‘Centto

~demformética
U=«F+* P+«E

Pos-Graduacao em Ciencia da Computacao

Rubens de Souza Matos Junior

IDENTIFICATION OF AVAILABILITY AND PERFORMANCE
BOTTLENECKS IN CLOUD COMPUTING SYSTEMS: AN
APPROACH BASED ON HIERARCHICAL MODELS AND

SENSITIVITY ANALYSIS

Ph.D. Thesis

e
L[=4
L=

)=

Federal University of Pernambuco
posgraduacao@cin.ufpe.br
www. ci n. uf pe. br/ ~posgr aduacao

RECIFE
March 2016

www.cin.ufpe.br/~posgraduacao

ne-
1| [~
[[~2

Federal University of Pernambuco

Center for Informatics
&5%% Graduate in Computer Science

®

Rubens de Souza Matos Junior

IDENTIFICATION OF AVAILABILITY AND PERFORMANCE
BOTTLENECKS IN CLOUD COMPUTING SYSTEMS: AN
APPROACH BASED ON HIERARCHICAL MODELS AND

SENSITIVITY ANALYSIS

A Ph.D. Thesis presented to the Center for Informatics of
Federal University of Pernambuco in partial fulfilment of

the requirements for the degree of Philosophy Doctor in
Computer Science.

Advisor: Paulo Romero Martins Maciel
Co-Advisor:Kishor S. Trivedi

RECIFE
March 2016

Tese de doutorado apresentada Pobens de Souza Matos Janiorao programa de POs-
Graduacgéao em Ciéncia da Computacéo do Centro de Informaticaislarkldade Federal de
Pernambuco, sob o tituldentification of availability and performance bottlenecks in cloud
computing systems: An approach based on hierarchical modeland sensitivity analysis

orientada peld’rof. Paulo Romero Martins Maciel e aprovada pela banca examinadora for-
mada pelos professores:

Prof. Paulo Roberto Freire Cunha
Centro de Informéatica/UFPE

Prof. Nelson Souto Rosa
Centro de Informatica/UFPE

Prof. Eduardo Antdnio Guimaraes Tavares
Centro de Informatica/UFPE

Prof. Edmundo Roberto Mauro Madeira
Instituto de Computagao/UNICAMP

Prof. André Brinkmann
Computer Science Department/Johannes Gutenberg - Unétdviainz

RECIFE
March 2016

| dedicate this thesis to my beloved wife, for her love,
friendship, patience, and dedication through these long
years. It is also dedicated to my mother and sisters, that
gave me comfort and full support during this journey. And
in memoriam to my father, who could not live up to this
moment, but | must remark how much | owe him for
reaching this stage.

Acknowledgements

Thanks God for allowing me to reach this moment, giving metheand strength to
overcome adversities.

Thanks to all colleagues and friends that | met in UFPE, aafpethose from MoDCS
group: Jean, Jamilson, Danilo, Vandi, Artur, Ermeson, Dapdulian, Gustavo, Rafael, Joao,
Jair, Bruno Silva, Bruno Nogueira, Airton, Charles, Carlos, ilifarica, Gracieth, and Tiago.
They made this undertaking lighter but also more produdtiem | ever imagined. The collab-
oration in such a prolific research group helped for the ssecoemy activities.

The support from the funding agencies, CAPES (grant PDSE&T98) and FACEPE
(grant IBPG-0430-1.03/10) was essential for proper devetoy of the activities reported here.

My gratitude also goes to the people from DHAAL group, andessor Kishor Trivedi,
for accepting me for a short but valuable experience at Dukivassity and for sharing his
knowledge.

At last, but not least, | am so grateful for the opportunitiesnfidence, and support
that my advisor, professor Paulo Maciel, has always giverfrora the very beginning. The
technical knowledge, perseverance, and hard work are dgarti@at inspired through the last
years.

Obstacles are those frightful things you see when you takeey@s off
your goal.

—HENRY FORD

Resumo

O paradigma de computacdo em nuvem é capaz de reduzir 0S CigsEUISICAO €
manutencdo de sistemas computacionais e permitir umaogegtélibrada dos recursos de
acordo com a demanda. Modelos analiticos hierarquicos @astos sdo adequados para
descrever de forma concisa o desempenho e a confiabilidasistdmas de computagéo em
nuvem, lidando com o grande niumero de componentes que toenstesse tipo de sistema.
Esta abordagem usa sub-modelos distintos para cada niastéma e as medidas obtidas
em cada sub-modelo s&o usadas para calcular as métricgamddssgara 0 sistema como um
todo. A identificacdo de gargalos em modelos hierarquicds ger dificil, no entanto, devido
ao grande namero de parametros e sua distribuicdo entrstogal formalismos e niveis de
modelagem. Esta tese propde métodos para a avaliacdo eabetkrgargalos de sistemas de
computagcdo em nuvem. A abordagem baseia-se na modelag@nghiea e técnicas de analise
de sensibilidade paramétrica adaptadas para tal cendta.pEsquisa apresenta métodos para
construir rankings unificados de sensibilidade quandodtismos de modelagem distintos sao
combinados. Estes métodos sao incorporados no softwa@iiefornecendo uma estrutura
automatizada de apoio ao processo. Uma metodologia des@essa abordagem foi proposta
e testada ao longo de estudos de casos distintos, abranggpeltios de hardware e software
de sistemas laaS (Infraestrutura como um servico), destdeebde infraestrutura basica até os
aplicativos hospedados em nuvens privadas. Os estudosdenostraram que a abordagem
proposta € Util para orientar os projetistas e administesdde infraestruturas de nuvem no
processo de tomada de decisdes, especialmente para apestasis e melhorias arquiteturais.
A metodologia também pode ser aplicada por meio de um aigorite otimizagdo proposto
aqui, chamado Sensitive GRASP. Este algoritmo tem o objd@votimizar o desempenho e a
confiabilidade de sistemas em cenérios onde ndo € posspletaxtodas as possibilidades ar-
quiteturais e de configuracéo para encontrar a melhor quagide servico. Isto € especialmente
util para os servigos hospedados na nuvem e suas compléeaestruturas subjacentes.

Palavras-chave: Computacdo em nuvem; avaliacdo de desempenho; dependdéjlitiode-
los analiticos; andlise de sensibilidade; cadeias de Madtonizacao

Abstract

Cloud computing paradigm is able to reduce costs of acquisdand maintenance of
computer systems, and enables the balanced managemestwfoes according to the demand.
Hierarchical and composite analytical models are suitédlelescribing performance and de-
pendability of cloud computing systems in a concise mantea)ing with the huge number
of components which constitute such kind of system. Thataah uses distinct sub-models
for each system level and the measures obtained in each sdélare integrated to compute
the measures for the whole system. Identification of batti&a in hierarchical models might
be difficult yet, due to the large number of parameters anat thstribution among distinct
modeling levels and formalisms. This thesis proposes nasthar evaluation and detection of
bottlenecks of cloud computing systems. The methodolodpaged on hierarchical modeling
and parametric sensitivity analysis techniques tailomdstich a scenario. This research in-
troduces methods to build unified sensitivity rankings whestinct modeling formalisms are
combined. These methods are embedded in the Mercury seftaal;, providing an automated
sensitivity analysis framework for supporting the proc&istinct case studies helped in testing
the methodology, encompassing hardware and softwaretasgextoud systems, from basic in-
frastructure level to applications that are hosted in peivdouds. The case studies showed that
the proposed approach is helpful for guiding cloud systeessgthers and administrators in the
decision-making process, especially for tune-up and tachiral improvements. It is possible
to employ the methodology through an optimization algonigproposed here, called Sensitive
GRASP. This algorithm aims at optimizing performance andedépbility of computing sys-
tems that cannot stand the exploration of all architectamal configuration possibilities to find
the best quality of service. This is especially useful fauc-hosted services and their complex
underlying infrastructures.

Keywords: Cloud computing; performance evaluation; dependabilibglgical modeling;
sensitivity analysis; Markov chains; optimization

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

List of Figures

Cloudservicemodels 20
Cloud computing actors by service model 21
Cloud deploymentmodels 23
Generic cloud software architecture 24
Benefits from adopting cloud computing 27
Eucalyptus high-level components 28
General operation of Eucalyptus Auto scaling mechanism 29
Example of RBD e 32
Simple CTMC 34
Example of GSPN e 5 3
Example of plot for one parameter at a time analysis 37
Plot for non-linear and non-monotonic function 39
Supporting methodology for bottleneck identificationaboud systems 49
Process of sensitivity index computation with symbdlfterentiation 54
Overview of composition of sensitivity indices for dim&tt models 55
Sensitivity computation withRBDandCTMC 56
Sensitivity computationwithRBD 57
Sensitivity computation with SPNandCTMC 60
Sensitivity computation with SPN (simulation)and CTMC. 63
Example of sensitive construction of initial solution 67
Example of neighborhood fora solution 67
Computation of cost for a possible solution using a madalysis tool 68
Private cloud architecture with redundant components 71
RBD model of the Cloud system withonecluster 72
RBD model of the Cloud system withtwoclusters 72
RBD model of the Cloud system with three clusters 73
RBD modelofonenode 73
Markov chain model for a redundant subsystem with twashos. 74
RBD model of a non-redundant Cloud Manager Subsystem 75
RBD model of a non-redundant Cluster Subsystem 75
Sensitivity analysis - Plots of most impacting paramsete 80
Sensitivity analysis - Plots of least impacting paremse 81
Mobile cloud architecture. 83

RBD model for the mobilecloud.

5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28

Al
A.2
A.3
A4
A5

CTMC forthe mobiledevice.
CTMC for the battery discharge.
CTMC for the mobile application.
CTMC for the Infrastructure Manager.
Activity Diagram of Event Recommendation Mashup
Detailed representation of Eucalyptus Auto Scalimgess.
SPN model for the scalable web service on privatecloud.
CTMC model for the VM instantiation performance.

CTMC model for the event recommendation mashup
Impact of mrt_ES, mrt_SA, and mrt_SS on systemresponse.
Impact of TLB, TSend, and TRep on system response time
Impact of pCache on system responsetime
Eventrecommendationmashup
Average costofsolutions L e
Numberofhits
Distribution of execution time (time-to-targetplots.

Overview of Mercury features

Dialog window for RBD sensitivity analysis on Mercury

UML sequence diagram for sensitivity computation with R&d CTMC . . .
Dialog window for SPN sensitivity analysis on Mercury
UML sequence diagram for sensitivity computation witeihsand CTMC . . .

3.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

List of Tables

Comparison table of relatedworks 46
Input Parametersforthenodes 76
Input Parameters for the Cloud Manager and Cluster Swdmsgst 76
Parameter values for the Markov chainmodel 76
Availability and downtime measures of the cloud system 77
Sensitivity rankings for architectures A1, A2, and A3 79
Input parameters for the mobile device and mobile apfitio models 89
Input parameters for the WiFi, 3G, and battery models 89
Input parameters for the IM, SM,andnodes 90
Availabilityresults 90
Sensitivity ranking based on partial derivatives 92
Sensitivity ranking from percentage difference 93
Sensitivity ranking from'2experimentanalysis 94

Immediate transitions of the SPN model for scalable segbice on private cloud 99
Timed transitions of the SPN model for scalable webisemn private cloud . 103

Parameter values for the CTMC model of VM instantiation.. 104
Parameter values for the mashup CTMC model. 104
Performance measures 104
Minimum and maximum parameter values for computingisigity indices . . 106
Sensitivity ranking for the mainmodel 107
Sensitivity ranking for the VM instantiation submodel 107
Sensitivity ranking for the mashup sub-model 108
Unified sensitivity ranking for the general model andreadels 108
Parameters used in the benchmark with siz€ 100 113
Reference solutions used throughout experiments 114

Statistical summary of executiontimes 116

List of Algorithms

Algorithm for sensitivity analysis of hierarchical modeith RBD as top-level

model 58
Algorithm for sensitivity analysis of hierarchical modeith SPN as top-level

model 61
Algorithm for Sensitive GRASP 66
Algorithm for Sensitive Construction procedure 66

Algorithm for the approximate local search used in GRASP 68

API
cC
CLC
CRM
CTMC
DBaaS
DHCP
DNS
DOE
DRaaS
DSaaS
DSPN
DTMC
EKI
ELB
EMI
ERI
ERP
GPS
GRASP
GSPN
laaS
KVM
MBaaS
MRM
NAT
NC
NIST

List of Acronyms

Application Programming Interface i 25
Cluster Controller o e e 27
Cloud Controller e 27
Customer Relationship Managementt 21
Continuous Time Markov Chain e 31
Database as @ SerVICet e e e e 22
Dynamic Host Configuration Protocolt 25
Domain Name SyStem 25
Design of eXPerimeNntS ot 39
Disaster ReCOVEery as a ServiCe.ttt s i e e iiaaaas 22
Data Storage as @ SeIVICEttt e e s e 22
Deterministic and Stochastic PetriNet.......... ... oo, 36
Discrete Time Markov Chain e 33
Eucalyptus Kernel Image. ... e 97
Elastic Load BalanCing e 30
Eucalyptus Machine lmage. ... e 97
Eucalyptus Ramdisk Image. 97
Enterprise Resource Planningt i 21
Global Positioning System i 95

Greedy Randomized Adaptive Search Procedure
Generalized Stochastic PetriNet oo i 35
INfrastruCture @s @ SeIVICEt 17

Kernel-based Virtual Machine

Mobile Backend asa Service 22
Markov Reward Model. ... 31
Network Address Translation. ... 25
Node Controller. e e 27

National Institute of Standards and Technology................ 20

PaaS
RBD
S3
SaaS
SC
SLA
SPN
SRN
UML
VLAN
VM
VMI
VMM
XaaS

Platform as a SerVIiCeot e 20

Reliability Block Diagram. e 16
Simple Storage ServiCet 28
SOftware as @ SeIVICE 20
Storage Controller. o e 27
Service Level Agreement o 16
StOChaSHC Petri Net. e 31
Stochastic Reward Net. ... 43
Unified Modeling Languageo i e e 95
Virtual Local Area Network e 25
virtual machine 22

Virtual Machine Image
Virtual Machine MoNItor. i e e 24

Everythingas a Service e 22

1

Summary

Introduction 16
1.1 Objectives e 71
1.2 Aimed contributions 18
1.3 Organization ofthedocument. 18
Background 19
21 CloudComputing e e e 19
2.1.1 ServiceModels 20
2.1.2 DeploymentModels 22
2.1.3 Open-source Cloud Computing Platforms 23
2.1.4 Challenges for Cloud Computing 25
2.1.5 EucalyptusPlatform, 6 2
2.2 Dependability and Performance Modeling 30
2.2.1 Reliability Block Diagrams 13
222 MarkovChains 33
2.2.3 StochasticPetriNets 35
2.3 Sensitivity Analysis e e 36
2.4 ConcludingRemarks 40
Related works 41
3.1 Dependability and Performance Evaluation of Cloud Comgut 41
3.2 Sensitivity Analysis of Analytical Models 43
3.2.1 Differential Sensitivity Analysis on Queueing Sysge 44
3.2.2 Differential Sensitivity Analysis on Markov Chains 44
3.2.3 Differential Sensitivity Analysison PetriNets 45
3.3 Comparison of Main RelatedWorks 46
3.4 ConcludingRemarks 47
Approach for identification of availability and performan ce bottlenecks in cloud

systems 48

4.1 Supporting methodology e 48

4.2 Sensitivity Analysis of Hierarchical Models 53
4.2.1 Composition of Sensitivity Indices with RBD as Top-leveddel . . . 55
4.2.2 Composition of Sensitivity Indices with SPN as topelawodel 59
4.2.3 Implementation on Mercury Tool 64

4.3 Optimization Guided by Sensitivity Ranking 64

15

4.4 ConcludingRemarks 69
5 Case studies 70
5.1 Availability of Redundant Private Clouds 70
5.1.1 Creatingtop-levelmodel 71
5.1.2 Creating sub-models for specific components 72
5.1.3 Definition of input parameters 75
5.1.4 Solution of hierarchicalmodel 76
5.1.5 Sensitivity analysis on sub-models and high-levadat®. 77
5.2 Availability of a Mobile Cloud System 82
5.2.1 Creatingtop-levelmodel 83
5.2.2 Creating sub-models for specific components 84
5.2.3 Definition of input parameters 88
5.2.4 Solution of hierarchicalmodel 90
5.2.5 Sensitivity analysis on sub-models and high-levadat®. 91
5.3 Performance of Composite Web Services on Private Cloud 95
5.3.1 Creating top-levelmodel 98
5.3.2 Creating sub-models for specific components 100
5.3.3 Definition of input parameters 103
5.3.4 Solution of hierarchicalmodel 104
5.3.5 Sensitivity analysis on sub-models and high-levadet®. 105
5.4 Optimization of composite web services with SensitvASP 112
6 Final remarks 119
6.1 Contributions 191
6.2 Futureworks 012
References 122
Appendix 131
A Development of Mercury Tool Features 132

B Partial Derivatives for Case Study 1 138

Introduction

Cloud computing makes computer resources (processing psiweage, software) avail-
able through the Internet, with service providers potdéigtiacated anywhere around the world.
These service providers have been using cloud computiregligen to reduce acquisition costs
and manage the highly variable demands requested by th&tomars. Cloud computing pro-
vided high flexibility due to the integration of virtualizah technologies and mechanisms for
automated hardware and network managemeéRSLUYS et al. 2009 BARHAM et al.,
2003. The variety of components in such systems and the interaatmong them bring new
challenges to assure the desired or contracted levels fofrpeance and dependability (reliabil-
ity, availability, and security).

Analytical modeling helps to plan and manage hardware, otand software infras-
tructures CALLOU et al, 2011, MATOS JUNIOR et al.2011, SOUSA; MACIEL; ARAUJQ
2009, either by comparing alternative configurations beforplementing a system, or by al-
lowing the prediction of effects in system availability apdrformance after changes in its
components. Such planning is essential for mission ctisgatems, and service providers,
who need to meet strict Service Level Agreements (SLAS),sehaolation may result in fines,
cancellation of contracts and other financial losse&TO; TRIVEDI, 2007 ARAUJO et al,
2011). Reliability Block Diagrams (RBDs)MACIEL et al., 2011), Fault Trees, queuing net-
works, Markov chains and Petri netsIALHOTRA; TRIVEDI, 1994 are among the formal
models commonly found in this context. Cloud computing systedue to their characteris-
tics (e.g., virtualization, and layered modular architege}, can be described in a more concise
manner through hierarchical models. In this approacheudfit levels of the system are repre-
sented separately in sub-models, and the measures of dachaslel are integrated to obtain
the measures for the system as a whole.

Systems modeling usually requires to handle many diffepanameters, for both per-
formance and dependability studies. Each parameter canadistinct impact on availability,
reliability and performance measures, therefore is cttailnow the “order of importance” of
the model parameters, so you can decide the appropriateoieaéention given to each one
(BONDAVALLI; MURA; TRIVEDI , 1999. Parametric sensitivity analysi§RANK, 1978

17 1.1. OBJECTIVES

HAMBY , 1994 is a method to determine the order of influence of the pararaen the re-
sults of a model. This method has been applied in some typasaiytical models, such as
Markov chains, Petri nets and queuing networks, but in alated way, without considering
the integration of different models in a hierarchical agoto

The computation of the order of importance for parametes merarchical model is
not trivial, because there are multiple components in nedédifferent levels. An example
is found in studies involving availability and reliabilityecause the failure of a component in a
given model may impact the measures of a subsystem repeelseynainother model, incurring
in relations difficult to be measured. Therefore, the cogabf a sensitivity analysis method-
ology tailored to the characteristics of hierarchical modewould benefit the evaluation of
dependability and performance of cloud systems, as welklzer @reas that use this kind of
approach.

Considering the challenges just presented, this study atrdev@&loping methods for
accurate identification of performance, reliability andhigbility bottlenecks, especially for
designers and administrators of complex systems, suchrtashZzed data centers and Infras-
tructure as a Service (lIaaS) cloud computing environmemntsethodology that leverages the
evaluation of cloud computing systems. Such an approadhateonploy hierarchical model-
ing techniques and combine specific sensitivity analysigas for distinct models. Decision-
making processes may be guided by the hierarchical anallytiodels and their sensitivity
analysis, providing robust and clear information aboutgbets of optimization in the ana-
lyzed system.

1.1 Objectives

The main objective of this research is to propose methodthtodetection of perfor-
mance and dependability bottlenecks in cloud computingesys. This approach should en-
able the identification of points for improvement at differéevels of the systems under study,
through hardware and software. The proposed methods vedl eampliance with some non-
functional requirements expected by users of cloud systeuth as availability and response
time. Among the specific goals of the research, we can list:

= Build and validate performance and availability models foud computing archi-
tectures found in corporate environments and describdtkifiterature.

= Develop composition methods for sensitivity metrics oflgtieal models commonly
used in the areas of performance and dependability evaluati

= Automate the computation of sensitivity metrics for hieracal models in the Mer-
cury tool MERCURY, 2016.

18 1.2. AIMED CONTRIBUTIONS

» Recommend improvements to some existing cloud computirgtaotures through
the proposed methodology and its sensitivity analysisli®esu

1.2 Aimed contributions
The main contributions that we plan to provide through thests are the following:

= Models for dependability evaluation of cloud computingteyss, addressing appli-
cation and infrastructure issues.

= Models for performance evaluation of applications that leygpecific features of
cloud computing systems, such as elasticity mechanisms &eitoscaling).

= Methods and tools for automated sensitivity analysis ofan@hical models.

= A supporting methodology that describes the activitiesiiregl for proper definition
and analysis of models.

= Algorithms for optimization of cloud computing infrastituces and services, inte-
grating sensitivity analysis techniques and well-essdigld optimization methods.

Such results shall empower the proper planning of cloud caimg infrastructures, es-
pecially the modifications made for systems already in pctdo. The products of this research
are supposed to aid the fulfillment of users and adminissa®pectations that are usually de-
fined by means of SLAs.

1.3 Organization of the document

This thesis is structured as follows. Chapter 2 clarifies s@tesant background themes
the reader should know for properly understanding this dwt. Chapter 3 discusses notewor-
thy works found in literature that have some topics in comrwthose addressed in this the-
sis. The proposed sensitivity analysis methods for ideatifon of bottlenecks are described in
Chapter 4. It also explains the methodology that supportsahsitivity analysis for hierarchical
models.

Chapter 5 presents case studies which were used to verifypfiieability of the pro-
posed approach as well as to demonstrate its benefits artdtlions. Final remarks are dis-
cussed in Chapter 6. The Appendix A presents details on theemgntation of sensitivity
analysis features for the Mercury todlERCURY, 2016(SILVA et al., 2015.

Background

This chapter discusses the basic concepts of three mais tra@iaset up the focus for
this thesis: cloud computing, dependability and perforoeamodeling, and sensitivity analy-
sis. The background presented here shall provide the reggdgsowledge for a clear compre-
hension of the chapters ahead, including the aspects swlirauthe proposed techniques and
subsequent case studies.

2.1 Cloud Computing

Cloud computing is a model for enabling convenient, on-dednatwork access to a
shared pool of configurable computing resources (e.g.,ar&Byservers, storage, applications,
and services) that can be rapidly provisioned and releasgdnanimal management effort
or service provider interactiorMELL; GRANCE, 2011). ARMBRUST et al.(2010 stress
that cloud computing refers to both the applications dedideas services over the Internet and
the hardware and systems software in the datacenters thnat@rthose services. In such a
model, users access services based on their requiremehtaitviegard to where the services
are hosted or how they are deliver&L(YYA et al., 2009.

Numerous advances in software architecture and hardwaoakzation have leveraged
the adoption of cloud computing, supporting the develogroéapplications which scale grace-
fully and automatically $UN, 2009, also known as elastic computing.

ARMBRUST et al.(2010 consider that three aspects are new in cloud computing fro
a hardware point of view: i) the illusion of infinite compugimesources available on demand,
thereby eliminating the need for cloud computing users &m ffhr ahead for provisioning; ii)
the elimination of an up-front commitment by cloud usersyéby allowing companies to start
small and increase hardware resources only when their rggeds iii) the ability to pay for
use of computing resources on a short-term basis (e.g.egsocs by the hour and storage
by the day) and release them when they are no longer usefal iwloften called as “utility
computing”. Therefore, computational services are comitizedl and delivered in a manner
similar to traditional utilities such as water, electycigas, and telephony.

20 2.1. CLOUD COMPUTING

Different cloud computing offerings will be distinguishbedsed on the level of abstrac-
tion presented to the programmer and the level of managemhéme resources. Therefore, it is
possible to identify distinct service models and deploymmeadels for cloud systems, that are
presented as follows.

2.1.1 Service Models

The National Institute of Standards and Technology (NISTY8A, has defined three
service models for cloud computing: Software as a Serviaa$y Platform as a Service (PaaS),
and laaSNELL; GRANCE, 201]). Figure 2.1 shows the services models arranged as layers
of a complete cloud service, and shows examples of servaesly provided in each layer.

With laaS, the consumer can allocate processing, storageporks, and other funda-
mental computing resources. The consumer is able to depldyran arbitrary software on
top of such resources, which may include operating systerdsapplications. The consumer
does not manage or control the underlying cloud infrastinecbut has control over operating
systems, data, and deployed applications; and usuallyelihtegulation of some networking
components (e.g., host firewalls).

Software-as-a-Service Productivity\ [ERP, CRM,
(SaaS) apps etc
Platform-as-a-Service
(PaaS)
Infrastructure-as-a-Service
(1aaS) Processing Storage

Figure 2.1: Cloud service models

Amazon, Google, Microsoft, Rackspace, and Salesforce am@rthe major cloud
computing providers. Those companies enable fast deplolyofevarious computational re-
sources to their customers, that pay only for what they sfely used. Amazon Elastic Com-
pute Cloud (EC2) is one of the pioneer and most successful lamfsigts, which was followed
by competitors such as Google Compute Cloud, and Microsoftéziihere is a variety of
options in terms of processing power (e.g, number of CPU fonmesn memory capacity, and
storage space for the virtual machines that a user can deptbgse services.

PaaS provides a framework that developers can build uporetelap or customize
cloud-based applications. It includes middleware, prognéng libraries, development tools,
database management systems, and other services to siingpeeb application lifecycle, i.e.,

21 2.1. CLOUD COMPUTING

building, testing, deploying, managing, and updatikigGROSOFT, 20163.

Google App Engine is an example of PaaS, that allows devedogreating and de-
ploying applications with Python, Java, PHP, and Go prognarg languages directly on the
Google’s infrastructure, benefiting from ready-to-usediies and frameworks, as well as the
ability to scale as traffic and data storage needs chaB@OGLE 2016. Microsoft Azure
also has PaaS capabilities, enabling software developmtmfavaScript, Python, .NET, PHP,
Java, and Node.js${ICROSOFT, 2016h.

With SaasS, the capability provided to the consumer is to lisg@tovider’'s applications
running on a cloud infrastructure. The applications areessible from various client devices
through either a thin client interface, such as a web broiesegr, web-based email), or a pro-
gram interface NIELL; GRANCE, 2011). The consumer only controls limited user-specific
application configuration settings, and does not know nardwxess to the underlying hard-
ware, operating system, and any other software infrastrea¢hat supports that application.

SaaS has become a major trend in the development of apptisafl here are important
examples of cloud-based software in almost any categaryding office suites, Customer Re-
lationship Management (CRM), Enterprise Resource PlanniR§P{Ephoto edition tools, and
media players. Google Docs, Microsoft Office 360, Adobe GQredafloud, Salesforce CRM,
GMail for Work, and Youtube are services that replace tradl client-server or stand-alone
desktop applications. Such services are usually built profdPaa$S, or directly on laaS envi-
ronments without the aid of PaaS features. The customeras 8as little or none installation
requirements besides a web browser, but fast and relialtleorie connectivity becomes an
important need.

Saas Consumes
X4
K4
Provide,/ A v /\
, . v~ End-user
L/ Supports Vo
\ 4 i v Provides
\ / ’ N S
.’ Provide ' i
- rovi
€------3 Paa
- \ S Consumes
Cloud AN X S ‘Peveloper
vendors N ; So \
AN Su pp:orts Provides p\ides
. \\ S ‘\
Provide . RN
laaS
Consumes
Sysadmin

Figure 2.2: Cloud computing actors by service model

Figure 2.2 depicts the target audience of each service mdétted-users consume ap-

22 2.1. CLOUD COMPUTING

plications provided by SaaS vendors; software develogarswone programming resources at
PaaS environments; and systems administrators (sysadooinsume processing, networking,
and storage capacity from laaS providers. It is worth negjdhat cloud computing users at
laaS level might use the resources to become a PaaS or SaadeproA PaaS user is also

expected to create applications to be accessed in the Sa#3.mo

The three service models defined by NIST were expanded inténature and industry
terminology by the inclusion of Data Storage as a Servicead®), Database as a Service
(DBaaS), Mobile Backend as a Service (MBaaS), Disaster RecagamyService (DRaaS), and
many similar acronyms. This induced the creation of the tEuarything as a Service (XaaS)
to emphasize that potentially any computational resoureetivity can be offered as a service
in the cloud.

This Ph.D. thesis deals mainly with laaS, and the concedbofiomost used here is: “a
group of machines configured in such a way that an end-useegaest any number of virtual
machines (VMs) of a desired configuratioBEMPOLINSKI; THAIN, 2010. The cloud will
run these VMs somewhere on the pool of physical machinesttioains. The word “cloud”
in this context denotes the tenuous or almost intangiblaraatf these VMs. As mentioned
by SEMPOLINSKI; THAIN (2010, the end-user neither knows nor cares where exactly these
VMs are physically located or the configuration of the ungiad hardware, so long as they can
access their bank of properly configured VMs. On the othedharloud system administrator
must have deeper knowledge on the infrastructure that rgbsfered and how those compo-
nents can be tuned to assure acceptable quality of servimzefbre, the methods proposed in
this thesis should be most useful for the system adminsBaif laaS platforms. To a lesser
extent, this work also takes into account details of softvagplications running on top of laaS
clouds. The distinction between laaS components and esdapglication components will be
clearly specified in the case studies when this becomessages

2.1.2 Deployment Models

Clouds can also be classified in terms of deployment modetsddfine who owns
and manages the clou#RHT; ESCALANTE 2010. Figure 2.3 depicts the three main
deployment models: public, private, and hybrid clouds.

According to NIST MELL; GRANCE, 201J), in a public cloud the infrastructure is
provisioned for open use by the general public. It may be awnenaged, and operated by a
business, academic, or government organization, or soméioation of them. It exists on the
premises of the cloud provider, and the access to resowaesially charged in a pay-as-you-
go mannerZHANG; CHENG; BOUTABA (2010 emphasize that public clouds offer several
key benefits to service providers, including no initial ¢apinvestment on infrastructure and
shifting of risks to infrastructure providers.

A private cloud, or internal cloud, is provisioned for exsilte use by a single organi-

23 2.1. CLOUD COMPUTING

. :rhird-party provide;‘ .
-) [S— \ *

« = Y Compute 2
¥ | Services J __ -
Database \
4 Services SECEER ;
.' < Services] -

-

?ubm: clo-ud

Hybrid cloud -

. -— -
- /¢ 4 Compute A _'
. Services) ™ \

Y 4 Database

. L__Servi Storage Enterprise

rvi
\ Srvices Services .’ Intrgnet
', -_— EE e Em . .

Private cloud

Figure 2.3: Cloud deployment models

zation comprising multiple consumers (e.g., businessunlt may be owned, managed, and
operated by the organization, a third party, or some contibbimaf them, and it may exist on or
off premises MELL; GRANCE, 2011) (FURHT; ESCALANTE 2010. It is usually adopted
when the organization has concerns on storing or procesisitggoutside their own facilities.
Beyond privacy and security concerns, a need for fine-grdawed of control on software, net-
work, and hardware components might lead to the choice w&j@iclouds instead of public
clouds.

A hybrid cloud is a composition of two or more distinct clomdrastructures that remain
unique entities, but are accessed jointly by means of stdimda@ or proprietary technology
that enables data and application portabilit§HLL; GRANCE, 2011). Hybrid clouds might
be arranged to keep confidential or other sensible dataxely on local premises whereas
common information is stored and processed on public itriratire. Load balancing between
clouds is also an application for hybrid clouds.

Some works also consider a fourth deployment model, cakkedoanmunity clouds
(MELL; GRANCE, 201)). In such a model, infrastructure resources and costs aredy
distinct organizations with common purposes or concerrise fesources are integrated in a
manner that every partner has access to a virtually largepatational capacity with reduced
costs, but without demanding public cloud services.

2.1.3 Open-source Cloud Computing Platforms

There are some software frameworks for building privateidto Eucalyptus§UCA-
LYPTUS, 2016, OpenNebula@PENNEBULA 2016, OpenstackQPENSTACK 2016, and

24 2.1. CLOUD COMPUTING

Cloudstack CLOUDSTACK, 2016 are well-known open-source cloud platforms and the docu-
mentation available about their internal functioning neatkteem interesting for a deeper analysis
of the components in an laaS cloud. Those platforms share sbiaracteristics that allow us
to describe a generic infrastructure needed to make a cloogpuating system workSEM-
POLINSKI; THAIN, 2010(VON LASZEWSKI et al, 2012. Figure 2.4 depicts such parts of
an abstract cloud software architecture.

Resources Management

Interface Network
services

Cloud Manager /
User

Virtual Infrastructure
Manager

Cloud
storage

VM image

epositor
(Compute node\
(. N)
VM M Compute node Compute node
Hypervisor
EEN
oS Hypervisor | Hypervisor |
\ j (015 (015

Figure 2.4: Generic cloud software architecture

A cloud must have a pool of physical machines (compute nodédsre VMs will be
instantiated. The hardware and the base operating systéne aompute nodes have important
requirements for proper usage on a cloud environment. , Riretprocessors of the physical
nodes should have extensions for virtualization, and tleesensions must be enabled on the
BIOS setup. According tofON LASZEWSKI et al, 2012, the absence of such virtualization
extensions greatly limit both the speed of the VMs and thdaoghof software components.
Kernel modules for virtualization might also be requiredtioa operating system.

The virtual machine hypervisor, also known as Virtual MaehMonitor (VMM), pro-
vides a framework which allows VMs to run. Popular VMMs ing&iXen, KVM, and Vir-
tualBox, that are open-source, and VMware, which is progmnetDistinct cloud frameworks
support distinct subsets of hypervisors.

Another common component among cloud frameworks is a repgf VM disk im-
ages. In order to usefully run VMs, a virtual hard drive mustavailable. In cases where one
is simply creating a single VM on a single physical machin®dlamk disk image is created
and the VM installs an operating system and other softwaosveier, in a cloud environment,
dozens or even thousands of VMs might be created and temdimat short timespan, so the
installation of a full operating system on each VM would ta#te much time. For this reason,
each cloud system has a repository of disk images, includiady-to-use operating systems

25 2.1. CLOUD COMPUTING

snapshots, that can be copied and used as the basis for meal disks. The devices that hold
the VM image repository might also host a cloud storage feipkeg data that are directly han-
dled by user applications. Such a remote storage is oftasified as object storage or block
storage, depending on the nature of data organization asid bperations available for user
access.

SEMPOLINSKI; THAIN (2010 highlight that cloud frameworks in general also man-
age network services such as DNS, DHCP, NAT, VLANSs, and the@subrganization of the
physical machines. They perform virtual bridging of thewak, that is required to give each
VM a unique virtual MAC address and so enable full network oamication in the VM. The
cloud framework configures DHCP and DNS processes to hanelllAC and IP addresses of
virtual nodes, releasing the cloud operator from many nt@dministration tasks. IP reserva-
tion and specification of firewall rules for specific VMs aré@t important services available
in laaS cloud computing platforms.

A front-end interface for resources management enables tseequest VMs, specify
their parameters, and obtain needed certificates and dradan order to remotely access the
created VMs. Some front-ends perform various types of adiveglthat limit the amount of
resources that a user can allocate as well as choose theahlpgiation of those resources.
Some of those front-ends implemet# factoindustry standard Application Programming Inter-
faces (APIs) such as EC2 from Amazon, what might constitutedsantage for implementing
hybrid clouds.

At last, the cloud framework itself orchestrates the ergystem. It processes inputs
from the front-end interface, loads the needed disk images the repository, requests that a
hypervisor in one node sets up a VM and then signals DHCP anddithg programs to define
and configure MAC and IP addresses for the VM.

Most cloud platforms also include additional modules f@ddoalancing, high availabil-
ity, performance monitoring, and similar mechanisms. Tému$ of those components is the
automation of VM and application management tasks. Thewuldhenable a fast response to
failures, peeks of workload, and other events that migleicatihe quality of service before the
system administrator is able to detect the problem and ecacttdirectly.

Next section describes Eucalyptus, that is an example & faavate cloud platform
deployed in many companies and organizations. There is mocbhmentation about its com-
ponents, installation, and configuration, what makes itable for the study of laaS private
clouds.

2.1.4 Challenges for Cloud Computing

There are various challenges that providers and consursasdlyiface for implement-
ing, expanding, or maintaining their cloud computing seggi Research challenges usually
mentioned are: automated service provisioning, inteiugty, energy management, traffic

26 2.1. CLOUD COMPUTING

analysis, data security, availability, and performanqgeredictability ZHANG; CHENG; BOUTABA,
2010 (ARMBRUST et al, 2010.

Cloud consumers have little or none control over the undeglgiomputing resources,
so the providers are the major actors in charge of ensuriagytiality, availability, reliabil-
ity, and performance of the hardware/software/networkastfucture. In other words, it is
vital for consumers to obtain guarantees from providerseovice delivery ZHANG; CHENG;
BOUTABA, 2010

Fault tolerance and reliability were listed by a report frearopean Commission among
the implicit challenges and requirements of cloud computifhis is related to the expected
characteristics of a cloud system, where availability issgamservice principle, to allow access
to resources from anywhere at anytime. Large-scale outagdsud services such as Amazon
EC2, GMail, Google Compute Engine, Apple iCloud, and Microgdaftire, affected thousands
or even millions of users. Such unavailability episodesseanig concerns to potential users,
even knowing that the downtime of most traditional data eenéind small infrastructures can
be even bigger than observed in cloud providers. For bothliggand private clouds, it is
important to plan the system to achieve high levels of algdity, what is a hard task due to the
large number of components and the dependency relatiabbipreen them.

Performance and, more specifically, scalability are oth@onconcerns for the quality
of service being provided. When a cloud computing platforrabdes provisioning more re-
sources to process a surge of incoming workload, it is difftouypredict how fast the additional
capacity will be deployed and if those resources will be sigffit, undersized or oversized.

Figure 2.5 shows results from a survey conducted in 2015 bytBaale company
RIGHTSCALE (2015. 930 technical professionals across several organimticere ques-
tioned about the benefits that they experienced using clblie three most cited benefits were
greater scalability, faster access to infrastructure hagiter availability. Such aspects constitute
a big part of the expectations of cloud users, and properctigpand dependability planning
must be done for achieving those benefits when creating a loawd ;frastructure, or improv-
ing an existing environment.

2.1.5 Eucalyptus Platform

EUCALYPTUS (Elastic Utility Computing Architecture Linkinyour Programs To
Useful Systems) is a software that implements scalable-$&4d8& private and hybrid clouds
(EUCALYPTUS 2010. Itis interface-compatible with the commercial serviéesazon EC2
— Elastic Compute Cloud — and Amazon S3 — Simple Storage S€EEEALYPTUS, 2016,
while it also emulates the EBS — Elastic Block Store — serviddAZON, 2012 (EUCALYP-
TUS, 2009. In general, Eucalyptus and other private cloud platfouss the virtualization
capabilities (i.e., hypervisor) of the underlying compdgstem to enable flexible allocation of
computing resources uncoupled from specific hardwatéGALYPTUS, 2010.

27 2.1. CLOUD COMPUTING

Cloud Benefits
% of respondents reporting these benefits

Greater scalability | 57%
Faster access to infrastructure [INNINEGTGTNINNENENEGEGEEEEEEEEEEEE 57%
Higher availability | 519
Faster time-to-market | 43%
IT staff efficiency [N 41%
Geographic reach [40%
Business continuity [ININIGIGIGTNNNNEEEEEEEN 40%
Higher performance [40%
Cost savings [39%

Source: RightScale 2015 State of the Cloud Report

Figure 2.5: Benefits from adopting cloud computing

There are five high-level components in the Eucalyptus tchire, each with its own
web service interfaceCloud Controller, Cluster Controller, Node Controller, Storagernzo
troller, andWalrus(EUCALYPTUS 2010. Figure 2.6 depicts these main components, which
are briefly explained as follows.

TheCloud Controller (CLC)s the front-end of the entire cloud infrastructure, expgsi
and managing the underlying virtualized resources (seyvertwork, and storage) via Ama-
zon EC2 API SGUN, 2009. This component uses web services interfaces to recedvelignt
requests on one side and to interact with the remaining ¥ptted components on the other.

The (Cluster Controller (CClsually executes on a cluster front-end machBeCA-
LYPTUS, 2010 (EUCALYPTUS 2009, or on any machine that is able to communicate to
both the nodes running Node Controllers and the machinemgrihe CLC. The role of the CC
may be summarized in three functions: determining whichéN@adntroller will process the
incoming requests for creating a VM instance (i.e., schadWM execution), controlling the
instance virtual network overlay, and gathering/repgriimformation about the nodes which
compose its clusteHUCALYPTUS 2009.

Each physical node which is supposed to run VMs must haltede Controller (NC)
NCs control the execution, inspection, and termination of Wstances on the host where it
runs through interaction with the operating system runoimghe node and with the hypervisor.
The NC fetches from Walrus a copy of the VM image which will bstantiated. It queries and
controls the system software on its node in response toagiand control requests from the CC
(EUCALYPTUS 2010. An NC must also discover and report the node’s physicaliees -
number of CPU cores, size of memory, available disk space elisw/learn about the state of
VM instances on that nod&EUCALYPTUS 2009 (JOHNSON et a.2010.

The Storage Controller (SCprovides persistent block storage for use by the virtual
machine instances. It implements block-accessed netvior&ge, similar to that provided by
Amazon Elastic Block Store - EBS. An elastic block storage israx block device that can

28 2.1. CLOUD COMPUTING

be attached to a virtual machine but sends disk traffic adressetwork to a remote storage
location. VM instances are not allowed to share the same ER&eJOHNSON et a].2010).

Walrusis a file-based data storage service, that is interface ctinigavith Amazon’s
Simple Storage Service (SFYCALYPTUS 2009. Eucalyptus cloud users can use Walrus
to stream data into and out of the cloud as well as from VMs tiey have instantiated. In
addition, Walrus acts as a storage service for VM images.

User

S3 Requests

EC2 Requests

Cluster A Cluster B

Figure 2.6: Eucalyptus high-level components

The Eucalyptus-based cloud computing environment depicté-igure 2.6 considers
two clusters (A and B). Each cluster has one Cluster Contrailes, Storage Controller, and
various Node Controllers. The components in each clustenaamcate to the Cloud Controller
and Walrus in order to service the user requests. A user estalpperform requests for VM
instantiation —and other related features— to the Cloud Gbexty or file storage requests to
Walrus, using the proper tools for each case. Cluster ana@tdController may be installed in
the same machine where Cloud Controller and Walrus are runiinipis case, the front-end
host will also be responsible for one of the clusters andatsesponding nodes.

Eucalyptus Auto Scaling is a mechanism designed to hangikcapions that require
adding and removing VM instances based on predefined tHossbb selected metrics (e.g.:
CPU usage, number of user requests). Auto Scaling is patlgulseful for applications that
exhibit variability in use by hour, day or week. During derdgeaks, the auto scaling mecha-
nism increases the number of VM instances automaticallyamtain the performance of the
application hosted in the cloud. In a similar manner, whendamand decreases, the number of
VM instances might be reduced to minimize costs and savagdlyssourcesf UCALYPTUS
20143 AMAZON, 20143. Eucalyptus Auto Scaling works in conjunction with Cloudéfa

2.1. CLOUD COMPUTING

Bad Performance

\

Front-end Nodes

[Elastic Load Balancer \
T

)

| " e ——

User requests

—
g \ distributed
for application u %‘

-

ollle

N 7
pge

Auto Sealing :

® |

II I}“- Autn-gca}ing |

s instantiates = >
CloudWatch Alarm a new VM

\ l\l:rig(_:jers alert overload)

(a) Bad performance.

Good Performance

~

Front-end Nodes
Elastic Load Balancer
n

| Y
[

User requests - \ distributed

for application i requests
'-.-\J\.o‘ . " \
i — |
4
o§

Auto Scaling
instantiated
VM |
CloudWatch Alarm
\l\ watching policies) \ _/)

(b) Good Performance.

® 0O 0

Figure 2.7: General operation of Eucalyptus Auto scaling mechanism.

30 2.2. DEPENDABILITY AND PERFORMANCE MODELING

and Elastic Load Balancing (ELB) mechanisms. Such an inferact depicted in Figure 2.7.
The ELB distributes client requests to the existing VMs & thrget web application. The
CloudWatch monitors established metrics (e.g.: averagebeumf web requests per second)
periodically EUCALYPTUS 20143. The CloudWatch service inserts data from monitored
metrics at arbitrary intervals and extract statistics ef ¢bllected data for a particular time in-
terval (time window), with a user-defined granularis{ {CALYPTUS 201401. The statistical
information allows you to make business and operationabkaets. When a certain condition
is met (e.g.: a poor performance metric), as it is illusttateFigure 2.7 (a), the CloudWatch
triggers an alarm for Auto Scaling, which instantiates onenore VMs. Shortly thereatfter,
ELB automatically distributes the requests considerimgitéw VM. The collaboration of these
services results in a performance gain and allows an effiogage of cloud resources, while it
might also be used for fault tolerance purpod8SCALYPTUS 20143.

2.2 Dependability and Performance Modeling

The activity of evaluating a system for achieving desiredliqy of service measures
requires specific techniques, which might include protwiyp measurement, and modeling.
JAIN (199]) established significant guidelines on the selection oluaten techniques.

Measurements are not possible if a new system is being plammstead of just an im-
provement for an existing one. Building a prototype of theaming system just for measure-
ment purposes is not always feasible, due to timing and huwdgestraints. Therefore, analytical
modeling and simulation are the techniques usually chogemwa new infrastructure is being
designed. Even if the system already exists, analyticalsamdlation models can be the best
options when the installation or execution of measuren@is twould be too intrusive, causing
bad effects on the system.

Performance and dependability modeling of computer systemable one to represent
the behavior of a system and compute measures which desorideuantitative way, how the
service is provided and how much confidence can be put on gtemayoperation. The measures
of interest and the purposes of the performance evaluataynmfiuence the choice of modeling
technique to be employed.

In performance evaluation studies, some metrics whichllystd@serve interest are: re-
sponse time, job completion rate (throughput), and leveésburce utilization. These metrics
are directly related to the user perception of system pedoce and they may also highlight
the need for improvements.

Besides performance, dependability aspects deserve gieati@n for the assurance of
the quality of the service provided by a system. System digdglity can be understood as
the ability to deliver a specified functionality that can hstjfiably trusted AVIZIENIS et al.,
2004). An alternate definition of dependability is “the ability a system to avoid failures
that are more frequent or more severe, and outage duratiahare longer than is acceptable

31 2.2. DEPENDABILITY AND PERFORMANCE MODELING

to the user"AVIZIENIS et al., 2004). Dependability studies look for determining reliability
availability, security, and safety metrics for the infrasture under analysisMALHOTRA,
TRIVEDI, 1994.

There are formal techniques which may be used for modelingpater systems and esti-
mating measures related to system availability, religh#ind performance. RBD(CONNOR,;
KLEYNER, 2012, Fault TreesQ’'CONNOR; KLEYNER, 2012, Stochastic Petri Nets (SPNs)
(MOLLOQY, 1982, Markov chainsBOLCH et al, 2001 and Markov Reward Models (MRMs)
(CLOTH et al, 2009 have been used to model many kinds of systems and to evaiarbdes
availability and reliability measures. When dealing withcitperformance issues, queueing
models, SPNs, and Markov chains are modeling formalismglwiddopted in the literature.
The mentioned model types may be broadly classified into state-space and state-space
models MACIEL et al., 2017). Non-state-space models (e.g., RBDs, fault trees) enable, i
general, a more concise representation of the system thAteasgiace models. State-space mod-
els (e.g., Markov chains, SPNs, Stochastic Automata Nétsyallow the representation of
more complex relationships between system componentls,agidependencies involving sub-
systems and resource constraiM\CIEL et al.,, 2011). Generally, state-space models require
the numerical solution of an underlying system of equatidimat will provide useful informa-
tion such as state probabilities, mean passage time, escrdde event simulation is another
way of obtaining some desired metrics from those modelsomnesspecial cases, closed-form
answers can be derived from state-space models.

Distinct model types may be hierarchically combined, eimgbthe representation of
many kinds of dependency between components, and avoigénkniown issue of state-space
explosion when dealing with large systems. An example & tierarchical approach is the
usage of combinatorial models to represent the availgbiitationship between independent
subsystems, while detailed or more complex failure andiregpachanisms are modeled with
state-based models. Such an approach in sedANTAS et al, 20123, that combines RBDs
and Continuous Time Markov Chains (CTMCs), Kill; MACHIDA; TRIVEDI , 20093, that
combines Fault Trees and CTMCs, among other works. Such a cimopds usually called as
heterogeneous hierarchical modeling. Other kinds of caitipa are possible and found in the
literature. For instance, one CTMC model might yield resthltd are used as input for another
CTMC model, as seen itMA; HAN; TRIVEDI , 2001) and GHOSH et al.2013.

2.2.1 Reliability Block Diagrams

Reliability Block Diagrams are networks of functional bloat@nnected according to
the effect of each block failure on the system reliabilVACIEL et al., 2011). RBDs indicate
how the operational state (broken or functioning) of theeyss components affect the func-
tioning of the system. RBD was initially proposed as a modek#dculating reliability, but it
can be used for computing other dependability metrics, agscwvailability and maintainability.

32 2.2. DEPENDABILITY AND PERFORMANCE MODELING

——
—

Figure 2.8: Example of RBD

Figure 2.8 depicts an example of RBD for a system with thee coreis: A, B, and C.
RBDs have a source and a target vertex, a set of blocks (useatlngles), where each block
represents a component; and arcs connecting the compa@mehtise vertices. The source node
is usually placed at the left hand side of the diagram whetteagarget vertex is positioned
at the right. Graphically, the system is properly workingentthere is at least one path from
the source node to the target node. Therefore, in Figuretl2e8system is operational if the
component A is functioning and either B or C is working too.

In RBDs, the system state is described as a Boolean functioates3f its components
or sub-systems, where the Boolean function is evaluatediaswinenever at least the minimal
number of components is operationally enabled to perfoemttended functionalityN\]JACIEL
et al, 201)(KUO; ZUO, 2003. The system state may also be described by the respective
structure functions of its components or sub-systems, @bthie system structure function is
evaluated to 1 whenever at least the minimal number of comtsrare operational.

RBDs have been adopted to evaluate series-parallel and moegigstructures, such
as bridges, stars and delta arrangements. The most commondgRIppPart series-parallel struc-
tures only.

Consider a pure series structure composed ioidependent components, whege—=
P{x =1} are the functioning probabilities of blocks These probabilities could be reliabilities
or availabilities, for instance. Equati@ is used for computing the system steady-state avail-
ability of the series composition in an RBBI(JO; ZUO, 2003. It denotes that the availability
of a series system is the product of each component’s aitdiab

As:_ﬂp{xi =1} :ﬂm,

whereA, is the steady-state availability of blogk The reliability of a series system is computed
in a similar manner.

Equatio is used to compute the availability of a pure paralleltire, composed
of nindependent components. It is based on the fact that thedgirobability of a parallel
system is the product of the failure probabiliti€{x; = 0}) of its components.

33 2.2. DEPENDABILITY AND PERFORMANCE MODELING

Apzl—]ﬂlp{xi:0}:1—_|£lUAi:1—_|£ll—Aq,

whereUA; = 1— A is the unavailability of each block.
Further knowledge on series-parallel, parallel-seried,aher RBD structures is found
in (MACIEL et al., 2017 and KUO; ZUO, 2003.

2.2.2 Markov Chains

Markov models are the fundamental building blocks upon Wwimany quantitative an-
alytical performance techniques are bulitGLMOGOROQV, 1931, TRIVEDI, 2001). Such
models may be used to represent the interactions betwemusaystem components, for both
descriptive and predictive purpos@dENASCE; ALMEIDA; DOWDY, 2004. Markov mod-
els have been in use intensively in performance and depéitglabodeling since around the
fifties (MACIEL et al., 2011). Besides computer science, the range of applications fokdta
models is very extensive. Economics, meteorology, physlesmistry and telecommunications
are some examples of fields which found in this kind of stotitbasnodeling a good approach
to address various problems.

A Markov model can be described as a state-space diagramiatesbto a Markov
process, which constitutes a subclass of stochastic eseA definition of stochastic process
is presented:

Definition 2.1. A stochastic process is a family of random variabl¥s:{t € T} where each
random variable is indexed by parametéi T , which is usually called the time parameter if
T C Ry =[0,), i.e., Tisin the set of non-negative real numbers. The sell pbssible values
of X; (for eacht € T) is known as the state space S of the stochastic pro8€3sQH et al,
2001).

Let Pr{k} be the probability of a given evekibccurs. A Markov process is a stochastic
process in whictPr{X,., < sy1} depends only on the last previous vakg, for all tn, 1 >
th>th1>..>1t=0, and alls € S’ This is the so-called Markov properti#QVERKORT,
2002, which, in plain words, means that the future evolutiont@ Markov process is totally
described by the current state, and is independent of @assHAVERKORT, 2002.

In this work, there is only interest on discrete (countakla}e space Markov models,
also known as Markov chains, which are distinguished in tlagses: Discrete Time Markov
Chains (DTMCs) and Continuous Time Markov Chains (CTMGH)EINROCK, 1975. In
DTMCs, the transitions between states can only take placa@tik intervals, that is, step-
by-step. Systems where transitions only occur in a dailyshas following a strict discrete
clock are well represented by DTMCs. If state transitions megur at arbitrary (continuous)

instants of time, the Markov chain is a CTMC. The Markov propériplies that the time of

LStochastic refers to something which involves or contair@dom variable or variables

34 2.2. DEPENDABILITY AND PERFORMANCE MODELING

0.001

Figure 2.9: Simple CTMC

transitions is driven by a memoryless distributi®@OLCH et al, 200J). In the case of DTMC,
the geometric distribution is the only discrete time disition that presents the memoryless
property. In the case of CTMC, the exponential distributionsed.

Markov chains can be represented as a directed graph wélelhtransitions, indicating
the probability or rate at which such transitions occur. Whealing with CTMCs, such as the
availability model of Figure 2.9, transitions occur withade, instead of a probability, due to the
continuous nature of this kind of model. The CTMC is represéiirough its transition matrix,
often referenced as infinitesimal generator matrix. Comgidehe CTMC availability model
of Figure 2.9, the rates are measured in failures per secepdirs per second, and detections
per second. The generator matéxis composed by componergs andg;;, wherei # j and
> Gij = —@ii. Using the availability model that was just mentioned, ed@sng a state-space
S= {Up,Down Repair} = {0,1,2} the Q matrix is:

Joo Yo1 Co2 —0.001 Q001 O
Q=1 g g1 012 | = 0 -2 2
20 021 Q22 0.2 0 -0.2

Equation 2.3 and the system of Equations 2.4 describe theuaton of the state
probability vector, respectively for transient (i.e., érdependent) analysis, and steady-state
(i.e., stationary) analysis. From the state probabilitgtee nearly all other metrics can be
derived, depending on the system that is represented.

() =nt)Q, given m(0).

EQ=0,§571:1
i€

Detailed explanations about how to obtain these equati@ydo®a found in HAVERKORT;
MEEUWISSEN 1995 BOLCH et al, 2001).

For all kinds of analysis using Markov chains, an importaspect must be kept in
mind: the exponential distribution of transition rates eTdehavior of events in many computer
systems may be fit better by other probability distributjolbgt in some of these situations

35 2.2. DEPENDABILITY AND PERFORMANCE MODELING

the exponential distribution is considered an acceptappgaximation, enabling the use of
Markov models. It is also possible to adapt transition in kéarchains to represent other
distributions by means of phase approximation, as showhRi\(EDI, 2001). The use of such
technique allows the modeling of events described by 8igions such as Weibull, Erlang,
Cox, hypoexponential, and hyperexponential.

2.2.3 Stochastic Petri Nets

Petri Nets MURATA, 1989 are a family of formalisms very well suited for modeling
several system types due to their capability for represgrpncurrency, synchronization, com-
munication mechanisms, as well as deterministic and pibsiabdelays. The original Petri
Net does not have the notion of time for analysis of perforcesand dependability. The intro-
duction of duration of events results in a timed Petri Net.paal case of timed Petri Nets is
the Stochastic Petri Net (SPNYIOLLOY, 1982, where the delays of activities (represented
as transitions) are considered random variables with exquitad distribution. An SPN can be
translated to a CTMC, which may then be solved to get the depieeidrmance or depend-
ability results. This is especially useful because bugdanMarkov model manually may be
tedious and error prone, especially when the number ofssketeomes very large. SPN family
of formalisms is a possible solution to deal with such angs$tiARSAN; CONTE; BALBO
(1989 proposed Generalized Stochastic Petri Net (GSPN), wisieimiextension of SPN that
considers two types of transitions: timed and immediate.eAponentially distributed firing
time is associated only with timed transitions, since imm@agdtransitions, by definition, fire in
zero time. For the sake of conciseness, the acronym SPNseften used for expressing the
whole family of models derived from the original SPN moddiinied by MOLLOY, 1982.

Repair Servers to repair

»a
)

Repairable:
70%
Failure

(r—

Servers Servers
Up Down

Non-
repairable:
30%

i
N\

Replace Servers to replace

Figure 2.10: Example of GSPN

Figure 2.10 depicts an example of a GSPN model. Places aresesyged by circles,

36 2.3. SENSITIVITY ANALYSIS

whereas transitions are depicted as filled rectangles (aiatestransitions) or hollow rectan-
gles (timed transitions). Arcs (directed edges) conneatqs to transitions and vice versa.
Tokens (small filled circles) may reside in places. A vectmmtaining the current number of
tokens in each place denote the global state (i.e., markihg)Petri Net. An inhibitor arc is a
special arc type that depicts a small white circle at one giigéead of an arrow, and they are
used to disable transitions if there are tokens present iaesm gplace. The behaviour of Petri
Nets in general is defined in terms of a token flow, in the semsetokens are created and de-
stroyed according to the transition firingSERMAN, 2000. Immediate transitions represent
instantaneous activities, and they have higher firing iy\dhan timed transitions. Besides,
such transitions may contain a guard condition, and a usgispecify a different firing priority
among other immediate transitions.

Figure 2.10 represents the availability of a system cormgithree computer servers.
Each token in the placgervers Updenote one server that is properly running. All three searver
might fail independently, by the firing of (exponential) &chtransitionFailure. A token in
Servers Downmight be consumed either by immediate transitR@pairable or by immediate
transitionNon-repairable. Weights are assigned to each of those transitions to représe
probability of firing one or another. When the failed serven & repaired, the transition
Repairable puts a token irServers to repair. When the repair is not possible, the transition
Non-repairable puts the token irServers to replace The transition®RkRepair andReplacefire
after exponential delays corresponding to those actsvitiEhe probability of having at least
one server available, the average number of servers wédingpair or replacement and other
similar metrics can be computed from the underlying CTMC gateel from that GSPN.

SPNs also allow the adoption of simulation techniques faéaioing dependability and
performance metrics as an alternative to the generation@FMC, which is sometimes pro-
hibitive due to the state-space explosion. Regarding SPNG®IEIN formal definition and
semantics, the reader is referred MWQELLOY, 1982 (MARSAN; CONTE; BALBO, 1984.
Those formalisms were further expanded to allow deterriingelays for timed transitions,
generating Deterministic and Stochastic Petri Nets (DJRNERMAN; MITZLAFF, 1995.
Other SPN extensions were proposed in literature for englather probability distributions,
but the solution of those models require simulation teaesgand non-Markovian processes
that might not be so computationally efficient as the sofutiethods for traditional SPNs.

2.3 Sensitivity Analysis

Parametric sensitivity analysis aims at identifying thetdas for which the smallest vari-
ation implies the highest impact in model’s output meas&RANK, 1978 HAMBY , 1994).
The main aim of parametric sensitivity analysis is to prethe effect on outputs (measures)
with respect to variations in inputs (parameters), helparfghd performance or reliability bottle-
necks, and guiding an optimization proceB& AKE; REIBMAN; TRIVEDI , 1988. Another

37 2.3. SENSITIVITY ANALYSIS

45 —

40 4

35

i

30

25

20

154

10 4

0 2 4 6 8 10 12
Input parameter

Figure 2.11: Example of plot for one parameter at a time analysis

benefit of sensitivity analysis is the identification of paeters which can be removed without
significant effect to the results. Large models, with dozgfirates, may be drastically reduced
by using this approach. The results from a sensitivity agialgnay be summarized in a list of
the input parameters sorted by the amount of contributiah @e has on the model output.
Such a list is a sensitivity ranking.

There are many ways of performing parametric sensitivitglysis. Factorial exper-
imental design JAIN, 199]), correlation analysis and regression analyB®§S 2010 are
some well known techniques. The simplest method is to reggatary one parameter at a
time while keeping the others constant. When applying thithot a sensitivity ranking is ob-
tained by noting the changes to the model output. This mathoammonly used in conjunction
with plots of input versus output. Such plots enable grapleitection of non-linearities, non-
monotonicities, and correlations between model inputs antguts MARINO et al., 2008.
Unexpected relationships between input and output vasatolay also be revealed with this ap-
proach, triggering the need for further investigationsdashon different approachgdAMBY ,
1994. A given percentage of the parameter’s mean value may lbassthe increment for the
cited approach. Each parameter may also be increased btoa d&dts standard deviation, in
case this information is knowmDOWNING; GARDNER; HOFFMAN 1985.

Figure 2.11 shows a simple example of plot, in which a hypathemeasuré’ is plot-
ted against its input parameters; 3 andy. In this case, the impact caused by each parameter
variation is clearly distinguished among them. The regwitnf sensitivity analysis using this
approach should be a sensitivity ranking with the followorgler: {15 y, 2"%: o, 349: B
Therefore,y is considered to be the input parameter that cause the nmdjoemce on the mea-
surey.

Although, varying one parameter at a time is less useful mesopportunities. When
the amount of parameters is large, the analysis of scatity pbcomes harder, mainly due to the
proximity of curves. The difference in magnitude ordersisther possible complicating factor,
since all parameters cannot be visualized in the same pldiididing accurate interpretations

38 2.3. SENSITIVITY ANALYSIS

about the differences among parameters influence. Due tocases, methods that are based
on numerical sensitivity indexes should have preferenepite of a visual inspection based on
the “one parameter at a time” approach.

Differential analysis is the backbone of many parametnisgwity analysis techniques
(HAMBY , 1994). Differential sensitivity analysis is performed by contipg the partial deriva-
tives of the measure of interest with respect to each inprpeater. Thus, the sensitivity of a
given measur®, which depends on a specific parameélers computed as shown in Equation

(2.5), or(2.6) for a scaled sensitivity.

aY
Se(Y) =29’
AdY
S(Y) =3 30"

Sy(Y) is the sensitivity index (or coefficient) of with respect tof, andS$(Y) is the
scaled sensitivity index, commonly used to counterbaldineeffects of largely different units
between distinct parameters values.

Specific methods for performing the differential sendiyivanalysis in analytic mod-
els are needed when there is no direct closed-form equakwrsomputing the measure of
interest and finding its derivative expression. Many papexge already described how to ap-
ply differential sensitivity analysis in a variety of anatymodels, including CTMCELAKE;
REIBMAN; TRIVEDI, 1988 (OU; DUGAN, 2003, MRM (ABDALLAH; HAMZA , 2002,
GSPN MUPPALA; TRIVEDI, 1990, and Queuing Networksy(N et al., 2007). When deal-
ing with hierarchical or composite models, the analysidsde consider all parameters from
each model, determining their impact to the global measturgerest. A closed-form equation
based on measures of each sub-model may be used for thosestag®t the partial derivatives
computed for the sub-models enable us to obtain a complesitiséy ranking. This is one of
the approaches used in this paper.

Differential sensitivity analysis is closely related te#ypproach in which one parameter
at a time is changed and plotted against the result in theureds The sensitivity coefficient
may be understood as the slope of the corresponding linedpeaeific point in the plot. From
this view, it is possible to notice that interpretation ohbysis results must be more careful if
the parameters can be far removed from the base valuesynifaimé function is not linear or
not monotonic. An example of a non-linear and non-monotamiction isZ = (a — 3)%+ (B —
4)? 4 (y— 2)?, depicted in Figure 2.12, in which the slopes of curves vargach point of the
analysis, so the sensitivity @ with respect of each parameter quantify the impact of cheinge
just in regions close to that analyzed point.

When carrying computer performance and dependability aealyt is common looking
for incremental improvements in system configuration, solttalized range of sensitivity
results is well fitted in this context.

39 2.3. SENSITIVITY ANALYSIS

80

70 —

'

60 —

50 4

N 40 —

30

20 4

10

0 \ I \ \ \

|
0 2 4 6 8 10 12
Input parameter

Figure 2.12: Plot for non-linear and non-monotonic function

Partial derivatives are an important means of performingisgity analysis, but they
may not properly evaluate the sensitivity with respect teger-valued parameters, because
the approach is designed for parameter input values in ancmnts domain. An approach
to address such an issue is based on calculating the pegeetifference when varying one
input parameter from its minimum value to its maximum valdeffman and GardneHHOFF-
MAN; GARDNER, 1983 advocate utilizing each parameter’s entire range of péssalues to
compute parameter sensitivities. Equa shows the expression for this approach, where
maxY(0)} andmin{Y(8)} are the maximum and minimum output values, respectiveiyp-co
puted when varying the parametover the range of ita possible values of interest. Yf(0)
is known to vary monotonically, so only the extreme value$ di.e., 6; and6,) may be used
to computemaxY(6)}, min{Y(6)}, and subsequenti$y(Y).

_ maxY(6)} —min{Y(6)}
So(Y) = max(Y(8)} ’
where
maxY(8)) =maxY(61),Y(6,),....Y(6n)},
and
min(Y(68)) = min{Y(61),Y(62),...,Y(6n)}.

Another important method to assess the importance of eaemegder is the analysis
of a factorial experimental design. Design of experime(X3ESs) techniques can be used to
determine simultaneously the individual and interactifeats of many factors that may affect
the output measuresAIN, 1991). In DOE terminology, each parameter is called a factor and
each value possibly assigned to each factor is a level. D@ies choosing a given number of
levels for each factor and running the model for all comboret of the levels. The analysis may
be prohibitive due to a large number of factors or levels civhwvould require several model runs
and a huge computation time for some cas&SNIBY , 1994). A fractional factorial design may

40 2.4. CONCLUDING REMARKS

be chosen for such cases, or the number of parameters malyefirstiuced to an acceptable
value, through the ranking obtained by differential sewvigytanalysis, for example, and then
the factorial analysis may be applied.

2.4 Concluding Remarks

This chapter provided theoretical foundations that areembiustive but essential for
the reader awareness regarding the building blocks thapasenthis thesis. The background
on dependability and performance modeling as well as oritsgtysanalysis of those models
enable understanding the application of such concept®tbell of cloud computing planning
and evaluation.

Specific software tools can play an important role for futfdgl the gap of knowledge
that a cloud system administrator may have on some of theeptspresented here. Such tools
can ease the application of the proposed methods, desdcutikdr, for their target audience.

Related works

The works found during the literature review are descrilvethis chapter. The papers
are divided into two categoriePependability and performance evaluation of cloud com-
puting, andSensitivity analysis of analytical modelswhich are the main topics in this thesis.
The following sections are not intended to provide an extiaisiew of the works published
on those topics, but rather to point out significant advamdesh go towards a similar direction
as this research do, or give basis for future extensions.

3.1 Dependability and Performance Evaluation of Cloud
Computing

The work presented iIHQSUP et al.2011) analyzes the performance of cloud comput-
ing services for scientific computing workloads. The aushdw not use analytical or simulation
models. Instead, they carry out an empirical evaluatiomefterformance of four commercial
cloud computing services. The testbed data are then usdthiceabased simulation to compare
the performance and cost of clouds and other computingophatf, such as grids, for general
and scientific computing workloads. Their results indi¢agd the current clouds need an order
of magnitude in performance improvement to be useful to tiensific community, and show
which improvements should be considered first to addressdibcrepancy between offer and
demand.

CHAISIRI; LEE; NIYATO (2012 propose an algorithm for optimization of costs to
provision VMs in public clouds. The authors formulate a bistic programming model which
takes into account the demand for VMs and respective castshey do not evaluate any spe-
cific performance or dependability metrics regarding theise provided in the cloud.

GHOSH et al(2010 propose a composite modeling approach for addressingrpeat
bility issues of laaS clouds. Their work uses outputs frotericting performance models to
feed up an availability model, so metrics such as job regegtirobability and mean response
delay are obtained as final result. A sensitivity analy$isgugh variation of one parameter at
a time, enables them quantifying the effects of variations/orkload, failure rates, and sys-

42 3.1. DEPENDABILITY AND PERFORMANCE EVALUATION OF CLOUD
COMPUTING

tem capacity (number of physical machines) on laaS clowdceqguality. The authors also
guantify the reduction of state space achieved by the comepo®deling when compared to a
monolithic model, what is reflected in smaller solution tiarel required main memory storage
and space.

The work of GHOSH et al. 2013 is similar to the one proposed iIGHOSH et al.
2010, but it focuses on pure performance models. They use aroagiprof multi-level in-
teracting stochastic sub-models, where the overall maalatien is obtained iteratively over

individual sub-model solutions. The authors mention thednfer a formal sensitivity analysis
in this composite model. The large number of parametergbraut the need for determining
the most important ones, and revealing bottlenecks in teesy.

Outstanding surveys on cloud computing, suchABNIBRUST et al, 2010, (RIMAL
et al, 2011, and SUN, 2009 have been mentioning availability and reliability as nmajon-
cerns for cloud infrastructures. Therefore, those systemst rely on various fault tolerance
mechanisms, such as redundancy, for coping with failuet)a resources are accessible any-
where and anytime as expect&xtRMBRUST et al, 2009.

MENDEZ MUNOZ et al.(2013 propose an architecture for resilient services on hy-
brid clouds, which should monitor availability of distindbud providers and provide graceful
degradation for adapting to outages or unresponsivenegssé providers.CUOMO et al.
(2013 provide mechanisms for monitoring and predicting quabdtygervice and SLA metrics
in federated private clouds. They forecast resourcesabiliiyy by measuring mean time to
failure (MTTF) and mean time to repair (MTTR). Hearbeat reenmtonitoring and VM boot
time logging are the main mechanisms for collecting MTTF Bi0TR values and therefore
computing system availability. It is worth noting that VMeeahe single resource considered
in that work, and analytical or simulation models are notuse

SUN et al.(2010 propose system-level virtualization through identicM Yeplicas as
fault-tolerance mechanism for achieving dependabilitgrnovement. In$UN et al, 2010, the
authors also propose a combinatorial model for evaluateqeddability and security of het-
erogeneous cloud environments. The authors consideressenmbination of components, so
the system dependability is computed through product afare and software dependability
metrics.

Some related works employ hierarchical and composite nmoglapproaches to tackle
the complexity of evaluating cloud systems. Although, mahyhose works do not address
software dependability nor consider the influence of addiey equipments to provide redun-
dancy for existing architecturesVEI; LIN; KONG (2011 use hierarchical method and pro-
poses hybrid models combining RBD and GSPN (Generalized &stictPetri Net) models to
analyze the relation between reliability and servers clgation ratio, as well as the relation
between availability and the workload experienced by tbedibased datacenter. IGIHUOB;
POKHAREL,; PARK 2011), the authors propose a private cloud environment suitéble-
government purposes and provide a hierarchical model thgithe availability of the proposed

43 3.2. SENSITIVITY ANALYSIS OF ANALYTICAL MODELS

Eucalyptus-based architecture. The hierarchical modgdgeed in CHUOB; POKHAREL;
PARK, 2011) uses distinct Markov chains for cluster level and nodellewhile the opera-
tion level is described in a non-formal mann&ONGO et al.(201]) propose an availability
model for laaS clouds that deal with distinct pools of phgkimachines where VMs are in-
stantiated. They compare accuracy and time of solution fmoaolithic Stochastic Reward
Net (SRN) model and a composite model to demonstrate the beakthe latter approach. It
Is also important to highlight that ONGO et al, 2011) does not consider cloud management
components in their work.

In (DANTAS et al, 20123 and DANTAS et al, 20120, the authors propose hierar-
chical availability models for evaluating private cloudssyms. Such a modeling approach
considers replication of specific private cloud componesush as Eucalyptus Cloud, Cluster,
and Node controllers, dealing with both hardware and so#ivieults. This approach is further
adapted to assess capacity-oriented availability (COADPMBINTAS et al, 2015. That work
builds models for predicting the average computationalgyoavailable in case of partial fail-
ures of a multi-cluster cloud. Such models enable compdhiegosts and COA of private and
public clouds.

This thesis presents differential sensitivity analysisyardels that are similar to those
found in DANTAS et al, 20120, in order to identify bottlenecks and determining whiclmzo
ponents deserve priority for system availability improests. Another original contribution of
the current work is proposing a general approach for peifagrparametric sensitivity analysis
on hierarchical models, using it for improving various tgjmé cloud systems.

3.2 Sensitivity Analysis of Analytical Models

In the fields of performance and dependability evaluatios,possible to find a number
of researchers that have already demonstrated how to peprametric sensitivity analysis in
some analytic models. One of the seminal works in this tapiound in BLAKE; REIBMAN;
TRIVEDI, 1988, which presents the foundations for transient sengjtasitalysis in continuous
time Markov chains and Markov reward models, and shows hewsémsitivity functions can
guide system optimization, model refinement and the detecii reliability and performability
bottlenecks.

The development of differential sensitivity analysis noeth followed similar ways for
all modeling formalisms, mainly when only state-space nwdee considered.

The following sections summarize some related works on éhe éif sensitivity analysis
of analytic models, focusing specifically on Markov chamseueing systems, and SPNs.

44 3.2. SENSITIVITY ANALYSIS OF ANALYTICAL MODELS

3.2.1 Differential Sensitivity Analysis on Queueing Systems

Queueing system is one example of analytic model whosetsgtysanalysis has been
described in literature.YIN et al. (2007 give sensitivity formulas for the performance of
M/G/1! queueing systems, which are described by semi-Markov psese They show that
the embedded Markov chain oMy/G/1 model may be used to provide the desired steady-state
sensitivity measures. This is possible because the semkidMgrocess has always the same
steady-state probabilities as the embedded Markov chaifYIN et al., 2007, the sensitiv-
ity analysis ofM /M /1 andM/C,/1? queueing systems is also discussed, since they can be
considered as specialized versions ofthg5/1 case.

OPDAHL (1999 presents sensitivity functions for the performance ofrogeeue net-
works®, while CAO (1996 proposes an approach for sensitivity estimation in clagezlieing
networks. Instead of actual differentiation of the perfanmoe measure of interest, the algo-
rithm proposed inCAO, 1996 uses a sample path of the model to estimate the derivative of
the steady-state probability vector.

LIU; NAIN (1997 propose general formulas to quantify the effects of chamdghe
model parameters in open, closed, and mixed product-foenejag networks. These formulas
include the derivative of the expectation of known functiaf the state of the network with
respect to any model parameter (i.e., arrival rate, measncgelemand, service rate, visit ratio,
traffic intensity). The sensitivity functions for the thighput and queue length are presented in
that paper, which also demonstrates an example of costlogsienization.

3.2.2 Differential Sensitivity Analysis on Markov Chains

Stages of the differential sensitivity analysis of Markdwams include computing the
derivative of the rate generator matrix and the differeigraof equations used in Markov chain
solution methods, or even the development of new sengittamputation techniqueSIARIE;
REIBMAN; TRIVEDI (1987 present a sensitivity analysis method regarding trahsied cu-
mulative measures in acyclic Markov chains. The AQ¥tyclic Markov Chain Evaluator)
algorithm is used to find the state probabilities of an acy€ITMC as a symbolic function af
and it is adapted to the compute the respective sensitivitgtions.

BLAKE; REIBMAN; TRIVEDI (1988 show how to compute the same measures of
the MARIE; REIBMAN; TRIVEDI, 1987 work, but using the uniformization techniquekI-
DELBERGER; GOYAL, 1987, which allows the analysis of more general models, witHes.c
The sensitivity functions are applied in a reliability/fmemability study, which also introduces
the sensitivity of expected reward rate and a specific seigitunction for the mean time to

A queueM/G/1 has a service time that follows an arbitrary (generalyithistion, in contrast to the exponen-
tial nature of service time in a quedk/M /1 (KLEINROCK, 1975.

2A queueM /C,/1 has a service time that follows a two-stage Coxian distiobu(YIN et al., 2007

3Queueing networks whose operations have transaction eamtkihtensities are open, while other queueing
networks are closed or mixe@PDAHL, 1999.

45 3.2. SENSITIVITY ANALYSIS OF ANALYTICAL MODELS

failure (MTTF) of a system.

Another related study is shown i®@U; DUGAN, 2003, that developed an approximate
approach for the computation of sensitivity analysis incicyMarkov reliability models, reduc-
ing the computation time for large models. That approachseduor solving a dynamic fault
tree and hence assessing the importance of each compogerdiag to its failure probability.
That work also presents the computation of sensitivitiesrfodules of some components, that
can be combined to produce the system level sensitivitieghain-rule approach is used to
calculate sensitivity measures for the separate modulescecombine them hierarchically for
higher-level results.

In (SATO; TRIVEDI, 2007, two distinct Markov chains were created for representing
the response time and the reliability of a travel agent systdhose models were analyzed
individually. They performed a sensitivity analysis ofpesase time and reliability metrics with
respect to each parameter. Despite using Markov chainfapating the metrics of interest,
closed-form equations are found for both measures, andifflegettial sensitivity analysis is
carried out using these equations. The authors highligtitdlosed-form equations can not be
found for all systems, so a model-based sensitivity aralysuld be helpful for a broader range
of situations.

MATOS JUNIOR (2011 highlights some factors that must influence the decisien re
garding the use of scaled and unscaled sensitivity indioegpérformance and availability
CTMC models.

3.2.3 Differential Sensitivity Analysis on Petri Nets

MUPPALA; TRIVEDI (1990 introduce a process to compute sensitivity functions of
GSPNs. Since the reduced reachability graph of a GSPN istanaons-time Markov chain, it
is possible to translate the process of sensitivity anaipsSCTMCs to a GSPN-based sensitivity
analysis MUPPALA; TRIVEDI (1990 demonstrate the derivative of equations for steady-state
transient and cumulative measures in their work, which aistudes the implementation of
sensitivity analysis features in a modeling software pgekBlIREL; TU; TRIVEDI, 2010.

In (CIARDO et al, 1993, the definition of Stochastic Reward Nets is complemented
by the demonstration of sensitivity formulas for that modefollows a process that is similar
to that for GSPN models, in which tangible and vanishing nmgyk shall be identified first, as
well as the transitions that may occur in these sets of mgskin

(CHOI; MAINKAR; TRIVEDI , 1993 constitutes the first work to elaborate a method
for parametric sensitivity analysis of deterministic andcbastic Petri nets (DSPNSBER-
MAN; MITZLAFF , 1995, which are an extension to GSPN models. Some charactsristi
the solution for GSPNs, found iMUPPALA; TRIVEDI, 1990, are used in that work, but the
analysis of a DSPN requires additional steps, since otloehastic processes (semi-Markov
process and non-Markov DSPN process) are involved in tpis &f model.

46 3.3. COMPARISON OF MAIN RELATED WORKS

3.3 Comparison of Main Related Works

Table 3.1 summarizes the main related works mentioned snctipter, establishing a
comparison between them and this Ph.D. thesis with respéotit subjects: performance and
dependability models; sensitivity indices, clod compgtiand optimization.

Table 3.1: Comparison table of related works

Analytical, Sensitivity| Cloud Optimization

Simulation indices computing

Models
(Sato; Trivedi, 2007) _

Single model | Yes No No
(Yin et al., 2007) _

Single model | Yes No No
(Chaisiri; Lee; Niyato, 2013)

No No Yes Yes
(Ou; Dugan, 2003) _ _

Hierarchical | Yes No No

non-heterog.

(Chuob; Pokharel; Park, 2011) _ _
Hierarchical No Yes No

non-heterog.

(Longo et al., 2011) _ _
Hierarchical No Yes No

non-heterog.

(Ghosh et al, 2010) _ _
Hierarchical No Yes No

non-heterog.

(Dantas et al., 2012a,b)

Hierachical No Yes No
heterog.

(Wei; Lin; Kong, 2011) _ _
Hierarchical No Yes No
heterog.

This Ph.D. thesis _ _
Hierarchical | Yes Yes Yes
heterog.

The papers$ATO; TRIVEDI, 2007 and (YIN et al., 2007 deal with sensitivity in-
dices, but applied to single (i.e., non-hierarchical) nied€heir application domain is different
than cloud computing and no specific optimization technigyaresented. GHAISIRI; LEE;
NIYATO, 2012 deals with optimization related to cloud computing, butpeformance or
dependability models are proposed, and it does not perfensitivity analysis.

The sensitivity analysis presented @l; DUGAN, 2003 is only applied to compo-
sitions of Markov models (i.e, hierarchical homogeneoughose models are not from the
cloud computing domain.QHUOB; POKHAREL,; PARK 2011), (LONGO et al, 2011, and
(GHOSH et al.2010 address hierarchical non-heterogeneous models for clonngbuting sys-
tems, although they do not propose nor compute numericaltsgty indices for those models.

a7 3.4. CONCLUDING REMARKS

(DANTAS et al, 2012hH and WEI; LIN; KONG, 2011 propose hierarchical heteroge-
neous models for evaluating dependability metrics of clomghputing systems. None of both
works deal with sensitivity indices or optimization tectumes. The PhD thesis presented here
covers those four subjects that had not been previously icabn the literature reviewed so
far.

3.4 Concluding Remarks

This chapter highlighted the main works that were foundrtythe literature review on
the mentioned topics. Although, it is important to emphasimat this is not an exhaustive view
of the published papers and related research works. Theyletfoe other articles and theses
that made significant advances in this field, but to the besuoknowledge the combination
of characteristics described in Table 3.1 is one of the nfagiors that distinguishes this work
from the current state of the art.

Approach for identification of availability
and performance bottlenecks in cloud sys-
tems

This PhD thesis proposes an approach for identifying avéitlaand performance bot-
tlenecks in cloud computing infrastructures. This apphocuses on sensitivity analysis of
hierarchical models and enables the identification of gdimt improvement at different levels
of hardware and software that constitute laaS cloud systems

4.1 Supporting methodology

The techniques proposed here are supported by a methodblaigy illustrated by the
flowchart in Figure 4.1. It contains the main activities thed required for the proper definition
and analysis of models.

Each activity of the supporting methodology is describedatails as follows.

Create a top-level model: Given a cloud computing infrastructure, we need to obtaiera g
eral view of system performance or dependability that essmbteating a top-level model. This
is the main model which may describe the interconnectiorubégstems in the laaS environ-
ment, the global activities for processing user requestigooverall dependability relationship
between the cloud components (e.g., VMs, processing nolieser managers, remote storage
devices, etc.). RBDs and SPNs are among the most proper femsalor such a main model,
due to their conciseness for representing large systems.@3Tueueing Networks, and other
models can still be used here, but they may make harder tdentimelcomplexity of a broader
system view and connecting with sub-models created in thestep. The top-down modeling
induces the creation of condensed models, that only inaledigled behavior for the modules
and sub-systems which are really well-known or are expetduk relevant for the overall
performance and dependability.

49 4.1. SUPPORTING METHODOLOGY

System
description

—_— T P
[Create top-level model] w (Interconnectio? Usert A
“" " of TaaS subsystems/ |\ S v
¢ ~ T processing
Creatg 'sub—models for feenennnneniie, 7 Specific software) - Specialized)
specific components "\ components \Jbardware functions

Identify measures - . /Availabilit \ “Urilization\ 7 Response "\ /Throughput\
of interest ’ i of VMs/ ftime _ N _
Solve hierarchical - Numer'ical\ - . .
Y analytical J Simulation
. solution_ s
Satisfactory
Evaluate measures *
Not satisfactory Finalize process. Wait for
structural or demand changes
Perform sensitivity analysis /o — - -

b del d e, Partial / Relative) DoE (Imponance\
0N SUEHIEUE Qerivative difference \ANOVA) index
top-level model . _ _ _ -

) Compose sensitivity indices ’
from all models

. Build and analyze “global”
sensitivity ranking

- * Sensitivity .

. List of « analysis of

. bottlenecks . hierarchical
models

Figure 4.1: Supporting methodology for bottleneck identification on cloud systems

50 4.1. SUPPORTING METHODOLOGY

= Precondition: prior knowledge about the cloud system to beeted and possible
modeling formalisms.

» Inputs: intended type of analysis (e.g., availabilityjakility, performance); list of
major components or subsystems; parameter values; désiergl dependency or
interconnection between them.

= Actions: choice of modeling formalism; creation of the tegel model.
= Products: top-level model.

» Postconditions: top-level model is parameterized andyréade refined on sub-
models.

Create sub-models of specific components:We create sub-models for representing the in-
ternal behavior of specific sub-systems or components. Uiher®dels might deal with spe-
cialized hardware or software mechanisms that are not pras¢éhe main model, or provide
fine-grained evaluation of VM and application behavior. Rethncy schemes, a single sub-
system operation, and performance degradation on patisoftware components are exam-
ples that are usually represented through sub-models.woith stressing that the proposed
methodology does not constrain the amount of levels in tembhchical models. A sub-model
may comprise other lower level models in order to reduce timagleomplexity for example.
The system analyst should be cautious regarding possibieaxy loss due to excessive levels
in the model. Distinct formalisms may be chosen for eachraobel, depending only on the
suitability for describing that specific sub-system andkhewledge of the modeler.

= Precondition: there is a main (top-level) model with somig-systems to be refined.

= Inputs: list of subsystems that can be refined; descripti@omponents, parameter
values, and internal functioning of each sub-system.

Actions: choice of modeling formalisms; creation of subewls and definition of
how they are connected to the main model.

» Products: sub-models and connections between main modesidrnmodels.

» Postconditions: sub-models are parameterized and cathecthe main model

Identify measures of interest: Measures of interest must be identified, taking into account
the essential information that the model can provide fogising the system performance or
dependability status. User-centered metrics (e.g., resppome, and downtime) are preferred
In many cases, once users of cloud-based systems might nbhargyand the system-centered
metrics (e.g., throughput, CPU utilization) might not cepend exactly to the quality of service

51 4.1. SUPPORTING METHODOLOGY

perceived by end users. On the other hand, when dealingtigingith laaS, some system-
centered metrics might be very important because end useis fact systems administrators
that may want to know VMs utilization or network throughpfat; instance.

= Precondition: top-level model and sub-models were createldoroperly parameter-
ized.

= Inputs: list of measures that can be computed with modelsgrg#ion of perfor-
mance or availability indicators from the point-of-view system administrators
and end-users.

= Actions: choice of measures of interest for model evaluatio
» Products: chosen metrics.

» Postconditions: all information for solving the main modeld sub-models is de-
fined.

Solve hierarchical model: The solution of hierarchical model is the next step in thishod-
ology. Sub-models which do not depend on results of otheretsoake solved first, and the
output metrics are assigned to the corresponding inputpeteas in the main model or other
dependent sub-models. The solution method (i.e., numennaysis or simulation) may vary
for each model, depending on constraints of the modelingdtism.

» Precondition: all information for solving the main modeblassub-models is defined;
solution tools are available.

= Inputs: list of measures of interest; main model and subetsgatoperly assembled;
solution methods and tools;

= Actions: solution of hierarchical model, with computatieichosen measures.
» Products: values of measures of interest.

» Postconditions: the model was successfully solved, anddhes of measures of
interest were computed

Evaluate measures: The evaluation of measures is the activity of comparing thiput values
from the hierarchical model to reference values which fUilAs or expectations of the end-
users and systems administrators. When the values of cochpgasures are satisfactory, the
improvement process stops, and it is restarted when themyistmodified due to events such
as replacement of broken or outdated components, or evetodignificant changes in user
demands. If there is at least one metric of interest that bieaahieved a satisfactory level. The
identification of potential improvements takes place by mseaf sensitivity analysis.

52 4.1. SUPPORTING METHODOLOGY

= Precondition: the values for the measures of interest wenegply computed.

» Inputs: values of measures of interest; description of @s&ts or systems adminis-
trators expectations, or SLASs.

= Actions: define whether estimated measures are satisjamtoiot.
= Products: definition (satisfactory or not satisfactory)

» Postconditions: sensitivity analysis will be conductedhé#asures are not satisfac-
tory, or the workflow will stop until the occurrence of strurl or demand changes
in the system

Perform sensitivity analysis on sub-models and top-level odel: In order to find the sen-
sitivity indices for a hierarchical model, the main modetlahe sub-models must initially be
evaluated in separate. The computation of sensitivityciests,, (f(M;)) for each sub-model
M; will provide the impact of parameters; to a metricf(M;). For the main modeM*, we
must compute the sensitivity of a metg@*) with respect to each input parameggt Partial
derivatives, percentage difference, DoE ANOVA, and relighimportance are possible meth-
ods for this task. A single sensitivity analysis method mayubed for all models comprising
the hierarchical model. When there are closed-form equatiosolve all models, the partial
derivatives method can provide all required indices, arse ¢lae task of building a unified sen-
sitivity ranking with higher accuracy. Distinct methodsghi also be used for each model to
deal with specific solution constraints or analysis prefees. In such a case, the composition
of indices, performed in next step, might require greatiraion.

s Precondition: the values that were estimated for meastreseoest are not in sat-
isfactory levels.

Inputs: top-level model and sub-models, sensitivity asiglynethods and tools

= Actions: compute sensitivity indices for top-level modedtdor the sub-models.
» Products: sensitivity indices of each model.

» Postconditions: the sensitivity indices of all paramefersn top-level model and
sub-models are available for further composition.

Compose sensitivity indices from all models: The composition of sensitivity indices from

all models is the next step in our methodology. The metho@ofosition depends on the types
of indices obtained in the previous activity. Section 4.82gents more details on this specific
activity.

= Precondition: the sensitivity indices from all models weoenputed.

53 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

= Inputs: all sensitivity indices from top-level model andosmodels, considering
every parameter; composition techniques; top-level madélsub-models.

= Actions: compose the indices according to the types of exlmbtained and types
of models employed.

» Products: composite sensitivity indices.

= Postconditions: all sensitivity indices could be compasegenerate a unified rank-
ing considering parameters from all models.

Build and analyze “global” sensitivity ranking: After obtaining the composite indices, we
must build a unified sensitivity ranking which shows the iripaf each parameter from all

models on the metric of interest. The analysis of such a rgn&nables identifying the top-
ranked parameters, that deserve priority on actions farath&/stem improvement. As soon as
changes are performed, the hierarchical model must beatealagain, computing metrics of
interest with the new parameters setup.

= Precondition: all sensitivity indices could be composegdnerate a unified ranking
considering parameters from all models.

= Inputs: composite sensitivity indices for all parameteosit all models.

= Actions: build unified sensitivity ranking, by sorting thersitivity indices, and
identify the parameters which are bottlenecks for the emstistem.

» Products: list of bottlenecks (i.e., most impacting parans.

= Postconditions: the bottlenecks were identified and cansled as priority targets
for system improvements.

The last three activities —enclosed in the dotted rectarglenstitute the core of bot-
tleneck identification. They compose the sensitivity agialyf hierarchical models proposed
in this Ph.D. thesis, that is explained in details on Secti@n

4.2 Sensitivity Analysis of Hierarchical Models

In order to explain the development of sensitivity analyai®red for hierarchical mod-
els, let us first use the introductory example of sensitiitglysis for single modeMATOS JUNIOR
(2011). The process for a single Markov chain model is illustranggigure 4.2. Initially, a sym-
bolic generator matrix@) for the Markov chain is created. That matrix contains alhsition
rates as symbolic expressions using the input parameterstfre model. The partial derivative
of theQ matrix with respect to one of the parameters produces anathigix (V). TheV matrix

54 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

is used in the computation of the respective sensitivitginthat might indicate, for instance,
the impact of parametay on the probability of system being in state 3. If the same oubth
is applied to all parameters, we obtain a list of sensitiifices that is called a sensitivity
ranking, when sorted according to the absolute values.

%TO OO
(f+Q)*S@J
S

0.9
0.8
0.4
0.2
0.1

~ T = 0 QO

. Sensitivity
Creation of rate computation,
matrix Symbolic differentiation according to the

of the matrix with respect chosen measure
Q Matrix to the parameter q V Matrix

0 |0
st|s
0 |0
0 |0

P |pP 0 0
0 |-rsasat [(ras |ot| o >
0 0 -s s
0 0 0 0

o O O o
o o =+ o

Figure 4.2: Process of sensitivity index computation with symbolic differentiation

Frameworks for symbolic computation such as GINGONAC, 2015 and Symja§YMJIA,
2015 allow solving partial derivatives, that is an essentiapsior computing the aimed sensi-
tivity indices. Other mathematical software, such as Maudigca (VOLFRAM, 2016 and R
(R-PROJECT2016, may also be considered in the tool set used to automateribegss.

From the sensitivity analysis of single CTMCs, we developethods to combine the
sensitivity indices obtained in distinct models createdgi € TMC and RBD formalisms. This
kind of hierarchical model is useful for modeling the avhildy of laaS private clouds, as
demonstrated inQJANTAS et al, 20123. Further, other methods of composition of sensitivity
indices were developed or adapted to address scenariairiagtstochastic Petri nets, based
on the existing theoretical framework for sensitivity ayséd of GSPNs and SRNSMUPPALA,
TRIVEDI, 1990.

Figure 4.3 illustrates an overview of the sensitivity as@yprocess aimed for a given
system which is represented by a combination of three éiffemodels: a CTMC, an RBD,
and an SPN. Consider that the RBD is the top-level model, andttiex two are sub-models
that represent the detailed behavior of blocks B and C, fomgka The sensitivity analysis
of the hierarchical model must generate a unified rankingdbeprises parameters from the
three models. This unified ranking must accurately expiesotder of importance of those
parameters for the measure of interest in the top-level m@eée the RBD). The individual
rankings of the sub-models and the top-level model are ctedpiirst, and their indices are
combined to produce unified ranking. The position of a patame the sensitivity rankings
of the isolated models might change on the unified rankirftgatng that the importance of a
component for the metrics of given subsystem is not necéssguivalent to the importance
that this component will have for the system as a whole.

The composition of sensitivity indices to build a unified kerg may require distinct

55 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

ﬁl(i)ﬁ

Parameter S(B) Parameter S(Avail) Parameter S(C)
q 0.9 A 0.7 f 0.7
s 0.8 D 0.6 m 0.2
r 0.4 c 0.4
P 0.2 B 0.4

[Composition of sensitivity indices]
Parameter S(Avail)
q 0.8 Unified ranking
A 0.8 of parameters
s 0.7
m 0.3
p 0.1

Figure 4.3: Overview of composition of sensitivity indices for distinct models

techniques, according to the types of models involved, aedspecific measures of interest.
We present here techniques for the following cases: (i)lavdity and reliability modeling
using RBD as top-level model; and (ii) performance, availghind reliability modeling using
SPN as top-level model. The choice of those two formalisnimged on their expressiveness
power to represent large systems (as laaS clouds can be) kdgping the models legibility.
Availability and reliability evaluation could also emplé&ault Tree as top-level model, with the
same benefits as RBD, but this case is not covered here for ta@ta&nciseness.

The proposed techniques use examples of CTMC as the preferradlisms for sub-
models, due to its flexibility for both, availability and pemance studies, and possibility of
obtaining closed-form equations. Despite the examplds @tMC, the techniques do not limit
the usage of the sub-models for only that formalism.

4.2.1 Composition of Sensitivity Indices with RBD as Top-level Model

The case that comprises RBD as top-level model is evaluatedumeter two circum-
stances: using partial derivative for all models —what igipalarly suitable when the sub-
models are CTMCs that might be described through closed-foumatens; or using distinct
types of sensitivity indices—e.g., partial derivativestfte RBDs and percentage difference for
sub-models, that might be SPNs, CTMCs, or models of other fisma.

RBDs can be expressed by means of structural equations, tght omdergo partial
differentiation for obtaining the sensitivity indices. Whitie RBD is the top-level model which
has some blocks refined by means of sub-models (e.g, CTMCsYlifferentiation must take
into account all parameters of the sub-models. The devavatiructural equation is directly

56 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

Aci= Aca= " Acs= Pu

Y + M p + M M + + “‘
! Structural equation: | 27N
: ; .7 RN
1 A=AcixAcaxAcs ! ,, *\
+ Derivative structural equation: & 5
: u
! SH(A) = SH(AC1) X Acz X Ac3 +

Ac1 X Sp(Ac2) x Acs+

AcqixAcz x Sy(Aca)
=Ax(Sy(Ac1)/Act +Su(Ac2)/ Aca + Su(Acs)/ Aca)

p B2
S ,(Acq) = S ,(Aco) = —— S ,(Apis) =
u(Act) rmy p(Ac2) rmy p(Ac3a) ETII)

Figure 4.4: Sensitivity computation with RBD as main model and CTMC sub-models

used to build the unified sensitivity ranking, and thereidentify the availability or reliability
bottlenecks of the system under analysis.

Equation presented the structural function for a series RBD. Theesponding
derivative function with respect to a general parameétes expressed in Equati, which
yields S (As), the sensitivity of the availability with respect €

Sols) = G = aehp“] Z(‘?@ QAJ> (m) <Z) Z

whereAg is the series RBD system availabilis, is the availability of each blockfrom
the n blocks that compose the series RBD, &dA;) is the sensitivity index of each block’s
availability with respect t@.

Similarly, the sensitivity of parallel structure in an RBD igeessed in Equati,
that corresponds to the partial derivative of Equa.

So(Ap) = ‘;Ae" %ll—jju—m] Z(ae’*ﬂ)

J#I
Other RBD setups such as series-parallel, and parallelsseqaire using the chain rule
and similar formulas to reach the corresponding derivdtinetions.
Figure 4.4 depicts the process of sensitivity ranking cassmjpen for a composition of
RBDs and CTMCs, using partial derivatives. For each single RBDkilocRBD sub-model),
a derivative structural equation is obtained. There is aedeform equation that describes the
availability from CTMC sub-model, so the corresponding ive equation is computed and

57 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

Begin @—]| ct C2 C3 —@ End

 Structural equation: ;
E ASystem =Aci xAcayx Acs |

Aci=f (P1,P2; P3)
Ac2=9(Ps; Ps)
Ac3 =h (pe; P7; Ps; P9)

Structural equation with sub-models functions:
+ Asystem = f (P1, P2, P3) x g (P4, Ps) x h (Pg, P7, Pg; Po)

' Derivative structural equations:

19 Agysiem/ 9 P1= (0 Acy / 9py) x Acy x Acs
10 Agystem/ @ P4 = Acq % (3(Ac2) / 9 pg) x Acs

1 0 Agystem’ 9 Ps = Acq X Aca x (3(Acz) / 8 pe)

Figure 4.5: Sensitivity computation with RBD as main model and non-specified
sub-models

used for obtaining the sensitivity indices (as depictedigufe 4.4). In Figure 4.4, RBD blocks
C1, C2, and C3 are arranged in series and share the pargmetéerefore, the computation
of system availability sensitivity tp« employs the product rule of partial derivatives, already
considered in Equati. The derivative equations for each bloé{, Aco andAc3) can

be combined in the final derivative equation for the comphatalel. Whenever the values
of parameters have significant changes, the same sewsitivittion can be applied for fast
computation of the ranking and subsequent identificatiacuafent bottlenecks.

If a closed-form equation cannot be reached for the sub-mthalemethods for comput-
ing sensitivity indices of CTMC discussed BLAKE; REIBMAN; TRIVEDI (1988 2.3 must
be applied. Such a situation would fit the second scenarisdositivity analysis with RBD as
top-level model, explained as follows.

Figure 4.5 shows a generalized view of sensitivity analgsiaprising a series RBD as
main model and sub-models from non-specified formalismshbBtock availability Ac1, Ac2
andAc3) is computed through a sub-model represented as a fundtaogieen set of parameters.
If the sub-models do not have any parameter in common, th@&pderivative with respect to
one specific sub-model parameter does not require demgatit’other sub-models results, as
depicted in Figure 4.5. If two or more sub-models depend eséme parameter, such a relation
must be expressed in the functions for the respective blotise RBD. The derivative of the

58 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

top-level RBD structural equation will address the need fecdj differentiation rules.

It is important to highlight that each partial derivativ%%l, %ﬁf and %C;) in Fig-
ure 4.5 will be replaced by the specific kind of sensitivitdex employed for the correspond-
ing sub-model. This makes the sensitivity analysis moraftefor situations when closed-form
equations or partial derivative methods are not possibléhsub-models.

The method proposed in this thesis for the case of RBD as t@b+ewdel, illustrated
in Figure 4.5, is described as pseudo-code in Algorithm Jrdtluces the unified sensitivity
ranking considering an RBD as top-level model and generionsoatels.

Data: MainModel,SubModels

Result Unified sensitivity rankindR

R+ 0;

MainStructFunction— Get_Structural_Function(MainModel);

foreach Model € SubModelslo

Parameters— Get_List_of _Parameters(Model);

SubModelFunctior— Build_Function(Model,Parameters);

MainStructFunction— Transform_Structural_Function(MainStructFunction,

Model, SubModelFunction);

ParametersSet- ParametersSet Parameters

8 SensitivitySubModellglodell < Compute_Sensitivity_Ranking(Model);

end

10 foreach Parameterc ParameterSetlo

11 DerivativeFunction— Compute_Derivative(MainStructFunction, Parameter);

12 SensitivityParametef «
Convert_Symbolic_to_Numeric(DerivativeFunction,SanisySubModels);

13 R+ RU SensitivityParametey;

14 end

15 R+ SortR);

16 ReturnR;

Algorithm 1: Algorithm for sensitivity analysis of hierarchical modeitiwRBD as
top-level model

o O A W N P

~

©

The main steps of the algorithm are explained in naturaldagg as follows:
= Obtain the structural function of the main model (line 2);

= Identify the parameters of main model and each sub-moaed 4);

Replace structural function components that representraadels by functions of
the sub-models parameters (lines 5 and 6);

Replace structural function components that represent @ni®BD nodes by their
availability functions (lines 5 and 6);

= For each sub-model, compute sensitivity indices with refsfmeits own parameters
(line 8);

59 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

= For each parameter, compute symbolic partial derivatifeébensystem structural
function with respect to the parameter (line 11);

» For each symbolic derivative expression, convert it intatical sensitivity index
using parameters values and sub-models sensitivity iadite 12);

= Sort sensitivity indices to obtain the unified sensitivigyking (line 15).

The unified sensitivity ranking enables assessing the itnpfagvery parameter from
the main model and its sub-models on the metric of interegt,(system steady-state avail-
ability). It is worth explaining that the functioBuild_Function on line 5 has two possible
return values. It returns a generic function for non-RBD suddats, that serves to indicate
which parameters that sub-model depends on €€, p2, p3)). In case of simple RBD blocks
or RBD sub-models, the corresponding availability functiati be returned. The procedure
Compute_Sensitivity _Rankingn line 8, may have a specific implementation for each kind
of sub-model, depending on the available sensitivity agialjechniques. Partial derivatives,
percentage difference, and DoE analysis are the technigat=d in this thesis and validated
throughout the case studies.

4.2.2 Composition of Sensitivity Indices with SPN as top-level model

When modeling through composition of SPN and CTMC models,it@hs analysis
might use partial derivatives for all models. If the SPN nlddes no constraint that hinders gen-
eration of the embedded Markov chain, one can apply thegbaktrivative methods presented
in (MUPPALA; TRIVEDI, 1990 for SPN sensitivity analysis, in conjunction with equial
methods for CTMCs. Figure 4.6 depicts this process, for an SPNtwo places (PO and P1)
and two transitions (TO and T1). The firing delay of transititD comes from the mean time
to absorption (MTTA) of a CTMC sub-model. The sensitivity quation begins by obtaining
the matrix for the embedded Markov chain of the SPN. The maiements (i.e., transition
rates) are denoted as symbolic expression using the SPets. We compute the partial
derivatives of each expression with respect to every paemdhe sensitivity indices com-
puted for the CTMC parameters are further used to convertytmglic derivative matrix of
the corresponding upper-level model (e.g., main modeliaraerical matrix. The main model
sensitivity indices are finally obtained using the numérisxivative matrix and equations de-
scribed in BLAKE; REIBMAN; TRIVEDI , 1988(MUPPALA; TRIVEDI, 1990.

Some systems might require non-exponential distributionbest fitting the transition
delays in SPNs. The models with non-exponential delayssuelly solved through simulation
instead of numerical analysis (i.e., solution of systemeaifations). A simulation approach
does not allow computation of partial derivatives, therefother sensitivity analysis methods
must be used. For such cases, it might be required combimiticgs that were obtained through
one method with indices computed with another method.

60

4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

Main model (SPN)

Symbolic matrix for SPN

T TO Embedded Markov Chain
1/p sub-model
! -To To
™ -
P1 ﬂ
CTMC sub-model for TO Partial derivative of matrix

with respect to p
0-T0O/dp 9 TO/dp
M
A @
9 Numeric
derivative matrix

%}
—
o
~
-3}
=
1]
(]
=
—
=
=
-]
z

Sensitivity index

Su(A)

Figure 4.6: Sensitivity computation with SPN as main model and a CTMC sub-model

61 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

This thesis proposes a method for the sensitivity analyfisisesarchical models with
SPN as top-level model, that is described in pseudo-codégiarthm 2 . It has similarities, but
also remarkable differences, in relation to that proposedHfe case of RBD top-level model.
The following steps comprise the algorithm for an SPN thaghhbe solved by any of both
methods: numerical analysis or simulation. This is accahpb by employing the sensitivity
analysis technique known as percentage difference (s¢®®c3).

Data: MainModel, SubModels, TransitionsWithSubModels, Ranfig@amValues
Result Unified sensitivity rankindR

1 R+ 0;

2 MainModelParams— Get_List_of Parameters(MainModel);

3 foreach Parame MainModelParamslo

4 Out putValues— Solve(MainModel, Param, RangeOfParamValues[Param]);

5 Minimum< min(OutputValues);

6 Maximumk— max(OutputValues);

7 SensitivityParan] < (Maximum - Minimum) / Maximum;

8 R+ RU SensitivityParametef;

9 end

10 foreach Model € SubModelslo

11 \ SensitivitySubModellglodell < Compute_Sensitivity Ranking(Model);

12 end

13 foreach Transitione TransitionsWithSubModeto

14 SubModelParams- Get_List_of Parameters(Transition.SubModel);

15 foreach Parame SubModelParamdo

16 SensitivityParamete} «— SensitivitySubModels[Transition.SubModel,
Parameter];

17 SensitivityParamete} «— Sensitivity[Parameterk Sensitivity[Transition];

18 R < RU Sensitivity[Parameter];

19 end

20 end

21 R+ SortR);

22 ReturnR;

Algorithm 2: Algorithm for sensitivity analysis of hierarchical modeitiwSPN as
top-level model

The main steps of the algorithm are explained as follows:

» |Identify the parameters (including transitions) of the-teyel model. (line 2)

= For each parameter, solve the model for the values in thecésp range, and com-
pute its percentage difference sensitivity index. (lingés 9)

= For each sub-model, compute sensitivity indices with resfzeits own parameters.
(lines 10to 12)

= For each transition which has a sub-model, do: (line 13)

62 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

» |Identify the parameters of the respective sub-model. (e

= For each parameter of the sub-model, multiply its sengitimdex by the
sensitivity index of the corresponding transition in the-tevel model.
(lines 15 to 18)

= Sort sensitivity indices to obtain the unified sensitivigking. (line 21)

The approach proposed here computes the product of theigénsandices from the
main model and the corresponding sensitivity indices frioensub-model. This way, the impact
of a parameter for the sub-model metric is weighted by theaghthat the respective transition
has on the SPN metric. The result is an estimate of the impacsob-model parameter on the
metric of interest in the main model.

The product of the sensitivity indices is also a way of foliogvthe chain rule of differ-
ential calculus, that may be written as in Equa:

dz dz dy
&—d_y'd_xa

wherez is a function of the variablg, andy is a function of variablex. In a hierarchical
model, z is the metric of interest in the main modgljs a parameter from the main model
that is computed through a sub-model output metric,aisdan input parameter from the sub-
model. Therefore, the derivative of the metziwith respect toc is achieved by multiplying the
derivative ofz with respect toy by the derivative ofy with respeci.

It is worth to highlight that Algorithm 2 depends on the asgtion that a given param-
eter is not used in two or more models. If such an assumptiantisalid, the algorithm must
be adapted to sum up the composite indices computed for edeimadel, as indicated by the
chain rule for functions of two or more variables.

Despite a percentage difference is not exactly a partiavatare, the similar nature of
both indices makes the proposed approach especially kuit@his research did not evaluate
combinations using other types of indices, but it is reabtneonsidering that the Algorithm 2
can be adapted for other cases.

Figure 4.7 depicts an example of situation where the Algori2 can be applied, com-
prising an SPN as main model and a CTMC as sub-model. The SPKImoutains one de-
terministic transition (denoted by black thick rectangl€his model requires solution through
simulation because an embedded Markov chain cannot beajeddor analytical solution of
the SPN. The delay of the other transition is exponential, iarcomputed by the CTMC sub-
model. If ones wants to perform sensitivity analysis in theanmmmodel, a suitable approach is
computing percentage difference indices. Such a techrigas not depend on partial differen-
tiation of equations.

Figure 4.7 shows that results of simulations for distinaiapaeter values enable com-
puting Sto(A) andSr1(A): the sensitivity of the metric A to the delay of transition@ and T1,

63 4.2. SENSITIVITY ANALYSIS OF HIERARCHICAL MODELS

. Sensitivity to TO through
Main model (SPN) percentage difference

PO

TO=X,T1=2
A=Al
TO=Y,T1=2
A=A2

S1o(A) = (A2-A1)/A2

TO

T sub-model

Sensitivity to T1 through
percentage difference

TO=X,T1=2Z
Availability= A3

P1 TO=X,T1=W
Availability=A4
CTMC sub-model for TO St1(A) = (A4-A3)/A4

Combining indices

°-° Sa(A) = S\(MTTA) x Sto(A)

M Sy(A) = S,(MTTA) x Sro(A)

(=) \

Unified sensitivity
ranking

1 1

' ! Sy(A)
1 3T0/9A = S)(MTTA) : |={> Su(A)
1 1

9 T0/du = S,(MTTA) St1(A)

Figure 4.7: Sensitivity computation with SPN as main model (for simulation) and a
CTMC sub-model

64 4.3. OPTIMIZATION GUIDED BY SENSITIVITY RANKING

respectively. The sensitivity of metric A to the parametefS, (A)) depends on combination
of indices from CTMC sub-moded, (MTTA) and SPN main modelSto(A)). Similarly, for
computingSy (A), it is essential combining,(MTTA) andSro(A).

4.2.3 Implementation on Mercury Tool

The sensitivity analysis methods presented here provitetasis for the development
of features in the Mercury tooMERCURY, 2016(SILVA et al., 2015. That software package
helps to automatize the methodology described in SectibnEspecially the possibility of as-
sembling models in a hierarchical manner, and the sergiimalysis of single and hierarchical
models were included in most recent versions.

Details about Mercury and the implementation of the progadgorithms in that tool
are presented in the Appendix A.

4.3 Optimization Guided by Sensitivity Ranking

For many systems, it is difficult to find a setup that maximi@gsminimizes) a desired
metric while meeting a given constraint, such as financiatsor architectural limitations.
Optimization techniques are usually employed for reachimglternative that, at least, is close
to best possible solution. The proposed methodology isvak@ble in such cases. We employ
the sensitivity ranking for iteratively performing paramechanges that will lead the system
metrics to an optimal or nearly optimal solution.

We may handle many performance, dependability, and cappleihning problems as
specific cases of the assignment problem. Consider that alrfada given system under
study has a sd\l of parameters, here called as services, and Mset possible providers to
be assigned to each of those services. A provider means tlgogalue for each parameter
in the model. The value assigned to each parameter may depetined choice of an specific
equipment manufacturer, a certain software configuratiom, third-party service quality. The
optimization process must find the assignment of providegs garameter values) that mini-
mizes (or maximizes) an objective meas@ravhich might be reliability, availability, response
time, or even a composition of many measures.

The optimization process must provide an assignment matnxhich minimizesé.
This assignment matrix is the solution of the optimizatioolgem. Each element of matrix
is a binary variable;j, which is set to 1 if the providey is assigned to servidgand otherwise
is set to 0. As the row indeixis related to the services and the column ingléxrelated to the
providers, the matri¥ has dimensiofiN|| x ||M||. Since a providej may not offer all services,
a matrixA is used to indicate all the available services in a givenigev The elements;;
of matrix A are binary variables which have a value of 1 if the provigeffers the service,
and a value of O otherwise. The QoS characteristics of theigecs are represented in matrix

65 4.3. OPTIMIZATION GUIDED BY SENSITIVITY RANKING

B, where each componebt; is a 2-tuple(t,r) indicating the mean response timand the
reliability r of the providerj when offering service.

Considering the above-mentioned objective function, Wdemand parameters, this op-
timization problem can be written as:

min 8(Z)
subject to

3 a=1.vicN,
JE

zj <aj,VieN,VjeM.

The first constraint (Equatio@.5)) indicates that only one provider must be selected
for each service, and all services must have one providegrassto it. The second constraint
(Equation) requires that the providgrcannot be selected for servicd it is not able to
perform that service, as indicated in matfix

We implement an instantiation of the GRASP metaheuristle(; RESENDE 1989
to solve the assignment problem we just described. GRASRtabsrito find approximate solu-
tions for combinatorial optimization problems such as #rwise-provider assignment problem
just described. The problems handled by GRASP are usualiyuiated as

min f (x) subject tox € X,

wheref (-) is an objective function to be minimized and X is a discreteo$éeasible solutions.
Feo and Resend& 989 proposed GRASP as a probabilistic heuristic for the setroaygrob-
lem. Further developments have been made on GRAEP®({ RESENDE1995 (RESENDE;
RIBEIRO, 2003, and it has been applied in many distinct ardaSTA; RESENDE 2002
(MATEUS; SILVA; RESENDE 2011).

GRASP is a multi-start heuristi¢cEO; RESENDE1989 where a greedy randomized
solution is constructed at each iteration to be used as @ngtaolution for local search. The
combination of greediness and randomization is a key featiGRASP that shall be adjusted
according to the problem characteristics. Components afdhgion are ranked using a greedy
criterion, and the best ones are selected for a restrictedidate list (RCL), from where a
random element is chosen. Local search repeatedly substthe current solution with a better
one in its neighborhood. Such a replacement is called a nibtrere is no improvement in the
neighborhood, the current solution is declared as a locairmim and the search stops. The
best local minimum found over all GRASP iterations is the atityf the procedure.

Algorithm 3 shows the pseudo-code of our GRASP-based proeeddnich returns a
solution vectorZ* that is the best among the solution vectors found throughmarny itera-
tions. In this thesis, we adapt the algorithm presentediATOS; MACIEL; SILVA, 2013

66 4.3. OPTIMIZATION GUIDED BY SENSITIVITY RANKING

Data: N, M, MaxPool, Maxlt, Greediness
Result SolutionZ*

1 C* ¢ o0

2 while Stopping criteria is not satisfiedo

[* The nethod below is the adaptation nmade to original GRASP */
3 Z « Sensitive_Construction(N,M,Greediness);
4 Z* «+ Approximate_Local_Search(Z,MaxPool,Maxlt);
5 if cos(Z*) < C* then
6 VAR
7 C* < cos(Z*);
8 end
9 end

10 ReturnZ*;
Algorithm 3: Algorithm for Sensitive GRASP

by redefining the construction of initial solutions to inporate the sensitivity analysis (method
Sensitivity_Constructionon line 3, it was onlyConstruction originally). We name the overall
algorithm as Sensitive GRASP. The sensitive constructiongmure, which is our contribution,
is described in Algorithm 4. This procedure starts with adi@n selection of providers for each
service (lines 1-3), enabling the use of very differenttstgrpoints in each iteration. Further,
the sensitivity analysis is used for the identification ofstimpacting service in the current
solution (line 5). According to th&reedinesparameter, we select the bggproviders for the
most impact service, composing the RCL from where a randonigeokis chosen (lines 6-8).
This providerk replaces the previous element in the solution Z returneddio midgorithm. The
steps of sensitive construction procedure are also presgémt-igure 4.8. Notice that greedi-
ness is a value chosen between 0 and 1. If the greedines®jsapgrsuitable provider can be
chosen, so the improvement is completely random. If thedyness is 1, then only the best
provider can be chosen. In Figure 4.8, the greediness is0.6ut of eight providers, the four
with smallest response times are put in the RCL, and a randowdercchosen from there.

Data: N, M, Greediness

Result Initial solutionZ
1 for Each service € N do
2 Randomly select providdere M ;
3 Zi + k ;
4 end
5 t « Get top service on sensitivity ranking for Z;
6 g+« Ceiling(Greediness Number of providers for servicg) ;
7 RCL+< Bestg providers for service;
8 Randomly select providére RCL;
9 Zt +—Kk;
10 ReturnZ;

Algorithm 4: Algorithm for Sensitive Construction procedure

67 4.3. OPTIMIZATION GUIDED BY SENSITIVITY RANKING

Service I Service2 Service3 Service4 Service 5
1. Create a random solution =~ | Frovl | Provs | Prov3 | Prov9 | Prov4
Service 1 rSe;ice; | Service 3 Service 4 Service 5
2. Find “bottleneck™ service " | Provl |I Prov5 | Prov3 | Prov9 | Prov4
with sensitivity analysis —=
3. Create RCL with g best ol FToTs Get best 4 g::gzz (1]§ :
roviders -~ Prov2 Prove " Do
P Prov3 Prov7 rove: ..~ 8
Prov4 Prov8. oz L S/
4. Choose a random provider Service 1 ~ Service2 Service3 Service 4 Service 5

' 1 in RCL to replace previous | Provl | Prov8 | Prov3 | Prov9 | Prov4

Figure 4.8: Example of sensitive construction of initial solution

The next step in GRASP is the approximate local search, piexsem Algorithm 5.
This procedure follows the same approach presentedlATQOS; MACIEL; SILVA, 2013. It
builds a pool of good solutions from the neighborhood of theent solution. The procedure
“Move” (line 4) is responsible for providing one neighbor of a givelution vectoZ. In our
assignment problem, the neighbor solutions correspontl tombinations that have only one
different provider in relation t&. Figure 4.9 illustrates an example of three neighbors tlzat m
be found for a given solutio@. Algorithm 5 searches throughout the neighborhood until it
fulfills the pool of solutions or until it reaches the definedximum number of iterations. A
random solution from the pool is used as the pivot of a newhimgiood inspection. When
no neighbor outperforms the pivot, the pool remains emptytae current approximate local
search terminates.

Neighbor Z1 ‘ Prov1 | Prov5 | Prov3 ‘ Prov7 ‘l Prov4 ‘

/

7
Service 1 Service 2 Service 3 Service} Service 5

Prov1 | Prov5 | Prov3 | Prov8 | Prov4 ‘ Solution Z

— ~
— ~
- ~
- ~
- ~
—
- \A

‘ Provsj Prov5 | Prov3 | Prov8 | Prov4 ‘ ‘ Prov2 j Prov5 | Prov3 | Prov8 | Prov4 ‘

Neighbor Z2 Neighbor Z3

Figure 4.9: Example of neighborhood for a solution

The cost of each solution found in GRASP iterations (sest() function in lines 5
and 7 of Algorithm 3 and line 5 of Algorithm 5) may be computedrheans of analytical
models, such as Fault Trees, RBDs, CTMCs or SPNs. The perfornaanttceependability
characteristics of each provider can be used to determmedilues of transition rates in a
CTMC, for example. A modeling tool, such as MercuMERCURY, 201G SILVA et al.,

68 4.3. OPTIMIZATION GUIDED BY SENSITIVITY RANKING

Data: Z, MaxPool, MaxIt
Result Approximate local minimum Z
repeat
Count« 0; Pool<« 0;
repeat
Z' + Move(Z);
if cos(Z’) < cos{(Z) then
| Pool« PooluZ’;
end
Count«— Count + 1,
until (|Pool| > MaxPool) or (count> Maxlt);
if Pool# 0 thenthen
| Z + Randomly selected solution from Pool;
end
until Pool = 0;
14 Return Z;

Algorithm 5: Algorithm for the approximate local search used in GRASP

© 00 N o g~ W N B

e =
N B O

=
w

2015 and SHARPE TRIVEDI; SAHNER, 2009, may be used to compute metrics as well as
the sensitivity indices from the analytical model.

The optimization code requires a specific module to intengitt the analytical model
solver, enabling the fully automated evaluation of largedbenarks. A benchmark, in this case,
is composed of various possible values for each parametar.e&ch new possible solution
(i.e., a selected configuration of parameters values), nag/acal model input file is changed
to match the current providers’ parameters. The correspgrabjective measure is then com-
puted and used for comparisons in the optimization proddss sensitivity analysis during the
construction procedure also uses the module for inteigetith the model solver.

Modify model
parameters
_ »

Analyze
modified model
e
Model
analysis
tool

Modified
model
GRASP-based file

Optimization Code

-
<}

Get sensitivity ranking

-l
-t

Get cost of current —

A !
Load model Get possible solution
solution

Original
model file

Benchmark
(Database of
possible
parameter values)

Figure 4.10: Computation of cost for a possible solution using a model analysis tool

The feasibility and accuracy of this optimization framelw@ verified in a case study
presented in Section 5.4.

69 4.4. CONCLUDING REMARKS

4.4 Concluding Remarks

The methods and algorithms proposed in this chapter aimdatgathe identification
of points for performance or dependability improvement lioud computing systems. The
automation of those methods in a modeling tool makes thene ampessible for researchers and
systems administrators. The Sensitive GRASP algorithmlesabstep forward, by using the
bottlenecks to guide an optimization process for selegtstem metrics. It is worth mentioning
that the methods presented here were successfully apphiedious case studies, demonstrated
in Chapter 5.

Case studies

This chapter presents four case studies that demonsteferdposed methods in the
analysis of distinct cloud computing scenarios: (i) theilatdity evaluation of private clouds
with redundant components, where only typical laaS compisngre involved and the method
of Section 4.2.1 is applied; (ii) the availability evaluati of mobile clouds, which includes
the evaluation of wireless communication issues, battéyrhe and mobile application avail-
ability; this scenario also serves to compare the resultsuofmethods with different kinds
of sensitivity indices; (iii) the performance evaluatiohaocomposite web service powered by
autoscaling mechanisms in a private cloud, which integrétte analysis of user application
and cloud infrastructure components and applies the math8dction 4.2.2; and (iv) the opti-
mization of performance and reliability of a composite webvice by means of the Sensitive
GRASP algorithm presented in Section 4.3. The results aetlisvthose case studies provide
evidence on the usefulness and efficacy of this approach.

5.1 Availability of Redundant Private Clouds

This case study aims at demonstrating the proposed methgpdédr the availability
evaluation of redundant private cloud architectures. Tdraposition of sensitivity indices de-
scribed in Section 4.2.1 is especially useful here.

Hierarchical analytical models were created to descrileebihavior of private cloud
architectures structured according to the general stadowiponents for open-source cloud
platforms described in Section 2.1.3. The proposed modeélsranalyzing how the system
availability can be improved, by means of differential sevisy analysis. Figure 5.1 shows an
architecture with three clusters and redundancy on soraatprcloud components. The redun-
dant components were chosen according to the study presenfeANTAS et al, 20123. A
front-end computer is adopted as the “Cloud Manager Subsysted configured with the com-
ponents known as Cloud Controller (CLC) and Image Repository Glentr(IRC). A warm-
standby host is capable of keeping the Cloud Manager sulsygteking if the primary host
fails. Each cluster has one machine that is hereafter ctledCluster Subsystem”, which

71 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

runs the Cluster Controller (CC) and Storage Controller (SC) corps. \Warm-standby re-
dundancy is also considered for each “Cloud Manager Submaysteach cluster also has three
machines that run the component known as Node Controller (TNi.set of three nodes in
each cluster is hereafter called a “Nodes Subsystem”. Tpadtof implementing the redun-
dancy in the Cloud Manager Subsystem (CLC and IRC) and in the ClBstesystem (CC and

SC) is considered for this system.

(0

/ Cluster 1 \ / Cluster 2 / Cluster 3 \

Warm- Warm- Warm-

‘éﬁ o’ 22 " g % "
(D (D (0

\ Y, _ /

Figure 5.1: Private cloud architecture with redundant components

Due to their simplicity and efficiency of computation, Rellaip Block Diagrams (RBDs)
may be used to analyze the availability of the private clowthisecture described in Figure 5.1,
from a high-level standpoint. However, the redundancy raedms used in the Cloud Man-
ager and Cluster Subsystems require the use of state-basilsmsuch as Markov chains,
for a proper representation. Therefore, a hierarchicatrbgeneous modeling approach is
adopted, composing an RBD and Markov Reward Models (MRNIRIYEDI, 2001 (SAH-
NER; TRIVEDI; PULIAFITO, 1999. The RBD describes the high-level availability view of
subsystems and non-redundant components, whereas the MiRéseats the detailed behav-
ior of subsystems which employ an active redundancy meshanirhis modeling approach
enables us to obtain closed-form equations for the avétiabf the studied architecture.

5.1.1 Creating top-level model

RBD models were created to evaluate the cloud infrastructoasidering one, two,
and three clusters. These RBD models are depicted in Figuré&gre 5.3, and Figure 5.4,
respectively. For all cases, the system infrastructurevaslable if the Cloud Subsystem is
running and at least one Cluster Subsystem is available wighaw more nodes running in
that cluster. The block named CLC represents the Cloud Martagiesystem. Blocks CC _j
represent each of the Cluster Subsystems, wherd,,..,N, and N is the number of clusters.
Each block NC_CCj represent thé" node that integrates th& cluster.

The RBD models enable using closed-form expressions for congpihhe system steady-
state availability. This step might ease obtaining sensitindices with respect to each model

72 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

-

BEGIN END
« M

Figure 5.2: RBD model of the Cloud system with one cluster

— END

NC3_CC2

Figure 5.3: RBD model of the Cloud system with two clusters

parameter. When closed-form equations cannot be obtaieeditisity indices may be com-
puted numerically from the RBD and CTMC models. The numericlaitgm of Markov chains
may depend on iterative algorithms which are prone to issuel as stiffness or long time for
convergence of results. The convergence problem does isbirexhe solution of closed-form
equations, and stiffness is also a smaller problem, althcoghe issues might occur yet due to
computer representation of numbers.

Equatio denotes the closed-form expression for the availglmfithe whole cloud
system Asy9. Despite the architectures evaluated here have a fixed ewafielusters (up to
three) and nodes per cluster (three), the Equ@ applies for the general case of a cloud
system withk clusters, havingy nodes in each cluster. Each component of the Equ@l
comes from the distinct models presented in Section 5.1.2.

Asys= (AcLc) x]1 (Acc_j) (1—_|j(1—ANode_i))))

5.1.2 Creating sub-models for specific components

Figure 5.5 shows the RBD model that represents one node in eaddsNsubsystem.
Each node is composed of hardware, operating system, hgpefe.g., KVM), and a Node
Controller. The node is working only if all these componemesactive (non-failed).

The availability of each nod@éyqe j, can be computed from the Equat.

73 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

NC3_cC1

NC1_CC2

NC2_CC2

NC3_cc2

NC1_CC3

-

NC2_CC3

NC3_cc3

Figure 5.4: RBD model of the Cloud system with three clusters

KvM NC

HW (¢
Figure 5.5: RBD model of one node

HUNode
A = .5.2
Nodel ANodet HUNode

The blocks denoting the Cloud Manager Subsystem and ClusbsyStems have their
individual steady-state availability values computedtigh the MRM shown in Figure 5.6. The
MRM has 5 states: UW, UF, FF, FU, and FW, and considers one pyiara one spare server,
respectively. The state UW represents primary server (Sfirictional and secondary server
(S2) in standby. When S1 fails, the system goes to state FWevthe secondary server has
not yet detected the S1 failure. FU represents the stateevB2teaves the waiting condition
and assumes the active role, whereas S1 is failed. If S2lfaftsre taking the active role, or
before the repair of S1, the system goes to the state FF. Tidy sanalyzes a setup where
the primary server repair has priority over the secondaryesaepair. Therefore, when both
servers have failed (state FF) there is only one possiblgomg transition: from FF to UF. If
S2 fails when S1 is up, the system goes to state UF, and retustate UW when the S2 repair
is accomplished. Otherwise, if S1 also fails, the systemsiteons to the state FF. The failure
rates of S1 and S2 are denoted bysl andA_s2, respectively. The raté s2 denotes the
failure rate of the secondary server when it is inactive. fidpair rate assigned to S2is s2.
The ratesa s2 represents the switchover rate, i.e., the reciprocal ®@itlean time to activate
the secondary server after a failure of S1. Table 5.3 preghatvalues for all the mentioned
parameters of the MRM. The value gf sl is equal to the value qii_s2, the rates\ sl and

74 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

A_s2 also have equal values. Thesandu values were obtained from single RBD models for
each server of the Cloud Manager and Cluster Subsystems. iline fate of the secondary
server, when inactive, is assumed to be 20% smaller thaailbeS rate of an active server, since
there is no stressing load over the inactive spare servervalue ofsa s2 comes from default
monitoring interval and activation times found in softwatech as HeartbeaHEARTBEAT,
2012.

sa_s2

Ai_s2 \b
N_s2

A_s1

Figure 5.6: Markov chain model for a redundant subsystem with two hosts

The state reward rafe(s) assigned t&J W, UF andFU is equal to 1, since the subsys-
tem is available in these states. The state reward ratenasstgFF andFW (shaded states)
is equal to 0, since the subsystem is down in these statesteWaed ratep(s) is also defined
through the function depicted in the Express. There are no impulse rewards in this
model. Therefore, the steady-state availability of thesggtem can be computed as the steady-
state reward rate of the MRM, $o= S s7&- p(S), whererTs is the steady-state probability of
being in the stats, andp(s) is the reward rate assigned to the state

0 ifse {FF,FW}

p(s) = S

1 otherwise

Each single host that composes the Cloud Manager Subsystgiemapresented by a
series RBD as shown in Figure 5.7. The host of Cloud Manager Stdymsyconsists of hardware,
operating system, and the following software componentsC QCloud Controller) and IRC
(Image Repository Controller). A similar RBD model may be use@present a non-redundant
Cluster Subsystem, which is composed of hardware, opersysitgm, Cluster Controller (CC)
and Storage Controller (SC), as depicted in Figure 5.8. Asstiidy considers redundancy in
both, Cloud Manager and Cluster Subsystems, these RBDs areddomibtain the equivalent
MTTF and equivalent MTTR values which will be parametersia Markov Reward Model for
the correspondent redundant subsystem.

75 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

HW 0s CLC IRC

Figure 5.7: RBD model of a non-redundant Cloud Manager Subsystem

Figure 5.8: RBD model of a non-redundant Cluster Subsystem

The model presented in Figure 5.6 enables obtaining a climsedequation for the
availability of the redundant Cloud Manager Subsystem (mmﬁon) and a similar equa-
tion for the Cluster Subsystem (see Equa). Both equation an , can be used
in conjunction with Equatio@, previously presented, to compute the overall avaitgbas
well as to derive sensitivity measures of the redundantccgystem.

Acie— _ Heex (Acic x Acg + a7 +sax az) -
sax (Aé . c+AcLc X a1+ Here X A1) + a3 X (Acie X AcLg + OF)
where
a1 =AcLg + McLe,
a2 =AcLc+AcLg + Here, and
a3 =AcLc + HcLc.
A Acc 2
Acc=—— Hce % (Acc % Acg + Bf +sax o) i
sa(A&c+Acc X Br+ Hee X Br) + Bz X (Acc X Acg + Bf)
where
B =Acc + Hcc,
B2 =Acc+Acg + Hcc, and
B3 =Acc+ Hec.-

5.1.3 Definition of input parameters

Table 5.1 presents the parameter values for the hardwagegtopy system, KVM, and
Node Controller blocks of the RBD. These values were obtairead fsublished studies(M;
MACHIDA; TRIVEDI, 20099 (HU et al, 2010 about availability of virtualized systems. Par-

76 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

ticularly, the Node Controller values are based on studiestahe availability of web services,
since most components of open-source cloud platforms altealsuveb services. The values
shown in Table 5.1 were used in the RBD model, and its analysisged an equivalent MTTF
(mean time to failure)\WANG; TRIVEDI, 2005 of 48182 hours and an equivalent MTTR
(mean time to repairJANG; TRIVEDI, 2005 of 0.91 hours for each node.

Table 5.1: Input Parameters for the nodes

Component| MTTF | MTTR
HW 8760 h | 100 min
(0N 2893 h| 15 min

KVM 2990 h 1lh
NC 788.4 h 1h

Table 5.2 presents the MTTF and MTTR used for the Cloud Man8gesystem and
Cluster Subsystem models. This study considers that thevaaedand operating system of
these subsystems are equivalent to those ones adoptedrindhs, so the MTTF and MTTR
values are the same. The MTTF and MTTR of software compor{@it€, IRC, CC, and SC)
are based on values found i et al, 2010, since these components are usually built as web
services on platforms such as Eucalyptus and OpenStackreSh#s obtained from the RBD
models are an equivalent MTTF of 333.71 h and an equivalenf®Riaf 0.93 h for both Cloud
Manager and Cluster Subsystems.

Table 5.2: Input Parameters for the Cloud Manager and Cluster Subsystems

Component MTTF | MTTR
HW 8760 h | 100 min
SO 2893 h | 15 min
CLC, IRC,CC and SG 788.4 h 1lh

Table 5.3: Parameter values for the Markov chain model

Parameter Description Value (h)
1/A_s1=1/A_2=1/Acc=1/AcLc Mean time for host failure 3331
1/Ai_2=1/Acic = 1/Acc Mean time for inactive host failure 401b
1/u_sl=1/u_s2=1/pcic=1/pcc Mean time for host repair .03
1/sas2=1/sa Mean time for spare host activation .005

5.1.4 Solution of hierarchical model

We computed availability measures using the mentioned ipgameters on the hierar-
chical model. Both, MRMs and RBDs were solved numerically, fildamming the availability
for each sub-model: Cloud Manager and Cluster subsystems MBRMENodes subsystem

77 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

RBD. So the corresponding availability values of each sulesystere used in the high-level
RBD model.

Table 5.4 presents the availability measures of the cloatksyconsidering the architec-
tures with one, two, and three clusters, which hereinafeecalled A1, A2, and A3. Besides the
steady-state availability, Table 5.4 shows the numbermésiVIARWAH et al., 2010, which
constitutes a logarithmic view of the availability, and gh@vntime, which better denotes the
impact of service unavailability from the user’s standirgnp.

These results reveal that the architectures A2 and A3 deessatem downtime in about
50% when associating to A1. When comparing A2 and A3, somel siveilability differences
are traceable. Nevertheless, the similarity indicatesiti@measing the number of clusters be-
yond three will have negligible impact on the availabiliand it is an action which would be
justified only by a need to increase capacity and performaiberefore, a parametric sensi-
tivity analysis is required to identify the availability tiienecks in these architectures, guiding
further improvements to the system availability.

Table 5.4: Availability and downtime measures of the cloud system

Architectures

Measure Al A2 A3
Steady-state Availab. 0.999938749 0.999969376 0.9999693
Number of 9’s 4,21288 451394 451395

Annual downtime 32.194 min 16.096 min 16.095 min

5.1.5 Sensitivity analysis on sub-models and high-level models

Considering the specific case when the cloud system is compd8adentical clusters,
and each cluster has 3 identical nodes, i.e., architectBrEmJatio@ is rewritten shortly as
Equatio. Using this representation, the sensitivity of the esysavailability with respect
to each parametdt in the system (i.e., failure and repair rates) can be condpagedescribed
in Equatio. Otherwise, considering a system with any nunkoafr clusters, anch nodes
per cluster, the sensitivity is computed through Equa. For the sake of conciseness,
the equations that describe the sensitivity of the subm(@%,%,ano‘ﬁ”—é’de) are not
described here, but the reader can see them in the Appendix B.

Asys= Acic X (1— (1—Acc x (1— (1—Anodo)))

78 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

_ 0Asys
% (ASVS) - 09i

= d?(é:.C X(1—(1—Accx(1— (1—ANode)3)>3)

Ao X 91— (1—Acc x (1—(1—Anodd?))?)

06
= 5'2C9:_C X(1—(1—Accx(1— (1—ANode)3)>3)

+Acic % (—3 % (Acc X AnodeX (AZoge— 3 % Anodet3) — 1)2x

4 0
(—AnodeX (AI%lode_ 3 X Anodet 3) X ;(GZC —3x Acc X (Anode— 1)2 X gN;de))
! |
_ OAsys
(ASys) 09|
(9AC|_C K
06 I:l —(Accj) x (1- I_! (1—Anodei))))
k
o(1— I_L (Acc_j) x (1— rll Anodei))

+AcLc X

06

Aiming to reduce the influence of different magnitude orderthe analysis, the scaled
sensitivity indexSg(Asys has been used, and may be computed as indicated in Eq@m
This scaled sensitivity index is necessary because wheozas events are defined in terms of
thousands hours (e.g., MTTF of one host), other ones areiratige of minutes (e.g., MTTR of
one host), or even seconds. Therefore, we scale the ségsitiex so that its magnitude order
may be considered as the expected magnitude order of thgehathe steady-availability. For
instance, if a sensitivity index is in the order of) this implies that percent changes in that
respective parameter will cause variations in the fifth ah@tiplace on the system availability.

Table 5.5 shows the sensitivity rankings for architectxésA2, and A3. It is worth
mentioning that positive sensitivity values indicate a&direlationship and negative sensitivity
values indicate that parameters have an inverse impacteoavdilability. Notice from Table
5.5 that the all sensitivity indices related to failure gafee., AcLc, Acic, Acc, Acc, ANoded
are negative, so the growth of failure rates cause a decnedlse availability and vice versa.
Sensitivity indices for the repair rates are negative, sostfstem availability increases when a
repair rate is increased.

The scaled sensitivity indiceSS (Asys are listed in decreasing order of importance, for
each architecture. The order of importance vary dependirtb@architecture, so each one has

79 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

Table 5.5: Sensitivity rankings for architectures Al, A2, and A3

Al A2 A3
Param. S$ (Asys) | Param. S$ (Asys) | Param. S (Asys)
Actc —382x10°| Acic —382x10°| Ac,c —382x10°
Acc —3.82x107°| pec 2.83x107° | pucic 2.83x10°°

sa 3.27x10°° sa 1.64x 10°° sa 1.63x 10°°
HcLc 2.83x10°°)\CLQ —6.41x10°° /\CLQ —6.41x10°°
Uce 282x10°° | Acc —234x10°%| Acc —1.08x10°13
Aclc —6.41x10°% | pcc 1.73x10°° | pcc 7.96x 1014

Acc —641x108| A —392x10°10| A —1.80x10°%
MANode —2.01x108| Ayoge —123x1012| Anoge —5.66x1017
Unode 2.01x10°8 | pnoge 1.23x10°%2 | pnode 5.66x 10717

its distinct points of improvement. It is also worth notigithat most of the scaled sensitivity
indices in Table 5.5 reduce from Al to A2, and then to A3 (exdBpthe parametedc,c),
indicating that the larger is the number of clusters, thellemia the impact of these parameters.
All three rankings show that the parameter which deserviesifyr for system enhancement
is the failure rate of the primary Cloud Controller servag). Therefore, upgrading the
Cloud Manager Subsystem replication (e.g., increasing twonto three servers) or investing
in more reliable hardware and software for this specific conemt would be the most effective
approach to reach higher system availability. Preventigmtanance for avoiding the failures of
some specific hardware components (e.g., disks, memoryleg)dsi another action that might
reduce the failure rate of the Cloud Controller server, andefoee improve the availability
effectively. Specially, for architecture Al, the highasipiortance is shared with the failure rate
of the primary Cluster Controller serveXdc). Thus, improvements on Al should also consider
improving the Cluster Controller server, as well as extensliitly another cluster (composed of
other Cluster and Storage Controllers and their respectiges)ptransforming Al into A2.

The second most important parameter, for A2 and A3, is thairepte of the Cloud
Manager Subsystem. This endorses that the Cloud Manager serhe “availability bottle-
neck” for these architectures. So, enhancing the efficiefayepair process for the Cloud
Manager Subsystem is an action to be considered with highityri

Considering the analyzed private cloud architectures,erall also highlights that pos-
sible changes in the availability of the nodes have smalbichpn the system availability. The
existence of multiple nodes in the clusters reduces thedhgia single node failure as well as
minimizes the need for optimizing the node repair activitie sensitivity analysis of A2 and
A3 is also useful to determine that changes in the failovier oathe redundant subsystenss)(
affect the system availability more than all the other pagtars related to the Cluster Subsystem
do (i.e.,)\cc, Acq, and[,lcc).

The differential sensitivity ranking enables the compaisf parameters’ impact more
accurately than with the visual inspection of plots, vagyame parameter at a time. Figure 5.9

80 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

Baseline availability ——— | 0.99998 | ‘ ‘ Baseline availability ——— 1

0.99996 | +/‘/i/wﬁ/

0.99994 r

0.99998

0.99996 |

0.99994
0.99992

0.9999

0.99992

0.9999

Steady-state Availability
Steady-state Availability

0.99988 0.99988

0.99986 | 1 0.99986 |
0.004 0.0045 0.005 0.055 0.006 0.0065 0.007 06 08 1 12 14 16 18 2
Active CLC Failure Rate (1/h) CLC Repair Rate (1/h)
(a) Active CLC failure rate 4¢ic) (b) CLC repair rate flcic)
0.99998 | Baseline availability [1 0.99998 | ‘ ‘ Baseline availability [1
2 0.99996 | zooe99s | LT T
3 3
= 099994 [= 099994 |
> >
< <
o© 0.99992 | o 0.99992 |
o] ©
I3 5
3. 0.9999 | 3 09999 |
el e}
[[
Q Q
& 0.99988 | & 0.99988 |
0.99986 | 1 0.99986 |
50 100 150 200 250 300 350 400 0.004 0.0045 0.005 0.0055 0.006 0.0065 0.007
Spare System Activation Rate (1/h) Inactive CLC Failure Rate (1/h)
(c) Spare server activation rateg] (d) Inactive CLC failure rateXg,)

Figure 5.9: Sensitivity analysis - Plots of most impacting parameters

and Figure 5.10 present the results for the system availahen we vary the values of each
parameter in the architecture A3. The value of the measutieeirbase case is drawn as the
horizontal dashed line in each plot. Similar plots for A1 &®iwere not drawn for the sake
of conciseness. The conclusions obtained from the plotBroothe results provided through
the sensitivity indices. Figure 5.9a shows that the paramei ¢ has the highest influence on
the measure of interest, since the slope of the line in tlusiplhigher than all the other ones.
The next plots with high slopes are fog ¢ (see Figure 5.9b) ansk (see Figure 5.9¢), also
confirming the analysis result obtained, since these pammare the second and third ones,
respectively, in the differential sensitivity ranking. tAbugh the difference of impact between
UcLc andsais not so evident in the plots as it is in the numerical ranking

Figure 5.9d shows a line with small slope, indicating therefthe little effect that
changes iMc ¢ (fourth in the ranking of Table 5.5) produce on the systemilavdity. For
the least impacting parameters (i.8cc, Hce, Acc, ANode and Unodd), it iS not possible to
distinguish the levels of importance through the graphieptesentation. Such a dissimilarity
would require using a different scale for each graph, adbfoteeach availability interval. This
procedure may be too time-consuming and confuse the perBonawalyses the data, when
evaluating scenarios with many components and subsystéhesefore adopting differential
sensitivity indices is recommended for such scenarios.

The variation of one parameter at a time allows noticing thatimpact of CLC repair

81

5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

Steady-state Availability

Steady-state Availability

0.99998

0.99996

0.99994

0.99992

0.9999

0.99988

0.99986

0.99998

0.99996

0.99994

0.99992

0.9999

0.99988

0.99986

Active CC Failure Rate (1/h)
(a) Active CC failure rate A¢c)

0.004 0.0045 0.005 0.0055 0.006 0.0065

Inactive CC Failure Rate (1/h)

(c) Inactive CC failure rateXcg

0.004 0.0045 0.005 0.0055 0.006 0.0065

)

2
3
K
‘®
>
<
2
gt
?
>
o
[}
2
2]
0.007
2
3
K
‘®
>
<
2
g
?
>
o
[+
2
2]
0.007

0.99998

0.99996

0.99994

0.99992

0.9999

0.99988

0.99986

0.6

0.8 1 12 14 16

CC Repair Rate (1/h)
(b) CLC repair rate flcc)

18

0.99998

0.99996

0.99994

0.99992

0.9999

0.99988

0.99986

Node Failure Rate (1/h)

(d) Node failure rate Anode

0.99998

0.99996

0.99994

0.99992 |

0.9999

Steady-state Availability

0.99988

0.99986

0.6

0.8 1 1.2 1.4 1.6 1.8
Node Repair Rate (1/h)

(e) Node repair ratef{rode

1.8e-03 1.9e-03 20e-03 21e-03 2.2e-03 2.3e-03

Figure 5.10: Sensitivity analysis - Plots of least impacting parameters

82 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

rate (Uc c) and spare server activation rasa)(decreases as they reach highest values. This
indicates that after significant enhancements on the duepair and spare activation processes,
only architectural changes and reduction of CLC failuregateuld be effective to improve
system availability. However, the latter actions imply osts which may not be affordable for
the cloud infrastructure owners, requiring careful analgs$ other alternatives indicated by the
sensitivity analysis and their trade-off between cost dfettveness.

5.2 Availability of a Mobile Cloud System

This case study employs the methods described in Sectioh #eidentification of
bottleneck in mobile cloud systems. It also uses the cormpardf results from three distinct
sensitivity analysis techniques to validate the propoggucach.

Despite the recent advances, mobile computing suffers fesource scarcity, even on
the most modern devices. The most common problems areuptem of wireless connectivity,
lack of security, hand-off delay, battery discharge andtéchcomputational powerJl; GANI,
2012. In this context, a new paradigm named Mobile Cloud CompufingC) was introduced
recently. This paradigm aims to utilize cloud computingorgses to overcome the limitations
of mobile computing, allowing delivery of more sophistiedtand innovative applications to the
user. The mobile cloud computing market is expected to rd&dbillion dollars in revenues by
2016 KOOPMAN, 2012. Considering this financial impact level, it is essentigbtovide ser-
vices that can be justifiably trusted, thatdependableervices. When a company’s workforce
needs to move around remote areas to accomplish their dtiteeime wasted due to system
unavailability may also imply low productivity of its empjees.

The availability modeling and analysis of mobile cloudsuieg the investigation of a
large number of possible events in client, communicatiow server domains. This section
presents the analysis of mobile cloud availability basedhienarchical analytical models and
distinct sensitivity analysis techniques to assess thaatnpf each input parameter. This analy-
sis aims to identify the bottlenecks for system improvem@éfd also use a combined evaluation
of results from three techniques which complement eachr edheeal with the analysis of this
system. The results show that the system availability maynipeoved effectively by focusing
on a reduced set of factors which produce large variatiorteady-state availability.

The mobile cloud architecture considered for this studyeigicted in Figure 5.11, and
is an adaptation of the system analyzeddh[VEIRA et al., 2013. The architecture is divided
into three high-level subsystem&lobile Client Mobile Communicationand Cloud Infras-
tructure The system is only available if all the three subsystemsnanking properly. The
availability of theMobile Clientmay be affected by events on four componeMsbile Hard-
ware, Mobile Operating SystenBattery, andMobile Application The event that may cause
battery unavailability is its full discharge. We assumd tnéully charged spare battery is used
to replace the discharged one. The availability of the neodiplication is affected by software

83 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

WiFi connection

=

g - ik e 1

[Hardware] lBattery powerl

3G connection

Mo bile client I Wireless Communication Cloud Infrastructure

Figure 5.11: Mobile cloud architecture.

faults, or by installation of software updates.

The Mobile Communicatiosubsystem has th&/iFi and3G components; it was repre-
sented directly in the main system with two blocks in patall&hen both WiFi and 3G fall,
the communication subsystem is down, and subsequentlyntire system too. The cloud in-
frastructure has onkafrastructure Manage(IM), one Storage Manage(SM), and fivenodes
These components are based on the common building blockd fadframeworks such as Eu-
calyptus, OpenStack, and OpenNebula, which may be usedpienment laaS cloudPENG
et al, 2009.

A 1:N redundancy is used for the IM. This means that there ésspare machine for N
active machines playing the IM role. The same technique {@&yed for the SM. We consider
the number, N, of active servers as a tunable parameter afytstem, in order to keep the
flexibility of our analysis.

5.2.1 Creating top-level model

Following the proposed methodology, we create a model t@sgmt the high-level view
of the mobile cloud architecture illustrated in Figure 5.The RBD model in Figure 5.12 has
blocks representing thdobileDevice Battery, MobileApp Cloud_IM andCloud_SMsubsys-
tems, which have their availabilities computed through CTM®-models. The blocks repre-
sentingWiFi, 3G, and the cloud nodes are not expanded into sub-models.

For the top-level RBD from Figure 5.12, a closed-form equatamsystem availabil-
ity is expressed b, derived from standard equations for series-parallel RBB shown
in (MACIEL et al,, 2011). Each componemdy in this equation is computed from the evalu-
ation of the respective sub-modek {MobileDev, Battery, MobileApp, WiFi, 3G, IM, SM,
Node}, which can also be done through closed-form equatibitss possible to obtain them,
or through numerical solution. The closed-form equatioitisaléo be used to get partial deriva-
tives needed to compute the sensitivities.

84 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

CloudNodel
- CloudNode2
Wik
e _—-_-_- -_-__-__ B
MobileDevice Battery MobileApp - Cloud_IM Cloud_SM CloudNode3
) -

CloudNoded

CloudNode5

Figure 5.12: RBD model for the mobile cloud.

Asysteni= AmMobileDev X ABattery X AMobileApp
X (1= (1—Awiri) X (1—Asg)) x Am X Asm X (1 — (1— Anodo)”)

5.2.2 Creating sub-models for specific components

The CTMC that represents the mobile device is depicted inrEi§ul3. InUp state,
the device works properly. A hardware failure may occurhwéteAh, leading to the device
unavailability indicated by the gray colorétD state. The hardware repair has a ake taking
the system to th&lp state again. If the operating system fails, the device goéisetSD state
with rateAs. The correspondent repair happens with yageWe assume that the time between
failures and the time between repairs (reciprocal of meetidransition rates) are exponentially
distributed. The same assumption is made in the other mpdetented hereatfter.

Figure 5.13: CTMC for the mobile device.

Equatio can be used to compute the availability for the CTMC degiin Fig-
ure 5.13.

85 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

Figure 5.14: CTMC for the battery discharge.

(M X Us)
AmobileDev= (Ao x i+ A+) < 119)
Figure 5.14 presents the CTMC state diagram for the batteighdrge process. The
energy consumption of a mobile device when communicatingugih a WiFi interface is dif-
ferent from the consumption when a 3G network is us@LASUBRAMANIAN; BALA-
SUBRAMANIAN; VENKATARAMANI , 2009. Due to this reason, the CTMC in Figure 5.14
represents the discharge process through two differerg.waystatel00the battery is full and
may begin to discharge with WiFi interface enabled, withigadaility pw, or with 3G interface
enabled, with probabilitp3g The discharge is modeled in steps of 10%¢8g represents the
discharge rate of this amount of energy when using 3G,damdepresents the corresponding
rate when using WiFi. We assume that once the battery begidis¢harge, there will not be
vertical handoff, i.e. the change of network interface.hi@ state® 3g and0 Wifithe battery is
fully discharged, so it becomes unavailable. We assumetibatser always has a spare battery
available, therefore, he only needs to replace the battetyian the device on gain. The rate of
transitions from state® 3g andO Wifito the statd 00is rb. It is also important to highlight that
the entire discharging time is known to have a nearly det@stic behavior. We approximate
the deterministic behavior by a 10-stage Erlang randonakigj as in TRIVEDI, 2001).
Considering the model depicted in Figure 5.14, the avaitgbof the battery is com-

puted through Equatiof.11).

((1+ 9% p3g+9x pw) x rb)
d3g x p3g+dwx pw+rb+9x (p3g+ pw) x rb)

ABattery = (

The mobile application has two possible causes of outageva@ failure or software
update. Figure 5.15 shows the state diagram for mobile egijdn CTMC. In the gray states,
UpdatingandApp Failed the application is unavailable. The software failure rat®appand
Is assigned to the transition betwe&pp UpandApp Failed The repair rate is labeled asipp.

86 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

The transition fromApp Upto Update Readyneans that the application developer released a
new version. Such a transition occurs with rate When the user decides to install the updated
version of the application, the system goes to the &latiating The rateBuis the reciprocal of

the mean time passed since the update release and theaitstallWith rateuu, the application
finishes the update process, and becomes available again.

Figure 5.15: CTMC for the mobile application.

The closed-form expression for the mobile applicationlawality is shown in Equation

-

AMobiIeApp:

((Bu+Au) X Happ < Hu)
5.12
(Bu x Au X HappAu X Happ X Hu~+ Bu X (Aapp~+ Happ) X Hu) -

The WiFi and 3G components of our top-level model are blodkievare not expanded
in sub-models, therefore, their availabilities are coreduising Equatio an u , re-
spectively. The parameters,ii andAyiti are the repair and failure rates of the WiFi connection,
whereaguszg andAzg are the repair and failure rates of the 3G connection.

Hwi i
Ayigi= ——m— .5.13
i Awifi + Hwifi
H3g
Ag=——-"— .5.14
% Asg+ Lsg

The infrastructure manager (IM) of the cloud environmentasnposed of N active
hosts, and 1 standby spare host. The infrastructure manages N hosts to be available, so
if one of the active hosts fails, the spare host shall be @&t bringing the system to working
condition again. The CTMC for this 1:N redundancy is depicteBigure 5.16.

The stateUS represents the initial condition, where all N active sesvare working
properly. The failure of one active host may bring the systeitine statdDS which indicates
that a covered failure occurred, and the spare server igylativated. The transition rate
betweenUS and DS is NimAimCaim, WhereNiy, is the number of active hostd;, is the failure
rate of a single host, andg, is the coverage factor for failures of active servers, ilee,

87 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

Nim)\'im

Figure 5.16: CTMC for the Infrastructure Manager.

probability that the failure may be covered by spare hostaobn. From stat®S the state FU
is reached with rat@m,, indicating that the spare server was activated, and themyis up. In
this condition, the failed host may be repaired with maig,, in which case the system returns
to stateUS where the spare server is in standby again. If another hdst With rateNimAim,
the system goes to stalié-. In such a condition, a complete repair is executed, so thegy
goes to the operational stdtks with rate Limp.

From stateUS, when a not-covered failure occurs in one active host, thigadion of
the spare host is not triggered, and the system goes to renatagnal statd-S. The rate of
such a transition idlimAim(1— cam). In the statd=S the failed host is repaired and the system
reconfigured to return to an available condition. This repeidcess is executed with rat@ms
leading the system to stats.

The statdJD is reached due to a detectable failure in the spare host wisan standby
condition and the system is up (st&l&). The rate of this transition ij,CcSm, and this single
event does not affect system availability. The parameggris the coverage factor of spare host
failures, i.e., the probability of that failure be detedéalwhile the host is in standby condition.
If the spare host is repaired, with ratey,, the system goes back to stat& Although, in state
UD another host may fail, with rafémnAim, bringing the system down (stafd-).

The statdJF represents that the spare host has failed while the systawaiiable, but
that failure is not detectable while in standby conditiorhisTevent occurs with ratém,(1—
cSm). From this point, one of the active hosts may fail, leadirgsiistem to failure (stateF)
because the spare host cannot be activated. This transdoums with ratéNimAim.

Equation provides the closed-form expression for the avaitgibof the Infras-
tructure Manager (IM).

88 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

AcloudiM =
— (Bim(Nim(1 4 Nim + ca&mNim) Aim + (1 — €Sm + Nim) kim) Him2Mim3) /
((—1+ cam)N& BimAim(NimAim + Him)
Him2 — ((1— ¢Sm) BimHimHimz + CamNinAiz, (Bim + Himz) + NimBim
(HimMim2 + Aim(Him — CSmHim + Him2)) + N Aim
(CaimMimMim2 + Bim(Aim + Him2 + CamMtim2))) Mim3)

The Storage Manager (SM) of the cloud infrastructure useslandancy mechanism
that is similar to that presented for the IM. Therefore, theMCImodels of both IM and SM
have the same structure of states and transitions, anddiffeirences are just the values of
failure, repair, and coverage parameters used in the timmsates. Due to such similarity the
CTMC for the SM is not depicted here, but we present Equ used to compute the
availability of this component.

AcCloudsm=
— (Bsm(Nsm(1 + Nsm~+ CasmNsm) Asm+ (1 — CSsm+ Nsm) Hsm) HsneHsns) /
((—1+casm) Ns?nﬁsnﬂsm(NsnAsm+ Hsm)
Hsne — ((1 — CSsm) BsmUsmbsne + CasmNé3 szm(Bsm—F Usne) + NsmBsm
(Msmisne + Asm{ Hsm— CSsmidsm+ Hsne)) + NépAsm
(CasmtsmUsne + Bsm(Asm+ Hsne + Csmidsne))) Hsns)

Similar to the WiFi and 3G components of our top-level modakh node in the cloud
environment is a single block which is not expanded in a soleh Therefore, the availability
of each node can be computed through Equ, wherelngge aNd Angge are the repair
and failure rates of each node composing the cloud nodelsbleafor hosting the applications
that support the mobile cloud in the server side.

HMnode
ANode= ———— .5.17
ode Anode+ Mnode

5.2.3 Definition of input parameters

Table 5.6 shows the input parameters for the mobile devatgety, and mobile applica-
tion models. The failure rate of mobile hardwakg, comes from the annual failure rate (AFR)
reported in SQUARETRADE 2010, but it was reduced by a factor of 10. This reduction aims
to yield a more realistic value of the MTTF, based @&CHROEDER; GIBSON2007), which

89 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

states that the time between replacements of failed havédsdmay be 10 times shorter than
the MTTF published by manufacturers, which are also basefiFd values. The application
failure rate Qapp) is based on the estimate found Kil1; MACHIDA; TRIVEDI , 2009 for
web application. The rate of update releaskg$ is an average of values found IARPBRAIN,
2013. The application repairapp, and update installatiornyy, rates are considered to be
equivalent to the inverse of the mean time to restart a malpigication.

Table 5.6: Input parameters for the mobile device and mobile application models

Parameter Value (1)

An 0.00004452
As 0.00069401
Hh 0.6

Us 3.0

Aapp 0.0029700
Happ 120

Au 0.00157828
Uy 120

By 0.2

Table 5.7 shows the parameter values for the blocks repregehe WiFi and 3G com-
munication networks in the RBD of Figure 5.12, as well as theeslfor the battery discharge
model. The failure rates of WiFi and 3G networks, due to digiacking and similar problems,
are found in D-LINK WIRELESS N150 ROUTER2012 and COOPER; FARRELI.2007),
respectively. The battery discharging rate is obtainedhénspecifications published by major
smartphone manufacturelBH{ONEARENA 2013.

Table 5.7: Input parameters for the WiFi, 3G, and battery models

Parameter Value

Awifi 0.0001 p~ 1)
Hwifi 0.6 ™)

Asg 0.000012 k1)
Usg 0.083 1)
p3g 0.7

pw 0.3

d3g 1.4 0

dw 1.1 0D

rb 60 1)

Table 5.8 depicts the parameters for the RBD of Figure 5.18esemting the IM, and
also for the SM and the nodes in the cloud infrastructures.fatture and repair rates are found
in the study of private cloud systems presenteddANTAS et al, 20120).

90 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

Table 5.8: Input parameters for the IM, SM, and nodes

Parameter Value

Aim 0.00299791¢~ 1)
Uim 1.06506841~1)
Him2 0.532534211)
Him3 0.71004561(1)
Bim 120 01

Nim 1

Cam 0.95

CSm 0.9

Asm 0.0039984006H(1)
Usm 0.892124331f 1)
Hsne 0.446062161f 1)
Hsns 0.594746261f 1)
Bsm 12001

Nsm 1

Casm 0.95

CSm 0.9

Anode 0.003678

Unode 1.1367382

Table 5.9: Availability results

Steady-state availability Number of Nines Downtime (h/yr)
0.99553119 2.349808 39.147

5.2.4 Solution of hierarchical model

We computed availability measures for the mobile cloud igecture, using the men-
tioned input parameters on the hierarchical model. Both, CTEi@sRBDs were solved nu-
merically, first obtaining the availability for each CTMC suoindel, and then using the corre-
sponding values in the RBD model. The results are shown in Tblancluding steady-state
availability, number of nines, and annual downtime.

The expected annual downtime of 39.147 hours indicatestibes is room for improve-
ments, because this value corresponds to more than 1 dapbdtvage throughout a year. The
same conclusion is also drawn by looking directly on stestdye availability and its number
of nines. Many companies consider that their systems mastrat least three nines of avail-
ability. Amazon EC2 SLA defines 995% as its minimum monthly uptime percentage, which
once violated makes the customer eligible to receive semiedits, as compensatioANIA-
ZON, 2014h. Such a metric equals3nines of availability, whereas the mobile cloud system
evaluated here has abou82 nines, confirming that we cannot consider the evaluatetures
as satisfactory. Therefore, we must carry out enhancenoentkis system according to the
proposed methodology.

91 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

5.2.5 Sensitivity analysis on sub-models and high-level models

This section shows how distinct sensitivity analysis teéghes applied to our hierarchi-
cal model can detect bottlenecks of this system’s avaitglmlt of the many parameters that
may impact the model results.

As mentioned in Chapter 2, the direct method—based on paltiavatives—is the
backbone of many sensitivity analysis techniques. We usle aiechnique to begin our explo-
ration of model parameters, in order to assess those witfifis@nt impact on model results,
l.e., system steady-state availability. The sensitivatiyking obtained through the computation
of partial derivatives will also enable us to justifiably aye parameters that have less impact
on the measure of interest.

Partial derivatives Table 5.10 presents the sensitivity ranking computed uiiegpartial
derivate of Equatio, and subsequent derivatives of equations for each su®in The
derivative expressions are not shown for the sake of comesse The sensitivity ranking in
Table 5.10 uses scaled sensitivity indices to remove uratesifluences of units, because pa-
rameters with very different orders of magnitude are useithimmodel. The parameters are
presented in decreasing order of the sensitivity index.

The top-ranked parameters are the coverage factors of thegeétManager and Infras-
tructure Manager. All these coverage fact@S{, Casm CSm, Cam) have a direct impact on how
likely a single host failure will cause the failure of the Ibt,of the SM, and a subsequent failure
of the whole system. The parametessy, andcsy, may be improved through the employment
of more accurate failure detection mechanisms, wtalg, andca,, may require architectural
solutions to enable the spare host to be activated for nainhossible types of failures in the
active hosts. Most parameters ranked in the next highestigpus are related to the battery
model or the IM and SM models. Therefore, these componemisidgineceive higher priority
than others to achieve effective improvements in systerntediiy.

The last set of parameters in the ranking are related to tie, \B&, and cloud nodes.
The reduced impact of failure and repair rates of these coenis is expected due to the parallel
structures in which they are involved. A single failure ofRlyior 3G, network does not bring
the system down. The same thing happens for a single cloud. ndde other parts of the
mobile cloud system are prone to single points of failureatomost to dynamic redundancy
mechanisms which do not avoid some downtime before thairadicin.

Percentage difference Table 5.11 presents the sensitivity ranking based on ptxgenliffer-
ence, as shown in Equati. For this analysis we used a range of values approxiynatel
between -50% and +50% of the baseline value for each parantetethe probability values,
we used 0.1 as the minimum value and 1.0 as the maximum vaheeminimum value foNim
andNspmwas 1 and the maximum value was 10.

5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

Table 5.10: Sensitivity ranking based on partial derivatives

Parameter Description |ISSA)|

CSm Coverage factor - Spare SM 0.006242686368
Casm Coverage factor - Active SM 0.005679147263
CSm Coverage factor - Spare IM 0.003946053118
Cam Coverage factor - Active IM 0.003579911742
rb Battery replacement 0.002173576439
d3g Battery discharge - 3G 0.001626034283
Asm Failure - Storage Manager 0.001259313897
Hsne Repair 2 - Storage Manager 0.000871670267
Aim Failure - Infrastructure Manager 0.000767725345
dw Battery discharge - WiFi 0.000547542156
Nsm Number of active SMs 0.000534594283
Him2 Repair 2 - Infrastructure Manager 0.000533421136
Nim Number of active IMs 0.000316933771
HsnB Repair 3 - Storage Manager 0.000301953425
p3g Prob. of 3G connection 0.000256681126
Us Repair Mobile OS 0.000230303097
As Failure Mobile OS 0.000230303097
Him3 Repair 3 - Infrastructure Manager 0.000190158647
Un Repair - Mob. dev. hardware 0.000073869450
An Failure - Mob. dev. hardware 0.000073869450
Hsm Repair 1 - Storage Manager 0.000057255808
pw Prob. of WiFi connection 0.000039323482
Bsm Activation of spare SM 0.000028434398
Happ Repair of Mobile App 0.000024446504
Aapp Failure of Mobile App 0.000024446504
Uim Repair - Infrastructure Manager 0.000022767188
Bim Activation of spare IM 0.000021378375
Ly Update installation 0.000012991063
Au Update release 0.000012697941
Bu Update selection 0.000000293122
Hwifi Repair - Wifi 0.000000023918
Hag Repair - 3G 0.000000023918
Awifi Failure - WiFi 0.000000023918
Azg Failure - 3G 0.000000023918
HUnode Repair - Node 0.000000000002

Anode Failure - Node 0.000000000002

93 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

Table 5.11: Sensitivity ranking from percentage difference

Parameter |S(A)|

Nsm 0.0068660546
rb 0.0058528304
Nim 0.003583039
Casm 0.0026962696
CSm 0.0026128065
Caim 0.0017010243
CSm 0.0016524309
d3g 0.0014956874
dw 0.0006411687
Hs 0.0006241302
p3g 0.0005661573
Asm 0.0004926414
Hsne 0.0003510625
Him2 0.0002565759
Aim 0.0001975189

Note thatNsm andNiy, are at higher positions in this ranking, as wellrbs—the rate of
replacement for the battery—and the coverage paramet&ig @ind IM Casiy, CSsm Caim, CSm)
are ranked just after. This occurs becalggandNsmy, are not supposed to vary in a continuous
domain, as assumed in the sensitivity analysis based omalpdetivatives. Nsm, and Ny, are
in the integer numbers domain. Such a fact highlights théutrsess of complementing the
sensitivity evaluation by comparing distinct methodsslimportant to highlight that increases
in NsmandN,, decrease the system availability. Thus, the higher positithe ranking denotes
that the redundancy mechanism shall be modified to a moreuatlegpproach as the required
number of active servers rises.

The battery discharge rate with 3G enabld@d), and the discharge rate with WiFi
(dw), have similar positions in both rankings, and therefose aleserve attention when search-
ing for improvements to system availability. Both rates maydduced by adjusts in high level
protocols of the application running in the mobile devicde3e adjusts can include compress-
ing transmitted data, and decreasing synchronizatiouénecy. The choice of the 3G provider
with best coverage (i.e., strongest signal in most areas)agher action capable of reducing the
discharge rate too.

It is also worth noticing that only one parameter in the topfrtn Table 5.10 does
not appear in Table 5.11, despite the changes in the ordbBedither 14 parametersiu,g is
not one of the 15 most impacting parameters in this percerddfgrence ranking. Table 5.11
instead indicatemus—repair rate of mobile OS—as one of the top 15 parameters.

Design of Experiments We performed the analysis of a factorial design of experisiém
provide another point of view on the sensitivity of mobil@wtl availability with respect to
each parameter. This analysis is performed on the 15 pagesrsdtown in the ranking based on

94 5.2. AVAILABILITY OF A MOBILE CLOUD SYSTEM

Table 5.12: Sensitivity ranking from 2 experiment analysis

Parameter Effect
rb 0.010521
Casm 0.007525
Nsm -0.006857
Hsrre 0.004468
Asm -0.004225
Nim -0.003982
CSm 0.003141
MUsng 0.003115
CSm 0.002748
Aim 0.002174
p3g 0.001510
dw -0.001095
d3g -0.001015
Cam 0.000861
Him2 -0.000096

partial derivatives. Two levels are considered for eaclupater: the minimum and maximum
values used in the percentage difference analysis. ThiacZorial experimentJAIN, 1997)

Is evaluated according to the individual effects for thetesysavailability, and these values are
shown in Table 5.12.

Parametersb, casm and Nsy have the largest effect values, similarly to seen in the
analysis with percentage differences. The failure ratt®SM sy, and the repair rate of SM
when two hosts are failequf,p), are among the highest in this ranking, as they are alscein th
partial derivatives ranking. Note that the effect of manyapaeters related to the SM are among
the highest ones in Table 5.12, confirming the importancé&isfdomponent in the search for
system availability improvements.

A refined analysis combining the three ranking-B®E, percentage difference indices,
and partial derivative indices—may provide a reduced Ifsparameters which deserve the
highest priority to improve the system availability. We foem such a combined analysis by
checking the parameters which appear among the first fivéiguusin at least two out of the
three rankings. The parameters which match such a critar®the coverage factors of failures
in the SM Casm, CSm), the required number of active hosts for the SNi), and the rate
of battery replacement after dischargb)(These four parameters can be considered major
availability bottlenecks extracted from the 36 parameteraprising the complete hierarchical
model.

95 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

Event Search

Y

Search for Venue Search for
Statistics Related Artists

4

| Event Selection I

Y Y

| Map Search I | Song Search I

Presentation to
User

Figure 5.17: Activity Diagram of Event Recommendation Mashup

5.3 Performance of Composite Web Services on Private Cloud

This case study demonstrates the application of our metbggin the context of per-
formance evaluation, what it makes especially distinatfimoth case studies presented in Sec-
tion 5.1 and Section 5.2, that carried out availability eadion instead. It also exercises specif-
ically the method proposed in Section 4.2.2, which addseeS&$&N as top-level model in the
hierarchical composition.

The system evaluated in this section is an event recommendatashup MATOS;
MACIEL; SILVA, 2013, i.e.: a composite web service, which is hosted on a prickted.
This mashup receives the location (city or neighborhoaatpfthe user and combines data from
publicly available web services in order to recommend a ocalgvent that will occur nearby.

Figure 5.17 depicts a Unified Modeling Language (UML) atyidiagram for such a
service. The first activity is the search for musical everisiad the current location of the user.
The location data might be acquired by communicating withab@ Positioning System (GPS)

96 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

My \Cloudwatch .
K }‘ 77777777777777 Node o Front-end
| s \‘ //’7 7777777777777777777777777777 T TTTTTTTTTTTTTTTT N
X ! Workload ‘; ' Analyzing ' Remove \v‘
! arrives . statistics AIarm } Auto Scaling instance 1
P b il
! Lo L 2 te ([
| ' Iatency s r-- >l /\’_:‘1—93255);6— @ 3
v L v =& \
11 Monitoring L . o 1
1 workload o o . o, !
- ; b % ‘
! . o '
1 . . '
‘ ;o | :
1 ! '
! ! Add !
! ! instance !
l ‘\\ NC ," . cLe Window time ‘\ !
\ N N e memmemeesmmcccmmemamm——= - N e e e e e mcccccccccccccccc————- e e e e e e e =
(a) CloudWatch Process
eee......Front-end Node
Auto Scaling Walrus Instances Directory Hipervisor

]

_<\ \

/ ¥
|

4is

19)

2

3

<}

o

a

=3

LQ -
Q? @

o
o)
S
<.
=
@
o
@
©
L
=]
@

))

—_—

: NG P

request mstance EMI - EKI-ERI Ui ‘~~‘Z{/§:S,s running;
Vo qlleé“~ . << | ‘

DTS - \ A

| esarve snes "B aniais W “In |
ﬁ / ' : instantiate VM | | ,

Node Controller

(b) Instantlatlon Process.

Figure 5.18: Detailed representation of Eucalyptus Auto Scaling process.

application, or manually provided by the user. After obitagra list of nearby musical event, the
application issues concurrent calls to two distinct se&asicsearch on venue statistics, such as
average users rating of previous events in that concere péancl search for similarities between
the lineup of artists in the event and the user’s preferendédsen data from both services are
acquired, the mashup selects the best event based on treargshartist criteria. Once the event
is selected, the application searches for map directiam the user current place to the event
venue, and gets a link for one sample song from the main artisat event. The last activity is
the presentation of all gathered information to the user.

The mashup application must take advantage of elasticigham@sms to avoid perfor-
mance degradation even in sudden bursts of users requésIasticity also avoids wasting
system resources in low workload periods. The Eucalyptus Scaling mechanism is respon-
sible for adapting the number of VMs that run the web servieexplained in Section 2.1, the
Auto Scaling interacts with the CloudWatch and Elastic LoathBeer components to avoid
performance degradation. This is accomplished by creatévg VM instances when a given
metric reaches a threshold predefined by the system adratoist

CloudWatch monitors information that is used by Auto Scalogdd or remove in-
stances. Figure 5.18 (a) details the operation of this goddote that while workload arrives
in a VM, the CloudWatch, after a certain latency, monitors drinée.g.: average CPU uti-

97 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

lization of all VMs) and adds the value in the Node ControlC] repository, along with the
time stamp of data collection. This information is colletteom repositories of all NCs each
5 minutes (by default), and sent to a unified repository on €lBantroller (CLC) that gathers
data from all clusters. At the end of a specified period of t{tmae window), CloudWatch ag-
gregates the metric values from the CLC repository, whicheveeided within the range of the
time window. Statistics (e.g.: minimum, maximum, average) computed from the aggregate
data, and if the result reaches the specified threshold, @fatah Alarm would modify its state
from ok to alarm. If an alarm state is maintained over a predefined numbenud Wwindows,
the CloudWatch Alarm triggers the warning threshold for thecAScaling, which performs ac-
tions (i.e.: add or remove instances) based on policiesqusly determinedEUCALYPTUS,
2014b.

Every request for the creation of a new VM instance takes soneeto be fully serviced.
That time depends on factors of the Eucalyptus instantigiiocess, which are explained as
follows. As shown in Figure 5.18 (b), when the auto scalinghamism —or a user— calls for
anew VM instance, the CLC checks the existence of availabaurees for creating such a VM.
This is accomplished through queries to the Cluster Contr(l€), which stores information
about its nodes. If there are enough resources, the CLC essamnique identification number
for the instance, the CC assigns the node where the VM shoufstamtiated, and the NC starts
copying three images: Eucalyptus Machine Image (EMI); Bytas Kernel Image (EKI); and
Eucalyptus Ramdisk Image (ERI). These images can be dowrddaal® Walrus or copied
from a local cache, maintained by NEWCALYPTUS, 20143.

The cache will not be used if it is not enabled in system condiggon or if the requested
EMI had never been instantiated on that node before. In tierlaase, the CLC transfers
EMI from Walrus to the cache and to the NC instance directdgte that EKI and ERI are
also downloaded if they are not in the NC cache. When the cachetienabled, the EMI
is transferred directly to the NC instance directory andasaached for later use. When the
cache is working and the node already has a copy of the EMICti@ does not download
from Walrus, but only copies the EMI from the cache to theanst directoryEUCALYPTUS
20143.

After obtaining the EMI, EKI, and ERI, the NC interacts withethypervisor (KVM,
Xen, or VMware) to prepare the disk space required by the VMaince, according to the
chosen VM type (e.g.: ml.small, cl.xlarge, etc.). Such aguare usually requires creating,
partitioning and formatting virtual block devices. The byysor, then, starts the current VM,
completing the instantiation procesSl{CALYPTUS 20143.

In a previous work CAMPOS et al. 2015, we identified three main phases that occur
for instantiating a VM in a Eucalyptus cloud: (i) resourcalanstance reservation; (ii) copy
(or download) of the VM image files (EMI, EKI, and ERI); and iWM preparation and de-
ployment. These three phases are considered in a CTMC mad€Manstantiation that is
presented further.

98 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

TNoScale

TWindow TCWLatency TCheckThreshold TScaleUp
o Plnstantiation
PMonitor PCollectMetrics PCheckMetrics ScaleDpcision
Np Tinst
PoolVMs
TScaleDown < N) 1dievms

TReq TSend TAccept TLB TService TRep

PReq PSend JobAdrhission Queue BusyVMs PReply PComplete
NL

TReject Buffer_LB

Figure 5.19: SPN model for the scalable web service on private cloud

A hierarchical model is proposed to evaluate the whole sygiist described in this sec-
tion. The approach enables representing details of spgecdimesses, such as the instantiation
of VMs and the calls for the providers of specific web servited compose the mashup appli-
cation. The hierarchical model comprises an SPN as main naodeCTMCs as sub-models.

5.3.1 Creating top-level model

The SPN, depicted in Figure 5.19, is a performance modeleoivitb service deployed
in a private cloud with the auto scaling mechanism. This rhodptures the main activities
of the system, from client requests to service completidraldo represents the creation and
termination of VM instances through the autoscaling meisman

A token in placePReqrepresents a user request for the mashup. The firing delay of
transitionTReq corresponds to the mean time between arrivals of requesteniReq fires,
it stores one token in the pla&Send which denotes the transmission of requests through the
network. The network latency between client and server sgyasd to transitiomSend A
token in placeJobAdmissionrepresents user request arrival in the cloud. Such a requaest
be admitted by the Load Balancer if its buffer is not full (inuffege transitionTAccept), or
discarded otherwise (immediate transitibReject). If the request is admitted, it waits in the
placeQueuefor being assigned to one of the VMs hosting the mashup agpic. The time
spent by the Load Balancer to forward the request is repregdnt transitionTLB . Notice
thatTLB requires one token from plad¢dleVMs, which initially has two tokens, denoting the
number of available VM instances we defined for initial claadup.

The VMs that are busy processing a user request are repedseyttokens in place
BusyVMs. The time that one VM takes to serve a request is assignednsitionTService,
which is refined by a CTMC submodel presented further. Nolieetransitionl Servicehas an
infinite server firing policy in order to properly represeim pparallel execution of all requested

99 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

Table 5.13: Immediate transitions of the SPN model for scalable web service on private

cloud
Transition | Description Enabling function Priority
TNoScale | Decision of keeping the current number jofldleVMs>1 1
VMs
TScaleUp | Decision of increasing the current number|ofidleVMs<1 1
VMs
TScaleDown| Decision of decreasing the current number q#ldleVMs>4) AND 2
VMs (#Queuecl)
TAccept Decision of accepting the user request - 1
TReject Decision of rejecting the user request - 1
TComplete | Completion of user request - 1

VMs. After processing a request, a response is sent bacletdidgnt. This activity is denoted
by transitionTRep. PlacePCompleterepresents the client response arrival. The transition
TComplete firing consumes all tokens iIRComplete avoiding accumulation of tokens in that
place and subsequent problems for model solution.

The auto scaling mechanism is modeled by places and tramsitn the upper part of
the SPN. The placBMonitor and transitionTWindow denote the periodic trigger of Cloud-
Watch monitor.TWindow is a deterministic transition, so it properly represenésftked time
interval (window) at which the metrics are requested. A tokethe placd®?CheckMetrics en-
ables the transitiof CWLatency, which denotes the time for collecting data from nodes and
summarizing collected data. Wh@&i€WLatency fires, one token is stored PCheckMetrics.
The transitionTCheckThreshold delay represents the time for analyzing summarized data ac-
cording to the predefined threshold@CheckThreshold stores a token in placgcaleDecision
which has two outgoing transitiongNoScaleandTScaleUp that denote the options of hold-
ing or increasing the current number of VM instances, rebpayg. Table 5.13 presents the
enabling functions for those two transitions.

If the transitionTNoScalefires, it consumes a token from plaBealeDecision Oth-
erwise, if the transitionTScaleUpfires, it consumes a token fro®caleDecisionand stores
a token in placeéPInstantiation. The transitionTInst delay represents the time required for
instantiating one VM in the private cloud. A CTMC submodel wiaseloped to represent the
VM instantiation process in detail, hence the delaylbfst is computed from that submodel.
Notice thatTInst requires one token available in the pld@olVMs. Such a place denotes the
maximum capacity (in number of VMs) that might be added totfashup application. For the
current analysis, there are five tokenglomolVMs, indicating that the autoscaling might create
up to five new VMs. When transitiohinst fires, it stores one token in the plaickeVMs. The
immediate transitiod ScaleDownrepresents the activity of terminating VMs in periods of low
workload, in order to avoid underutilization of resources.

Table 5.13 shows the enabling functions and priorities &mhemmediate transition of
the SPN modelTNoScaleis enabled whenever there is at least one token in the pdéeéMs.

100 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

vmiSize vmiSize vmiSize

Figure 5.20: CTMC model for the VM instantiation performance.

TScaleUpis enabled if there is less than one tokendieVMs, i.e.: if the place is empty.
TScaleDownrequires more than four tokenslisieVMs. Considering only the enabling func-
tions, TNoScale and TScaleDowncould be simultaneously enabled, bifcaleDownwas
assigned the highest priority of both, so it always fires.fif$te transitiondAccept andTRe-
ject do not have any enabling functions because they depend arthecexistence of tokens in
placeBuffer_LB. There is an inhibitor arc iTReject coming fromBuffer LB, so TReject
can only fire ifBuffer_LB is empty. The arc fronBuffer LB to TAccept only enables transi-
tion TAccept if there is at least one token Buffer_LB. TCompleteis a single sink transition
which does not need any enabling function.

It is important to highlight that this SPN shall not be solwbdough numerical anal-
ysis, but only through simulation, due to the existence oba-exponential timed transition
(TWindow is deterministic). Next sections deal with the two CTMC maedbht also comprise
our hierarchical modeling approach.

5.3.2 Creating sub-models for specific components

Two CTMC submodels were created to compute the time spengeilthinstantiation
process and the response time of the composite web servitgomed in Section 5.3.1. The re-
sults from those provide the mean delay valuesHoist andTservicetransitions, respectively,
of the SPN main model.

VM instantiation submodel

Figure 5.20 depicts the CTMC created to represent the ingtemt process of a VM in
a Eucalyptus private cloud. This model comprises the site€l, DI1, DI2, DI3, DI4, PV,
andVR. State RI represents the reservation of a VM instance on ClGstetroller. StateCl
denotes the copy of VMI (virtual machine image) files —i.e, IEEKI, and ERI —to the directory
of instances in Node Controller. Stat@kl, DI2, DI3, andDI4 represent the download of VMI
to the Node Controller cache. St&¥ means that the hypervisor is formatting the virtual block

101 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

device and configuring the VM. Finally/R represents the VM running, so the instantiation is
complete.

We have used average results from an experimental testbeduagor the VM instan-
tiation model. Statistical analysis on experimental da@sthot reject exponential distributions
as good fit for the time of every activity in VM instantiatioexcept by VMI download_DI =
vmiSiz¢bw. For such a reason, our model repres¢énBd by means of a 4-stage Erlang distri-
bution, using a moment matching method describeNATSON J.F.; DESROCHER399)).
The stages are denoted byl, DI2, DI3, andDI4 with rate 1/(t_DI /4) = (4 x bw)/vmiSize
for the output transition of each state.

The VM instantiation process beginski state. The model goes froRi to Cl with
rate p_cachex (1/t_RI), denoting the case when VMI is already in the node’s cacheClIn
state, the transition tBV state occurs with rate/L_Cl. The transition fronRI to DI1 occurs
with rate (1 — p_cacheg x (1/t_RI) and represents that the node needs to download the VMI
from Walrus. FronDI1, the model continues 12, DI3, andDI4, with rate(4 x bw) /vmiSize
in each transition until it reaches tiR/ state , indicating the end of VMI download and the
beginning of VM preparation. The last step of instantiapoocess occurs when the model goes
from PV state toVR state with Jt_PV rate.

Mashup application submodel

A CTMC model was created to evaluate the performance of tlggesmashup applica-
tion, without the cloud or other infrastructure aspectse UTMC input data are the response
times of each individual service depicted in the UML diagmainfrigure 5.17. Each state in the
CTMC, depicted in Figure 5.21 denotes a service request, tlyeemneption is the final state.
The transition rates are estimated as the reciprocal of mesgonse time for each web service
(1/mrtx). All response times are assumed to be exponentially bigegd. The stateEvent
Analysis’ represents the execution of concurrent calls to the “SefocVenue Statistics” and
“Search for Related Artists” services. The model might gotades“Venue Stats Finished,
with a rate of ¥mrtys, or to “Similar Artists Finished”, with a rate of I/mrtsa, indicating
which web service replied first. The stafeop Event Selectiori indicates that the responses of
both services, i.e.: “Search for Venue Statistics” and f8efor Related Artists” were received.
“Top Event Selectiori also denotes the analysis of all events using the prewamlected data,
which is completed with rate/Inrtrs. Then the model goes to stdtedditional info search” ,
representing the concurrent execution of queriedag Search’ and “Song Search services.
The model reaches “ textbfMap Search Finished” with ratentys, and ‘Song Search Fin-
ished’ with rate 1/mrtss denoting which service replied first. After finishing bo#ngces, the
CTMC finally reaches stateComplete’, an absorbing state that indicates the end of mashup
execution.

102 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

Event Search
Begin

1/mrt_ES

A

Events Analysis

1/mrt_SA

Search for
Similar Artists
Finished

Venue Stats
Finished

1/mrt_SA

Top Event
Selection

1/mrt_TE
Y

Additional info
1/mrt_SS

Map Search
Finished

Song Search
Finished

1/mrt_SS l/mrt_ MS

Presentation to
User

Figure 5.21: CTMC model for the event recommendation mashup

103 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

Table 5.14: Timed transitions of the SPN model for scalable web service on private

cloud

Transition Description Value (s)
TWindow Time window for CloudWatch 60.0
TCWLatency | Delay for metrics collection on CloudWatch 60.0
TCheckThreshold Time for computing metrics and compare to threshalds 1.0
TInst Time for instantiation of a new VM 37.2
Treq Time between user requests 4.0
Tsend Network latency to send request 0.2
TLB Time for Load Balancer forward request 1.0
Tservice Response time of mashup 6.9
Trep Network latency to send response 0.2

5.3.3 Definition of input parameters

Table 5.14 presents the delays assigned to all timed tramsiof the SPN main model.
The values for delays afWindow, TCWLatency, TCheckThreshold, TLB, Treq, andTrep
were obtained in a Eucalyptus private cloud testbed, usefguit configuration parameters
for the Eucalyptus CloudWatcleUCALYPTUS, 20143. The values foiTInst and Tservice
delays come from distinct CTMC submodels presented furtiteich represent the VM instan-
tiation process, and the event recommendation composhiesamice. Therefore the evaluation
of our system relies on a hierarchical heterogeneous model.

Table 5.15 presents a description of VM instantiation mpaeameters and their values.
The parametegpCacheis assigned to 0.9 to represent a scenario with 90% of nod#aiong
the VMI in their cache. All other parameter values were ai#d in testbed experiments on a
Eucalyptus private cloud. The machines in the cloud haddaheting hardware configuration:
Intel(R) Core(TM)i7-3770 3.4 GHz CPU, 4 GB RAM DDR3, 500 GB SATA HDne machine
was configured as front-end for execution of CLC, CC, SC, and Walbiker five machines
are the nodes running the NCs. All hosts run the CentOS Linuxefabing system and the
Eucalyptus 3.4 platform. The VMs run the Ubuntu Server 104TS operating system. A
Fast Ethernet network was adopted to connect the PCs throsigigle switch. This environ-
ment has all that is needed for the purposes of this studye sive VM instantiation is a process
involving only the front-end and the specific node where tiv ig allocated. Therefore, the
limited size enabled accurately monitoring every stagéefihstantiation process.

In order to obtain the value far Cl, the VM was previously instantiated in all nodes,
so their caches stored the VMI. Therefore in the followingesxments for measuringCl, the
nodes would only copy the VMI from local cache. On the otherdydor obtainingbw —the
effective bandwidth used during VMI download— the cache\@rg node was erased in the
beginning of each experiment run. Therefore, the nodesyalWad to download the VMI from
Walrus andow was measured properly. The average value for each paramasecomputed
after 50 experiment replicas.

104 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

Table 5.15: Parameter values for the CTMC model of VM instantiation.

Parameter Description Value
p_Cache | Probability that VMI is already in cache 0.9 (90%)
t RI Mean instance reservation time 0.280s
t CI Mean VMI local copy time 7.624 s
bw Network bandwidth 10.5 MB/s
vmiSize VMI size 2048 MB
t PV Mean VM preparation time 10.603 s

Table 5.16: Parameter values for the mashup CTMC model.

Parameter Description Value (s)
mrt_ES Mean resp. time of Event Search 2.333
mrt_VS Mean resp. time of Venue Search | 0.324
mrt_SA Mean resp. time of Similar Artists 2.286
mrt_ TS | Mean resp. time of Top Event Selection 0.226
mrt_MS Mean resp. time of Map Search 0.452
mrt_SS Mean resp. time of Song Search 1.909

Table 5.16 presents the values assigned to parametersmobtteup application model.
Each mean response time was obtained through measurenmeatseal mashup application,
calling specific web services provided by Foursquare, Gobtps, Last.FM, and Eventful.

5.3.4 Solution of hierarchical model

The models presented in Section 5.3.1 and Section 5.3.2 evataated to assess the
performance of the scalable web service system. Stati@iamylation of the SPN depicted in
Figure 5.19 enabled obtaining measures such as mean qaeuav@rage number of busy VMs,
average utilization of VMs, and mean response time to the use

The simulation was executed for a confidence level of 95%,imax relative error
of 5%, warm-up period of 50 runs, run size (i.e.: number ofesneach transition fires) of
1000, and maximum simulation time of 120 seconds. The CTMGnsabels were solved
through stationary analysis, providing the values to beyass as delays dfinst andTService
transitions.

Table 5.17: Performance measures

Measure Expression Value
Utilization of VMs (%) E{#BusyVMs})/(E{#IdleVMs}+E{#BusyVMs}) | 38.3 %
Average number of busy VMs E{#BusyVMs} 1.716
Average number of idle VMs E{#ldleVMs} 2.773
LB queue size#of requests) E{#Queue} 0.432
Mean response time - Rsp - (s) NRequests/(P{PReply>0} x (1/TReply)) 9.029 s

Table 5.17 presents the performance measures computedeamg the baseline con-

105 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

figuration of parameters values shown throughout Sectidh& and 5.3.2. The average utiliza-
tion of VMs is around 38%, what shows that the system has enough capacity to sesve us
requests with the allocated resources. Such a capacitytialfyaprovided by means of addi-
tional VMs created by the auto scaling mechanism. This idicoad by the sum of average
number of busy VMs and average number of idle VMs, that is keguapproximately 48. If

the auto scaling mechanism were not working —and we had awiVis— the average utiliza-
tion could reach about 85%, incurring in risks of bad perfance for the users, mainly during
high workload bursts. The average load balancer queuessemgoither measure that shows the
system is not overloaded, since the requests do not waieiqukue for being distributed to the
VMs.

The mean response time of the systdRsfj is 9.029 seconds. This is the round-trip
time interval elapsed from the dispatch of user requestsparse arrival. The measure expres-
sion on the SPN iRsp= NRequest§ P{#PReply> 0} x (1/TReply), whereNRequestss
the average number of requests in the systBiiRequestss computed through the expression
E{#PSend) + (E{#JobAdmissioh) + (E{#Queug) + (E{#BusyV M$) + (E{#PReply}.

By summing up the response time of the mashup applicationreitpgest and reply
network delays, and the time for load balancer distribytitie result is close to the system
response time (929 s), indicating that requests spend little time in qu&wen then, the mean
response time of this system might be shortened by tuning saints many parameters and
components. In order to identify the most effective poitsd response time improvement, it
is important to assess the measure sensitivity to modelahpeters.

5.3.5 Sensitivity analysis on sub-models and high-level models

We employ the following technique to achieve a unified viewhaf response time sen-
sitivity with respect to all parameters.

First, a sensitivity ranking is computed for the main modehsidering all of its parame-
ters, but without detailing the sensitivity with respedt trarameters of the submodels. We used
the percentage difference technique (see Section 2.3puie the sensitivity ranking of the
main model. The minimum and maximum values used for comgtulia percentage difference
index are shown in Table 5.18. Such a technique was adoptadibe the model can only be
solved through simulation, making it not suitable for thent@que of partial derivatives. Next,
we computed the sensitivity rankings for the sub-modelsugh partial derivatives, because
they are solved through analytical methods instead of sitid. In such a case, sensitivity
indices from partial derivatives are obtained from the ulyley equations with smaller com-
putational effort than percentage difference indices. Witiplied each sub-model sensitivity
index by the corresponding index on the main model, obtgiainbomposite index. For instance,
St Es(RsP = SSnrt_es(T Service x Srsenicd Rsp. The same rule will be applied for all pa-
rameters of the CTMC model used to compuiteervice, and similarly for the parameters of

106 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

Table 5.18: Minimum and maximum parameter values for computing the sensitivity
indices for the main model

Transition Minimum (s) | Maximum (s)
TWindow 60 240
TCWLatency 60 300
TCheckThreshold 1 5
Tinst 15 60
Treq 4 8
Tsend 0.2 1
TLB 0.2 1
Tservice 5 10
Trep 0.2 1

the CTMC model used to compuiénst.

The unified sensitivity ranking comprises the compositeces! for the parameters of
sub-models, as well as indices for parameters of the mairehwagich are not related to sub-
models. We could also build sensitivity rankings for mesrszich as utilization of VMs and
load balancer queue size, but we focused on system meamsesfime (Rsp) because it is the
most user-centered performance measure among thosedisieble 5.17.

Sensitivity analysis results

Table 5.19 shows the sensitivity ranking for the main modsbtice that the ranking
is sorted in decreasing order of absolute value. This isuss#he magnitude of the index
indicates how much impact it causes on the output measuis.intportant to highlight that
negative indices only indicate an inverse relationshipvbeh the parameter and the measure
of interest, i.e.: if the input parameter value increades,dutput measure decreases and vice
versa.

Itis possible to notice thatService— the execution time of the event recommendation
web service — is the most impacting of the parameters, fatbby TLB , TRep, andTSend
The other parameters have smaller impact on the systemmaspime. TReq has an intermedi-
ate impact if compared to the other ones, and it is the onlgipater with a negative sensitivity
index. This is because the smaller is the time between usguests the higher is the load to be
processed by the VMs, incurring in higher system response too.

The ranking enables us to state tA&ervice, TLB, TRep, andTSend are the most
effective points to invest in order to decrease the resptimse Although, we must also analyze
the sub-models that provideServiceand T Inst to achieve a detailed view of the impact that
each sub-component has in this system.

The VM instantiation sub-model is used to compliitest, so we evaluate the sensi-
tivity of TInst with respect to each parameter of the respective CTMC. It ishvoentioning
that we use scaled indices in Table 5.20 due to the differeits of parameters of VM instan-

107 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

Table 5.19: Sensitivity ranking for the main model

Parameter S(Rsp)
TService 0.45763
TLB 0.13788
TRep 0.11303
TSend 0.11466
TReq -0.05808
TWindow 0.00617
TCWLatency 0.00489
TInst 0.00256
TCheckThreshold 0.00176

Table 5.20: Sensitivity ranking for the VM instantiation submodel

Parameter | SS(TInst)
pCache -4.52843
vmiSize 0.52363
bw -0.52363
t PV 0.28465
t Cl 0.18421
t RI 0.00752

tiation submodel. The scaled indices enable us to compaee tharameters fairly. As shown
in Table 5.20, the probability of finding the VM image on thede& cacheCache is the
factor that produces the largest impact on the time for VMangation. VaryingpCachecause
changes ormInst that are one order of magnitude larger than the effect ofrqiheameters.
This is denoted by the difference between the sensitividices. Note that ipCacheincreases,
TInst will decrease. The same will occur wiblw — the network bandwidth — but to a lesser
extent.

Table 5.21 presents the sensitivity DService with respect to each parameter of the
mashup sub-model.

The response time of thevent Searchand Similar Artists providers (nrt_ES and
mrt_SA) are the parameters with largest impacti®ervice The sensitivity with respect to
the Song Searchresponse timenrt_SS is also an important factor in this model. The other
three parameters have sensitivity indices much smallerttin@se top three. We also use scaled
sensitivities in this ranking in order to keep consistenihWM instantiation submodel rank-
ing and enable fair comparison of parameters with distimstsuwhen building the unified
ranking. Notice that the sensitivity indices on main modehdt need to be scaled because the
percentage difference method already provides nondiroeakvalues.

The next step in our analysis is to build a unified ranking aering all parameters
from both sub-models as well as the parameters from the madtemWe used the composition
technique based on the chain rule (see Section 4.2). Wepinedtieach sub-model sensitiv-
ity index by the corresponding index on the main model, olitg a composite index. For

108 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

Table 5.21: Sensitivity ranking for the mashup sub-model

Parameter | SS(TService)
mrt_ES 0.33906
mrt_SA 0.32711
mrt_SS 0.26727
mrt_TS 0.03284
mrt_MS 0.02274
mrt_VS 0.01096

Table 5.22: Unified sensitivity ranking for the general model and submodels

Parameter S(Rsp)
mrt_ES 0.15517
mrt_SA 0.14969
TLB 0.13977
mrt_SS 0.12231
TSend 0.11466
TRep 0.11303
TReq -0.05808
mrt_TS 0.01503
pCache -0.01162
mrt_MS 0.01041
TWindow 0.00617
mrt_VS 0.00502
TCWLatency 0.00489
TCheckThreshold 0.00176
vmiSize 0.00134
bw -0.00134
t PV 0.00073
t Cl 0.00047
t RI 0.00002

instance Snit es(RSP = SSnrt Es(T Servicg x Srsenicd RsP. The same rule is applied for all
parameters of the CTMC model used to compl&ervice, and similarly for the parameters
of the CTMC model used to compulénst. Such a method generated the sensitivity ranking
presented in Table 5.22. It is worth mentioning that the iobjmé TService when considering
the main model (see Table 5.19) is confirmed by the presencetoES andmrt_SA on the
top of the ranking. Thus, the most important action to desgdhe system response time in a
significant degree is the replacement of curiewment SearchandSimilar Artists web service
providers by faster ones, or at least the tuning of perfomeaslated configurations in their API
(Application Programming Interface), such as the format maximum length of the response.

Notice that in Table 5.19 there is an effective differenceMeen Srsenicd RSP and
Sris(Rsp, but in this unified ranking the sensitivity with respectThB is comparable to
that of mrt_ES, mrt_SA, andmrt_SS. Therefore, the load balancer is also a high priority
component for the improvement of the overall system perémce.

109 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

It is important to stress that some parameters of the subehmethted tolT Service are
not so important for system improvement as other comporfemts the main model. This is
the case ofmrt_VS, which has a sensitivity index among the half least impactihall 19 pa-
rameters. The impact ofirt_VS on system response time is similar to the impact 6¥VLa-
tency and TWindow from the main model. Those system components are little/aatefor
the enhancement of system’s response time in the currerd,setd therefore they deserve low
priority during system upgrades. Most parameters from thkivstantiation sub-model, with
the exception opCache are in the same lower-ranking situation.

Such conclusions encompassing factors from distinct nscatel valuable results of the
unified ranking analysis, and demonstrate the applicgkalitd importance of our proposed
approach. As an auxiliary view, we present a comparison parhamong some parameters
through scatter plots. Figure 5.22 depicts the impact oampatersmrt_ES, mrt_SA, and
mrt_SS on system response time, computed from the SPN main modelgrivged these
parameters on Figure 5.22 because they belong to the sanrmealdd, and are among the top
parameters in the sensitivity ranking of Table 5.22. Theiglgenerated by fixing all parameters
at their baseline values (see Tables 2.8, 5.15, and 5.16&peky one parameter that is varied
through a specific range in steps of about 10%, enabling tgadson of impact on the system
response time. Notice that the slopeswt_ES, mrt_SA, andmrt_SS are similar, just like
their sensitivity indices on Table 5.22.

Figure 5.23 presents the impact of parametdtB , TSend, andTRep, which belong
to the SPN main modelTLB shows a slightly higher impact on system response time than
TRep andTSenddo. Such a behavior matches the indices shown in Table 5s2&2¢ekas the
similarity of slopes to thenrt_ES, mrt_SA, andmrt_SS parameters. Notice that we kept the
range of Y-axis (system response time) the same for all gkitpure 5.22, Figure 5.23, and
Figure 5.24), so we can compare the slopes of lines frormdisgiraphs.

Figure 5.24 depicts the impact of paramgi€@acheon system response time. This is
one parameter from the VM instantiation sub-model, and hasieh smaller sensitivity index
than the previously plotted parameters. This relativelydoimpact ofpCacheis noteworthy
by comparing Figure 5.22 and Figure 5.23 to Figure 5.24. Wasth highlighting that even
varying pCache with steps larger than 10%, its effect on system response isniimited to
about 01 second throughout the plot, whereas in Figure 5.22 the ¢tmeaches around.®
seconds. On the other hamCachemay be one of the parameters most easily tunable in the
system, if compared to specific services response times ES, mrt_SA, andmrt_SS) or
parameters related to network laten@send, TRep). pCachehas a higher sensitivity index
than many other parameters, and therefore deserves attémim system administrators.

Comparisons with other parameters could be made here, batefraluate systems with
dozens of parameters is harder and error-prone to comgararaieters through scatter plots.
The unified sensitivity ranking presented here is advamag®ecause it enables the fast iden-
tification of major and minor impacting parameters througbugate indices, as demonstrated.

110 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

9.8

9.6 — | ---m--- mrtSA

9.4

9.2+

Rsp (s)
©

@

|
-

g6 “
e
8.4 — L
o5 .,: ¢¢¢¢¢
. . .v
8 T T T T T 1
1.4 1.6 1.8 2 2.2 2.4 2.6

Parameter value (s)

Figure 5.22: Impact of mrt_ES, mrt_SA, and mrt_SS on system response time

The sensitivity analysis approach that we proposed isr&adifor hierarchical models and indi-
cates effective points to be tuned in order to achieve evéergerformance in this scalable
web service composition. Systems administrators can heefis approach, that may guide
investments and help decision making on which are the highifgrcomponents during tune-up
and upgrade efforts.

111 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

9.8 —
—--@--- TLB
9.6 | =--m--- TSend
TRep
9.4 B
O‘."
9.2 -
2y
o Rl
o 9+
< 4
)
& 8.8 el
l”
8.6
/"
8.4
o
8.2
8 T | T | T | T | T | 1
0 0.2 0.4 0.6 0.8 1

Parameter value (s)

Figure 5.23: Impact of TLB, TSend, and TRep on system response time

9.8
9.6
9.4

9.2

0 0.2 0.4 0.6 0.8 1
Parameter value

Figure 5.24: Impact of pCache on system response time

112 5.4. OPTIMIZATION OF COMPOSITE WEB SERVICES WITH SENSITIVERASP

5.4 Optimization of composite web services with Sensitive
GRASP

We carried out experiments for verifying the performanceSehsitive GRASP in a
scenario of multiple possible providers for a composite s@&tvice. A CTMC model describes
the web service composition (i.e., a mashup), and we contpareesults with the approach
presented inNIATOS; MACIEL; SILVA, 2013 — hereinafter called Non-sensitive GRASP for
the sake of clarity. The execution time and the quality oisohs provided by each approach
are the evaluation criteria.

The Event recommendation mashup evaluated here is alnevdtddl to that presented
in Section 5.3, with the exception that the mean response tifthe Top Event Selection
activity is not represented. This is because the eventtg@ldavolves only internal processing,
after receiving input data from the third-party provideds this study, we try to select the
optimal configuration of external providers.

Figure 5.25 depicts the continuous time Markov chain (CTM@dus this study. Due
to the similarity with Figure 5.21, we suppress the explamatf this model. The reader can
find the description of states and transitions in Section 5.3

vent Search
Begin

1Imrt_ES

vents Analysis
Begin

1Imr_vs

Venue Stats
Finished
1Imrt_SA
Top Event
Processing

1/mrt_MS 1/mrt_SS

Map Search Song Search
Finished Finished

tmrt_SS 1Imrt_MS

Presentation to
User

Figure 5.25: Event recommendation mashup

1imrt_SA

Search for
Similar Artists
Finished

1Imrt_VSs

We implemented both algorithms, Sensitive and Non-sees@RASP, in Java. The
tests were performed in a computer with Intel Core i7 3.0 Glezessor, with 12 GB RAM. The
operating system was the Debian GNU/Linux 7.0, with kern®&43l-amd64. The environment

113 5.4. OPTIMIZATION OF COMPOSITE WEB SERVICES WITH SENSITIVERASP

Table 5.23; Parameters used in the benchmark with size2100

Provid. Event search Venue stats Similar artists Map Search Song Sear

ID Rel. Rsp. Rel. Rsp. Rel. Rsp. Rel. Rsp. Rel. Rsp.

0 0.9670 3.0113] 0.9837 3.5059| 0.8597 1.0736| 0.9268 4.0671| 0.85892 1.3385
1 0.8778 2.7782| 0.9311 4.6052| 0.9763 3.3094| 0.9929 3.4856| 0.93159 4.3750
2 0.9434 2.1265| 0.9810 4.3334| 0.9285 4.6042| 0.8835 3.4695| 0.97944 3.0133
3 0.8902 3.1983| 0.9357 1.9611| 0.9366 4.8620| 0.9857 1.3064| 0.97163 4.7609
4 0.9103 3.7795| 0.9652 2.6782| 0.9866 4.2124| 0.8885 3.7308| 0.98738 2.9546
5 0.9312 3.9894| 0.9744 4.5989| 0.9208 4.1117| 0.9056 1.2273| 0.91222 1.5175
6 0.9541 3.8682| 0.9549 3.7501| 0.8729 2.4366| 0.8936 3.5028| 0.90240 2.8178
7 0.9148 1.5231| 0.8522 2.0175| 0.9880 3.5669| 0.9702 1.7196| 0.85149 1.3232
8 0.9378 3.2733| 0.8625 3.2696| 0.8998 2.8502| 0.9222 4.3975| 0.89676 4.7288
9 0.9549 1.6625| 0.9350 4.5319| 0.9742 2.3224| 0.9830 4.9187| 0.85726 1.9227

10 0.9837 3.5059| 0.9268 4.0671| 0.8663 1.6207| 0.9300 3.9414| 0.92036 3.7622
11 0.9311 4.6052| 0.9929 3.4856| 0.8798 3.8831| 0.9386 1.9414| 0.90350 1.9944
12 0.9810 4.3334| 0.8835 3.4695| 0.9830 2.5857| 0.9669 2.6959| 0.87086 1.8588
13 0.9357 1.9611| 0.9857 1.3064| 0.9179 4.4242| 0.9579 2.1591| 0.94919 1.2196
14 0.9652 2.6782| 0.8885 3.7308| 0.8909 4.7061| 0.9737 1.5192| 0.97035 2.8545
15 0.9744 4.5989| 0.9056 1.2273| 0.9123 3.6869| 0.9397 2.3304| 0.91226 1.5222
16 0.9549 3.7501| 0.8936 3.5028| 0.9122 1.7268| 0.8708 1.9284| 0.87014 4.3974
17 0.8522 2.0175| 0.9702 1.7196| 0.9034 1.0173| 0.8654 1.4829| 0.90527 2.1776
18 0.8625 3.2696| 0.9222 4.3975| 0.9104 3.4003| 0.9208 1.3554| 0.97126 4.7393
19 0.9350 4.5319| 0.9830 4.9187| 0.9501 1.1528| 0.9664 2.3104| 0.91387 3.5298

was controlled to avoid significant interferences to syspemiormance. The Java version used
was 17.0_51 by means of the OpenJDK Runtime Environment (IcedTe&)2.4

Generation of Benchmark

The benchmarks of the experiments comprigitl| hypothetical providers for each ser-
vice type, where|M|| varies from 100 to 500 depending on each specific experimepseudo
random number generator called Mersenne Twif&X[SUMOTO; NISHIMURA, 1998 was
used to generate providers parameters using a Uniformidistm with interval from [1s, 5s]
for the response time and [0.85, 0.99] for the reliabilitye Whose a Uniform distribution to
get the most diverse values for the parameters of each @ovidhe intervals of the generated
numbers were based on real web service measurements andaoegefound in the literature
(ZHENG et al, 2012 SATO; TRIVEDI, 2007. MersenneTwister was chosen because it has
a very long period and it passes many tests for statisticalamnessl(ECUYER; SIMARD,
2007). Table 5.23 shows the values of reliability (Rel.) and remsgotime (Rsp.) generated
for 20 providers of the benchmark with size 100. For the sdl@nciseness we do not show
all providers’ values here, but the complete benchmark gaé&ailable in a specific website
containing the resources used in this study

Reference solutions

For all generated benchmarks, we computed a referencecso&itused as one of the
stopping conditions of the optimization algorithm evakdhthere. The procedure terminates
when a solutior§ with & < 0.05 is found, or when a maximum number of GRASP iterations

1Resource files for this studyt t p: / / www. ci n. uf pe. br/ ~rsnj / sensi ti ve- grasp/

http://www.cin.ufpe.br/~rsmj/sensitive-grasp/

114 5.4. OPTIMIZATION OF COMPOSITE WEB SERVICES WITH SENSITIVERASP

Table 5.24: Reference solutions used throughout experiments

Amount of providers Reference solution

Rsp. time(s) Rel. 6
100 10.426 0.987 0.1281
200 7.894 0.985 0.1142
300 8.003 0.984 0.1254
400 7.376 0.986 0.1002
500 8.019 0.988 0.0945

(5000) is reachedg is the relative difference between the cost of the reachkdisn, 6(S),
and the cost of the reference soluti®tS*). Thus,& € R and was computed a%%ﬁ
For such a purpose, the reference solution becomes anothérgarameter for the Algorithm
3. When a solutior§ with & < 0.05 is not found within the defined maximum number of
iterations, the algorithm provides the solution with lotvesst so far, which might be much
worse than the reference solution, though.

The reference solution was found by preliminary executibion-sensitive GRASP
configured for 5000 iterations, and executed 20 times witlerdint seeds for random number
generation. Notice that the reference solution is not rezaég the optimal solution for the
benchmark. This procedure was used because an exhausiigh @ determine the exact best
solution would last several days due to the adopted bendhsizgs.

Table 5.24 shows the reference solutions computed for Imeawdts with 100, 200, 300,
400, and 500 possible providers for each service. For edeheree solutiof Table 5.24

presents the respective response time (Rsp), reliabilit}) el cost @) of the solution, com-

puted through Equatiof.18).

6 = (1—Rel) x Rsp

For the sake of simplicity, hereinafter the benchmark siikebe denoted ad, instead
of |[M||, indicating the number of possible providers for each sexvihere are five types of ser-
vice providers, so the total amount of possible solution&jswith N € {100, 200,300, 400,500} .

Experimental results

Non-sensitive GRASP and Sensitive GRASP were executed 58 tinex each bench-
mark, so we could get enough data to compare the executi@naimd the quality of solutions
provided by each approach. The list of adopted random geoerseeds is available on the
resources website. The parametielaxPool andMaxIt of the approximate local search (see
Algorithm 5) were set to 20 and 40, respectively, after soaséstwith different configurations
for these parameters. The greediness parameter was s80tmMNon-Sensitive GRASP, indi-
cating that in the construction phase, only the best 10 %igeos, according to response time,
were considered. The Sensitive GRASP was evaluated in tioatigreediness levels:.90

2The specific configurations of providers which constitute teference solutions are also available in
http://ww. ci n. uf pe. br/~rsnj/sensitive-grasp/

http://www.cin.ufpe.br/~rsmj/sensitive-grasp/

115 5.4. OPTIMIZATION OF COMPOSITE WEB SERVICES WITH SENSITIVERASP

and 095. These two levels were chosen in order to enable a coropanigh Non-Sensitive
GRASP, and on the other hand to asses the effect of the gresdewel on the performance of
Sensitive GRASP. Notice that with greedines3®in a benchmark of 100 providers for each
service, Sensitive GRASP randomly selects one among thelBgsbviders for the most im-
pacting service, indicated by the sensitivity analysis. Wipeediness is.05, the random selec-
tion occurs only from the best 5 providers. This might praglbetter initial solutions, speeding
up convergence to the optimal solution, but it might also entde algorithm be trapped in a
local optimum, still far from global optimum.

The sensitivity analysis of the CTMC model on Sensitive GRASH wonfigured to
identify the impact of each service response time on theglitity of reaching theComplete
state in up to 5 seconds.

Figure 5.26 shows the average co@t)(of the solutions provided by each algorithm
for each benchmark size. The average cost is computed freroutputs of the 50 executions
of each algorithm. We consider that the lower6is the higher is the quality of the output
produced by the algorithm. Sensitive GRASP, in both greeditevels, ha®* values close to
those of Non-sensitive GRASP, for almost all benchmark si&esnall advantage for Sensitive
GRASP is noticed in the largest benchmark sizes: 300, 400580d A set of paired sample
t-tests with confidence interval of 90% and significancelle¥®.05 show that results of the
three algorithms are not significantly different from onestich other. The only exception is
the difference between Non-sensitive GRASP and Sensitive &RWith greediness 0.90 for
the benchmark size 300. That is the largest difference eaibie in Figure 5.26. Therefore, itis
worth emphasizing that the increased greediness leveldiproduce significant improvements
on quality of results from Sensitive GRASP.

0,13+

] 1 Non-sensitive
0.125 4 s [Sensitive - Greedy 0.90
E: [Sensitive - Greedy 0.95
0.12

0.115+
0.11 H

0.105+

Avg. cost of Solutions
o
i
|
|

0.095 —

0.09 —H

0.085 = T
0 100 200 300 400 500 600
Benchmark size

Figure 5.26: Average cost of solutions

We also analyzed the number of “hits” achieved by each algurii.e., the number
of solutions among the 50 executions which are better thagoal to the reference solution.

116 5.4. OPTIMIZATION OF COMPOSITE WEB SERVICES WITH SENSITIVERASP

Table 5.25: Statistical summary of execution times

Non-sensitive GRASP Sensitive GRASP 0.90 Sensitive GRASP 0.95

Amount of providers Mean (s) Std. Dev. Mean (s) Std. Dev. Mean (s) Std. Dev.

100 80.6 68.6 70.4 55.5 70.3 63.9
200 80.7 67.4 110.9 106.8 88.1 93.4
300 69.9 83.9 67.4 52.3 59.2 54.7
400 1,068.0 1,169.4 303.4 314.7 267.2 255.2
500 363.8 397.9 152.4 163.3 150.0 135.4

Figure 5.27 shows that the Sensitive GRASP with greedinéXs dutperforms the Sensitive
GRASP with greediness.®0 and the Non-sensitive GRASP, considering benchmarks size
200, 300, 400, and 500. These results confirm that SensiR&SP is slightly better than Non-
sensitive for finding the lowest cost solutions in the latdeesichmarks. Notice that increasing
the greediness parameter might be useful to reach moramswuhat are better than those
previously known.

50 —

[Non-sensitive
Sensitive - Greedy 0.90
[] Sensitive - Greedy 0.95

45 —

40 —H

35+

Number of hits

30

20 Ei'l-f- Eil»fi' E-Elfif Eiflf-f -fEi':E I
0 100 200 300 400 500 600
Benchmark size

Figure 5.27: Number of hits

Besides the evaluation of quality of solutions, we also caegbahe execution time
of the algorithms. Table 5.25 presents a statistical summbathe execution time. Sensitive
GRASP (in its two variants) had shorter mean times than Nosisee for benchmark sizes
100, 300, 400, and 500. Especially for the two largest bereckmizes, Sensitive GRASP is
capable of obtaining better solutions than Non-SensitifRAGP with smaller computational
effort. Table 5.25 also shows that greedine€50yields shorter mean execution time than
greediness Q0 for all benchmark sizes. The improvement on mean exattitiee is related to
the increased ability of finding good solutions, so the atgor required less iterations to reach
the stopping criterion.

Since we notice large standard deviations on the resultableTs.25, we performed
additional analyses to determine how significant were tfferénces in execution times of the
algorithms. A complementary view for the analysis is présém Figures 5.28a, 5.28b, 5.28c,

117 5.4. OPTIMIZATION OF COMPOSITE WEB SERVICES WITH SENSITIVERASP

5.28d, and 5.28e, which depicts the cumulative probakdisgribution of the execution time
for the evaluated approaches, also known as time-to-tptge(AIEX; RESENDE; RIBEIRQ
20095. For benchmark sizes 100, 200, and 300, the curves of Nositse, Sensitive with
greediness 0.90, and Sensitive with greediness 0.95 ailasidthen benchmark sizes 400 and
500 are analyzed, we notice that Sensitive GRASP is able th rgaod solutions —i.e. close
or better than the reference solution— in less time than $émsitive. In Figure 5.28d, both
versions of Sensitive GRASP reach the target in up to 1500nhsiscavhereas the Non-sensitive
had a much poorer performance: it took up to 5500 seconds doafisuitable solution. In
Figure 5.28e every execution of Sensitive GRASP spent upd@86onds, whereas a significant
part of Non-sensitive GRASP executions took between 800 &0@ 4econds to reach a solution
that satisfied the stopping criterion.

The time-to-target plots also provide interesting resaltsthe impact of greediness
parameter on the execution time of Sensitive GRASP. In gérieeaalgorithm has similar exe-
cution time with 090 (“Sensitive Greedy 0.98urve) and 095 (“Sensitive Greedy 0.9%urve)
greediness levels, and we can observe small differences/ar of the latter one. On bench-
mark sizes 200 and 300, the curvgéensitive Greedy 0.9%eaches higher probability values
(70%— —80%) before Sensitive Greedy 0.9@oes. Considering those two benchmarks, the
probability of sensitive GRASP completing in less than 10€bses is larger with greediness
0.95 than with greediness®. For benchmark sizes 400 and 500, it is worth to noticettteat
maximum execution time with greedines®® is about 100 seconds shorter than with greedi-
ness 0.

It is also important to highlight that, in the two largest bemarks, 70% of the execu-
tions took less than 300 seconds (5 minutes) to reach a Rugalution. This was observed in
both greediness levels. For benchmark sizes 100 and 208pth&on is always achieved in
less than 450 seconds. This denotes that Sensitive GRAS$bissgful for dynamic composi-
tions, where the combination of providers can be updatedntime to satisfy a new optimal
configuration every time the average performance of somageochanges.

This study was based on CTMC, but other (single or hierarchécellytical models may
be used with specific changes in the integration with thenupétion algorithm and sensitivity
analysis tools.

118 5.4. OPTIMIZATION OF COMPOSITE WEB SERVICES WITH SENSITIVERASP

Benchmark 100 Benchmark 200
1 Ky 1 X me—
09 L : = &7 Gréedy 0.90 ~+— | 09 L Sensitiye 7 éfeédywo —— |
> . Sensitive - Greedy 0.95 - ! */,,,,Sen&itlve - Greedy 0.95
g 08p Non-Sensitive —— | £ 08 4 Non-Sensitive —¥— -
E 0.7 - R }‘é 0.7 B
S 06 : g S 06 -
Q o
o 05 y S 05 |
= 2
B 04 B B 0.4 B
3 | | 3 -
g 0.3 g 0.3
3 02y E 3 02 e
0.1 1/ 8 0.1 -
0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400 450
Time to target solution (seconds) Time to target solution (seconds)
(a) Benchmark 100 (b) Benchmark 200
Benchmark 300 Benchmark 400
1 , 5 1 . : : 5
- . Sensitive - Greedy 0.95 -~ 0.9 Sensitive - Greedy 0.95 B
£ 08 Non-Sensitive —¥— £ 08 Non-Sensitive —¥— |
o 0.7 i K<l
3 7 g 07 :
o 06 B [<]
s 5 o6]
o 05 B s
2 > 05 B
g 04 -]
3 03 B s 04 N
£ ' 4 £ o3 E
S 02ff B 3 ¢
0.1 , 0.2 { N
0 1 1 1 1 1 1 1 1 01 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 0 1000 2000 3000 4000 5000 6000
Time to target solution (seconds) Time to target solution (seconds)
(c) Benchmark 300 (d) Benchmark 400

Benchmark 500

0.9 Sensitive - Greedy 0.95
0.8 - < Non-Sensitive —%— |

07+ I 4
06 |+ i
05 |/]
0.4 H 4
0.3 [
021 g

0.1 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time to target solution (seconds)

(e) Benchmark 500

Cumulative probability

Figure 5.28: Distribution of execution time (time-to-target plots)

119

Final remarks

A large proportion of worldwide IT companies have adoptexuidlcomputing for var-
lous purposes. Providers of public cloud services, as vgetiveners of private clouds need to
design and manage their systems to keep up with users ekpesteegarding performance and
dependability of their infrastructures. Analytical anchalation models are useful for planning
computer systems and predicting their behavior beforeogemtnt or significant changes. Al-
though the creation and analysis of performance and depéitgeanodels for cloud computing
systems is a challenge that requires the combination of reamniques for reaching accurate
and significant results. This thesis showed that hieraathiodeling is important and effective
for coping with such a hard task. Moreover, it proposed matHor detecting the factors that
have the largest importance to the improvement of a clousys

This Ph.D. research achieved a number of results in the #iatg has explored, and
the major contributions are the methods for identifyingf@enance and dependability bottle-
necks of cloud computing systems. The supporting methggoddso provides guidance for
administrators of laaS systems that intend to detect péntsnprovement in their infrastruc-
tures. The methods can also be applied in an integrated maithethe optimization process
described in this thesis. The methods for bottleneck ifleation were tested throughout dis-
tinct case studies and produced other noteworthy resuhg. contributions of this thesis are
summarized as follows.

6.1 Contributions

The hierarchical models for dependability evaluation ofade clouds, as well as mobile
clouds, allowed obtaining important conclusions regaydime-up and architectural choices for
those systems. Many research studies benefited from thesgdmpproach and have shown
how useful is the methodology presented here.

The models for performance evaluation of a scalable cortwe#tb service enable
capacity planning for that application, including aspeaiftthe elasticity mechanisms of cloud
systems such as autoscaling and load balancing featuresprdposed hierarchical model is

120 6.2. FUTURE WORKS

adjustable, so the composite web service model might baceglby other one to represent a
different application running on top of the same cloud isfracture.

This research introduced methods to build unified sensjitr@nkings when RBD and
CTMC models are combined, as well as for the composition of SRINCTMC models. Such
methods are a contribution to the state of the art, to thedfesir knowledge. Hierarchical mod-
els created for various types of systems may also be analisrg the proposed composition
methods, because they are not restricted to the cloud camgpddmain. Even the support-
ing methodology is general enough to be adapted in distmetexts, guiding the hierarchical
modeling and bottleneck identification regardless theesgsinder assessment.

The composition methods are embedded in Mercury software pooviding an auto-
mated sensitivity analysis framework for hierarchical rled The features developed for Mer-
cury in the scope of this thesis include: sensitivity anialyd RBD, SPN, and CTMC models;
parameterization and assignment of rewards for CTMC; contipataf mean time to absorp-
tion in CTMC and SPN; hierarchical modeling with RBD and CTMC, ad a®with SPN and
CTMC,; sensitivity ranking computation for the hierarchicadaels. Such set of features allow
users to create and analyze models following the methogla@egcribed in Section 4.1.

Other original contribution in this work is the Sensitive GBRA algorithm, that is tar-
geted at optimizing performance and dependability of clbasted services and their infras-
tructures. This algorithm may also be useful for other cotimguinfrastructures that cannot
stand the exploration of all architectural and configurapossibilities to find the best quality
of service.

Significant effort was dedicated for reviewing the docuragah of cloud computing
platforms, and to properly set up testbed infrastructusesliin the case studies. The experience
acquired through the configuration of every component it suivate clouds was essential for
a detailed understanding of the systems evaluated hereedvier, the employment of these
infrastructures on correlated research projects gerteoditer important results in fields such as:
software aging and rejuvenation; and fault injection, Whiepresented complimentary views
of the cloud design and management issues addressed ihehis.t

This thesis did not tackled specific problems of public cludainly because the access
to information about their internal infrastructure is véirgited, in comparison to private cloud
platforms. But the methods developed here are not tied todhmaah of private clouds, so they
should also be useful for administrators of public clouds.

6.2 Future works

The knowledge about formal models for performance and digdglity evaluation is
not widespread among computer systems administratoraslaay tools that convert semi-
formal to formal modelsANDRADE et al, 2013 are helpful and could be integrated to the
proposed methodology in future works. This would enablertépresentation of the cloud

121 6.2. FUTURE WORKS

systems by means of UML and similar modeling languages tleatvall known by software
engineers and other people in the cloud infrastructurenieahstaff.

Other limitation of this work is not addressing models sushQueueing Networks,
Stochastic Automata Networks, Fault Trees, and Reliab@itgphs. The usage of sensitivity
analysis techniques such as Regression, Correlation, amartfion Analysis is not taken
into account in this thesis too. Future extensions mighiuohe sensitivity analysis methods
that comprehend other modeling formalisms or differentkinf compositions for sensitivity
indices.

The application of the proposed methods to scenarios witivare-defined networks
(SDN) is also a prominent possibility for future researdnce SDNs are an important part
of current datacenters. Analytical models for represegntitose infrastructures might be con-
nected to the hierarchical models presented in the casestodre, with proper modifications.
Such an integration should create expanded models to gr@vien more accurate results and
verify the importance of some network issues that were notllea in any of the assessments
this thesis (e.g., behavior of communication protocolgkpts discard, and queuing issues on
routing and switching equipment).

Other works might prospect improvements for the SensitiRAGP algorithm and em-
ployment of other optimization meta-heuristics for thegmaeter-value assignment problem in
analytical models. Genetic algorithms, particle swarmrojzation, and ant colony algorithms
are some options that might be assessed in such a direction.

122

References

ABDALLAH, H.; HAMZA, M. On the sensitivity analysis of the exgrted accumulated
reward.Performance Evaluation, Amsterdam, The Netherlands, The Netherlands, v.47, n.2,
p.163-179, 2002.

AIEX, R. M.; RESENDE, M. G. C.; RIBEIRO, C. Gttplots - a perl program to create
time-to-target plots. Available inht t p: / / ww2. r esear ch. att. com ~ngcr/
tttplots/.Accessed on2012-11-13.

AMAZON. Amazon Elastic Block Store (EBS)[S.I.]: Amazon.com, Inc., 2012. Available in:
http://aws.amazon.com/ebs.

AMAZON. Auto Scaling. Available onht t p: / / aws. amazon. com aut oscal i ng/ .

AMAZON. Amazon EC2 SLA). Available in: http://aws.amazon.com/ec2/sla/, Amazom,
Inc.

ANDRADE, E. C. et al. Openmads: an open source tool for modeimjanalysis of
distributed systems. IrComputer Safety, Reliability, and Security. [S.l.]: Springer, 2013.
p.277-284.

APPBRAIN. AppBrain Android Market . Available on http://www.appbrain.com/. Accessed
in 2013-07-26.

ARAUJO, J. et al. Software aging issues on the eucalyptusidomputing infrastructure. In:
IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS
(SMC), 2011., Anchoragéroceedings. . .[S.l.: s.n.], 2011. p.1411-1416.

ARMBRUST, M. et al.Above the clouds a berkeley view of cloud computing. [S.l.: s.n.],
20009.

ARMBRUST, M. et al. A view of cloud computingCommun. ACM, New York, NY, USA,
v.53, n.4, p.50-58, Apr 2010.

AVIZIENIS, A. et al. Basic Concepts and Taxonomy of Dependalnié Secure Computing.
IEEE Trans. Dependable Sec. Comput.[S.l.], v.1, n.1, p.11-33, 2004.

BALASUBRAMANIAN, N.; BALASUBRAMANIAN, A.; VENKATARAMANI, A. En ergy
Consumption in Mobile Phones: a measurement study and iatialics for network
applications. In: ACM SIGCOMM CONFERENCE ON INTERNET MEASUREMENT
CONFERENCE, 9., New York, NY, USAProceedings. . ACM, 2009. p.280-293. (IMC '09).

BARHAM, P. et al. Xen and the art of virtualizatioBIGOPS Oper. Syst. Rev.New York,
NY, USA, v.37, p.164-177, oct 2003.

BLAKE, J. T.; REIBMAN, A. L.; TRIVEDI, K. S. Sensitivity analysisf reliability and
performability measures for multiprocessor systems. IGNETRICS '88: PROCEEDINGS
OF THE 1988 ACM SIGMETRICS CONFERENCE ON MEASUREMENT AND
MODELING OF COMPUTER SYSTEMS, New York, NY, USA\nais... ACM, 1988.
p.177-186.

http://www2.research.att.com/~mgcr/tttplots/
http://www2.research.att.com/~mgcr/tttplots/
http://aws.amazon.com/autoscaling/

123 REFERENCES

BOLCH, G. et al.Queuing Networks and Markov Chains modeling and performance
evaluation with computer science applications. 2.ed.][Sdhn Wiley and Sons, 2001.

BONDAVALLI, A.; MURA, |.; TRIVEDI, K. S. Dependability Modellng and Sensitivity
Analysis of Scheduled Maintenance Systems. In: THIRD EURGRBPEPENDABLE
COMPUTING CONFERENCE ON DEPENDABLE COMPUTING, London, UK.
Proceedings. . .Springer-Verlag, 1999. p.7-23. (EDCC-3).

BUYYA, R. et al. Cloud computing and emerging IT platforms:i@ig hype, and reality for
delivering computing as the 5th utilitifuture Generation computer systems[S.1.], v.25,
n.6, p.599-616, 2009.

CALLOU, G. et al. Sustainability and dependability evaloaton data center architectures. In:
IEEE INT. CONF. ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011.
Proceedings.. [S.l.: s.n.], 2011. p.398-403.

CAMPQOS, E. et al. Performance Evaluation of Virtual Machihestantiation in a Private
Cloud. In: IEEE WORLD CONGRESS ON SERVICES. SERVICES 2015, 2015.
Proceedings.. [S.l.: s.n.], 2015. p.319-326.

CAO, X.-R. Uniformization and performance sensitivity estron in closed queueing
networks Mathematical and Computer Modelling, [S.l.], v.23, n.11-12, p.77 — 92, 1996.
Elsevier.

CHAISIRI, S.; LEE, B.-S.; NIYATO, D. Optimization of resourceqvisioning cost in cloud
computing.Services Computing, IEEE Transactions on[S.l.], v.5, n.2, p.164-177, 2012.

CHOI, H.; MAINKAR, V.; TRIVEDI, K. S. Sensitivity Analysis of D&erministic and
Stochastic Petri Nets. In: INTERNATIONAL WORKSHOP ON MODELGY ANALYSIS,
AND SIMULATION ON COMPUTER AND TELECOMMUNICATION SYSTEMS, San
Diego, CA, USA.Proceedings. . .Society for Computer Simulation International, 1993.
p.271-276. (MASCOTS '93).

CHUORB, S.; POKHAREL, M.; PARK, J. S. Modeling and Analysis of Cloa@dmputing
Availability Based on Eucalyptus Platform for E-GovernmBuatta Center. In: FIFTH
INTERNATIONAL CONFERENCE ON INNOVATIVE MOBILE AND INTERNET
SERVICES IN UBIQUITOUS COMPUTING (IMIS), 2011Anais... [S.l.: s.n.], 2011. p.289
—296.

CIARDO, G. et al. Automated generation and analysis of Marksvard models using
stochastic reward nets. In: MEYER, C.; PLEMMONS, R. (EHihear Algebra, Markov
Chains and Queuing Models [S.l.]: Springer, 1993. v.48, p.145-191.

CLOTH, L. et al. Model Checking Markov Reward Models with ImpuRewards. In:
INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS,
2005., Washington, DC, US&roceedings. . IEEE Computer Society, 2005. p.722—-731.
(DSN ’05).

CLOUDSTACK. Apache CloudStack open source cloud computing. Available on
htt ps://cl oudst ack. apache. or g/ . Accessed in 2016-01-25.

https://cloudstack.apache.org/

124 REFERENCES

COOPER, T.; FARRELL, R. Value-chain engineering of a tower-tdulze base station
system. In: VEHICULAR TECHNOLOGY CONFERENCE, 2007. VTC2007-SPRINEEE
65TH. Anais... [S.l.: s.n.], 2007. p.3184-3188.

CUOMO, A. et al. An SLA-based Broker for Cloud Infrastructurésurnal of Grid
Computing, [S.l.], v.11, n.1, p.1-25, 2013.

D-LINK Wireless N150 Router. Available omt t p: / / www. dl i nk. conT us/ en/ hore-
sol uti ons/ connect/routers/dir-601-w rel ess-n-150- hone-router.

DANTAS, J. et al. An Availability Model for Eucalyptus Platfim: an analysis of warm-standy
replication mechanism. In: IEEE INTERNATIONAL CONFERENCE ON SYEMS, MAN,
AND CYBERNETICS (IEEE SMC 2012), 2012., Seoul, Kor@aoceedings.. [S.l.: s.n.],
2012.

DANTAS, J. et al. Models for Dependability Analysis of Cloudr@puting Architectures for
Eucalyptus Platforminternational Transactions on Systems Science and Appli¢ens,
[S.l], v.8, p.13-25, Dec 2012.

DANTAS, J. et al. Eucalyptus-based private clouds: avditglmodeling and comparison to
the cost of a public cloudComputing, [S.l.], p.1-20, 2015.

DOWNING, D.; GARDNER, R.; HOFFMAN, F. An Examination of ResporSerface
Methodologies for Uncertainty Analysis in Assessment Medeechnometrics [S.l.], v.27,
n.2, p.151-163, May 1985.

EUCALYPTUS.Eucalyptus Open-Source Cloud Computing Infrastructure - An
Overview. Goleta, CA: Eucalyptus Systems, Inc., 2009.

EUCALYPTUS.Cloud Computing and Open Source IT Climatology is born. Goleta, CA:
Eucalyptus Systems, Inc., 2010.

EUCALYPTUS.Official Documentation for Eucalyptus Cloud. Available onht t ps: //
www. eucal ypt us. com docs/ eucal yptus/ 4. 0/ .

EUCALYPTUS.CloudWatch Troubleshooting. Available onht t ps: // gi t hub. com
eucal ypt us/ eucal ypt us/ wi ki / C oudWat ch- Tr oubl eshooti ng/.

EUCALYPTUS.HPE Helion Eucalyptus. [S.l.]: Hewlett Packard Enterprise, 2016. Available
in: http://www.eucalyptus.com/.

FEO, T.; RESENDE, M. A probabilistic heuristic for a compugaglly difficult set covering
problem.Operations Research Letters[S.l.], v.8, p.67-71, 1989.

FEO, T.; RESENDE, M. Greedy randomized adaptive search guves.J. of Global
Optimization, [S.l.], v.6, p.109-133, 1995.

FESTA, P.; RESENDE, MEssays and Surveys on Metaheuristic$S.l.]: Kluwer Academic
Publishers, 2002. v.6, p.325-367.

FRANK, P. M. Introduction to System Sensitivity Theory. [S.l.]: Academic Press Inc, 1978.

FURHT, B.; ESCALANTE, A. (Ed.)Handbook of Cloud Computing. [S.l.]: Springer
Science & Business Media, 2010.

http://www.dlink.com/us/en/home-solutions/connect/routers/dir-601-wireless-n-150-home-router
http://www.dlink.com/us/en/home-solutions/connect/routers/dir-601-wireless-n-150-home-router
https://www.eucalyptus.com/docs/eucalyptus/4.0/
https://www.eucalyptus.com/docs/eucalyptus/4.0/
https://github.com/eucalyptus/eucalyptus/wiki/CloudWatch-Troubleshooting/
https://github.com/eucalyptus/eucalyptus/wiki/CloudWatch-Troubleshooting/

125 REFERENCES

GERMAN, R.Performance Analysis of Communication Systems with Non-Makovian
Stochastic Petri Nets New York, NY, USA: John Wiley & Sons, Inc., 2000.

GERMAN, R.; MITZLAFF, J. Transient Analysis of Deterministind Stochastic Petri Nets
with TimeNET. In: LECTURE NOTES IN COMPUTER SCIENCE VOL. 977:
QUANTITATIVE EVALUATION OF COMPUTING AND COMMUNICATION SYSTEMS.
Anais... [S.l.: s.n.], 1995. p.209-223.

GHOSH, R. et al. End-to-end performability analysis for asfiructure-as-a-service cloud: an
interacting stochastic models approach. In: DEPENDABLE CQVING (PRDC), 2010
IEEE 16TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ONAnais. .. [S.l.: s.n.], 2010.
p.125-132.

GHOSH, R. et al. Modeling and performance analysis of largéesaas cloudg-uture
Generation Computer Systems[S.l.], v.29, n.5, p.1216-1234, 2013.

GINAC. GiNaC is Not a CAS Available in:ht t p: / / www. gi nac. de.

GOOGLE.Google App Engine platform as a service. Available dri t ps: // cl oud.
googl e. cont appengi ne/ . Accessed in 2016-01-28.

HAMBY, D. M. A Review Of Techniques For Parameter Sensitivitgalysis Of
Environmental Models€Environmental Monitoring and Assessment [S.1.], p.135-154,
1994.

HAVERKORT, B.; MEEUWISSEN, A. Sensitivity and uncertainty &wss of Markov-reward
models.|EEE Transactions on Reliability, [S.l.], v.44, n.1, p.147-154, Mar. 1995.

HAVERKORT, B. R.Markovian models for performance and dependability evaluaton.
New York, NY, USA: Springer-Verlag New York, Inc., 2002. 8-383.

HEARTBEAT. Linux-HA Project . Available: http://www.linux-ha.org.

HEIDELBERGER, P.; GOYAL, A. Sensitivity Analysis of Continuotisne Markov Chains
Using Uniformization. In: INTERNATIONAL WORKSHOP ON APPLIEMATHEMATICS
AND PERFORMANCE/RELIABILITY MODELS OF COMPUTER/COMMUNICATION
SYSTEMS, 2 Proceedings. . [S.l.: s.n.], 1987. p.93-104.

HIREL, C.; TU, B.; TRIVEDI, K. S.SPNP Stochastic Petri Nets. version 6.0. 2010.

HOFFMAN, F.; GARDNER, R. Evaluation of Uncertainties in Envirmental Radiological

Assessment Models. In: TILL, J.; MEYER, H. (EdRadiological Assessmentsa textbook

on environmental dose assessment. Washington, DC: U.SealuRkegulatory Commission,
1983. Report No. NUREG/CR-3332.

HU, T. et al. MTTF of Composite Web Services. In: INT. SYMP. ONRALLEL AND
DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA), 2018nais. .. [S.l.: s.n.],
2010. p.130 -137.

IOSUP, A. et al. Performance Analysis of Cloud Computing S®mwifor Many-Tasks
Scientific ComputingParallel and Distributed Systems, IEEE Transactions on[S.l.], v.22,
n.6, p.931-945, June 2011.

http://www.ginac.de
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/

126 REFERENCES

JAIN, R. The Art of Computer Systems Performance Analysistechniques for experimental
design, measurement, simulation and modeling. New YorkeyAlnterscience, 1991.

JOHNSON, D. et alEucalyptus Beginner's Guide — UEC Edition 2.ed. [S.l.: s.n.], 2010.

KIM, D. S.; MACHIDA, F.; TRIVEDI, K. Availability Modeling andAnalysis of a Virtualized
System. In: IEEE PACIFIC RIM INT. SYMP. ON DEPENDABLE COMPUTIN®GRDC
'09., 15.Anais... [S.l.: s.n.], 2009. p.365-371.

KIM, D. S.; MACHIDA, F.; TRIVEDI, K. S. Availability modeling ad analysis of a
virtualized system. In: DEPENDABLE COMPUTING, 2009. PRDC'0STH IEEE
PACIFIC RIM INTERNATIONAL SYMPOSIUM ON.Anais. .. [S.l.: s.n.], 2009. p.365-371.

KLEINROCK, L. Queueing SystemsNew York: Wiley, 1975. v.1.

KOLMOGOROQV, A. Uber die analytischen Methoden in der Wahgsnlichkeitsrechnung (in
German)Mathematische Annalen [S.l.], 1931. Springer-Verlag.

KOOPMAN, S.The mobile cloud computing market will generate 45 billion ddlars in
revenues by 2016 | ASD ReportsAcessible ot t ps: / / www. asdr eports. cont
news. asp?pr _i d=200.

KUO, W.; ZUO, M. Optimal reliability modeling : principles and applications. [S.l.]: John
Wiley & Sons, 2003.

LECUYER, P.; SIMARD, R. TestUO1: a C library for empirical tesgi of random number
generatorsACM Trans. Math. Softw., New York, NY, USA, v.33, n.4, Aug. 2007.

LIU, Z.; NAIN, P. Sensitivity results in open, closed and mikproduct form queueing
networks.Performance Evaluation, [S.l.], v.13, n.4, p.237 — 251, 1991.

LONGO, F. et al. A scalable availability model for Infrastture-as-a-Service cloud. In:
IEEE/IFIP 41ST INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS
NETWORKS (DSN), 2011Proceedings. . [S.l.: s.n.], 2011. p.335 —346.

MA, Y.; HAN, J.; TRIVEDI, K. Composite performance and availély analysis of wireless
communication network$EEE Transactions on Vehicular Technology [S.1.], v.50, n.5,
p.1216-1223, Sept. 2001.

MACIEL, P. et al. Dependability Modeling. IPerformance and Dependability in Service
Computing: concepts, technigues and research directions. HersBéylbbal, 2011.

MALHOTRA, M.; TRIVEDI, K. S. Power-Hierarchy of DependabiitModel TypesIEEE
Trans. Reliability, [S.I.], v.43, n.3, p.493-502, Sept. 1994.

MARIE, R. A.; REIBMAN, A. L.; TRIVEDI, K. S. Transient analysis ofcgclic markov
chains.Performance Evaluation [S.l.], v.7, n.3, p.175 — 194, 1987.

MARINO, S. et al. A Methodology For Performing Global Uncentst And Sensitivity
Analysis In Systems Biologyl Theor Biol, [S.l.], Sept 2008.

MARSAN, M. A.; CONTE, G.; BALBO, G. A class of generalized stoshia Petri nets for the
performance evaluation of multiprocessor syste&@M Trans. Comput. Syst., New York,
NY, USA, v.2, p.93-122, May 1984.

https://www.asdreports.com/news.asp?pr_id=200
https://www.asdreports.com/news.asp?pr_id=200

127 REFERENCES

MARWAH, M. et al. Quantifying the sustainability impact o&th center availability.
SIGMETRICS Perform. Eval. Rev., New York, NY, USA, v.37, p.64-68, March 2010.

MATEUS, G.; SILVA, R.; RESENDE, M. GRASP with path-relinkingrfthe generalized
guadratic assignment probleth.of Heuristics, [S.1.], v.17, p.527-565, 2011.

MATOS JUNIOR, R. d. SAn automated approach for systems performance and
dependability improvement through sensitivity analysis é Markov chains. 2011.
Dissertacao (Mestrado em Ciéncia da Computacédo) — UnivelsiBaderal de Pernambuco —
UFPE, Recife, Brazil.

MATOS JUNIOR, R. et al. Sensitivity Analysis of Availabilitf ®edundancy in Computer
Networks. In: THE FOURTH INT. CONF. ON COMMUNICATION THEORY,
RELIABILITY, AND QUALITY OF SERVICE (CTRQ 2011), Budapest, Hungar
Proceedings.. [S.l.: s.n.], 2011. p.115-121.

MATOS, R. S.; MACIEL, P. R.; SILVA, R. M. QoS-driven optimisatiai composite web
services: an approach based on grasp and analytical médelsational Journal of Web
and Grid Services [S.1.], v.9, n.3, p.304-321, 2013.

MATSUMOTO, M.; NISHIMURA, T. Mersenne twister: a 623-dimeasally equidistributed
uniform pseudo-random number generaf&M Trans. Model. Comput. Simul., New York,
NY, USA, v.8, n.1, p.3-30, Jan. 1998.

MELL, P.; GRANCE, T.The NIST Definition of Cloud Computing. [S.l.]: NIST - National
Institute of Standards and Technology, 2011. NIST Spedaialifation 800-145.

MENASCE, D. A.; ALMEIDA, V. A.; DOWDY, L. W. Performance by Design computer
capacity planning by example. [S.l.]: Prentice Hall PTR,£200

MENDEZ MUNOZ, V. et al. Rafhyc: an architecture for constingtresilient services on
federated hybrid cloudgdournal of Grid Computing, [S.l.], v.11, n.4, p.753-770, 2013.

MERCURY. Mercury Tool . Available in:htt ps: // sites. googl e. conisite/
mer cur yt ool downl oad/ , MoDCS Research Group.

MICROSOFT.What is PaaS? Platform as a service | Microsoft AzureAvailable on
https://azure. mcrosoft.con en-us/overvi ew what -i s- paas/.
Accessed in 2016-01-20.

MICROSOFT.Microsoft Azure: cloud computing platform and services. Available on
https://azure. m crosoft.conl en-us/docunent ati on/ scenari os/ web-
app/ . Accessed in 2016-01-28.

MOLLOQY, M. K. Performance Analysis Using Stochastic PetatSlLIEEE Trans. Compult.,
Washington, DC, USA, v.31, n.9, p.913-917, Sept. 1982.

MUPPALA, J. K.; TRIVEDI, K. S. GSPN models: sensitivity analy and applications. In:
ACM-SE 28: PROCEEDINGS OF THE 28TH ANNUAL SOUTHEAST REGIONAL
CONFERENCE, New York, NY, USAAnais. .. ACM, 1990. p.25-33.

MURATA, T. Petri nets: properties, analysis and applicadidtroceedings of the IEEE
[S.I], v.77, n.4, p.541-580, 1989.

https://sites.google.com/site/mercurytooldownload/
https://sites.google.com/site/mercurytooldownload/
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://azure.microsoft.com/en-us/documentation/scenarios/web-app/
https://azure.microsoft.com/en-us/documentation/scenarios/web-app/

128 REFERENCES

O’CONNOR, P. P.; KLEYNER, APractical Reliability Engineering. 5th.ed. [S.L.]: Wiley
Publishing, 2012.

OLIVEIRA, D. et al. Availability and Energy Consumption Analg of Mobile Cloud
Environments. In: IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MIAAND
CYBERNETICS (IEEE SMC 2013), Manchesteroceedings. . [S.l.: s.n.], 2013.

OPDAHL, A. L. Sensitivity analysis of combined software dmtdware performance models:
open queueing networkBerformance Evaluation, [S.l.], v.22, n.1, p.75 — 92, 1995. 6th
International Conference on Modelling Techniques and Tmwl€omputer Performance
Evalution.

OPENNEBULA.OpenNebula | Flexible Enterprise Cloud Made SimpleAvailable on
htt p: // opennebul a. or g/ . Accessed in 2016-01-20.

OPENSTACK.OpenStack Open Source Cloud Computing SoftwareAvailable on
htt ps:// ww. openst ack. or g/ . Accessed in 2016-01-25.

OU, V.; DUGAN, J. B. Approximate Sensitivity Analysis for Aclic Markov Reliability
Models.IEEE Transactions on Reliability, [S.1.], n.2, June 2003.

PENG, J. et al. Comparison of Several Cloud Computing Platfoim$NT. SYMP. ON
INFORMATION SCIENCE AND ENGINEERING (ISISE), 2., Shangh&iroceedings. ..
IEEE Press, 2009. p.23-27.

PHONEARENA.Phone Arena - Phone News, Reviews and Spe€@nline. Available on
http://ww. phonear ena. com . Acessed 20-May-2013.

QI, H.; GANI, A. Research on mobile cloud computing: reviengnid and perspectives. In:
DIGITAL INFORMATION AND COMMUNICATION TECHNOLOGY AND IT'S
APPLICATIONS (DICTAP), 2012 SECOND INTERNATIONAL CONFERENCE ON.
Anais... [S.l.: s.n.], 2012. p.195-202.

R-PROJECTThe R Project for Statistical Computing. Available in:ht t ps: // www. r -
pr oj ect . or g, Home page.

RESENDE, M.; RIBEIRO, CHandbook of Metaheuristics [S.l.]: Kluwer Academic
Publishers, 2003. v.6, p.219-249.

RIGHTSCALE.RightScale 2015 - State of the Cloud ReportAvailable on
http://assets.rightscale.com/uploads/pdfs/RightS2alkb- State-of-the-Cloud-Report.pdf.
Acessed on 2016-02-05.

RIMAL, B. et al. Architectural Requirements for Cloud Computings®ms: an enterprise
cloud approachlournal of Grid Computing, [S.l.], v.9, n.1, p.3-26, 2011.

ROSS, Sintroductory Statistics. [S.l.]: Elsevier Science, 2010.

SAHNER, R. A.; TRIVEDI, K. S.; PULIAFITO, A.Performance and reliability analysis of
computer systems an example-based approach using the sharpe softwaregeadkarwell,
MA, USA: Kluwer Academic Publishers, 1996.

http://opennebula.org/
https://www.openstack.org/
http://www.phonearena.com/
https://www.r-project.org
https://www.r-project.org

129 REFERENCES

SATO, N.; TRIVEDI, K. S. Stochastic Modeling of Composite Wedr8ces for Closed-Form
Analysis of Their Performance and Reliability Bottlenecks.ICSOC.Anais... [S.l.: s.n.],
2007. p.107-118.

SCHROEDER, B.; GIBSON, G. A. Disk failures in the real world: wHats an mttf of
1,000,000 hours mean to you? In: USENIX CONFERENCE ON FILE ANIDDERGE
TECHNOLOGIES, 5., Berkeleyroceedings. . [S.l.: s.n.], 2007. (FAST '07).

SEMPOLINSKI, P.; THAIN, D. A comparison and critique of elyatus, opennebula and
nimbus. In: CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM), 201
IEEE SECOND INTERNATIONAL CONFERENCE OMnais... [S.l.: s.n.], 2010.
p.417-426.

SILVA, B. et al. Mercury: an integrated environment for peniance and dependability
evaluation of general systems. In: INDUSTRIAL TRACK AT 45TH DERDABLE
SYSTEMS AND NETWORKS CONFERENCE, Rio de Janeirsoceedings. . .IEEE, 2015.
(DSN 2015).

SOUSA, E.; MACIEL, P.; ARAUJO, C. Performability evaluation®FT systems using
expolinomial stochastic models. In: IEEE INTERNATIONAL COERENCE ON
SYSTEMS, MAN AND CYBERNETICS, 2009., Piscataway, NJ, US&oceedings. . |EEE
Press, 2009. p.3328-3333. (SMC'09).

SQUARETRADE.Cell Phone Comparison Study Nov 100nline. Accessed 20-May-2013,
http://ww. squar et rade. coni cel | - phone- conpari son- st udy- nov- 10.

SUN. Introduction to Cloud Computing Architecture . [S.l.]: Sun Microsystems, Inc., 2009.
1ed.

SUN, D. et al. A Dependability Model to Enhance Security of@@ldnvironment using
System Level Virtualization Techniques. In: FIRST INT. COMII PERVASIVE
COMPUTING, SIGNAL PROCESSING AND APPLICATIONS (PCSPA 2010),rbia.
Proceedings.. [S.l.: s.n.], 2010.

SYMJA. Symja: Java Computer Algebra Library. Available int t ps: // bi t bucket .
org/ axel cl k/ syma_android_|ibrary.

TRIVEDI, K. S. Probability and Statistics with Reliability, Queuing, and Computer
Science Applications 2.ed. [S.l.]: John Wiley and Sons, 2001.

TRIVEDI, K. S.; SAHNER, R. SHARPE at the age of twenty tv&@ GMETRICS Perform.
Eval. Rev, New York, NY, USA, v.36, n.4, p.52-57, 2009.

VON LASZEWSKI, G. et al. Comparison of multiple cloud framewsrin: CLOUD
COMPUTING (CLOUD), 2012 IEEE 5TH INTERNATIONAL CONFERENCE OMnais. ..
[S.l.:s.n], 2012. p.734-741.

VOORSLUYS, W. et al. Cost of Virtual Machine Live Migration in&lds.Lecture Notes in
Computer Science — Springer-Verlag[S.l.], 2009.

WANG, D.; TRIVEDI, K. Computing steady-state mean time todadl for non-coherent
repairable system®eliability, IEEE Transactions on, [S.l.], v.54, n.3, p.506-516, 2005.

http://www.squaretrade.com/cell-phone-comparison-study-nov-10
https://bitbucket.org/axelclk/symja_android_library
https://bitbucket.org/axelclk/symja_android_library

130 REFERENCES

WATSON J.F., I.; DESROCHERS, A. Applying generalized stotiedBetri nets to
manufacturing systems containing nonexponential triemsftinctions.Systems, Man and
Cybernetics, IEEE Transactions on [S.l.], v.21, n.5, p.1008-1017, Sep 1991.

WEI, B.; LIN, C.; KONG, X. Dependability Modeling and Analysisrfthe Virtual Data
Center of Cloud Computing. In: IEEE INTERNATIONAL CONFERENCE ON HiG
PERFORMANCE COMPUTING AND COMMUNICATIONS, 2011., Washington, DGSA.
Proceedings. . IEEE Computer Society, 2011. p.784-789. (HPCC '11).

WOLFRAM. Wolfram Mathematica: modern technical computing. Available int t ps: //
www. wol fram coni mat hemat i ca, Home page.

YIN, B. et al. Sensitivity analysis and estimates of the penfance for M/G/1 queueing
systemsPerform. Eval., Amsterdam, The Netherlands, The Netherlands, v.64, n.4,
p.347-356, 2007.

ZHANG, Q.; CHENG, L.; BOUTABA, R. Cloud computing: state-of-taet and research
challengesJournal of internet services and applications[S.l.], v.1, n.1, p.7-18, 2010.

ZHENG, Z. et al. Collaborative Web Service QoS PredictionNgaghborhood Integrated
Matrix FactorizationServices Computing, IEEE Transactions on[S.l.], v.PP, n.99, p.1,
2012.

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

Appendix

132

Development of Mercury Tool Features

The sensitivity analysis methods proposed in this thesie weegrated in the Mercury
tool. Mercury is a software developed by MoDCS (Modeling o$tfibuted and Concurrent
Systems) Group at the Federal University of Pernambuco ByfBrazil. The tool has been de-
veloped to evaluate performance, dependability, and grieng models. It provides graphical
interfaces for modeling and evaluating Stochastic Petts &P N), Reliability Block Diagrams
(RBD), Energy Flow Models (EFM) and Continuous Time Markov Ce4i@TMC). Figure A.1
illustrates the formalisms and evaluation methods aviglaoMercury.

The Algorithm 1 was used to produce the feature of Mercurydepicted in Figure A.2.
That dialog window shows a sensitivity analysis of a hienaral model comprising an RBD
and a CTMC. It first presents the partial derivatives expressibat denote the sensitivity of
system availability to each parameter. The window alsogmssthe numerical sensitivity in-
dices for each parameter. In that cagd, TFb1l andMTTRb1 are parameters from the RBD
model (corresponding to block b1 MTTF and MTTR, respectiyelyhereasmu andlambda
are parameters from the CTMC model.

Notice that a user may choose between computing scaledigigygndices or unscaled
ones. The ranking might also be presented ordered or ndte lfiser decides by ordering the

l Mercury ‘
—
| []
l CTCM RBD l SPN EFM
-
[

[
Analysis
Stationary Transient Evaluator (Stationary Evaluator
and Transient)

Figure A.1: Overview of Mercury features

Simulation
(Stationary
and Transient)

133

Sensitivity analysis of RED

Type of sensitivity index

%) Scaled Unscaled
Type of ranking

® Ordered Unordered
Parameters under analysis

Compenent's availability ®' Component's MTTF and MTTR

Partial derivative of Availability with respect to

MTTFbl: $b3[lambda,mu]*(MTTREL+ MTTFB1)*({-1)-MTTFb1*Sb3[lambda, mu]*(MTTRb1
MTTRbBL: -MTTFb1*5b3[lambda, mu]*(MTTREL+MTTFB1)"(-2)

lambda: MTTFEL*D[Sb3[lambda, mu],lambda]*(MTTRb1+MTTFb1)"(-1)

mu: MTTFb1*D[Sb3[larmbda,mul,mul*(MTTREL+MTTFb1)" (-1}

Sensitivity value
-0.007936507936511874
0.007936507936511784
2.2644684226190475E-4
-2.264468134920635E-4

]

Close

Figure A.2: Dialog window for RBD sensitivity analysis on Mercury

ranking, the absolute values of the indices are used foingdtiem in decreasing order. There
Is also an option for considering the availability of eacbdl as the target parameters in the
sensitivity analysis, of their MTTF and MTTR values.

In Mercury source code, five classes interact to accomplishptoposed sensitivity
analysis steps in hierarchical composition of RBD and CTMCsuréd\.3 shows a UML se-
guence diagram that describes the execution of methodkdbattivity. The user triggers the
sensitivity analysis iddDialogSensitivityRBD, that is the class of the dialog window shown in
Figure A.2. TheRBDModel class is responsible for returning the first three piecesfofima-
tion for this analysis: the list of parameters, the struadttunction that represents the RBD, and
the transformed structural function. This correspond#ieslfrom 1 to 6 of the proposed algo-
rithm. Next, the clasSensitivityAnalysisRBD provides the symbolic derivative function for
each parameter. The claSensitivityAnalysisCTMC is responsible for computing the sensi-
tivity indices for each CTMC sub-model. Those indices andRB® parameter values are then
used bySensitivityAnalysisRBD class to evaluate the former symbolic derivative expressio
yielding the numeric sensitivity indices. The methsmit() from theCollectionsclass is called
when an ordered ranking is requested, finishing the proeedur

It is important to mention that intermediate steps are segged here because they are
not the exclusive focus of this work. Some of those stepsudelthe symbolic computation
methods for obtaining partial derivatives and the symbmiciumeric conversion of expres-
sions. The Symja framework provided many methods for implaing such tasks.

134

:JDialogSensitivityRBD rbd:RBDModel :SensitivityAnalysisRBD | |:SensitivityAnalysisCTMC :Collections

getParameterList()

parameterList =I_—‘J
(e rmmmmm o mmmo s mm e e .
E getStructuralFunction() :

E structFunction =i:|
N .
transformStructuralFunction(structFunction)
E structFunction g
:<.

loop J [for each parameter]

+ »
derivativeFunction D

getParameterValdes(rbd) '
aramValue :j:l loop /Ifor each sub-model]

getSensitivityValues(rbd) k|"| getSensitivityValuesList _ \
sensitivityValt ... fenking 1]

[for each derivative function]

loop

getExpressionValue(derivativeFunction, paramValues, sensValues) N
sensitivitylndex 'j:|

sort(sensitivityRanking)

Figure A.3: UML sequence diagram for sensitivity computation with RBD main model
and CTMC sub-models

135

Sensitivity Analysis

Technique: |gensitivity Index

Input parameters

Parameter Minimum Maximum
TFail 5.000 10.000
TRep 2 20

Metric: Uptime

Sampling points:

Output charts: Mone

Results
Parameter Sensitivity index

0.002048247483858558
-0.003999653092255365
-0.002999653092259366
0.003999653070341 267
0.003999553065957648

Perform sensitivity analysis

Figure A.4: Dialog window for SPN sensitivity analysis on Mercury

The Algorithm 2 provided the basis for development of s@nsjitanalysis when an
SPN is the top-level model. Figure A.4 shows the dialog windlor that feature. Notice that
the user enters the minimum and maximum bounds for the rainggch transition of the SPN
top-level model:TFail andTRep. The number of sampling points will determine how many
values will compose the range for each parameter. If theersiers only two sampling points,
they will correspond to the maximum and minimum values dzti Moreover, the measure
of interest is informed, since the SPN can be used to compatg kinds of metrics.

The results for the sensitivity analysis of the hierarchicadel are presented in the text
area on the bottom of the window. It shows the sensitivitydes for the transition TRep, and
for parametersnu, alpha, lambda, andbeta, which are parameters of a CTMC sub-model
assigned to the TFail transition.

Before such an implementation, the proposed method haddgite@en successfully
tested without full automation. Section 5.3 presents a sasdy with results computed with

136

:PercentageDifference

tSensitivityAnalysisFrame| spn:EDSPN IndexFunction

:SensitivityAnalysisCTMC :Collections

getDelayParameters()

E parameterList =I:|
Crmmmm e .

printSensitivitylndices(pa'ramList, values)

loop / _:| calculatelndices()

[for each pa!meter]
sensmvnyRankmg

loop [for each submodel] :
getRanklngsSubmodeI(submodeI)
getSens|t|vityVaIuesList(submodeI)

! subRankin :
= R— u

[for each SPN parameter with subModeI]
|°°p [for each submodel parameter]

multiplylndices(subRanklng[subPatam] sensitivity[SPNparam])

>
sorledSensmvntyRankmg H

N M — .

sort(sensitivityRanking)

Figure A.5: UML sequence diagram for sensitivity computation with SPN main model
and CTMC sub-models

this method.

In Mercury source code, five classes interact to accomplishproposed sensitivity
analysis steps in hierarchical composition of SPN and CTMCiguré A.5 shows a UML
sequence diagram that describes the execution of methottaf@ctivity. The user triggers the
sensitivity analysis irBensitivityAnalysisForm, that is the class of the dialog window shown
in Figure A.4. TheEDSPN class is responsible for returning the list of parameterghef
main model. Next, the clag2ercentageDifferencelndexFunctiorcomputed and provides the
sensitivity ranking for the main model, using the perceatdgference method. The class
SensitivityAnalysisCTMC is responsible for computing and returning the sensitiwitlices
for each CTMC sub-model. Those indices and then multipliedheyindices of respective
parameters from the SPN ranking. The metlsod() from the Collections class is called to
produce a ordered ranking, finishing the procedure.

Itis important to highlight that was necessary implememsansitivity analysis features
for single (i.e., non-hierarchical models) before develgpfeatures described in the current
section. These initial features were released in versiari4.The Mercury tool also did not
support hierarchical modeling before the efforts of thisegrch work. Version 4.5.0 included

137

that feature. Such an implementation was a requisite fargading forward in the automation
of the proposed methodology. All features presented irejpendix are available since version

4.6.0 of Mercury.

138

Partial Derivatives for Case Study 1

The following equations (B.1, B.2, B.3, and B.4) show the padeiivatives for the
availability of the redundant Cloud Manager (CLC) componeoninfthe case study in Section

5.1.

(sao + o124+ AcicAerc) Here(ai? 4+ asAcig + AcicActg +s& a1+ 2Acic))
2
(as(012+AcicAcic) +SaAE ¢+ AcLcO1 + Heiedi))

Hcic(sa+Acig)
+ , .B.l
az(a12+ AcicAcig) + SAAE ¢ + AcLcO1 + Hereat)

S)\CLC (AcLc) =—

where
a1 =AciLg + HcLc,
az =AcLc +AcLg + Here, and
a3 =AcLc+ HcLc-
s B (AcLc+ 2AcLc +sa+2Ucic) Hele
(A& c+AcLca1+ aipcLc)sa+ (AcLcAcLg + 017) a3
as(A 2Acic +2 a3sa)(AcicAcle + a12 + azsa
 (as(CLC2+ cLG +2Hcic) + a3sa) (AcLcAcig + 01 er 2 Z)IJCL07
((AéLc+AcLcar + a1lcic)sa+ (AcicAcLg + a19)as)
where

a1 =Acig + M,
az =Acic+AcLg + Here, and

a3 =AcLc+ HcLc-

139

(@12 + AcLcAcLg + 20301 + (04 + 2pcLc)s@) HoLc(@asa+ ar2 + AcLcAcLc)

SawcloLe) ((AcLcOn + Hercon + A8 c)sa+ as(a12+ AcicAcLg)?
apsa+ a1 + AcLcAclg
(AcLcaa + Hercti + AZ c)sa+ az(a12 + AcicAcic)
(2AcLg + sa+ 2UcLc)Hele
(AcLcOr + Hercai+ AZ ¢)sa+ az(a12 + AcicAeig)’ '
where

a1 =AcLq + HeLc,
az =Acic+AcLg + Here, and
a3 =AcLc+ HcLc

a4 =AcLc+Acic -

Ssa(ACLC) = Galcre
sa(a1AcLc+ AZ o+ d1ticre) + (AcigAcic + a1?)as
_ (AcigAcic + azsat a12) teLc(@iAcie + Aé ¢ + d1ticic)
(sa(a1Acic+ A& o+ a1tcic) + (AcigAcLe + 012) as)’
where

a1 =AcLg + McLc,
az =AcLc+AcLg + Here, and

03 =AcLc+ HcLc-

The partial derivatives equations for the availability lo¢ tCluster Manager (CC) com-
ponent are very similar to those just presented for the CLCpmorant, since both use the same
CTMC model for describing their warm-standby redundancy.

The following equations (B.5 and B.6) present the partiah@dgities of a node availabil-
ity with respect to its parametegg,c andAnc, respectively.

1
Sinc(Anc) = als

T NG NG (Anc+ Hne)?

140

S/\NC (ANC) =

HUNC

(Anc+ Hnc)?

	Introduction
	Objectives
	Aimed contributions
	Organization of the document

	Background
	Cloud Computing
	Service Models
	Deployment Models
	Open-source Cloud Computing Platforms
	Challenges for Cloud Computing
	Eucalyptus Platform

	Dependability and Performance Modeling
	Reliability Block Diagrams
	Markov Chains
	Stochastic Petri Nets

	Sensitivity Analysis
	Concluding Remarks

	Related works
	99993em.5Dependability and Performance Evaluation of Cloud Computing
	Sensitivity Analysis of Analytical Models
	Differential Sensitivity Analysis on Queueing Systems
	Differential Sensitivity Analysis on Markov Chains
	Differential Sensitivity Analysis on Petri Nets

	Comparison of Main Related Works
	Concluding Remarks

	Approach for identification of availability and performance bottlenecks in cloud systems
	Supporting methodology
	Sensitivity Analysis of Hierarchical Models
	Composition of Sensitivity Indices with RBD as Top-level Model
	Composition of Sensitivity Indices with SPN as top-level model
	Implementation on Mercury Tool

	Optimization Guided by Sensitivity Ranking
	Concluding Remarks

	Case studies
	Availability of Redundant Private Clouds
	Creating top-level model
	Creating sub-models for specific components
	Definition of input parameters
	Solution of hierarchical model
	Sensitivity analysis on sub-models and high-level models

	Availability of a Mobile Cloud System
	Creating top-level model
	Creating sub-models for specific components
	Definition of input parameters
	Solution of hierarchical model
	Sensitivity analysis on sub-models and high-level models

	Performance of Composite Web Services on Private Cloud
	Creating top-level model
	Creating sub-models for specific components
	Definition of input parameters
	Solution of hierarchical model
	Sensitivity analysis on sub-models and high-level models

	Optimization of composite web services with Sensitive GRASP

	Final remarks
	Contributions
	Future works

	References
	Appendix
	Development of Mercury Tool Features
	Partial Derivatives for Case Study 1

