

Availability Zone #N

Availability Zone #2

Availability Zone #1

BEGIN END

Infrastructure

 Manager

Figure 28 – Top-level model for the cloud infrastructure

In the graphical notation, a shaded (grey) RBD block represents a component evaluated
by a sub-model within the hierarchical modeling approach. A white block is a single
component described in terms of MTTF (mean time to failure) and MTTR (mean time to
repair) values.

The Infrastructure manager block corresponds to the set of essential services for
managing the cloud infrastructure: the Cloud Controller (CLC), the Walrus storage
controller, and the PostgreSQL database. All these three services must be functioning for
the users to access the cloud services properly. In order to achieve high availability in this
subsystem, each service must be configured to run in conjunction with another standby
instance of the same service running on a different machine. When the frontend services
run inside the same machine, they also run inside the same JVM. A JVM failure causes
the failure of all services that run on it.

The availability model of the infrastructure manager cannot use combinatorial for-
malisms (RBDs or fault trees) since such formalisms are not able to express failure
relationships between the components and redundancy mechanisms. Therefore, we must
use state-space based models for this purpose. We adopted the DRBD formalism, which
offers the simplicity of traditional RBDs while providing the required semantics. The
DRBD model for the cloud controller is presented in Figure 29. It comprises two subsystems
in parallel, each of which corresponds to a physical server that runs the management
services of Eucalyptus. Each series grouping is composed by the following blocks: Hardware
(HW), Operating System (OS), Java Virtual Machine (JVM), Cloud Controller (CLC),
Walrus (W), and the PostgreSQL database (PGSQL). We used SDEP blocks to indicate
the fault relationships between blocks, and SPARE blocks to represent the warm-standby
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redundancy arrangements between the cloud management services. In the model of Figure
29, we adopt SDEP blocks to express that a failure in the Java Virtual Machine provoke
the immediate collapse of the CLC and Walrus components, as they are services written
in the Java language running in the same JVM. The PostgreSQL database is not affected
by JVM failures since it runs on its own process.

HW_P OS_P JVM_P CLC_P W_P PGSQL_P

HW_S OS_S JVM_S CLC_S W_S PGSQL_S

SPARE SPARE SPARE

SDEP

SDEP

CLC WALRUS PGSQL

Figure 29 – Availability model for the Infrastructure Manager

The SPN model generated from the infrastructure manager DRBD has a total of 32
places and 52 (timed and immediate) transitions. Creating such a model manually is an
error-prone process, and the graphical representation would be difficult to comprehend
due to a large number of crossing arcs. This fact demonstrates the conciseness and
expressiveness power of our approach.

An availability zone is composed of a cluster manager, a SAN (Storage Area Network)
storage, and a set of worker nodes. We consider an availability zone to be working correctly
if the three mentioned subsystems are functional. The RBD model for an availability
zone is displayed in Figure 30. The cluster manager comprises the Cluster Controller and
Storage Controller services. The DRBD model for the cluster manager is presented in
Figure 31, and is similar to the infrastructure manager model. Notice that there is no
SDEP block connecting the JVM with the CC, since the CC service does not run in the
JVM. The SAN storage is depicted as a single block with associated MTTF and MTTR.

The worker nodes subsystem is depicted as a k-out-of-n structure in the model of Figure
30. Each block of this structure is similar to the others and is evaluated by another model.
The model for a worker server is represented in Figure 32 by an RBD model composed of
the following blocks: Hardware (HW), Operating System (OS), Virtual Machine Monitor
(VMM), and Node Controller (NC).
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...

Worker node #N

Worker node #2

Worker node #1

SAN storage

BEGIN END

Cluster Controller

K-out-of-n

Figure 30 – Availability zone model

HW_P OS_P J VM_P SC_P CC_P

SPARE SPARE

SDEP

SDEP

HW_S OS_S J VM_S SC_S CC_S

Figure 31 – Cluster Manager model

HW

BEGIN END

OS VMM NC

Figure 32 – Worker node model

5.3 CLOUD REDUNDANCY ALLOCATION PROBLEM OPTIMIZATION MODEL

Section 5.1 shown that having a limited number of resources available to create a private
cloud, there will be many different forms to arrange those resources to compose the cloud.
In this section, we propose a combinatorial optimization model for solving the following
question:

Considering the available resources, and a set of constraints, such as minimum
availability and a minimum number of workers that must be available, can we find near-
optimal configurations regarding availability (steady state and capacity oriented) and
acquisition cost?
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The cloud infrastructure is composed of a group of 𝑛 servers, whose possible roles are
manager (of a cluster or the entire cloud) or worker. The role is defined by the software
that we install on the server: if we install the Node Controller (NC) it will be a worker;
otherwise, it will be a manager. The cloud could also be divided into 𝑚 clusters/availability
zones. The following definition describes a Eucalyptus configuration as a solution of the
optimization model.

A Eucalyptus cloud configuration 𝑆 is defined as:

𝑆 = (𝐶𝐿𝐶, 𝑊 , 𝐶𝐶, 𝑆𝐶, 𝑃 𝐺𝑆𝑄𝐿, 𝑁𝐶, 𝐴𝑉 _𝑍𝑂𝑁𝐸),

a seven-tuple of vectors, where:

1. 𝐶𝐿𝐶, where 𝐶𝐿𝐶𝑖 ∈ {0, 1}, and 𝑖 = {1..𝑛}

2. 𝑊 , where 𝑊𝑖 ∈ {0, 1}, and 𝑖 = {1..𝑛}

3. 𝐶𝐶, where 𝐶𝐶𝑖 ∈ {0, 1}, and 𝑖 = {1..𝑛}

4. 𝑆𝐶, where 𝑆𝐶𝑖 ∈ {0, 1}, and 𝑖 = {1..𝑛}

5. 𝑃 𝐺𝑆𝑄𝐿, where 𝑃𝐺𝑆𝑄𝐿𝑖 ∈ {0, 1}, and 𝑖 = {1..𝑛}

6. 𝑁𝐶, where 𝑁𝐶𝑖 ∈ {0, 1}, and 𝑖 = {1..𝑛}

7. 𝐴𝑉 _𝑍𝑂𝑁𝐸, where 𝐴𝑉 _𝑍𝑂𝑁𝐸𝑖 ∈ {0..𝑚}, and 𝑖 = {1..𝑛}

The vectors: 𝐶𝐿𝐶, 𝑊 , 𝐶𝐶, 𝑆𝐶, 𝑃 𝐺𝑆𝑄𝐿, and 𝑁𝐶, express if the corresponding
service is installed on 𝑖-th node (1 if the service is installed, 0 otherwise). The 𝐴𝑉 _𝑍𝑂𝑁𝐸

vector defines the availability zone of 𝑖-th node. If 𝐴𝑉 _𝑍𝑂𝑁𝐸𝑖 is equals to zero, the 𝑖-th
node is a cloud manager, otherwise, the value indicates the zone that the node belongs (as
a cluster manager or worker node).

As an illustration, Table 2 provides the representation of the cloud depicted in Figure
26 as a solution of our optimization model. The vectors are represented as the columns
of the table. By inspecting the elements on each vector, we can determine the role and
availability zone of each server. In our example, the fifth server is a cluster manager of
the first availability zone, running the CC and SC services (𝐶𝐶5 = 1, 𝑆𝐶5 = 1, and
𝐴𝑉 _𝑍𝑂𝑁𝐸5 = 1).

The optimization model for the cloud redundancy allocation problem can be described
as:

maximize 𝐴(𝑆),

subject to:
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Table 2 – Matricial representation of the cloud from Figure 26

𝑖 CLC[𝑖] WALRUS[𝑖] CC[𝑖] SC[𝑖] PGSQL[𝑖] NC[𝑖] AV_ZONE[𝑖]
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 0 1 0 0 1 0 0
4 0 0 0 0 1 0 0
5 0 0 1 1 0 0 1
6 0 0 1 1 0 0 1
7 0 0 0 0 0 1 1
8 0 0 0 0 0 1 1
9 0 0 0 0 0 1 1
10 0 0 0 0 0 1 1
11 0 0 1 0 0 0 2
12 0 0 1 1 0 0 2
13 0 0 0 1 0 0 2
14 0 0 0 0 0 1 2
15 0 0 0 0 0 1 2
16 0 0 0 0 0 1 2
17 0 0 0 0 0 1 2

1.
1 ≤ |𝑐𝑐𝑁𝑜𝑑𝑒𝑠(𝑗)| ≤ 2, ∀𝑗 ∈ {1..𝑚}

2.
1 ≤ |𝑠𝑐𝑁𝑜𝑑𝑒𝑠(𝑗)| ≤ 2, ∀𝑗 ∈ {1..𝑚}

3.
1 ≤

𝑛∑︁
𝑖=1

𝐶𝐿𝐶𝑖 ≤ 2

4.
1 ≤

𝑛∑︁
𝑖=1

𝑊𝑖 ≤ 2

5.
1 ≤

𝑛∑︁
𝑖=1

𝑃𝐺𝑆𝑄𝐿𝑖 ≤ 2

6.
𝑚∑︁

𝑗=1
𝑛𝑐𝑁𝑜𝑑𝑒𝑠(𝑗) ≥ 𝑚𝑖𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑠,

where the objective function 𝐴(𝑆) is the steady-state availability of the solution 𝑆. This
value is calculated by converting the vector representation to an RBD model. The functions
𝑐𝑐𝑁𝑜𝑑𝑒𝑠(𝑗), 𝑠𝑐𝑁𝑜𝑑𝑒𝑠(𝑗), and 𝑛𝑐𝑁𝑜𝑑𝑒𝑠(𝑗) return a set containing the indexes of the servers
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of an availability zone 𝑗 that run the CC, SC, and NC services, respectively. They are
defined as:

𝑐𝑐𝑁𝑜𝑑𝑒𝑠(𝑗) = {𝑖|𝐴𝑉 _𝑍𝑂𝑁𝐸𝑖 = 𝑗, 𝐶𝐶𝑖 = 1}, 𝑖 = {1..𝑛} (5.1)

𝑠𝑐𝑁𝑜𝑑𝑒𝑠(𝑗) = {𝑖|𝐴𝑉 _𝑍𝑂𝑁𝐸𝑖 = 𝑗, 𝑆𝐶𝑖 = 1}, 𝑖 = {1..𝑛} (5.2)

𝑛𝑐𝑁𝑜𝑑𝑒𝑠(𝑗) = {𝑖|𝐴𝑉 _𝑍𝑂𝑁𝐸𝑖 = 𝑗, 𝑁𝐶𝑖 = 1}, 𝑖 = {1..𝑛} (5.3)

In our example, 𝑐𝑐𝑁𝑜𝑑𝑒𝑠(1) is {5, 6} and has cardinality equals to |𝑐𝑐𝑁𝑜𝑑𝑒𝑠(2)| = 2.
Constraints 1-5 define the minimum and maximum of each management service instance.

In a Eucalyptus cloud, we could have one or two instances of the CLC, WALRUS
and PostgreSQL services, and one or two instances of the CC and SC services per
cluster. Constraint 6 imposes that the number of worker nodes must be greater than the
𝑚𝑖𝑛𝑊𝑜𝑟𝑘𝑒𝑟𝑠 parameter.

5.3.1 Neighbor function

For the 𝑖-th server, the number of possible combinations is equal to 25 * (𝑚 + 1), since
the 𝐶𝐿𝐶𝑖, 𝑊𝑖, 𝐶𝐶𝑖, 𝑆𝐶𝑖, 𝑃𝐺𝑆𝑄𝐿𝑖, and 𝑁𝐶𝑖 elements have two alternatives (0 or 1), and
the 𝐴𝑉 _𝑍𝑂𝑁𝐸𝑖 element has (𝑚 + 1) alternatives (0 for cloud managers, or the number
of the availability zone). Therefore, for a cloud formed by a set of 𝑛 physical servers
divided into frontend machines and 𝑚 clusters, the number of possible solutions is (64𝑚)𝑛.
However, the vast majority of solutions will violate the optimization problem constraints,
and therefore will be unacceptable solutions. Moreover, among the feasible solutions, there
will be many solutions representing the same architecture.

Therefore, we must apply a strategy for helping to reduce the search space, and avoiding
the generation of unacceptable or repeated solutions. A heuristic was implemented on the
neighbor function of the optimization algorithm. The algorithm starts with a randomly
generated solution and starts an iterative process to refine its quality. On the first iteration,
it applies the neighbor function to the initial solution in order to generate a set of slightly
modified solutions. Then, it compares the value of the objective function for the initial
solution and neighbors and then selects the best solution found. In the next iterations, it
will apply the neighbor function to the best solution of the previous step, until it satisfies
some stopping criteria (e.g. performing a number of iterations).

The local search algorithm randomly chooses one of the following operations to produce
a neighbor solution:
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1. Merge two availability zones - Two availability zones 𝑖 and 𝑗 are selected ran-
domly. All servers of zone 𝑗 are converted into worker nodes of zone 𝑖;

2. Split one availability zone - One availability zone 𝑖 is randomly selected, and half
of the nodes of the zone will generate another availability zone. This operation could
generate an unfeasible solution, since the modified zones could have an unacceptable
number of worker nodes;

3. Exchange nodes between zones - Two availability zones 𝑖 and 𝑗 are selected
randomly. One worker node from availability zone 𝑖 is transferred to zone 𝑗;

4. Cluster controller to worker - One availability zone 𝑖 is selected at random. If
the cluster 𝑖 has two or more manager nodes, a manager node is converted into a
worker node, and the cluster management services are reallocated to the remaining
managers;

5. Worker to cluster controller - One availability zone 𝑖 is randomly selected. If
the zone has less than four cluster managers, a worker node from 𝑖 is converted into
a manager;

6. Cluster node to cloud manager - One availability zone 𝑖 is randomly selected.
If the cloud has less than six cloud managers, a worker node is removed from the
zone, and is converted into a cloud manager;

7. Cloud manager to cluster node - One availability zone 𝑖 is selected at random.
If the cloud has two or more cloud managers, one of them is removed from the cloud
manager group and converted to a worker node of the cluster 𝑖.

5.3.2 Objective function

The objective function 𝐴(𝑆) of the optimization model described in this section converts
a cloud architecture described in the matrix representation to an RBD availability model.
The objective function value of a solution 𝑠 is the steady-state availability metric obtained
from this model. We employ a model generator algorithm that takes as the input a matrix
representation of a cloud deployment and produces as the output an RBD availability
model.

The DRBD model of Figure 29 suffers from state-space explosion if we represent
three or more frontend nodes. Therefore, we had to adopt different submodels for the
infrastructure and cloud managers blocks. Instead of using DRBD models, we employed
RDB models with repeating blocks to represent the distribution of the Eucalyptus services
among the frontend and cluster manager nodes. The pure RBD models are less accurate
than the DRBD equivalent, but they are more suited to the objective function of the
problem.
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The RBD model for the Infrastructure Manager is represented in Figure 33. It is
composed of three blocks in series: CLC (Cloud Controller), Walrus, and PGSQL. The
submodels of each block (CLC, W and PG) are depicted in Figures 34 a), 34 b), and 34 c),
respectively. The repeated blocks, namely, 𝐻𝑊1, 𝑂𝑆1, 𝐽𝑉 𝑀1, 𝐻𝑊2, 𝑂𝑆2, and 𝐽𝑉 𝑀2,
represent the same component appearing in different places in the model. For solving an
RBD model with repeated blocks, we use the pivotal decomposition technique presented
in Section 2.4.

CLC
BEGIN END

W PG

Figure 33 – Infrastructure manager model

HW1

BEGIN END

OS1 JVM1 CLCp

HW2 OS2 JVM2 CLCs

(a) CLC refined model

HW1

BEGIN END

OS1 JVM1 Wp

HW2 OS2 JVM2 Ws

(b) W refined model

HW1

BEGIN END

OS1 PGp

HW2 OS2 PGs

(c) PG refined model

Figure 34 – Infrastructure manager RBD submodels

The Cluster Manager model is shown in Figure 35, and it is similar to the Infrastructure
Manager model. Its submodels are described in Figures 36 a) and b).

CC
BEGIN END

SC

Figure 35 – Cluster Manager model

5.3.3 Capacity Oriented Availability

In the studied system, some failures do not provoke system unavailability but can degrade
performance. A cloud will not be considered unavailable after some failures on workers
nodes if it can still provide a minimum number of workers. However, having fewer worker
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HW3

BEGIN END

OS3 CCp

HW4 OS4 CCs

(a) Cluster Controller (CC)

HW3

BEGIN END

OS3 JVM3 SCp

HW4 OS4 JVM4 SCs

(b) Storage Controller (SC)

Figure 36 – Sub models from the Cluster Manager model

nodes available means that the processing capability of the cloud was reduced. In the same
way, a failure of a cluster manager will not cause unavailability if the cloud has another
functional cluster, but half of the worker nodes of that cloud will be inaccessible to the
users while the cluster manager is unavailable.

We can measure the impact of failures on the system performance with the Capacity
Oriented Availability metric. This metric measures the proportion of the whole system
that is being actually delivered to its clients. It is a value ranging from 0 (no service is
delivered at any point in time) to 1 (the system is able to deliver its full processing power
all the time).

The COA metric can be evaluated by using a Markov Reward Model (REIBMAN; SMITH;

TRIVEDI, 1989). In this model, each state is associated with a reward rate that represents
the processing power that is being delivered in that state. The metric is obtained by
summing up the product between the reward and the stationary probability of each state:

𝐶𝑂𝐴 =
𝑛∑︁

𝑖=0
𝜋𝑖 * 𝑟𝑖,

where 𝑛 is the size of the state space of the Markov Reward Model, 𝜋𝑖 is the stationary
probability of being in state 𝑖, and 𝑟𝑖 is the reward rate assigned to the state 𝑖.

The COA model for the studied cloud architecture can be obtained by converting the
RBD availability model to a SRN, and then converting the SRN to a Markov Reward Model.
Figure 37 displays the corresponding COA model of the cloud architecture shown in 26.
The pair of places 𝐶𝐿𝑀_𝑈𝑃/𝐶𝐿𝑀_𝐷𝑂𝑊𝑁 corresponds to the operational status of the
cloud manager. The 𝐶𝑀1_𝑈𝑃/𝐶𝑀1_𝐷𝑂𝑊𝑁 and 𝐶𝑀2_𝑈𝑃/𝐶𝑀2_𝐷𝑂𝑊𝑁 pairs cor-
respond to the cluster managers, and the 𝑊1_𝑈𝑃/𝑊1_𝐷𝑂𝑊𝑁 and 𝑊2_𝑈𝑃/𝑊2_𝐷𝑂𝑊𝑁

pairs represent the worker nodes in both availability zones. The firing time of the failure
and repair transitions are obtained by computing the MTTF and MTTR of the RBD
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models presented in this section. The transitions associated with the failures and repairs
of workers nodes have infinite server semantics.

The COA metric for the cloud of Figure 26 is given by the reward rate:

𝑟𝑖 =

⎧⎪⎨⎪⎩available_nodes/(𝑤1 + 𝑤2), if #𝐶𝐿𝑀_𝑈𝑃 = 1

0, otherwise

available_nodes = (#𝐶𝑀1_𝑈𝑃 × #𝑊1_𝑈𝑃+
#𝐶𝑀2_𝑈𝑃 × #𝑊2_𝑈𝑃 )

The notation #𝑝 represents the number of tokens in 𝑝. The variables 𝑤1 and 𝑤2 repre-
sent the number of worker nodes on each availability zone. The expression #𝐶𝑀_𝑖_𝑈𝑃 ×
#𝑊_𝑖_𝑈𝑃 denotes the number of available worker nodes on the availability zone 𝑖. If
the cluster manager (CM) of the 𝑖-th availability zone is up, #𝐶𝑀_𝑖_𝑈𝑃 is equal to one
and 𝑊_𝑖 is equal to the number of available workers in the 𝑖 zone. If #𝐶𝑀_𝑖_𝑈𝑃 is
equal to zero, there is no available worker, since the cluster manager must be operational
in order to the workers be accessible.

CLM_UP

CLM_DOWN

CM1_UP

CM1_DOWN

CM2_UP

CM2_DOWN

W1_UP

W1_DOWN

W2_UP

W2_DOWN

w1 w2

clm_fail

cm2_fail

w2_fail

cm1_fail cm2_repair

w2_repair

cm1_repair

clm_repair

w1_failw1_repair

W2_UP

Figure 37 – Capacity oriented availability model
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5.4 PERFORMABILITY MODEL

The proposed performability model is an Object Petri net that emulates the cloud infras-
tructure depicted in Figure 25 subjected to an influx of job submissions. It can be used
for obtaining performance metrics at cloud level, such as job throughput, waiting time,
and response time. It also allows measuring the impact of failure events on those metrics.
Figure 38 shows the conceptual view of the performability model as a UML object diagram.
It is composed of two Petri nets, namely, the performance and the availability model.
The performance model represents the workload (job arrivals), the scheduling of resources
(virtual machines to the jobs), job executions, and the releasing of virtual machines. The
UML association denotes that the performance model knows (keeps a reference to) the
availability model. The availability model represents the failure and repair events which
affect the performance model.

In the following subsections, we describe the performance, availability, and job execution
submodels.

<<Petri net>>

PerformanceModel
<<Petri net>>

AvailabilityModel

... ...

<<Petri net>>

JobNet

<<Petri net>>

RunningJob

<<Petri net>>

Server

<<Petri net>>

CloudManager

<<Petri net>>

VirtualMachine

<<Interface>>

AvailabilityModel

isUp(): boolean

1

 

1 1

1

11..*

1 1..*

*

1

1..*

Figure 38 – Class diagram performability model

5.4.1 Performance model

The performance model represents the following events:

• arrival of jobs;

• queuing of jobs, in case of unavailability of resources;
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• discarding of jobs, in case of a full queue,

• allocation of resources when a job is scheduled to execution

• the release of resource when a job is done (or when it failed during execution).

Figure 39 depicts the performance model as an open queue accepting a job submission
influx with rate equals to 𝜆. Each job will be promptly executed in case there are available
resources in the cloud. Otherwise, it will be enqueued or discarded (if the queue is full). A
job will also be discarded if the cloud manager is unavailable since in this case, it is not
possible to allocate the cloud resources for the job execution. Another possibility for the
failure of a job submission is when some virtual machine failure prevents the execution of
one or more subtasks. A virtual machine can fail due to software (operating system or
hypervisor) or hardware faults.

Cloud

Cloud controller is up

and the job queue

is not full

yes

no

All tasks from

job were �nished 

correctly

yes

no

Failed job

submissions

Successful

job submissions

Figure 39 – Performance model (high level description)

Figure 40 illustrates the life cycle of a job. The ready state refers to a newly created
job about to be submitted to the cloud. After being submitted to the cloud for execution,
it enters the queue of jobs, moving to the queued state. If there are sufficient resources
for running it (i.e., available VMs), it allocates the necessary resources and begins to
execute (entering the running state). If a VM failure occurs during the execution of a
computing/communication task, the whole job is aborted, and the job reaches the failed
final state. If all tasks are successfully completed, it moves to the final completed state.

In the Figure 41, we provide a detailed description of the performability model as
a Stochastic Object Net. The transition arrivals represents the workload generation.
Each time this transition fires, a new job request token is sent to the job_queue place.
The job_request object token contains information about the DAG to be executed (its
runtime characteristics) and the scheduling to be applied (number of VMs to be provisioned
and the distribution/ordering of tasks on them). The discard transition is fired when
the queue capacity is full. The schedule transition fires when the number of tokens in
the available_VMs place is greater than the vms attribute of the request token in the
queue place. The available_VMs place contains net tokens corresponding to idle and
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ready

queued

running

failedcompleted

Figure 40 – Life cycle of a job submission

functioning VMs, i.e., VMs that are operational and that were not allocated by a job
request.

A token in the running place corresponds to an active job execution (i.e.: in the
state running according to Figure 40). A JobToken instance models the execution of
the workflow application. The associated nested net will execute and reach an absorbing
state. If no failure occurs during the execution of computing/communication tasks, the
final state will be marked as completed. Otherwise, the final status will be marked as
failed. When a JobToken instance reaches an absorbing state, it will be moved to the
completed_jobs or failed_jobs places according to its status. The provisioned VMs
are released to the pool of idle VMs.

5.4.2 Availability model

Failure of virtual machines and physical servers have a substantial influence on the system
performance. Job requests are enqueued if the cloud cannot provide the specified number
of virtual machines. The decrease in the number of virtual machines, due to the effect of
failures, causes an increase in the average waiting time and a reduction on the system
throughput. When a job request completes, the allocated virtual machines are released and
become available for processing further requests. If a failure occurs during the processing
of a job, the failed virtual machines/worker nodes are subject to repair, and the processing
is canceled. In case of a failure on the cloud manager, arriving job requests are discarded,
since this is the component that acts as an interface between the users and the cloud
infrastructure.

The availability sub-model describes the operational state (up/active or down/failed)
of the cloud manager and the worker nodes and running virtual machines. It is represented
as an SPN model integrated into the performability model. The cloud manager is defined
as a fixed structure and the worker nodes and virtual machines are dynamically generated
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Figure 41 – Performance model (detailed Stochastic Object Net description)

according to two parameters: the number of worker nodes and the maximum number of
running virtual machines per server. Figure 42 illustrates the model generated for two
worker nodes with two virtual machines per node. Each component is defined as a pair of
places for defining the operational state of the component, and a pair of transitions for
causing failure/repair events. An immediate transition controlled by an inhibitor arc is
used for updating the operational state of every virtual machine associated to a physical
server.

Since DRBD models are convertible to SPNs, we developed a mechanism that converts
SPNs to OPNs in order to reuse the infrastructure manager model depicted in Figure
29 into the performability model. If the infrastructure manager is in a failed state, the
schedule transition from the performance model disables. This situation may incur in
jobs being discarded, even if there are available and idle VMs.

5.4.3 Job model

The job model simulates the execution of tasks and their communication events. A job
model is instantiated in the performance (top-level) model, when a job token is scheduled,
and moves to the running place. The job model does not have a fixed structure, being
algorithmically generated instead. The Algorithm 1 is a pseudo-code representation of
the job model generator algorithm. This algorithm takes a DAG and scheduling as input,
and produces an SPN performance model as output. A different SPN model will be
generated for each particular scheduling. In the resulting model, each task is represented
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by a place-transition pair. The place represents the inputs for the task and the transition
represents the task processing event. A processing transition for a task 𝑡 must forward a
token for each input place of dependent tasks. For a pair of tasks related by a precedence
relationship, there are two possibilities:

• The tasks are scheduled to the same VM. In this case, the processing
transition from the source task has an output arc connected to the inputs place from
the destination task.

• The tasks are scheduled to different VMs. In this case, it is necessary to
include an additional place-transition pair for representing the communication. This
transition is connected to the inputs place from the destination task via an output
arc.

Besides the representation of data relationships from the DAG structure, the SPN
model should express the temporal constraints imposed by the scheduling. If a set of tasks
𝑡1, 𝑡2, . . ., 𝑡𝑛 are scheduled to the same VM (in this order), the processing of a task 𝑡𝑖

should be enabled only after the execution of the previous task 𝑡𝑖−1, in addition to the
data constraints of the DAG. In our algorithm, this is ensured by connecting control places
to the processing transitions via input arcs.

To illustrate our method, we used the DAG from Figure 1 and the scheduling displayed
in Figure 2 a) as the input for our algorithm. The resulting SPN model is displayed in
Figure 43. The control places and connected arcs are depicted in gray.

vm1fvm1r vm2fvm2r

vm2u

vm2dvm1d

vm1u

hw1u

hw1d

hw1fhw1r

virtual machines on

server 1

server 1

vm3fvm3r vm4fvm4r

vm4u

vm4dvm3d

vm3u

hw2u

hw2d

hw2fhw2r

virtual machines on

server 2

server 2

Figure 42 – Model generated with structural parameters set to
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑒𝑟𝑣𝑒𝑟𝑠 = 2, 𝑣𝑚𝑠_𝑝𝑒𝑟_𝑠𝑒𝑟𝑣𝑒𝑟 = 2
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Algorithm 1: DAG+scheduling to SPN conversion algorithm
Data: DAG and scheduling specifications
Result: A Stochastic Petri net

1 for Each task t in the DAG do
2 create a place 𝑝𝑙 for the dependencies of task 𝑡;
3 create a transition 𝑡𝑟𝑎𝑛𝑠 for the processing of task 𝑡;
4 connect 𝑝𝑙 and 𝑡𝑟𝑎𝑛𝑠 with an output arc;
5 if t has no parent tasks then
6 add one token to 𝑝𝑙;

7 for Each task t in the DAG do
8 let 𝑝𝑡 be the processing transition for task 𝑡 ;
9 for Each task 𝑐𝑡 connected to 𝑡 by an output arc do

10 if 𝑡 and 𝑐𝑡 are scheduled to the same VM then
11 let 𝑖𝑝 be the inputs place for 𝑐𝑡;
12 let 𝑝𝑐𝑡 be the processing transition for task 𝑐𝑡;
13 connect 𝑖𝑝 and 𝑝𝑐𝑡 by an output arc;
14 else
15 create a new place 𝑜𝑢𝑡𝑝 for the output from 𝑡 to 𝑐𝑡;
16 let 𝑝𝑐𝑡 be the processing transition for task 𝑐𝑡;
17 create a new transition 𝑠𝑒𝑛𝑑𝑡 for representing the communication

between 𝑡 and 𝑐𝑡;
18 connect 𝑡 and 𝑜𝑢𝑡𝑝 by an output arc;
19 connect 𝑜𝑢𝑡𝑝 and 𝑠𝑒𝑛𝑑𝑡 by an input arc;
20 connect 𝑠𝑒𝑛𝑑𝑡 and 𝑝𝑐𝑡 by an outpyt arc;

21 for Each processing transition 𝑝𝑡 in the SPN do
22 set the weight of the output arc of 𝑝𝑡 to be the number of input arcs;
23 for Each VM v do
24 for Each task t scheduled to v do
25 if t has predecessor then
26 let 𝑡𝑝𝑟𝑒𝑑 be the predecessor task to 𝑡 on the scheduling;
27 connect the processing transition of 𝑡𝑝𝑟𝑒𝑑 and the input place of 𝑡 by an

input arc;
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Figure 43 – DAG and scheduling converted to an SPN model
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5.5 FINAL REMARKS

This chapter presented a series of models, meta-models, and model-generator algorithms
suited for infrastructure planning of WaaS clouds. These models employ hierarchical
modeling techniques and use the RBD, DRBD, SPN, and OPN formalisms. They enable the
evaluation of the steady-state availability, capacity-oriented availability, and performance
metrics such as throughput and job makespan. In the next chapter, we will present case
studies that demonstrate the capabilities of the proposed framework, in conjunction with
the models featured in this chapter, concerning infrastructure planning activities.
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6 CASE STUDIES

This chapter presents three case studies, selected to demonstrate the suitability of the
proposed framework and models in assisting the infrastructure planning of Workflow-as-
a-Service clouds. The first case study applies sensitivity analysis for finding the most
influential parameters on the steady-state and capacity oriented availability. In the second
case study, we solve the cloud redundancy allocation problem described in Section 5.3.
Finally, in the third case study, we investigate the scheduling problem on cloud workflow
applications, considering a performability metric (the system throughput under the effect
of hardware and VM failures) as the objective function.

6.1 CLOUD INFRASTRUCTURE AVAILABILITY ENHANCEMENT VIA STOCHASTIC
MODELING AND SENSITIVITY ANALYSIS

Availability is one of most fundamental attributes of cloud systems since low availability
can incur in revenue losses and affect customer confidence (PATEL; RANABAHU; SHETH,
2009). We can improve this attribute by acquiring more reliable software and hardware or
by employing redundancy. Such measures must be carefully chosen, since they can incur
in extra costs. A method to find a better way to increase the availability of a cloud is
creating availability models and applying sensitivity analysis techniques (HAMBY, 1994) in
order to find the most influential parameters on the metric of interest.

In this case study, we apply sensitivity analysis techniques in conjunction with the
availability models shown in the previous chapter. We combine two sensitivity analysis
techniques: the percentage difference and the DoE method. To deal with a large parameter
list, we first apply the percentage difference method (that is faster to conduct) to refine
the parameter list for the DoE method (that demands more time to finish and can get the
most information about the combined effect of different parameters). Then, we compare
the list of parameter impacts on the metric of interest produced by the two techniques
and draw our conclusions.

6.1.1 Availability Evaluation

Table 12 shows the complete list of parameters used to evaluate the proposed model.
Each parameter has a short description, a baseline value, and minimum and maximum
values. The baseline value is used to evaluate the model in our baseline scenario, i.e., a
configuration of parameters that is common in real-world deployments according to our
literature review and experiments in testbed setups. The maximum and minimum values
are used to perform the sensitivity analysis. The parameter “extra workers” denotes the
number of workers that exceed the minimum required. In the k-out-of-n block for the
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Table 3 – Input parameters for the models

Parameter name Description Baseline value (h) Minimum Maximum

𝑎𝑣_𝑧𝑜𝑛𝑒𝑠 Number of availability zones 1 1 5
𝑒𝑥𝑡𝑟𝑎_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 Number of extra worker nodes in a cluster 1 1 5
𝑟𝑒𝑝𝑎𝑖𝑟_𝑡𝑒𝑎𝑚𝑠 Number of repair teams 1 1 5
𝑚𝑡𝑡𝑓_ℎ𝑤 Mean time to failure of a physical server 8760 2000 12000
𝑚𝑡𝑡𝑟_ℎ𝑤 Mean time to repair of a physical server 1.66667 0.5 4
𝑚𝑡𝑡𝑓_𝑜𝑠 Mean time to failure of the operating system 2893 2000 4000
𝑚𝑡𝑡𝑟_𝑜𝑠 Mean time to repair of the operating system 0.25 0.25 2
𝑚𝑡𝑡𝑓_𝑗𝑣𝑚 Mean time to failure of the JVM 2893 2000 4000
𝑚𝑡𝑡𝑟_𝑗𝑣𝑚 Mean time to repair of the JVM 0.25 0.25 2
𝑚𝑡𝑡𝑓_𝑠𝑒𝑟𝑣𝑖𝑐𝑒 Mean time to failure of Eucalyptus components 788 500 2000
𝑚𝑡𝑡𝑟_𝑠𝑒𝑟𝑣𝑖𝑐𝑒 Mean time to repair of Eucalyptus components 1 0.25 3
𝑚𝑡𝑡𝑓_𝑣𝑚𝑚 Mean time to failure of the hypervisor 2990 2000 4000
𝑚𝑡𝑡𝑟_𝑣𝑚𝑚 Mean time to repair of the hypervisor 1 0.25 3
𝑎𝑐𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒 Mean time to activate a standby component 0.005 0.001 0.1
𝑚𝑡𝑡𝑓_𝑠𝑎𝑛 Mean time to failure of Storage Area Network 9223372 100000 1000000
𝑚𝑡𝑡𝑓_𝑠𝑎𝑛 Mean time to repair of Storage Area Network 1 0.25 3

availability zone model, this value is equal to 𝑛 − 𝑘. The MTTF and MTTR of hardware,
operating system, hypervisor, JVM, and Eucalyptus services are obtained from (DANTAS

et al., 2012). Since this work does not consider the PostgreSQL component, we used the
same MTTR and MTTF values of the other software components for parametrizing this
component. The MTTF and MTTR for the SAN storage were obtained from the model
presented in (KIM; MACHIDA; TRIVEDI, 2009).

We consider software components in a spare mode to be less likely to fail due to
software aging issues (the accumulation of errors during the software runtime that leads
to a failure), memory leaks, and running erroneous instructions. Therefore, we adopted
the strategy used by (GUIMARÃES; MACIEL; MATIAS, 2013) of setting the failure rate of
standby components to 50% of the failure rate for active components.

The results for the baseline scenario are summarized in Table 4. Even when using
redundancy in the essential components of Eucalyptus, this baseline scenario could not
reach the mark of four nines. For sake of comparison, this is the availability level supported
by the Amazon EC2 service as defined on its SLA (AMAZON, 2019). The steady-state
availability of the private cloud system considered in this study was 99.98286%. This result
indicates that the accumulated system outages in a year (i.e., the annual downtime) may
add up to about 1.5 hours of system unavailability. Such results indicate that there is
some room for improvement in this cloud. Some possible actions that could improve the
system availability include: (i) acquire more reliable hardware and operating systems in
order to have longer time spans between failures; (ii) hire more staff for the repair teams;
(iii) purchase equipment to increase the number of extra worker servers in a cluster; and
(iv) arrange machines to add more clusters (availability zones) to the cloud, among other
options.

Each alternative has a significant cost involved and, considering that the organization
has a limited budget, the decision makers must carefully analyze and discover which
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Table 4 – Results for the baseline scenario

Metric Value
Availability (%) 99.98286
Availability (nines) 3.76597
Annual downtime (hours) 1.502
Capacity oriented availability (%) 99.77022

Table 5 – Sensitivity ranking from percentage difference - availability

Parameter Effect
extra_workers 0.018774496
mttr_service 0.002150095
act_service 8.013075495 × 10−4
mttf_service 6.730110415 × 10−4
mttr_vmm 4.210018701 × 10−4
av_zones 4.152073960 × 10−4
mttr_os 3.072028529 × 10−4
repair_teams 1.960734570 × 10−4
mttr_hw 1.790365769 × 10−4
mttf_vmm 1.052793474 × 10−4
mttf_hw 6.483898160 × 10−5
mttf_os 3.843260727 × 10−5
mttr_jvm 2.193959603 × 10−5
mttf_jvm 9.543993829 × 10−6
mttf_san 8.999990999 × 10−7
mttr_san 2.981555017 × 10−7

solution will improve the availability with minimum investment. Our parametrized model
allows sensitivity analysis to be applied so we can list the parameters in order of influence
to the selected metric. The sensitivity analysis is shown in the next subsections.

6.1.2 Sensitivity analysis - Availability

Table 5 shows the parameters ranked by the sensitivity index of percentage difference.
The parameters with the largest indexes are extra_workers, mttr_service, and act_service.
Therefore, we can expect them to have large influences on system availability and to
deserve attention from cloud administrators. On the other hand, parameters related to
the JVM and SAN components (mttr_jvm, mttf_jvm, mttf_san, mttr_san) are on the
bottom of the ranking, with lower sensitivity indexes than most of the other parameters.
In particular, the SAN is already highly reliable and small variations in its mean time to
failure and repair have little significance on the overall system.

From the graphs of Figure 43, we can conclude that an increase of the number of repair
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teams, availability zones, or extra workers can bring benefits as a first step, but subsequent
increases produce low gains for availability compared to changes in other parameters. The
reader should note that some parameters are inversely proportional to the steady-state
availability. For instance, an ineffective repair team would increase the MTTR of hardware
and software components and, consequently, decreasing the steady state availability of the
system.

Table 6 shows the ranking of the parameters and respective effects on the metric of
interest (availability), as computed from the DOE analysis with the first ten parameters
from the percentage difference index. The list is ordered by the absolute value of the effect,
since this method may produce negative values. The order of the parameters is different
from the previous method, as the DOE technique computes the metric for each possible
combination of parameters (e.g., 1,024 combinations when considering ten parameters).
Thus, this method can obtain more information about the combined effect of different
parameters than the percentage difference formula.

The one-parameter-at-time sensitivity analysis also reveals useful information. It can
be noticed in Figures 43 a) and f) that, in spite of the high sensitivity indexes for the
“𝑎𝑣_𝑧𝑜𝑛𝑒𝑠′′ and “𝑒𝑥𝑡𝑟𝑎_𝑤𝑜𝑟𝑘𝑒𝑟𝑠′′ parameters as found by the DOE method, adding a
second extra node or employing more than two availability zones do not provoke a significant
improvement in availability; hence, such investment be considered not worthwhile.

Table 6 – Sensitivity ranking from DOE - availability

Parameter Effect
av_zones 0.016357221
extra_workers 0.016167285
mttr_service −0.008554587
mttf_service 0.006234579
mttr_vmm −0.002528422
mttr_os −0.001503708
mttf_vmm 9.936709812 × 10−4
mttr_hw −9.900866044 × 10−4
act_service −5.863656932 × 10−4
repair_teams 1.812525481 × 10−4

6.1.3 Sensitivity analysis - Capacity Oriented Availability

A cloud system comprises a set of worker nodes, and each of them represents a fraction of
the total computing power of the cloud. A failure on a worker node may not bring the whole
system down, but reduces the processing capability of the cloud. The capacity oriented
availability (COA) (HEIMANN; MITTAL; TRIVEDI, 1990) is the metric that measures the
proportion of the whole system that is actually being delivered to its clients.



Chapter 6. Case studies 91

We evaluate this metric by converting the SPN model to a Markov Reward Model
(REIBMAN; SMITH; TRIVEDI, 1989). The metric is obtained by summing up the product
between the reward and the stationary probability of each state:

𝐶𝑂𝐴 =
𝑛∑︁

𝑖=0
𝜋𝑖 * 𝑟𝑖,

where 𝑛 is the size of the state space of the Markov Reward Model, 𝜋𝑖 is the stationary
probability of being in state 𝑖, and 𝑟𝑖 is the reward rate assigned to the state 𝑖. The reward
rate can be defined using the following function:

𝑟𝑖 =

⎧⎪⎨⎪⎩#𝑤𝑜𝑟𝑘𝑒𝑟𝑠_𝑢𝑝𝑠/𝑁, if #𝑠_𝑢𝑝 = 1

0, otherwise

In this expression, #𝑤𝑜𝑟𝑘𝑒𝑟𝑠_𝑢𝑝𝑠 represents the number of tokens in the 𝑤𝑜𝑟𝑘𝑒𝑟𝑠_𝑢𝑝𝑠

place. Each token in this place represents a functional worker node. 𝑁 represents the
total of worker nodes available in the cloud. #𝑠_𝑢𝑝 represents the number of tokens in
the 𝑠_𝑢𝑝 place, which can be zero, if the system is unavailable, or one, if the system is
functional.

Table 4 shows the capacity oriented availability for the baseline scenario. This result
shows that 0.23% of the cloud processing power is wasted due to the effect of failures.
Tables 7 and 8 show the sensitivity ranking for the capacity oriented availability, obtained
from the percentage difference and DOE techniques, respectively. We notice that, while
the effect of the parameters is higher the capacity oriented availability metric, the order of
the parameters is the same. Therefore, we conclude that any action taken to improve the
steady-state availability of the cloud will be appropriate to improve the capacity oriented
availability. Having different order of parameters in the previous tables would mean a
compromise between prioritizing the improvement of steady-state or the capacity-oriented
availability.

6.1.4 First case study - final remarks

Providing a cost effective cloud service regarding availability is not an easy task. To
enhance availability, one must employ redundancy schemes (by acquiring extra hardware),
buy more expensive and reliable equipment, or to hire more repair technicians. In this case
study, we applied a sensitivity analysis for finding the most influential parameters on the
system steady-state availability. The experimental results have shown differences between
the parameter ranking produced by the DoE and the percentage difference technique.
Despite being important parameters according to the DoE ranking, adding a third extra
worker node or availability zone does not provide a substantial increase in the steady-state
availability. Additionally, we have shown that the steady-state and the capacity oriented
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Table 7 – Sensitivity ranking from percentage difference - capacity oriented availability

Parameter Effect
extra_workers 0.016886150
mttr_service 0.005442452
mttf_service 0.002114982
mttr_vmm 0.001302266
mttr_os 8.859865768 ×10−4
act_service 8.013005235 ×10−4
mttr_hw 5.702922094 ×10−4
mttf_vmm 3.458005798 ×10−4
mttf_hw 1.985703476 ×10−4
repair_teams 1.960597226 ×10−4
mttf_os 9.863198674 ×10−5
mttr_jvm 2.193741554 ×10−5
mttf_jvm 9.539648186 ×10−6
mttf_san 8.987305360 ×10−7
mttr_san 2.987713762 ×10−7

Table 8 – Sensitivity ranking from DOE - capacity oriented availability

Parameter Effect
extra_workers 0.029160852
mttr_service −0.018776881
mttf_service 0.013512220
mttr_vmm −0.005593606
mttr_os −0.003308422
mttr_hw −0.002387835
mttf_vmm 0.002199690
mttf_hw 0.001044982
act_service −7.337189558 × 10−4
repair_teams 4.832393291 × 10−4

availabilities have the same parameter ranking for both the DoE and the percentage
difference techniques.
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Figure 43 – One at a time sensitivity analysis (availability) - Top 12 parameters
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6.2 DEPENDABILITY AND COST OPTIMIZATION OF PRIVATE CLOUD INFRASTRUC-
TURES

In this case study, we employed the optimization model described in Section 5.3 to find
near-optimal deployment configurations of a cloud infrastructure concerning steady-state
availability and acquisition cost. In this study case, we employ the local search algorithm
described in Section 6.2.1 to select the best deployment configuration for a number 𝑛

of servers in the cloud infrastructure. We then apply a modified version of the bisection
algorithm (described in the Section 6.2.2) to find a near-optimal number of servers when
considering a specified availability level. The experimental results shown in Section 6.2.3
demonstrate the effectiveness of the combined usage of the local search and the bisection
algorithms in maximizing the steady-state/capacity oriented availability of the cloud while
reducing the acquisition cost.

6.2.1 Multi-start hill climbing algorithm

Running a traditional local optimization algorithm using only one machine and a single
processor has some tradeoffs that are stated below. If we want to achieve a good solution,
we must increase the number of iterations and, as a consequence, we increase the running
time. On the other hand, if we want to reduce the running time of the algorithm, we reduce
the number of iterations and may not achieve a good quality solution. One way to mitigate
this tradeoff using local optimization is to perform a multi-start algorithm (BOESE; KAHNG;

MUDDU, 1994): the algorithm generates a certain number of initial solutions, and each
solution can run on a dedicated processor. Using this parallel approach, we can increase the
quality of the generated solution, and reduce the running time, by using more processors.

We implemented the multi-start hill climbing algorithm using the Akka concurrency
framework (AKKA. . . , ). Figure 44 shows the architecture of the optimization algorithm. The
big rectangles with thicker lines represent physical nodes containing an Akka environment.
Inside those rectangles, the actors (lightweight processes) that run in each node are
displayed. An arrow connecting two actors indicates that the source maintains a reference
to the target. Using a reference, an actor can send a message to another actor, and the
actor that receives the message acts according to the content of the message. The dotted
arrows represent references that point to an actor located in another machine.

The Global Optimizer actor is the starting point of our system. The user sends a message
to this actor containing the cloud requirements, and the parameters of the optimization
algorithm. Next, the Global Optimizer generates some initial solutions, according to
the number of the global iterations parameter. The initial solutions will be distributed
to the Local Optimizers registered in the environment. On the local optimizer, a hill
climbing traversal will be done, configured to perform some iterations according to the
local iterations parameter.
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Each local iteration of the algorithm consists of generating and solving an availability
model. Each hill climbing traversal is performed on a Worker actor in a dedicated thread.
The number of worker actors that will be created is the number of processors of the node.
Each local optimum found by a Local Optimizer will be sent back to the Global Optimizer.
At the end of the process, the best solution found will be presented to the user.
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Figure 44 – Architecture of the distributed optimization algorithm

6.2.2 Bisection Algorithm for Optimizing Acquisition Cost

In this section, we discuss the proposed algorithm for optimizing the acquisition cost. The
acquisition cost is defined as follows:

𝐶𝑎𝑐𝑞(𝑆) =
𝑛∑︁

𝑖=1
𝑃𝑖 (6.1)

In this work, we consider that all servers have the same configuration and price
(𝑃𝑖 = 𝑃 , for every 𝑖 from 1 to 𝑛). Therefore, increasing the number of servers will also
increase the acquisition cost of the private cloud infrastructure. The main question is:
how to decrease the acquisition cost while optimizing the availability metric? At first, it
seems contradictory to increase the availability while reducing the number of machines
(considering the operational mode specified by the user), since we need to employ extra
machines to be used as spares in redundancy schemes to achieve high availability. However,
as we will show, employing more nodes than required may not necessarily increase the
availability. Thus, we can reduce the number of additional machines considering the
availability level that we are interested in maintaining.

To understand this fact, consider one particular execution of our optimization algorithm.
We set the following parameters:
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• 128 global iterations

• 30 local iterations

• Minimum of 40 worker servers that must be available

• Total of 100 servers comprising the cloud infrastructure

For this example, we configured our hill-climbing algorithm implementation to store
the cost of each randomly generated solution.

The plot of the availability for the generated solutions is shown in Figure 13 (the X
axis in the plot is an identification number for the generated solutions). Each black dot
is a different solution found by the algorithm. Notice that the majority of the solutions
present a high availability. Therefore, in this case, there are more resources than necessary
to build a fault-tolerant cloud infrastructure. The outliers at the bottom of the chart show
some poor random solutions generated by the algorithm. Not employing redundancy at
the cloud manager or cluster managers, or creating a cluster with exactly the required
number of workers (a k-out-of-n block with 𝑘 = 𝑛, i.e., a series grouping) will produce a
significantly inferior availability level compared to the solutions that avoid those choices.

Figure 45 – Stationary availability of generated solutions for a particular run

The proposed hill-climbing optimization algorithm deals with a fixed number of nodes
and attempts to find combinations that lead to high availability. Since the total number of
nodes is not modified during the iterative process, it does not optimize the acquisition
cost. To optimize the acquisition cost it is necessary to reduce the number of nodes until
the point the minimal availability is reached. To find this number of nodes, we adopted
the bisection algorithm. This algorithm finds the first value greater than a specified value,
considering an ordered list of elements. The Listing 2 shows our modified version of the
bisection algorithm to optimize the acquisition cost.

The presented bisection algorithm has the following input parameters:
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Algorithm 2: Bisection algorithm to optimize acquisition cost of a private cloud
Data: 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ, 𝑀𝑖𝑛𝐴𝑣
Result: Near optimal cloud configuration

1 if 𝑀𝑖𝑛𝐴𝑣 < 𝐴𝑜𝑝𝑡𝑚(𝑙𝑜𝑤) then
2 return 𝑙𝑜𝑤;
3 if 𝑀𝑖𝑛𝐴𝑣 > 𝐴𝑜𝑝𝑡𝑚(ℎ𝑖𝑔ℎ − 1) then
4 return ℎ𝑖𝑔ℎ;
5 while 𝑇𝑟𝑢𝑒 do
6 if 𝑙𝑜 + 1 == ℎ𝑖𝑔ℎ then
7 return 𝑙𝑜𝑤;
8 else
9 return 𝑙𝑜𝑤 + 1;

10 𝑚𝑖 = (ℎ𝑖𝑔ℎ + 𝑙𝑜𝑤/2;
11 if 𝑀𝑖𝑛𝐴𝑣 ≥ 𝐴𝑜𝑡𝑝𝑚(𝑚𝑖) then
12 ℎ𝑖𝑔ℎ = 𝑚𝑖;
13 else
14 𝑙𝑜𝑤 = 𝑚𝑖;

• 𝑙𝑜𝑤 - the minimal number of nodes that can be used to build our cloud, satisfying
the user requirements, but without employing any redundancy (therefore, producing
a low availability);

• ℎ𝑖𝑔ℎ - Any number that generates a high-available cloud configuration when applying
our hill-climbing algorithm;

• 𝑀𝑖𝑛𝐴𝑣 - the expected availability level that the cloud should provide. If we adopt
0.9999 as 𝑀𝑖𝑛𝐴𝑣, for instance, we are interested in finding the minimal number of
servers that can be used to build a private cloud infrastructure with four nines of
availability.

The value computed by the algorithm is the integer number 𝑖, located in the interval
[𝑙𝑜𝑤, ℎ𝑖𝑔ℎ], that satisfies the following expression:

(𝑀𝑖𝑛𝐴𝑣 > 𝐴𝑜𝑝𝑡𝑚(𝑖 − 1)) 𝑎𝑛𝑑 (𝑀𝑖𝑛𝐴𝑣 < 𝐴𝑜𝑝𝑡𝑚(𝑖))

The 𝐴𝑜𝑡𝑝𝑚(𝑖) function consists of running the proposed multi-start hill-climbing algo-
rithm, changing the number of nodes to 𝑖, and keeping the other parameters, e.g., the
minimum number of worker nodes, global iterations, local iterations, minimum availability.
In other words, it should produce a number 𝑖 of nodes of a private cloud infrastructure,
such as, if we remove one node, the availability will decrease to a value less than the
𝑀𝑖𝑛𝐴𝑣 parameter.
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Since the hill-climbing algorithm is subject to randomness, it is possible that a particular
run of the bisection algorithm generates 𝑖, such as 𝐴𝑜𝑡𝑝𝑚(𝑖) < 𝐴𝑜𝑡𝑝𝑚(𝑖−1). We can partially
reduce the occurrence of this effect by adapting the algorithm in the following way: in the
beginning, we can adopt a small number of global iterations, since a quick result should
be sufficient in the early stages of the algorithm. As it runs, we can increase the number
of global iterations to perform a more exhaustive search and avoid the problem mentioned
earlier.

6.2.3 Experimental results

In the experiments for this case study, we adopted the same parameters from the first case
study, displayed in Table 12. Our initial test consisted in solving a small-sized problem
with the hill-climbing algorithm and also applying a brute-force search to examine how
close to the global maximum is the solution provided by the optimization algorithm. This
experiment was performed on a Dell Optiplex 980 machine with an Intel i5 processor
(2.6 GHz). The total number of the nodes of the cloud architecture was set to 25, and
we variate the required minimum number of worker nodes from five to eight. The total
execution time of the multi-start hill climbing algorithm was set to five minutes. Table 9
shows the obtained results. The obtained values suggest that we can obtain values close to
the global minimum without having to explore all the solution space exhaustively.

Table 9 – Hill-climbing X brute-force solution

Minimum number Brute force Hill climbing
of workers
5 0.9999930063 0.9999928918
6 0.9999929222 0.9999928917
7 0.9999928916 0.9999927377
8 0.9999928488 0.9999918988

On the study of larger cloud architectures, we configured the distributed optimization
algorithm in the following way. We set up a cluster composed by eight VMs on Amazon
EC2 platform. Each VM is an instance of c4.2xlarge, possessing eight cores and 15 GB of
primary memory (AMAZON, 2016). We adopted 128 global iterations, so each processor
performs two executions of the hill-climbing algorithm, and each execution performed 20
local steps. The minimal number of nodes was set to 40, e.g., a cluster will be considered
unavailable if less than 40 worker nodes are active.

In order to evaluate how the availability of the computed near-optimal solution increases
as we add more nodes in the cloud, we performed the experiment summarized in Figure 46.
Each point represents the availability of the near-optimal solution for a given number of
nodes. We started with 45 nodes and increased this number by five units until 125. Notice
that there are two almost plain segments and a significant difference between 85 and 90
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nodes. The reason is that beyond a certain point inside this interval is possible to build a
cloud with two availability zones and employ redundancy on the cloud/cluster managers.
In the almost plain segments, the difference between the points is slight at the beginning
of the segment, and nonexistent from a certain point. It means that from a certain point,
adding new machines to the cloud produces no increase in the availability. Our version of
the bisection algorithm will help to reduce the number of machines that add nothing to
the availability and increase the acquisition cost.
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Figure 46 – Near-optimal availability X number of nodes - up to two availability zones)

Figure 47 shows a slightly different experiment. In this experiment, we are interested
in seeing whether adopting more than two availability zones will produce an increase in
the availability or not, as shown in Figure 46, from one to two availability zones. The
obtained results shows no significant increase in the availability by adopting more than
two availability zones.
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Figure 47 – Near-optimal availability X number of nodes - one to four availability zones

Figure 48 shows the results obtained by the bisection algorithm. We used the interval
[80, 100] as the input parameters since we guess that the best point concerning the
acquisition cost will be in this range, as we can observe from Figure 46. The minimum
availability that we used was 0.99999, corresponding to five nines of availability, and
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only 5.26 minutes of downtime per year. Our method produced a solution with 88 nodes.
It means that 88 is our best guess of the smallest number of nodes that can be used
to build a private Eucalyptus cloud with this availability level. Using the value 0.9999
as the minimum availability parameter produces a solution with 87 nodes and steady
state availability equals to 0.99997481 (four nines of availability). Adding one more node
produces a solution with five nines of availability.
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Figure 48 – Near-optimal availability X number of nodes - bisection algorithm

Table 10 shows the results obtained by performing the same experiment depicted in
Figure 46, but using the Capacity Oriented Availability as the metric to be optimized.
These results indicate that the COA metric is not as impacted by the employed redundancy
arrangement as the steady-state availability. Moreover, due the stochastic nature of the
multi-start hill-climbing algorithm, we observe a not monotonic behavior, i.e., we can
observe some decreases in the COA metric when increasing the number of redundant nodes
in the performed experiment.

Table 10 – Near-optimal capacity oriented availability X number of nodes

Total number of nodes Capacity Oriented
Availability

45 0.9977772035
55 0.9977772023
65 0.9977771947
75 0.9977771977
85 0.9977772078
95 0.9977771752
105 0.9977771780
115 0.9977771822
125 0.9977772006
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6.2.4 Second case study - final remarks

Creating a highly available and cost-effective private cloud infrastructure is not a simple
task, considering a large number of possible configurations. Analytical models can be used
to predict the availability of particular configurations, but manually creating models for
many different solutions is not a good method to find an optimal configuration. In this
case study, we applied the proposed optimization method for increasing the availability
of private cloud infrastructures. We employed an adapted version of the hill climbing
algorithm that translates each random solution to an analytical model and can use the
steady-state/capacity oriented availability as the objective function. To minimize the
acquisition cost (i.e., reducing the number of servers of the infrastructure) while achieving
high availability, we combine the bisection method with the hill climbing algorithm. The
experiments done using the developed framework allowed us to gain some useful insights
about availability aspects of the considered system

6.3 PERFORMABILITY EVALUATION AND OPTIMIZATION OF WORKFLOW APPLICA-
TIONS

This case study aims to solve the multiprocessor scheduling problem of scientific workflows
running in a cloud environment, using a performability metric as the objective function.
Given a workflow described by a DAG 𝐺 = {𝑇, 𝐸}, our objective is to find a scheduling 𝑆

of tasks in 𝑇 on 𝑚 virtual machines that maximizes the throughput of jobs. The number
𝑚 is not fixed and must be determined by the optimization method.

The flow diagram of Figure 49 presents a high-level overview of the adopted optimization
method. The workflow DAG has a list of tasks and their dependencies, processing time
of each task and communication time between dependent tasks running on different
processors. The computing and communication times of a DAG can either be deterministic
or follow a specific random distribution (normal, exponential, Erlang, and so on). The
cloud infrastructure parameters define the number of physical servers, the maximum
number of virtual machines that each host can provide, and the failure/repair/switchover
rates of the physical/virtual machines. The simulation/optimization parameters configure
the simulation engine (e.g., number of replications for an individual simulation) and the
optimization algorithm (e.g., population size, number of elite chromosomes, number of
generations and so on).

The optimization algorithm explores the solution space for the input DAG until
the stopping condition is reached, which is defined by the control parameters. Then, a
near-optimal scheduling solution is provided by the algorithm. The user can perform
further analysis of the obtained solution and evaluate additional performance/reliability
metrics, such as average waiting/response time, discard rate of tasks/jobs, the probability
of completing a job. The method can be used interactively, i.e., the user can modify
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Figure 49 – Overview of the proposed method

the cloud/control parameters and repeat the process, obtaining new scheduling and
performability metrics.

The next subsections explain further each part that composes the optimization method.

6.3.1 Genetic Algorithm with Stochastic Fitness Function

The activity diagram of Figure 50 describes the optimization algorithm adopted in this
paper. It is a genetic optimization procedure that uses the performability model of
Section 5.4 for computing the fitness value of explored chromosomes. The chromosome
representation consists of a pair of vectors representing the ordering of tasks and the
mapping of tasks to the processors, as illustrated in Figure 51. The partially-mapped
crossover (PMX) operator (GOLDBERG; LINGLE et al., 1985) was adopted to generate the
offspring of a population. Two random chromosomes are randomly selected for creating
a pair of children (parents with higher fitness value are more likely to be selected). The
process to generate the children is defined as follow. First, it creates a copy of the parents. A
paired subinterval is randomly selected and switched among the children. Then, a mapping
function is applied to convert the repeated alleles (i.e.: the units of information that
compose the chromosome) outside the random subinterval. Figure 52 shows an example
of crossover operator. The mutation operator modifies a chromosome with a random
operation by swapping the order of two tasks or changing a task to a different processor.
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Figure 50 – Genetic algorithm with a stochastic fitness function

The mutation operator is illustrated in Figure 53.

0 3 1 4 2 5 6 7

0 0 0 1 1 1 1 1

Tasks:

Processors:

Figure 51 – Chromosome representation

Figure 54 shows the activity diagram of the method to obtain a fitness value of a solution
𝑠. The method takes as input a solution 𝑠 from the search space of available schedulings,
a set of fixed parameters, a template model, and a set of auxiliary models. The solution
𝑠 is parsed to obtain a set of solution parameters. The fixed and solution parameters
are combined into a single set. The joint solution-fixed parameters set is divided into
two categories: structural and non-structural. The structural parameters define the fixed
structures of the model and the arcs/edges that connect them. Non-structural parameters
define the delay/rate parameters and information such as probabilities, and buffer capacity.
The combined set of structural/non-structural parameters and the base models are used
as input for generating the final simulation model for a solution.
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Figure 52 – PMX crossover operator
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Figure 53 – Mutation operator

6.3.2 Optimization and Performability Analysis of a Small Sized DAG Application

In this case study, we present two scenarios to evaluate the performability optimization
method. The first scenario shows the analysis of a small-sized workflow application/cloud
infrastructure. In the second scenario, we examine a real workflow application and a greater
cloud infrastructure. In both scenarios, the metric used for the fitness function was the
average number of completed jobs in one year. We use a Fujitsu Primergy RX200 S7 server
to conduct the experiments. The server has the configuration shown in Table 11.

In the first scenario, we choose a small-sized DAG application for being able to apply
a brute force analysis and compare the results found by the meta-heuristic algorithm
with the global maximum. Table 12 shows the input parameters for the performability
model. We adopted the mean time to failure, repair, and activation times for physical and
virtual servers as defined in (KIM; MACHIDA; TRIVEDI, 2009). The DAG from Figure 1 was
adopted in this study. We consider the computing and communication times to follow a
normal distribution, as in (CAI et al., 2017). The mean values are obtained from the graph
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Figure 54 – Method to obtain the fitness value for a solution 𝑠

nodes and edges and the standard deviation is assumed to be 10% of the mean value.
The scatter plot from Figure 55 shows the fitness values (the number of completed

jobs per year) for all possible schedulings of the DAG from Figure 1, evaluated by brute
force. The solution space has 7840 different schedulings. Each solution is assigned to a
unique integer identifier which is displayed on the plot x-axis. It can be observed that
the scheduling and the number of provisioned virtual machines play a critical role in the
throughput of the system. The difference between the worst and the best solutions is
approximately 2430 jobs per year.

Due to the solution space not being too big, we adopted a small population of ten

Table 11 – Server used for experiments - specifications

CPU 1, CPU 2 Intel Xeon E5-2650
(8 cores and 16 threads)

Memory (10 banks of) DIMM DDR3
1600 MHz, 4GB

Operating system Debian 7,
Linux kernel version 4.9

JVM Oracle JDK version 1.7
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chromosomes for testing the genetic algorithm in this scenario. We configured the algorithm
to keep two elite chromosomes from the previous population in each iteration and employed
a mutation probability of 0.05. Figure 57 shows the population average and highest fitness
values for each generation. A horizontal line represents the fitness value for the global
optimum at the top of the plot. It is possible to observe that the increase in the average
fitness value after each generation leads to the discovery of a new elite chromosome after
the fifth generation. In the tenth generation, the average fitness gets closer to the best
fitness.

To analyze the impact of failures on the number of completed jobs per year, we made
a sensitivity analysis on the mean time to failure for physical and virtual machines. Each
parameter ranges from 20% to 200% of the base value shown in Table 12. Figure 56 presents
the results of the sensitivity analysis, considering the best scheduling found by brute force.
For the collected metrics, we indicate the 95% confidence intervals alongside the average
values. For each point on the plots, we obtained 500 samples from the simulation model.
Figures 56 a) and b) show the impact of the hardware and virtual machine MTTFs on the
number of processed jobs per year and figures 56 c) and d) show the sensitivity analysis of
the failure ratio of jobs. The analysis reveals that the system throughput and job failure
ratio are sensitive to VM failures. It also can be noticed that as the hardware/virtual
machine MTTFs increase, the differences between adjacent points in the plots become less
pronounced and the confidence intervals overlap.
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Figure 55 – Scatter plot of all solutions evaluated by brute force
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Figure 56 – Sensitivity analysis - first scenario (95% confidence interval)

6.3.3 Optimization of a LIGO Workflow Application

In the second scenario, we used two scientific workflows: the LIGO Inspiral Analysis
workflow (BROWN et al., 2007) (Figure 58 a)) and a randomly generated DAG (Figure
58 b)). The LIGO workflow was created with the Pegasus Workflow Generator available
in (JUVE; BHARATHI, 2014). This workflow generator creates synthetic workflows based
on traces collected from real-world scientific workflows. An ad-hoc algorithm created the
random DAG. Computing and communication times for the random DAG were generated

Table 12 – Model parameters

Parameter Value
Mean time to failure - physical machine 8760 h
Mean time to failure - idle physical machine 13140 h
Mean time to failure - virtual machine 2880 h
Mean time to repair - physical machine 1 h
Mean time to repair - virtual machine 1 h
Arrival rate of jobs 1/2.5 (1/h)
Number of workers 20
VMs per worker 3
Activation time of standby server 0.004 (h)
Number of replications for the simulation 30
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Figure 57 – Average and max fitness value (number of processed jobs per year) of each
generation - first scenario

using a Uniform distribution with the interval from [1 min, 20 min] and [1min, 10 min],
respectively.

Table 13 shows the updated parameters for the second scenario. Unfortunately, in-
creasing too much the cloud scale leads to a substantial computational effort to solve
the simulation model. The low frequency of failure-related events demands the adoption
of a simulation time large enough to capture those events. Having highly-frequent per-
formance events in such simulation model means that a large number of events will be
generated and processed by the simulation algorithm. The problem of having both low
and high frequencies for events in the model is described in the literature as stiffness
(GOŠEVA-POPSTOJANOVA; TRIVEDI, 2000).

Table 13 – Model/configuration parameters - second scenario

Parameter Value
Number of workers 50
VMs per worker 4
Number of replications for the simulation 10
Generations 25
Population size 40
Number of elite chromosomes 3

Figures 59 a) and 59 b) summarize the results of the genetic algorithm. They are
displayed as boxplots for each generation produced by the optimization algorithm. Since
we are using elitism (i.e., keeping the best chromossomes for each generation), the best
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Figure 58 – DAGs used for the second scenario
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solution is maintained until better solutions are found. In contrast to the first scenario, we
noticed a more accentuated non-monotonic growth in the average fitness value (i.e., the
average fitness value for the 𝑖th generation being smaller than the value for the (𝑖 − 1)th
generation). However, the algorithm can increase both the average and maximum fitness
value in the long term.

The presented case study confirms the ability of the proposed simulation-based op-
timization method in solving the workflow scheduling problem from a performability
viewpoint. Our method enables the optimization process to treat aspects that would be
impossible to capture with a deterministic function, namely:

• Modeling non-deterministic and non-exponential computation/communication times;

• Capturing the failure relationships between servers and virtual machines;

• Modeling the provisioning of cloud resources to multiple users concurrently;

• Representing the influence of the cloud controller on the overall system performance.

Using such complex non-deterministic objective function (a discrete simulation model)
did not cause the optimization algorithm to misbehave. The results for the LIGO and
random workflows show the effectiveness of the generic operators (mutation and crossover)
in avoiding getting stuck at a local maximum. New elite chromosomes were found multiple
times in both scenarios.

6.3.3.1 Performance and reliability analysis

For evaluating the impact of failures on the second scenario, we performed a sensitivity
analysis on the effect of hardware and VM failures in the adopted workflows. In this study,
we consider the best scheduling obtained with the optimization method. The results are
shown in Figure 60. We confirm the same pattern visualized in the previous section for
the small DAG: the impact of hardware and VM failures diminishes as the reliability of
these components reach a certain level.

Figure 61 shows the impact of failures on the cloud manager in the system throughput.
It also allows us to evaluate the effectiveness of the warm-standby redundancy mechanism
when contrasted with a single node cloud manager (without redundancy). Figure 61
indicates that for a small MTTF for a server node, there is a substantial increase in the
number of processed jobs per year when using a redundant cloud manager. For a large
MTTF, however, the difference between the mean number of processed jobs is minimal,
and the confidence intervals overlap. These results indicate a negligible impact of the
cloud-manager on system throughput when this subsystem is highly-available.
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Figure 59 – Fitness values for each generation - second scenario
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Figure 60 – Sensitivity analysis - second scenario (95% confidence interval)
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6.3.3.2 Random makespan kernel density estimation (LIGO workflow)

Considering non-deterministic communication and computation times for a workflow
scheduling algorithm means that the makespan will be defined by a random variable
instead of being a fixed value. We performed a kernel density estimation for the random
makespan of the best scheduling found for the LIGO workflow. Figure 62 shows kernel
density plot for the following scenarios: i) normally distributed times with standard
deviation being equals to 10, 20, and 50% of the mean, respectively; ii) exponentially
distributed times; and iii) deterministic times. The expected value for all distributions is
equal to the value considered in the deterministic scenario.

It can be observed that increasing the variance of individual communication/compu-
tation times in the DAG increases the expected makespan. The exponential distribution
presents a high dispersion and an expected value distant from the deterministic makespan.
We, therefore, conclude that using Markov-chain based methods for analyzing workflow
applications may not be a good choice since they assume exponentially distributed times.
Phase-type distributions can be used to approximate non-exponential times, but using
them can substantially increase the number of modeled states and cause the space-station
explosion problem.
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Figure 62 – Kernel density plot for Makespan of LIGO workflow (hours)

6.3.4 Third case study - final remarks

This case study studied the scheduling problem in cloud workflow applications. We adopted
a performability metric, namely, the system throughput under the effect of failures, as the
objective function of the problem. We employed automatic generation of performability
models for a cloud application that takes as input the workflow description (as a DAG)
and the infrastructure configuration. Our evaluation shows that the genetic algorithm is
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efficient in optimizing both the number of virtual machines and the scheduling of the tasks
regarding the system throughput.
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7 CONCLUSIONS AND FUTURE WORK

The cloud computing paradigm possesses the potential to leverage advances in various areas
of human knowledge by acting as infrastructure for running scientific applications. However,
this potential is threatened by the intrinsic complexity of deploying distributed applications
on clouds and maintaining cloud infrastructures. Cloud users and providers may face many
challenges concerning the efficient usage of the available computing resources. From the
cloud provider perspective, those challenges manifest as the tasks of redundancy planning,
applying server/VM consolidation, performing load balancing, employing voltage scaling
to reduce the energy footprint, and many others. From the user perspective, the proper
provisioning of virtualized resources and the scheduling of computational tasks to these
resources are the most critical issues.

Formal models enable the creation of mathematical representations of the system
under study that are useful for answering “what-if” questions such as: “what would be
the expected waiting time if the number of incoming requests increases by a factor of
ten?”, or “what would be the increase in the system availability if our company invests
in an additional availability zone for our cloud infrastructure? Will we be able to meet
the SLA expectations by making this investment?”. Model-based infrastructure planning
relies on the systematic evaluation of formal models in order to test a large number of
parameter configurations or to search a near-optimal configuration scenarios among a large
solution space. In this doctoral thesis, we have identified the main challenges in conducting
model-based infrastructure planning of WaaS clouds, and proposed methods to overcome
these challenges.

The remaining of this chapter summarizes the contributions achieved by this work,
limitations of the proposed models, and suggest topics for further extending this research.

7.1 CONTRIBUTIONS

The main contribution of this work lies in the proposed modeling framework and the
availability and performance models for conducting infrastructure planning activities in
Workflow-as-a-Service cloud environments. The challenges and issues of this application
area had driven the development of the proposed framework. Nevertheless, it is a general-
purpose modeling framework, and it was used in different areas, such as1:

• Oliveira (OLIVEIRA, 2017) employed SPN modeling scripts in conjunction with the
event-based simulation approach in order to build a cloud fault-injection tool based
on SPN availability models;

1 At the time of the writing of this thesis, other ongoing works are relying on the developed framework.



Chapter 7. Conclusions and Future Work 116

• Dantas (DANTAS, 2018) employed the SPN meta-modeling capabilities for creating a
model for computing the capacity oriented availability of a virtualized infrastructure;

• Austregesilo et al. (AUSTREGESILO; CALLOU; MENEZES, 2018) used the modeling
framework API for infrastructure planning of data-centers, employing genetic algo-
rithms and Energy Flow models (CALLOU et al., 2013);

• Da Silva et al. (PINHEIRO et al., 2018) used a static code analyzer for converting
mobile application code into SPN models. These automatically generated models
were used to search the best deployment scenarios when considering the possibility
of offloading some methods for remote cloud execution;

• Melo et al. (MELO et al., 2019) used DRBD models and the meta-modeling capabilities
for steady-state and capacity oriented availability evaluation of hyper-converged
clouds based on the OpenStack framework.

Our framework brought enhancements to the Mercury tool for performing model-based
infrastructure planning of cloud workflow applications. Such enhancements include better
support for hierarchical and symbolic evaluation, a comprehensive modeling API, advanced
methods for SPN modeling (OLIVEIRA et al., 2017), meta-modeling capabilities, and high-
level formalisms such as DRBDs and OPNs. The proposed method for DRBD evaluation
include some novelties compared to the existing approaches, such as the K-out-of-N block
and providing means to obtain the capacity oriented availability metric.

The uniqueness of our OPN formalism is to consider every Petri net element (e.g.,
places, transitions, arcs, and even the net itself) as objects, not only the tokens. We allow
the modeler to extend the base classes and override the original behavior of such elements
by means of implementing event methods. The advantages of this approach are twofold.
We reap the benefits of object orientation when modeling with Petri nets. We can extend
the base classes and declare special arcs, transitions, places, and those components can be
easily reutilized. On the other hand, by extending the base classes and intercepting the
Petri net events, we can specify how multiple nets in the same object space interact, and
create elaborate models.

The capabilities of the modeling framework enabled us to devise a method for planning
cloud workflow applications, targeting the optimization of a composite performance and
availability metric. This method comprises the use of a meta-heuristic algorithm coupled
with a performability model that provides the fitnesses of explored solutions. For being
able to represent the combined effect of scheduling and component failures, we adopted
discrete event simulation for the performability model. The obtained experimental results
have shown the effectiveness of the hybrid simulation-optimization approach for optimizing
the number of allocated virtual machines and the scheduling of tasks by considering the
performability objective function.
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Another contribution made by this work was the combination of the local search and
the bisection methods for solving the redundancy allocation problem in private cloud
infrastructures. By applying the proposed method, a cloud provider is able to determine
a near-optimal number of server nodes for sustaining an expected availability level, and
a near-optimal deployment configuration in terms of availability zones and redundancy
arrangements of cloud services.

7.2 LIMITATIONS OF THE PROPOSED WORK

Combinatorial optimization and performance/dependability modeling are two areas in
computer science with distinct challenges and objectives. Combining combinatorial opti-
mization models with intricate performance and reliability models may introduce additional
issues and impediments, such as high computation times for fitness values in meta-heuristic
algorithms.

The main limitation of our work is the scalability of the performability models. Scaling-
up towards hundreds or thousands of worker nodes would make a significant increase
in the simulation time for a single scheduling, and also demand parallel simulation
techniques. Some techniques proposed in Simulation/Optimization related works may not
work properly with dependability or performability models. As an example, consider the
technique proposed by (JUAN et al., 2015) of using an approximate deterministic model
for speeding up the computation of the objective function. Applying this technique to a
performability or reliability model would lead to distortions due to the large variability of
the distributions for failure rates. Therefore, it is necessary to investigate novel strategies
to alleviate the runtime of performability simulation models employed in conjunction with
our approach. Surrogate models (GORISSEN et al., 2010) is one of such strategies. This
technique consists of training a machine learning model for being used as a substitute for
the simulation model, as machine learning models, once trained, can produce results faster
than a computationally intensive simulation model.

7.3 FUTURE WORK

Besides the scheduling of workflow applications and the redundancy allocation problem
in cloud environments, we intend to address other cloud-related infrastructure planning
problems in future works. The following list covers some of the main problems explored in
the cloud computing literature (the list is not exhaustive):

• Virtual machine placement (GAO et al., 2013) (XU; FORTES, 2010);

• Load balancing (MISHRA; JAISWAL, 2012) (RAMEZANI; LU; HUSSAIN, 2014);

• Web services composition (WANG; YANG; MI, 2015) (JULA; SUNDARARAJAN; OTHMAN,
2014);
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• Power consumption management (GHAFARI et al., 2013) (DENG et al., 2016).

Some issues concerning combinatorial optimization aspects of model-based infrastruc-
ture planning will also be addressed in future works. We intend to study techniques for
speeding up the computation of objective functions with stochastic components. Moreover,
it would be worthy to explore more optimization algorithms such as bee/ant colony opti-
mization, particle swarm, simulated annealing, and others. Future works in this direction
should evaluate the suitability of employing meta-heuristic algorithms in conjunction with
our approach and suggest enhancements and adaptations for these algorithms.

We also intend to extend our performability models for dealing with heterogeneity
by considering virtual machines with different computational capabilities. Furthermore,
we are interested in implementing fault tolerance schemes such as checkpointing and
task-replication in our model.
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