
AVAILABILITY AND CAPACITY MODELING FOR VIRTUAL NETWORK
FUNCTIONS BASED ON REDUNDANCY AND REJUVENATION SUPPORTED

THROUGH LIVE MIGRATION

By

ERICO AUGUSTO CAVALCANTI GUEDES

Ph.D. Thesis

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE/2019

www.cin.ufpe.br/~posgraduacao

Erico Augusto Cavalcanti Guedes

AVAILABILITY AND CAPACITY MODELING FOR VIRTUAL
NETWORK FUNCTIONS BASED ON REDUNDANCY AND

REJUVENATION SUPPORTED THROUGH LIVE MIGRATION

A Ph.D. Thesis presented to the Center for Informatics of

Federal University of Pernambuco in partial fulfillment of

the requirements for the degree of Philosophy Doctor in

Computer Science.

Advisor: Paulo Romero Martins Maciel

RECIFE
2019

Tese de doutorado apresentada por Erico Augusto Cavalcanti Guedes ao programa de Pós-
Graduação em Ciência da Computação do Centro de Informática da Universidade Federal de
Pernambuco, sob o título Availability and Capacity Modeling for Virtual Network Functions
based on Redundancy and Rejuvenation Supported through Live Migration, orientada
pelo Prof. Paulo Romero Martins Maciel e aprovada pela banca examinadora formada pelos
professores:

———————————————————————–
Prof. Dr. Antonio Alfredo Ferreira Loureiro

Departamento de Ciência da Computação/UFMG

———————————————————————–
Prof. Dr. Edmundo Roberto Mauro Madeira

Instituto de Computação/Unicamp

———————————————————————–
Prof. Dr. Djamel Fawzi Hadj Sadok

Centro de Informática/UFPE

———————————————————————–
Prof. Dr. Nelson Souto Rosa
Centro de Informática/UFPE

———————————————————————–
Prof. Dr. Paulo Roberto Freire Cunha

Centro de Informática/UFPE

RECIFE
2019

If you think high availability is expensive, try downtime.

—TERRY CRITCHLEY

Resumo

O sucesso da virtualização de servidores e da computação em nuvem levou a um subsequente

requisito de virtualização de rede, porque a �exibilidade alcançada pelos recursos de hardware

virtualizados poderia ser prejudicada por interconexões de rede estáticas. A virtualização de

rede refere-se à capacidade de executar instâncias virtuais de roteadores, switches e links so-

bre um substrato de rede físico. Assim, várias redes virtualizadas podem coexistir em uma

infraestrutura de rede comum. Tecnologias como Redes De�nidas por Software, Virtualização

de Funções de Rede e Encadeamento de Funções de Serviços foram lançadas para permitir a

substituição de dispositivos de hardware de rede tradicionais por cadeias lógicas de Funções

de Redes Virtuais (VNFs - Virtual Network Functions). Como uma conseqüência, as redes

virtualizadas representam obstáculos adicionais ao fornecimento de serviços de alta disponibili-

dade, porque resultam em mais camadas de software: o número crescente de componentes de

software necessários para executar sistemas virtualizados também aumenta o número de pos-

síveis falhas. Esta tese projetou e avaliou um conjunto de modelos estocásticos para melhorar o

fornecimento de funções de rede virtual, considerando métricas de disponibilidade e capacidade.

Os modelos são capazes de representar mecanismos de alta disponibilidade, como redundância

e rejuvenescimento de software, permitindo estimar o comportamento das métricas estudadas

diante desses mecanismos. A metodologia adotada abrange a montagem e con�guração de uma

infraestrutura de alta disponibilidade de computação em nuvem. A nuvem implementada suporta

o fornecimento de VNFs e cadeias de serviços virtuais redundantes, permitindo a medição

de valores dos parâmetros a serem injetados nos modelos. Para mostrar a aplicabilidade das

soluções propostas, também é apresentado um conjunto de estudos de caso. Os resultados

demonstram a viabilidade em fornecer cadeias de VNFs em uma infraestrutura de nuvem para os

cenários estudados, e podem ser úteis para provedores e operadoras de telecomunicações nas

suas infraestruturas heterogêneas.

Palavras-chave: Funções de Rede Virtuais, Virtualização de Funções de Rede, Cadeias de

Funções de Serviços, Alta Disponibilidade, Modelagem Estocástica, Agrupamento, Envelheci-

mento e Rejuvenescimento de Software

Abstract

The success of server virtualization and cloud computing led to a subsequent network virtual-

ization requirement, because the �exibility achieved by virtualized hardware resources could

be impaired by static network interconnections. Network virtualization refers to the ability to

execute virtual instances of routers, switches, and links on top of a physical network substrate. So,

multiple virtualized networks can co-exist in a shared network infrastructure. Technologies such

as Software-De�ned Networks, Network Function Virtualization and Service Function Chaining

have been launched to enable the replacement of traditional network hardware appliances by

softwarized Virtualized Network Function (VNF)s chains. As a consequence, virtualized net-

works represent additional obstacles to the provision of high availability services, because it

results in more layers of software: the increasing number of software components required to

run virtualized systems also increases the number of possible failures. This thesis designed and

evaluated a set of stochastic models to improve virtual network functions provision considering

metrics of availability and capacity. The models can represent high availability mechanisms,

such as redundancy and software rejuvenation, allowing to estimate the behavior of the studied

metrics facing these mechanisms. The adopted methodology encompasses the assembling and

con�guration of high available cloud computing infrastructure. The implemented cloud supports

the provision of redundant virtual network functions and service function chains, enabling the

measurement of parameter values that were injected in the designed models. In order to show

the applicability of proposed solutions, a set of case studies are also presented. The results

demonstrate the feasibility in providing high available Virtual Network Functions and Service

Function Chains in a cloud infrastructure for the studied scenarios. Such results can be useful for

telecommunication providers and operators and their heterogeneous infrastructures.

Keywords: Virtual Network Functions, Network Function Virtualization, Service Function

Chaining, High Availability, Stochastic Modeling, Clustering, Software Aging and Rejuvenation

List of Figures

2.1 High-level NFV Framework . 25

2.2 VNF Forward Graph representing Chains of VNFs.Source: ETSI [36] 26

2.3 Cloud Computing Features . 28

2.4 Openstack Architecture . 30

2.5 Openstack Deployment Modes . 33

2.6 Openstack All-In-One Deployment Mode . 34

2.7 SFC Graph . 35

2.8 Load Balancing Cluster . 36

2.9 High Available Load Balanced Cluster . 36

2.10 Pacemaker and Corosync . 37

2.11 Dependability Taxonomy . 39

2.12 Reliability Block Diagram . 42

2.13 CTMC: availability model . 43

2.14 Example SPN . 46

2.15 System Layers considered in the software rejuvenation classi�cation 48

4.1 Overview of Adopted Support Methodology 58

4.2 Aging and Rejuvenation processes . 61

5.1 Testbed for UGC video cache cluster . 65

5.3 Bonding between each testbed server and the switches 66

5.2 Openstack HA Cloud Architecture . 67

5.4 Pacemaker: HA Controller Cluster . 68

5.5 Pacemaker: HA Neutron Cluster . 68

5.6 Pacemaker: HA Neutron Compute . 69

5.7 Methodology to estimate TTFs . 70

5.8 Proxmox Testbed: additional machines to execute TTF experiments 71

5.9 Time to Failure (TTF) of the 3 evaluated cache capacities 72

5.10 UGC video �ow through SFC composed of a load balancer, a �rewall, and a

cache server . 72

5.11 Detailed openstack SFC �ow . 73

5.12 TISVEP messages for live migration experiments 76

6.1 RBD for VNF Cache Cluster . 77

6.2 RBD model for VNF cache sub-system . 78

6.3 Hierarchical Composition: top-level CTCM of system's availability model;

bottom level RBD of cache node sub-system model 80

6.4 Hierarchical Composition: no load balancer SPOF 81

6.5 Architecture for nodes providing VNFs: the software rejuvenation is imple-

mented by VM live migration and conditions 82

6.6 Low-level RBDs models: the MTTF of each low-level sub-system is computed

and injected in the top-level SPN models . 83

6.7 Low-level RBD for Service Function Chains 84

6.8 SPN sub-model for node . 84

6.9 SPN sub-model for nodes with rejuvenation 86

6.10 SPN sub-models for service chains . 87

6.11 SPN sub-model for VNF chain live migration 88

6.12 SPN for chain interconnection without rejuvenation 89

6.13 SPN for chain interconnection adopted in rejuvenation model: the chain inter-

connection without SAR . 90

6.14 SPN for chain interconnection with rejuvenation 92

7.1 RBD for Non-Redundant Cluster . 94

7.2 RBD for Redundant VNF Cache Cluster . 96

7.3 Percentage of annual downtime due to UA and COUA 98

7.4 Load balancer failure rate is the most in�uential parameter for COA, but with

similar magnitude order . 102

7.5 Load balancer recovery rate is the most in�uential parameter for COA, but one

order of magnitude higher than other parameters 103

7.6 3N redundant baseline model . 104

7.7 RBD for joint Controller and Neutron deployment modes Node 104

7.8 RBD for Compute deployment mode node . 104

7.9 RBD for Compute deployment mode node . 105

7.10 Top-level model of reference work . 105

7.11 VIM of reference work . 106

7.12 VNF of reference work . 107

7.13 VIM of reference work . 108

7.14 VNF without elasticity . 109

7.15 Customized VIM of reference work . 111

7.16 Customized VNF without elasticity . 112

7.17 3N redundant baseline model: the insertion of input parameters in chain and

compute node were represented only in the �rst instances of there sub-models to

do not overload the �gure . 113

7.18 Service Chain's RBD . 114

7.19 3N redundant baseline model . 115

7.20 3N redundant model with rejuvenation based on VM live migration 117

7.21 Daily MTBPM and corresponding availability 121

7.22 Very high availability for MTBPM=23hs . 121

7.23 High availability with minimum MTBPM=8hs 122

7.24 SPNs for baseline All-In-One scenario . 123

7.25 SPNs for baseline scenario 2 . 125

7.26 SPNs for baseline scenario 3 . 126

7.27 SPN Model with Rejuvenation technique . 127

7.28 SSA for All-In-One con�guration (scenarios 3 and 6) 132

7.29 COA for All-In-One Con�guration (scenarios 3 and 6) 132

7.30 SSA for Controller/Neutron Con�guration (scenarios 2 and 5) 133

7.31 COA for Controller/Neutron Con�guration (scenarios 2 and 5) 133

7.32 SSA for Controller/Neutron/Compute Con�guration (Scenarios 3 and 6) 134

7.33 COA for Controller/Neutron/Compute Con�guration (Scenarios 3 and 6) 134

List of Tables

2.1 Server Virtualization Platforms . 22

2.2 Service availability and downtime ratings . 41

3.1 Comparison with most relevant related works 53

3.2 Comparison with most relevant SAR works 56

5.1 Parameters for UGC video characterization 65

5.2 rgamma results: �le sizes and frequencies . 70

5.3 Port pairs for SFC live migration experiments 74

5.4 Mean Con�dence Intervals . 76

6.1 Dependability parameters for VNF Cache Cluster 78

6.2 Dependability parameters for low-level . 83

6.3 Dependability parameters for Node SPN . 85

6.4 Transitions attributes for Node SPN . 85

6.5 Dependability parameters for Node SPN with Rejuvenation 86

6.6 Transitions attributes for Node SPN with Rejuvenation 86

6.7 Dependability parameters for Service Chain SPN 87

6.8 Transitions attributes for Service Chain SPN 87

6.9 Dependability parameters for Service Chain SPN with Rejuvenation 88

6.10 Transitions attributes for Service Chain SPN with Rejuvenation 88

6.11 Dependability parameters for Chain Live Migration SPN 89

6.12 Transitions attributes for Chain Live Migration SPN 89

6.13 Dependability parameters for Chain Interconnection SPN 89

6.14 Transitions attributes for Chain Interconnection SPN 90

6.15 Dependability parameters for Chain Interconnection SPN with Rejuvenation -

First Scenario . 91

6.16 Transitions attributes for Chain Interconnection SPN with Rejuvenation - First

Scenario . 91

6.17 Dependability parameters for Chain Interconnection SPN with Rejuvenation -

Second Scenario . 91

6.18 Transitions attributes for Chain Interconnection SPN with Rejuvenation - Second

Scenario . 92

7.1 Scenarios of First Case Study . 93

7.2 Applied times in the RBD models . 94

7.3 MTTF and MTTR, in hours, for cache servers 94

7.4 Availability measures for Non-redundant VNF Cache Cluster 94

7.5 Ranking of Sensitivities for SSA of Non-Redundant VNF Cluster 95

7.6 Availability measures of Redundant VNF Cache Cluster 95

7.7 Ranking of Sensitivities for SSA in Redundant VNF Cluster 96

7.8 Scenarios of Second Case Study . 97

7.9 Steady-State Availability and COA for CTCM 97

7.10 Ranking of Sensitivities for SSA and COA . 99

7.11 Ranking of Sensitivities for SSA and COA: no LB SPOF 101

7.12 Steady-State Availability, COA and COUA for CTCM without LB SPOF . . . 102

7.13 Guard expressions for the VIM of the reference work model 106

7.14 Input mean times for cloud components . 110

7.15 Steady-State Availability Comparison . 113

7.16 Input mean times for cloud components . 114

7.17 Results from low-level RBDs analysis . 115

7.18 Guard expressions and mean times for transitions in the 3N baseline model . . 116

7.19 Guard expressions in 3N rejuvenation model: migration sub-model 118

7.20 Guard expressions in 3N rejuvenation model: node sub-model 118

7.21 Guard expressions in 3N rejuvenation model: chain sub-model 119

7.22 Guard expressions and mean times in 3N rejuvenation model: chain interconnec-

tion sub-model . 119

7.23 Analyzed scenarios . 123

7.24 Guard expressions for the All-In-One baseline model 124

7.25 Mean times of timed transitions in scenario 2 124

7.26 Mean times of timed transitions in scenario 3 126

7.27 SSA and COA for 2N baseline scenarios . 127

7.28 Guard expressions for rejuvenation models . 128

7.29 SSA e COA equations for rejuvenation models 131

A.1 OpenStack Components Status . 150

A.2 OpenStack: Additional Required Softwares 151

List of Acronyms

AMQP Advanced Message Queuing Protocol . 32

API Application Programming Interface . 17

AWS Amazon Web Services . 16

CAPEX Capital Expenditure . 17

COA Capacity Oriented Availability . 47

COUA Capacity Oriented Unavailability . 47

CT Container . 65

CTMC Continuous Time Markov Chain . 43

DC Data Center . 52

DPI Deep Packet Inspection . 17

ETSI European Telecommunications Standards Institute . 17

GRE Generic Routing Encapsulation . 24

HA High Availability . 19

IaaS Infrastructure as a Service .29

IoT Internet of Things . 25

IETF Internet Engineering Task Force . 26

KVM Kernel-based Virtual Machine . 59

NAT Network Address Translation . 31

NaaS Network as a Service . 31

NIST National Institute of Standards and Technology . 16

NFV Network Function Virtualization . 17

NIC Network Interface Card . 23

NTP Network Time Protocol . 32

OS Operating System . 16

OPEX Operational Expenditure . 17

OVS Open vSwitch . 24

PaaS Platform as a Service . 29

RA Resource Agent . 37

RBD Reliability Block Diagram . 42

S3 Simple Storage Service . 18

SaaS Software as a Service . 29

SDN Software-De�ned Networking . 16

SFC Service Function Chaining . 17

SLA Service Level Agreement . 18

SPOF Single Point Of Failure . 19

SPN Stochastic Petri Net . 42

UGC User Generated Content . 64

vNIC Virtual Network Interface Card . 24

VCS Virtual Computer System . 16

VIM Virtualized Infrastructure Manager . 51

VIP Virtual IP .67

VM Virtual Machine. .16

VMM Virtual Machine Monitor .16

VNF Virtualized Network Function . 17

VLAN Virtual Local Area Network . 23

VXLAN Virtual eXtensible Local Area Network .24

WSGI Web Server Gateway Interface . 31

Contents

1 Introduction 16

1.1 Motivation and Justi�cation . 18

1.2 Objectives . 19

1.3 Thesis Organization . 20

2 Background 21

2.1 Server Virtualization . 21

2.1.1 Proxmox VE . 23

2.2 Network Virtualization . 23

2.2.1 Network Function Virtualization . 25

2.2.2 Service Function Chaining . 27

2.2.3 Software-De�ned Networking . 27

2.3 Cloud Computing . 28

2.3.1 Openstack . 29

2.3.2 The Openstack SFC API . 34

2.4 Clusters and High Availability . 35

2.4.1 Redundancy Strategies . 37

2.5 Dependability . 38

2.5.1 Reliability . 39

2.5.2 Availability . 39

2.5.3 Maintainability . 41

2.6 Dependability Modeling . 42

2.6.1 Reliability Block Diagrams . 42

2.6.2 Continuous Time Markov Chains . 43

2.6.3 Stochastic Petri Nets . 44

2.6.4 Capacity Oriented Availability . 47

2.6.5 Hierarchical Modeling . 47

2.7 Software Aging and Rejuvenation . 47

2.8 Sensitivity Analysis . 49

3 Related Works 50

3.1 Hierarchical Modeling of Virtual Environments 50

3.2 Software Aging and Rejuvenation of Server Virtualized Systems 53

4 A Methodology for Provisioning of High Available VNF Chains 57

4.1 Methodology Overview . 57

4.2 Methodology Activities . 59

4.2.1 System Understanding . 59

4.2.2 Environment Conception . 59

4.2.3 De�nition of Parameters and Metrics 59

4.2.4 Models Design . 61

4.2.5 State Input Parameters Sources . 62

4.2.6 Evaluation . 62

4.2.7 Yield Recommendations . 62

5 Measurement Experiments 64

5.1 Workload for User Generated Content . 64

5.2 Proxmox Server Virtualization Testbed . 65

5.3 HA Openstack Cloud Testbed . 66

5.4 Time To Failure Measurements in Proxmox Server Virtualization Testbed . . . 69

5.5 Service Function Chain Migration Experiments in HA Cloud Testbed 71

5.5.1 Experiments execution . 75

6 Availability Models 77

6.1 Introduction . 77

6.2 Models for VNFs in Proxmox server virtualization infrastructure 77

6.2.1 Model for VNF Cache Cluster . 77

6.2.2 Model for Cache VNF and Load Balancer 78

6.2.3 Model for Cache VNF and Load Balancer without SPOFs 81

6.3 Models for SFCs in openstack cloud infrastructure 82

6.4 Low-level RBDs for openstack deployment modes 82

6.5 Low-level RBDs for service function chains 83

6.6 Top-level SPN sub-models for openstack nodes 84

6.6.1 SPN sub-model for openstack nodes without rejuvenation 84

6.6.2 SPN sub-model for openstack nodes with rejuvenation 85

6.7 Top-level SPN sub-models for service chain 86

6.8 Top-level SPN sub-model for service chain live migration 88

6.9 Top-level SPN sub-models for chains interconnection 89

7 Case Studies 93

7.1 Introduction . 93

7.2 VNF Cache Clusters . 93

7.2.1 Non-redundant VNF Cache Cluster 94

7.2.2 Redundant VNF Cache Cluster . 95

7.3 Redundant VNF Caches and Load Balancers 97

7.3.1 Redundant VNF Cache and Load Balancer 97

7.3.2 No Load Balancer SPOF . 100

7.4 Comparison with Reference Work . 103

7.4.1 3N Redundant Baseline Model . 103

7.4.2 Reference Work for Comparison . 105

7.5 Rejuvenation of Service Function Chains . 114

7.6 3N Redundant Service Function Chain . 114

7.6.1 Baseline model . 115

7.6.2 Rejuvenation model . 116

7.6.3 Experimental Results . 120

7.7 2N Redundant Service Function Chain . 122

7.7.1 Baseline models . 123

7.7.2 Rejuvenation models . 127

7.7.3 Experimental results . 131

8 Conclusion 136

8.1 Contributions . 137

8.2 Limitations . 137

8.3 Future Work . 138

References 139

Appendix 149

A HA OpenStack Implementation 150

B Speci�cation of TISVEP Extension Messages 152

161616

1

Introduction

Virtualization is a technique to abstract the resources of computer hardware, decoupling

the application and operating system from the hardware, and dividing resources into multiple

execution environments. Previously to virtualization, it was not uncommon to accommodate

only one application per Operating System (OS), i.e., per server. This approach was known as

server proliferation. It increases the availability of services, mainly in scenarios where reboot

theOSwas overused as main troubleshooting action. However, server proliferation promotes

machine's resources wastage.

Goldberg [50], in 1976, stated the concept of Virtual Computer System (VCS), also

called as Virtual Machine (VM). VMs were conceived to be very ef�cient simulated copies of the

bare metal host machine. One new layer of software, called Virtual Machine Monitor (VMM),

was adopted to mediate the communication between the VMs and the hardware resources.

The main motivation for the adoption of virtualization was to increase the ef�ciency

of hardware resources, with a direct effect on the contraction of infrastructure costs, dropping

power requirements at a green data center effort.

With the adoption ofVMs, server virtualization enables the consolidation of services.

Previously isolated into individual machines, the services started to be provided inVMs that

share virtualized server resources.

In 2006, Amazon Web Services (AWS) began offering IT infrastructure services to

businesses in the form of web services, which is now known as cloud computing [8]. In 2011, the

�ve essential characteristics that de�ne cloud computing were standardized by National Institute

of Standards and Technology (NIST) [82], namely: on-demand self-service, broad network

access, resource pooling, rapid elasticity, and measured service. Such a set of features results in

an increased rate of changes in networks.

The success of virtualization and cloud computing led to subsequent network virtualiza-

tion requirement, because static network interconnections could impair the �exibility achieved

by virtualized hardware resources. Cloud providers need a way to allow multiple tenants to share

the same network infrastructure. It was needed to virtualize the network.

Similarly to decoupling betweenOSand bare-metal hardware occurred in server virtu-

alization, Software-De�ned Networking (SDN) [65] implements the decoupling between the

17

control plane (which decides how to handle the traf�c) from the data plane (which forwards

traf�c according to decisions that the control plane makes) in network interconnection devices,

such as switches. Such a decoupling also enables the consolidation of control planes to a single

control program managing all data plane devices [41]. So,SDN relates to network virtualization

as an enabling technology.

TheSDN control plane performs direct control over the state in the network's data-plane

elements via a well-de�ned Application Programming Interface (API). From 2007 to around

2010, the OpenFlow [45] API development represented the �rst instance of widespread adoption

of an open interface, providing ways to make a practical control-data plane separation. The most

adopted implementation of OpenFlow is Open vSwitch [43], functioning as a virtual switch in

VM environments.

In 2012, an European Telecommunications Standards Institute (ETSI) white paper pro-

posed Network Function Virtualization (NFV) [38] an alternative to reduce Capital Expen-

diture (CAPEX) and Operational Expenditure (OPEX) through the virtualization of network

specialized (and expensive) hardware, known as appliances. These expensive appliances run a set

of services (such as �rewalling, load balancing, and Deep Packet Inspection (DPI)) throughout

traf�c aggregation points in the network, intending to apply traf�c policies. They are added in an

over-provisioned fashion, wasting resources. Several other issues contribute to the deprecation

of adding appliances model:

� additional cost of acquisition, installing, managing, and operation. Each appliance requires

power, space, cabling, and an all lifecycle that must be managed;

� network virtualization. As a virtual network topology can be moved to diverse servers in the

network, it is problematic to move the appliances to accomplish the dynamism of virtualized

networks.

As can be noted, virtualized cloud infrastructures claim for connectivity for migration

of VMs, in several use cases, a live migration. Virtualized network appliances should become

mobile. Its service continuity could be improved by mobile network infrastructure. The ossi�ca-

tion of traditional data center networks denied the agile and required mobility of VMs because it

requires manual tunning in the physical infrastructure.

Virtualized Network Function (VNF) replaces vendor's appliances by systems per-

forming the same functions, yet running on generic hardware through the adoption of server

virtualization. Chains ofVNFs quickly emerged and can be mobile. The term Service Function

Chaining (SFC) [104, 54] was used to describe an ordered list ofVNFs, and the subsequent

steering of traf�c �ows through thoseVNFs.SDN can handle the classi�cation and forwarding

tasks required by SFCs.

As a consequence of the massive adoption of server virtualization, cloud computing, and

network virtualization was the emergence of new network architectures designed to be fault

tolerant [22]. Regarding resilience,NFV moves the focus from physical network nodes, that are

1.1. MOTIVATION AND JUSTIFICATION 18

highly available, to highly available end-to-end services comprised of VNFs chains [37].

1.1 Motivation and Justi�cation

As we have seen, several technologies were launched to enable the replacement of tradi-

tional network hardware appliances by softwarizedVNFs chains. As a consequence, virtualized

networks demands greater efforts over availability, because it represents more layers of software:

the increasing number of software components required to run a cloud also increases the number

of possible failures [125].

According to Han et al. [56], the virtualization of network services ”may reduce capital

investment and energy consumption by consolidating networking appliances, decrease the time

to market of a new service [..], and rapidly introduce targeted and tailored services based on

customer needs". However, along with the bene�ts, there are many technical challenges to be

covered by the network operators. For instance, ensuring that the network resilience will remain

at least as good as that of commodity hardware implementations, even if relying on virtualization,

is a great challenge. TheVNF chains need to ensure the availability of its part in the end-to-end

service, just as in the case of non-virtualized appliances [58].

Furthermore, the network operators should also be able to dynamically create and migrate

their SFCs in order to consolidate VNFs or to provide service elasticity based on user demand

or traf�c load. When migrating SFCs, the network operator should keep in mind that service

availability and service level agreements cannot be affected. Replication mechanisms have

already been proposed to target the required service reliability based on VNF redundancy [21].

Service downtime not only negatively effects in user experience but directly translates

into revenue loss [35]. Along last decade, several cloud service outages were reported [48].

In February 28, 2017, Amazon reported a outage from 9:37AM to 1:54PM in Simple Storage

Service (S3) [9], with clients' estimated losses around US$150 millions. Due to a typo, a

large scale services restart was required. A number that can explain such impressive losses:

big companies, such as Google, Microsoft, and Amazon, have millions of servers on their

data centers [15]. Regarding virtualized values: eBay has 167,000 ofVMs [90]. Such huge

numbers are persuasive regarding availability. AmazonS3has three 9's (99.9%) of availability

in its Service Level Agreement (SLA), meaning a maximum downtime of 9 hours per year. They

spent 4 hours and 17 minutes already with the 2017 February typo issue.

Another downtime source may be generated by continuously execution software, such as

those offered by cloud and network providers. The continuous software execution is susceptible

to slowly degradation regarding the effective usage of their system resources [59]. Such a

phenomenon is called software aging, and it impacts the availability and performance of computer

systems. The occurrence of software aging in systems where multiple software components are

joined, such as those at cloud computing environments, can be catastrophic. The more software

components there are, the greater the risk of failure caused by aging. However, some proactive

1.2. OBJECTIVES 19

action can be triggered to minimize the effects of aging software, known as software rejuvenation.

This action is commonly triggered by a time-based, threshold, or prediction-based strategies [13].

Moreover, than software rejuvenation, successful approaches adopted to setup High

Availability (HA) include elimination of Single Point Of Failure (SPOF) through redundancy, as

well as the interconnection of redundant components in clusters. However, those methods are

only suitable for existing infrastructures.

Models can be designed to aid network specialists in the assembling of high available

software-centric virtualized networks. Dependability modeling [14, 57, 75, 77] is a largely

accepted technique that is concerned about measuring the ability of a system to deliver its

intended level of service to users, especially related to failures or others incidents which affect

performance. The quantitative fault forecasting [120] adopts models such as Markov Chains and

Stochastic Petri Nets to evaluate, in terms of probability, the extent to which some attributes of

dependability are satis�ed.

This work deals with modeling ofVNF chains aiming at aid network specialists to �t

availability and capacity requirements, not only in their existent virtualized network but also to

estimate these metrics in future virtual infrastructures.

1.2 Objectives

Increase the availability of virtualized infrastructures, such as virtualized data centers

and cloud computing environments, and subsequent savings in COPEX and OPEX costs while

maintaining user's agreements, are goals of network operators. The main objective of this

research is to propose and analyze a set of stochastic models to evaluate and improve virtual

network functions considering metrics of availability and capacity. The following list presents

the speci�c objectives that should be accomplished to realize the main objective:

� Create stochastic models to estimate the behavior of availability and capacity metrics of

virtual network functions provided in cloud computing infrastructure;

� Assembly and con�gure a highly available cloud computing infrastructure with support for

redundant virtual network functions in order to generate parameter values that will be used

as input into stochastic models;

� Adopt the models in case studies aiming at identifying the behavior of the metrics of interest.

One of the main challenges of this research is to propose scalable models considering the

high complexity of cloud computing infrastructures and virtual network functions con�gurations.

To cover this problem, we developed hierarchical stochastic models that are not so detailed at

a point that forbids its analysis as well as are not so simple that fail in representing the real

systems.

1.3. THESIS ORGANIZATION 20

We restrict our proposal to private clouds due to con�guration complexity of high

available cloud computing infrastructures. The assembling of a private cloud offers complete

�exibility of con�guration and has a low cost.

1.3 Thesis Organization

The remainder of this thesis is organized as follow: Chapter 2 presents the background

that is required for understanding the remaining chapters. Chapter 3 shows a series of related

works with points in common with this thesis. The support methodology is described in Chapter

4. It explains the methodology for evaluation ofVNF clusters adopting stochastic modeling.

Chapter 5 presents the measurement experiments that were executed in the assembled testbeds

during this research. Chapter 6 presents the models that represent the components aimed at

providing VNF chains. Chapter 7 summarizes the results achieved during this research and also

presents suggestions for future works.

212121

2

Background

This chapter discusses the basic concepts of primary areas that set up the focus for this

work: network virtualization - including Network Function Virtualization, Software-De�ned

Networks, and Service Function Chaining - cloud computing, dependability modeling, and

software aging and rejuvenation. The background presented here shall provide the necessary

knowledge for a clear comprehension of the subsequent chapters.

2.1 Server Virtualization

Server virtualization is the abstraction of applications and operating systems from phys-

ical servers. It is required to select a virtualization approach to apply server virtualization.

Actually, there are four main accepted approaches that can be applied to implement server

virtualization:

i. Full Virtualization: it is the particular kind of virtualization that allows an unmodi�ed guest

operating system, with all of its installed softwares, to run in a special environment, on top of

existing host operating system. Virtual machines are created by the virtualization software by

intercepting access to certain hardware components and certain features. Most of the guest

code runs unmodi�ed, directly on the host computer, and in a transparent way: the guest is

unaware that it is being virtualized. Virtual Box [100], VMWare Virtualization softwares [122]

and [103] are examples of full virtualization products. KVM [67] kernel-level virtualization

is a specialized version of full virtualization. The Linux kernel serves as the hypervisor. It

is implemented as a loadable kernel module that converts the Linux kernel into a bare-metal

hypervisor. As it was designed after the advent of hardware-assisted virtualization, it did not

have to implement features that were provided by hardware. So, it requires Intel VT-X or

AMD-V (see Hardware Virtualization below) enabled CPUs.

ii. Paravirtualization: this approach requires to modify the guest operating system running

in the virtual machine and replace all the privileged instructions with direct calls into the

hypervisor. So, the modi�ed guest operating system is aware that is running on a hypervisor

and can cooperate with it for improved scheduling and I/O: it includes code to make guest-

to-hypervisor transitions more ef�cient. Paravirtualization does not require virtualization

2.1. SERVER VIRTUALIZATION 22

extensions from the host CPU. Xen hypervisor [129] was the precursor of paravirtualization

products.

iii. Operating System virtualization, also known as container-based virtualization, is a lightweight

alternative. It presents an operating system environment that is fully or partially isolated

from the host operating system, allowing for safe application execution at native speeds.

While hypervisor-based virtualization provides an abstraction for full guest OS's (one per

virtual machine), container-based virtualization works at the operating system level, providing

abstractions directly for the guest processes. OpenVZ [99], LXC[73], Docker [60], and are

examples of container-based virtualization solutions.

iv. Hardware Virtualization: it is the hardware support for virtualization.VMs in a hardware

virtualization environment can run unmodi�ed operating systems because the hypervisor can

use the native hardware support for virtualization to handle privileged and protected operations

and hardware access requests; to communicate with and manage the virtual machines [123].

Both Intel and AMD implement hardware virtualization, calling their products as Intel VT-X

and AMD-V, respectively.

There are some server virtualization platforms that aid to achieve application availability

and fault tolerance. Proxmox VE [110], Citrix XenServer [26], VMWare vSphere [61], and

Windows Hyper-V [86] are well-known server virtualization platforms. Some of their features

are compared in Table 2.1.

Table 2.1: Server Virtualization Platforms

Proxmox VE VMware vSphere Windows Hyper-V Citrix XenServer

Guest OS
support

Linux and
Windows

Linux,
Windows,UNIX

Windows and
Linux(limited)

Windows and
Linux(limited)

Open
Source Yes No No Yes

License
GNU AGPL

v3 Proprietary Free Proprietary
High

Availability Yes Yes
Requires MS

Failover clustering Yes

Centralized
control Yes

Yes, but requires
dedicated

management
server or VM

Yes, but requires
dedicated

management
server or VM Yes

Virtualization
Full and

OS Full
Full and

Paravirtualization Paravirtualization

In this research, we adopted Proxmox VE due to its full operation in Linux systems, its

native support for high availability and its compatibility with full and OS virtualization.

2.2. NETWORK VIRTUALIZATION 23

2.1.1 Proxmox VE

Proxmox VE is a virtualization environment for servers. It is an open source tool,

based on the Debian GNU/Linux distribution, that can manage containers, virtual machines,

storage, virtualized networks, and high-availability clustering through both web-based interface

or command-line interfaces [110].

Proxmox VE supports OpenVZ container-based virtualization kernel. OpenVZ adds

virtualization and isolation, enabling: various containers within a single kernel; resource manage-

ment, that limits sub-system resources, such as CPU, RAM, and disk access, on a per-container

basis; checkpointing, that saves container's state, making container migration possible. OpenVZ

guest OSs are instantiated based on templates. These templates are pre-existing images that

can create a chrooted environment - the container - on a few seconds, enabling small overhead

during creation, execution, and �nalization of containers, providing fast deployment scenarios.

Programs in a guest container run as rehular applications that directly use the host OS's system

call interface and do not need to run on top of an intermediate hypervisor [99].

OpenVZ offers three major networking modes of operation:

� Route-based (venet);

� Bridge-based (veth);

� Real network device (eth) in a container.

The main differences between them are the layer of operation. While route-based mode works

in Layer 3, bridge-based works in Layer 2 and real network in Layer 1. In the real network

mode, the server system administrator will assign a real network device (such as eth0) into the

container. This latter approach will provide the best network performance, but the Network

Interface Card (NIC) will not be virtualized.

As Proxmox VE implements Full and OS Virtualization and has centralized control,

we adopted it as server virtualization platform during testbed assembling. Both KVM (for

full virtualization) and OpenVZ (for OS virtualization) hypervisors have natively supported by

Proxmox VE.

2.2 Network Virtualization

Network virtualization is a technique that enables multiple isolated logical networks,

each with potentially different addressing and forwarding mechanisms, to share the same physical

infrastructure [108]. Historically, the term virtual network refers to legacy overlay technologies,

such as Virtual Local Area Network (VLAN), a physical method for network virtualization

provided in traditional switches. Through a VLAN ID, hosts connected to a switch could be

separated in distinct broadcast domains. This approach has several well-known limitations, such

as the available number of VLAN IDs (4094). It is not enough to divide multi-tenants VMs.

2.2. NETWORK VIRTUALIZATION 24

Jain and Paul [62] performed a detailed explanation about network virtualization required

by server virtualization and clouds, exposing the components that must be abstracted to virtualize

a network. These components are:

� a NIC, where a computer network starts;

� a Layer 2 (L2) network segments, like Ethernet or WiFi, in which hosts'NICs are connected;

� a set of switches (also called bridges) interconnecting L2 network segments to form an L2

network;

� a Layer 3 (L3) network (IPv4 or IPv6), in which L2 is accommodated as sub-nets;

� routers, in which multiple L3 networks are connected to form the Internet.

Each physical system has at least one L2 physicalNIC. If multiple VMs are running

on a system, eachVM needs its own Virtual Network Interface Card (vNIC). One solution to

implementvNICs is through hypervisor software. The hypervisor will not only abstract the

computing, memory, and storage, but also implement as many vNICs as there are VMs.

L2 segments virtualization is deployed through overlay. Server virtualization and cloud

solutions have been using Virtual eXtensible Local Area Network (VXLAN) [76] to address the

need for overlay networks within virtualized data centers. VXLAN overcome several restrictions

of VLANs: it enables to accommodate multiple tenants; it runs over the existing networking

infrastructure; it provides a means to expand an L2 network, and; it enables location-independent

addressing. An alternative protocol is Generic Routing Encapsulation (GRE) [40].

A virtual switch (vSwitch) is the software component that connects virtual machines

to virtual networks of L2. L2 switching is typically implemented by means of kernel-level

virtual bridges/switches interconnecting a VM's vNIC to a host's physical interface [19]. Many

hypervisors running on Linux systems implement the virtual LANs inside the servers using Linux

Bridge, the native kernel bridging module. The Linux Bridge basically works as a transparent

bridge with MAC learning, providing the same functionality as a standard Ethernet switch in

terms of packet forwarding. But such standard behavior is not compatible withSDN and is

not �exible enough when aspects such as multitenant traf�c isolation, transparent VM mobility,

and �ne-grained forwarding programmability are critical. The Linux-based bridging alternative

is Open vSwitch (OVS), a software switching facility speci�cally designed for virtualized

environments and capable of reaching kernel-level performance.

L3 network virtualization provides addressing (IPv4 or IPv6) for the VMs. Blocks of

addresses can be con�gured and provided for each virtual L3 network. These virtual networks

are connected through virtual routers. They replicate in software the functionality of a hardware-

based Layer 3 routers.

VM networking had initially been implemented using Linux bridging. Besides its suitable

operation and simplicity of con�guration and management, it was not originally designed for

virtual networking and therefore posed integration and management challenges [23].

2.2. NETWORK VIRTUALIZATION 25

2.2.1 Network Function Virtualization

With the exponential increase in bandwidth demand, heavily driven by video, mobile,

and Internet of Things (IoT) applications, service providers are constantly looking for ways to

expand and scale their network services, preferably without a signi�cant increase in costs [22].

The features of traditional devices are bottlenecks to the expansion of services, because they

present several limitations such as: coupling between software system (such as Internetworking

Operating Systems (IOS) and management systems) and hardware, loosing �exibility (the ability

to adapt to changes); and scalability constraints, because the design of each hardware device is

limited to a certain maximum performance requirement.

NFV is a network architecture concept that uses virtualization to implement classes of

network functions into building blocks that may connect or create communication services [78].

NFV involves the implementation of network functions (NF) in software that can be

moved to, or instantiated in, various locations in the network as required, without the need for

installation of new equipment [38].

As speci�ed by European Telecommunications Standards Institute (ETSI) [36], the NFV

architecture is composed by three working domains, as depicted in Figure 2.1:

Figure 2.1: High-level NFV Framework

� Virtualized Network Function (VNF): it is the software implementation of the network function

which is able to run over NFVI;

� NFV Infrastructure (NFVI): it includes physical resources and how they can be virtualized. It

supports the execution of the VNF;

� NFV Management and Orchestration (MANO): it covers the orchestration and lifecycle

management of physical or software or both resources that support virtualized infrastructure,

as well as the lifecycle management of VNFs.

2.2. NETWORK VIRTUALIZATION 26

The NFV framework enables a dynamic construction and management of VNF instances,

as well as a relationship between these VNFs, considering several attributes, such as data, control,

management, and dependencies. We highlight two relationships among VNFs: (i) VNF chains,

in which the connectivity between VNFs is ordered, following routing decision based on policies;

(ii) a collection of VNFs, in which the forward decisions follows traditional routing (based on

destination IP).

VNFs chains are the analog of connecting existing physical appliances via cables. Cables

are bidirectional and so are most data networking technologies that will be used in virtualized

deployments. So, NFV describes a software architecture with VNFs as building blocks to

construct VNF Forwarding Graphs (FG) [36] to represent Chains of VNFs. A VNF FG provides

the logical connectivity between virtual appliances (i.e., VNFs). An example is depicted in

Figure 2.2.

Figure 2.2: VNF Forward Graph representing Chains of VNFs.Source: ETSI [36]

A network service provider designed an end-to-end network service between two physical

network functions that involve several VNFs (VNF-A, VNF-B, VNF-C, VNF-D1, VNF-D2,

VNF-E). This set of VNFs will be combined, forming an ordered chain according to the tenant's

requirements. The physical network logical interface at left, represented by a dashed circle,

is responsible for performing the classi�cation of distinct tenant's packet �ows. Four distinct

packet �ows, representing different tenant's requirements, are exhibited. According to traf�c

classi�cation, the tenant's packet �ow will be forward through the designed VNF chain. For

example, packet �ow 1 will be forwarded through VNF-A, VNF-B, VNF-C, and VNF-D1.

Observe that service VNF-D is replicated. Some motivations are load balancing and failover. All

these functionalities involving VNF chains, �ow classi�cation, and traf�c steering motivated the

creation of Internet Engineering Task Force (IETF) Service Function Chaining Working Group.

2.2. NETWORK VIRTUALIZATION 27

2.2.2 Service Function Chaining

The term Service Function Chaining (SFC) is used to describe the de�nition and instan-

tiation of an ordered list of instances of virtual network service functions, and the subsequent

steering of traf�c �ows through those service functions [104]. Fundamentally,SFCroutes

packets through one or more service functions instead of conventional routing that routes packets

using the destination IP address.

The emergence of SFC is aimed to address three main functionalities:

� service overlay: SFCs adopts the decoupling of services to the physical topology. It allows

operators to use whatever overlay or underlay they prefer to create a path between service

functions and to locate service functions in the network as needed;

� service classi�cation: it is used to identify which traf�c will be steered through an SFC

overlay;

� SFC encapsulation: it enables the creation of a service chain in the data plane and also carries

data-plane metadata to enable the exchange of information between logical classi�cation

points and service functions.

The combination of VNF chains and a �ow classi�er creates a service function chain.

A �ow classi�er is a component that matches traf�c �ows against policies for subsequent

application of the required set of network service functions, whereas a service function chain

de�nes an ordered set of abstract service functions and ordering constraints that must be applied

to packets and/or frames and/or �ows selected as a result of classi�cation.

As presented by Luis et al. [72], �ow classi�cation, as well as its monitoring, can make

networking more dependable, motivating the investigation of dependability metrics.

2.2.3 Software-De�ned Networking

Software-De�ned Networking (SDN) is a network architecture in which network con-

trol (called control-plane) is decoupled from forwarding control (called data-plane) and is directly

programmable [96]. It emerged as an approach to network management conducted in Stanford

University[81].

Its well-known dissociation between control plane (where routing decisions are built)

and data plane (responsible for reception and transmission of packets) enables to centralize the

management of several network devices. The network intelligence is logically centralized inside

controllers. The software-based SDN controllers perform the administration of the network using

high-level policies. The controllers build �ow tables with the aim of forwarding packages to

connected VMs.

The separation of the control plane and the data plane can be realized employing a

well-de�ned programming interface between the switches and the SDN controller. The controller

exercises direct control over the state in the data plane elements via this well-de�nedAPI. The

2.3. CLOUD COMPUTING 28

most notable example of such an API is OpenFlow [45] whereas the most adopted implementation

of OpenFlow is Open vSwitch [43], functioning as a vSwitch in VM environments. The Open

vSwitch enables Linux to become part of aSDN architecture. In this research, we adopted Open

vSwitch as the underlying connection technology of VNF chains.

RegardingNFV, SDN enables to separate the network functions from expensive appli-

ances. It also enables to implement the separation between VNFs and the underlying physical

network. So, it has a central role in the network virtualization and all its previously discussed

bene�ts. SDN, as an enabler of network virtualization, can expand the services provided by

cloud infrastructures and offer an even higher level of innovation. It can allocate networking

resources dynamically and pro�ciently as dictated by the demands of VM clients.

Among the bene�ts ofSDN, we highlight increasing in network availability as a result

of centralized and automated management of network devices, decreasing manual con�guration

errors.

2.3 Cloud Computing

Cloud computing is the on-demand delivery of computing power, database storage,

applications, and other IT resources through a cloud services platform via the Internet with

pay-as-you-go pricing [10].

A set of 5 attributes, depicted in Figure 2.3, was de�ned byNIST to de�ne cloud

computing in a more instructive way.

Figure 2.3: Cloud Computing Features

1. On-demand self-service: a client can provision computing resources from the cloud without

having to interact with IT or service provider personnel. It is possible to rent virtualized

resources online.

2. Ubiquitous access: it is possible to use standard platforms that provide simple connectivity

without having to put down dedicated cables or systems and without having to buy custom

hardware for access.

2.3. CLOUD COMPUTING 29

3. Measured service: resource usage can be monitored, controlled, and reported, providing

transparency for both the provider and consumer of the utilized service. It enables a pay-per-

use model.

4. Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases

automatically, to scale rapidly outward and inward commensurate with demand.

5. Resource pooling: the cloud provider has different types of grouped resources, including

storage, memory, computer processing, and bandwidth (to name a few), which instead of

being dedicated to anyone client are allocated to clients as they need them.

There are different ways that providers can offer resources as services within a cloud to

their clients.

1. Infrastructure as a Service (IaaS): it refers to on-demand provisioning of infrastructural

hardware resources.

2. Platform as a Service (PaaS): it refers to providing platform layer resources, including

operating system support and software development frameworks.

3. Software as a Service (SaaS): it refers to providing on-demand applications over the Internet.

With clear attributes that de�ne what cloud services are and the types of services that the

cloud could provide, it makes sense to look at how cloud services are deployed. Clouds have

four basic deployment models:

1. Public cloud: The cloud infrastructure is provisioned for open use by the general public.

2. Private cloud: it is created when an enterprise data center is recon�gured in such a way as to

provide the �ve cloud attributes. The enterprise owns the cloud. It is both the provider and the

client.

3. Community cloud: the cloud infrastructure is provisioned for exclusive use by a speci�c

community of consumers from organizations that may own, manage, and operate the cloud

resources.

4. Hybrid cloud: it is a composition of two or more distinct cloud infrastructures (private,

community, or public) through a single management interface.

There are several opensource cloud platforms that allow to provide privateIaaSapproach.

Openstack [98], CloudStack [28], and OpenNebula [97] are the most adopted. In this research, we

have been using the openstackIaaScloud platform due to its natural relationship withNFV [44].

2.3.1 Openstack

Openstack is a cloud management system that controls pools of computing, storage, and

networking resources. It is exposed to the cloud end users as HTTP(s) APIs that provide its

independent parts called openstack services. Openstack cloud logical architecture is depicted in

Figure 2.4:

2.3. CLOUD COMPUTING 30

Figure 2.4: Openstack Architecture

Openstack Dashboard, Image Service, Compute, Block Storage, Networking, and Iden-

tity Service are core projects of openstack cloud. In Figure 2.4, they are represented by the

external rectangles. Each openstack project releases components, represented by internal rounded

rectangles. These are the daemons (background processes) that are executed to provide the

associate functionality of each component. Internal solid arrows represent the relationship among

daemons that form a component, whereas dashed arrows represent the relationship between the

daemons of distinct projects. Openstack components are explained below.

� Compute: known as nova, it provides a way to provision Compute instances. It supports

the creation of the virtual machines through the execution of a set of daemons in Linux or

UNIX servers. Compute services manage and automate pools of CPU and RAM resources.

It is split into �ve daemons:

� nova-api: it accepts and responds to end user compute API calls;

� nova-scheduler: it picks a compute node to run a VM instance;

� nova-conductor: it provides coordination and database query support for nova;

� nova-consoleauth: it provides authentication for nova consoles;

� nova-novncproxy: it provides a proxy for accessing running instances through a VNC

connection;

� nova-compute: is responsible for building a disk image, launching it via the underlying

virtualization driver, responding to calls to check its state, attaching persistent storage,

and terminating it.

2.3. CLOUD COMPUTING 31

� Networking: known as neutron, the standalone openstack Networking provides cloud

operators and users with an API to create and manage networks in the cloud. Indeed,

openstack Neutron is aSDNproject focused on delivering Network as a Service (NaaS) in

virtual computing environments. It does so by deploying several network processes across

many nodes. Such processes provide resources used by the VM network interface, including

IP addressing and routing. Its main daemon is:

� neutron-server: it relays user requests to the con�gured layer 2 plug-in (responsible

for interacting with the underlying infrastructure so that the traf�c can be routed). Linux

Bridge and Open vSwitch are two examples of L2 plug-ins.

Besides neutron-server, openstack Networking, also includes two agents:

� neutron-dhcp-agent: it provides DHCP services to tenant networks;

� neutron-l3-agent: it does L3/Network Address Translation (NAT) forwarding to enable

external network access for VMs on tenant networks.

� Block Storage: provides the traditional disk block-level storage for VMs. It is composed of

the following daemons:

� cinder-api: it authenticates and routes requests throughout the Block Storage service;

� cinder-volume: manages Block Storage devices, speci�cally the backend devices

themselves;

� cinder-schedule: schedules and routes requests to the appropriate volume. By default,

it uses round-robin, but can use more sophisticated policies based capacity or volume

type, deciding which cinder-volume node will be used.

� Dashboard: it provides a web-based user interface to the various openstack components. It

includes both end user area for tenants to manage their virtual infrastructure and administra-

tion area for cloud operators to manage the openstack environment. Horizon service runs as

a Web Server Gateway Interface (WSGI) application, hosted by Apache Web Server.

� Identity Service: it provides identity and access management for all the openstack compo-

nents. It dells with all authentication and authorization transactions aimed at using cloud

resources. Users have credentials they can use to authenticate, and they can be a member of

one or more groups. Any API call results in an authentication interaction with this service.

Similar to the horizon, identity service, called keystone, runs as aWSGIapplication and is

also hosted by apache. Each project contains a component that establishes communication

with Identity Service, as can be evinced by the green dashed lines, labeled as Opentack

Identity API in Figure 2.4.

2.3. CLOUD COMPUTING 32

� Image Service: known as glance, it includes registering, discovering, and retrieving of

virtual machine images. It allows querying ofVM image metadata as well as retrieval of

the actual image.VM images made available through glance can be stored in a variety

of locations from simple �lesystems to disk-block storage systems like openstack cinder.

Glance is split into two daemons:

� glance-api: interacts with users requesting VM images;

� glance-registry: connects to the database backend aiming to store, process, and re-

trieves images metadata, such as size and type.

Figure 2.4 also depicts openstack shared services, adopted by openstack components to

support the provision of their functionalities:

� relational database: each of the previously mentioned components has its own database,

represented by traditional cylinder symbol. Each service requires the creation of tables to

store its data. Most traditional used databases in openstack are MySQL, MariaDB, and

PostgreSQL. For HA, Galera Cluster has been used;

� a message queue is used for communication among all openstack daemons through Advanced

Message Queuing Protocol (AMQP). It coordinates operations and status information among

services. Most traditional message queue services supported by openstack include RabbitMQ,

Qpid, and ZeroMQ. Message queues are represented by circles in Figure 2.4. One example

of AMQP is exhibited by black dashed lines, labeled asAMQP, between cinder daemons

and openstack Compute;

� a cache system, used to speed up dynamic database-driven openstack services by caching data

in RAM. It reduces the number of times that an external data source must be read. Keystone

and Identity are examples of openstack components that use a cache system. Memcached is

the default cache system adopted by openstack.

The openstack platform de�nes a nomenclature formality that associate services to

servers. They are called deployment modes and are described below:

� Controller node: it is the control plane for the openstack environment, running Identity

service for access control, Image service for virtual machines image provision, the manage-

ment portions of nova and neutron services, and the Dashboard. Moreover, it also includes

support for the shared services: SQL database, message queue, and cache system. Finally,

it also executes Network Time Protocol (NTP) daemon for clock synchronization. All

the components and shared services with a blue background in Figure 2.4 are executed in

Controller nodes;

� Compute node: it runs the hypervisor portion of nova that operates tenant virtual machine

instances. Besides hypervisor, the compute node also runs the networking plug-in and an

2.3. CLOUD COMPUTING 33

agent that connect tenant networks to instances and provide �rewalling (security groups)

services;

� Neutron nodeit runs networking services for L3, metadata, DHCP, and Open vSwitch. The

network node handles all networking between other nodes as well as tenant networking and

routing. It also provides �oating IPs that allow instances to connect to public networks.

Figure 2.5 depicts one instance for each each deployment mode. At the bottom, the

names of each role are exhibited in bold. We also insert the hardware (HW), the storage(S), and

operating system (OS) at Figure 2.5 to enable a complete view of each openstack deployment

mode.

Figure 2.5: Openstack Deployment Modes

Besides the provision of deployment modes in isolated physical servers, it is also possible

to group deployment modes in one physical server:

� Controller/Neutron : the controller and neutron services are grouped in one single server;

� All-In-One : as suggested by its name, in this con�guration, all the openstack services are

provided in the same physical server.

Figure 2.6 depicts one instance of All-In-One openstack node.

2.3. CLOUD COMPUTING 34

Figure 2.6: Openstack All-In-One Deployment Mode

The deployment modes are highlighted in this work because the adopted assembling is

relevant for the studied metrics of interest.

Designing an openstack cloud requires an understanding of its user's requirements to

state the best �t con�guration. A speci�c objective of this research is to assembly and con�gure

a High Available cloud infrastructure. Knowing the openstack architecture is a requirement to

provide all its services over a hardware infrastructure withoutSPOFs. The openstack modular

architecture enables to replicate its components and execute them on several physical servers.

For HA openstack cloud, each service must be clustered to ensure its high availability.

2.3.2 The Openstack SFC API

The Openstack SFC API [132] is formed by two parts: the �ow classi�er and the port

chain, as depicted in Figure 2.7. The �ow classi�er speci�es the classi�cation rules that are

used to state which �ows will go through the speci�c chains. The port chain consists of an

ordered sequence of service functions that a particular �ow will go through. A neutron port (a

logical connection of a virtual network interface to a virtual network) receives the ingress �ow

and another neutron port forwards the egress �ow. The SFC API calls these two neutron ports

as port pair. Each port pair is attached to a particular VM providing the associated virtualized

service. Port chains may be provided in a redundant con�guration, in which combined port pairs

compose a port pair groups.

Our implemented studied scenario, that is used to exemplify the adoption of SFC API,

depicted in Figure 2.7, is composed by a port chain with three port pair groups: Firewall, Load

Balancer, and Cache. For 3N redundancy, each port pair group contains 3 VNF instances. We

2.4. CLUSTERS AND HIGH AVAILABILITY 35

opt for these services due to our previous experience with �rewalls, load balancer, and cache

implementations.

Figure 2.7: SFC Graph

Figure 2.7 represents a classi�cation process that directs the traf�c through FW2, LB1,

and Cache3 neutron ports. To provide redundancy and high availability,VNFs are executed

asVMs in Pacemaker clusters, and the traf�c �ows can be classi�ed and steering in a load-

balanced way by port pair groups containing these NFV VMs.

2.4 Clusters and High Availability

A cluster is any ensemble of independently operational elements integrated by some

medium for coordinated and cooperative behavior [126]. Consistent with this broad interpretation,

computer clusters are ensembles of independently operational computers integrated through an

interconnection network. They support user-accessible software for organizing and controlling

concurrent computing tasks that may cooperate on processing a typical application program or

workload.

Motivations for the adoption of server clusters include: high availability, load balancing,

parallel processing, systems management and scalability. Following the motivations for clusters

adoption, we can classify clusters in three types [101, 124]: high performance, load balancing,

and high availability.

High-performance clusters are used in environments with intensive and heavy computing

requirements. Large rendering tasks, as well as scienti�c computing, are examples of high-

performance clusters adoption. In these kinds of processing, all nodes of the cluster should be

active, providing as much processing capacity as possible.

Heavy demand environments typically adopt load balancing clustering. As depicted in

Figure 2.8, users' requests are distributed to multiple machines in a server farm to optimize the

	Introduction
	Motivation and Justification
	Objectives
	Thesis Organization

	Background
	Server Virtualization
	Proxmox VE

	Network Virtualization
	Network Function Virtualization
	Service Function Chaining
	Software-Defined Networking

	Cloud Computing
	Openstack
	The Openstack SFC API

	Clusters and High Availability
	Redundancy Strategies

	Dependability
	Reliability
	Availability
	Maintainability

	Dependability Modeling
	Reliability Block Diagrams
	Continuous Time Markov Chains
	Stochastic Petri Nets
	Capacity Oriented Availability
	Hierarchical Modeling

	Software Aging and Rejuvenation
	Sensitivity Analysis

	Related Works
	Hierarchical Modeling of Virtual Environments
	Software Aging and Rejuvenation of Server Virtualized Systems

	A Methodology for Provisioning of High Available VNF Chains
	Methodology Overview
	Methodology Activities
	System Understanding
	Environment Conception
	Definition of Parameters and Metrics
	Models Design
	State Input Parameters Sources
	Evaluation
	Yield Recommendations

	Measurement Experiments
	Workload for User Generated Content
	Proxmox Server Virtualization Testbed
	HA Openstack Cloud Testbed
	Time To Failure Measurements in Proxmox Server Virtualization Testbed
	Service Function Chain Migration Experiments in HA Cloud Testbed
	Experiments execution

	Availability Models
	Introduction
	Models for VNFs in Proxmox server virtualization infrastructure
	Model for VNF Cache Cluster
	Model for Cache VNF and Load Balancer
	Model for Cache VNF and Load Balancer without SPOFs

	Models for SFCs in openstack cloud infrastructure
	Low-level RBDs for openstack deployment modes
	Low-level RBDs for service function chains
	Top-level SPN sub-models for openstack nodes
	SPN sub-model for openstack nodes without rejuvenation
	SPN sub-model for openstack nodes with rejuvenation

	Top-level SPN sub-models for service chain
	Top-level SPN sub-model for service chain live migration
	Top-level SPN sub-models for chains interconnection

	Case Studies
	Introduction
	VNF Cache Clusters
	Non-redundant VNF Cache Cluster
	Redundant VNF Cache Cluster

	Redundant VNF Caches and Load Balancers
	Redundant VNF Cache and Load Balancer
	No Load Balancer SPOF

	Comparison with Reference Work
	3N Redundant Baseline Model
	Reference Work for Comparison

	Rejuvenation of Service Function Chains
	3N Redundant Service Function Chain
	Baseline model
	Rejuvenation model
	Experimental Results

	2N Redundant Service Function Chain
	Baseline models
	Rejuvenation models
	Experimental results

	Conclusion
	Contributions
	Limitations
	Future Work

	References
	Appendix
	HA OpenStack Implementation
	Specification of TISVEP Extension Messages

