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Resumo

O paradigma de computação em nuvem é capaz de reduzir os custos de aquisição e

manutenção de sistemas computacionais e permitir uma gestão equilibrada dos recursos de

acordo com a demanda. Modelos analíticos hierárquicos e compostos são adequados para

descrever de forma concisa o desempenho e a confiabilidade desistemas de computação em

nuvem, lidando com o grande número de componentes que constituem esse tipo de sistema.

Esta abordagem usa sub-modelos distintos para cada nível dosistema e as medidas obtidas

em cada sub-modelo são usadas para calcular as métricas desejadas para o sistema como um

todo. A identificação de gargalos em modelos hierárquicos pode ser difícil, no entanto, devido

ao grande número de parâmetros e sua distribuição entre os distintos formalismos e níveis de

modelagem. Esta tese propõe métodos para a avaliação e detecção de gargalos de sistemas de

computação em nuvem. A abordagem baseia-se na modelagem hierárquica e técnicas de análise

de sensibilidade paramétrica adaptadas para tal cenário. Esta pesquisa apresenta métodos para

construir rankings unificados de sensibilidade quando formalismos de modelagem distintos são

combinados. Estes métodos são incorporados no software Mercury, fornecendo uma estrutura

automatizada de apoio ao processo. Uma metodologia de suporte a essa abordagem foi proposta

e testada ao longo de estudos de casos distintos, abrangendoaspectos de hardware e software

de sistemas IaaS (Infraestrutura como um serviço), desde o nível de infraestrutura básica até os

aplicativos hospedados em nuvens privadas. Os estudos de caso mostraram que a abordagem

proposta é útil para orientar os projetistas e administradores de infraestruturas de nuvem no

processo de tomada de decisões, especialmente para ajusteseventuais e melhorias arquiteturais.

A metodologia também pode ser aplicada por meio de um algoritmo de otimização proposto

aqui, chamado Sensitive GRASP. Este algoritmo tem o objetivode otimizar o desempenho e a

confiabilidade de sistemas em cenários onde não é possível explorar todas as possibilidades ar-

quiteturais e de configuração para encontrar a melhor qualidade de serviço. Isto é especialmente

útil para os serviços hospedados na nuvem e suas complexas infraestruturas subjacentes.

Palavras-chave: Computação em nuvem; avaliação de desempenho; dependabilidade; mode-

los analíticos; análise de sensibilidade; cadeias de Markov; otimização



Abstract

Cloud computing paradigm is able to reduce costs of acquisition and maintenance of

computer systems, and enables the balanced management of resources according to the demand.

Hierarchical and composite analytical models are suitablefor describing performance and de-

pendability of cloud computing systems in a concise manner,dealing with the huge number

of components which constitute such kind of system. That approach uses distinct sub-models

for each system level and the measures obtained in each sub-model are integrated to compute

the measures for the whole system. Identification of bottlenecks in hierarchical models might

be difficult yet, due to the large number of parameters and their distribution among distinct

modeling levels and formalisms. This thesis proposes methods for evaluation and detection of

bottlenecks of cloud computing systems. The methodology isbased on hierarchical modeling

and parametric sensitivity analysis techniques tailored for such a scenario. This research in-

troduces methods to build unified sensitivity rankings whendistinct modeling formalisms are

combined. These methods are embedded in the Mercury software tool, providing an automated

sensitivity analysis framework for supporting the process. Distinct case studies helped in testing

the methodology, encompassing hardware and software aspects of cloud systems, from basic in-

frastructure level to applications that are hosted in private clouds. The case studies showed that

the proposed approach is helpful for guiding cloud systems designers and administrators in the

decision-making process, especially for tune-up and architectural improvements. It is possible

to employ the methodology through an optimization algorithm proposed here, called Sensitive

GRASP. This algorithm aims at optimizing performance and dependability of computing sys-

tems that cannot stand the exploration of all architecturaland configuration possibilities to find

the best quality of service. This is especially useful for cloud-hosted services and their complex

underlying infrastructures.

Keywords: Cloud computing; performance evaluation; dependability; analytical modeling;

sensitivity analysis; Markov chains; optimization
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1
Introduction

Cloud computing makes computer resources (processing power, storage, software) avail-

able through the Internet, with service providers potentially located anywhere around the world.

These service providers have been using cloud computing paradigm to reduce acquisition costs

and manage the highly variable demands requested by their customers. Cloud computing pro-

vided high flexibility due to the integration of virtualization technologies and mechanisms for

automated hardware and network management (VOORSLUYS et al., 2009; BARHAM et al.,

2003). The variety of components in such systems and the interaction among them bring new

challenges to assure the desired or contracted levels of performance and dependability (reliabil-

ity, availability, and security).

Analytical modeling helps to plan and manage hardware, network and software infras-

tructures (CALLOU et al., 2011; MATOS JUNIOR et al., 2011; SOUSA; MACIEL; ARAUJO,

2009), either by comparing alternative configurations before implementing a system, or by al-

lowing the prediction of effects in system availability andperformance after changes in its

components. Such planning is essential for mission critical systems, and service providers,

who need to meet strict Service Level Agreements (SLAs), whose violation may result in fines,

cancellation of contracts and other financial losses (SATO; TRIVEDI, 2007; ARAUJO et al.,

2011). Reliability Block Diagrams (RBDs) (MACIEL et al., 2011), Fault Trees, queuing net-

works, Markov chains and Petri nets (MALHOTRA; TRIVEDI , 1994) are among the formal

models commonly found in this context. Cloud computing systems, due to their characteris-

tics (e.g., virtualization, and layered modular architecture), can be described in a more concise

manner through hierarchical models. In this approach, different levels of the system are repre-

sented separately in sub-models, and the measures of each sub-model are integrated to obtain

the measures for the system as a whole.

Systems modeling usually requires to handle many differentparameters, for both per-

formance and dependability studies. Each parameter can have a distinct impact on availability,

reliability and performance measures, therefore is crucial to know the “order of importance” of

the model parameters, so you can decide the appropriate level of attention given to each one

(BONDAVALLI; MURA; TRIVEDI , 1999). Parametric sensitivity analysis (FRANK, 1978;



17 1.1. OBJECTIVES

HAMBY , 1994) is a method to determine the order of influence of the parameters on the re-

sults of a model. This method has been applied in some types ofanalytical models, such as

Markov chains, Petri nets and queuing networks, but in an isolated way, without considering

the integration of different models in a hierarchical approach.

The computation of the order of importance for parameters ina hierarchical model is

not trivial, because there are multiple components in models of different levels. An example

is found in studies involving availability and reliabilitybecause the failure of a component in a

given model may impact the measures of a subsystem represented by another model, incurring

in relations difficult to be measured. Therefore, the creation of a sensitivity analysis method-

ology tailored to the characteristics of hierarchical modeling would benefit the evaluation of

dependability and performance of cloud systems, as well as other areas that use this kind of

approach.

Considering the challenges just presented, this study aims at developing methods for

accurate identification of performance, reliability and availability bottlenecks, especially for

designers and administrators of complex systems, such as virtualized data centers and Infras-

tructure as a Service (IaaS) cloud computing environments.a methodology that leverages the

evaluation of cloud computing systems. Such an approach should employ hierarchical model-

ing techniques and combine specific sensitivity analysis indices for distinct models. Decision-

making processes may be guided by the hierarchical analytical models and their sensitivity

analysis, providing robust and clear information about thepoints of optimization in the ana-

lyzed system.

1.1 Objectives

The main objective of this research is to propose methods forthe detection of perfor-

mance and dependability bottlenecks in cloud computing systems. This approach should en-

able the identification of points for improvement at different levels of the systems under study,

through hardware and software. The proposed methods will ease compliance with some non-

functional requirements expected by users of cloud systems, such as availability and response

time. Among the specific goals of the research, we can list:

� Build and validate performance and availability models for cloud computing archi-

tectures found in corporate environments and described in the literature.

� Develop composition methods for sensitivity metrics of analytical models commonly

used in the areas of performance and dependability evaluation.

� Automate the computation of sensitivity metrics for hierarchical models in the Mer-

cury tool (MERCURY, 2016).
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� Recommend improvements to some existing cloud computing architectures through

the proposed methodology and its sensitivity analysis results.

1.2 Aimed contributions

The main contributions that we plan to provide through this thesis are the following:

� Models for dependability evaluation of cloud computing systems, addressing appli-

cation and infrastructure issues.

� Models for performance evaluation of applications that employ specific features of

cloud computing systems, such as elasticity mechanisms (e.g., autoscaling).

� Methods and tools for automated sensitivity analysis of hierarchical models.

� A supporting methodology that describes the activities required for proper definition

and analysis of models.

� Algorithms for optimization of cloud computing infrastructures and services, inte-

grating sensitivity analysis techniques and well-established optimization methods.

Such results shall empower the proper planning of cloud computing infrastructures, es-

pecially the modifications made for systems already in production. The products of this research

are supposed to aid the fulfillment of users and administrators expectations that are usually de-

fined by means of SLAs.

1.3 Organization of the document

This thesis is structured as follows. Chapter 2 clarifies somerelevant background themes

the reader should know for properly understanding this document. Chapter 3 discusses notewor-

thy works found in literature that have some topics in commonto those addressed in this the-

sis. The proposed sensitivity analysis methods for identification of bottlenecks are described in

Chapter 4. It also explains the methodology that supports thesensitivity analysis for hierarchical

models.

Chapter 5 presents case studies which were used to verify the applicability of the pro-

posed approach as well as to demonstrate its benefits and limitations. Final remarks are dis-

cussed in Chapter 6. The Appendix A presents details on the implementation of sensitivity

analysis features for the Mercury tool (MERCURY, 2016)(SILVA et al., 2015).
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2
Background

This chapter discusses the basic concepts of three main areas that set up the focus for

this thesis: cloud computing, dependability and performance modeling, and sensitivity analy-

sis. The background presented here shall provide the necessary knowledge for a clear compre-

hension of the chapters ahead, including the aspects surrounding the proposed techniques and

subsequent case studies.

2.1 Cloud Computing

Cloud computing is a model for enabling convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction (MELL; GRANCE, 2011). ARMBRUST et al.(2010) stress

that cloud computing refers to both the applications delivered as services over the Internet and

the hardware and systems software in the datacenters that provide those services. In such a

model, users access services based on their requirements without regard to where the services

are hosted or how they are delivered (BUYYA et al., 2009).

Numerous advances in software architecture and hardware virtualization have leveraged

the adoption of cloud computing, supporting the development of applications which scale grace-

fully and automatically (SUN, 2009), also known as elastic computing.

ARMBRUST et al.(2010) consider that three aspects are new in cloud computing, from

a hardware point of view: i) the illusion of infinite computing resources available on demand,

thereby eliminating the need for cloud computing users to plan far ahead for provisioning; ii)

the elimination of an up-front commitment by cloud users, thereby allowing companies to start

small and increase hardware resources only when their needsgrow; iii) the ability to pay for

use of computing resources on a short-term basis (e.g., processors by the hour and storage

by the day) and release them when they are no longer useful, what is often called as “utility

computing”. Therefore, computational services are commoditized and delivered in a manner

similar to traditional utilities such as water, electricity, gas, and telephony.
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Different cloud computing offerings will be distinguishedbased on the level of abstrac-

tion presented to the programmer and the level of managementof the resources. Therefore, it is

possible to identify distinct service models and deployment models for cloud systems, that are

presented as follows.

2.1.1 Service Models

The National Institute of Standards and Technology (NIST) of USA, has defined three

service models for cloud computing: Software as a Service (SaaS), Platform as a Service (PaaS),

and IaaS (MELL; GRANCE, 2011). Figure 2.1 shows the services models arranged as layers

of a complete cloud service, and shows examples of services usually provided in each layer.

With IaaS, the consumer can allocate processing, storage, networks, and other funda-

mental computing resources. The consumer is able to deploy and run arbitrary software on

top of such resources, which may include operating systems and applications. The consumer

does not manage or control the underlying cloud infrastructure but has control over operating

systems, data, and deployed applications; and usually limited regulation of some networking

components (e.g., host firewalls).

Figure 2.1: Cloud service models

Amazon, Google, Microsoft, Rackspace, and Salesforce are among the major cloud

computing providers. Those companies enable fast deployment of various computational re-

sources to their customers, that pay only for what they effectively used. Amazon Elastic Com-

pute Cloud (EC2) is one of the pioneer and most successful IaaS products, which was followed

by competitors such as Google Compute Cloud, and Microsoft Azure. There is a variety of

options in terms of processing power (e.g, number of CPU cores), main memory capacity, and

storage space for the virtual machines that a user can deployin those services.

PaaS provides a framework that developers can build upon to develop or customize

cloud-based applications. It includes middleware, programming libraries, development tools,

database management systems, and other services to supportthe web application lifecycle, i.e.,



21 2.1. CLOUD COMPUTING

building, testing, deploying, managing, and updating (MICROSOFT, 2016a).

Google App Engine is an example of PaaS, that allows developers creating and de-

ploying applications with Python, Java, PHP, and Go programming languages directly on the

Google’s infrastructure, benefiting from ready-to-use libraries and frameworks, as well as the

ability to scale as traffic and data storage needs change (GOOGLE, 2016). Microsoft Azure

also has PaaS capabilities, enabling software developmentwith JavaScript, Python, .NET, PHP,

Java, and Node.js (MICROSOFT, 2016b).

With SaaS, the capability provided to the consumer is to use the provider’s applications

running on a cloud infrastructure. The applications are accessible from various client devices

through either a thin client interface, such as a web browser(e.g., web-based email), or a pro-

gram interface (MELL; GRANCE, 2011). The consumer only controls limited user-specific

application configuration settings, and does not know nor has access to the underlying hard-

ware, operating system, and any other software infrastructure that supports that application.

SaaS has become a major trend in the development of applications. There are important

examples of cloud-based software in almost any category, including office suites, Customer Re-

lationship Management (CRM), Enterprise Resource Planning (ERP), photo edition tools, and

media players. Google Docs, Microsoft Office 360, Adobe Creative Cloud, Salesforce CRM,

GMail for Work, and Youtube are services that replace traditional client-server or stand-alone

desktop applications. Such services are usually built on top of PaaS, or directly on IaaS envi-

ronments without the aid of PaaS features. The customer of SaaS has little or none installation

requirements besides a web browser, but fast and reliable network connectivity becomes an

important need.

Figure 2.2: Cloud computing actors by service model

Figure 2.2 depicts the target audience of each service model. End-users consume ap-
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plications provided by SaaS vendors; software developers consume programming resources at

PaaS environments; and systems administrators (sysadmins) consume processing, networking,

and storage capacity from IaaS providers. It is worth noticing that cloud computing users at

IaaS level might use the resources to become a PaaS or SaaS provider. A PaaS user is also

expected to create applications to be accessed in the SaaS model.

The three service models defined by NIST were expanded in the literature and industry

terminology by the inclusion of Data Storage as a Service (DSaaS), Database as a Service

(DBaaS), Mobile Backend as a Service (MBaaS), Disaster Recoveryas a Service (DRaaS), and

many similar acronyms. This induced the creation of the termEverything as a Service (XaaS)

to emphasize that potentially any computational resource or activity can be offered as a service

in the cloud.

This Ph.D. thesis deals mainly with IaaS, and the concept of cloud most used here is: “a

group of machines configured in such a way that an end-user canrequest any number of virtual

machines (VMs) of a desired configuration” (SEMPOLINSKI; THAIN, 2010). The cloud will

run these VMs somewhere on the pool of physical machines thatit owns. The word “cloud”

in this context denotes the tenuous or almost intangible nature of these VMs. As mentioned

by SEMPOLINSKI; THAIN (2010), the end-user neither knows nor cares where exactly these

VMs are physically located or the configuration of the underlying hardware, so long as they can

access their bank of properly configured VMs. On the other hand, a cloud system administrator

must have deeper knowledge on the infrastructure that is being offered and how those compo-

nents can be tuned to assure acceptable quality of service. Therefore, the methods proposed in

this thesis should be most useful for the system administrators of IaaS platforms. To a lesser

extent, this work also takes into account details of software applications running on top of IaaS

clouds. The distinction between IaaS components and end-user application components will be

clearly specified in the case studies when this becomes necessary.

2.1.2 Deployment Models

Clouds can also be classified in terms of deployment models that define who owns

and manages the cloud (FURHT; ESCALANTE, 2010). Figure 2.3 depicts the three main

deployment models: public, private, and hybrid clouds.

According to NIST (MELL; GRANCE, 2011), in a public cloud the infrastructure is

provisioned for open use by the general public. It may be owned, managed, and operated by a

business, academic, or government organization, or some combination of them. It exists on the

premises of the cloud provider, and the access to resources is usually charged in a pay-as-you-

go manner.ZHANG; CHENG; BOUTABA (2010) emphasize that public clouds offer several

key benefits to service providers, including no initial capital investment on infrastructure and

shifting of risks to infrastructure providers.

A private cloud, or internal cloud, is provisioned for exclusive use by a single organi-
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Figure 2.3: Cloud deployment models

zation comprising multiple consumers (e.g., business units). It may be owned, managed, and

operated by the organization, a third party, or some combination of them, and it may exist on or

off premises (MELL; GRANCE, 2011) (FURHT; ESCALANTE, 2010). It is usually adopted

when the organization has concerns on storing or processingdata outside their own facilities.

Beyond privacy and security concerns, a need for fine-grainedlevel of control on software, net-

work, and hardware components might lead to the choice of private clouds instead of public

clouds.

A hybrid cloud is a composition of two or more distinct cloud infrastructures that remain

unique entities, but are accessed jointly by means of standardized or proprietary technology

that enables data and application portability (MELL; GRANCE, 2011). Hybrid clouds might

be arranged to keep confidential or other sensible data exclusively on local premises whereas

common information is stored and processed on public infrastructure. Load balancing between

clouds is also an application for hybrid clouds.

Some works also consider a fourth deployment model, called as community clouds

(MELL; GRANCE, 2011). In such a model, infrastructure resources and costs are shared by

distinct organizations with common purposes or concerns. The resources are integrated in a

manner that every partner has access to a virtually larger computational capacity with reduced

costs, but without demanding public cloud services.

2.1.3 Open-source Cloud Computing Platforms

There are some software frameworks for building private clouds. Eucalyptus (EUCA-

LYPTUS, 2016), OpenNebula (OPENNEBULA, 2016), Openstack (OPENSTACK, 2016), and
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Cloudstack (CLOUDSTACK, 2016) are well-known open-source cloud platforms and the docu-

mentation available about their internal functioning makes them interesting for a deeper analysis

of the components in an IaaS cloud. Those platforms share some characteristics that allow us

to describe a generic infrastructure needed to make a cloud computing system work (SEM-

POLINSKI; THAIN, 2010)(VON LASZEWSKI et al., 2012). Figure 2.4 depicts such parts of

an abstract cloud software architecture.

Figure 2.4: Generic cloud software architecture

A cloud must have a pool of physical machines (compute nodes), where VMs will be

instantiated. The hardware and the base operating system onthe compute nodes have important

requirements for proper usage on a cloud environment. First, the processors of the physical

nodes should have extensions for virtualization, and theseextensions must be enabled on the

BIOS setup. According to (VON LASZEWSKI et al., 2012), the absence of such virtualization

extensions greatly limit both the speed of the VMs and the choice of software components.

Kernel modules for virtualization might also be required onthe operating system.

The virtual machine hypervisor, also known as Virtual Machine Monitor (VMM), pro-

vides a framework which allows VMs to run. Popular VMMs include Xen, KVM, and Vir-

tualBox, that are open-source, and VMware, which is proprietary. Distinct cloud frameworks

support distinct subsets of hypervisors.

Another common component among cloud frameworks is a repository of VM disk im-

ages. In order to usefully run VMs, a virtual hard drive must be available. In cases where one

is simply creating a single VM on a single physical machine, ablank disk image is created

and the VM installs an operating system and other software. However, in a cloud environment,

dozens or even thousands of VMs might be created and terminated in a short timespan, so the

installation of a full operating system on each VM would taketoo much time. For this reason,

each cloud system has a repository of disk images, includingready-to-use operating systems
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snapshots, that can be copied and used as the basis for new virtual disks. The devices that hold

the VM image repository might also host a cloud storage for keeping data that are directly han-

dled by user applications. Such a remote storage is often classified as object storage or block

storage, depending on the nature of data organization and basic operations available for user

access.

SEMPOLINSKI; THAIN (2010) highlight that cloud frameworks in general also man-

age network services such as DNS, DHCP, NAT, VLANs, and the subnet organization of the

physical machines. They perform virtual bridging of the network, that is required to give each

VM a unique virtual MAC address and so enable full network communication in the VM. The

cloud framework configures DHCP and DNS processes to handle the MAC and IP addresses of

virtual nodes, releasing the cloud operator from many network administration tasks. IP reserva-

tion and specification of firewall rules for specific VMs are other important services available

in IaaS cloud computing platforms.

A front-end interface for resources management enables users to request VMs, specify

their parameters, and obtain needed certificates and credentials in order to remotely access the

created VMs. Some front-ends perform various types of scheduling that limit the amount of

resources that a user can allocate as well as choose the physical location of those resources.

Some of those front-ends implementde factoindustry standard Application Programming Inter-

faces (APIs) such as EC2 from Amazon, what might constitute anadvantage for implementing

hybrid clouds.

At last, the cloud framework itself orchestrates the entiresystem. It processes inputs

from the front-end interface, loads the needed disk images from the repository, requests that a

hypervisor in one node sets up a VM and then signals DHCP and IP bridging programs to define

and configure MAC and IP addresses for the VM.

Most cloud platforms also include additional modules for load balancing, high availabil-

ity, performance monitoring, and similar mechanisms. The focus of those components is the

automation of VM and application management tasks. They should enable a fast response to

failures, peeks of workload, and other events that might affect the quality of service before the

system administrator is able to detect the problem and counteract directly.

Next section describes Eucalyptus, that is an example of IaaS private cloud platform

deployed in many companies and organizations. There is muchdocumentation about its com-

ponents, installation, and configuration, what makes it suitable for the study of IaaS private

clouds.

2.1.4 Challenges for Cloud Computing

There are various challenges that providers and consumers usually face for implement-

ing, expanding, or maintaining their cloud computing services. Research challenges usually

mentioned are: automated service provisioning, interoperability, energy management, traffic
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analysis, data security, availability, and performance unpredictability (ZHANG; CHENG; BOUTABA,

2010) (ARMBRUST et al., 2010).

Cloud consumers have little or none control over the underlying computing resources,

so the providers are the major actors in charge of ensuring the quality, availability, reliabil-

ity, and performance of the hardware/software/network infrastructure. In other words, it is

vital for consumers to obtain guarantees from providers on service delivery (ZHANG; CHENG;

BOUTABA, 2010)

Fault tolerance and reliability were listed by a report fromEuropean Commission among

the implicit challenges and requirements of cloud computing. This is related to the expected

characteristics of a cloud system, where availability is a major service principle, to allow access

to resources from anywhere at anytime. Large-scale outagesin cloud services such as Amazon

EC2, GMail, Google Compute Engine, Apple iCloud, and MicrosoftAzure, affected thousands

or even millions of users. Such unavailability episodes cause big concerns to potential users,

even knowing that the downtime of most traditional data centers and small infrastructures can

be even bigger than observed in cloud providers. For both, public and private clouds, it is

important to plan the system to achieve high levels of availability, what is a hard task due to the

large number of components and the dependency relationships between them.

Performance and, more specifically, scalability are other major concerns for the quality

of service being provided. When a cloud computing platform enables provisioning more re-

sources to process a surge of incoming workload, it is difficult to predict how fast the additional

capacity will be deployed and if those resources will be sufficient, undersized or oversized.

Figure 2.5 shows results from a survey conducted in 2015 by RightScale company

RIGHTSCALE (2015). 930 technical professionals across several organizations were ques-

tioned about the benefits that they experienced using cloud.The three most cited benefits were

greater scalability, faster access to infrastructure, andhigher availability. Such aspects constitute

a big part of the expectations of cloud users, and proper capacity and dependability planning

must be done for achieving those benefits when creating a new cloud infrastructure, or improv-

ing an existing environment.

2.1.5 Eucalyptus Platform

EUCALYPTUS (Elastic Utility Computing Architecture LinkingYour Programs To

Useful Systems) is a software that implements scalable IaaS-style private and hybrid clouds

(EUCALYPTUS, 2010). It is interface-compatible with the commercial servicesAmazon EC2

– Elastic Compute Cloud – and Amazon S3 – Simple Storage Service(EUCALYPTUS, 2016),

while it also emulates the EBS – Elastic Block Store – service (AMAZON, 2012) (EUCALYP-

TUS, 2009). In general, Eucalyptus and other private cloud platformsuse the virtualization

capabilities (i.e., hypervisor) of the underlying computer system to enable flexible allocation of

computing resources uncoupled from specific hardware (EUCALYPTUS, 2010).
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Figure 2.5: Benefits from adopting cloud computing

There are five high-level components in the Eucalyptus architecture, each with its own

web service interface:Cloud Controller, Cluster Controller, Node Controller, Storage Con-

troller, andWalrus(EUCALYPTUS, 2010). Figure 2.6 depicts these main components, which

are briefly explained as follows.

TheCloud Controller (CLC)is the front-end of the entire cloud infrastructure, exposing

and managing the underlying virtualized resources (servers, network, and storage) via Ama-

zon EC2 API (SUN, 2009). This component uses web services interfaces to receive the client

requests on one side and to interact with the remaining Eucalyptus components on the other.

The (Cluster Controller (CC)usually executes on a cluster front-end machine (EUCA-

LYPTUS, 2010) (EUCALYPTUS, 2009), or on any machine that is able to communicate to

both the nodes running Node Controllers and the machine running the CLC. The role of the CC

may be summarized in three functions: determining which Node Controller will process the

incoming requests for creating a VM instance (i.e., scheduling VM execution), controlling the

instance virtual network overlay, and gathering/reporting information about the nodes which

compose its cluster (EUCALYPTUS, 2009).

Each physical node which is supposed to run VMs must have aNode Controller (NC).

NCs control the execution, inspection, and termination of VMinstances on the host where it

runs through interaction with the operating system runningon the node and with the hypervisor.

The NC fetches from Walrus a copy of the VM image which will be instantiated. It queries and

controls the system software on its node in response to queries and control requests from the CC

(EUCALYPTUS, 2010). An NC must also discover and report the node’s physical resources -

number of CPU cores, size of memory, available disk space - as well as learn about the state of

VM instances on that node (EUCALYPTUS, 2009) (JOHNSON et al., 2010).

The Storage Controller (SC)provides persistent block storage for use by the virtual

machine instances. It implements block-accessed network storage, similar to that provided by

Amazon Elastic Block Store - EBS. An elastic block storage is a Linux block device that can
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be attached to a virtual machine but sends disk traffic acrossthe network to a remote storage

location. VM instances are not allowed to share the same EBS volume (JOHNSON et al., 2010).

Walrus is a file-based data storage service, that is interface compatible with Amazon’s

Simple Storage Service (S3) (EUCALYPTUS, 2009). Eucalyptus cloud users can use Walrus

to stream data into and out of the cloud as well as from VMs thatthey have instantiated. In

addition, Walrus acts as a storage service for VM images.

Figure 2.6: Eucalyptus high-level components

The Eucalyptus-based cloud computing environment depicted in Figure 2.6 considers

two clusters (A and B). Each cluster has one Cluster Controller,one Storage Controller, and

various Node Controllers. The components in each cluster communicate to the Cloud Controller

and Walrus in order to service the user requests. A user is able to perform requests for VM

instantiation –and other related features– to the Cloud Controller, or file storage requests to

Walrus, using the proper tools for each case. Cluster and Storage Controller may be installed in

the same machine where Cloud Controller and Walrus are running. In this case, the front-end

host will also be responsible for one of the clusters and its corresponding nodes.

Eucalyptus Auto Scaling is a mechanism designed to handle applications that require

adding and removing VM instances based on predefined thresholds of selected metrics (e.g.:

CPU usage, number of user requests). Auto Scaling is particularly useful for applications that

exhibit variability in use by hour, day or week. During demand peaks, the auto scaling mecha-

nism increases the number of VM instances automatically to maintain the performance of the

application hosted in the cloud. In a similar manner, when the demand decreases, the number of

VM instances might be reduced to minimize costs and save physical resources (EUCALYPTUS,

2014a; AMAZON, 2014a). Eucalyptus Auto Scaling works in conjunction with CloudWatch
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(a) Bad performance.

(b) Good Performance.

Figure 2.7: General operation of Eucalyptus Auto scaling mechanism.
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and Elastic Load Balancing (ELB) mechanisms. Such an interaction is depicted in Figure 2.7.

The ELB distributes client requests to the existing VMs of the target web application. The

CloudWatch monitors established metrics (e.g.: average number of web requests per second)

periodically (EUCALYPTUS, 2014a). The CloudWatch service inserts data from monitored

metrics at arbitrary intervals and extract statistics of the collected data for a particular time in-

terval (time window), with a user-defined granularity (EUCALYPTUS, 2014b). The statistical

information allows you to make business and operational decisions. When a certain condition

is met (e.g.: a poor performance metric), as it is illustrated in Figure 2.7 (a), the CloudWatch

triggers an alarm for Auto Scaling, which instantiates one or more VMs. Shortly thereafter,

ELB automatically distributes the requests considering the new VM. The collaboration of these

services results in a performance gain and allows an efficient usage of cloud resources, while it

might also be used for fault tolerance purposes (EUCALYPTUS, 2014a).

2.2 Dependability and Performance Modeling

The activity of evaluating a system for achieving desired quality of service measures

requires specific techniques, which might include prototyping, measurement, and modeling.

JAIN (1991) established significant guidelines on the selection of evaluation techniques.

Measurements are not possible if a new system is being planned, instead of just an im-

provement for an existing one. Building a prototype of the upcoming system just for measure-

ment purposes is not always feasible, due to timing and budget constraints. Therefore, analytical

modeling and simulation are the techniques usually chosen when a new infrastructure is being

designed. Even if the system already exists, analytical andsimulation models can be the best

options when the installation or execution of measurement tools would be too intrusive, causing

bad effects on the system.

Performance and dependability modeling of computer systems enable one to represent

the behavior of a system and compute measures which describe, in a quantitative way, how the

service is provided and how much confidence can be put on the system operation. The measures

of interest and the purposes of the performance evaluation may influence the choice of modeling

technique to be employed.

In performance evaluation studies, some metrics which usually deserve interest are: re-

sponse time, job completion rate (throughput), and level ofresource utilization. These metrics

are directly related to the user perception of system performance and they may also highlight

the need for improvements.

Besides performance, dependability aspects deserve great attention for the assurance of

the quality of the service provided by a system. System dependability can be understood as

the ability to deliver a specified functionality that can be justifiably trusted (AVIZIENIS et al.,

2004). An alternate definition of dependability is “the ability of a system to avoid failures

that are more frequent or more severe, and outage durations that are longer than is acceptable
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to the user”(AVIZIENIS et al., 2004). Dependability studies look for determining reliability,

availability, security, and safety metrics for the infrastructure under analysis (MALHOTRA;

TRIVEDI, 1994).

There are formal techniques which may be used for modeling computer systems and esti-

mating measures related to system availability, reliability, and performance. RBDs (O’CONNOR;

KLEYNER, 2012), Fault Trees (O’CONNOR; KLEYNER, 2012), Stochastic Petri Nets (SPNs)

(MOLLOY, 1982), Markov chains (BOLCH et al., 2001) and Markov Reward Models (MRMs)

(CLOTH et al., 2005) have been used to model many kinds of systems and to evaluatevarious

availability and reliability measures. When dealing with strict performance issues, queueing

models, SPNs, and Markov chains are modeling formalisms widely adopted in the literature.

The mentioned model types may be broadly classified into non–state-space and state-space

models (MACIEL et al., 2011). Non–state-space models (e.g., RBDs, fault trees) enable, in

general, a more concise representation of the system than state-space models. State-space mod-

els (e.g., Markov chains, SPNs, Stochastic Automata Networks) allow the representation of

more complex relationships between system components, such as dependencies involving sub-

systems and resource constraints (MACIEL et al., 2011). Generally, state-space models require

the numerical solution of an underlying system of equations, that will provide useful informa-

tion such as state probabilities, mean passage time, etc. Discrete event simulation is another

way of obtaining some desired metrics from those models. In some special cases, closed-form

answers can be derived from state-space models.

Distinct model types may be hierarchically combined, enabling the representation of

many kinds of dependency between components, and avoiding the known issue of state-space

explosion when dealing with large systems. An example of this hierarchical approach is the

usage of combinatorial models to represent the availability relationship between independent

subsystems, while detailed or more complex failure and repair mechanisms are modeled with

state-based models. Such an approach in seen in (DANTAS et al., 2012a), that combines RBDs

and Continuous Time Markov Chains (CTMCs), in (KIM; MACHIDA; TRIVEDI , 2009a), that

combines Fault Trees and CTMCs, among other works. Such a composition is usually called as

heterogeneous hierarchical modeling. Other kinds of composition are possible and found in the

literature. For instance, one CTMC model might yield resultsthat are used as input for another

CTMC model, as seen in (MA; HAN; TRIVEDI , 2001) and (GHOSH et al., 2013).

2.2.1 Reliability Block Diagrams

Reliability Block Diagrams are networks of functional blocksconnected according to

the effect of each block failure on the system reliability (MACIEL et al., 2011). RBDs indicate

how the operational state (broken or functioning) of the system´s components affect the func-

tioning of the system. RBD was initially proposed as a model forcalculating reliability, but it

can be used for computing other dependability metrics, suchas availability and maintainability.
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Figure 2.8: Example of RBD

Figure 2.8 depicts an example of RBD for a system with thee components: A, B, and C.

RBDs have a source and a target vertex, a set of blocks (usually rectangles), where each block

represents a component; and arcs connecting the componentsand the vertices. The source node

is usually placed at the left hand side of the diagram whereasthe target vertex is positioned

at the right. Graphically, the system is properly working when there is at least one path from

the source node to the target node. Therefore, in Figure 2.8,the system is operational if the

component A is functioning and either B or C is working too.

In RBDs, the system state is described as a Boolean function of states of its components

or sub-systems, where the Boolean function is evaluated as true whenever at least the minimal

number of components is operationally enabled to perform the intended functionality (MACIEL

et al., 2011)(KUO; ZUO, 2003). The system state may also be described by the respective

structure functions of its components or sub-systems, so that the system structure function is

evaluated to 1 whenever at least the minimal number of components are operational.

RBDs have been adopted to evaluate series-parallel and more generic structures, such

as bridges, stars and delta arrangements. The most common RBDssupport series-parallel struc-

tures only.

Consider a pure series structure composed ofn independent components, wherepi =

P{xi = 1} are the functioning probabilities of blocksxi. These probabilities could be reliabilities

or availabilities, for instance. Equation
☛
✡

✟
✠2.1 is used for computing the system steady-state avail-

ability of the series composition in an RBD (KUO; ZUO, 2003). It denotes that the availability

of a series system is the product of each component’s availability.

As =
n

∏
i=1

P{xi = 1}=
n

∏
i=1

Ai,
☛
✡

✟
✠2.1

whereAi is the steady-state availability of blockxi. The reliability of a series system is computed

in a similar manner.

Equation
☛
✡

✟
✠2.2 is used to compute the availability of a pure parallel structure, composed

of n independent components. It is based on the fact that the failure probability of a parallel

system is the product of the failure probabilities (P{xi = 0}) of its components.
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Ap = 1−
n

∏
i=1

P{xi = 0}= 1−
n

∏
i=1

UAi = 1−
n

∏
i=1

1−Ai ,
☛
✡

✟
✠2.2

whereUAi = 1−Ai is the unavailability of each blockxi.

Further knowledge on series-parallel, parallel-series, and other RBD structures is found

in (MACIEL et al., 2011) and (KUO; ZUO, 2003).

2.2.2 Markov Chains

Markov models are the fundamental building blocks upon which many quantitative an-

alytical performance techniques are built (KOLMOGOROV, 1931; TRIVEDI, 2001). Such

models may be used to represent the interactions between various system components, for both

descriptive and predictive purposes (MENASCÉ; ALMEIDA; DOWDY, 2004). Markov mod-

els have been in use intensively in performance and dependability modeling since around the

fifties (MACIEL et al., 2011). Besides computer science, the range of applications for Markov

models is very extensive. Economics, meteorology, physics, chemistry and telecommunications

are some examples of fields which found in this kind of stochastic 1 modeling a good approach

to address various problems.

A Markov model can be described as a state-space diagram associated to a Markov

process, which constitutes a subclass of stochastic processes. A definition of stochastic process

is presented:

Definition 2.1. A stochastic process is a family of random variables {Xt : t ∈ T} where each

random variableXt is indexed by parametert ∈ T , which is usually called the time parameter if

T ⊂R+ = [0,∞), i.e., T is in the set of non-negative real numbers. The set ofall possible values

of Xt (for eacht ∈ T) is known as the state space S of the stochastic process (BOLCH et al.,

2001).

Let Pr{k} be the probability of a given eventk occurs. A Markov process is a stochastic

process in whichPr{Xtn+1 ≤ si+1} depends only on the last previous valueXtn, for all tn+1 >

tn > tn−1 > ... > t0 = 0, and allsi ∈ S. This is the so-called Markov property (HAVERKORT,

2002), which, in plain words, means that the future evolution of the Markov process is totally

described by the current state, and is independent of past states (HAVERKORT, 2002).

In this work, there is only interest on discrete (countable)state space Markov models,

also known as Markov chains, which are distinguished in two classes: Discrete Time Markov

Chains (DTMCs) and Continuous Time Markov Chains (CTMCs) (KLEINROCK, 1975). In

DTMCs, the transitions between states can only take place at known intervals, that is, step-

by-step. Systems where transitions only occur in a daily basis, or following a strict discrete

clock are well represented by DTMCs. If state transitions mayoccur at arbitrary (continuous)

instants of time, the Markov chain is a CTMC. The Markov property implies that the time of

1Stochastic refers to something which involves or contains arandom variable or variables
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Figure 2.9: Simple CTMC

transitions is driven by a memoryless distribution (BOLCH et al., 2001). In the case of DTMC,

the geometric distribution is the only discrete time distribution that presents the memoryless

property. In the case of CTMC, the exponential distribution isused.

Markov chains can be represented as a directed graph with labeled transitions, indicating

the probability or rate at which such transitions occur. Whendealing with CTMCs, such as the

availability model of Figure 2.9, transitions occur with a rate, instead of a probability, due to the

continuous nature of this kind of model. The CTMC is represented through its transition matrix,

often referenced as infinitesimal generator matrix. Considering the CTMC availability model

of Figure 2.9, the rates are measured in failures per second,repairs per second, and detections

per second. The generator matrixQ is composed by componentsqii andqi j , wherei 6= j and

∑qi j = −qii . Using the availability model that was just mentioned, considering a state-space

S= {U p,Down,Repair}= {0,1,2} the Q matrix is:

Q=







q00 q01 q02

q10 q11 q12

q20 q21 q22






=







−0.001 0.001 0

0 −2 2

0.2 0 −0.2







Equation 2.3 and the system of Equations 2.4 describe the computation of the state

probability vector, respectively for transient (i.e., time-dependent) analysis, and steady-state

(i.e., stationary) analysis. From the state probability vector, nearly all other metrics can be

derived, depending on the system that is represented.

π ′(t) = π(t)Q, given π(0).
☛
✡

✟
✠2.3

πQ= 0,∑
i∈S

πi = 1
☛
✡

✟
✠2.4

Detailed explanations about how to obtain these equations may be found in (HAVERKORT;

MEEUWISSEN, 1995; BOLCH et al., 2001).

For all kinds of analysis using Markov chains, an important aspect must be kept in

mind: the exponential distribution of transition rates. The behavior of events in many computer

systems may be fit better by other probability distributions, but in some of these situations
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the exponential distribution is considered an acceptable approximation, enabling the use of

Markov models. It is also possible to adapt transition in Markov chains to represent other

distributions by means of phase approximation, as shown in (TRIVEDI, 2001). The use of such

technique allows the modeling of events described by distributions such as Weibull, Erlang,

Cox, hypoexponential, and hyperexponential.

2.2.3 Stochastic Petri Nets

Petri Nets (MURATA, 1989) are a family of formalisms very well suited for modeling

several system types due to their capability for representing concurrency, synchronization, com-

munication mechanisms, as well as deterministic and probabilistic delays. The original Petri

Net does not have the notion of time for analysis of performance and dependability. The intro-

duction of duration of events results in a timed Petri Net. A special case of timed Petri Nets is

the Stochastic Petri Net (SPN) (MOLLOY, 1982), where the delays of activities (represented

as transitions) are considered random variables with exponential distribution. An SPN can be

translated to a CTMC, which may then be solved to get the desiredperformance or depend-

ability results. This is especially useful because building a Markov model manually may be

tedious and error prone, especially when the number of states becomes very large. SPN family

of formalisms is a possible solution to deal with such an issue. MARSAN; CONTE; BALBO

(1984) proposed Generalized Stochastic Petri Net (GSPN), which is an extension of SPN that

considers two types of transitions: timed and immediate. Anexponentially distributed firing

time is associated only with timed transitions, since immediate transitions, by definition, fire in

zero time. For the sake of conciseness, the acronym SPN here is often used for expressing the

whole family of models derived from the original SPN model defined by (MOLLOY, 1982).

Figure 2.10: Example of GSPN

Figure 2.10 depicts an example of a GSPN model. Places are represented by circles,
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whereas transitions are depicted as filled rectangles (immediate transitions) or hollow rectan-

gles (timed transitions). Arcs (directed edges) connect places to transitions and vice versa.

Tokens (small filled circles) may reside in places. A vector containing the current number of

tokens in each place denote the global state (i.e., marking)of a Petri Net. An inhibitor arc is a

special arc type that depicts a small white circle at one edge, instead of an arrow, and they are

used to disable transitions if there are tokens present in a given place. The behaviour of Petri

Nets in general is defined in terms of a token flow, in the sense that tokens are created and de-

stroyed according to the transition firings (GERMAN, 2000). Immediate transitions represent

instantaneous activities, and they have higher firing priority than timed transitions. Besides,

such transitions may contain a guard condition, and a user may specify a different firing priority

among other immediate transitions.

Figure 2.10 represents the availability of a system comprising three computer servers.

Each token in the placeServers Updenote one server that is properly running. All three servers

might fail independently, by the firing of (exponential) timed transitionFailure. A token in

Servers Downmight be consumed either by immediate transitionRepairableor by immediate

transitionNon-repairable. Weights are assigned to each of those transitions to represent the

probability of firing one or another. When the failed server can be repaired, the transition

Repairable puts a token inServers to repair. When the repair is not possible, the transition

Non-repairable puts the token inServers to replace. The transitionsRepair andReplacefire

after exponential delays corresponding to those activities. The probability of having at least

one server available, the average number of servers waitingfor repair or replacement and other

similar metrics can be computed from the underlying CTMC generated from that GSPN.

SPNs also allow the adoption of simulation techniques for obtaining dependability and

performance metrics as an alternative to the generation of aCTMC, which is sometimes pro-

hibitive due to the state-space explosion. Regarding SPN andGSPN formal definition and

semantics, the reader is referred to (MOLLOY, 1982) (MARSAN; CONTE; BALBO, 1984).

Those formalisms were further expanded to allow deterministic delays for timed transitions,

generating Deterministic and Stochastic Petri Nets (DSPNs) (GERMAN; MITZLAFF, 1995).

Other SPN extensions were proposed in literature for enabling other probability distributions,

but the solution of those models require simulation techniques and non-Markovian processes

that might not be so computationally efficient as the solution methods for traditional SPNs.

2.3 Sensitivity Analysis

Parametric sensitivity analysis aims at identifying the factors for which the smallest vari-

ation implies the highest impact in model’s output measure (FRANK, 1978; HAMBY , 1994).

The main aim of parametric sensitivity analysis is to predict the effect on outputs (measures)

with respect to variations in inputs (parameters), helpingto find performance or reliability bottle-

necks, and guiding an optimization process (BLAKE; REIBMAN; TRIVEDI , 1988). Another
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Figure 2.11: Example of plot for one parameter at a time analysis

benefit of sensitivity analysis is the identification of parameters which can be removed without

significant effect to the results. Large models, with dozensof rates, may be drastically reduced

by using this approach. The results from a sensitivity analysis may be summarized in a list of

the input parameters sorted by the amount of contribution each one has on the model output.

Such a list is a sensitivity ranking.

There are many ways of performing parametric sensitivity analysis. Factorial exper-

imental design (JAIN, 1991), correlation analysis and regression analysis (ROSS, 2010) are

some well known techniques. The simplest method is to repeatedly vary one parameter at a

time while keeping the others constant. When applying this method, a sensitivity ranking is ob-

tained by noting the changes to the model output. This methodis commonly used in conjunction

with plots of input versus output. Such plots enable graphicdetection of non-linearities, non-

monotonicities, and correlations between model inputs andoutputs (MARINO et al., 2008).

Unexpected relationships between input and output variables may also be revealed with this ap-

proach, triggering the need for further investigations, based on different approaches (HAMBY ,

1994). A given percentage of the parameter’s mean value may be used as the increment for the

cited approach. Each parameter may also be increased by a factor of its standard deviation, in

case this information is known (DOWNING; GARDNER; HOFFMAN, 1985).

Figure 2.11 shows a simple example of plot, in which a hypothetical measureY is plot-

ted against its input parameters:α, β andγ. In this case, the impact caused by each parameter

variation is clearly distinguished among them. The result from sensitivity analysis using this

approach should be a sensitivity ranking with the followingorder: {1st: γ, 2nd: α, 3rd: β }.

Therefore,γ is considered to be the input parameter that cause the major influence on the mea-

sureY.

Although, varying one parameter at a time is less useful in some opportunities. When

the amount of parameters is large, the analysis of scatter plots becomes harder, mainly due to the

proximity of curves. The difference in magnitude orders is another possible complicating factor,

since all parameters cannot be visualized in the same plot, forbidding accurate interpretations
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about the differences among parameters influence. Due to such cases, methods that are based

on numerical sensitivity indexes should have preference inspite of a visual inspection based on

the “one parameter at a time” approach.

Differential analysis is the backbone of many parametric sensitivity analysis techniques

(HAMBY , 1994). Differential sensitivity analysis is performed by computing the partial deriva-

tives of the measure of interest with respect to each input parameter. Thus, the sensitivity of a

given measureY, which depends on a specific parameterθ , is computed as shown in Equation
☛
✡

✟
✠2.5 , or

☛
✡

✟
✠2.6 for a scaled sensitivity.

Sθ (Y) =
∂Y
∂θ

,
☛
✡

✟
✠2.5

SSθ (Y) =
λ
Y

∂Y
∂θ

.
☛
✡

✟
✠2.6

Sθ (Y) is the sensitivity index (or coefficient) ofY with respect toθ , andSSθ (Y) is the

scaled sensitivity index, commonly used to counterbalancethe effects of largely different units

between distinct parameters values.

Specific methods for performing the differential sensitivity analysis in analytic mod-

els are needed when there is no direct closed-form equationsfor computing the measure of

interest and finding its derivative expression. Many papershave already described how to ap-

ply differential sensitivity analysis in a variety of analytic models, including CTMC (BLAKE;

REIBMAN; TRIVEDI, 1988) (OU; DUGAN, 2003), MRM (ABDALLAH; HAMZA , 2002),

GSPN (MUPPALA; TRIVEDI, 1990), and Queuing Networks (YIN et al., 2007). When deal-

ing with hierarchical or composite models, the analysis needs to consider all parameters from

each model, determining their impact to the global measure of interest. A closed-form equation

based on measures of each sub-model may be used for those cases, so that the partial derivatives

computed for the sub-models enable us to obtain a complete sensitivity ranking. This is one of

the approaches used in this paper.

Differential sensitivity analysis is closely related to the approach in which one parameter

at a time is changed and plotted against the result in the measureY. The sensitivity coefficient

may be understood as the slope of the corresponding line for aspecific point in the plot. From

this view, it is possible to notice that interpretation of analysis results must be more careful if

the parameters can be far removed from the base values, mainly if the function is not linear or

not monotonic. An example of a non-linear and non-monotonicfunction isZ= (α−3)2+(β−
4)2+(γ−2)2, depicted in Figure 2.12, in which the slopes of curves vary in each point of the

analysis, so the sensitivity ofZ with respect of each parameter quantify the impact of changes

just in regions close to that analyzed point.

When carrying computer performance and dependability analyses, it is common looking

for incremental improvements in system configuration, so the localized range of sensitivity

results is well fitted in this context.
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Figure 2.12: Plot for non-linear and non-monotonic function

Partial derivatives are an important means of performing sensitivity analysis, but they

may not properly evaluate the sensitivity with respect to integer-valued parameters, because

the approach is designed for parameter input values in a continuous domain. An approach

to address such an issue is based on calculating the percentage difference when varying one

input parameter from its minimum value to its maximum value.Hoffman and Gardner (HOFF-

MAN; GARDNER, 1983) advocate utilizing each parameter’s entire range of possible values to

compute parameter sensitivities. Equation
☛
✡

✟
✠2.7 shows the expression for this approach, where

max{Y(θ)} andmin{Y(θ)} are the maximum and minimum output values, respectively, com-

puted when varying the parameterθ over the range of itsn possible values of interest. IfY(θ)
is known to vary monotonically, so only the extreme values ofθ (i.e., θ1 andθn) may be used

to computemax{Y(θ)}, min{Y(θ)}, and subsequentlySθ (Y).

Sθ (Y) =
max{Y(θ)}−min{Y(θ)}

max{Y(θ)}
,

☛
✡

✟
✠2.7

where

max(Y(θ)) = max{Y(θ1),Y(θ2), ...,Y(θn)},
☛
✡

✟
✠2.8

and

min(Y(θ)) = min{Y(θ1),Y(θ2), ...,Y(θn)}.
☛
✡

✟
✠2.9

Another important method to assess the importance of each parameter is the analysis

of a factorial experimental design. Design of experimentss(DOEs) techniques can be used to

determine simultaneously the individual and interactive effects of many factors that may affect

the output measures (JAIN, 1991). In DOE terminology, each parameter is called a factor and

each value possibly assigned to each factor is a level. DOE involves choosing a given number of

levels for each factor and running the model for all combinations of the levels. The analysis may

be prohibitive due to a large number of factors or levels, which would require several model runs

and a huge computation time for some cases (HAMBY , 1994). A fractional factorial design may
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be chosen for such cases, or the number of parameters may firstbe reduced to an acceptable

value, through the ranking obtained by differential sensitivity analysis, for example, and then

the factorial analysis may be applied.

2.4 Concluding Remarks

This chapter provided theoretical foundations that are notexhaustive but essential for

the reader awareness regarding the building blocks that compose this thesis. The background

on dependability and performance modeling as well as on sensitivity analysis of those models

enable understanding the application of such concepts to the field of cloud computing planning

and evaluation.

Specific software tools can play an important role for fulfilling the gap of knowledge

that a cloud system administrator may have on some of the concepts presented here. Such tools

can ease the application of the proposed methods, describedfurther, for their target audience.
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3
Related works

The works found during the literature review are described in this chapter. The papers

are divided into two categories:Dependability and performance evaluation of cloud com-

puting, andSensitivity analysis of analytical models, which are the main topics in this thesis.

The following sections are not intended to provide an exhaustive view of the works published

on those topics, but rather to point out significant advanceswhich go towards a similar direction

as this research do, or give basis for future extensions.

3.1 Dependability and Performance Evaluation of Cloud

Computing

The work presented in (IOSUP et al., 2011) analyzes the performance of cloud comput-

ing services for scientific computing workloads. The authors do not use analytical or simulation

models. Instead, they carry out an empirical evaluation of the performance of four commercial

cloud computing services. The testbed data are then used in atrace-based simulation to compare

the performance and cost of clouds and other computing platforms, such as grids, for general

and scientific computing workloads. Their results indicatethat the current clouds need an order

of magnitude in performance improvement to be useful to the scientific community, and show

which improvements should be considered first to address this discrepancy between offer and

demand.

CHAISIRI; LEE; NIYATO (2012) propose an algorithm for optimization of costs to

provision VMs in public clouds. The authors formulate a stochastic programming model which

takes into account the demand for VMs and respective costs, but they do not evaluate any spe-

cific performance or dependability metrics regarding the service provided in the cloud.

GHOSH et al.(2010) propose a composite modeling approach for addressing performa-

bility issues of IaaS clouds. Their work uses outputs from interacting performance models to

feed up an availability model, so metrics such as job rejection probability and mean response

delay are obtained as final result. A sensitivity analysis, through variation of one parameter at

a time, enables them quantifying the effects of variations in workload, failure rates, and sys-
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tem capacity (number of physical machines) on IaaS cloud service quality. The authors also

quantify the reduction of state space achieved by the composite modeling when compared to a

monolithic model, what is reflected in smaller solution timeand required main memory storage

and space.

The work of (GHOSH et al., 2013) is similar to the one proposed in (GHOSH et al.,

2010), but it focuses on pure performance models. They use an approach of multi-level in-

teracting stochastic sub-models, where the overall model solution is obtained iteratively over

individual sub-model solutions. The authors mention the need for a formal sensitivity analysis

in this composite model. The large number of parameters brings out the need for determining

the most important ones, and revealing bottlenecks in the system.

Outstanding surveys on cloud computing, such as (ARMBRUST et al., 2010), (RIMAL

et al., 2011), and (SUN, 2009) have been mentioning availability and reliability as major con-

cerns for cloud infrastructures. Therefore, those systemsmust rely on various fault tolerance

mechanisms, such as redundancy, for coping with failures, so that resources are accessible any-

where and anytime as expected (ARMBRUST et al., 2009).

MENDEZ MUNOZ et al.(2013) propose an architecture for resilient services on hy-

brid clouds, which should monitor availability of distinctcloud providers and provide graceful

degradation for adapting to outages or unresponsiveness ofthose providers.CUOMO et al.

(2013) provide mechanisms for monitoring and predicting qualityof service and SLA metrics

in federated private clouds. They forecast resources availability by measuring mean time to

failure (MTTF) and mean time to repair (MTTR). Hearbeat remote monitoring and VM boot

time logging are the main mechanisms for collecting MTTF andMTTR values and therefore

computing system availability. It is worth noting that VMs are the single resource considered

in that work, and analytical or simulation models are not used.

SUN et al.(2010) propose system-level virtualization through identical VM replicas as

fault-tolerance mechanism for achieving dependability improvement. In (SUN et al., 2010), the

authors also propose a combinatorial model for evaluating dependability and security of het-

erogeneous cloud environments. The authors consider a series combination of components, so

the system dependability is computed through product of hardware and software dependability

metrics.

Some related works employ hierarchical and composite modeling approaches to tackle

the complexity of evaluating cloud systems. Although, manyof those works do not address

software dependability nor consider the influence of addingnew equipments to provide redun-

dancy for existing architectures.WEI; LIN; KONG (2011) use hierarchical method and pro-

poses hybrid models combining RBD and GSPN (Generalized Stochastic Petri Net) models to

analyze the relation between reliability and servers consolidation ratio, as well as the relation

between availability and the workload experienced by the cloud-based datacenter. In (CHUOB;

POKHAREL; PARK, 2011), the authors propose a private cloud environment suitablefor e-

government purposes and provide a hierarchical model to predict the availability of the proposed
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Eucalyptus-based architecture. The hierarchical model proposed in (CHUOB; POKHAREL;

PARK, 2011) uses distinct Markov chains for cluster level and node level, while the opera-

tion level is described in a non-formal manner.LONGO et al.(2011) propose an availability

model for IaaS clouds that deal with distinct pools of physical machines where VMs are in-

stantiated. They compare accuracy and time of solution for amonolithic Stochastic Reward

Net (SRN) model and a composite model to demonstrate the benefits of the latter approach. It

is also important to highlight that (LONGO et al., 2011) does not consider cloud management

components in their work.

In (DANTAS et al., 2012a) and (DANTAS et al., 2012b), the authors propose hierar-

chical availability models for evaluating private cloud systems. Such a modeling approach

considers replication of specific private cloud components, such as Eucalyptus Cloud, Cluster,

and Node controllers, dealing with both hardware and software faults. This approach is further

adapted to assess capacity-oriented availability (COA) in (DANTAS et al., 2015). That work

builds models for predicting the average computational power available in case of partial fail-

ures of a multi-cluster cloud. Such models enable comparingthe costs and COA of private and

public clouds.

This thesis presents differential sensitivity analysis onmodels that are similar to those

found in (DANTAS et al., 2012b), in order to identify bottlenecks and determining which com-

ponents deserve priority for system availability improvements. Another original contribution of

the current work is proposing a general approach for performing parametric sensitivity analysis

on hierarchical models, using it for improving various types of cloud systems.

3.2 Sensitivity Analysis of Analytical Models

In the fields of performance and dependability evaluation, it is possible to find a number

of researchers that have already demonstrated how to perform parametric sensitivity analysis in

some analytic models. One of the seminal works in this topic is found in (BLAKE; REIBMAN;

TRIVEDI, 1988), which presents the foundations for transient sensitivity analysis in continuous

time Markov chains and Markov reward models, and shows how the sensitivity functions can

guide system optimization, model refinement and the detection of reliability and performability

bottlenecks.

The development of differential sensitivity analysis methods followed similar ways for

all modeling formalisms, mainly when only state-space models are considered.

The following sections summarize some related works on the field of sensitivity analysis

of analytic models, focusing specifically on Markov chains,queueing systems, and SPNs.
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3.2.1 Differential Sensitivity Analysis on Queueing Systems

Queueing system is one example of analytic model whose sensitivity analysis has been

described in literature.YIN et al. (2007) give sensitivity formulas for the performance of

M/G/11 queueing systems, which are described by semi-Markov processes. They show that

the embedded Markov chain of aM/G/1 model may be used to provide the desired steady-state

sensitivity measures. This is possible because the semi-Markov process has always the same

steady-state probabilities as the embedded Markov chain. In (YIN et al., 2007), the sensitiv-

ity analysis ofM/M/1 andM/C2/12 queueing systems is also discussed, since they can be

considered as specialized versions of theM/G/1 case.

OPDAHL (1995) presents sensitivity functions for the performance of open queue net-

works3, while CAO (1996) proposes an approach for sensitivity estimation in closedqueueing

networks. Instead of actual differentiation of the performance measure of interest, the algo-

rithm proposed in (CAO, 1996) uses a sample path of the model to estimate the derivative of

the steady-state probability vector.

LIU; NAIN (1991) propose general formulas to quantify the effects of changing the

model parameters in open, closed, and mixed product-form queueing networks. These formulas

include the derivative of the expectation of known functions of the state of the network with

respect to any model parameter (i.e., arrival rate, mean service demand, service rate, visit ratio,

traffic intensity). The sensitivity functions for the throughput and queue length are presented in

that paper, which also demonstrates an example of cost-based optimization.

3.2.2 Differential Sensitivity Analysis on Markov Chains

Stages of the differential sensitivity analysis of Markov chains include computing the

derivative of the rate generator matrix and the differentiation of equations used in Markov chain

solution methods, or even the development of new sensitivity computation techniques.MARIE;

REIBMAN; TRIVEDI (1987) present a sensitivity analysis method regarding transient and cu-

mulative measures in acyclic Markov chains. The ACE (Acyclic Markov Chain Evaluator)

algorithm is used to find the state probabilities of an acyclic CTMC as a symbolic function oft,

and it is adapted to the compute the respective sensitivity functions.

BLAKE; REIBMAN; TRIVEDI (1988) show how to compute the same measures of

the (MARIE; REIBMAN; TRIVEDI , 1987) work, but using the uniformization technique (HEI-

DELBERGER; GOYAL, 1987), which allows the analysis of more general models, with cycles.

The sensitivity functions are applied in a reliability/performability study, which also introduces

the sensitivity of expected reward rate and a specific sensitivity function for the mean time to

1A queueM/G/1 has a service time that follows an arbitrary (general) distribution, in contrast to the exponen-
tial nature of service time in a queueM/M/1 (KLEINROCK, 1975).

2A queueM/C2/1 has a service time that follows a two-stage Coxian distribution (YIN et al., 2007)
3Queueing networks whose operations have transaction workload intensities are open, while other queueing

networks are closed or mixed (OPDAHL, 1995).
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failure (MTTF) of a system.

Another related study is shown in (OU; DUGAN, 2003), that developed an approximate

approach for the computation of sensitivity analysis in acyclic Markov reliability models, reduc-

ing the computation time for large models. That approach is used for solving a dynamic fault

tree and hence assessing the importance of each component according to its failure probability.

That work also presents the computation of sensitivities for modules of some components, that

can be combined to produce the system level sensitivities. Achain-rule approach is used to

calculate sensitivity measures for the separate modules, and to combine them hierarchically for

higher-level results.

In (SATO; TRIVEDI, 2007), two distinct Markov chains were created for representing

the response time and the reliability of a travel agent system. Those models were analyzed

individually. They performed a sensitivity analysis of response time and reliability metrics with

respect to each parameter. Despite using Markov chains for computing the metrics of interest,

closed-form equations are found for both measures, and the differential sensitivity analysis is

carried out using these equations. The authors highlight that closed-form equations can not be

found for all systems, so a model-based sensitivity analysis would be helpful for a broader range

of situations.

MATOS JÚNIOR(2011) highlights some factors that must influence the decision re-

garding the use of scaled and unscaled sensitivity indices for performance and availability

CTMC models.

3.2.3 Differential Sensitivity Analysis on Petri Nets

MUPPALA; TRIVEDI (1990) introduce a process to compute sensitivity functions of

GSPNs. Since the reduced reachability graph of a GSPN is a continuous-time Markov chain, it

is possible to translate the process of sensitivity analysis in CTMCs to a GSPN-based sensitivity

analysis.MUPPALA; TRIVEDI (1990) demonstrate the derivative of equations for steady-state,

transient and cumulative measures in their work, which alsoincludes the implementation of

sensitivity analysis features in a modeling software package (HIREL; TU; TRIVEDI, 2010).

In (CIARDO et al., 1993), the definition of Stochastic Reward Nets is complemented

by the demonstration of sensitivity formulas for that model. It follows a process that is similar

to that for GSPN models, in which tangible and vanishing markings shall be identified first, as

well as the transitions that may occur in these sets of markings.

(CHOI; MAINKAR; TRIVEDI , 1993) constitutes the first work to elaborate a method

for parametric sensitivity analysis of deterministic and stochastic Petri nets (DSPNs) (GER-

MAN; MITZLAFF , 1995), which are an extension to GSPN models. Some characteristics of

the solution for GSPNs, found in (MUPPALA; TRIVEDI, 1990), are used in that work, but the

analysis of a DSPN requires additional steps, since other stochastic processes (semi-Markov

process and non-Markov DSPN process) are involved in this type of model.
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3.3 Comparison of Main Related Works

Table 3.1 summarizes the main related works mentioned in this chapter, establishing a

comparison between them and this Ph.D. thesis with respect to four subjects: performance and

dependability models; sensitivity indices, clod computing, and optimization.

Table 3.1: Comparison table of related works

Analytical,
Simulation
Models

Sensitivity
indices

Cloud
computing

Optimization

(Sato; Trivedi, 2007)
Single model Yes No No

(Yin et al., 2007)
Single model Yes No No

(Chaisiri; Lee; Niyato, 2013)
No No Yes Yes

(Ou; Dugan, 2003)
Hierarchical
non-heterog.

Yes No No

(Chuob; Pokharel; Park, 2011)
Hierarchical
non-heterog.

No Yes No

(Longo et al., 2011)
Hierarchical
non-heterog.

No Yes No

(Ghosh et al, 2010)
Hierarchical
non-heterog.

No Yes No

(Dantas et al., 2012a,b)
Hierachical
heterog.

No Yes No

(Wei; Lin; Kong, 2011)
Hierarchical
heterog.

No Yes No

This Ph.D. thesis
Hierarchical
heterog.

Yes Yes Yes

The papers (SATO; TRIVEDI, 2007) and (YIN et al., 2007) deal with sensitivity in-

dices, but applied to single (i.e., non-hierarchical) models. Their application domain is different

than cloud computing and no specific optimization techniqueis presented. (CHAISIRI; LEE;

NIYATO, 2012) deals with optimization related to cloud computing, but noperformance or

dependability models are proposed, and it does not perform sensitivity analysis.

The sensitivity analysis presented in (OU; DUGAN, 2003) is only applied to compo-

sitions of Markov models (i.e, hierarchical homogeneous).Those models are not from the

cloud computing domain. (CHUOB; POKHAREL; PARK, 2011), (LONGO et al., 2011), and

(GHOSH et al., 2010) address hierarchical non-heterogeneous models for cloudcomputing sys-

tems, although they do not propose nor compute numerical sensitivity indices for those models.
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(DANTAS et al., 2012b) and (WEI; LIN; KONG, 2011) propose hierarchical heteroge-

neous models for evaluating dependability metrics of cloudcomputing systems. None of both

works deal with sensitivity indices or optimization techniques. The PhD thesis presented here

covers those four subjects that had not been previously combined in the literature reviewed so

far.

3.4 Concluding Remarks

This chapter highlighted the main works that were found during the literature review on

the mentioned topics. Although, it is important to emphasize that this is not an exhaustive view

of the published papers and related research works. There might be other articles and theses

that made significant advances in this field, but to the best ofour knowledge the combination

of characteristics described in Table 3.1 is one of the majorfactors that distinguishes this work

from the current state of the art.
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4
Approach for identification of availability

and performance bottlenecks in cloud sys-

tems

This PhD thesis proposes an approach for identifying availability and performance bot-

tlenecks in cloud computing infrastructures. This approach focuses on sensitivity analysis of

hierarchical models and enables the identification of points for improvement at different levels

of hardware and software that constitute IaaS cloud systems.

4.1 Supporting methodology

The techniques proposed here are supported by a methodologythat is illustrated by the

flowchart in Figure 4.1. It contains the main activities thatare required for the proper definition

and analysis of models.

Each activity of the supporting methodology is described indetails as follows.

Create a top-level model: Given a cloud computing infrastructure, we need to obtain a gen-

eral view of system performance or dependability that enables creating a top-level model. This

is the main model which may describe the interconnection of subsystems in the IaaS environ-

ment, the global activities for processing user requests, or the overall dependability relationship

between the cloud components (e.g., VMs, processing nodes,cluster managers, remote storage

devices, etc.). RBDs and SPNs are among the most proper formalisms for such a main model,

due to their conciseness for representing large systems. CTMCs, Queueing Networks, and other

models can still be used here, but they may make harder to handle the complexity of a broader

system view and connecting with sub-models created in the next step. The top-down modeling

induces the creation of condensed models, that only includedetailed behavior for the modules

and sub-systems which are really well-known or are expectedto be relevant for the overall

performance and dependability.
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Figure 4.1: Supporting methodology for bottleneck identification on cloud systems
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� Precondition: prior knowledge about the cloud system to be modeled and possible

modeling formalisms.

� Inputs: intended type of analysis (e.g., availability, reliability, performance); list of

major components or subsystems; parameter values; description of dependency or

interconnection between them.

� Actions: choice of modeling formalism; creation of the top-level model.

� Products: top-level model.

� Postconditions: top-level model is parameterized and ready to be refined on sub-

models.

Create sub-models of specific components:We create sub-models for representing the in-

ternal behavior of specific sub-systems or components. The sub-models might deal with spe-

cialized hardware or software mechanisms that are not present in the main model, or provide

fine-grained evaluation of VM and application behavior. Redundancy schemes, a single sub-

system operation, and performance degradation on particular software components are exam-

ples that are usually represented through sub-models. It isworth stressing that the proposed

methodology does not constrain the amount of levels in the hierarchical models. A sub-model

may comprise other lower level models in order to reduce modeling complexity for example.

The system analyst should be cautious regarding possible accuracy loss due to excessive levels

in the model. Distinct formalisms may be chosen for each sub-model, depending only on the

suitability for describing that specific sub-system and theknowledge of the modeler.

� Precondition: there is a main (top-level) model with some sub-systems to be refined.

� Inputs: list of subsystems that can be refined; description of components, parameter

values, and internal functioning of each sub-system.

� Actions: choice of modeling formalisms; creation of sub-models and definition of

how they are connected to the main model.

� Products: sub-models and connections between main model and sub-models.

� Postconditions: sub-models are parameterized and connected to the main model

Identify measures of interest: Measures of interest must be identified, taking into account

the essential information that the model can provide for diagnosing the system performance or

dependability status. User-centered metrics (e.g., response time, and downtime) are preferred

in many cases, once users of cloud-based systems might be anywhere and the system-centered

metrics (e.g., throughput, CPU utilization) might not correspond exactly to the quality of service
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perceived by end users. On the other hand, when dealing directly with IaaS, some system-

centered metrics might be very important because end users are in fact systems administrators

that may want to know VMs utilization or network throughput,for instance.

� Precondition: top-level model and sub-models were createdand properly parameter-

ized.

� Inputs: list of measures that can be computed with models; description of perfor-

mance or availability indicators from the point-of-view ofsystem administrators

and end-users.

� Actions: choice of measures of interest for model evaluation.

� Products: chosen metrics.

� Postconditions: all information for solving the main modeland sub-models is de-

fined.

Solve hierarchical model: The solution of hierarchical model is the next step in this method-

ology. Sub-models which do not depend on results of other models are solved first, and the

output metrics are assigned to the corresponding input parameters in the main model or other

dependent sub-models. The solution method (i.e., numerical analysis or simulation) may vary

for each model, depending on constraints of the modeling formalism.

� Precondition: all information for solving the main model and sub-models is defined;

solution tools are available.

� Inputs: list of measures of interest; main model and sub-models properly assembled;

solution methods and tools;

� Actions: solution of hierarchical model, with computationof chosen measures.

� Products: values of measures of interest.

� Postconditions: the model was successfully solved, and thevalues of measures of

interest were computed

Evaluate measures: The evaluation of measures is the activity of comparing the output values

from the hierarchical model to reference values which fulfill SLAs or expectations of the end-

users and systems administrators. When the values of computed measures are satisfactory, the

improvement process stops, and it is restarted when the system is modified due to events such

as replacement of broken or outdated components, or even dueto significant changes in user

demands. If there is at least one metric of interest that has not achieved a satisfactory level. The

identification of potential improvements takes place by means of sensitivity analysis.
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� Precondition: the values for the measures of interest were properly computed.

� Inputs: values of measures of interest; description of end-users or systems adminis-

trators expectations, or SLAs.

� Actions: define whether estimated measures are satisfactory or not.

� Products: definition (satisfactory or not satisfactory)

� Postconditions: sensitivity analysis will be conducted ifmeasures are not satisfac-

tory, or the workflow will stop until the occurrence of structural or demand changes

in the system

Perform sensitivity analysis on sub-models and top-level model: In order to find the sen-

sitivity indices for a hierarchical model, the main model and the sub-models must initially be

evaluated in separate. The computation of sensitivity indicesSpi j ( f (Mi)) for each sub-model

Mi will provide the impact of parameterspi j to a metric f (Mi). For the main modelM∗, we

must compute the sensitivity of a metricg(M∗) with respect to each input parameterp∗i . Partial

derivatives, percentage difference, DoE ANOVA, and reliability importance are possible meth-

ods for this task. A single sensitivity analysis method may be used for all models comprising

the hierarchical model. When there are closed-form equations to solve all models, the partial

derivatives method can provide all required indices, and ease the task of building a unified sen-

sitivity ranking with higher accuracy. Distinct methods might also be used for each model to

deal with specific solution constraints or analysis preferences. In such a case, the composition

of indices, performed in next step, might require greater attention.

� Precondition: the values that were estimated for measures of interest are not in sat-

isfactory levels.

� Inputs: top-level model and sub-models, sensitivity analysis methods and tools

� Actions: compute sensitivity indices for top-level model and for the sub-models.

� Products: sensitivity indices of each model.

� Postconditions: the sensitivity indices of all parametersfrom top-level model and

sub-models are available for further composition.

Compose sensitivity indices from all models: The composition of sensitivity indices from

all models is the next step in our methodology. The method of composition depends on the types

of indices obtained in the previous activity. Section 4.2 presents more details on this specific

activity.

� Precondition: the sensitivity indices from all models werecomputed.
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� Inputs: all sensitivity indices from top-level model and sub-models, considering

every parameter; composition techniques; top-level modeland sub-models.

� Actions: compose the indices according to the types of indices obtained and types

of models employed.

� Products: composite sensitivity indices.

� Postconditions: all sensitivity indices could be composedto generate a unified rank-

ing considering parameters from all models.

Build and analyze “global” sensitivity ranking: After obtaining the composite indices, we

must build a unified sensitivity ranking which shows the impact of each parameter from all

models on the metric of interest. The analysis of such a ranking enables identifying the top-

ranked parameters, that deserve priority on actions for overall system improvement. As soon as

changes are performed, the hierarchical model must be evaluated again, computing metrics of

interest with the new parameters setup.

� Precondition: all sensitivity indices could be composed togenerate a unified ranking

considering parameters from all models.

� Inputs: composite sensitivity indices for all parameters from all models.

� Actions: build unified sensitivity ranking, by sorting the sensitivity indices, and

identify the parameters which are bottlenecks for the entire system.

� Products: list of bottlenecks (i.e., most impacting parameters).

� Postconditions: the bottlenecks were identified and can be used as priority targets

for system improvements.

The last three activities —enclosed in the dotted rectangle—constitute the core of bot-

tleneck identification. They compose the sensitivity analysis of hierarchical models proposed

in this Ph.D. thesis, that is explained in details on Section4.2.

4.2 Sensitivity Analysis of Hierarchical Models

In order to explain the development of sensitivity analysistailored for hierarchical mod-

els, let us first use the introductory example of sensitivityanalysis for single modelsMATOS JÚNIOR

(2011). The process for a single Markov chain model is illustratedin Figure 4.2. Initially, a sym-

bolic generator matrix (Q) for the Markov chain is created. That matrix contains all transition

rates as symbolic expressions using the input parameters from the model. The partial derivative

of theQ matrix with respect to one of the parameters produces another matrix (V). TheV matrix
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is used in the computation of the respective sensitivity index that might indicate, for instance,

the impact of parameterq on the probability of system being in state 3. If the same method

is applied to all parameters, we obtain a list of sensitivityindices that is called a sensitivity

ranking, when sorted according to the absolute values.

Figure 4.2: Process of sensitivity index computation with symbolic differentiation

Frameworks for symbolic computation such as GiNaC (GINAC, 2015) and Symja (SYMJA,

2015) allow solving partial derivatives, that is an essential step for computing the aimed sensi-

tivity indices. Other mathematical software, such as Mathematica (WOLFRAM, 2016) and R

(R-PROJECT, 2016), may also be considered in the tool set used to automate thatprocess.

From the sensitivity analysis of single CTMCs, we developed methods to combine the

sensitivity indices obtained in distinct models created using CTMC and RBD formalisms. This

kind of hierarchical model is useful for modeling the availability of IaaS private clouds, as

demonstrated in (DANTAS et al., 2012a). Further, other methods of composition of sensitivity

indices were developed or adapted to address scenarios containing stochastic Petri nets, based

on the existing theoretical framework for sensitivity analysis of GSPNs and SRNs (MUPPALA;

TRIVEDI, 1990).

Figure 4.3 illustrates an overview of the sensitivity analysis process aimed for a given

system which is represented by a combination of three different models: a CTMC, an RBD,

and an SPN. Consider that the RBD is the top-level model, and the other two are sub-models

that represent the detailed behavior of blocks B and C, for example. The sensitivity analysis

of the hierarchical model must generate a unified ranking that comprises parameters from the

three models. This unified ranking must accurately express the order of importance of those

parameters for the measure of interest in the top-level model (i.e., the RBD). The individual

rankings of the sub-models and the top-level model are computed first, and their indices are

combined to produce unified ranking. The position of a parameter in the sensitivity rankings

of the isolated models might change on the unified ranking, reflecting that the importance of a

component for the metrics of given subsystem is not necessarily equivalent to the importance

that this component will have for the system as a whole.

The composition of sensitivity indices to build a unified ranking may require distinct
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Figure 4.3: Overview of composition of sensitivity indices for distinct models

techniques, according to the types of models involved, and the specific measures of interest.

We present here techniques for the following cases: (i) availability and reliability modeling

using RBD as top-level model; and (ii) performance, availability, and reliability modeling using

SPN as top-level model. The choice of those two formalisms isbased on their expressiveness

power to represent large systems (as IaaS clouds can be) while keeping the models legibility.

Availability and reliability evaluation could also employFault Tree as top-level model, with the

same benefits as RBD, but this case is not covered here for the sake of conciseness.

The proposed techniques use examples of CTMC as the preferredformalisms for sub-

models, due to its flexibility for both, availability and performance studies, and possibility of

obtaining closed-form equations. Despite the examples with CTMC, the techniques do not limit

the usage of the sub-models for only that formalism.

4.2.1 Composition of Sensitivity Indices with RBD as Top-level Model

The case that comprises RBD as top-level model is evaluated here under two circum-

stances: using partial derivative for all models —what is particularly suitable when the sub-

models are CTMCs that might be described through closed-form equations; or using distinct

types of sensitivity indices—e.g., partial derivatives for the RBDs and percentage difference for

sub-models, that might be SPNs, CTMCs, or models of other formalisms.

RBDs can be expressed by means of structural equations, that might undergo partial

differentiation for obtaining the sensitivity indices. When the RBD is the top-level model which

has some blocks refined by means of sub-models (e.g, CTMCs), this differentiation must take

into account all parameters of the sub-models. The derivative structural equation is directly
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Figure 4.4: Sensitivity computation with RBD as main model and CTMC sub-models

used to build the unified sensitivity ranking, and thereforeidentify the availability or reliability

bottlenecks of the system under analysis.
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whereAs is the series RBD system availability,Ai is the availability of each blocki from

then blocks that compose the series RBD, andSθ (Ai) is the sensitivity index of each block’s

availability with respect toθ .

Similarly, the sensitivity of parallel structure in an RBD is expressed in Equation
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Other RBD setups such as series-parallel, and parallel-series require using the chain rule

and similar formulas to reach the corresponding derivativefunctions.

Figure 4.4 depicts the process of sensitivity ranking computation for a composition of

RBDs and CTMCs, using partial derivatives. For each single RBD block (or RBD sub-model),

a derivative structural equation is obtained. There is a closed-form equation that describes the

availability from CTMC sub-model, so the corresponding derivative equation is computed and
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Figure 4.5: Sensitivity computation with RBD as main model and non-specified
sub-models

used for obtaining the sensitivity indices (as depicted in Figure 4.4). In Figure 4.4, RBD blocks

C1, C2, and C3 are arranged in series and share the parameterµ. Therefore, the computation

of system availability sensitivity toµ employs the product rule of partial derivatives, already

considered in Equation
☛
✡

✟
✠4.1 . The derivative equations for each block (AC1, AC2 andAC3) can

be combined in the final derivative equation for the completemodel. Whenever the values

of parameters have significant changes, the same sensitivity function can be applied for fast

computation of the ranking and subsequent identification ofcurrent bottlenecks.

If a closed-form equation cannot be reached for the sub-model, the methods for comput-

ing sensitivity indices of CTMC discussed inBLAKE; REIBMAN; TRIVEDI (1988) 2.3 must

be applied. Such a situation would fit the second scenario forsensitivity analysis with RBD as

top-level model, explained as follows.

Figure 4.5 shows a generalized view of sensitivity analysiscomprising a series RBD as

main model and sub-models from non-specified formalisms. Each block availability (AC1, AC2

andAC3) is computed through a sub-model represented as a function of a given set of parameters.

If the sub-models do not have any parameter in common, the partial derivative with respect to

one specific sub-model parameter does not require derivatives of other sub-models results, as

depicted in Figure 4.5. If two or more sub-models depend on the same parameter, such a relation

must be expressed in the functions for the respective blocksof the RBD. The derivative of the
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top-level RBD structural equation will address the need for specific differentiation rules.

It is important to highlight that each partial derivative (∂AC1
∂ p1

, ∂AC2
∂ p4

and ∂AC3
∂ p6

) in Fig-

ure 4.5 will be replaced by the specific kind of sensitivity index employed for the correspond-

ing sub-model. This makes the sensitivity analysis more flexibe for situations when closed-form

equations or partial derivative methods are not possible for the sub-models.

The method proposed in this thesis for the case of RBD as top-level model, illustrated

in Figure 4.5, is described as pseudo-code in Algorithm 1. Itproduces the unified sensitivity

ranking considering an RBD as top-level model and generic sub-models.

Data: MainModel,SubModels
Result: Unified sensitivity rankingR

1 R← /0;
2 MainStructFunction← Get_Structural_Function(MainModel);
3 foreachModel∈ SubModelsdo
4 Parameters← Get_List_of_Parameters(Model);
5 SubModelFunction← Build_Function(Model,Parameters);
6 MainStructFunction← Transform_Structural_Function(MainStructFunction,

Model, SubModelFunction);
7 ParametersSet← ParametersSet∪Parameters;
8 SensitivitySubModels[Model]← Compute_Sensitivity_Ranking(Model);
9 end

10 foreachParameter∈ ParameterSetdo
11 DerivativeFunction← Compute_Derivative(MainStructFunction, Parameter);
12 Sensitivity[Parameter]←

Convert_Symbolic_to_Numeric(DerivativeFunction,SensitivitySubModels);
13 R← R∪Sensitivity[Parameter];
14 end
15 R← Sort(R);
16 ReturnR;

Algorithm 1: Algorithm for sensitivity analysis of hierarchical model with RBD as
top-level model

The main steps of the algorithm are explained in natural language as follows:

� Obtain the structural function of the main model (line 2);

� Identify the parameters of main model and each sub-model (line 4);

� Replace structural function components that represent sub-models by functions of

the sub-models parameters (lines 5 and 6);

� Replace structural function components that represent common RBD nodes by their

availability functions (lines 5 and 6);

� For each sub-model, compute sensitivity indices with respect to its own parameters

(line 8);
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� For each parameter, compute symbolic partial derivatives of the system structural

function with respect to the parameter (line 11);

� For each symbolic derivative expression, convert it into numerical sensitivity index

using parameters values and sub-models sensitivity indices (line 12);

� Sort sensitivity indices to obtain the unified sensitivity ranking (line 15).

The unified sensitivity ranking enables assessing the impact of every parameter from

the main model and its sub-models on the metric of interest (e.g., system steady-state avail-

ability). It is worth explaining that the functionBuild_Function, on line 5 has two possible

return values. It returns a generic function for non-RBD sub-models, that serves to indicate

which parameters that sub-model depends on (e.g,f (p1, p2, p3)). In case of simple RBD blocks

or RBD sub-models, the corresponding availability function will be returned. The procedure

Compute_Sensitivity_Ranking, on line 8, may have a specific implementation for each kind

of sub-model, depending on the available sensitivity analysis techniques. Partial derivatives,

percentage difference, and DoE analysis are the techniquestested in this thesis and validated

throughout the case studies.

4.2.2 Composition of Sensitivity Indices with SPN as top-level model

When modeling through composition of SPN and CTMC models, sensitivity analysis

might use partial derivatives for all models. If the SPN model has no constraint that hinders gen-

eration of the embedded Markov chain, one can apply the partial derivative methods presented

in (MUPPALA; TRIVEDI, 1990) for SPN sensitivity analysis, in conjunction with equivalent

methods for CTMCs. Figure 4.6 depicts this process, for an SPN with two places (P0 and P1)

and two transitions (T0 and T1). The firing delay of transition T0 comes from the mean time

to absorption (MTTA) of a CTMC sub-model. The sensitivity computation begins by obtaining

the matrix for the embedded Markov chain of the SPN. The matrix elements (i.e., transition

rates) are denoted as symbolic expression using the SPN parameters. We compute the partial

derivatives of each expression with respect to every parameter. The sensitivity indices com-

puted for the CTMC parameters are further used to convert the symbolic derivative matrix of

the corresponding upper-level model (e.g., main model) in anumerical matrix. The main model

sensitivity indices are finally obtained using the numerical derivative matrix and equations de-

scribed in (BLAKE; REIBMAN; TRIVEDI , 1988)(MUPPALA; TRIVEDI, 1990).

Some systems might require non-exponential distributionsfor best fitting the transition

delays in SPNs. The models with non-exponential delays are usually solved through simulation

instead of numerical analysis (i.e., solution of systems ofequations). A simulation approach

does not allow computation of partial derivatives, therefore other sensitivity analysis methods

must be used. For such cases, it might be required combining indices that were obtained through

one method with indices computed with another method.
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Figure 4.6: Sensitivity computation with SPN as main model and a CTMC sub-model
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This thesis proposes a method for the sensitivity analysis of hierarchical models with

SPN as top-level model, that is described in pseudo-code in Algorithm 2 . It has similarities, but

also remarkable differences, in relation to that proposed for the case of RBD top-level model.

The following steps comprise the algorithm for an SPN that might be solved by any of both

methods: numerical analysis or simulation. This is accomplished by employing the sensitivity

analysis technique known as percentage difference (see Section 2.3).

Data: MainModel, SubModels, TransitionsWithSubModels, RangeOfParamValues
Result: Unified sensitivity rankingR

1 R← /0;
2 MainModelParams← Get_List_of_Parameters(MainModel);
3 foreachParam∈MainModelParamsdo
4 Out putValues← Solve(MainModel, Param, RangeOfParamValues[Param]);
5 Minimum←min(OutputValues);
6 Maximum← max(OutputValues);
7 Sensitivity[Param]← (Maximum - Minimum) / Maximum;
8 R← R∪Sensitivity[Parameter];
9 end

10 foreachModel∈ SubModelsdo
11 SensitivitySubModels[Model]← Compute_Sensitivity_Ranking(Model);
12 end
13 foreachTransition∈ TransitionsWithSubModelsdo
14 SubModelParams← Get_List_of_Parameters(Transition.SubModel);
15 foreachParam∈ SubModelParamsdo
16 Sensitivity[Parameter]← SensitivitySubModels[Transition.SubModel,

Parameter];
17 Sensitivity[Parameter]← Sensitivity[Parameter]× Sensitivity[Transition];
18 R← R∪ Sensitivity[Parameter];
19 end
20 end
21 R← Sort(R);
22 ReturnR;

Algorithm 2: Algorithm for sensitivity analysis of hierarchical model with SPN as
top-level model

The main steps of the algorithm are explained as follows:

� Identify the parameters (including transitions) of the top-level model. (line 2)

� For each parameter, solve the model for the values in the respective range, and com-

pute its percentage difference sensitivity index. (lines 3to 9)

� For each sub-model, compute sensitivity indices with respect to its own parameters.

(lines 10 to 12)

� For each transition which has a sub-model, do: (line 13)
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� Identify the parameters of the respective sub-model. (line14)

� For each parameter of the sub-model, multiply its sensitivity index by the

sensitivity index of the corresponding transition in the top-level model.

(lines 15 to 18)

� Sort sensitivity indices to obtain the unified sensitivity ranking. (line 21)

The approach proposed here computes the product of the sensitivity indices from the

main model and the corresponding sensitivity indices from the sub-model. This way, the impact

of a parameter for the sub-model metric is weighted by the impact that the respective transition

has on the SPN metric. The result is an estimate of the impact of a sub-model parameter on the

metric of interest in the main model.

The product of the sensitivity indices is also a way of following the chain rule of differ-

ential calculus, that may be written as in Equation
☛
✡

✟
✠4.3 :

dz
dx

=
dz
dy
·
dy
dx

,
☛
✡

✟
✠4.3

wherez is a function of the variabley, andy is a function of variablex. In a hierarchical

model, z is the metric of interest in the main model,y is a parameter from the main model

that is computed through a sub-model output metric, andx is an input parameter from the sub-

model. Therefore, the derivative of the metriczwith respect tox is achieved by multiplying the

derivative ofz with respect toy by the derivative ofy with respectx.

It is worth to highlight that Algorithm 2 depends on the assumption that a given param-

eter is not used in two or more models. If such an assumption isnot valid, the algorithm must

be adapted to sum up the composite indices computed for each sub-model, as indicated by the

chain rule for functions of two or more variables.

Despite a percentage difference is not exactly a partial derivative, the similar nature of

both indices makes the proposed approach especially suitable. This research did not evaluate

combinations using other types of indices, but it is reasonable considering that the Algorithm 2

can be adapted for other cases.

Figure 4.7 depicts an example of situation where the Algorithm 2 can be applied, com-

prising an SPN as main model and a CTMC as sub-model. The SPN model contains one de-

terministic transition (denoted by black thick rectangle). This model requires solution through

simulation because an embedded Markov chain cannot be generated for analytical solution of

the SPN. The delay of the other transition is exponential, and is computed by the CTMC sub-

model. If ones wants to perform sensitivity analysis in the main model, a suitable approach is

computing percentage difference indices. Such a techniquedoes not depend on partial differen-

tiation of equations.

Figure 4.7 shows that results of simulations for distinct parameter values enable com-

putingST0(A) andST1(A): the sensitivity of the metric A to the delay of transitions T0 and T1,
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Figure 4.7: Sensitivity computation with SPN as main model (for simulation) and a
CTMC sub-model
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respectively. The sensitivity of metric A to the parameterλ (Sλ (A)) depends on combination

of indices from CTMC sub-modelSλ (MTTA) and SPN main model (ST0(A)). Similarly, for

computingSµ(A), it is essential combiningSµ(MTTA) andST0(A).

4.2.3 Implementation on Mercury Tool

The sensitivity analysis methods presented here provided the basis for the development

of features in the Mercury tool (MERCURY, 2016)(SILVA et al., 2015). That software package

helps to automatize the methodology described in Section 4.1. Especially the possibility of as-

sembling models in a hierarchical manner, and the sensitivity analysis of single and hierarchical

models were included in most recent versions.

Details about Mercury and the implementation of the proposed algorithms in that tool

are presented in the Appendix A.

4.3 Optimization Guided by Sensitivity Ranking

For many systems, it is difficult to find a setup that maximizes(or minimizes) a desired

metric while meeting a given constraint, such as financial costs or architectural limitations.

Optimization techniques are usually employed for reachingan alternative that, at least, is close

to best possible solution. The proposed methodology is alsovaluable in such cases. We employ

the sensitivity ranking for iteratively performing parameter changes that will lead the system

metrics to an optimal or nearly optimal solution.

We may handle many performance, dependability, and capacity planning problems as

specific cases of the assignment problem. Consider that a model for a given system under

study has a setN of parameters, here called as services, and a setM of possible providers to

be assigned to each of those services. A provider means a possible value for each parameter

in the model. The value assigned to each parameter may dependon the choice of an specific

equipment manufacturer, a certain software configuration,or a third-party service quality. The

optimization process must find the assignment of providers (i.e, parameter values) that mini-

mizes (or maximizes) an objective measureθ , which might be reliability, availability, response

time, or even a composition of many measures.

The optimization process must provide an assignment matrixZ which minimizesθ .

This assignment matrix is the solution of the optimization problem. Each element of matrixZ

is a binary variablezi j , which is set to 1 if the providerj is assigned to servicei, and otherwise

is set to 0. As the row indexi is related to the services and the column indexj is related to the

providers, the matrixZ has dimension||N||×||M||. Since a providerj may not offer all services,

a matrixA is used to indicate all the available services in a given provider. The elementsai j

of matrix A are binary variables which have a value of 1 if the providerj offers the servicei,

and a value of 0 otherwise. The QoS characteristics of the providers are represented in matrix



65 4.3. OPTIMIZATION GUIDED BY SENSITIVITY RANKING

B, where each componentbi j is a 2-tuple(t, r) indicating the mean response timet and the

reliability r of the providerj when offering servicei.

Considering the above-mentioned objective function, variables and parameters, this op-

timization problem can be written as:

min θ(Z)
☛
✡

✟
✠4.4

subject to

∑
j∈M

zi j = 1 , ∀i ∈ N,
☛
✡

✟
✠4.5

zi j ≤ ai j , ∀i ∈ N , ∀ j ∈M.
☛
✡

✟
✠4.6

The first constraint (Equation
☛
✡

✟
✠4.5 ) indicates that only one provider must be selected

for each service, and all services must have one provider assigned to it. The second constraint

(Equation
☛
✡

✟
✠4.6 ) requires that the providerj cannot be selected for servicei if it is not able to

perform that service, as indicated in matrixA.

We implement an instantiation of the GRASP metaheuristic (FEO; RESENDE, 1989)

to solve the assignment problem we just described. GRASP is suitable to find approximate solu-

tions for combinatorial optimization problems such as the service-provider assignment problem

just described. The problems handled by GRASP are usually formulated as

min f (x)subject tox∈ X,
☛
✡

✟
✠4.7

where f (·) is an objective function to be minimized and X is a discrete set of feasible solutions.

Feo and Resende (1989) proposed GRASP as a probabilistic heuristic for the set covering prob-

lem. Further developments have been made on GRASP (FEO; RESENDE, 1995) (RESENDE;

RIBEIRO, 2003), and it has been applied in many distinct areas (FESTA; RESENDE, 2002)

(MATEUS; SILVA; RESENDE, 2011).

GRASP is a multi-start heuristic (FEO; RESENDE, 1989) where a greedy randomized

solution is constructed at each iteration to be used as a starting solution for local search. The

combination of greediness and randomization is a key feature of GRASP that shall be adjusted

according to the problem characteristics. Components of thesolution are ranked using a greedy

criterion, and the best ones are selected for a restricted candidate list (RCL), from where a

random element is chosen. Local search repeatedly substitutes the current solution with a better

one in its neighborhood. Such a replacement is called a move.If there is no improvement in the

neighborhood, the current solution is declared as a local minimum and the search stops. The

best local minimum found over all GRASP iterations is the output of the procedure.

Algorithm 3 shows the pseudo-code of our GRASP-based procedure, which returns a

solution vectorZ∗ that is the best among the solution vectors found throughoutmany itera-

tions. In this thesis, we adapt the algorithm presented in (MATOS; MACIEL; SILVA , 2013)
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Data: N, M, MaxPool, MaxIt, Greediness
Result: SolutionZ∗

1 C∗← ∞;
2 while Stopping criteria is not satisfieddo

/* The method below is the adaptation made to original GRASP */

3 Z← Sensitive_Construction(N,M,Greediness);
4 Z∗← Approximate_Local_Search(Z,MaxPool,MaxIt);
5 if cost(Z∗)<C∗ then
6 Z∗← Z;
7 C∗← cost(Z∗);
8 end
9 end

10 ReturnZ∗;

Algorithm 3: Algorithm for Sensitive GRASP

by redefining the construction of initial solutions to incorporate the sensitivity analysis (method

Sensitivity_Constructionon line 3, it was onlyConstruction originally). We name the overall

algorithm as Sensitive GRASP. The sensitive construction procedure, which is our contribution,

is described in Algorithm 4. This procedure starts with a random selection of providers for each

service (lines 1–3), enabling the use of very different starting points in each iteration. Further,

the sensitivity analysis is used for the identification of most impacting service in the current

solution (line 5). According to theGreedinessparameter, we select the bestg providers for the

most impact service, composing the RCL from where a random providerk is chosen (lines 6–8).

This providerk replaces the previous element in the solution Z returned to main algorithm. The

steps of sensitive construction procedure are also presented in Figure 4.8. Notice that greedi-

ness is a value chosen between 0 and 1. If the greediness is zero, any suitable provider can be

chosen, so the improvement is completely random. If the greediness is 1, then only the best

provider can be chosen. In Figure 4.8, the greediness is 0.5,so out of eight providers, the four

with smallest response times are put in the RCL, and a random provider chosen from there.

Data: N, M, Greediness
Result: Initial solutionZ

1 for Each service i∈ N do
2 Randomly select providerk∈M ;
3 Zi ← k ;
4 end
5 t← Get top service on sensitivity ranking for Z;
6 g← Ceiling(Greediness× Number of providers for serviceT) ;
7 RCL← Bestg providers for servicet;
8 Randomly select providerk∈ RCL;
9 Zt ← k ;

10 ReturnZ;

Algorithm 4: Algorithm for Sensitive Construction procedure
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Figure 4.8: Example of sensitive construction of initial solution

The next step in GRASP is the approximate local search, presented in Algorithm 5.

This procedure follows the same approach presented in (MATOS; MACIEL; SILVA , 2013). It

builds a pool of good solutions from the neighborhood of the current solution. The procedure

“Move” (line 4) is responsible for providing one neighbor of a given solution vectorZ. In our

assignment problem, the neighbor solutions correspond to all combinations that have only one

different provider in relation toZ. Figure 4.9 illustrates an example of three neighbors that may

be found for a given solutionZ. Algorithm 5 searches throughout the neighborhood until it

fulfills the pool of solutions or until it reaches the defined maximum number of iterations. A

random solution from the pool is used as the pivot of a new neighborhood inspection. When

no neighbor outperforms the pivot, the pool remains empty and the current approximate local

search terminates.

Figure 4.9: Example of neighborhood for a solution

The cost of each solution found in GRASP iterations (seecost() function in lines 5

and 7 of Algorithm 3 and line 5 of Algorithm 5) may be computed by means of analytical

models, such as Fault Trees, RBDs, CTMCs or SPNs. The performanceand dependability

characteristics of each provider can be used to determine the values of transition rates in a

CTMC, for example. A modeling tool, such as Mercury (MERCURY, 2016; SILVA et al.,
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Data: Z, MaxPool, MaxIt
Result: Approximate local minimum Z

1 repeat
2 Count← 0; Pool← /0;
3 repeat
4 Z′←Move(Z);
5 if cost(Z′)< cost(Z) then
6 Pool← Pool∪Z′;
7 end
8 Count← Count + 1;
9 until (|Pool| ≥MaxPool) or (count≥ MaxIt);

10 if Pool 6= /0 thenthen
11 Z← Randomly selected solution from Pool;
12 end
13 until Pool = /0;
14 Return Z;

Algorithm 5: Algorithm for the approximate local search used in GRASP

2015) and SHARPE (TRIVEDI; SAHNER, 2009), may be used to compute metrics as well as

the sensitivity indices from the analytical model.

The optimization code requires a specific module to interactwith the analytical model

solver, enabling the fully automated evaluation of large benchmarks. A benchmark, in this case,

is composed of various possible values for each parameter. For each new possible solution

(i.e., a selected configuration of parameters values), the analytical model input file is changed

to match the current providers’ parameters. The corresponding objective measure is then com-

puted and used for comparisons in the optimization process.The sensitivity analysis during the

construction procedure also uses the module for interacting with the model solver.

Figure 4.10: Computation of cost for a possible solution using a model analysis tool

The feasibility and accuracy of this optimization framework is verified in a case study

presented in Section 5.4.
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4.4 Concluding Remarks

The methods and algorithms proposed in this chapter aim at aiding the identification

of points for performance or dependability improvement in cloud computing systems. The

automation of those methods in a modeling tool makes them more accessible for researchers and

systems administrators. The Sensitive GRASP algorithm enables a step forward, by using the

bottlenecks to guide an optimization process for selected system metrics. It is worth mentioning

that the methods presented here were successfully applied in various case studies, demonstrated

in Chapter 5.
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5
Case studies

This chapter presents four case studies that demonstrate the proposed methods in the

analysis of distinct cloud computing scenarios: (i) the availability evaluation of private clouds

with redundant components, where only typical IaaS components are involved and the method

of Section 4.2.1 is applied; (ii) the availability evaluation of mobile clouds, which includes

the evaluation of wireless communication issues, battery lifetime and mobile application avail-

ability; this scenario also serves to compare the results ofour methods with different kinds

of sensitivity indices; (iii) the performance evaluation of a composite web service powered by

autoscaling mechanisms in a private cloud, which integrates the analysis of user application

and cloud infrastructure components and applies the methodof Section 4.2.2; and (iv) the opti-

mization of performance and reliability of a composite web service by means of the Sensitive

GRASP algorithm presented in Section 4.3. The results achieved in those case studies provide

evidence on the usefulness and efficacy of this approach.

5.1 Availability of Redundant Private Clouds

This case study aims at demonstrating the proposed methodology for the availability

evaluation of redundant private cloud architectures. The composition of sensitivity indices de-

scribed in Section 4.2.1 is especially useful here.

Hierarchical analytical models were created to describe the behavior of private cloud

architectures structured according to the general stack ofcomponents for open-source cloud

platforms described in Section 2.1.3. The proposed models aid in analyzing how the system

availability can be improved, by means of differential sensitivity analysis. Figure 5.1 shows an

architecture with three clusters and redundancy on some private cloud components. The redun-

dant components were chosen according to the study presented in (DANTAS et al., 2012a). A

front-end computer is adopted as the “Cloud Manager Subsystem” and configured with the com-

ponents known as Cloud Controller (CLC) and Image Repository Controller (IRC). A warm-

standby host is capable of keeping the Cloud Manager subsystem working if the primary host

fails. Each cluster has one machine that is hereafter calledthe “Cluster Subsystem”, which
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runs the Cluster Controller (CC) and Storage Controller (SC) components. Warm-standby re-

dundancy is also considered for each “Cloud Manager Subsystem”. Each cluster also has three

machines that run the component known as Node Controller (NC).The set of three nodes in

each cluster is hereafter called a “Nodes Subsystem”. The impact of implementing the redun-

dancy in the Cloud Manager Subsystem (CLC and IRC) and in the Cluster Subsystem (CC and

SC) is considered for this system.

Figure 5.1: Private cloud architecture with redundant components

Due to their simplicity and efficiency of computation, Reliability Block Diagrams (RBDs)

may be used to analyze the availability of the private cloud architecture described in Figure 5.1,

from a high-level standpoint. However, the redundancy mechanisms used in the Cloud Man-

ager and Cluster Subsystems require the use of state-based models, such as Markov chains,

for a proper representation. Therefore, a hierarchical heterogeneous modeling approach is

adopted, composing an RBD and Markov Reward Models (MRMs) (TRIVEDI, 2001) (SAH-

NER; TRIVEDI; PULIAFITO, 1996). The RBD describes the high-level availability view of

subsystems and non-redundant components, whereas the MRM represents the detailed behav-

ior of subsystems which employ an active redundancy mechanism. This modeling approach

enables us to obtain closed-form equations for the availability of the studied architecture.

5.1.1 Creating top-level model

RBD models were created to evaluate the cloud infrastructuresconsidering one, two,

and three clusters. These RBD models are depicted in Figure 5.2, Figure 5.3, and Figure 5.4,

respectively. For all cases, the system infrastructure is available if the Cloud Subsystem is

running and at least one Cluster Subsystem is available with one or more nodes running in

that cluster. The block named CLC represents the Cloud ManagerSubsystem. Blocks CC_j

represent each of the Cluster Subsystems, wherej ∈ 1, ..,N, and N is the number of clusters.

Each block NCi_CCj represent theith node that integrates thejth cluster.

The RBD models enable using closed-form expressions for computing the system steady-

state availability. This step might ease obtaining sensitivity indices with respect to each model
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Figure 5.2: RBD model of the Cloud system with one cluster

Figure 5.3: RBD model of the Cloud system with two clusters

parameter. When closed-form equations cannot be obtained, sensitivity indices may be com-

puted numerically from the RBD and CTMC models. The numerical solution of Markov chains

may depend on iterative algorithms which are prone to issuessuch as stiffness or long time for

convergence of results. The convergence problem does not exist in the solution of closed-form

equations, and stiffness is also a smaller problem, although some issues might occur yet due to

computer representation of numbers.

Equation
☛
✡

✟
✠5.1 denotes the closed-form expression for the availability of the whole cloud

system (ASys). Despite the architectures evaluated here have a fixed number of clusters (up to

three) and nodes per cluster (three), the Equation
☛
✡

✟
✠5.1 applies for the general case of a cloud

system withk clusters, havingn nodes in each cluster. Each component of the Equation
☛
✡

✟
✠5.1

comes from the distinct models presented in Section 5.1.2.

ASys= (ACLC)× (1−
k

∏
j=1

(1− (ACC_ j)× (1−
n

∏
i=1

(1−ANode_i))))
☛
✡

✟
✠5.1

5.1.2 Creating sub-models for specific components

Figure 5.5 shows the RBD model that represents one node in each Nodes Subsystem.

Each node is composed of hardware, operating system, hypervisor (e.g., KVM), and a Node

Controller. The node is working only if all these components are active (non-failed).

The availability of each node,ANode_i, can be computed from the Equation
☛
✡

✟
✠5.2 .
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Figure 5.4: RBD model of the Cloud system with three clusters

Figure 5.5: RBD model of one node

ANode_i =
µNode

λNode+µNode

☛
✡

✟
✠5.2

The blocks denoting the Cloud Manager Subsystem and Cluster Subsystems have their

individual steady-state availability values computed through the MRM shown in Figure 5.6. The

MRM has 5 states: UW, UF, FF, FU, and FW, and considers one primary and one spare server,

respectively. The state UW represents primary server (S1) is functional and secondary server

(S2) in standby. When S1 fails, the system goes to state FW, where the secondary server has

not yet detected the S1 failure. FU represents the state where S2 leaves the waiting condition

and assumes the active role, whereas S1 is failed. If S2 failsbefore taking the active role, or

before the repair of S1, the system goes to the state FF. This study analyzes a setup where

the primary server repair has priority over the secondary server repair. Therefore, when both

servers have failed (state FF) there is only one possible outgoing transition: from FF to UF. If

S2 fails when S1 is up, the system goes to state UF, and returnsto state UW when the S2 repair

is accomplished. Otherwise, if S1 also fails, the system transitions to the state FF. The failure

rates of S1 and S2 are denoted byλ_s1 andλ_s2, respectively. The rateλi_s2 denotes the

failure rate of the secondary server when it is inactive. Therepair rate assigned to S2 isµ_s2.

The ratesa_s2 represents the switchover rate, i.e., the reciprocal of the mean time to activate

the secondary server after a failure of S1. Table 5.3 presents the values for all the mentioned

parameters of the MRM. The value ofµ_s1 is equal to the value ofµ_s2, the ratesλ_s1 and
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λ_s2 also have equal values. Theseλ andµ values were obtained from single RBD models for

each server of the Cloud Manager and Cluster Subsystems. The failure rate of the secondary

server, when inactive, is assumed to be 20% smaller than the failure rate of an active server, since

there is no stressing load over the inactive spare server. The value ofsa_s2 comes from default

monitoring interval and activation times found in softwaresuch as Heartbeat (HEARTBEAT,

2012).

Figure 5.6: Markov chain model for a redundant subsystem with two hosts

The state reward rateρ(s) assigned toUW, UF andFU is equal to 1, since the subsys-

tem is available in these states. The state reward rate assigned toFF andFW (shaded states)

is equal to 0, since the subsystem is down in these states. Thereward rateρ(s) is also defined

through the function depicted in the Expression
☛
✡

✟
✠5.3 . There are no impulse rewards in this

model. Therefore, the steady-state availability of the subsystem can be computed as the steady-

state reward rate of the MRM, soA= ∑s∈Sπs ·ρ(s), whereπs is the steady-state probability of

being in the states, andρ(s) is the reward rate assigned to the states.

ρ(s) =







0 if s∈ {FF,FW},

1 otherwise.

☛
✡

✟
✠5.3

Each single host that composes the Cloud Manager Subsystem may be represented by a

series RBD as shown in Figure 5.7. The host of Cloud Manager Subsystem consists of hardware,

operating system, and the following software components: CLC (Cloud Controller) and IRC

(Image Repository Controller). A similar RBD model may be used torepresent a non-redundant

Cluster Subsystem, which is composed of hardware, operatingsystem, Cluster Controller (CC)

and Storage Controller (SC), as depicted in Figure 5.8. As thisstudy considers redundancy in

both, Cloud Manager and Cluster Subsystems, these RBDs are adopted to obtain the equivalent

MTTF and equivalent MTTR values which will be parameters in the Markov Reward Model for

the correspondent redundant subsystem.
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Figure 5.7: RBD model of a non-redundant Cloud Manager Subsystem

Figure 5.8: RBD model of a non-redundant Cluster Subsystem

The model presented in Figure 5.6 enables obtaining a closed-form equation for the

availability of the redundant Cloud Manager Subsystem (see Equation
☛
✡

✟
✠5.4 ) and a similar equa-

tion for the Cluster Subsystem (see Equation
☛
✡

✟
✠5.5 ). Both equations,

☛
✡

✟
✠5.4 and

☛
✡

✟
✠5.5 , can be used

in conjunction with Equation
☛
✡

✟
✠5.1 , previously presented, to compute the overall availability, as

well as to derive sensitivity measures of the redundant cloud system.

ACLC =
µCLC× (λCLC×λCLCi +α2

1 +sa×α2)

sa× (λ 2
CLC+λCLC×α1+µCLC×α1)+α3× (λCLC×λCLCi +α2

1)
,

☛
✡

✟
✠5.4

where

α1 =λCLCi +µCLC,

α2 =λCLC+λCLCi +µCLC , and

α3 =λCLC+µCLC .

ACC =
µCC× (λCC×λCCi +β 2

1 +sa×β2)

sa(λ 2
CC+λCC×β1+µCC×β1)+β3× (λCC×λCCi +β 2

1 )

☛
✡

✟
✠5.5

where

β1 =λCCi +µCC,

β2 =λCC+λCCi +µCC , and

β3 =λCC+µCC .

5.1.3 Definition of input parameters

Table 5.1 presents the parameter values for the hardware, operating system, KVM, and

Node Controller blocks of the RBD. These values were obtained from published studies (KIM;

MACHIDA; TRIVEDI , 2009a) (HU et al., 2010) about availability of virtualized systems. Par-
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ticularly, the Node Controller values are based on studies about the availability of web services,

since most components of open-source cloud platforms are built as web services. The values

shown in Table 5.1 were used in the RBD model, and its analysis provided an equivalent MTTF

(mean time to failure) (WANG; TRIVEDI, 2005) of 481.82 hours and an equivalent MTTR

(mean time to repair) (WANG; TRIVEDI, 2005) of 0.91 hours for each node.

Table 5.1: Input Parameters for the nodes

Component MTTF MTTR
HW 8760 h 100 min
OS 2893 h 15 min

KVM 2990 h 1 h
NC 788.4 h 1 h

Table 5.2 presents the MTTF and MTTR used for the Cloud ManagerSubsystem and

Cluster Subsystem models. This study considers that the hardware and operating system of

these subsystems are equivalent to those ones adopted in thenodes, so the MTTF and MTTR

values are the same. The MTTF and MTTR of software components(CLC, IRC, CC, and SC)

are based on values found in (HU et al., 2010), since these components are usually built as web

services on platforms such as Eucalyptus and OpenStack. Theresults obtained from the RBD

models are an equivalent MTTF of 333.71 h and an equivalent MTTR of 0.93 h for both Cloud

Manager and Cluster Subsystems.

Table 5.2: Input Parameters for the Cloud Manager and Cluster Subsystems

Component MTTF MTTR
HW 8760 h 100 min
SO 2893 h 15 min

CLC, IRC, CC and SC 788.4 h 1 h

Table 5.3: Parameter values for the Markov chain model

Parameter Description Value (h)
1/λ_s1= 1/λ_s2= 1/λCC = 1/λCLC Mean time for host failure 333.71

1/λi_s2= 1/λCLCi = 1/λCCi Mean time for inactive host failure 400.45
1/µ_s1= 1/µ_s2= 1/µCLC = 1/µCC Mean time for host repair 0.93

1/sa_s2= 1/sa Mean time for spare host activation 0.005

5.1.4 Solution of hierarchical model

We computed availability measures using the mentioned input parameters on the hierar-

chical model. Both, MRMs and RBDs were solved numerically, first obtaining the availability

for each sub-model: Cloud Manager and Cluster subsystems MRMs,and Nodes subsystem
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RBD. So the corresponding availability values of each subsystem were used in the high-level

RBD model.

Table 5.4 presents the availability measures of the cloud system considering the architec-

tures with one, two, and three clusters, which hereinafter are called A1, A2, and A3. Besides the

steady-state availability, Table 5.4 shows the number of nines (MARWAH et al., 2010), which

constitutes a logarithmic view of the availability, and thedowntime, which better denotes the

impact of service unavailability from the user’s standing point.

These results reveal that the architectures A2 and A3 decrease system downtime in about

50% when associating to A1. When comparing A2 and A3, some small availability differences

are traceable. Nevertheless, the similarity indicates that increasing the number of clusters be-

yond three will have negligible impact on the availability,and it is an action which would be

justified only by a need to increase capacity and performance. Therefore, a parametric sensi-

tivity analysis is required to identify the availability bottlenecks in these architectures, guiding

further improvements to the system availability.

Table 5.4: Availability and downtime measures of the cloud system

Architectures
Measure A1 A2 A3
Steady-state Availab. 0.999938749 0.999969376 0.999969377
Number of 9’s 4.21288 4.51394 4.51395
Annual downtime 32.194 min 16.096 min 16.095 min

5.1.5 Sensitivity analysis on sub-models and high-level models

Considering the specific case when the cloud system is composed of 3 identical clusters,

and each cluster has 3 identical nodes, i.e., architecture A3, Equation
☛
✡

✟
✠5.1 is rewritten shortly as

Equation
☛
✡

✟
✠5.6 . Using this representation, the sensitivity of the system availability with respect

to each parameterθi in the system (i.e., failure and repair rates) can be computed as described

in Equation
☛
✡

✟
✠5.7 . Otherwise, considering a system with any numberk of clusters, andn nodes

per cluster, the sensitivity is computed through Equation
☛
✡

✟
✠5.8 . For the sake of conciseness,

the equations that describe the sensitivity of the subsystems (∂ACLC
∂θi

, ∂ACC
∂θi

,and∂ANode
∂θi

) are not

described here, but the reader can see them in the Appendix B.

ASys= ACLC× (1− (1−ACC× (1− (1−ANode)
3))3)

☛
✡

✟
✠5.6



78 5.1. AVAILABILITY OF REDUNDANT PRIVATE CLOUDS

Sθi(ASys) =
∂ASys

∂θi

=
∂ACLC

∂θi
× (1− (1−ACC× (1− (1−ANode)

3))3)

+ACLC×
∂ (1− (1−ACC× (1− (1−ANode)

3))3)

∂θi

=
∂ACLC

∂θi
× (1− (1−ACC× (1− (1−ANode)

3))3)

+ACLC× (−3× (ACC×ANode× (A2
Node−3×ANode+3)−1)2×

(−ANode× (A2
Node−3×ANode+3)×

∂ACC

∂θi
−3×ACC× (ANode−1)2×

∂ANode

∂θi
))
☛
✡

✟
✠5.7

Sθi(ASys) =
∂ASys

∂θi

=
∂ACLC

∂θi
× (1−

k

∏
j=1

(1− (ACC_ j)× (1−
n

∏
i=1

(1−ANode_i))))

+ACLC×

∂ (1−
k

∏
j=1

(1− (ACC_ j)× (1−
n

∏
i=1

(1−ANode_i))))

∂θi

☛
✡

✟
✠5.8

Aiming to reduce the influence of different magnitude ordersin the analysis, the scaled

sensitivity indexSSk(ASys) has been used, and may be computed as indicated in Equation
☛
✡

✟
✠2.6 .

This scaled sensitivity index is necessary because whereassome events are defined in terms of

thousands hours (e.g., MTTF of one host), other ones are in the range of minutes (e.g., MTTR of

one host), or even seconds. Therefore, we scale the sensitivity index so that its magnitude order

may be considered as the expected magnitude order of the change in the steady-availability. For

instance, if a sensitivity index is in the order of 10−5, this implies that percent changes in that

respective parameter will cause variations in the fifth decimal place on the system availability.

Table 5.5 shows the sensitivity rankings for architecturesA1, A2, and A3. It is worth

mentioning that positive sensitivity values indicate a direct relationship and negative sensitivity

values indicate that parameters have an inverse impact on the availability. Notice from Table

5.5 that the all sensitivity indices related to failure rates (i.e.,λCLC, λCLCi , λCC, λCCi , λNode)

are negative, so the growth of failure rates cause a decreasein the availability and vice versa.

Sensitivity indices for the repair rates are negative, so the system availability increases when a

repair rate is increased.

The scaled sensitivity indices,SSθ (ASys) are listed in decreasing order of importance, for

each architecture. The order of importance vary depending on the architecture, so each one has
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Table 5.5: Sensitivity rankings for architectures A1, A2, and A3

A1 A2 A3
Param. SSθi(ASys) Param. SSθi(ASys) Param. SSθi(ASys)

λCLC −3.82×10−5 λCLC −3.82×10−5 λCLC −3.82×10−5

λCC −3.82×10−5 µCLC 2.83×10−5 µCLC 2.83×10−5

sa 3.27×10−5 sa 1.64×10−5 sa 1.63×10−5

µCLC 2.83×10−5 λCLCi −6.41×10−6 λCLCi −6.41×10−6

µCC 2.82×10−5 λCC −2.34×10−9 λCC −1.08×10−13

λCLCi −6.41×10−6 µCC 1.73×10−9 µCC 7.96×10−14

λCCi −6.41×10−6 λCCi −3.92×10−10 λCCi −1.80×10−14

λNode −2.01×10−8 λNode −1.23×10−12 λNode −5.66×10−17

µNode 2.01×10−8 µNode 1.23×10−12 µNode 5.66×10−17

its distinct points of improvement. It is also worth noticing that most of the scaled sensitivity

indices in Table 5.5 reduce from A1 to A2, and then to A3 (except by the parameterλCLC),

indicating that the larger is the number of clusters, the smaller is the impact of these parameters.

All three rankings show that the parameter which deserves priority for system enhancement

is the failure rate of the primary Cloud Controller server (λCLC). Therefore, upgrading the

Cloud Manager Subsystem replication (e.g., increasing fromtwo to three servers) or investing

in more reliable hardware and software for this specific component would be the most effective

approach to reach higher system availability. Preventive maintenance for avoiding the failures of

some specific hardware components (e.g., disks, memory modules) is another action that might

reduce the failure rate of the Cloud Controller server, and therefore improve the availability

effectively. Specially, for architecture A1, the highest importance is shared with the failure rate

of the primary Cluster Controller server (λCC). Thus, improvements on A1 should also consider

improving the Cluster Controller server, as well as extendingwith another cluster (composed of

other Cluster and Storage Controllers and their respective nodes), transforming A1 into A2.

The second most important parameter, for A2 and A3, is the repair rate of the Cloud

Manager Subsystem. This endorses that the Cloud Manager server is the “availability bottle-

neck” for these architectures. So, enhancing the efficiencyof repair process for the Cloud

Manager Subsystem is an action to be considered with high priority.

Considering the analyzed private cloud architectures, Table 5.5 also highlights that pos-

sible changes in the availability of the nodes have small impact on the system availability. The

existence of multiple nodes in the clusters reduces the impact of a single node failure as well as

minimizes the need for optimizing the node repair activity.The sensitivity analysis of A2 and

A3 is also useful to determine that changes in the failover rate of the redundant subsystems (sa)

affect the system availability more than all the other parameters related to the Cluster Subsystem

do (i.e.,λCC, λCCi , andµCC).

The differential sensitivity ranking enables the comparison of parameters’ impact more

accurately than with the visual inspection of plots, varying one parameter at a time. Figure 5.9
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Figure 5.9: Sensitivity analysis - Plots of most impacting parameters

and Figure 5.10 present the results for the system availability when we vary the values of each

parameter in the architecture A3. The value of the measure inthe base case is drawn as the

horizontal dashed line in each plot. Similar plots for A1 andA2 were not drawn for the sake

of conciseness. The conclusions obtained from the plots confirm the results provided through

the sensitivity indices. Figure 5.9a shows that the parameter λCLC has the highest influence on

the measure of interest, since the slope of the line in this plot is higher than all the other ones.

The next plots with high slopes are forµCLC (see Figure 5.9b) andsa (see Figure 5.9c), also

confirming the analysis result obtained, since these parameters are the second and third ones,

respectively, in the differential sensitivity ranking. Although the difference of impact between

µCLC andsa is not so evident in the plots as it is in the numerical ranking.

Figure 5.9d shows a line with small slope, indicating therefore the little effect that

changes inλCLCi (fourth in the ranking of Table 5.5) produce on the system availability. For

the least impacting parameters (i.e.,λCC, µCC, λCCi , λNode, and µNode), it is not possible to

distinguish the levels of importance through the graphicalrepresentation. Such a dissimilarity

would require using a different scale for each graph, adapted for each availability interval. This

procedure may be too time-consuming and confuse the person who analyses the data, when

evaluating scenarios with many components and subsystems.Therefore adopting differential

sensitivity indices is recommended for such scenarios.

The variation of one parameter at a time allows noticing thatthe impact of CLC repair
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Figure 5.10: Sensitivity analysis - Plots of least impacting parameters
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rate (µCLC) and spare server activation rate (sa) decreases as they reach highest values. This

indicates that after significant enhancements on the current repair and spare activation processes,

only architectural changes and reduction of CLC failure rates would be effective to improve

system availability. However, the latter actions imply in costs which may not be affordable for

the cloud infrastructure owners, requiring careful analysis of other alternatives indicated by the

sensitivity analysis and their trade-off between cost and effectiveness.

5.2 Availability of a Mobile Cloud System

This case study employs the methods described in Section 4.2.1 for identification of

bottleneck in mobile cloud systems. It also uses the comparison of results from three distinct

sensitivity analysis techniques to validate the proposed approach.

Despite the recent advances, mobile computing suffers fromresource scarcity, even on

the most modern devices. The most common problems are interruption of wireless connectivity,

lack of security, hand-off delay, battery discharge and limited computational power (QI; GANI,

2012). In this context, a new paradigm named Mobile Cloud Computing(MCC) was introduced

recently. This paradigm aims to utilize cloud computing resources to overcome the limitations

of mobile computing, allowing delivery of more sophisticated and innovative applications to the

user. The mobile cloud computing market is expected to reach45 billion dollars in revenues by

2016 (KOOPMAN, 2012). Considering this financial impact level, it is essential toprovide ser-

vices that can be justifiably trusted, that is,dependableservices. When a company’s workforce

needs to move around remote areas to accomplish their duties, the time wasted due to system

unavailability may also imply low productivity of its employees.

The availability modeling and analysis of mobile clouds require the investigation of a

large number of possible events in client, communication, and server domains. This section

presents the analysis of mobile cloud availability based onhierarchical analytical models and

distinct sensitivity analysis techniques to assess the impact of each input parameter. This analy-

sis aims to identify the bottlenecks for system improvement. We also use a combined evaluation

of results from three techniques which complement each other to deal with the analysis of this

system. The results show that the system availability may beimproved effectively by focusing

on a reduced set of factors which produce large variation on steady-state availability.

The mobile cloud architecture considered for this study is depicted in Figure 5.11, and

is an adaptation of the system analyzed in (OLIVEIRA et al., 2013). The architecture is divided

into three high-level subsystems:Mobile Client, Mobile Communication, andCloud Infras-

tructure. The system is only available if all the three subsystems areworking properly. The

availability of theMobile Clientmay be affected by events on four components:Mobile Hard-

ware, Mobile Operating System, Battery, andMobile Application. The event that may cause

battery unavailability is its full discharge. We assume that a fully charged spare battery is used

to replace the discharged one. The availability of the mobile application is affected by software
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Figure 5.11: Mobile cloud architecture.

faults, or by installation of software updates.

TheMobile Communicationsubsystem has theWiFi and3G components; it was repre-

sented directly in the main system with two blocks in parallel. When both WiFi and 3G fail,

the communication subsystem is down, and subsequently the entire system too. The cloud in-

frastructure has oneInfrastructure Manager(IM), oneStorage Manager(SM), and fivenodes.

These components are based on the common building blocks found in frameworks such as Eu-

calyptus, OpenStack, and OpenNebula, which may be used to implement IaaS clouds (PENG

et al., 2009).

A 1:N redundancy is used for the IM. This means that there is one spare machine for N

active machines playing the IM role. The same technique is employed for the SM. We consider

the number, N, of active servers as a tunable parameter of thesystem, in order to keep the

flexibility of our analysis.

5.2.1 Creating top-level model

Following the proposed methodology, we create a model to represent the high-level view

of the mobile cloud architecture illustrated in Figure 5.11. The RBD model in Figure 5.12 has

blocks representing theMobileDevice, Battery, MobileApp, Cloud_IM, andCloud_SMsubsys-

tems, which have their availabilities computed through CTMCsub-models. The blocks repre-

sentingWiFi, 3G, and the cloud nodes are not expanded into sub-models.

For the top-level RBD from Figure 5.12, a closed-form equationfor system availabil-

ity is expressed by
☛
✡

✟
✠5.9 , derived from standard equations for series-parallel RBDs, as shown

in (MACIEL et al., 2011). Each componentAx in this equation is computed from the evalu-

ation of the respective sub-modelx ∈ {MobileDev, Battery, MobileApp, WiFi, 3G, IM, SM,

Node}, which can also be done through closed-form equations, if it is possible to obtain them,

or through numerical solution. The closed-form equations will also be used to get partial deriva-

tives needed to compute the sensitivities.
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Figure 5.12: RBD model for the mobile cloud.

ASystem= AMobileDev×ABattery×AMobileApp

× (1− (1−AWiFi)× (1−A3G))×AIM ×ASM× (1− (1−ANode)
5)

☛
✡

✟
✠5.9

5.2.2 Creating sub-models for specific components

The CTMC that represents the mobile device is depicted in Figure 5.13. InUp state,

the device works properly. A hardware failure may occur, with rateλh, leading to the device

unavailability indicated by the gray coloredHD state. The hardware repair has a rateµh, taking

the system to theUp state again. If the operating system fails, the device goes to theSDstate

with rateλs. The correspondent repair happens with rateµs. We assume that the time between

failures and the time between repairs (reciprocal of mentioned transition rates) are exponentially

distributed. The same assumption is made in the other modelspresented hereafter.

Figure 5.13: CTMC for the mobile device.

Equation
☛
✡

✟
✠5.10 can be used to compute the availability for the CTMC depicted in Fig-

ure 5.13.
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Figure 5.14: CTMC for the battery discharge.

AMobileDev=
(µh×µs)

(λs×µh+(λh+µh)×µs)

☛
✡

✟
✠5.10

Figure 5.14 presents the CTMC state diagram for the battery discharge process. The

energy consumption of a mobile device when communicating through a WiFi interface is dif-

ferent from the consumption when a 3G network is used (BALASUBRAMANIAN; BALA-

SUBRAMANIAN; VENKATARAMANI , 2009). Due to this reason, the CTMC in Figure 5.14

represents the discharge process through two different ways. In state100 the battery is full and

may begin to discharge with WiFi interface enabled, with probability pw, or with 3G interface

enabled, with probabilityp3g. The discharge is modeled in steps of 10%, sod3g represents the

discharge rate of this amount of energy when using 3G, anddw represents the corresponding

rate when using WiFi. We assume that once the battery begins to discharge, there will not be

vertical handoff, i.e. the change of network interface. In the states0 3g, and0 Wifi the battery is

fully discharged, so it becomes unavailable. We assume thatthe user always has a spare battery

available, therefore, he only needs to replace the battery and turn the device on gain. The rate of

transitions from states0 3g, and0 Wifi to the state100is rb. It is also important to highlight that

the entire discharging time is known to have a nearly deterministic behavior. We approximate

the deterministic behavior by a 10-stage Erlang random variable, as in (TRIVEDI, 2001).

Considering the model depicted in Figure 5.14, the availability of the battery is com-

puted through Equation
☛
✡

✟
✠5.11 .

ABattery=
((1+9× p3g+9× pw)× rb)

(d3g× p3g+dw× pw+ rb+9× (p3g+ pw)× rb)

☛
✡

✟
✠5.11

The mobile application has two possible causes of outage: software failure or software

update. Figure 5.15 shows the state diagram for mobile application CTMC. In the gray states,

UpdatingandApp Failed, the application is unavailable. The software failure rateis λappand

is assigned to the transition betweenApp UpandApp Failed. The repair rate is labeled asµapp.
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The transition fromApp Upto Update Readymeans that the application developer released a

new version. Such a transition occurs with rateλu. When the user decides to install the updated

version of the application, the system goes to the stateUpdating. The rateβu is the reciprocal of

the mean time passed since the update release and the installation. With rateµu, the application

finishes the update process, and becomes available again.

Figure 5.15: CTMC for the mobile application.

The closed-form expression for the mobile application availability is shown in Equation
☛
✡

✟
✠5.12 .

AMobileApp=

((βu+λu)×µapp×µu)

(βu×λu×µapp+λu×µapp×µu+βu× (λapp+µapp)×µu)

☛
✡

✟
✠5.12

The WiFi and 3G components of our top-level model are blocks which are not expanded

in sub-models, therefore, their availabilities are computed using Equations
☛
✡

✟
✠5.13 and

☛
✡

✟
✠5.14 , re-

spectively. The parametersµwi f i andλwi f i are the repair and failure rates of the WiFi connection,

whereasµ3g andλ3g are the repair and failure rates of the 3G connection.

AWiFi =
µwi f i

λwi f i +µwi f i

☛
✡

✟
✠5.13

A3G =
µ3g

λ3g+µ3g

☛
✡

✟
✠5.14

The infrastructure manager (IM) of the cloud environment iscomposed of N active

hosts, and 1 standby spare host. The infrastructure managerneeds N hosts to be available, so

if one of the active hosts fails, the spare host shall be activated, bringing the system to working

condition again. The CTMC for this 1:N redundancy is depictedin Figure 5.16.

The stateUS represents the initial condition, where all N active servers are working

properly. The failure of one active host may bring the systemto the stateDS, which indicates

that a covered failure occurred, and the spare server is being activated. The transition rate

betweenUS andDS is Nimλimcaim, whereNim is the number of active hosts,λim is the failure

rate of a single host, andcaim is the coverage factor for failures of active servers, i.e.,the
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Figure 5.16: CTMC for the Infrastructure Manager.

probability that the failure may be covered by spare host activation. From stateDS, the state FU

is reached with rateβim, indicating that the spare server was activated, and the system is up. In

this condition, the failed host may be repaired with ratemuim, in which case the system returns

to stateUS, where the spare server is in standby again. If another host fails, with rateNimλim,

the system goes to stateFF. In such a condition, a complete repair is executed, so the system

goes to the operational stateUSwith rateµim2.

From stateUS, when a not-covered failure occurs in one active host, the activation of

the spare host is not triggered, and the system goes to non-operational stateFS. The rate of

such a transition isNimλim(1−caim). In the stateFS, the failed host is repaired and the system

reconfigured to return to an available condition. This repair process is executed with ratemuim3

leading the system to stateUS.

The stateUD is reached due to a detectable failure in the spare host when it is in standby

condition and the system is up (stateUS). The rate of this transition isλimcsim, and this single

event does not affect system availability. The parametercsim is the coverage factor of spare host

failures, i.e., the probability of that failure be detectable while the host is in standby condition.

If the spare host is repaired, with ratemuim, the system goes back to stateUS. Although, in state

UD another host may fail, with rateNimλim, bringing the system down (stateFF).

The stateUF represents that the spare host has failed while the system isavailable, but

that failure is not detectable while in standby condition. This event occurs with rateλim(1−

csim). From this point, one of the active hosts may fail, leading the system to failure (stateFF)

because the spare host cannot be activated. This transitionoccurs with rateNimλim.

Equation
☛
✡

✟
✠5.15 provides the closed-form expression for the availability of the Infras-

tructure Manager (IM).
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ACloudIM =

− (βim(Nim(1+Nim+caimNim)λim+(1−csim+Nim)µim)µim2µim3)/

((−1+caim)N
2
imβimλim(Nimλim+µim)

µim2− ((1−csim)βimµimµim2+caimN3
imλ 2

im(βim+µim2)+Nimβim

(µimµim2+λim(µim−csimµim+µim2))+N2
imλim

(caimµimµim2+βim(λim+µim2+caimµim2)))µim3)
☛
✡

✟
✠5.15

The Storage Manager (SM) of the cloud infrastructure uses a redundancy mechanism

that is similar to that presented for the IM. Therefore, the CTMC models of both IM and SM

have the same structure of states and transitions, and theirdifferences are just the values of

failure, repair, and coverage parameters used in the transition rates. Due to such similarity the

CTMC for the SM is not depicted here, but we present Equation
☛
✡

✟
✠5.16 used to compute the

availability of this component.

ACloudSM=

− (βsm(Nsm(1+Nsm+casmNsm)λsm+(1−cssm+Nsm)µsm)µsm2µsm3)/

((−1+casm)N
2
smβsmλsm(Nsmλsm+µsm)

µsm2− ((1−cssm)βsmµsmµsm2+casmN3
smλ 2

sm(βsm+µsm2)+Nsmβsm

(µsmµsm2+λsm(µsm−cssmµsm+µsm2))+N2
smλsm

(casmµsmµsm2+βsm(λsm+µsm2+casmµsm2)))µsm3)
☛
✡

✟
✠5.16

Similar to the WiFi and 3G components of our top-level model,each node in the cloud

environment is a single block which is not expanded in a sub-model. Therefore, the availability

of each node can be computed through Equation
☛
✡

✟
✠5.17 , whereµnode andλnode are the repair

and failure rates of each node composing the cloud nodes available for hosting the applications

that support the mobile cloud in the server side.

ANode=
µnode

λnode+µnode

☛
✡

✟
✠5.17

5.2.3 Definition of input parameters

Table 5.6 shows the input parameters for the mobile device, battery, and mobile applica-

tion models. The failure rate of mobile hardware,λh, comes from the annual failure rate (AFR)

reported in (SQUARETRADE, 2010), but it was reduced by a factor of 10. This reduction aims

to yield a more realistic value of the MTTF, based on (SCHROEDER; GIBSON, 2007), which
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states that the time between replacements of failed hard drives may be 10 times shorter than

the MTTF published by manufacturers, which are also based onAFR values. The application

failure rate (λapp) is based on the estimate found in (KIM; MACHIDA; TRIVEDI , 2009b) for

web application. The rate of update releases (λu) is an average of values found in (APPBRAIN,

2013). The application repair,µapp, and update installation,µu, rates are considered to be

equivalent to the inverse of the mean time to restart a mobileapplication.

Table 5.6: Input parameters for the mobile device and mobile application models

Parameter Value (h−1)
λh 0.00004452
λs 0.00069401
µh 0.6
µs 3.0
λapp 0.0029700
µapp 120
λu 0.00157828
µu 120
βu 0.2

Table 5.7 shows the parameter values for the blocks representing the WiFi and 3G com-

munication networks in the RBD of Figure 5.12, as well as the values for the battery discharge

model. The failure rates of WiFi and 3G networks, due to signal blocking and similar problems,

are found in (D-LINK WIRELESS N150 ROUTER, 2012) and (COOPER; FARRELL, 2007),

respectively. The battery discharging rate is obtained in the specifications published by major

smartphone manufacturers (PHONEARENA, 2013).

Table 5.7: Input parameters for the WiFi, 3G, and battery models

Parameter Value
λwi f i 0.0001 (h−1)
µwi f i 0.6 (h−1)
λ3g 0.000012 (h−1)
µ3g 0.083 (h−1)
p3g 0.7
pw 0.3
d3g 1.4 (h−1)
dw 1.1 (h−1)
rb 60 (h−1)

Table 5.8 depicts the parameters for the RBD of Figure 5.16, representing the IM, and

also for the SM and the nodes in the cloud infrastructures. The failure and repair rates are found

in the study of private cloud systems presented in (DANTAS et al., 2012b).
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Table 5.8: Input parameters for the IM, SM, and nodes

Parameter Value
λim 0.0029979 (h−1)
µim 1.0650684 (h−1)
µim2 0.5325342 (h−1)
µim3 0.7100456 (h−1)
βim 120 (h−1)
Nim 1
caim 0.95
csim 0.9
λsm 0.0039984006 (h−1)
µsm 0.89212433 (h−1)
µsm2 0.44606216 (h−1)
µsm3 0.59474626 (h−1)
βsm 120 (h−1)
Nsm 1
casm 0.95
cssm 0.9
λnode 0.003678
µnode 1.1367382

Table 5.9: Availability results

Steady-state availability Number of Nines Downtime (h/yr)
0.99553119 2.349808 39.147

5.2.4 Solution of hierarchical model

We computed availability measures for the mobile cloud architecture, using the men-

tioned input parameters on the hierarchical model. Both, CTMCsand RBDs were solved nu-

merically, first obtaining the availability for each CTMC sub-model, and then using the corre-

sponding values in the RBD model. The results are shown in Table5.9, including steady-state

availability, number of nines, and annual downtime.

The expected annual downtime of 39.147 hours indicates thatthere is room for improve-

ments, because this value corresponds to more than 1 day of total outage throughout a year. The

same conclusion is also drawn by looking directly on steady-state availability and its number

of nines. Many companies consider that their systems must reach at least three nines of avail-

ability. Amazon EC2 SLA defines 99.95% as its minimum monthly uptime percentage, which

once violated makes the customer eligible to receive service credits, as compensation (AMA-

ZON, 2014b). Such a metric equals 3.3 nines of availability, whereas the mobile cloud system

evaluated here has about 2.35 nines, confirming that we cannot consider the evaluated measures

as satisfactory. Therefore, we must carry out enhancementson this system according to the

proposed methodology.
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5.2.5 Sensitivity analysis on sub-models and high-level models

This section shows how distinct sensitivity analysis techniques applied to our hierarchi-

cal model can detect bottlenecks of this system’s availability out of the many parameters that

may impact the model results.

As mentioned in Chapter 2, the direct method—based on partialderivatives—is the

backbone of many sensitivity analysis techniques. We use such a technique to begin our explo-

ration of model parameters, in order to assess those with significant impact on model results,

i.e., system steady-state availability. The sensitivity ranking obtained through the computation

of partial derivatives will also enable us to justifiably ignore parameters that have less impact

on the measure of interest.

Partial derivatives Table 5.10 presents the sensitivity ranking computed usingthe partial

derivate of Equation
☛
✡

✟
✠5.9 , and subsequent derivatives of equations for each sub-model. The

derivative expressions are not shown for the sake of conciseness. The sensitivity ranking in

Table 5.10 uses scaled sensitivity indices to remove undesired influences of units, because pa-

rameters with very different orders of magnitude are used inthis model. The parameters are

presented in decreasing order of the sensitivity index.

The top-ranked parameters are the coverage factors of the Storage Manager and Infras-

tructure Manager. All these coverage factors (cssm, casm, csim, caim) have a direct impact on how

likely a single host failure will cause the failure of the IM,or of the SM, and a subsequent failure

of the whole system. The parameterscssm andcsim may be improved through the employment

of more accurate failure detection mechanisms, whilecasm andcaim may require architectural

solutions to enable the spare host to be activated for nearlyall possible types of failures in the

active hosts. Most parameters ranked in the next highest positions are related to the battery

model or the IM and SM models. Therefore, these components should receive higher priority

than others to achieve effective improvements in system availability.

The last set of parameters in the ranking are related to the WiFi, 3G, and cloud nodes.

The reduced impact of failure and repair rates of these components is expected due to the parallel

structures in which they are involved. A single failure of WiFi, or 3G, network does not bring

the system down. The same thing happens for a single cloud node. The other parts of the

mobile cloud system are prone to single points of failure, orat most to dynamic redundancy

mechanisms which do not avoid some downtime before their activation.

Percentage difference Table 5.11 presents the sensitivity ranking based on percentage differ-

ence, as shown in Equation
☛
✡

✟
✠2.7 . For this analysis we used a range of values approximately

between -50% and +50% of the baseline value for each parameter. For the probability values,

we used 0.1 as the minimum value and 1.0 as the maximum value. The minimum value forNim

andNsm was 1 and the maximum value was 10.
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Table 5.10:Sensitivity ranking based on partial derivatives

Parameter Description |SS(A)|
cssm Coverage factor - Spare SM 0.006242686368
casm Coverage factor - Active SM 0.005679147263
csim Coverage factor - Spare IM 0.003946053118
caim Coverage factor - Active IM 0.003579911742
rb Battery replacement 0.002173576439
d3g Battery discharge - 3G 0.001626034283
λsm Failure - Storage Manager 0.001259313897
µsm2 Repair 2 - Storage Manager 0.000871670267
λim Failure - Infrastructure Manager 0.000767725345
dw Battery discharge - WiFi 0.000547542156
Nsm Number of active SMs 0.000534594283
µim2 Repair 2 - Infrastructure Manager 0.000533421136
Nim Number of active IMs 0.000316933771
µsm3 Repair 3 - Storage Manager 0.000301953425
p3g Prob. of 3G connection 0.000256681126
µs Repair Mobile OS 0.000230303097
λs Failure Mobile OS 0.000230303097
µim3 Repair 3 - Infrastructure Manager 0.000190158647
µh Repair - Mob. dev. hardware 0.000073869450
λh Failure - Mob. dev. hardware 0.000073869450
µsm Repair 1 - Storage Manager 0.000057255808
pw Prob. of WiFi connection 0.000039323482
βsm Activation of spare SM 0.000028434398
µapp Repair of Mobile App 0.000024446504
λapp Failure of Mobile App 0.000024446504
µim Repair - Infrastructure Manager 0.000022767188
βim Activation of spare IM 0.000021378375
µu Update installation 0.000012991063
λu Update release 0.000012697941
βu Update selection 0.000000293122
µwi f i Repair - Wifi 0.000000023918
µ3g Repair - 3G 0.000000023918
λwi f i Failure - WiFi 0.000000023918
λ3g Failure - 3G 0.000000023918
µnode Repair - Node 0.000000000002
λnode Failure - Node 0.000000000002
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Table 5.11:Sensitivity ranking from percentage difference

Parameter |S(A)|
Nsm 0.0068660546
rb 0.0058528304
Nim 0.003583039
casm 0.0026962696
cssm 0.0026128065
caim 0.0017010243
csim 0.0016524309
d3g 0.0014956874
dw 0.0006411687
µs 0.0006241302
p3g 0.0005661573
λsm 0.0004926414
µsm2 0.0003510625
µim2 0.0002565759
λim 0.0001975189

Note thatNsm andNim are at higher positions in this ranking, as well asrb—the rate of

replacement for the battery—and the coverage parameters ofSM and IM (casm, cssm, caim, csim)

are ranked just after. This occurs becauseNim andNsmare not supposed to vary in a continuous

domain, as assumed in the sensitivity analysis based on partial derivatives. Nsm andNim are

in the integer numbers domain. Such a fact highlights the usefulness of complementing the

sensitivity evaluation by comparing distinct methods. It is important to highlight that increases

in NsmandNim decrease the system availability. Thus, the higher position in the ranking denotes

that the redundancy mechanism shall be modified to a more adequate approach as the required

number of active servers rises.

The battery discharge rate with 3G enabled (d3g), and the discharge rate with WiFi

(dw), have similar positions in both rankings, and therefore also deserve attention when search-

ing for improvements to system availability. Both rates may be reduced by adjusts in high level

protocols of the application running in the mobile device. These adjusts can include compress-

ing transmitted data, and decreasing synchronization frequency. The choice of the 3G provider

with best coverage (i.e., strongest signal in most areas) isanother action capable of reducing the

discharge rate too.

It is also worth noticing that only one parameter in the top 15from Table 5.10 does

not appear in Table 5.11, despite the changes in the order of the other 14 parameters.musm3 is

not one of the 15 most impacting parameters in this percentage difference ranking. Table 5.11

instead indicatesmus—repair rate of mobile OS—as one of the top 15 parameters.

Design of Experiments We performed the analysis of a factorial design of experiments to

provide another point of view on the sensitivity of mobile cloud availability with respect to

each parameter. This analysis is performed on the 15 parameters shown in the ranking based on
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Table 5.12:Sensitivity ranking from 2k experiment analysis

Parameter Effect
rb 0.010521
casm 0.007525
Nsm -0.006857
µsm2 0.004468
λsm -0.004225
Nim -0.003982
csim 0.003141
musm3 0.003115
cssm 0.002748
λim 0.002174
p3g 0.001510
dw -0.001095
d3g -0.001015
caim 0.000861
µim2 -0.000096

partial derivatives. Two levels are considered for each parameter: the minimum and maximum

values used in the percentage difference analysis. This 2k factorial experiment (JAIN, 1991)

is evaluated according to the individual effects for the system availability, and these values are

shown in Table 5.12.

Parametersrb, casm and Nsm have the largest effect values, similarly to seen in the

analysis with percentage differences. The failure rate of the SM (λsm), and the repair rate of SM

when two hosts are failed (µsm2), are among the highest in this ranking, as they are also in the

partial derivatives ranking. Note that the effect of many parameters related to the SM are among

the highest ones in Table 5.12, confirming the importance of this component in the search for

system availability improvements.

A refined analysis combining the three rankings—2k DoE, percentage difference indices,

and partial derivative indices—may provide a reduced list of parameters which deserve the

highest priority to improve the system availability. We perform such a combined analysis by

checking the parameters which appear among the first five positions in at least two out of the

three rankings. The parameters which match such a criterionare the coverage factors of failures

in the SM (casm,cssm), the required number of active hosts for the SM (Nsm), and the rate

of battery replacement after discharge (rb). These four parameters can be considered major

availability bottlenecks extracted from the 36 parameterscomprising the complete hierarchical

model.
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Figure 5.17: Activity Diagram of Event Recommendation Mashup

5.3 Performance of Composite Web Services on Private Cloud

This case study demonstrates the application of our methodology in the context of per-

formance evaluation, what it makes especially distinct from both case studies presented in Sec-

tion 5.1 and Section 5.2, that carried out availability evaluation instead. It also exercises specif-

ically the method proposed in Section 4.2.2, which addresses SPN as top-level model in the

hierarchical composition.

The system evaluated in this section is an event recommendation mashup (MATOS;

MACIEL; SILVA , 2013), i.e.: a composite web service, which is hosted on a privatecloud.

This mashup receives the location (city or neighborhood) from the user and combines data from

publicly available web services in order to recommend a musical event that will occur nearby.

Figure 5.17 depicts a Unified Modeling Language (UML) activity diagram for such a

service. The first activity is the search for musical events around the current location of the user.

The location data might be acquired by communicating with a Global Positioning System (GPS)
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(a) CloudWatch Process.

(b) Instantiation Process.

Figure 5.18: Detailed representation of Eucalyptus Auto Scaling process.

application, or manually provided by the user. After obtaining a list of nearby musical event, the

application issues concurrent calls to two distinct services: search on venue statistics, such as

average users rating of previous events in that concert place; and search for similarities between

the lineup of artists in the event and the user’s preferences. When data from both services are

acquired, the mashup selects the best event based on the venue and artist criteria. Once the event

is selected, the application searches for map directions from the user current place to the event

venue, and gets a link for one sample song from the main artistin that event. The last activity is

the presentation of all gathered information to the user.

The mashup application must take advantage of elasticity mechanisms to avoid perfor-

mance degradation even in sudden bursts of users requests. The elasticity also avoids wasting

system resources in low workload periods. The Eucalyptus Auto Scaling mechanism is respon-

sible for adapting the number of VMs that run the web service.As explained in Section 2.1, the

Auto Scaling interacts with the CloudWatch and Elastic Load Balancer components to avoid

performance degradation. This is accomplished by creatingnew VM instances when a given

metric reaches a threshold predefined by the system administrator.

CloudWatch monitors information that is used by Auto Scalingto add or remove in-

stances. Figure 5.18 (a) details the operation of this process. Note that while workload arrives

in a VM, the CloudWatch, after a certain latency, monitors a metric (e.g.: average CPU uti-
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lization of all VMs) and adds the value in the Node Controller (NC) repository, along with the

time stamp of data collection. This information is collected from repositories of all NCs each

5 minutes (by default), and sent to a unified repository on Cloud Controller (CLC) that gathers

data from all clusters. At the end of a specified period of time(time window), CloudWatch ag-

gregates the metric values from the CLC repository, which were added within the range of the

time window. Statistics (e.g.: minimum, maximum, average)are computed from the aggregate

data, and if the result reaches the specified threshold, CloudWatch Alarm would modify its state

from ok to alarm. If an alarm state is maintained over a predefined number of time windows,

the CloudWatch Alarm triggers the warning threshold for the Auto Scaling, which performs ac-

tions (i.e.: add or remove instances) based on policies previously determined (EUCALYPTUS,

2014b).

Every request for the creation of a new VM instance takes sometime to be fully serviced.

That time depends on factors of the Eucalyptus instantiation process, which are explained as

follows. As shown in Figure 5.18 (b), when the auto scaling mechanism —or a user— calls for

a new VM instance, the CLC checks the existence of available resources for creating such a VM.

This is accomplished through queries to the Cluster Controller (CC), which stores information

about its nodes. If there are enough resources, the CLC reserves a unique identification number

for the instance, the CC assigns the node where the VM should beinstantiated, and the NC starts

copying three images: Eucalyptus Machine Image (EMI); Eucalyptus Kernel Image (EKI); and

Eucalyptus Ramdisk Image (ERI). These images can be downloaded from Walrus or copied

from a local cache, maintained by NC (EUCALYPTUS, 2014a).

The cache will not be used if it is not enabled in system configuration or if the requested

EMI had never been instantiated on that node before. In the latter case, the CLC transfers

EMI from Walrus to the cache and to the NC instance directory.Note that EKI and ERI are

also downloaded if they are not in the NC cache. When the cache is not enabled, the EMI

is transferred directly to the NC instance directory and is not cached for later use. When the

cache is working and the node already has a copy of the EMI, theCLC does not download

from Walrus, but only copies the EMI from the cache to the instance directory (EUCALYPTUS,

2014a).

After obtaining the EMI, EKI, and ERI, the NC interacts with the hypervisor (KVM,

Xen, or VMware) to prepare the disk space required by the VM instance, according to the

chosen VM type (e.g.: m1.small, c1.xlarge, etc.). Such a procedure usually requires creating,

partitioning and formatting virtual block devices. The hypervisor, then, starts the current VM,

completing the instantiation process (EUCALYPTUS, 2014a).

In a previous work (CAMPOS et al., 2015), we identified three main phases that occur

for instantiating a VM in a Eucalyptus cloud: (i) resource and instance reservation; (ii) copy

(or download) of the VM image files (EMI, EKI, and ERI); and (iii) VM preparation and de-

ployment. These three phases are considered in a CTMC model for VM instantiation that is

presented further.
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Figure 5.19: SPN model for the scalable web service on private cloud

A hierarchical model is proposed to evaluate the whole system just described in this sec-

tion. The approach enables representing details of specificprocesses, such as the instantiation

of VMs and the calls for the providers of specific web servicesthat compose the mashup appli-

cation. The hierarchical model comprises an SPN as main model and CTMCs as sub-models.

5.3.1 Creating top-level model

The SPN, depicted in Figure 5.19, is a performance model of the web service deployed

in a private cloud with the auto scaling mechanism. This model captures the main activities

of the system, from client requests to service completion. It also represents the creation and

termination of VM instances through the autoscaling mechanism.

A token in placePReq represents a user request for the mashup. The firing delay of

transitionTReq corresponds to the mean time between arrivals of requests. WhenTReq fires,

it stores one token in the placePSend, which denotes the transmission of requests through the

network. The network latency between client and server is assigned to transitionTSend. A

token in placeJobAdmission represents user request arrival in the cloud. Such a requestmay

be admitted by the Load Balancer if its buffer is not full (immediate transitionTAccept), or

discarded otherwise (immediate transitionTReject). If the request is admitted, it waits in the

placeQueuefor being assigned to one of the VMs hosting the mashup application. The time

spent by the Load Balancer to forward the request is represented by transitionTLB . Notice

thatTLB requires one token from placeIdleVMs , which initially has two tokens, denoting the

number of available VM instances we defined for initial cloudsetup.

The VMs that are busy processing a user request are represented by tokens in place

BusyVMs. The time that one VM takes to serve a request is assigned to transitionTService,

which is refined by a CTMC submodel presented further. Notice that transitionTServicehas an

infinite server firing policy in order to properly represent the parallel execution of all requested
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Table 5.13: Immediate transitions of the SPN model for scalable web service on private
cloud

Transition Description Enabling function Priority
TNoScale Decision of keeping the current number of

VMs
#IdleVMs≥1 1

TScaleUp Decision of increasing the current number of
VMs

#IdleVMs<1 1

TScaleDown Decision of decreasing the current number of
VMs

(#IdleVMs>4) AND
(#Queue<1)

2

TAccept Decision of accepting the user request – 1
TReject Decision of rejecting the user request – 1

TComplete Completion of user request – 1

VMs. After processing a request, a response is sent back to the client. This activity is denoted

by transitionTRep. PlacePComplete represents the client response arrival. The transition

TComplete firing consumes all tokens inPComplete, avoiding accumulation of tokens in that

place and subsequent problems for model solution.

The auto scaling mechanism is modeled by places and transitions in the upper part of

the SPN. The placePMonitor and transitionTWindow denote the periodic trigger of Cloud-

Watch monitor.TWindow is a deterministic transition, so it properly represents the fixed time

interval (window) at which the metrics are requested. A token in the placePCheckMetrics en-

ables the transitionTCWLatency, which denotes the time for collecting data from nodes and

summarizing collected data. WhenTCWLatency fires, one token is stored inPCheckMetrics.

The transitionTCheckThreshold delay represents the time for analyzing summarized data ac-

cording to the predefined thresholds.TCheckThresholdstores a token in placeScaleDecision,

which has two outgoing transitions:TNoScaleandTScaleUp, that denote the options of hold-

ing or increasing the current number of VM instances, respectively. Table 5.13 presents the

enabling functions for those two transitions.

If the transitionTNoScalefires, it consumes a token from placeScaleDecision. Oth-

erwise, if the transitionTScaleUpfires, it consumes a token fromScaleDecisionand stores

a token in placePInstantiation. The transitionTInst delay represents the time required for

instantiating one VM in the private cloud. A CTMC submodel wasdeveloped to represent the

VM instantiation process in detail, hence the delay ofTInst is computed from that submodel.

Notice thatTInst requires one token available in the placePoolVMs. Such a place denotes the

maximum capacity (in number of VMs) that might be added to themashup application. For the

current analysis, there are five tokens inPoolVMs, indicating that the autoscaling might create

up to five new VMs. When transitionTInst fires, it stores one token in the placeIdleVMs . The

immediate transitionTScaleDownrepresents the activity of terminating VMs in periods of low

workload, in order to avoid underutilization of resources.

Table 5.13 shows the enabling functions and priorities for each immediate transition of

the SPN model.TNoScaleis enabled whenever there is at least one token in the placeIdleVMs .
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Figure 5.20: CTMC model for the VM instantiation performance.

TScaleUp is enabled if there is less than one token inIdleVMs , i.e.: if the place is empty.

TScaleDownrequires more than four tokens inIdleVMs . Considering only the enabling func-

tions, TNoScaleand TScaleDowncould be simultaneously enabled, butTScaleDownwas

assigned the highest priority of both, so it always fires first. The transitionsTAccept andTRe-

ject do not have any enabling functions because they depend only on the existence of tokens in

placeBuffer_LB . There is an inhibitor arc inTReject coming fromBuffer_LB , soTReject

can only fire ifBuffer_LB is empty. The arc fromBuffer_LB to TAccept only enables transi-

tion TAccept if there is at least one token inBuffer_LB . TComplete is a single sink transition

which does not need any enabling function.

It is important to highlight that this SPN shall not be solvedthrough numerical anal-

ysis, but only through simulation, due to the existence of a non-exponential timed transition

(TWindow is deterministic). Next sections deal with the two CTMC models that also comprise

our hierarchical modeling approach.

5.3.2 Creating sub-models for specific components

Two CTMC submodels were created to compute the time spent in the VM instantiation

process and the response time of the composite web service mentioned in Section 5.3.1. The re-

sults from those provide the mean delay values forTInst andTservicetransitions, respectively,

of the SPN main model.

VM instantiation submodel

Figure 5.20 depicts the CTMC created to represent the instantiation process of a VM in

a Eucalyptus private cloud. This model comprises the statesRI , CI , DI1, DI2, DI3, DI4, PV,

andVR. State RI represents the reservation of a VM instance on Cluster Controller. StateCI

denotes the copy of VMI (virtual machine image) files –i.e, EMI, EKI, and ERI – to the directory

of instances in Node Controller. StatesDI1, DI2, DI3, andDI4 represent the download of VMI

to the Node Controller cache. StatePV means that the hypervisor is formatting the virtual block
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device and configuring the VM. Finally,VR represents the VM running, so the instantiation is

complete.

We have used average results from an experimental testbed asinput for the VM instan-

tiation model. Statistical analysis on experimental data does not reject exponential distributions

as good fit for the time of every activity in VM instantiation,except by VMI downloadt_DI =

vmiSize/bw. For such a reason, our model representst_DI by means of a 4-stage Erlang distri-

bution, using a moment matching method described in (WATSON J.F.; DESROCHERS, 1991).

The stages are denoted byDI1, DI2, DI3, andDI4 with rate 1/(t_DI/4) = (4×bw)/vmiSize

for the output transition of each state.

The VM instantiation process begins atRI state. The model goes fromRI to CI with

rate p_cache× (1/t_RI), denoting the case when VMI is already in the node’s cache. InCI

state, the transition toPV state occurs with rate 1/t_CI. The transition fromRI to DI1 occurs

with rate(1− p_cache)× (1/t_RI) and represents that the node needs to download the VMI

from Walrus. FromDI1, the model continues toDI2, DI3, andDI4, with rate(4×bw)/vmiSize

in each transition until it reaches thePV state , indicating the end of VMI download and the

beginning of VM preparation. The last step of instantiationprocess occurs when the model goes

from PV state toVR state with 1/t_PV rate.

Mashup application submodel

A CTMC model was created to evaluate the performance of the single mashup applica-

tion, without the cloud or other infrastructure aspects. The CTMC input data are the response

times of each individual service depicted in the UML diagramof Figure 5.17. Each state in the

CTMC, depicted in Figure 5.21 denotes a service request, the only exception is the final state.

The transition rates are estimated as the reciprocal of meanresponse time for each web service

(1/mrtX). All response times are assumed to be exponentially distributed. The state “Event

Analysis” represents the execution of concurrent calls to the “Search for Venue Statistics” and

“Search for Related Artists” services. The model might go to state “Venue Stats Finished”,

with a rate of 1/mrtVS, or to “Similar Artists Finished ”, with a rate of 1/mrtSA, indicating

which web service replied first. The state “Top Event Selection” indicates that the responses of

both services, i.e.: “Search for Venue Statistics” and “Search for Related Artists” were received.

“Top Event Selection” also denotes the analysis of all events using the previously collected data,

which is completed with rate 1/mrtTS. Then the model goes to state“Additional info search” ,

representing the concurrent execution of queries to “Map Search” and “Song Search” services.

The model reaches “ textbfMap Search Finished” with rate 1/mrtMS, and “Song Search Fin-

ished” with rate 1/mrtSS, denoting which service replied first. After finishing both services, the

CTMC finally reaches state “Complete”, an absorbing state that indicates the end of mashup

execution.
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Figure 5.21: CTMC model for the event recommendation mashup
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Table 5.14:Timed transitions of the SPN model for scalable web service on private
cloud

Transition Description Value (s)
TWindow Time window for CloudWatch 60.0

TCWLatency Delay for metrics collection on CloudWatch 60.0
TCheckThreshold Time for computing metrics and compare to thresholds 1.0

TInst Time for instantiation of a new VM 37.2
Treq Time between user requests 4.0

Tsend Network latency to send request 0.2
TLB Time for Load Balancer forward request 1.0

Tservice Response time of mashup 6.9
Trep Network latency to send response 0.2

5.3.3 Definition of input parameters

Table 5.14 presents the delays assigned to all timed transitions of the SPN main model.

The values for delays ofTWindow , TCWLatency, TCheckThreshold, TLB , Treq, andTrep

were obtained in a Eucalyptus private cloud testbed, using default configuration parameters

for the Eucalyptus CloudWatch (EUCALYPTUS, 2014a). The values forTInst andTservice

delays come from distinct CTMC submodels presented further,which represent the VM instan-

tiation process, and the event recommendation composite web service. Therefore the evaluation

of our system relies on a hierarchical heterogeneous model.

Table 5.15 presents a description of VM instantiation modelparameters and their values.

The parameterpCacheis assigned to 0.9 to represent a scenario with 90% of nodes containing

the VMI in their cache. All other parameter values were collected in testbed experiments on a

Eucalyptus private cloud. The machines in the cloud had the following hardware configuration:

Intel(R) Core(TM) i7-3770 3.4 GHz CPU, 4 GB RAM DDR3, 500 GB SATA HD.One machine

was configured as front-end for execution of CLC, CC, SC, and Walrus. Other five machines

are the nodes running the NCs. All hosts run the CentOS Linux 6 operating system and the

Eucalyptus 3.4 platform. The VMs run the Ubuntu Server 14.04.01 LTS operating system. A

Fast Ethernet network was adopted to connect the PCs through asingle switch. This environ-

ment has all that is needed for the purposes of this study, since the VM instantiation is a process

involving only the front-end and the specific node where the VM is allocated. Therefore, the

limited size enabled accurately monitoring every stage of the instantiation process.

In order to obtain the value fort_CI, the VM was previously instantiated in all nodes,

so their caches stored the VMI. Therefore in the following experiments for measuringt_CI, the

nodes would only copy the VMI from local cache. On the other hand, for obtainingbw –the

effective bandwidth used during VMI download– the cache of every node was erased in the

beginning of each experiment run. Therefore, the nodes always had to download the VMI from

Walrus andbw was measured properly. The average value for each parameterwas computed

after 50 experiment replicas.
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Table 5.15:Parameter values for the CTMC model of VM instantiation.

Parameter Description Value
p_Cache Probability that VMI is already in cache0.9 (90%)

t_RI Mean instance reservation time 0.280 s
t_CI Mean VMI local copy time 7.624 s
bw Network bandwidth 10.5 MB/s

vmiSize VMI size 2048 MB
t_PV Mean VM preparation time 10.603 s

Table 5.16:Parameter values for the mashup CTMC model.

Parameter Description Value (s)
mrt_ES Mean resp. time of Event Search 2.333
mrt_VS Mean resp. time of Venue Search 0.324
mrt_SA Mean resp. time of Similar Artists 2.286
mrt_TS Mean resp. time of Top Event Selection 0.226
mrt_MS Mean resp. time of Map Search 0.452
mrt_SS Mean resp. time of Song Search 1.909

Table 5.16 presents the values assigned to parameters of themashup application model.

Each mean response time was obtained through measurements on a real mashup application,

calling specific web services provided by Foursquare, Google Maps, Last.FM, and Eventful.

5.3.4 Solution of hierarchical model

The models presented in Section 5.3.1 and Section 5.3.2 wereevaluated to assess the

performance of the scalable web service system. Stationarysimulation of the SPN depicted in

Figure 5.19 enabled obtaining measures such as mean queue size, average number of busy VMs,

average utilization of VMs, and mean response time to the user.

The simulation was executed for a confidence level of 95%, maximum relative error

of 5%, warm-up period of 50 runs, run size (i.e.: number of times each transition fires) of

1000, and maximum simulation time of 120 seconds. The CTMC sub-models were solved

through stationary analysis, providing the values to be assigned as delays ofTInst andTService

transitions.

Table 5.17:Performance measures

Measure Expression Value
Utilization of VMs (%) E{#BusyVMs})/(E{#IdleVMs}+E{ #BusyVMs}) 38.3 %

Average number of busy VMs E{#BusyVMs} 1.716
Average number of idle VMs E{#IdleVMs} 2.773
LB queue size (#of requests) E{#Queue} 0.432

Mean response time - Rsp - (s) NRequests/(P{#PReply>0}×(1/TReply)) 9.029 s

Table 5.17 presents the performance measures computed considering the baseline con-
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figuration of parameters values shown throughout Sections 5.3.1 and 5.3.2. The average utiliza-

tion of VMs is around 38.3%, what shows that the system has enough capacity to serve user

requests with the allocated resources. Such a capacity is partially provided by means of addi-

tional VMs created by the auto scaling mechanism. This is confirmed by the sum of average

number of busy VMs and average number of idle VMs, that is equal to approximately 4.48. If

the auto scaling mechanism were not working –and we had only two VMs– the average utiliza-

tion could reach about 85%, incurring in risks of bad performance for the users, mainly during

high workload bursts. The average load balancer queue size is another measure that shows the

system is not overloaded, since the requests do not wait in the queue for being distributed to the

VMs.

The mean response time of the system (Rsp) is 9.029 seconds. This is the round-trip

time interval elapsed from the dispatch of user request to response arrival. The measure expres-

sion on the SPN isRsp= NRequests/(P{#PReply> 0}× (1/TReply)), whereNRequestsis

the average number of requests in the system.NRequestsis computed through the expression

E{#PSend})+(E{#JobAdmission})+(E{#Queue})+(E{#BusyVMs})+(E{#PReply}.

By summing up the response time of the mashup application, therequest and reply

network delays, and the time for load balancer distribution, the result is close to the system

response time (9.029 s), indicating that requests spend little time in queue.Even then, the mean

response time of this system might be shortened by tuning some of its many parameters and

components. In order to identify the most effective points for a response time improvement, it

is important to assess the measure sensitivity to models’ parameters.

5.3.5 Sensitivity analysis on sub-models and high-level models

We employ the following technique to achieve a unified view ofthe response time sen-

sitivity with respect to all parameters.

First, a sensitivity ranking is computed for the main model,considering all of its parame-

ters, but without detailing the sensitivity with respect the parameters of the submodels. We used

the percentage difference technique (see Section 2.3) to compute the sensitivity ranking of the

main model. The minimum and maximum values used for computing the percentage difference

index are shown in Table 5.18. Such a technique was adopted because the model can only be

solved through simulation, making it not suitable for the technique of partial derivatives. Next,

we computed the sensitivity rankings for the sub-models through partial derivatives, because

they are solved through analytical methods instead of simulation. In such a case, sensitivity

indices from partial derivatives are obtained from the underlying equations with smaller com-

putational effort than percentage difference indices. We multiplied each sub-model sensitivity

index by the corresponding index on the main model, obtaining a composite index. For instance,

Smrt_ES(Rsp) = SSmrt_ES(TService)×STService(Rsp). The same rule will be applied for all pa-

rameters of the CTMC model used to computeTService, and similarly for the parameters of
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Table 5.18:Minimum and maximum parameter values for computing the sensitivity
indices for the main model

Transition Minimum (s) Maximum (s)
TWindow 60 240

TCWLatency 60 300
TCheckThreshold 1 5

TInst 15 60
Treq 4 8

Tsend 0.2 1
TLB 0.2 1

Tservice 5 10
Trep 0.2 1

the CTMC model used to computeTInst .

The unified sensitivity ranking comprises the composite indices for the parameters of

sub-models, as well as indices for parameters of the main model which are not related to sub-

models. We could also build sensitivity rankings for metrics such as utilization of VMs and

load balancer queue size, but we focused on system mean response time (Rsp) because it is the

most user-centered performance measure among those listedon Table 5.17.

Sensitivity analysis results

Table 5.19 shows the sensitivity ranking for the main model.Notice that the ranking

is sorted in decreasing order of absolute value. This is because the magnitude of the index

indicates how much impact it causes on the output measure. Itis important to highlight that

negative indices only indicate an inverse relationship between the parameter and the measure

of interest, i.e.: if the input parameter value increases, the output measure decreases and vice

versa.

It is possible to notice thatTService— the execution time of the event recommendation

web service — is the most impacting of the parameters, followed byTLB , TRep, andTSend.

The other parameters have smaller impact on the system response time.TReq has an intermedi-

ate impact if compared to the other ones, and it is the only parameter with a negative sensitivity

index. This is because the smaller is the time between users requests the higher is the load to be

processed by the VMs, incurring in higher system response time too.

The ranking enables us to state thatTService, TLB , TRep, andTSend are the most

effective points to invest in order to decrease the responsetime. Although, we must also analyze

the sub-models that provideTServiceandTInst to achieve a detailed view of the impact that

each sub-component has in this system.

The VM instantiation sub-model is used to computeTInst , so we evaluate the sensi-

tivity of TInst with respect to each parameter of the respective CTMC. It is worth mentioning

that we use scaled indices in Table 5.20 due to the different units of parameters of VM instan-
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Table 5.19:Sensitivity ranking for the main model

Parameter S(Rsp)
TService 0.45763
TLB 0.13788
TRep 0.11303
TSend 0.11466
TReq -0.05808
TWindow 0.00617
TCWLatency 0.00489
TInst 0.00256
TCheckThreshold 0.00176

Table 5.20:Sensitivity ranking for the VM instantiation submodel

Parameter SS(TInst)
pCache -4.52843
vmiSize 0.52363
bw -0.52363
t_PV 0.28465
t_CI 0.18421
t_RI 0.00752

tiation submodel. The scaled indices enable us to compare those parameters fairly. As shown

in Table 5.20, the probability of finding the VM image on the node’s cache (pCache) is the

factor that produces the largest impact on the time for VM instantiation. VaryingpCachecause

changes onTInst that are one order of magnitude larger than the effect of other parameters.

This is denoted by the difference between the sensitivity indices. Note that ifpCacheincreases,

TInst will decrease. The same will occur withbw — the network bandwidth — but to a lesser

extent.

Table 5.21 presents the sensitivity ofTService with respect to each parameter of the

mashup sub-model.

The response time of theEvent SearchandSimilar Artists providers (mrt_ES and

mrt_SA) are the parameters with largest impact onTService. The sensitivity with respect to

the Song Searchresponse timemrt_SS is also an important factor in this model. The other

three parameters have sensitivity indices much smaller than those top three. We also use scaled

sensitivities in this ranking in order to keep consistency with VM instantiation submodel rank-

ing and enable fair comparison of parameters with distinct units when building the unified

ranking. Notice that the sensitivity indices on main model do not need to be scaled because the

percentage difference method already provides nondimensional values.

The next step in our analysis is to build a unified ranking considering all parameters

from both sub-models as well as the parameters from the main model. We used the composition

technique based on the chain rule (see Section 4.2). We multiplied each sub-model sensitiv-

ity index by the corresponding index on the main model, obtaining a composite index. For
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Table 5.21:Sensitivity ranking for the mashup sub-model

Parameter SS(TService)
mrt_ES 0.33906
mrt_SA 0.32711
mrt_SS 0.26727
mrt_TS 0.03284
mrt_MS 0.02274
mrt_VS 0.01096

Table 5.22:Unified sensitivity ranking for the general model and submodels

Parameter S(Rsp)
mrt_ES 0.15517
mrt_SA 0.14969
TLB 0.13977
mrt_SS 0.12231
TSend 0.11466
TRep 0.11303
TReq -0.05808
mrt_TS 0.01503
pCache -0.01162
mrt_MS 0.01041
TWindow 0.00617
mrt_VS 0.00502
TCWLatency 0.00489
TCheckThreshold 0.00176
vmiSize 0.00134
bw -0.00134
t_PV 0.00073
t_CI 0.00047
t_RI 0.00002

instance,Smrt_ES(Rsp) = SSmrt_ES(TService)×STService(Rsp). The same rule is applied for all

parameters of the CTMC model used to computeTService, and similarly for the parameters

of the CTMC model used to computeTInst . Such a method generated the sensitivity ranking

presented in Table 5.22. It is worth mentioning that the impact of TServicewhen considering

the main model (see Table 5.19) is confirmed by the presence ofmrt_ES andmrt_SA on the

top of the ranking. Thus, the most important action to decrease the system response time in a

significant degree is the replacement of currentEvent SearchandSimilar Artists web service

providers by faster ones, or at least the tuning of performance-related configurations in their API

(Application Programming Interface), such as the format and maximum length of the response.

Notice that in Table 5.19 there is an effective difference betweenSTService(Rsp) and

STLB(Rsp), but in this unified ranking the sensitivity with respect toTLB is comparable to

that of mrt_ES, mrt_SA, andmrt_SS. Therefore, the load balancer is also a high priority

component for the improvement of the overall system performance.
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It is important to stress that some parameters of the sub-model related toTServiceare

not so important for system improvement as other componentsfrom the main model. This is

the case ofmrt_VS, which has a sensitivity index among the half least impacting of all 19 pa-

rameters. The impact ofmrt_VS on system response time is similar to the impact ofTCWLa-

tency andTWindow from the main model. Those system components are little relevant for

the enhancement of system’s response time in the current setup, and therefore they deserve low

priority during system upgrades. Most parameters from the VM instantiation sub-model, with

the exception ofpCache, are in the same lower-ranking situation.

Such conclusions encompassing factors from distinct models are valuable results of the

unified ranking analysis, and demonstrate the applicability and importance of our proposed

approach. As an auxiliary view, we present a comparison of impact among some parameters

through scatter plots. Figure 5.22 depicts the impact of parametersmrt_ES, mrt_SA, and

mrt_SS on system response time, computed from the SPN main model. Wegrouped these

parameters on Figure 5.22 because they belong to the same sub-model, and are among the top

parameters in the sensitivity ranking of Table 5.22. The plot is generated by fixing all parameters

at their baseline values (see Tables 2.8, 5.15, and 5.16), except by one parameter that is varied

through a specific range in steps of about 10%, enabling the comparison of impact on the system

response time. Notice that the slopes ofmrt_ES, mrt_SA, andmrt_SS are similar, just like

their sensitivity indices on Table 5.22.

Figure 5.23 presents the impact of parametersTLB , TSend, andTRep, which belong

to the SPN main model.TLB shows a slightly higher impact on system response time than

TRep andTSenddo. Such a behavior matches the indices shown in Table 5.22, as well as the

similarity of slopes to themrt_ES, mrt_SA, andmrt_SS parameters. Notice that we kept the

range of Y-axis (system response time) the same for all plots(Figure 5.22, Figure 5.23, and

Figure 5.24), so we can compare the slopes of lines from distinct graphs.

Figure 5.24 depicts the impact of parameterpCacheon system response time. This is

one parameter from the VM instantiation sub-model, and has amuch smaller sensitivity index

than the previously plotted parameters. This relatively lower impact ofpCache is noteworthy

by comparing Figure 5.22 and Figure 5.23 to Figure 5.24. It isworth highlighting that even

varying pCachewith steps larger than 10%, its effect on system response time is limited to

about 0.1 second throughout the plot, whereas in Figure 5.22 the impact reaches around 0.8

seconds. On the other hand,pCachemay be one of the parameters most easily tunable in the

system, if compared to specific services response times (mrt_ES, mrt_SA, andmrt_SS) or

parameters related to network latency (TSend, TRep). pCachehas a higher sensitivity index

than many other parameters, and therefore deserves attention from system administrators.

Comparisons with other parameters could be made here, but if we evaluate systems with

dozens of parameters is harder and error-prone to compare all parameters through scatter plots.

The unified sensitivity ranking presented here is advantageous because it enables the fast iden-

tification of major and minor impacting parameters through accurate indices, as demonstrated.



110 5.3. PERFORMANCE OF COMPOSITE WEB SERVICES ON PRIVATE CLOUD

�
✁
✂

✄
✁
☎

✆

✆✝✞

✆✝✟

✆✝✠

✆✝✆

✡

✡✝✞

✡✝✟

✡✝✠

✡✝✆

☛☞✌☞✍✎✏✎✌ ✑☞✒✓✎ ✔✕✖

✗✝✟ ✗✝✠ ✗✝✆ ✞ ✞✝✞ ✞✝✟ ✞✝✠

✘✙✚✛✜

✘✙✚✜✢

✘✙✚✜✜

Figure 5.22: Impact of mrt_ES, mrt_SA, and mrt_SS on system response time

The sensitivity analysis approach that we proposed is tailored for hierarchical models and indi-

cates effective points to be tuned in order to achieve even better performance in this scalable

web service composition. Systems administrators can benefit of this approach, that may guide

investments and help decision making on which are the high priority components during tune-up

and upgrade efforts.
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Figure 5.23: Impact of TLB, TSend, and TRep on system response time
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5.4 Optimization of composite web services with Sensitive

GRASP

We carried out experiments for verifying the performance ofSensitive GRASP in a

scenario of multiple possible providers for a composite webservice. A CTMC model describes

the web service composition (i.e., a mashup), and we comparethe results with the approach

presented in (MATOS; MACIEL; SILVA , 2013) – hereinafter called Non-sensitive GRASP for

the sake of clarity. The execution time and the quality of solutions provided by each approach

are the evaluation criteria.

The Event recommendation mashup evaluated here is almost identical to that presented

in Section 5.3, with the exception that the mean response time of theTop Event Selection

activity is not represented. This is because the event selection involves only internal processing,

after receiving input data from the third-party providers.In this study, we try to select the

optimal configuration of external providers.

Figure 5.25 depicts the continuous time Markov chain (CTMC) used in this study. Due

to the similarity with Figure 5.21, we suppress the explanation of this model. The reader can

find the description of states and transitions in Section 5.3.

Figure 5.25: Event recommendation mashup

We implemented both algorithms, Sensitive and Non-sensitive GRASP, in Java. The

tests were performed in a computer with Intel Core i7 3.0 GHz processor, with 12 GB RAM. The

operating system was the Debian GNU/Linux 7.0, with kernel 3.14-1-amd64. The environment
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Table 5.23:Parameters used in the benchmark with size 1005

Provid. Event search Venue stats Similar artists Map Search Song Search
ID Rel. Rsp. Rel. Rsp. Rel. Rsp. Rel. Rsp. Rel. Rsp.
0 0.9670 3.0113 0.9837 3.5059 0.8597 1.0736 0.9268 4.0671 0.85892 1.3385
1 0.8778 2.7782 0.9311 4.6052 0.9763 3.3094 0.9929 3.4856 0.93159 4.3750
2 0.9434 2.1265 0.9810 4.3334 0.9285 4.6042 0.8835 3.4695 0.97944 3.0133
3 0.8902 3.1983 0.9357 1.9611 0.9366 4.8620 0.9857 1.3064 0.97163 4.7609
4 0.9103 3.7795 0.9652 2.6782 0.9866 4.2124 0.8885 3.7308 0.98738 2.9546
5 0.9312 3.9894 0.9744 4.5989 0.9208 4.1117 0.9056 1.2273 0.91222 1.5175
6 0.9541 3.8682 0.9549 3.7501 0.8729 2.4366 0.8936 3.5028 0.90240 2.8178
7 0.9148 1.5231 0.8522 2.0175 0.9880 3.5669 0.9702 1.7196 0.85149 1.3232
8 0.9378 3.2733 0.8625 3.2696 0.8998 2.8502 0.9222 4.3975 0.89676 4.7288
9 0.9549 1.6625 0.9350 4.5319 0.9742 2.3224 0.9830 4.9187 0.85726 1.9227
10 0.9837 3.5059 0.9268 4.0671 0.8663 1.6207 0.9300 3.9414 0.92036 3.7622
11 0.9311 4.6052 0.9929 3.4856 0.8798 3.8831 0.9386 1.9414 0.90350 1.9944
12 0.9810 4.3334 0.8835 3.4695 0.9830 2.5857 0.9669 2.6959 0.87086 1.8588
13 0.9357 1.9611 0.9857 1.3064 0.9179 4.4242 0.9579 2.1591 0.94919 1.2196
14 0.9652 2.6782 0.8885 3.7308 0.8909 4.7061 0.9737 1.5192 0.97035 2.8545
15 0.9744 4.5989 0.9056 1.2273 0.9123 3.6869 0.9397 2.3304 0.91226 1.5222
16 0.9549 3.7501 0.8936 3.5028 0.9122 1.7268 0.8708 1.9284 0.87014 4.3974
17 0.8522 2.0175 0.9702 1.7196 0.9034 1.0173 0.8654 1.4829 0.90527 2.1776
18 0.8625 3.2696 0.9222 4.3975 0.9104 3.4003 0.9208 1.3554 0.97126 4.7393
19 0.9350 4.5319 0.9830 4.9187 0.9501 1.1528 0.9664 2.3104 0.91387 3.5298

was controlled to avoid significant interferences to systemperformance. The Java version used

was 1.7.0_51 by means of the OpenJDK Runtime Environment (IcedTea 2.4.6).

Generation of Benchmark

The benchmarks of the experiments comprised||M|| hypothetical providers for each ser-

vice type, where||M|| varies from 100 to 500 depending on each specific experiment.A pseudo

random number generator called MersenneTwister (MATSUMOTO; NISHIMURA, 1998) was

used to generate providers parameters using a Uniform distribution with interval from [1s, 5s]

for the response time and [0.85, 0.99] for the reliability. We chose a Uniform distribution to

get the most diverse values for the parameters of each provider. The intervals of the generated

numbers were based on real web service measurements and somevalues found in the literature

(ZHENG et al., 2012; SATO; TRIVEDI, 2007). MersenneTwister was chosen because it has

a very long period and it passes many tests for statistical randomness (L’ECUYER; SIMARD,

2007). Table 5.23 shows the values of reliability (Rel.) and response time (Rsp.) generated

for 20 providers of the benchmark with size 100. For the sake of conciseness we do not show

all providers’ values here, but the complete benchmark datais available in a specific website

containing the resources used in this study1.

Reference solutions

For all generated benchmarks, we computed a reference solution S∗ used as one of the

stopping conditions of the optimization algorithm evaluated here. The procedure terminates

when a solutionSi with δi ≤ 0.05 is found, or when a maximum number of GRASP iterations

1Resource files for this study:http://www.cin.ufpe.br/~rsmj/sensitive-grasp/

http://www.cin.ufpe.br/~rsmj/sensitive-grasp/
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Table 5.24:Reference solutions used throughout experiments

Amount of providers
Reference solution

Rsp. time (s) Rel. θ
100 10.426 0.987 0.1281
200 7.894 0.985 0.1142
300 8.003 0.984 0.1254
400 7.376 0.986 0.1002
500 8.019 0.988 0.0945

(5000) is reached.δi is the relative difference between the cost of the reached solution, θ(Si),

and the cost of the reference solution,θ(S∗). Thus,δi ∈R and was computed as
θ(Si)−θ(S∗)

θ(S∗)
.

For such a purpose, the reference solution becomes another input parameter for the Algorithm

3. When a solutionSi with δi ≤ 0.05 is not found within the defined maximum number of

iterations, the algorithm provides the solution with lowest cost so far, which might be much

worse than the reference solution, though.

The reference solution was found by preliminary execution of Non-sensitive GRASP

configured for 5000 iterations, and executed 20 times with different seeds for random number

generation. Notice that the reference solution is not necessarily the optimal solution for the

benchmark. This procedure was used because an exhaustive search to determine the exact best

solution would last several days due to the adopted benchmark sizes.

Table 5.24 shows the reference solutions computed for benchmarks with 100, 200, 300,

400, and 500 possible providers for each service. For each reference solution2, Table 5.24

presents the respective response time (Rsp), reliability (Rel) and cost (θ ) of the solution, com-

puted through Equation
☛
✡

✟
✠5.18 .

θ = (1−Rel)×Rsp
☛
✡

✟
✠5.18

For the sake of simplicity, hereinafter the benchmark size will be denoted asN, instead

of ||M||, indicating the number of possible providers for each service. There are five types of ser-

vice providers, so the total amount of possible solutions isN5, with N∈{100,200,300,400,500}.

Experimental results

Non-sensitive GRASP and Sensitive GRASP were executed 50 times over each bench-

mark, so we could get enough data to compare the execution time and the quality of solutions

provided by each approach. The list of adopted random generation seeds is available on the

resources website. The parametersMaxPool andMaxIt of the approximate local search (see

Algorithm 5) were set to 20 and 40, respectively, after some tests with different configurations

for these parameters. The greediness parameter was set to 0.90 in Non-Sensitive GRASP, indi-

cating that in the construction phase, only the best 10 % providers, according to response time,

were considered. The Sensitive GRASP was evaluated in two distinct greediness levels: 0.90

2The specific configurations of providers which constitute the reference solutions are also available in
http://www.cin.ufpe.br/~rsmj/sensitive-grasp/

http://www.cin.ufpe.br/~rsmj/sensitive-grasp/
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and 0.95. These two levels were chosen in order to enable a comparison with Non-Sensitive

GRASP, and on the other hand to asses the effect of the greediness level on the performance of

Sensitive GRASP. Notice that with greediness 0.90 in a benchmark of 100 providers for each

service, Sensitive GRASP randomly selects one among the best10 providers for the most im-

pacting service, indicated by the sensitivity analysis. When greediness is 0.95, the random selec-

tion occurs only from the best 5 providers. This might produce better initial solutions, speeding

up convergence to the optimal solution, but it might also make the algorithm be trapped in a

local optimum, still far from global optimum.

The sensitivity analysis of the CTMC model on Sensitive GRASP was configured to

identify the impact of each service response time on the probability of reaching theComplete

state in up to 5 seconds.

Figure 5.26 shows the average cost (θ ∗) of the solutions provided by each algorithm

for each benchmark size. The average cost is computed from the outputs of the 50 executions

of each algorithm. We consider that the lower isθ ∗ the higher is the quality of the output

produced by the algorithm. Sensitive GRASP, in both greediness levels, hasθ ∗ values close to

those of Non-sensitive GRASP, for almost all benchmark sizes. A small advantage for Sensitive

GRASP is noticed in the largest benchmark sizes: 300, 400, and500. A set of paired sample

t-tests with confidence interval of 90% and significance level of 0.05 show that results of the

three algorithms are not significantly different from one toeach other. The only exception is

the difference between Non-sensitive GRASP and Sensitive GRASP with greediness 0.90 for

the benchmark size 300. That is the largest difference noticeable in Figure 5.26. Therefore, it is

worth emphasizing that the increased greediness level did not produce significant improvements

on quality of results from Sensitive GRASP.

Benchmark size

600

Figure 5.26: Average cost of solutions

We also analyzed the number of “hits” achieved by each algorithm, i.e., the number

of solutions among the 50 executions which are better than orequal to the reference solution.
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Table 5.25:Statistical summary of execution times

Amount of providers
Non-sensitive GRASP Sensitive GRASP 0.90 Sensitive GRASP 0.95
Mean (s) Std. Dev. Mean (s) Std. Dev. Mean (s) Std. Dev.

100 80.6 68.6 70.4 55.5 70.3 63.9
200 80.7 67.4 110.9 106.8 88.1 93.4
300 69.9 83.9 67.4 52.3 59.2 54.7
400 1,068.0 1,169.4 303.4 314.7 267.2 255.2
500 363.8 397.9 152.4 163.3 150.0 135.4

Figure 5.27 shows that the Sensitive GRASP with greediness 0.95 outperforms the Sensitive

GRASP with greediness 0.90 and the Non-sensitive GRASP, considering benchmarks sizes

200, 300, 400, and 500. These results confirm that Sensitive GRASP is slightly better than Non-

sensitive for finding the lowest cost solutions in the largest benchmarks. Notice that increasing

the greediness parameter might be useful to reach more solutions that are better than those

previously known.

Benchmark size

600

Figure 5.27: Number of hits

Besides the evaluation of quality of solutions, we also compared the execution time

of the algorithms. Table 5.25 presents a statistical summary of the execution time. Sensitive

GRASP (in its two variants) had shorter mean times than Non-sensitive for benchmark sizes

100, 300, 400, and 500. Especially for the two largest benchmark sizes, Sensitive GRASP is

capable of obtaining better solutions than Non-Sensitive GRASP with smaller computational

effort. Table 5.25 also shows that greediness 0.95 yields shorter mean execution time than

greediness 0.90 for all benchmark sizes. The improvement on mean execution time is related to

the increased ability of finding good solutions, so the algorithm required less iterations to reach

the stopping criterion.

Since we notice large standard deviations on the results of Table 5.25, we performed

additional analyses to determine how significant were the differences in execution times of the

algorithms. A complementary view for the analysis is presented in Figures 5.28a, 5.28b, 5.28c,
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5.28d, and 5.28e, which depicts the cumulative probabilitydistribution of the execution time

for the evaluated approaches, also known as time-to-targetplot (AIEX; RESENDE; RIBEIRO,

2005). For benchmark sizes 100, 200, and 300, the curves of Non-sensitive, Sensitive with

greediness 0.90, and Sensitive with greediness 0.95 are similar. When benchmark sizes 400 and

500 are analyzed, we notice that Sensitive GRASP is able to reach good solutions –i.e. close

or better than the reference solution– in less time than Non-sensitive. In Figure 5.28d, both

versions of Sensitive GRASP reach the target in up to 1500 seconds, whereas the Non-sensitive

had a much poorer performance: it took up to 5500 seconds to find a suitable solution. In

Figure 5.28e every execution of Sensitive GRASP spent up to 800 seconds, whereas a significant

part of Non-sensitive GRASP executions took between 800 and 1800 seconds to reach a solution

that satisfied the stopping criterion.

The time-to-target plots also provide interesting resultson the impact of greediness

parameter on the execution time of Sensitive GRASP. In general, the algorithm has similar exe-

cution time with 0.90 (“Sensitive Greedy 0.95” curve) and 0.95 (“Sensitive Greedy 0.95” curve)

greediness levels, and we can observe small differences in favor of the latter one. On bench-

mark sizes 200 and 300, the curve “Sensitive Greedy 0.95” reaches higher probability values

(70%−−80%) before “Sensitive Greedy 0.90” does. Considering those two benchmarks, the

probability of sensitive GRASP completing in less than 100 seconds is larger with greediness

0.95 than with greediness 0.90. For benchmark sizes 400 and 500, it is worth to notice thatthe

maximum execution time with greediness 0.95 is about 100 seconds shorter than with greedi-

ness 0.90.

It is also important to highlight that, in the two largest benchmarks, 70% of the execu-

tions took less than 300 seconds (5 minutes) to reach a suitable solution. This was observed in

both greediness levels. For benchmark sizes 100 and 200, thesolution is always achieved in

less than 450 seconds. This denotes that Sensitive GRASP is also useful for dynamic composi-

tions, where the combination of providers can be updated in runtime to satisfy a new optimal

configuration every time the average performance of some provider changes.

This study was based on CTMC, but other (single or hierarchical) analytical models may

be used with specific changes in the integration with the optimization algorithm and sensitivity

analysis tools.
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Figure 5.28: Distribution of execution time (time-to-target plots)



119119119

6
Final remarks

A large proportion of worldwide IT companies have adopted cloud computing for var-

ious purposes. Providers of public cloud services, as well as owners of private clouds need to

design and manage their systems to keep up with users expectations regarding performance and

dependability of their infrastructures. Analytical and simulation models are useful for planning

computer systems and predicting their behavior before deployment or significant changes. Al-

though the creation and analysis of performance and dependability models for cloud computing

systems is a challenge that requires the combination of manytechniques for reaching accurate

and significant results. This thesis showed that hierarchical modeling is important and effective

for coping with such a hard task. Moreover, it proposed methods for detecting the factors that

have the largest importance to the improvement of a cloud system.

This Ph.D. research achieved a number of results in the areasthat it has explored, and

the major contributions are the methods for identifying performance and dependability bottle-

necks of cloud computing systems. The supporting methodology also provides guidance for

administrators of IaaS systems that intend to detect pointsfor improvement in their infrastruc-

tures. The methods can also be applied in an integrated manner with the optimization process

described in this thesis. The methods for bottleneck identification were tested throughout dis-

tinct case studies and produced other noteworthy results. The contributions of this thesis are

summarized as follows.

6.1 Contributions

The hierarchical models for dependability evaluation of private clouds, as well as mobile

clouds, allowed obtaining important conclusions regarding tune-up and architectural choices for

those systems. Many research studies benefited from the proposed approach and have shown

how useful is the methodology presented here.

The models for performance evaluation of a scalable composite web service enable

capacity planning for that application, including aspectsof the elasticity mechanisms of cloud

systems such as autoscaling and load balancing features. The proposed hierarchical model is
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adjustable, so the composite web service model might be replaced by other one to represent a

different application running on top of the same cloud infrastructure.

This research introduced methods to build unified sensitivity rankings when RBD and

CTMC models are combined, as well as for the composition of SPNand CTMC models. Such

methods are a contribution to the state of the art, to the bestof our knowledge. Hierarchical mod-

els created for various types of systems may also be analyzedusing the proposed composition

methods, because they are not restricted to the cloud computing domain. Even the support-

ing methodology is general enough to be adapted in distinct contexts, guiding the hierarchical

modeling and bottleneck identification regardless the system under assessment.

The composition methods are embedded in Mercury software tool, providing an auto-

mated sensitivity analysis framework for hierarchical models. The features developed for Mer-

cury in the scope of this thesis include: sensitivity analysis of RBD, SPN, and CTMC models;

parameterization and assignment of rewards for CTMC; computation of mean time to absorp-

tion in CTMC and SPN; hierarchical modeling with RBD and CTMC, as well as with SPN and

CTMC; sensitivity ranking computation for the hierarchical models. Such set of features allow

users to create and analyze models following the methodology described in Section 4.1.

Other original contribution in this work is the Sensitive GRASP algorithm, that is tar-

geted at optimizing performance and dependability of cloud-hosted services and their infras-

tructures. This algorithm may also be useful for other computing infrastructures that cannot

stand the exploration of all architectural and configuration possibilities to find the best quality

of service.

Significant effort was dedicated for reviewing the documentation of cloud computing

platforms, and to properly set up testbed infrastructures used in the case studies. The experience

acquired through the configuration of every component in such private clouds was essential for

a detailed understanding of the systems evaluated here. Moreover, the employment of these

infrastructures on correlated research projects generated other important results in fields such as:

software aging and rejuvenation; and fault injection, which represented complimentary views

of the cloud design and management issues addressed in this thesis.

This thesis did not tackled specific problems of public clouds, mainly because the access

to information about their internal infrastructure is verylimited, in comparison to private cloud

platforms. But the methods developed here are not tied to the domain of private clouds, so they

should also be useful for administrators of public clouds.

6.2 Future works

The knowledge about formal models for performance and dependability evaluation is

not widespread among computer systems administrators, so auxiliary tools that convert semi-

formal to formal models (ANDRADE et al., 2013) are helpful and could be integrated to the

proposed methodology in future works. This would enable therepresentation of the cloud
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systems by means of UML and similar modeling languages that are well known by software

engineers and other people in the cloud infrastructure technical staff.

Other limitation of this work is not addressing models such as Queueing Networks,

Stochastic Automata Networks, Fault Trees, and ReliabilityGraphs. The usage of sensitivity

analysis techniques such as Regression, Correlation, and Perturbation Analysis is not taken

into account in this thesis too. Future extensions might include sensitivity analysis methods

that comprehend other modeling formalisms or different kinds of compositions for sensitivity

indices.

The application of the proposed methods to scenarios with software-defined networks

(SDN) is also a prominent possibility for future research, since SDNs are an important part

of current datacenters. Analytical models for representing those infrastructures might be con-

nected to the hierarchical models presented in the case studies here, with proper modifications.

Such an integration should create expanded models to provide even more accurate results and

verify the importance of some network issues that were not handled in any of the assessments

this thesis (e.g., behavior of communication protocols, packets discard, and queuing issues on

routing and switching equipment).

Other works might prospect improvements for the Sensitive GRASP algorithm and em-

ployment of other optimization meta-heuristics for the parameter-value assignment problem in

analytical models. Genetic algorithms, particle swarm optimization, and ant colony algorithms

are some options that might be assessed in such a direction.
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A
Development of Mercury Tool Features

The sensitivity analysis methods proposed in this thesis were integrated in the Mercury

tool. Mercury is a software developed by MoDCS (Modeling of Distributed and Concurrent

Systems) Group at the Federal University of Pernambuco (UFPE), Brazil. The tool has been de-

veloped to evaluate performance, dependability, and energy flow models. It provides graphical

interfaces for modeling and evaluating Stochastic Petri Nets (SPN), Reliability Block Diagrams

(RBD), Energy Flow Models (EFM) and Continuous Time Markov Chains (CTMC). Figure A.1

illustrates the formalisms and evaluation methods available in Mercury.

The Algorithm 1 was used to produce the feature of Mercury tool depicted in Figure A.2.

That dialog window shows a sensitivity analysis of a hierarchical model comprising an RBD

and a CTMC. It first presents the partial derivatives expressions that denote the sensitivity of

system availability to each parameter. The window also presents the numerical sensitivity in-

dices for each parameter. In that case,MTTFb1 andMTTRb1 are parameters from the RBD

model (corresponding to block b1 MTTF and MTTR, respectively), whereasmu and lambda

are parameters from the CTMC model.

Notice that a user may choose between computing scaled sensitivity indices or unscaled

ones. The ranking might also be presented ordered or not. If the user decides by ordering the

Figure A.1: Overview of Mercury features
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Figure A.2: Dialog window for RBD sensitivity analysis on Mercury

ranking, the absolute values of the indices are used for sorting them in decreasing order. There

is also an option for considering the availability of each block as the target parameters in the

sensitivity analysis, of their MTTF and MTTR values.

In Mercury source code, five classes interact to accomplish the proposed sensitivity

analysis steps in hierarchical composition of RBD and CTMCs. Figure A.3 shows a UML se-

quence diagram that describes the execution of methods for that activity. The user triggers the

sensitivity analysis inJDialogSensitivityRBD, that is the class of the dialog window shown in

Figure A.2. TheRBDModel class is responsible for returning the first three pieces of informa-

tion for this analysis: the list of parameters, the structural function that represents the RBD, and

the transformed structural function. This corresponds to lines from 1 to 6 of the proposed algo-

rithm. Next, the classSensitivityAnalysisRBD provides the symbolic derivative function for

each parameter. The classSensitivityAnalysisCTMC is responsible for computing the sensi-

tivity indices for each CTMC sub-model. Those indices and theRBD parameter values are then

used bySensitivityAnalysisRBDclass to evaluate the former symbolic derivative expressions,

yielding the numeric sensitivity indices. The methodsort() from theCollectionsclass is called

when an ordered ranking is requested, finishing the procedure.

It is important to mention that intermediate steps are suppressed here because they are

not the exclusive focus of this work. Some of those steps include the symbolic computation

methods for obtaining partial derivatives and the symbolic-to-numeric conversion of expres-

sions. The Symja framework provided many methods for implementing such tasks.
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Figure A.3: UML sequence diagram for sensitivity computation with RBD main model
and CTMC sub-models
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Figure A.4: Dialog window for SPN sensitivity analysis on Mercury

The Algorithm 2 provided the basis for development of sensitivity analysis when an

SPN is the top-level model. Figure A.4 shows the dialog window for that feature. Notice that

the user enters the minimum and maximum bounds for the range of each transition of the SPN

top-level model:TFail andTRep. The number of sampling points will determine how many

values will compose the range for each parameter. If the userenters only two sampling points,

they will correspond to the maximum and minimum values specified. Moreover, the measure

of interest is informed, since the SPN can be used to compute many kinds of metrics.

The results for the sensitivity analysis of the hierarchical model are presented in the text

area on the bottom of the window. It shows the sensitivity indices for the transition TRep, and

for parametersmu, alpha, lambda, andbeta, which are parameters of a CTMC sub-model

assigned to the TFail transition.

Before such an implementation, the proposed method had already been successfully

tested without full automation. Section 5.3 presents a casestudy with results computed with
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Figure A.5: UML sequence diagram for sensitivity computation with SPN main model
and CTMC sub-models

this method.

In Mercury source code, five classes interact to accomplish the proposed sensitivity

analysis steps in hierarchical composition of SPN and CTMCs. Figure A.5 shows a UML

sequence diagram that describes the execution of methods for that activity. The user triggers the

sensitivity analysis inSensitivityAnalysisForm, that is the class of the dialog window shown

in Figure A.4. TheEDSPN class is responsible for returning the list of parameters ofthe

main model. Next, the classPercentageDifferenceIndexFunctioncomputed and provides the

sensitivity ranking for the main model, using the percentage difference method. The class

SensitivityAnalysisCTMC is responsible for computing and returning the sensitivityindices

for each CTMC sub-model. Those indices and then multiplied bythe indices of respective

parameters from the SPN ranking. The methodsort() from theCollections class is called to

produce a ordered ranking, finishing the procedure.

It is important to highlight that was necessary implementing sensitivity analysis features

for single (i.e., non-hierarchical models) before developing features described in the current

section. These initial features were released in version 4.2.1. The Mercury tool also did not

support hierarchical modeling before the efforts of this research work. Version 4.5.0 included
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that feature. Such an implementation was a requisite for proceeding forward in the automation

of the proposed methodology. All features presented in thisappendix are available since version

4.6.0 of Mercury.
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B
Partial Derivatives for Case Study 1

The following equations (B.1, B.2, B.3, and B.4) show the partialderivatives for the

availability of the redundant Cloud Manager (CLC) component from the case study in Section

5.1.

SλCLC
(ACLC) =−

(saα2+α1
2+λCLCλCLCi)µCLC(α1

2+α3λCLCi +λCLCλCLCi +sa(α1+2λCLC))

(α3(α1
2+λCLCλCLCi)+sa(λ 2

CLC+λCLCα1+µCLCα1))
2

+
µCLC(sa+λCLCi)

α3(α1
2+λCLCλCLCi)+sa(λ 2

CLC+λCLCα1+µCLCα1)
,

☛
✡

✟
✠B.1

where

α1 =λCLCi +µCLC,

α2 =λCLC+λCLCi +µCLC , and

α3 =λCLC+µCLC .

SλCLCi
(ACLC) =

(λCLC+2λCLCi +sa+2µCLC)µCLC

(λ 2
CLC+λCLCα1+α1µCLC)sa+(λCLCλCLCi +α1

2)α3

−
(α3(λCLC+2λCLCi +2µCLC)+α3sa)(λCLCλCLCi +α1

2+α2sa)µCLC

((λ 2
CLC+λCLCα1+α1µCLC)sa+(λCLCλCLCi +α1

2)α3)
2 ,

☛
✡

✟
✠B.2

where

α1 =λCLCi +µCLC,

α2 =λCLC+λCLCi +µCLC , and

α3 =λCLC+µCLC .
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SµCLC(ACLC) =−
(α1

2+λCLCλCLCi +2α3α1+(α4+2µCLC)sa)µCLC(α2sa+α1
2+λCLCλCLCi)

((λCLCα1+µCLCα1+λ 2
CLC)sa+α3(α1

2+λCLCλCLCi))
2

+
α2sa+α1

2+λCLCλCLCi

(λCLCα1+µCLCα1+λ 2
CLC)sa+α3(α1

2+λCLCλCLCi)

+
(2λCLCi +sa+2µCLC)µCLC

(λCLCα1+µCLCα1+λ 2
CLC)sa+α3(α1

2+λCLCλCLCi)
,

☛
✡

✟
✠B.3

where

α1 =λCLCi +µCLC,

α2 =λCLC+λCLCi +µCLC , and

α3 =λCLC+µCLC

α4 =λCLC+λCLCi .

Ssa(ACLC) =
α2µCLC

sa(α1λCLC+λ 2
CLC+α1µCLC)+(λCLCi λCLC+α1

2)α3

−
(λCLCi λCLC+α2sa+α1

2)µCLC(α1λCLC+λ 2
CLC+α1µCLC)

(sa(α1λCLC+λ 2
CLC+α1µCLC)+(λCLCi λCLC+α1

2)α3)
2 ,

☛
✡

✟
✠B.4

where

α1 =λCLCi +µCLC,

α2 =λCLC+λCLCi +µCLC , and

α3 =λCLC+µCLC .

The partial derivatives equations for the availability of the Cluster Manager (CC) com-

ponent are very similar to those just presented for the CLC component, since both use the same

CTMC model for describing their warm-standby redundancy.

The following equations (B.5 and B.6) present the partial derivatives of a node availabil-

ity with respect to its parametersµNC andλNC, respectively.

SµNC(ANC) =
1

λNC+µNC
−

µNC

(λNC+µNC)
2

☛
✡

✟
✠B.5
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SλNC
(ANC) =−

µNC

(λNC+µNC)
2

☛
✡

✟
✠B.6
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