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ABSTRACT

Connectivity has introduced significant transformations in our society, requiring the
continuous improvement of Quality of Service (QoS). The rise of various emerging tech-
nologies has created a demand for networks capable of low-latency communication to
facilitate real-time data processing. As our reliance on these technologies grows, it be-
comes increasingly important to address the latency issue. While cloud computing envi-
ronments offer high availability, reliability, and performance, they may not be suitable
for applications that require low latency, such as disaster risk minimization, smart-traffic
management, and crime prevention. For instance, numerous lives could be lost if a disaster
risk minimization service delays in providing alerts about an earthquake. To overcome the
challenges posed by latency and enhance computing capabilities between the cloud and
edge devices (e.g., controllers, sensors, and smartphones), two complementary paradigms,
namely edge and fog computing, have been proposed. However, evaluating the depend-
ability and performance of distributed computing environments remains a concern due to
the numerous challenges involved in supporting the required QoS of these systems. There-
fore, this study aims to investigate the dependability of edge, fog, and cloud computing
environments by assessing their availability and the resulting impact on performance.
Additionally, we propose analytical and hierarchical models that facilitate scalability and
capacity planning in these computing environments. The metrics considered in this study
include availability, K out of N availability, capacity-oriented availability, as well as per-
formance metrics such as utilization, response time, waiting time, and discard rate. Our
proposed models serve as valuable tools for researchers, system designers, and practi-
tioners in the field of edge-fog-cloud environments. By understanding the behavior and
limitations of these systems, we can enhance their design, operation, and maintenance,
ultimately leading to more reliable, efficient, and resilient infrastructures.

Keywords: Cloud Computing. Fog Computing. Edge Computing. Modeling. Availability.
Performance.



RESUMO

A conectividade introduziu transformações significativas em nossa sociedade, exigindo
o contínuo aprimoramento da Qualidade de Serviço (QoS, sigla em inglês). O surgimento
de várias tecnologias emergentes criou uma demanda por redes capazes de comunicação
com baixa latência para facilitar o processamento de dados em tempo real. À medida que
nossa dependência dessas tecnologias cresce, torna-se cada vez mais importante abordar
o problema de latência. Embora os ambientes de computação em nuvem ofereçam alta
disponibilidade, confiabilidade e desempenho, eles podem não ser adequados para serviços
que requerem baixa latência, como minimização de risco de desastres, gerenciamento de
tráfego veicular inteligente e prevenção de crimes. Por exemplo, inúmeras vidas podem ser
perdidas se um serviço de minimização de risco de desastres atrasar na entrega de alertas
sobre um terremoto. Para superar os desafios impostos pela latência e aprimorar as ca-
pacidades de computação entre a nuvem e os dispositivos de borda (como controladores,
sensores e smartphones), foram propostos dois paradigmas complementares, chamados de
computação em borda (Edge) e neblina (Fog). No entanto, avaliar a confiabilidade e o
desempenho de ambientes de computação distribuída continua sendo um grande desafio
devido aos inúmeras questões envolvidas no suporte à QoS necessária desses sistemas.
Portanto, este estudo tem como objetivo investigar a confiabilidade dos ambientes de
computação em borda, névoa e nuvem, por meio da avaliação de sua disponibilidade
e do impacto resultante no desempenho. Além disso, propomos modelos analíticos e hi-
erárquicos que facilitam a escalabilidade e o planejamento de capacidade nesses ambientes
de computação. As métricas consideradas neste estudo incluem disponibilidade, disponi-
bilidade de K de N, disponibilidade orientada à capacidade, bem como métricas de desem-
penho, como utilização, tempo de resposta, tempo de espera e taxa de descarte. Nossos
modelos propostos servem como ferramentas valiosas para pesquisadores, projetistas de
sistemas e profissionais no campo de ambientes de borda-névoa-nuvem. Ao compreender o
comportamento e as limitações desses sistemas, podemos aprimorar seu projeto, operação
e manutenção, levando a infraestruturas mais confiáveis, eficientes e resilientes.

Palavras-chaves: Computação na Nuvem. Computação na Névoa. Computação na Borda.
Modelagem. Disponibilidade. Desempenho.
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1 INTRODUCTION

This chapter provides an overview of the motivation and objectives underlying this thesis.
We outline the reasons and methodologies through which we contribute to the advance-
ment of edge-fog-cloud continuum services within the state of the art. These services hold
significant relevance in the contemporary era, characterized by the dominance of infor-
mation, with data serving as its principal asset. Additionally, artificial intelligence, the
Internet of Things (IoT), big data, cloud computing, and wireless networks act as the
primary means for collecting and processing information (MELO et al., 2020; LECLERC;

CALE, 2020). The emergence of these transformative technologies has brought about un-
foreseen changes in our society and businesses, facilitating the generation and analysis
of vast volumes of dynamic data. Extracting novel societal patterns from this data has
proven instrumental in understanding our evolving world.

1.1 MOTIVATION

Advancements in sensor technology, wireless networks, embedded systems, and actuators
have paved the way for the development of affordable, energy-efficient, and compact de-
vices that can connect to the Internet. This transformative innovation has given rise to
the Internet of Things (IoT) (SAMIE; BAUER; HENKEL, 2016), where devices seamlessly
interact and communicate within the network, offering extensive control over various ser-
vices. The scope of the IoT paradigm encompasses a wide range of applications, including
healthcare, smart homes, intelligent buildings, campus automation, urban infrastructure,
industrial automation (known as Industry 4.0), and numerous others (SAMIE; BAUER;

HENKEL, 2016).
The generation of extensive data by distributed sensors has necessitated the acqui-

sition, integration, storage, processing, and utilization of this data as a vital means for
companies to achieve their business objectives. In addition, researchers and engineers face
the significant challenge of managing these vast and diverse data sets in highly distributed
environments, particularly within cloud platforms (CAI et al., 2016). The proliferation of
data generated through IoT sensors plays a pivotal role in the realm of big data, which can
be characterized by three primary dimensions: volume, variety, and velocity (MARJANI et

al., 2017).
Presently, data mining, statistical analysis, and machine learning methods are exten-

sively employed for addressing specific problems and conducting general data analytics.
Forecasts indicate a projected increase of 1 trillion sensors and actuators by the year 2030
(CHEN; LIN, 2014). This growth will significantly influence our understanding of big data
and its applications. Currently, IoT services offer a multitude of resources and real-time
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applications, facilitating effective communication among diverse deployed systems. Such
services fulfill numerous societal requirements and have the potential to mitigate future
challenges, including the management of food and water waste (RAMUNDO; OTCU; TERZI,
2020).

Harnessing valuable insights and knowledge from extensive datasets, in order to en-
hance the overall quality of our lives, is an enticing prospect; however, it is an endeavor
that is far from straightforward. To surmount this intricate and demanding undertak-
ing, the integration of innovative technologies, algorithms, and infrastructures becomes
imperative (CHEN; LIN, 2014). The recent advancements in computing paradigms and so-
phisticated machine learning methodologies have opened up unprecedented opportunities
for big data analytics, making it particularly suitable for applications within the Internet
of Things (IoT) domain.

Within the context of the Internet of Things (IoT) ecosystem, cloud computing plays
a pivotal role by offering significant processing power and storage capabilities, thereby
alleviating the burden on local systems. Cloud computing facilitates convenient access to
shared computing resources and services, including network infrastructure, storage, oper-
ating systems, and applications. These resources and functionalities can be dynamically
allocated and released with minimal administrative effort while following a pay-as-you-go
model based on resource utilization (NGUYEN; MIN; CHOI, 2020).

This distinctive attribute empowers administrators to concentrate solely on their busi-
ness models, delegating the intricate details of the underlying infrastructure to the cloud
service provider (MELL; GRANCE et al., 2011; BANKOLE; AJILA et al., 2013). The experi-
ence of procuring cloud services is often likened to the consumption of public utilities like
electricity, where users pay exclusively for the resources they consume (BAUER; ADAMS et

al., 2012).
Furthermore, cloud computing enables organizations and individuals to rely on ex-

ternal providers for data storage and processing. As a result, it has emerged as a highly
successful computing paradigm, fostering an agile service-based computing market that
offers seamless access to computing resources (ROY et al., 2011). By leveraging cloud com-
puting, rapid deployment of new services with unrestricted connectivity to the Internet
becomes feasible (DUTREILH et al., 2010).

The realm of cloud computing offers seemingly boundless resources that can be ac-
cessed at any given time and in any desired quantity. Despite its support for emerging tech-
nologies, there exists a substantial gap in terms of data processing and real-time decision-
making for applications sensitive to latency, such as smart city services (NGUYEN; MIN;

CHOI, 2020). Notably, the transmission of data to cloud servers often necessitates consid-
erable network bandwidth, thereby leading to increased latency in the service (PEREIRA;

ARAUJO; MACIEL, 2019). This drawback can have critical implications for certain appli-
cations, particularly those concerning security systems. In response to these challenges,
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researchers and companies have proposed two paradigms: edge computing and fog com-
puting (SUNYAEV, 2020). Fog computing extends communication, processing power, and
storage capabilities toward the network edge, acting as an intermediary layer between
the cloud and devices (NGUYEN; MIN; CHOI, 2020; PEREIRA et al., 2020). Conversely, edge
computing pertains to the utilization of processing power, storage, and communication
capabilities within the devices themselves (SUNYAEV, 2020).

Applications such as disaster risk minimization and crime prevention necessitate un-
interrupted operation, as the potential loss of lives looms large (PEREIRA et al., 2021).
Another notable instance is traffic congestion in metropolitan areas, which often gives
rise to unpredictable accidents. However, the implementation of smart traffic manage-
ment systems has the potential to prevent numerous collisions (PRAVEEN; RAJ, 2020).
It is worth mentioning that both edge and fog paradigms are susceptible to failures and
performance degradation. Therefore, it is of paramount importance to investigate and
evaluate the integrated aspects of availability and performance in edge and fog comput-
ing environments. In essence, comprehensive studies should be conducted to assess and
devise strategies for mitigating failures and performance degradation.

The study of dependability assumes paramount importance in the realm of diverse
systems and services that have emerged in the wake of the Internet’s advent (AVIZIE-

NIS; LAPRIE; RANDELL, 2001; LAPRIE, 1992). These services are vulnerable to numerous
threats and must adhere to specific requirements for service provision (PATEL; RANABAHU;

SHETH, 2009). Within cloud, fog, and edge computing, the establishment of Service Level
Agreements (SLAs) between providers and contractors aims to ensure the attainment of
minimum acceptable levels for various dependability attributes (KAFHALI; SALAH, 2017).

It is worth noting that the precise specifications for dependability requirements in
the context of edge and fog computing remain relatively uncharted within the existing
literature, primarily due to the novelty of these paradigms. However, the most com-
mon objectives pertaining to dependability in edge and fog environments revolve around
enhancing availability, reliability, performance, and Quality of Service (QoS). Numerous
techniques employed to augment these attributes are frequently predicated on redundancy
models. Nevertheless, redundancy comes at a cost, underscoring the need for judicious and
intelligent application of such approaches (BAKHSHI; RODRIGUEZ-NAVAS, 2020).

Taking all of this into consideration, it becomes pertinent to inquire: How can the
integration of edge, fog, and cloud computing environments effectively address latency
concerns and enhance the dependability and performance of distributed systems, par-
ticularly when catering to applications that necessitate low latency, such as disaster risk
minimization, smart-traffic management, and crime prevention? The response to the afore-
mentioned research question serves as the guiding principle and compass for this thesis.
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1.2 OBJECTIVES

When comparing edge and fog computing with the cloud, it becomes evident that their
levels of availability are comparatively lower, thereby rendering them potentially critical
for select applications, particularly those of an urgent nature, such as emergency systems.
Such applications necessitate sustained operational functionality to minimize the risk of
significant loss of life. An illustrative example lies within urban settings, where instances
of robberies introduce unpredictable peril to the general population and pose potential
threats to innocent individuals. Consequently, the implementation of intelligent facial
recognition systems holds promise in reducing the occurrence of such crimes (MARIAPPAN;

THONG; MUTHUKARUPPAN, 2020).
Under these circumstances, it becomes imperative to thoroughly evaluate pertinent

metrics associated with service provisioning within the edge and fog computing environ-
ments. These metrics encompass crucial aspects such as availability, downtime, capacity-
oriented availability, and performance (MACIEL et al., 2012; Fernandes et al., 2012). Fur-
thermore, it is essential to conduct a comprehensive assessment of these metrics within
the broader context of the edge-fog-cloud continuum, where these paradigms operate in
synergy to deliver integrated solutions.

The primary goal of this thesis centers on the proposition of analytical and hierarchical
models capable of assessing the availability and performance of the integrated edge-fog-
cloud continuum environments. Through the application of these models, our research
endeavors to examine the intricate relationship between availability and performance,
commonly referred to as "performability," within the realms of edge, fog, and cloud com-
puting environments. Additionally, these models will illuminate the critical components
within the system that necessitate the intelligent adoption of redundancy measures. In
particular, the inclusion of performability models will account for the dynamic behavior
of a system’s performance, duly considering instances of failures and subsequent repairs
(MACIEL et al., 2012).

In addition to the aforementioned objective, our work also aims to propose a novel
capacity-oriented availability model that leverages the average resource capacity as a
means to quantify system availability. This model stands to provide valuable insights
into the availability aspects of the examined system, shedding light on its robustness and
capacity to effectively meet the demands imposed upon it.

To achieve these goals, our research endeavors encompass a set of distinct and note-
worthy objectives that, in turn, serve as significant contributions to the academic and
industrial field. These objectives are enumerated as follows:

• develop analytical models for availability and performability in edge and fog com-
puting environments;
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• construct hierarchical models to evaluate the edge-fog-cloud continuum and incor-
porate fault coverage probability;

• investigate the impact of availability on the performance of edge and fog computing;

• propose analytical models for capacity-oriented availability and compare cost effec-
tiveness among edge, fog, and cloud computing paradigms;

1.3 THESIS OUTLINE

This work is outlined as follows: in Chapter 2, we provide an introduction to the fun-
damental concepts of edge, fog, and cloud computing, along with an elucidation of the
essential notions pertaining to availability and performance evaluation. This foundational
knowledge is crucial for a comprehensive understanding of the present study. Chapter 3
presents a thorough review of relevant literature, wherein a comparative analysis is con-
ducted to juxtapose the existing works with our research. Moving forward, Chapter 4
outlines the methodology employed in developing the integrated solution for cloud infras-
tructure planning, accompanied by a detailed exposition of the methods employed. The
proposed models, encompassing their distinctive features and a holistic overview, are ex-
pounded upon in Chapter 5. Subsequently, Chapter 6 details the experiments conducted
to assess the efficacy of the proposed models and presents the achieved results. Lastly,
Chapter 7 serves as a culmination of this study, presenting the concluding remarks and
engaging in a comprehensive discussion on potential avenues for future research endeavors.
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2 BACKGROUND

Internet of Things (IoT) applications are commonly established on intricate computational
frameworks that encompass the integration of cloud, fog, and edge computing paradigms
(ARAUJO et al., 2019). In order to mitigate resource wastage, it becomes imperative to
devise models and conduct evaluations of these infrastructures. This chapter serves as
an introduction to the fundamental concepts that underpin our strategic approach. Our
research encompasses the capacity planning of edge, fog, and cloud paradigms, while
simultaneously addressing the critical aspects of availability and performance evaluation.

Moreover, the following sections will depict how these computing paradigms contribute
to the enhancement of the existing and future landscape of interconnected devices. Be-
ginning with an examination of the cloud paradigm, we shall subsequently delve into a
comprehensive discussion on the intricacies of fog infrastructure and edge environments.
Lastly, we shall outline the key distinctions between the edge and fog paradigms, while
also providing a concise overview of the different categories that near real-time systems
encompass.

2.1 CLOUD COMPUTING

Cloud computing represents a comprehensive model that fosters pervasive and on-demand
network access to shared computing resources (MELL; GRANCE et al., 2011). In recent
years, this paradigm has gained considerable traction, primarily due to its ability to
empower organizations with the option to entrust external providers with the storage and
processing of their data. The advent of cloud computing has significantly contributed to
the establishment of an agile and service-centric technology market, wherein computing
resources can be readily accessed and utilized. As a result, the deployment of novel services
has been greatly facilitated, enabling unrestricted connectivity to the vast expanse of the
World Wide Web (PEREIRA; ARAUJO; MACIEL, 2019).

The cloud computing paradigm encompasses a diverse range of deployment models,
classified into four main categories: public cloud, community cloud, private cloud, and
hybrid cloud (MELL; GRANCE et al., 2011). Public clouds, offered and managed by service
providers, have gained significant popularity owing to their ease of maintenance and cost-
effectiveness for customers. In this deployment model, a robust Service Level Agreement
(SLA) is established between customers and providers to ensure the maintenance of trust
and adherence to agreed-upon service standards. Public clouds operate on a pay-as-you-
go pricing model, enabling customers to pay for infrastructure usage only, a feature that
has proven enticing for many businesses. However, it is important to note that public
clouds may not provide complete customization options for network bandwidth, hardware,
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middleware, and security settings, which may render them unsuitable for certain business
requirements (MELL; GRANCE et al., 2011).

Figure 1 – Cloud deployment models.
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In cloud computing, there are different deployment models to offer solutions with spe-
cific requirements. Community clouds, for instance, serve as integrated platforms that
support the needs of businesses, companies, communities, or industries, with a shared
focus on common concerns such as missions, security requirements, policies, and compli-
ance considerations (MELL; GRANCE et al., 2011). These deployment models are managed
collectively by the organizations that comprise the community, thus avoiding dependence
on a singular large cloud provider for the IT infrastructure.

In contrast, private clouds are designed to cater exclusively to a single entity, ensuring
heightened privacy and the ability to customize resources according to specific require-
ments. Similar to traditional company-owned data centers, private clouds offer companies
the advantage of a dedicated infrastructure for their applications. However, it is important
to note that private clouds do not benefit from the pay-as-you-go pricing model commonly
found in public clouds (PEREIRA; ARAUJO; MACIEL, 2019).

Hybrid clouds, on the other hand, represent a fusion of the previously defined de-
ployment models. This hybrid approach grants users greater control over virtualized
infrastructure and harnesses the combined capabilities of different deployment models
(SOTOMAYOR et al., 2009).

Within the cloud computing paradigm, services are broadly categorized into three
types: infrastructure as a service (IaaS), platform as a service (PaaS), and software
as a service (SaaS). IaaS enables customers to leverage hardware-related services using
cloud computing principles. These services encompass storage solutions (e.g., database or
disk storage), processing power, virtual servers, networking resources, and more (MELL;

GRANCE et al., 2011). For instance, imagine an individual seeking to implement a facial
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recognition-based security system in a building. In such a scenario, the individual would
engage with cloud providers to acquire an infrastructure as a service to meet their re-
quirements (YOUSEFPOUR et al., 2019b).

Figure 2 – Cloud service models.
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Platform as a Service (PaaS) is a cloud computing model that focuses on providing
developers with an environment to create and manage software applications throughout
their lifecycle. In this model, customers don’t have to concern themselves with hardware
configurations or operating systems as the entire development infrastructure is already
established and taken care of (AHMED et al., 2012).

On the other hand, Software as a Service (SaaS) is a cloud computing model that offers
a complete software package hosted in the cloud. With SaaS, customers can access and
utilize software applications without the need for installation or worrying about database
scalability, software errors, or socket management. It operates on a pay-per-use basis,
allowing customers to only pay for the services they actually utilize (YOUSEFPOUR et al.,
2019b).

2.2 FOG COMPUTING AT A GLANCE

Fog computing, a term introduced by researchers at Cisco Systems (BONOMI et al., 2012),
pertains to the utilization of processing power in close proximity to the network edge.
A related concept, known as cloudlets, is primarily associated with mobile networks.
Fog computing finds extensive application in the context of IoT infrastructure (NAHA

et al., 2018). This paradigm encompasses both virtualized and non-virtualized resources,
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delivering storage, processing power, and networking services to end devices as well as
cloud servers (DASTJERDI et al., 2016a).

The core objective of fog computing is to facilitate low-latency services (LI et al., 2017),
while simultaneously enhancing the performance of non-latency services. By bringing com-
putational power closer to end devices, fog computing minimizes networking bandwidth
consumption and improves overall application performance. Fog environments often con-
sist of a multitude of heterogeneous nodes, such as sensors and actuators, which generate
substantial volumes of data requiring processing. In situations where fog infrastructures
lack the necessary resources to handle this data influx, it is transmitted to the cloud
for further processing (BONOMI et al., 2012). Moreover, fog computing supports various
aspects including computing resources, cloud integration, communication protocols, mo-
bility, interface heterogeneity, and distributed data analytics (DASTJERDI et al., 2016b).

It is crucial to note that any device equipped with processing power, networking ca-
pabilities, and storage capacity can function as a fog device (NAHA et al., 2018). These
devices serve the dual roles of servers and gateways. Fog servers manage multiple fog
devices, while fog gateways oversee and translate data from heterogeneous devices for
transmission to fog servers (NAHA et al., 2018).

The main advantages associated with fog computing environments are:

• reduction of network traffic - fog environments drastically reduce the traffic sent
to the cloud because most of the data is processed closer to the end devices;

• suitable for IoT tasks and queries - by using fog environments, IoT tasks may
be processed closer to the physical location of the sensors/actuators. Consequently,
the processing power is closer to the geographical context of the sensor or actuator;

• low latency requirement - the data processing is performed closer to the nodes;
thus, it makes real-time response possible.

According to a report by Cisco Systems, it was projected five years ago that there
would be over 50 billion connected devices worldwide (NAHA et al., 2018). Consequently, fog
computing environments have emerged as a compelling solution for handling the immense
volume of data generated. These environments serve as a filter, effectively reducing the
burden on cloud servers by processing data at the network edge.

2.3 EDGE COMPUTING AT A GLANCE

Edge computing is a paradigm that offers processing, networking, and storage capabilities
directly within the end devices themselves (NAHA et al., 2018). Unlike the traditional cloud
paradigm, which involves transmitting all raw data from edge devices to the cloud server,
edge computing processes the data locally at the edge nodes before selectively forwarding
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the relevant insights or processed data to the cloud server (JAYASHREE; SELVAKUMAR,
2020).

Edge computing primarily focuses on the side of the end devices and is not inherently
associated with any specific cloud-based services such as IaaS, PaaS, or SaaS. Its main
objective is to process data as close as possible to the data sources. Any smart device with
the ability to store and process data can serve as an edge node. For example, a smartphone
that receives and processes data from a sensor can be considered an edge node for that
particular application. Edge computing addresses several challenges, including privacy,
latency, and connectivity. Due to its localized nature, edge computing typically exhibits
lower latency compared to cloud computing. It also offers higher service availability, as
connected devices do not have to rely on a highly centralized platform for service provision,
and there are typically multiple physical nodes available (YOUSEFPOUR et al., 2019b).

In the edge computing paradigm, devices not only consume data but also produce it.
They may request services from edge servers and perform various computing tasks, such
as data storage, offloading, caching, and processing. Additionally, edge devices process
incoming requests and deliver services to other end devices. As a result, it is crucial to
design edge nodes with careful consideration for reliability, security, and privacy concerns
(SHI et al., 2016; PEREIRA et al., 2020).

Compared to the traditional cloud computing paradigm, edge computing offers several
benefits. For example, a facial recognition application demonstrated a significant reduction
in response time, from 900 to 169 ms, when utilizing edge computing (YI et al., 2015). In
another study, the adoption of edge computing for offloading computing tasks in wearable
cognitive assistance resulted in an improved response time of 80 ms and a 40% reduction
in energy consumption (HA et al., 2014).

Therefore, the edge computing paradigm serves as a means to retrieve, process, and
analyze data in close proximity to the data source. This can be achieved through devices
like IoT gateways, network switches, or even custom-built devices with sufficient comput-
ing power, such as Raspberry Pi. Edge computing empowers users to perform real-time,
on-site data analysis gathered from various sensors and IoT devices.

2.4 EDGE VS FOG VS CLOUD COMPUTING

Edge computing and fog computing, although often associated with the same architecture,
are distinct paradigms that require differentiation. This section aims to elucidate their
differences and compare them to the cloud paradigm.

Edge computing and fog computing, as defined by the OpenFog Consortium, possess
nuanced disparities that need to be recognized (CONSORTIUM et al., 2017). Fog comput-
ing is characterized as a hierarchical infrastructure that delivers computing, networking,
storage, and control capabilities from the cloud to the end devices (YOUSEFPOUR et al.,
2019b). In contrast, edge computing primarily focuses on limited processing power at the
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network’s edge. Fog computing aims to establish a unified infrastructure of computing
services that spans from the cloud to the end devices, rather than treating network edges
as separate computing architectures (CHIANG et al., 2017). In other words, fog computing
brings intelligence down to the local area network (LAN) level, where data or services
are processed in fog nodes or IoT gateways. On the other hand, edge computing embeds
intelligence, processing, and communication capabilities directly into smart devices such
as programmable automation controllers (PAC) (MAHMOOD; RAMACHANDRAN, 2018).

The fog layer exists between the edge and cloud layers and is typically geographically
distant from the business premises (JAYASHREE; SELVAKUMAR, 2020). This paradigm typ-
ically involves a service provider’s network infrastructure that is leased to companies. In
the fog layer, fog nodes serve as the processing and communication components. Depend-
ing on the nature of the use case, the service provider determines which data is processed
at the edge and uploaded to the fog nodes (JAYASHREE; SELVAKUMAR, 2020).

Fog environments encompass the cloud, while edge environments exclude it (MAH-

MOOD; RAMACHANDRAN, 2018). The fog computing paradigm exhibits a hierarchical
and horizontal structure with multiple layers forming a network. Conversely, the edge
paradigm typically distinguishes between nodes that are part of the network and those
that are not. Fog environments feature extensive peer-to-peer interconnectivity between
nodes, while edge environments isolate their nodes, necessitating data transportation
back through the cloud for peer-to-peer interactions (MAHMOOD; RAMACHANDRAN, 2018;
HARDESTY, 2017).

Both fog and edge computing are distributed computing paradigms that extend the ca-
pabilities of cloud computing to the network’s edge. They complement the cloud solution,
with a particular focus on the emerging IoT architecture (JAYASHREE; SELVAKUMAR,
2020). Both paradigms facilitate storage, networking, and computing services between
end devices and cloud data centers. The fog computing architecture typically includes
segments of an application running in both the cloud and fog nodes, such as smart gate-
ways, routers, or dedicated fog devices (MAHMOOD; RAMACHANDRAN, 2018). Figure 3
provides a visualization of the edge-fog-cloud computing stack and illustrates the rela-
tionship between these paradigms.

To summarize, the utilization of fog and edge environments offers the advantage of
reduced bandwidth consumption compared to traditional cloud solutions. Cloud-based
systems typically require higher bandwidth, whereas fog and edge paradigms alleviate this
demand. It is important to recognize that the Internet inherently exhibits unreliability, and
wireless networks possess inherent limitations. Thus, the reduction in bandwidth usage
becomes an attractive benefit (YOUSEFPOUR et al., 2019b). Moreover, these paradigms
enable data transmission to circumvent the Internet and remain localized on smart devices
whenever possible. It is crucial to emphasize that while a significant amount of data may
still be transmitted to the cloud, sensitive data can be kept local, allowing more bandwidth
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Figure 3 – Edge-fog-cloud stack.
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capacity for cloud users.
Fog and edge computing exhibit closer proximity to end-users and greater geographical

distribution. In comparison to the cloud paradigm, fog and edge environments prioritize
proximity to end devices and client objectives, local resource pooling, latency, and back-
bone bandwidth. Consequently, this approach leads to enhanced quality of service (QoS)
and ultimately delivers a superior user experience (MAHMOOD; RAMACHANDRAN, 2018).

2.5 NEAR REAL-TIME SYSTEMS AT A GLANCE

Previously, the classification of real-time systems in the literature has predominantly
focused on two main categories, namely soft real-time systems and hard real-time systems
(LIU; NARAYANAN; BAI, 2000).

Soft real-time systems can be defined as systems in which meeting the specified tim-
ing constraints is important, but occasional deadline misses can be tolerated without
catastrophic consequences. These systems prioritize timely execution of tasks, but some
flexibility exists in meeting all the deadlines consistently. Examples of soft real-time sys-
tems include multimedia streaming, online video conferencing, and interactive applications
where occasional delays can be accommodated without significant disruption.

On the other hand, hard real-time systems are characterized by strict timing con-
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straints, where meeting the specified deadlines is of utmost importance. Failure to meet
these deadlines can lead to severe consequences, such as system failure or compromise of
safety-critical operations. Hard real-time systems require precise and deterministic tim-
ing guarantees, and even a single missed deadline is considered unacceptable. Examples
of hard real-time systems include flight control systems, medical monitoring devices, and
automotive safety systems.

It is worth noting that this traditional categorization has evolved over time, and con-
temporary research has explored additional dimensions and classifications to capture the
diverse characteristics and requirements of real-time systems. Nowadays, we have the near
real-time systems. Near real-time systems refer to a class of computational systems and
applications that are designed to process and respond to data promptly, aiming to deliver
timely outcomes or actions that closely align with real-time requirements (GOMES et al.,
2021). While these systems may not achieve absolute real-time performance, their main
focus is to minimize latency while providing fast processing and responsive functionalities
(ZHANG; THORBURN, 2022).

The use of near real-time systems spans across various domains where the rapid pro-
cessing of data is of utmost importance. Examples include financial trading platforms,
online gaming, monitoring and control systems, emergency response systems, transporta-
tion management systems, and surveillance systems (WEBER et al., 2020). Overall, near
real-time systems play a vital role in enabling time-sensitive applications and services by
facilitating rapid data processing and decision-making in domains where timely actions
are crucial (GOMES et al., 2021).

2.6 AVAILABILITY EVALUATION

Availability evaluation aims at measuring the ability of a system to be in a state where
it is able to operate a function at a given instant of time or interval (AVIZIENIS; LA-

PRIE; RANDELL, 2001; EVER, 2019; MACIEL, 2023b; MACIEL, 2023a). If a system is not
fault-tolerant, the system may stop working when a failure happens (AVIŽIENIS, 1967;
TORQUATO; UMESH; MACIEL, 2018; MACIEL, 2023b; MACIEL, 2023a). To represent that,
we may consider a random variable 𝑋(𝑡) as the system’s state at the moment of 𝑡. 𝑋(𝑡) = 1
denotes that the system is up, which means the system is working correctly. On the other
hand, 𝑋(𝑡) = 0 means that the system is down (i.e., not working). Formally, if we assume
a random variable 𝑇 expressing the necessary time to reach 𝑋(𝑡) = 0, where the system
begins in 𝑋(0) = 1, then 𝑇 is the time that the system takes to fail (𝑇 ≥ 0). 𝐹𝑇 (𝑡) is its
cumulative distribution function (MACIEL et al., 2012; MACIEL, 2023b; MACIEL, 2023a),
where

• 0 ≤ 𝐹𝑇 (𝑡) ≤ 1,

• 𝐹𝑇 (𝑡) is non-decreasing, that is, for any 𝑎 < 𝑏, 𝐹𝑇 (𝑎) < 𝐹𝑇 (𝑏),
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• lim𝑡 → −∞ 𝐹𝑇 (𝑡) = 0, and lim𝑡 → ∞ 𝐹𝑇 (𝑡) = 1,

• 𝑃 (𝑎 < 𝑇 < 𝑏) = 𝐹𝑇 (𝑏) − 𝐹𝑇 (𝑎). 𝐹𝑇 (𝑡) is continuous over 𝑡 ≥ 0.

The derivative of cumulative distribution function, 𝐹𝑇 (𝑡), of continuous random vari-
able 𝑇 is called the probability density function (𝑝𝑑𝑓) of 𝑇 , which is denoted by 𝑓𝑇 (𝑡).
More formally:

𝑓𝑇 (𝑡) = 𝑑𝐹𝑇 (𝑡)
𝑑𝑡

, (2.2)

where 𝑓𝑇 (𝑡) ≥ 0 and
∫︀∞

0 𝑓𝑇 (𝑡) 𝑑𝑡 = 1, assuming 𝑇 is defined in (0, ∞).
The complementary cumulative distribution function 𝐹 𝑐

𝑇 (𝑡) is defined by

𝐹 𝑐
𝑇 (𝑡) = 1 − 𝐹𝑇 (𝑡) = 1 − 𝑃 (𝑇 < 𝑡) = 𝑃 (𝑇 > 𝑡). (2.4)

As 𝑇 is the time to fail, 𝐹 𝑐
𝑇 (𝑡) = 𝑅(𝑡) is the system reliability. Thus,

𝑅(𝑡) = 𝐹 𝑐
𝑇 (𝑡) = 1 − 𝐹𝑇 (𝑡) = 𝑃 (𝑇 > 𝑡) (2.6)

and

𝑅(0) = 1 and lim
𝑡→∞

𝑅(𝑡) = 0.

Equation 2.7 describes the steady-state availability of a system, where 𝑢𝑝 is the system
uptime, and 𝑑𝑜𝑤𝑛 is the system downtime. It also can be represented as the association
between the mean time to failure (MTTF) and the mean time to restore or repair (MTTR),
Equation 2.8 and Equation 2.9, respectively (AVIZIENIS; LAPRIE; RANDELL, 2001; MACIEL

et al., 2012; MACIEL, 2023b; MACIEL, 2023a). Assessing the availability using MTTF and
MTTR, the result will always be a number between 0 and 1. For example, if the system’s
availability is 0.997, the system is working 99.70% and not working 0.30% of the time.
The steady-state availability is expressed as

𝐴 = 𝐸(𝑢𝑝)
𝐸(𝑢𝑝) + 𝐸(𝑑𝑜𝑤𝑛) , (2.7)

where 𝐸(𝑢𝑝) and 𝐸(𝑑𝑜𝑤𝑛) are the expected uptime and the expected downtime, re-
spectively. The 𝑀𝑇𝑇𝐹 may be expressed as

𝑀𝑇𝑇𝐹 =
∫︁ ∞

0
𝑅(𝑡)𝑑𝑡. (2.8)

The 𝑀𝑇𝑇𝑅 required to achieve as steady-state availability may be estimated by

𝑀𝑇𝑇𝑅 = 𝑀𝑇𝑇𝐹 × 1 − 𝐴

𝐴
. (2.9)

As the 𝐸(𝑢𝑝) = 𝑀𝑇𝑇𝐹 (Mean Time to Failure) and 𝐸(𝑑𝑜𝑤𝑛) = 𝑀𝑇𝑇𝑅 (Mean
Time to Repair), then
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𝐴 = 𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
. (2.10)

The availability can also be represented by the number of nines (#9𝑠), which is esti-
mated by

#9𝑠 = − log(1 − 𝐴). (2.12)

Table 1 depicts the number of nines in terms of yearly downtime (ÖHMANN; SIMSEK;

FETTWEIS, 2014; MACIEL, 2023b; MACIEL, 2023a).

Table 1 – Service availability in number of nines.

# of
9’s

Avail.
(%)

System
Type

Downtime
(year)

1 90 unmanaged 5 weeks
2 99 managed 4 days
3 99.9 well-managed 9 hours
4 99.99 fault-tolerant 1 hour
5 99.999 high-availability 5 minutes
6 99.9999 very high-availability 30 seconds
7 99.99999 ultra availability 3 seconds

Source: Maciel et al. (2023).

In order to establish a relationship between the hardware resources and the overall sys-
tem performance, relying solely on pure availability models is insufficient. To address this
limitation, the capacity-oriented availability (COA) metric was introduced. The capacity-
oriented availability metric evaluates how effectively the system delivers its services, tak-
ing into consideration both availability and unavailability states and their impact on the
service provided (MELO et al., 2017; Sousa et al., 2015; MACIEL, 2023b; MACIEL, 2023a).

The capacity-oriented availability (COA) can be computed using Equation 2.13, where
𝑝𝑐𝑖 represents the number of available resources in a given state 𝑠𝑖. Additionally, 𝜋𝑖 denotes
the steady-state availability for the state 𝑠𝑖, while US represents a set containing all
available states. Furthermore, MPC corresponds to the maximum processing capacity of
the system (MATOS et al., 2017a; MACIEL, 2023b; MACIEL, 2023a). By employing the COA
metric, we gain a comprehensive understanding of the system’s performance in terms of
resource allocation and its impact on the delivered services.

COA =
∑︀

𝑠𝑖∈𝑈𝑆
𝑝𝑐𝑖 × 𝜋𝑖

MPC (2.13)
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2.7 PERFORMANCE EVALUATION

The primary objective of system administrators is to enhance system performance while
minimizing costs. Performance evaluation plays a crucial role in assessing a system’s be-
havior based on specific metrics. Prior to conducting a performance evaluation, engineers
must determine the appropriate technique to employ. Three commonly used methods
include analytical modeling, simulation, and measurement (JAIN, 1990; MACIEL, 2023b;
MACIEL, 2023a).

Analytical models utilize closed-form equations to predict and analyze the behavior
of a system (GOKHALE; TRIVEDI, 1998; MACIEL, 2023b; MACIEL, 2023a). These models
provide an abstraction and representation of computer systems and are generally more
cost-effective compared to other methods like measurements, as they do not require a sys-
tem prototype to be implemented (JAIN, 1990). By employing analytical models, system
administrators can identify potential bottlenecks within their infrastructure by varying
input values and observing their impact on system performance (PEREIRA et al., 2020;
MACIEL, 2023b; MACIEL, 2023a). However, it is important to note that analytical models
may become overly complex and difficult to interpret as the number of system states
increases. Consequently, resource exhaustion can occur when dealing with excessively in-
tricate equations. Furthermore, there are instances where closed-form solutions are nearly
impossible or highly costly to develop (JAIN, 1990; MACIEL, 2023b; MACIEL, 2023a).

The measurement method for performance evaluation is dependent on the existence of
a system or prototype. This approach involves monitoring a system and drawing conclu-
sions based on the obtained results. To effectively employ measurement-based methods,
it is essential to create a realistic environment where the system can be monitored under
heavy load. Additionally, careful analysis of the workload is necessary to ensure that the
server is appropriately stressed, as the selection of measurement strategies and tools de-
pends on the workload characteristics (LILJA et al., 2005; MACIEL, 2023b; MACIEL, 2023a).

Numerous tools are available to support performance evaluation; however, it is im-
portant to note that these tools can potentially alter the behavior of the system being
evaluated. The degree of disturbance introduced by a measurement tool increases with the
amount of information and functionality it provides. Consequently, the more comprehen-
sive the tool, the greater the potential disturbance it may cause in the environment (LILJA

et al., 2005; MACIEL, 2023b; MACIEL, 2023a). This disturbance introduced by measurement
tools can compromise the reliability of the collected data. Therefore, measurement tools
that operate based on events are considered more reliable, as they only initiate measure-
ments when specific events occur. However, in situations where events occur frequently,
these event-based tools may introduce more disturbance compared to other tools that rely
on sampling (LILJA et al., 2005; MACIEL, 2023b; MACIEL, 2023a).

The primary limitation of the measurement method is its reliance on having at least
a prototype system to perform measurements. Additionally, monitoring activities are sus-
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ceptible to errors. If the system is still in the conceptual stage, the available techniques
for performance evaluation are limited to analytical modeling and simulation (JAIN, 1990;
MACIEL, 2023b; MACIEL, 2023a).

Simulations in performance evaluation can be resource-intensive as each run of the
simulation represents a single sample point of the system’s behavior. Consequently, en-
gineers need to conduct multiple runs to obtain a sufficient sample space. A run refers
to the execution of the system from start to finish. Since the simulation generates dif-
ferent outputs for each execution, it does not provide an exact result but rather yields a
confidence interval representing the range of possible outcomes (JAIN, 1990).

Simulations are typically employed when the assumptions made by analytical models
are not applicable or suitable for the system under evaluation (PEREIRA et al., 2020). Unlike
measurement-based methods, simulation strategies rely on abstract models of the system,
eliminating the need to construct an entire real environment for evaluation (MENASCE

et al., 2004). Consequently, the models used in simulations are designed to capture the
essential characteristics of the environment. The level of complexity and abstraction em-
ployed in these models may vary depending on the specific system being studied (LILJA

et al., 2005).
On the other hand, analytical models are mathematical representations used to de-

scribe and predict system behavior (GOKHALE; TRIVEDI, 1998). These models enable the
abstraction and characterization of the performance of computer systems, making them
a cost-effective alternative to other methods. Analytical models calculate the behavior of
a system over a defined time frame (GOKHALE; TRIVEDI, 1998). They are developed to
understand system behavior, measure performance, and predict the behavior of specific
system components. By introducing changes to various system components, analytical
models can identify bottlenecks within the environment (CALIRI, 2000; MACIEL, 2023b;
MACIEL, 2023a).

The performance metrics used in this thesis are:

• Utilization is resource usage, which is a term used to describe how much the resource
is working. Resources can be monitored to see how much of their capacity is in use.
Excessive usage for certain systems can be a cause for concern. The percentage of
usage indicates how much of the resource capacity is currently in use;

• Response time is the time a service takes to respond to various types of requests.
Response time is a function of load intensity, which can be measured in terms of
arrival rates (such as requests per second) or the number of concurrent requests.
QoS takes into account not only the average response time but also the percentile
(95th percentile, for example) of the response time;

• Discard rate is specified as the fraction of discarded requests per unit of time since
the beginning of the session;
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• Waiting time is the time interval that one waits after placing a request for a service
and before the service actually occurs.

These performance metrics play a crucial role in identifying bottlenecks within a sys-
tem and have a direct impact on the user’s perception of performance (CAMPOS et al.,
2015; MACIEL, 2023b; MACIEL, 2023a). When applying queueing theory to model the per-
formance of certain systems, it is possible to generalize their behavior. Specifically, the
performance metrics for an 𝑀/𝑀/𝑚/𝐵 queue with finite buffers can be represented using
the following equations (JAIN, 1990; MACIEL, 2023b; MACIEL, 2023a).

𝜌 = 𝜆

𝑚𝜇
(2.14)

𝜋𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑚𝜌)𝑛

𝑛! 𝜋0, 𝑛 = 1, 2, . . . , 𝑚 − 1
𝜌𝑛𝑚𝑚

𝑚! 𝜋0, 𝑛 = 𝑚, 𝑚 + 1, . . . , 𝐵

(2.15)

𝜋0 =
[︃
1 + (1 − 𝜌𝐵−𝑚+1)(𝑚𝜌)𝑚

𝑚!(1 − 𝜌) +
𝑚−1∑︁
𝑛=1

(𝑚𝜌)𝑛

𝑛!

]︃−1

(2.16)

where 𝜋𝑛 represents the probability of the system being in the state 𝑛. On the other hand,
𝜋0 represents the probability of the system being in the state 0.

𝑈 = 𝜌(1 − 𝜋𝐵) (2.17)

𝑅𝑇 =

𝐵∑︀
𝑛=1

𝑛𝜋𝑛

𝜆(1 − 𝜋𝐵) (2.18)

𝑊𝑇 =

𝐵∑︀
𝑛=𝑚+1

(𝑛 − 𝑚)𝜋𝑛

𝜆(1 − 𝜋𝐵) (2.19)

𝐷𝑅 = 𝜆𝜋𝐵 (2.20)

2.8 MARKOV CHAIN

A Markov Chain is a state-based model, in which some future state only depends on the
current states and not on the previous states (TRIVEDI; BOBBIO, 2017; MACIEL, 2023b;
MACIEL, 2023a). Thus, with this formalism, it is possible to describe the functioning of
a system through a set of states and transitions. Markov chains are useful mathematical
models for the description of statistical analysis with time values in their parameters, also
known as a stochastic process.
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A stochastic process 𝑋(𝑡), 𝑡 ∈ 𝑇 is a sequence of random variables defined over the
same probability space, indexed by a time parameter (𝑡 ∈ 𝑇 ) and assuming values in the
state space (𝑠𝑖 ∈ 𝑆) (CASSANDRAS; LAFORTUNE et al., 2009; MACIEL, 2023b; MACIEL,
2023a). Thus, if a set 𝑇 is discrete, in other words, enumerable 𝑋(𝑡), 𝑡 = 1, 2, 3, ..., the
process is a discrete process or discrete time. If 𝑇 is a continuous set, we have a continuous
parameter process or continuous time. The stochastic process is classified as a Markov pro-
cess if for all 𝑡0 < 𝑡1 < ... < 𝑡𝑛 < 𝑡𝑛+1 and for all 𝑋(𝑡0), 𝑋(𝑡1), 𝑋(𝑡2), ..., 𝑋(𝑡𝑛), 𝑋(𝑡𝑛+1)
the conditional distribution of 𝑋(𝑡𝑛+1) depends only on the last value 𝑋(𝑡𝑛), and not
on previous values 𝑋(𝑡0), 𝑋(𝑡1), 𝑋(𝑡2), ..., 𝑋(𝑡𝑛−1). On other words, for any real number
𝑋0, 𝑋1, 𝑋2, ..., 𝑋𝑛, 𝑋𝑛+1, 𝑃 (𝑋𝑛+1 = 𝑠𝑛+1|𝑋𝑛 = 𝑠𝑛, 𝑋𝑛−1 = 𝑠𝑛−1, ..., 𝑋0 = 𝑠0) = 𝑃 (𝑋𝑛+1 =
𝑠𝑛+1|𝑋𝑛 = 𝑠𝑛), which is the Markov property (BOLCH et al., 2006; STEWART, 2009; MA-

CIEL, 2023b; MACIEL, 2023a).

Figure 4 – Continuous-time Markov chain state diagram of a repairable system.

DownUp

λ

µ
Source: Elaborated by the author.

In this work, we focus on Continuous-time Markov chain (CTMCs); hence, to find the
probability of each state in a Markov chain, we group the transition rates into a matrix
Q, which is called the infinitesimal generator of a CTMC. For example, Figure 4 depicts
a CTMC diagram of a repairable system, where we have a failure rate 𝜆 and a repair rate
𝜇. In other words, the transition from Up to Down represents the failure with rate 𝜆 and
the transition from Down to Up represents the repair with rate 𝜇. Therefore, we have the
following infinitesimal generator matrix of the CTMC in Figure 4:

Q =

⎡⎢⎣−𝜆 𝜆

𝜇 −𝜇

⎤⎥⎦ .

Assuming we want to find the probability of the state Up and Down, 𝜋𝑢 and 𝜋𝑑, respec-
tively; therefore, we apply the Kolmogorov differential equations assuming the steady-state
solution exists (KOLMOGOROFF, 1931; MACIEL, 2023b; MACIEL, 2023a):

[︂
𝑑𝜋𝑢

𝑑𝑡
𝑑𝜋𝑑

𝑑𝑡

]︂
= [𝜋𝑢 𝜋𝑑]

⎡⎢⎣−𝜆 𝜆

𝜇 −𝜇

⎤⎥⎦ . (2.21)

From the Equation 2.21, we can obtain the following scalar equations:
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⎧⎪⎨⎪⎩
𝑑𝜋𝑢

𝑑𝑡
= −𝜆𝜋𝑢 + 𝜇𝜋𝑑,

𝑑𝜋𝑑

𝑑𝑡
= 𝜆𝜋𝑢 − 𝜇𝜋𝑑.

(2.22)

Solving the algebraic set of the equations, we can find the steady-state solution given
by:

⎧⎪⎨⎪⎩𝜋𝑢 = 𝜇
𝜆+𝜇

,

𝜋𝑑 = 𝜆
𝜆+𝜇

.
(2.23)

Therefore, 𝜋𝑢 and 𝜋𝑑 are the probability of the state Up and Down, respectively. For
this specific example, 𝜋𝑢 and 𝜋𝑑 also mean the availability and unavailability of the system
(MACIEL, 2023b; MACIEL, 2023a).

2.9 FAULT TREE DIAGRAM

The Fault Tree (FT) is a combinatorial model for availability and reliability evaluation
(MACIEL, 2023b; MACIEL, 2023a). If we assume that a random variable 𝑦𝑖(𝑡) indicates the
state of the component 𝑖, thus:

𝑦𝑖 =

⎧⎨⎩1, if the component i is faulty at time t

0, if the component i is operational at time t.
(2.24)

As we can see in Equation 2.24, Fault Tree (FT) models are failure oriented. In other
words, we adopt Fault Tree models to build and evaluate the set of events depicting the
system’s failure (MACIEL, 2023a).

In Fault Tree (FT) models, we have two types of symbols: events and gates. Events can
be characterized as failure or error in a component, and gates describe the relationship
between input and output events (MACIEL, 2023b). Figure 5 shows the basic symbols of
FT diagram.

Figure 5 – Fault Tree basic symbols.

BASIC
EVENT

AND OR KooN

AND OR KooNTOP
EVENT

Source: Elaborated by the author.

Figure 6 depicts an example of a Fault Tree model, where if the Top event is 1, then
it means the system is faulty. The circles (i.e. 1, 2, 3, and 4) are basic events, which can
represent a failure in some component of the system.
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Figure 6 – Fault Tree diagram example.

AND

OR

Subsytem A

AND

1 2 3 4

Source: Elaborated by the author.

In FT diagrams, we can combine gates and events to model complex system designs.
However, we also can model subsystems and combine them to represent the whole system.
From the graphical representation of the FT diagram, we derive the logical function, and
from the logical function, we can obtain the structure function. The structure function
allows us to calculate the reliability and availability of systems (TRIVEDI et al., 1996;
MACIEL, 2023a).

2.10 RELIABILITY BLOCK DIAGRAM

In the previous section, we presented a combinatorial failure-oriented model. On the other
hand, in this section, we will present the Reliability Block Diagram (RBD), which is a
combinatorial success-oriented model. If we assume that a random variable 𝑦𝑖(𝑡) indicates
the state of the component 𝑖, thus:

𝑦𝑖 =

⎧⎨⎩1, if the component i is operational at time t

0, if the component i is faulty at time t.
(2.25)

In an RBD model, each component of a system is a block and can be linked to others
through arcs. The possible combinations in RBD models are series, and parallel. In the
series composition, if one component fails, the whole system fails. In other words, the
system is operational only if all components are operational, otherwise, the system is not
functional. On the other hand, in the parallel composition, the system is working if at
least one component is functioning. The parallel composition can be used to illustrate the
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redundancy of components. It is worth pointing out that if we use parallel composition
to depict the redundancy, we are representing the hot-standby redundancy (TRIVEDI et

al., 1996; MACIEL, 2023b). Figure 7 depicts the two compositions.

Figure 7 – Reliability Block Diagram example.

Series Composition Parallel Composition

Component 1 Component 2

Component 1

Component 2

Source: Elaborated by the author.

In RBD models, we can combine blocks to model complex system designs using differ-
ent compositions. However, we also can model subsystems and combine them to represent
the whole system. From the graphical representation of the RBD, we derive the logical
function, and from the logical function, we can obtain the structure function. The struc-
ture function allows us to calculate the reliability and availability of systems (TRIVEDI et

al., 1996; MACIEL, 2023a).
Within the domain of serial components, where the failure of a single element impacts

the entire system, RBDs offer a means to depict the progression of failures throughout the
system. By representing individual components as blocks in the diagram, interconnected
appropriately, we can effectively examine the influence of component failures on the overall
system’s availability.

In our approach, we employ the RBD model to consolidate multiple components into
a single entity. This consolidation involves combining the MTTF and MTTR values of
the constituent components, resulting in an equivalent component within the RBD, as
highlighted in previous research studies (MACIEL, 2023b; MACIEL, 2023a). This approach
streamlines the model, rendering it more manageable and facilitating the analysis of sys-
tem availability. However, it is crucial to acknowledge that this condensation assumes
that failures among the individual components within the series are independent of one
another.

2.11 PARAMETRIC SENSITIVITY ANALYSIS

Parametric sensitivity analysis is a valuable approach used to identify the factors in a
model that exhibit the highest impact on the output measure with the smallest variation
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(HAMBY et al., 1994). The primary objective of parametric sensitivity analysis is to detect
performance, availability, and reliability bottlenecks within the system by assessing the
effects of input variations on the corresponding outputs (HAMBY et al., 1994).

Various techniques can be employed to conduct parametric sensitivity analysis, in-
cluding factorial experimental design (JAIN, 1990), correlation analysis, and regression
analysis (CHATFIELD et al., 2010). One straightforward method involves systematically
varying a single parameter while holding all others constant, allowing for the computa-
tion of changes in the model’s output and the creation of a sensitivity ranking (HAMBY et

al., 1994). Another useful approach is differential analysis, which involves calculating par-
tial derivatives of the desired measures with respect to each input parameter. This method
serves as the foundation for many parametric sensitivity analysis techniques (HAMBY et

al., 1994).
The sensitivity of a particular measure 𝑌 to a specific parameter 𝜃 can be determined

using Equation 2.26. Additionally, Equation 2.27 provides the scaled sensitivity, which
aids in comparing the relative impact of different parameters on the measure of interest.

𝑆𝜃(𝑌 ) = 𝜕𝑌

𝜕𝜃
(2.26)

𝑆𝑆𝜃(𝑌 ) = 𝜆

𝑌

𝜕𝑌

𝜕𝜃
(2.27)

Partial derivatives are extensively used to perform sensitivity analysis. However, they
may not be the best approach in some cases. For instance, when the parameters of a
model under analysis are integer values, the partial derivatives method cannot be applied
because it is designed for input values in a continuous domain (CHATFIELD et al., 2010;
MATOS et al., 2016). Partial derivatives are not used in simulation either, because they
might not be calculated due to the lack of closed-form equations or systems of equations
to solve.

Another way to perform sensitivity analysis is by calculating the percentage difference
when varying one input parameter from its minimum to its maximum value. This approach
may be used as an alternative for partial derivatives. Equation 2.28 shows the expression
for this approach, where 𝑚𝑖𝑛{𝑌 (𝜃)} and 𝑚𝑎𝑥{𝑌 (𝜃)} are the minimum and maximum
output values respectively. These values are computed when varying the parameter 𝜃 over
the range of its 𝑛 possible values of interest.

𝑆𝜃(𝑌 ) = 𝑚𝑎𝑥{𝑌 (𝜃)} − 𝑚𝑖𝑛{𝑌 (𝜃)}
𝑚𝑎𝑥{𝑌 (𝜃)} (2.28)

where

𝑚𝑎𝑥{𝑌 (𝜃)} = 𝑚𝑎𝑥(𝑌 (𝜃1), 𝑌 (𝜃2), ..., 𝑌 (𝜃𝑛)) (2.29)

and
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𝑚𝑖𝑛{𝑌 (𝜃)} = 𝑚𝑖𝑛(𝑌 (𝜃1), 𝑌 (𝜃2), ..., 𝑌 (𝜃𝑛)) (2.30)

If 𝑌 consistently increases and never decreases or consistently decreases and never in-
creases, so only the extreme values of 𝜃 may be used to compute 𝑚𝑖𝑛{𝑌 (𝜃)}, 𝑚𝑎𝑥{𝑌 (𝜃)},
and 𝑆𝜃(𝑌 ) (MACIEL, 2023b; MACIEL, 2023a).

2.12 FINAL REMARKS

This chapter has presented the essential theoretical foundations to familiarize the readers
with the fundamental concepts underlying this research. By discussing the background
of edge, fog, and cloud computing paradigms, along with the concepts of availability
and performance evaluation, we have provided a comprehensive understanding of the
basis for the proposed work. Furthermore, the significance of sensitivity analysis has been
elucidated, as it will be employed in subsequent case studies to enhance system availability.
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3 RELATED WORKS

The significance of novel paradigms, such as edge, fog, and cloud computing, in facilitating
Internet of Things (IoT) infrastructures has gained considerable attention from both aca-
demic and industrial sectors. In academia, the exploration of interoperability among edge,
fog, and cloud environments for IoT infrastructures, aiming to enhance various Quality
of Service (QoS) measures, such as availability and performance, has been the subject
of recent studies. In this chapter, we aim to provide a comprehensive review of the cur-
rent research landscape in terms of availability and performance evaluation, specifically
focusing on the utilization of modeling techniques within edge, fog, and cloud computing
environments. We divided the related works into three sections: Edge, Fog, and Cloud
Computing. To present a cohesive overview, we have organized the relevant works into a
tabular format, as depicted in Table 2, where the studies are classified based on the type
of infrastructure, evaluation method employed, and the adoption of analytical modeling.

3.1 EDGE COMPUTING

Boukerche et al. (2020) introduced a data retrieval approach for computation offloading
in Vehicular Edge Computing (VEC). Their strategy begins with the premise that when
the vehicle finishes the computation, it will send the processed data to the sender Road-
Side Units (RSU). The authors also state that depending on the speed and the processing
time of the task, the vehicle’s location may be different from when the task was received;
therefore, they proposed a model of the computation offloading system, which analyzes
the capacity to simulate the components that enhance its performance and availability in
a vehicular edge computing environment (BOUKERCHE; SOTO, 2020).

Gamatié et al. (2019) introduced an original asymmetric multi-core infrastructure
connected to a programming model and workload control to increase the availability and
performance of edge environments. This infrastructure combines ultra-low power cores
dedicated to parallel workloads for high throughput and a high-performance core. Even
though their design resembles a CPU-GPU heterogeneous combination, their proposal is
more flexible because the GPU is only used for regular parallel workloads (GAMATIÉ et

al., 2019).
Gorbenko et al. (2019) introduced analytical models and practical guidance to de-

velopers of distributed fault-tolerant systems allowing them to predict the availability of
IoT environments. Their work states that the proposed models will help developers ana-
lyze the trade-off between consistency, availability, and latency during system design and
operation. Although the authors provided an availability model, they did not consider
the performance aspects of such environments (GORBENKO; ROMANOVSKY; TARASYUK,
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2019).
A data analytics framework to enhance the efficiency of decision-making regarding

the availability of fog environments was introduced by Sanyal et al. (2018). The authors
also showed an uncertainty model for IoT sensor data based on Shannon’s entropy. The
data aggregation and preprocessing scheme proposed may adequately eliminate IoT data
uncertainties while maintaining data dynamics. They also stated that data restoration
from the partial sets of raw data before the subspace tracking significantly benefits similar
methods. Their approach does not demand any previous knowledge about the outliers or
the missing values and may work on a fully and partially collected dataset (SANYAL;

ZHANG, 2018).
Li et al. (2019) used gray-Markov chains as an analytical model and measurement to

enhance the data availability of edge computing environment connected to a traditional
cloud system. They had worked out with replicas managed by their proposed algorithm
and could improve both performance and data availability by bringing the data closer
to the user. The authors also presented some scenarios that could be applied, some as
manufacturing, smart cities, and augmented reality (LI et al., 2019).

Aldaug et al. (2022) proposed an analytical model and the solution approach for
QoS evaluation of fault-tolerant load balancer, also, QoS evaluation of web servers with
mobility issues in fog computing. The authors focused on availability evaluation and how
faults degrade SLAs (ALDAĞ; KIRSAL; ÜLKER, 2022).

An uplink transmission approach in IoT powered by energy harvesting was presented
by Sun et al. (2017) to permit each node to transmit data through heterogeneous networks,
where the uplink transmission approach’s primary goal is to improve communication
reliability and availability. The authors also proposed performance metrics to analyze
outage probability and ergodic capacity and analytical models (SUN; LIU, 2017).

A simulation-based optimization approach was introduced by Huang et al. (2020)
for REliability-Aware Service compositiON (REASON) for edge computing paradigm.
The authors employ Stochastic Petri Net (SPN) to build the atomic service model for
reliability-aware performance evaluation, which may model the dynamics of task arrivals,
service procedures, failures, and recoveries. They also introduced a model combination
scheme to express the complex service composition process, where scheduling between
multiple layers and service collaboration inside or beyond layers can be dynamically mod-
eled (HUANG; HUANG; LIN, 2020).

Miao et al. (2021) presented a quantitative performance analysis of vehicular edge
computing (VEC) systems to cope with the requirements of vehicular applications. The
authors proposed analytical models to evaluate the performance of vehicular edge com-
puting systems (MIAO et al., 2021).

A theoretical approach was introduced by Li et al. (2017) to reliability-aware perfor-
mance evaluation of IoT services. The authors proposed a generalized stochastic Petri net
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(GSPN) to express the IoT environments’ variability, including task scheduling, queueing,
request arrivals, failures, repairs, and recoveries; the authors modeled atomic services and
comprehensive systems, and they also presented corresponding quantitative analyses. Li
et al. (2017) conducted empirical experiments based on real-world data to provide a pre-
dictive methodology of performance evaluation of IoT services, taking into account the
reliability of these environments (LI; HUANG, 2017).

The Energy Efficient and Failure Predictive Edge Offloading (EFPO) framework were
presented by Zilic et al. (2019) to determine the offloading decision policy’s feasibility.
They model the edge environment with Markov Decision Process (MDP). The results
present performance and energy efficiency metrics, besides adopting failure rates to iden-
tify that Edge and computational server are less reliable than Edge regular and cloud
(ZILIC; ARAL; BRANDIC, 2019).

3.2 FOG COMPUTING

In their study, Battula et al. (2020) conducted an assessment of the resource availabil-
ity challenge in Fog computing infrastructure with the aim of enhancing the Quality of
Service (QoS). Their research introduced a novel method employing a continuous-time
Markov chain to effectively represent the Fog infrastructure and facilitate resource se-
lection decisions. To evaluate their proposed model across various scenarios, the authors
utilized simulation techniques. The primary objective of their approach was to minimize
service provider-paid compensation by improving QoS in terms of availability and sub-
sequently reducing SLA violations. However, it is worth noting that the authors’ work
did not encompass considerations for edge environments or capacity-oriented availability
(BATTULA et al., 2020).

Security challenges in fog computing were addressed by Yakubu et al. (2019). The
authors discussed several procedures utilized to solve security dilemmas within the fog-
computing environment. In their study, the authors show that most of the security meth-
ods used by different researchers are not dynamic sufficient to overcome all the fog security
issues, including availability and reliability problems. The main difference between our sur-
vey and their work is that this study is more general in the sense of showing several types
of research regarding availability and reliability. This study also aggregates the edge and
cloud computing paradigm, and not only the fog computing (YAKUBU et al., 2019).

An efficient and flexible architecture that uses SDN, fog computing, and a blockchain
paradigm to capture and analyze IoT income data of end devices was presented by Sharma
et al. (2017). Although their proposal focuses on performance evaluation, it also consid-
erably increased the provided services’ availability and reliability. Their distributed fog
environment used SDN and blockchain paradigm to bring computing resources to the edge
devices, so the traffic has a minimal end-to-end delay between IoT sensors and actuators
and computing power (SHARMA; CHEN; PARK, 2017).
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A Deterministic and Stochastic Petri Net (DSPN) approach was presented by An-
drade et al. (2020) for evaluating Fog–Cloud IoT environments composed of hundreds of
physical Things. The author’s approach evaluates the trade-offs of many performability
metrics such as utilization, response time, throughput, and availability and may help sys-
tem designers choose the most suitable Fog–Cloud IoT environment. The results show
that adopting a Fog node would improve availability and performance in some instances
(ANDRADE et al., 2020).

Yousefpour et al. (2019) proposed the deepFogGuard, a deep neural network (DNN)
augmentation scheme for making the distributed DNN inference task failure-resilient.
The simulation considered mainly different reliability settings for cloud, fog, and edge
environments. The results presented demonstrated that the deepFogGuard is more efficient
than a DNN that is not trained for failure resiliency (YOUSEFPOUR et al., 2019a).

Barzegaran et al. (2021) introduced an evaluation of real-time applications and their
availability. The authors used simulation to evaluate the availability of real-time applica-
tions on Fog computing environments (BARZEGARAN; POP, 2021).

3.3 CLOUD COMPUTING

In another work, Facchinetti et al. (2019) presented a lightly-pervasive well-being service
called IPSOS Assistant for Mobile Cloud Computing (MCC); this service is to manage
emergencies in indoor spaces. Their proposal combines indoor positioning, context moni-
toring, visualization, and social collaboration to assist users in indoor workplaces in case
of personal and environmental emergencies. The authors also address the availability and
reliability of their proposal (FACCHINETTI; PSAILA; SCANDURRA, 2019).

Already, Jia et al. (2020) introduced an edge computing environment that supports re-
source sharing according to several scenarios. The authors also proposed a trust property,
where they subdivided the system based on the heterogeneity and dynamics for increasing
the availability of the services (JIA; LIN; DENG, 2020).

A novel optimization model to investigate and minimize the total Cloud cost to serve
requests to increase the service’s availability and reliability was presented by Sharkh et
al. (2018). In cases where IoT service providers give more importance to the cost, and
the providers are limited by network capacity, they can use fog environments to serve all
requests that arrive in the service. Their results show that regarding high-value requests,
the minimal cost may be achieved by giving more importance to the Cloud nodes; in other
words, the request must be sent to the cloud nodes. They also state that in cases where
a high percentage of requests have high value, it is preferable to change some of the Fog
Node work (SHARKH; KALIL, 2018).

Mobile-cloud computing was addressed in Angin et al. (2015), where the authors pro-
posed a mobile-cloud methodology based on autonomous agent-based application mod-
ules. Their main goals are to introduce an operative and easy-to-adopt MCC model.
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They also introduced a dynamic availability-performance estimation model that permits
the tracking and relocation of offloaded computation; this dynamic model tries to achieve
optimal availability and performance under varying mobile-cloud contexts (ANGIN; BHAR-

GAVA; JIN, 2015).
A layered platform-centric model from the cloud’s perspective was introduced by Guan

et al. (2016) to provide a full picture of handling the offloading issue in the multi-user
multi-core mobile cloud environment. A platform-centric offloading scheme was formu-
lated and evaluated in this model, aiming to improve task execution efficiency and energy
reduction during offloading and increase the service’s availability (GUAN; GRANDE; BOUK-

ERCHE, 2016).
An approach for availability analysis of IaaS cloud systems was introduced by Longo et

al. (2011), which can generate a quick and scalable response and considers multiple classes
of server pools. Their approach is based on modeling the system as a joined interacting
Markov chain using sub-models. As a result, the authors elaborated closed-form equations
for the sub-models; and regarding the dependencies among the sub-models, the authors
solved it by using fixed-point iteration. Their proposal decreases the complexity and
solution time for analyzing IaaS clouds (e.g., IaaS Cloud systems’ availability composed
of thousands of physical servers may be analyzed in seconds) (LONGO et al., 2011).

A stochastic model-driven mechanism to optimize the cost and capacity in an IaaS
cloud infrastructure was proposed by Ghosh et al. (2013). Their approach is an opti-
mization framework built throughout the performance and availability models of an IaaS
Cloud because it helps the computation of different cost components. The authors also
present simulated stochastic algorithms to solve the non-linearity and non-convexity of
the overall optimization. Their proposal is quicker than a naive search algorithm while
maintaining the solution’s optimality (GHOSH et al., 2013).

In another work, Ghosh et al. (2014) proposed a stochastic modeling mechanism to
evaluate large IaaS cloud systems’ availability. Their work demonstrates a way to overcome
scalability problems for a monolithic model through interacting sub-models or simulation.
Using the sub-model interactions, the authors produced fast model solutions facilitating
scalability without jeopardizing the accuracy. Through simulation, the authors were able
to generate results that closely match the monolithic and interacting sub-models tech-
nique. The authors also derived closed-form solutions to solve large cloud models faster
(GHOSH et al., 2014).

A component-based availability modeling framework called Candy was introduced by
Machida et al. (2011). This framework composes a comprehensive availability technique
to model cloud services from the perspective of system specifications described using
SysML diagrams. The authors also state that their proposal semi-automatically converts
the elements of SysML diagrams into model components. To validate their framework, the
authors applied their framework in a web application system on an IaaS cloud, and the
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generated model is used to evaluate the effectiveness of the automatic scale-up mechanism
and failure-isolation zones (MACHIDA et al., 2011).

A sensitivity analysis of mobile cloud availability based on hierarchical analytical mod-
els was introduced by Matos et al. (2015). Their results improved the system availability
considerably by focusing on a decreased set of components that create a considerable
variation on steady-state availability. Their sensitivity analysis ranked the system’s com-
ponents. At the highest positions of sensitivity rankings, it is the battery discharge or the
cloud infrastructure components named Infrastructure and Storage Managers; it means
that these components must obtain the highest priority to produce improvements in sys-
tem availability (MATOS et al., 2015).

In another work, Matos et al. (2017) introduced a sensitivity analysis of hierarchical
heterogeneous models for Eucalyptus private cloud architectures, which may be used for
guiding further improvements to the system availability. They also present closed-form
equations that enable the solution of desired metrics and computation of sensitivity indices
without the necessity for the RBD and MRM models’ numerical solution (MATOS et al.,
2017b).

Already, Melo et al. (2018) evaluated both availability and reliability issues regarding
service provisioning over cloud computing environments. They used the Mercury tool’s
script language to represent and evaluate dynamic reliability block diagrams (DRBD) to
obtain the related metrics and represent some dependencies between the system’s com-
ponents. Also, Melo et al. (2020) extended those DRBDs to evaluate the availability of
hyper-converged cloud computing environments. It is relevant to mention that DRBDs
is an extension of common RBDs. However, with the possibility of evaluating and estab-
lishing a dependency between the system’s components, in both papers, the evaluated
environments were managed by OpenStack cloud computing platform, and deployment
costs related to service provisioning were considered (MELO et al., 2018).

Melo et al. (2019) evaluated the availability of cloud computing environments hosting
a blockchain -as-a-service platform based on Hyperledger Fabric. The authors used RBDs
and SPN models created on Mercury Tool to obtain the environment’s annual downtime
and detect the impact and the bottlenecks among the input parameters over the system’s
availability by applying difference sensitivity analysis (MELO et al., 2019a).

Liu et al. (2018) proposed monolithic availability models based on Stochastic Re-
ward Net (SRN) formalism in order to evaluate the availability of a cloud computing
infrastructure-as-a-service (IaaS) provisioning. The authors also had performed a para-
metric sensitivity analysis evaluation to identify the components that impact the most on
the service provisioning availability considering a cloud data center infrastructure. Two
repair routines were also considered on the sensitivity analysis evaluation and pointed out
that shared maintenance can have lower costs and keep a similar availability value for
individual maintenance applied to each server or site in a cloud data center (LIU et al.,
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2018).
A characterization by an availability perspective of the container-based implementa-

tion of an IMS system (cIMS) was presented by Di et al. (2019). The authors are interested
in recognizing the optimal settings of a cIMS deployment that can provide five-nine avail-
ability requirements, meaning that a maximum downtime of 5 minutes and 26 seconds
per year is allowed (MAURO et al., 2019).

The work developed by Dantas et al. (2012) proposes hierarchical modeling to rep-
resent redundant cloud infrastructure, comparing their availability. The authors consider
a high-level model based on RBD representing the Eucalyptus platform subsystems and
a low-level model based on Continous Time Markov Chain representing the respective
subsystems employing a warm-standby replication mechanism. Dantas et al. (2015) still
considers as an extension of the paper, where the authors include the acquisition cost and
compare then to the public cloud (DANTAS et al., 2012).

In another work presented by Dantas et al. (2020), the authors estimate the availabil-
ity and capacity-oriented availability through closed-form equations. The authors com-
pare the approach to using models such as Continuous Time Markov Chains and SPN
simulation model, considering execution time and values of metrics obtained with both
approaches (DANTAS et al., 2020).

A systematic study of correlations amongst availability, reliability, performance, and
energy consumption metrics was presented by Qiu et al. (2017). Their models incorporate
Markov models, Laplace-Stieltjes transform, a Bayesian approach, and a recursive method.
In their work, the significant R-P-E relationships are examined using their models for
estimating expected service time and energy consumption of a cloud service; their models
estimate the resource usage under two typical recovery approaches, retrying and check-
pointing (QIU et al., 2017).

A modeling approach to evaluate the performance and power consumption of an IaaS
cloud while taking into account the availability was introduced by Ataie et al. (2017).
They presented a series of SRN models for computing the availability, performance, and
power consumption of cloud environments and they also presented two estimated models
that are flexible enough to evaluate the metrics of interest in cloud systems. The principal
benefit of the fixed-point estimated model proposed by them is its capacity in modeling
large cloud environments without state space explosion (ATAIE et al., 2017).

A visual model-based framework for cloud-based PHM using block definition diagram
(BDD) and internal block diagram (IBD) was proposed by Mao et al. (2017). The au-
thors used structure diagrams and behavior diagrams to describe the static structure and
dynamic states of PHM. They introduced a framework that permits several algorithm
implementations of function modules. The authors performed a performance and avail-
ability evaluation and proposed a measurement method for their PHM framework (MAO

et al., 2017).
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An SRN model to understand the method of VM deployment and migration was
designed by Liu et al. (2019); the authors proposed a stochastic Petri net model, where
they use different guard functions of specific transitions to represent several strategies.
They assumed that all inter-event times are exponentially distributed; they also designed
three metrics and computation techniques to analyze their algorithms, including energy
usage, QoS, and Cost of Migration (LIU et al., 2019).

A utility-based optimization approach was presented by Addis et al. (2013) to consid-
erably increase the availability and performance of cloud servers running virtual machines
(VMs). The authors provided a theoretical framework to investigate the circumstances in
which a hierarchical method may be applied (ADDIS et al., 2013).

A high-availability component called CHASE was proposed by Jammal et al. (2015)
for cloud environments. Using CHASE, the high availability of services is achieved while
considering performance and delay demands and redundancies; the authors also consider
different failure ranges. An analysis is conducted to provide higher scheduling priorities for
critical components than standard ones. The HA-aware scheduler estimates the availabil-
ity of components using its mean time to failure (MTTF), mean time to repair (MTTR),
and recovery time (JAMMAL; KANSO; SHAMI, 2015).

Stochastic availability models were proposed by Santos et al. (2018) to understand how
failures in edge devices, fog devices, and cloud infrastructure impacts e-health monitoring
system availability. The models are also used to perform sensitivity analysis to understand
which components significantly impact e-health monitoring systems’ availability. The au-
thors also proposed stochastic performance models integrated with availability models
and investigate the impact on performance metrics, such as service time and throughput
(SANTOS et al., 2018).

A new reliability problem and, adopting combinatorial optimization techniques, de-
veloped a randomized algorithm and a heuristic to evaluate the proposed solution was
formulated by Weifa et al. (2020). The experimental results showed that the proposed
solution is promising, and its empirical results are superior to the analytical ones (LIANG

et al., 2020).
Lee et al. (2019) proposed a simulator to optimize the speed and reliability of a mobile

cloud computing environment running over a smartphone cluster. The Mobile MapReduce
Task Allocation (MTA) simulator had improved both associated metrics significantly by
performing a better allocation process (LEE et al., 2019).

Ever et al. (2019) introduced a stochastic performance and an energy availability
evaluation model for WSNs, where they consider node and link failures. Their proposal
contemplates an integrated performance and availability approach. In their study, several
duty cycling schemes and the medium-access control of the WSNs were also examined
in order to include the consequence of sleeping and idle states. Their results reveal the
consequences of failures, several queue capacities, and system scalability (EVER, 2019).
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Tian et al. (2020) used a data set from Google Cloud to identify, predict, and mitigate
the impact of failures over a public cloud environment reliability and efficiency. They
had analyzed the operational data and diagnosed the tasks that can impact the most on
service provisioning. A predictive mathematical model and a set of simulations showed
to be enough to mitigate issues and improve the system’s reliability and efficiency (TIAN;

TIAN; LI, 2020).
Dehnavi et al. (2019) evaluated the reliability of both hybrid cloud computing, edge

and fog environments using the reliability expression, as well as a set of simulation exper-
iments over eight different setups. It is significant to mention that this research focused
on the reliability requirements of real-time applications to smart factory environments.
Once again, fog and edge’s use proved to be a sound alternative to improving cloud-based
applications (DEHNAVI et al., 2019).

Huang et al. (2020) evaluated cloud and edge environments, aiming at service pro-
visioning to IoT devices. They had modeled with a heightened graph, a network that
connects all components from the IoT devices up to what they had called edge servers
nodes and cloud servers nodes. The authors had considered a multi-state distributed net-
work (MDN) and, through the graphs, calculates the probability of data being successfully
processed by the nodes (HUANG; LIANG; ALI, 2020).

Our study is relevant because it comprehends several features of the related works,
whereas there is an improvement in approaches proposed by them. This work approaches
some of the weaknesses of related works to improve the evaluations and capacity planning
for edge, fog, and cloud computing environments. This research makes use of the three
paradigms and uses analytical and hierarchical models to improve the availability and
performance of the infrastructures. Our models aim at improving the service quality.
Table 2 summarizes the differences among the related works and our study, where we
cover more features of the edge-fog-cloud continuum environments.
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Table 2 – Comparison among related Works.

Authors Analytical
Modeling

Avail.
and

Perf.
Edge Fog

(SANTOS et al., 2018)
(MELO et al., 2018)

(SHARKH; KALIL, 2018)
(YAKUBU et al., 2019)

(LI et al., 2019)
(DEHNAVI et al., 2019)

(LEE et al., 2019)
(EVER et al., 2019)
(LIU et al., 2019)

(SANYAL; ZHANG, 2018)
(QIU et al., 2017)

(FACCHINETTI; PSAILA; SCANDURRA, 2019)
(MELO et al., 2019b)
(MAURO et al., 2019)

(GAMATIÉ et al., 2019)
(GORBENKO; ROMANOVSKY; TARASYUK, 2019)

(YOUSEFPOUR et al., 2019a)
(ZILIC; ARAL; BRANDIC, 2019)

(DANTAS et al., 2020)
(TIAN; TIAN; LI, 2020)
(ANDRADE et al., 2020)

(HUANG; LIANG; ALI, 2020)
(JIA; LIN; DENG, 2020)

(BOUKERCHE; SOTO, 2020)
(MELO et al., 2020)
(LIANG et al., 2020)

(BATTULA et al., 2020)
(BARZEGARAN; POP, 2021)

(MIAO et al., 2021)
(ALDAĞ; KIRSAL; ÜLKER, 2022)

This Thesis
Source: Elaborated by the author.

3.4 FINAL REMARKS

In this chapter, we presented relevant related works for this thesis. Although there are
many studies in the literature about the modeling and evaluation mechanism of availability
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and performance, most of them cover only one or two paradigms. It may not represent
real-world services, which use the whole stack of paradigms. Another problem is that by
evaluating only one paradigm, the availability and performance of other components are
neglected, which may increase the probability of QoS violations. The impact of improving
capacity planning is huge for companies because it reduces the probability of financial
loss.
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4 METHODOLOGY

In this chapter, we present the methodology employed in our research to develop the
proposed models. Our approach draws inspiration from prior works, namely (BRILHANTE

et al., 2014; PEREIRA et al., 2018; SOUZA et al., 2013). To ensure clarity and organization, we
have structured this chapter into distinct sections: an Overview, Evaluation, Validation,
Model Adoption, and Final Remarks.

4.1 OVERVIEW

The methodology is structured into three sections encompassing various activities. These
activities include studying the system, monitoring the environment, building models, val-
idating the models, and adopting models to plan new infrastructures. Each activity is
represented by a box, and their sequential execution is illustrated in Figure 8.

Progression to the subsequent activity is contingent upon the completion of the current
one. The rhombus symbolizes an activity that branches into two distinct paths. If the
results are deemed satisfactory, the models are considered validated. Conversely, if the
results are unsatisfactory, we return to the building models stage, where enhancements
are implemented until the models exhibit behavior similar to that of the real system. The
dashed rectangles indicate tasks necessary for accomplishing the corresponding activities.

The initial activity involves a thorough examination of the system to gain a compre-
hensive understanding of its operations. Our focus lies in assessing the availability of the
edge and fog environments. To accomplish this, we conducted an extensive review of ex-
isting literature and solutions. Utilizing this understanding of the system, we proceeded
to construct an experimental environment where we deliberately introduced failures to
expedite the identification of faults. By monitoring the actual system, we were able to
collect the relevant input values required for the proposed models.

Subsequently, in the monitoring system phase, our attention shifted towards observ-
ing the system to capture essential data such as time to failure (TTF), time to repair
(TTR), and performance metrics. This allowed us to calculate the system’s availability
and performance. As part of the model-building activity, we developed analytical models
that accurately represent our environment. We then proceeded to test numerous scenarios
to evaluate which configurations would enhance both availability and performance.

The validation activity aims to compare the output values of our analytical models
with those obtained from monitoring the actual environment. Essentially, we statistically
verify whether our models accurately represent the real system. In our case studies, we
provide a detailed account of the validation process, including a step-by-step description
and an overview of the experimental environment. Once our models yield satisfactory
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Figure 8 – Methodology to support our evaluation.
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results, we can employ them to assess the availability and performability of our system
under various settings and scenarios, thereby enabling us to plan for new environments.

Satisfactory results in this context refers to the statistical alignment of the model
results with the metrics observed in the actual environment. The results encompass the
proposed models, the evaluation of availability based on these models, capacity-oriented
availability evaluation, performability evaluation, sensitivity analysis, and cost evaluation.
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4.2 EVALUATION

The evaluation phase comprises three key components: system analysis, system monitor-
ing, and model development. The primary objective during this stage is to closely observe
a real environment, extract the Mean Time to Failure (MTTF) and Mean Time to Repair
(MTTR) of the system, and utilize these parameters as inputs for the proposed models.

4.2.1 Studying the system

To effectively plan edge-fog-cloud infrastructures, it is imperative to acquire a compre-
hensive understanding of their operations, identify key components, and evaluate existing
solutions. Thorough analysis of such systems necessitates meticulous attention from the
evaluator to avoid errors that could compromise subsequent phases. This preliminary
step holds immense significance as it facilitates the acquisition of knowledge regarding
applicable techniques that can be adopted and customized.

• Precondition: Familiarity with the concepts of edge, fog, and cloud computing.

• Input: Extensive literature review encompassing scientific papers, books, and web-
sites to comprehend edge-fog-cloud infrastructures and system modeling.

• Action: Development of a foundational environment for subsequent monitoring.

• Post-condition: Attainment of a profound comprehension of edge-fog-cloud infras-
tructures, establishment of a baseline environment, and proficiency in system mod-
eling techniques.

4.2.2 Monitoring the system

The subsequent phase involves the monitoring of the previously constructed baseline en-
vironment. In this stage, a strategy is formulated to effectively monitor the system’s
availability and performance. Ensuring the monitoring of system availability necessitates
the acceleration of the fault-prone processes, as faults are typically unpredictable or occur
infrequently over extended periods of time (SOUZA et al., 2013; BRILHANTE et al., 2014;
JAMMAL et al., 2018; PEREIRA et al., 2021). When a fault transpires, it induces alter-
ations within the system, resulting in an erroneous state of the environment. Moreover,
faults have the potential to propagate throughout the system, subsequently affecting the
availability of the provided services.

To facilitate the monitoring of system availability, a fault injector was developed to
actively control and monitor our environment during fault events (AGARWAL et al., 2020).
The fault injector simulates failures by subjecting the system to stress. To generate random
values for Time to Failure (TTF) and Time to Repair (TTR), exponential distribution is
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utilized, considering the accelerated Mean Time to Failure (MTTF) and Mean Time to
Repair (MTTR) derived from scientific papers and technical reports.

• Precondition: A fully developed baseline environment.

• Input: MTTF and MTTR values for the edge, fog, and cloud components.

• Action: Development of a fault injector and utilization of the fault injector to mon-
itor the baseline system.

• Post-condition: Collection of comprehensive data pertaining to the baseline system.

4.2.3 Building models

Upon conducting the experiment and gathering data from the baseline environment, we
proceed to propose analytical models. These models hold significant importance as they
enable the evaluation of system concepts that involve a substantial number of components,
which would otherwise incur exorbitant expenses if implemented physically. Consequently,
analytical models facilitate the assessment of various scenarios by simply modifying the
input parameters.

The scalability of analytical models is a key attribute of their significance. They allow
for the adjustment of component quantities within a given scenario by manipulating the
input parameters alone. This capability enables us to observe the system’s behavior under
diverse conditions and configurations.

It is important to note that analytical models typically abstract hardware and application-
specific details in order to derive closed-form equations (SIVASUBRAMANIAM; RAMACHAN-

DRAN; VENKATESWARAN, 1994). In essence, for feasibility purposes, certain components
within the system need to be abstracted within the analytical models (JAIN, 1990). Fig-
ure 9 provides a visual representation of the abstractions implemented in constructing the
models.

The abstraction process was carried out using the Reliability Block Diagram (RBD)
model, which effectively condenses multiple components into a single representative en-
tity. This approach facilitates the simplification of system representation and enables the
application of analytical techniques based on Continuous-Time Markov Chain (CTMC)
analysis.

• Precondition: Comprehensive understanding of the system under evaluation, avail-
ability of data obtained from the baseline environment.

• Input: Profound comprehension of the system’s components.

• Action: Development of analytical models based on the system’s components.

• Post-condition: Creation of analytical models.
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Figure 9 – Basic component abstraction.
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4.3 VALIDATION

This section encompasses the validation of the models. The primary objective is to as-
certain whether the proposed models from the previous section yield results that are
equivalent to those generated by the existing system.

4.3.1 Validating models

In this stage, we undertake the validation of our proposed models. The purpose of val-
idation is to ascertain whether our models accurately represent an existing system. In
essence, we analyze whether the results generated by our models align statistically with
those observed in the baseline environment. We subject both our models and the baseline
system to an evaluation under identical conditions, and if the outcomes are comparable,
we consider our models to be validated.

During the validation of our models, we place particular emphasis on comparing the
means of our models with those of the existing system. To facilitate this process, Figure 10
(adapted from Maciel et al., 2023) outlines the sequential steps we follow to estimate the
mean of the existing system (MACIEL, 2023b; MACIEL, 2023a)

As our data represents merely a sample from a larger population, it becomes imperative
to establish confidence intervals that illustrate the probable range of mean values for the
population. Therefore, we examine our data and construct the confidence interval for the
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Figure 10 – Statistical inference flowchart.
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mean.
Initially, we assess whether our sample conforms to a normal distribution. If it indeed

follows a normal distribution and we possess knowledge of the population standard devi-
ation (𝜎), we can utilize the analytical formula for the standard normal distribution. If
we do not know the population standard deviation, we use the student’s t-distribution
with the appropriate degrees of freedom. However, if the sample does not adhere to a
normal distribution, we inquire as to whether we possess information regarding the ap-
propriate distribution. If affirmative, we further inquire if we have access to the analytical
formula for estimating the confidence interval. If so, we employ said formula to derive the
confidence interval; otherwise, we resort to utilizing the semi-parametric bootstrap ap-
proach. In instances where the suitable distribution is unknown, options include utilizing
the non-parametric bootstrap method or relying on the central limit theorem.

Upon obtaining the confidence interval, we proceed to evaluate whether the results
obtained from our model fall within the plausible range of mean values for the popu-
lation. If this evaluation yields positive results, we consider our model to be validated.
Conversely, if the model’s results fall outside the plausible range, adjustments must be
made accordingly.

• Precondition: Completion of the analytical model construction.

• Input: Analytical models.

• Action: Conducting rigorous statistical analysis.
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• Post-condition: Validated models.

4.4 MODEL ADOPTION

Ultimately, the utilization of our validated models enables us to strategically plan and
develop edge-fog-cloud infrastructures. By leveraging these models, we gain the capabil-
ity to explore and evaluate the behavior of various infrastructural configurations, thus
enabling us to propose the most appropriate and well-suited options.

4.4.1 Adopting models

Once our proposed models have been validated, we can proceed with their adoption to
assess and evaluate various compositions of the systems. This allows us to investigate
and predict the behavior of a system under specific parameter configurations for its com-
ponents. Additionally, we can assess the required number of redundant components to
maintain a desired level of availability, among other considerations.

• Precondition: Validated models.

• Input: Parameters associated with the system’s components.

• Action: Configuring the models by setting the respective component parameters and
solving analytical equations.

• Post-condition: Attainment of relevant metrics pertaining to the system.

4.5 FINAL REMARKS

This chapter outlines the employed methodology for the development of proposed models
and the evaluation of existing systems. By following a structured set of steps, which encom-
pass comprehending the fundamental operation of the system, utilizing proposed models
for enhanced infrastructure planning, and providing replicable details, this methodology
offers valuable insights to be utilized by fellow researchers.
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5 PROPOSED AVAILABILITY AND PERFORMABILITY MODELS

This chapter is organized into four distinct sections, each addressing a specific aspect
of the proposed models. The first section focuses on the proposed availability models
employing Markov chains. In the subsequent section, we delve into the description of
the proposed performability models, which serve to evaluate the impact of availability
on infrastructure performance. The third section encompasses the hierarchical model,
providing a comprehensive representation of the edge-fog-cloud continuum environments.
Lastly, the final section delves into the hierarchical model with fault coverage probability,
enhancing the analysis with considerations of fault coverage probabilities.

5.1 AVAILABILITY MODELS

The proposed analytical availability models offer distinct advantages over measurement-
based evaluation methods, as they are not only more cost-effective but can also be em-
ployed during the system’s design phase (GOKHALE; TRIVEDI, 1998). By utilizing analyt-
ical models, we gain the ability to predict and plan how a system will behave prior to its
deployment, facilitating the development of superior systems.

In this section, we introduce the analytical models that capture the availability metrics
specific to edge and fog environments. We begin by presenting a Markov chain, which
serves as a generalized representation of our environment. Subsequently, we leverage the
Markov chain to derive closed-form solutions that allow for the calculation of availability
metrics pertaining to the edge and fog environments.

In Figure 9, we provide an illustration of the component stacks and the abstractions
made to facilitate the derivation of closed-form solutions. The abstraction process was
carried out using the Reliability Block Diagram (RBD) model, which effectively condenses
multiple components into a single representative entity. This approach facilitates the
simplification of system representation and enables the application of analytical techniques
based on Continuous-Time Markov Chain (CTMC) analysis.

Through the combination of Mean Time to Failure (MTTF) and Mean Time to Re-
pair (MTTR) values of serial components, we create an aggregated equivalent component
with a unified representation of availability characteristics. This condensation procedure
significantly reduces the complexity associated with modeling individual components, al-
lowing for a more streamlined analysis of the system as a whole, considering the combined
availability behavior of the condensed component.

The use of this abstraction technique becomes particularly advantageous when employ-
ing CTMC analysis, as it allows for the system to be represented as a set of interconnected
states and transitions. By consolidating multiple components into a single entity, the num-
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ber of states within the CTMC model is reduced, resulting in a more manageable analysis
process. Consequently, analytical solutions, such as steady-state probabilities and perfor-
mance measures, can be derived, offering valuable insights into the system’s availability.

While there exist various modeling techniques to evaluate system availability, many of
these methods rely on numerical approximations. However, by employing Markov chains,
we can derive cost-effective closed-form equations (JAIN, 1990). In our modeling approach,
we utilize a two-level continuous-time Markov chain (CTMC) to represent our environ-
ments. The first level represents the physical nodes, such as servers like Dell PowerEdge
R240, while the second level pertains to the applications or services. The number of run-
ning applications depends on the operational physical nodes. These services can take the
form of container instances, virtual machines, or processes, depending on the architectural
design. It is important to emphasize that the construction of both levels involves the uti-
lization of multiple independent Continuous-Time Markov Chains (CTMCs), which are
subsequently integrated within the closed-form equations.

Figure 11 – Two-physical-node model.
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The system is considered unavailable if it is in state 0 within the first-level CTMC,
signifying the absence of any operational physical nodes. Similarly, if the system is in
state 0 within any second-level CTMC, it is also regarded as unavailable, regardless of
the presence of multiple working physical nodes. As an example, if we intend to model a
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system consisting of two similar physical nodes capable of running two applications each,
and with sufficient independent repair teams, the corresponding CTMC is depicted in
Figure 11.

The model presented in Figure 11 serves as a generalization of the continuous-time
Markov chain (CTMC) depicted in Figure 12. Within this Markov chain, 𝑀 denotes the
number of physical nodes, while 𝐿 represents the number of concurrently running appli-
cations. The parameters 𝜆𝑝𝑛 and 𝜇𝑝𝑛 signify the failure and repair rates of the physical
nodes, respectively, whereas 𝜆𝑎𝑝𝑝 and 𝜇𝑎𝑝𝑝 denote the failure and repair rates of the ap-
plications. It is important to note that we are considering a homogeneous environment
with an adequate number of independent repair teams. Thus, our environment assumes
the presence of 𝑀 similar machines, each with its own independent repair capabilities.

From the Markov chain model depicted in Figure 12, we can calculate various met-
rics, including the availability (𝐴), K-out-of-N availability (𝐴𝐾𝑜𝑜𝑁), unavailability (UA),
uptime (UT ), downtime (DT ), average number of available applications (ANAPPA), and
capacity-oriented availability (COA).

Please be aware that Figure 12 presents multiple distinct Markov Chains, which have
been modeled individually. Each Markov Chain is accompanied by its corresponding ma-
trix Q.

To calculate the system’s availability, we sum the probabilities of states in which both
the physical nodes and applications are operational. By expressing this calculation in
terms of the failure and repair rates (𝜆s and 𝜇s), we establish an analytical availability
model represented by Equation 5.1.

Availability:

𝐴 =
𝑀∑︁

𝑖=1

⎛⎝⎛⎝1 −
𝜆𝑖𝐿

𝑎𝑝𝑝

(𝜆𝑎𝑝𝑝 + 𝜇𝑎𝑝𝑝)𝑖𝐿

⎞⎠× 𝑀 !
𝑖! (𝑀 − 𝑖)!

×
𝜆𝑀−𝑖

𝑝𝑛 𝜇𝑖
𝑝𝑛

(𝜆𝑝𝑛 + 𝜇𝑝𝑛)𝑀

⎞⎠.

(5.1)

Availability K out of N:
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×
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(5.2)
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Figure 12 – Availability model for M physical nodes and L applications.
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Average number of applications available:

𝐴𝑁𝐴𝑃𝑃𝐴 =
𝑀∑︁

𝑖=1

𝑖×𝐿∑︁
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𝑖! (𝑀 − 𝑖)!

⎞⎠.

(5.3)

Equation 5.1 represents the availability when at least one out of N applications is
operational, where N represents the total number of applications that the system can
deliver (i.e., 𝑀 × 𝐿). This implies that the model considers the system available as long
as at least one application is running, which is a specific case of Equation 5.2. Conversely,
Equation 5.2 represents the availability when exactly K out of N applications need to
be operational to consider the system available. In other words, the system is deemed
available only if K applications are functioning. Once we have established the availability
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models, deriving the unavailability, uptime, and downtime models becomes straightfor-
ward, as demonstrated by Equations 5.4, 5.5, and 5.6, respectively. Additionally, from the
Markov chain model, we can derive the closed-form solution for the average number of
applications available in the environment, as represented by Equation 5.3. Moreover, this
information allows us to model the capacity-oriented availability, as depicted in Equa-
tion 5.7.

𝑈𝐴 = 1 − 𝐴 (5.4)

𝑈𝑃 = 𝐴 × 𝑇 (5.5)

𝐷𝑇 = 𝑈𝐴 × 𝑇 (5.6)

𝐶𝑂𝐴 = 𝐴𝑁𝐴𝑃𝑃𝐴

𝑀 × 𝐿
(5.7)

Table 3 – The description of the parameters.

Parameter Description
𝑀 Number of physical nodes (i.g., servers)
𝐿 Number of applications running in each server

𝜆𝑝𝑛 Failure rate of the physical node
𝜆𝑎𝑝𝑝 Failure rate of the application
𝜇𝑝𝑛 Repair rate of the physical node
𝜇𝑎𝑝𝑝 Repair rate of the application

Source: Elaborated by the author.

Table 3 provides a description of each parameter present in the closed-form solu-
tion. Our decision to employ a continuous-time Markov chain as the modeling technique
was deliberate, as it allows for the development of analytical models (CALIRI, 2000). In
comparison, other modeling techniques such as Reliability Diagram Models (RBD) and
Stochastic Petri Nets (SPN) rely on numerical approximations, which can limit scalability
in comparison to analytical models. The advantage of analytical models lies in their abil-
ity to readily accommodate multiple scenarios by simply adjusting the input parameters.
This flexibility facilitates the observation and analysis of various configurations without
significant computational overhead.

5.2 PERFORMABILITY MODELS

By employing analytical performability models, we can forecast how system availability
will impact performance, thereby enabling the development of more efficient systems and
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preventing unnecessary financial resource allocation. In this section, we introduce the
proposed analytical models that capture the performability metrics specific to edge and
fog environments. These models serve as an extension of the availability models discussed
in the previous section. Initially, we present a hierarchical Markov chain, which provides
an abstraction of our environment. Subsequently, we employ the Markov chain to derive
closed-form equations that facilitate the calculation of performability metrics associated
with the infrastructure.

Figure 13 – Performability model.
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The evaluation of performance and availability in edge and fog environments is a
challenging task, primarily due to the diverse nature of IoT applications at the edge
and the varying Quality of Service (QoS) requirements in fog environments. Additionally,
the edge paradigm is subject to numerous constraints and restrictions, making it more
vulnerable to failures. These failures can significantly degrade both the availability and
performance, particularly when considering data-intensive applications.

Pure performance models often overestimate a system’s capacity to perform or provide
services, while pure availability models tend to underestimate this capacity (EVER, 2019).
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Therefore, we propose the utilization of a three-level hierarchical Markov chain to conduct
a composite evaluation, leveraging both performance and availability (i.e., performability),
enabling realistic analysis and optimization of edge and fog environments.

In Section 4, we presented the component stacks and abstractions made to facilitate
the derivation of closed-form solutions, as depicted in Figure 9. Our modeling approach
incorporates a hierarchical three-level continuous-time Markov chain, where the first and
second levels represent the availability of physical nodes and applications, respectively.
The third level captures the performance of each application. Consequently, the number
of running applications depends on the operational physical nodes, while the capacity
is determined by the size of the Markov chain at the third level. The system is deemed
unavailable if it is in state 0 within the first-level CTMC, indicating the absence of any
operational physical nodes. Similarly, if the system is in state 0 within any second-level
CTMC, it is considered unavailable, regardless of the presence of multiple operational
physical nodes.

Table 4 – The description of the parameters.

Parameter Description
𝑀 Number of physical nodes (i.g., servers)
𝐿 Number of applications in each server

𝜆𝑝𝑛 Failure rate of the physical node
𝜆𝑎𝑝𝑝 Failure rate of the application
𝜇𝑝𝑛 Repair rate of the physical node
𝜇𝑎𝑝𝑝 Repair rate of the application
𝐶 Maximum number of jobs in the system
𝑚 Number of threads in the system

𝜋𝑖×𝑗×𝐶 Probability of the state 𝑖 × 𝑗 × 𝐶

Source: Elaborated by the author.

Table 4 provides a comprehensive summary of the parameters present in the closed-
form solution. Within this Markov chain model, 𝑀 represents the number of physical
nodes, while 𝐿 denotes the number of running applications. The parameters 𝜆𝑝𝑛 and
𝜇𝑝𝑛 signify the failure and repair rates of the physical nodes, respectively. Similarly, 𝜆𝑎𝑝𝑝

and 𝜇𝑎𝑝𝑝 express the failure and repair rates of the applications. We are also assuming
a homogeneous environment with 𝑀 physical nodes that possess identical characteristics
and independent repair facilities.

The third level of the hierarchy captures the performance of the applications within the
infrastructure. Here, 𝑚 represents the number of threads, and 𝐶 represents the system’s
total capacity to handle incoming service requests, taking into account both processing
and queuing capacity. Hence, 𝐶 is the sum of the number of threads (𝑚) and the buffer size
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for the applications. As the number of physical nodes and application instances increases,
the overall capacity of the system also expands.

Figure 14 illustrates two examples of application behavior. In the first example, the
application has a total capacity of two requests, with one request being processed in a
thread while another request waits in the buffer (Figure 15(a)). In the second example,
the capacity doubles, representing two applications running concurrently (Figure 15(b)).

A queuing process can be characterized by the arrival of requests for service, their
potential wait in a queue if necessary, and their eventual departure from the system upon
being served (CONSTANTIN, 2011). Analyzing this queuing process allows us to construct
a continuous-time Markov chain, where the parameter 𝜆 represents the arrival rate of
requests, and 𝜇 denotes the rate at which requests are processed. It is important to note
that the buffer in the system is finite, implying that if the incoming workload exceeds the
processing rate, any excess requests will be discarded.

Figure 14 – Queueing theory represented by Markov chains.
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The Markov chain model depicted in Figure 13 facilitates the calculation of various
performance metrics, taking into account the failure and repair times of the infrastructure.
These metrics encompass utilization, response time, waiting time, and discard rate. To
estimate the availability of the system, we sum the probabilities of states in which both
the physical nodes and applications are operational. Moreover, to calculate performance-
related metrics, we employ the probabilities derived from the third level of the model. By
obtaining closed-form solutions from the three-level Markov chain, we establish analytical
performability models represented by Equations 5.8, 5.9, 5.10, and 5.11.

The effective arrival rate, denoting the rate at which jobs enter the infrastructure, is
expressed as 𝜆(1 − 𝜋𝑖×𝑗×𝐶). In this equation, 𝑖 and 𝑗 respectively represent the number
of operational physical machines and applications at a given moment. Additionally, 𝐶

signifies the maximum number of jobs that can be accommodated by the application,
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accounting for the overall capacity considering the buffer size and the number of threads
allocated for request processing. Thus, 𝜋𝑖×𝑗×𝐶 represents the probability of the state in
which there are 𝑖 operational physical machines, 𝑗 running applications, and the maximum
number of requests within the infrastructure.

Performability Utilization:

𝑃𝑈 =
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(5.8)

Performability Response Time:
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Performability Waiting Time:

𝑃𝑊𝑇 =
𝑀∑︁

𝑖=1

⎛⎝ 𝑀 !
𝑖! (𝑀 − 𝑖)! ×

𝜆𝑀−𝑖
𝑝𝑛 𝜇𝑖

𝑝𝑛

(𝜆𝑝𝑛 + 𝜇𝑝𝑛)𝑀

⎞⎠ ×

⎛⎝ 𝑖𝐿∑︁
𝑗=1

(𝑖𝐿)!
𝑗! (𝑖𝐿 − 𝑗)!

×
𝜆𝑖𝐿−𝑗

𝑎𝑝𝑝 𝜇𝑗
𝑎𝑝𝑝

(𝜆𝑎𝑝𝑝 + 𝜇𝑎𝑝𝑝)𝑖𝐿
×

𝑖𝑗𝐶∑︀
𝑛=𝑖𝑗𝑚

(𝑛 − 𝑖𝑗𝑚)𝜋𝑛

𝜆(1 − 𝜋𝑖×𝑗×𝐶)

⎞⎠.

(5.10)



65

Performability Discard Rate:
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(5.11)

Equation 5.8 provides a representation of the infrastructure’s utilization, accounting
for the total number of applications that the system is capable of delivering (i.e., 𝑀 × 𝐿).
This equation calculates the utilization by considering both the occurrence of failures and
the subsequent repair routines. Equation 5.9 quantifies the response time of the infras-
tructure, which is a crucial performance metric in the context of edge and fog computing
environments. Similarly, Equation 5.10 computes the waiting time experienced by a re-
quest within the system, an important performance metric directly linked to the user’s
experience. Furthermore, Equation 5.11 represents the number of lost requests due to sys-
tem unavailability or reaching its maximum capacity. In other words, any request received
when the system is either down or operating at full capacity will be lost.

Our decision to employ a continuous-time Markov chain for these models, as opposed
to other modeling techniques such as Reliability Diagram Models (RBD) or Stochastic
Petri Nets (SPN), stems from the advantages it offers in developing analytical models
to evaluate system availability (CALIRI, 2000). RBD and SPN models rely on numerical
approximations, which can limit scalability compared to analytical models. By utilizing
analytical models, we gain the flexibility to explore multiple scenarios with different in-
put parameters easily. Additionally, our proposed models possess the ability to represent
various systems by adjusting the relevant parameters accordingly.

5.3 HIERARCHICAL AVAILABILITY MODEL FOR EDGE-FOG-CLOUD CONTINUUM

The utilization of hierarchical models allows us to capture a more precise representation
of the environment and facilitate the design of the system. Furthermore, these models
enable us to predict the behavior of the service infrastructure. Within this section, we
introduce a hierarchical model that specifically focuses on representing the availability
metric in an edge-fog-cloud environment. Initially, we present a Markov chain as a means
of generalizing the components within the infrastructure. Subsequently, we leverage this
Markov chain to derive closed-form solutions that effectively calculate the availability
metrics of the individual components.

Figure 9 illustrates the configuration of components and the abstraction employed
to derive closed-form solutions for the nodes. Our node modeling utilizes a two-level
continuous-time Markov chain, where the first and second levels respectively represent the
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physical nodes and applications. Consequently, the number of applications in operation is
contingent upon the availability of functional physical nodes. Conversely, the remaining
components are modeled using a one-level continuous-time Markov chain.

Within the first-level continuous-time Markov chain (CTMC), a system is deemed
unavailable if it resides in the state 0, indicating the absence of operational physical
machines. Similarly, in any second-level CTMC, a node is regarded as unavailable if it
exists in the state 0, indicating the absence of running applications, regardless of the
number of functional physical machines. To exemplify, suppose we aim to model a system
comprising two identical physical machines capable of accommodating two applications
each, along with two independent repair teams. In this case, the corresponding CTMC is
depicted in Figure 11.

The Markov chain model depicted in Figure 11 can be generalized by the model
presented in Figure 12. Within this Markov chain, 𝑀 represents the total number of
physical nodes, while 𝐿 represents the number of applications currently running. The
parameters 𝜆𝑝𝑛 and 𝜇𝑝𝑛 respectively denote the failure rate and repair rate of the physical
node, while 𝜆𝑎𝑝𝑝 and 𝜇𝑎𝑝𝑝 signify the failure rate and repair rate of the application. It is
important to emphasize that we assume a homogeneous environment, where each of the
𝑀 machines is identical, and there are sufficient independent repair teams to cater to the
system’s needs.

Availability:

𝐴 =
𝑀∑︁

𝑖=1

(︃
1 −

𝜆𝑖𝐿
𝑎𝑝𝑝

(𝜆𝑎𝑝𝑝 + 𝜇𝑎𝑝𝑝)𝑖𝐿

)︃
×

(︃
𝑀 !

𝑖! (𝑀 − 𝑖)! ×
𝜆𝑀−𝑖

𝑝𝑛 𝜇𝑖
𝑝𝑛

(𝜆𝑝𝑛 + 𝜇𝑝𝑛)𝑀

)︃
. (5.12)

Availability K out of N:

𝐴𝐾𝑜𝑜𝑁 =
𝑀∑︁

𝑖=1

⎛⎝ 𝑖𝐿∑︁
𝑗=𝐾

(𝑖𝐿)!
𝑗! (𝑖𝐿 − 𝑗)! ×

𝜆𝑖𝐿−𝑗
𝑎𝑝𝑝 𝜇𝑗

𝑎𝑝𝑝

(𝜆𝑎𝑝𝑝 + 𝜇𝑎𝑝𝑝)𝑖𝐿

⎞⎠
×

⎛⎝ 𝑀 !
𝑖! (𝑀 − 𝑖)! ×

𝜆𝑀−𝑖
𝑝𝑛 𝜇𝑖

𝑝𝑛

(𝜆𝑝𝑛 + 𝜇𝑝𝑛)𝑀

⎞⎠.

(5.13)

By utilizing the Markov chain model illustrated in Figure 12, we can derive several
performance metrics, including the availability (𝐴) and (𝐴𝐾𝑜𝑜𝑁), unavailability (UA),
uptime (UP), downtime (DT ), average number of applications available (ANAPPA), and
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capacity-oriented availability (COA). The system’s availability is calculated by summing
the probabilities of states where both the physical nodes and applications are operational.
Expressing it in terms of the failure rate (𝜆) and repair rate (𝜇), we obtain the analytical
availability model as represented by Equation 5.12.

𝑈𝐴 = 1 − 𝐴 (5.14)

𝑈𝑃 = 𝐴 × 𝑇 (5.15)

𝐷𝑇 = 𝑈𝐴 × 𝑇 (5.16)

Equation 5.12 provides an expression for the availability of at least one out of N
applications functioning within the system, where N represents the total number of ap-
plications that can be delivered by the system (i.e., 𝑀 × 𝐿). This equation considers the
system to be available if at least one application is operational, thus representing a specific
case of Equation 5.13. Conversely, Equation 5.13 represents the availability of K out of N
applications, where K denotes the minimum number of functioning applications required
for the system to be considered available. In other words, the system is deemed available
only if a minimum of K applications are operational.

Additionally, by utilizing these availability models, we can easily determine the un-
availability, uptime, and downtime of the system, as expressed by Equations 5.14, 5.15,
and 5.16, respectively. It is important to note that the servers are modeled using a two-
level Continuous-Time Markov Chain (CTMC), while other components such as gate-
ways, storage, and devices are represented by a one-level CTMC. In the case of these
components, the software element is not considered, allowing us to abstract them using a
one-level CTMC.

Figure 15 – Other components’ CTMC.
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Figure 15 illustrates the additional models employed to represent the gateway, storage,
and devices. These models are essential components in the system hierarchy. The closed-
form solutions of these models are presented in Equations 5.17, 5.18, and 5.19, which
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correspond to the mathematical representations depicted in Figure 15. These closed-form
equations were utilized to calculate the input values required for higher-level models in
the hierarchy.

Availability of Figure 16(a):

𝐴 = 1 − 𝜆𝑁

(𝜆 + 𝜇)𝑁
. (5.17)

Availability of Figure 16(b):

𝐴 = 𝜆

𝜆 + 𝜇
. (5.18)

Availability K out of N of Figure 16(a):

𝐴𝐾𝑜𝑜𝑁 =
𝑁∑︁

𝑖=𝐾

𝑁 !
𝑖! (𝑁 − 𝑖)! × 𝜆𝑁−𝑖 𝜇𝑖

(𝜆 + 𝜇)𝑁
. (5.19)

Through the implementation of a hierarchical model, we can effectively represent envi-
ronments by utilizing multiple sub-models at distinct levels. This approach allows for the
modeling of heterogeneous attributes inherent in the overall system architecture. Addi-
tionally, it enables the capturing of detailed operational behaviors exhibited by subsystems
and components at lower levels. The rationale behind employing hierarchical modeling lies
in the amalgamation of the simplicity offered by combinatorial models with the capabil-
ity of state-based models to encapsulate intricate operational behaviors via states and
transitions.

The fault tree modeling formalism offers a means to represent the state of a system
using Boolean functions that yield a value of True when the system experiences a failure.
This failure-oriented approach differs from Reliability Block Diagrams, where the system
state is described by a structure-function that characterizes system failures. In scenarios
where the system exhibits multiple unwanted states, it is necessary to define Boolean
functions or structure functions to represent each failure mode. Our model assumes the
independence of component failures to facilitate a straightforward solution.
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Figure 16 illustrates our proposed model for representing the edge-fog-cloud contin-
uum, utilizing both continuous-time Markov chains and fault tree modeling techniques.

Within the depicted model, we consider the end-to-end application as a composition
of multiple components, denoted as 𝐶 = {𝑐𝑖|1 ≤ 𝑖 ≤ 𝑛}. In this context, we define a
random variable 𝑦𝑖(𝑡) to indicate the state of component 𝑖, where:

𝑦𝑖 =

⎧⎨⎩1, if the component i is faulty at time t

0, if the component i is operational at time t.
(5.20)

In our hierarchical model, we have seven components, so our FT structure function is
expressed as:

Φ(𝑦𝑖) = [1 − (1 − 𝑦0) × (1 − 𝑦1) × (1 − 𝑦2)

×(1 − 𝑦3) × (1 − 𝑦4)

×(1 − 𝑦5) × (1 − 𝑦6)] (5.21)

From the structure function, we are able to derive the availability of the system, thus:

𝐸(𝑦𝑖) = 𝐴𝑖 (5.22)

𝐴𝑠 = 𝐸(Φ(𝑦𝑖)) = 𝐸[1 − (1 − 𝑦0) × (1 − 𝑦1) × (1 − 𝑦2)

×(1 − 𝑦3) × (1 − 𝑦4)

×(1 − 𝑦5) × (1 − 𝑦6)]

then

𝐴𝑠 = 𝐸[1] − 𝐸[(1 − 𝑦0)] × 𝐸[(1 − 𝑦1)] × 𝐸[(1 − 𝑦2)]

×𝐸[(1 − 𝑦3)] × 𝐸[(1 − 𝑦4)]

×𝐸[(1 − 𝑦5)] × 𝐸[(1 − 𝑦6)]

as 𝑦𝑖 are independent, then

𝐴𝑠 = 1 − (1 − 𝐸[𝑦0]) × (1 − 𝐸[𝑦1]) × (1 − 𝐸[𝑦2])

×(1 − 𝐸[𝑦3]) × (1 − 𝐸[𝑦4])

×(1 − 𝐸[𝑦5]) × (1 − 𝐸[𝑦6])
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finally

𝐴𝑠 = 1 − (1 − 𝐴0) × (1 − 𝐴1) × (1 − 𝐴2)

×(1 − 𝐴3) × (1 − 𝐴4)

×(1 − 𝐴5) × (1 − 𝐴6) (5.22)

Note that in our model, the operational status of all components is essential for the
application to function correctly. Any failure or unavailability of components would render
the application faulty.

Furthermore, our model assumes that the cloud environment comprises cloud nodes, a
cloud storage, and a cloud gateway. In contrast, the fog environment consists of fog nodes
and a fog gateway. Lastly, the edge environment is composed of edge nodes, as well as
edge devices and sensors.



71

Figure 16 – Hierarchical model.
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5.4 HIERARCHICAL AVAILABILITY MODELS WITH FAULT COVERAGE PROBABILITY

In this section, we present our hierarchical availability model incorporating fault coverage
probability. The model consists of two levels of hierarchy: the first level comprises a
Markov chain, and the second level utilizes a Reliability Block Diagram (RBD) model.
The availability values obtained from the closed-form equations at the first level serve as
input for the RBD model, enabling the calculation of the overall service availability.

Similar to our previous models, certain abstractions are necessary to derive closed-
form equations, as depicted in Figure 9. We employ two types of continuous-time Markov
chains (CTMCs) to represent the nodes: a two-level hierarchy model and a model with
fault coverage probabilities. In the two-level model, the first level represents the physical
nodes, while the second level represents the applications. The sensor is modeled using a
one-level CTMC with fault coverage probabilities.

In the two-level hierarchical CTMC, a state of 0 at the first level indicates the absence
of operational physical machines, resulting in unavailability of the service. Additionally,
even if multiple physical nodes are functional, a state of 0 at any second level signifies the
absence of running applications, rendering the system inoperative. Figure 12 illustrates the
generalization for the edge and fog nodes. In our proposed model, 𝑀 represents the total
number of physical nodes, and 𝐿 represents the total number of supported applications
in our infrastructure. The parameters 𝜆𝑝𝑛 and 𝜇𝑝𝑛 correspond to the failure and repair
rates of the physical node, while 𝜆𝑎𝑝𝑝 and 𝜇𝑎𝑝𝑝 denote the failure and repair rates of the
application. Moreover, we assume the existence of 𝑀 autonomous repair teams in this
scenario.

On the contrary, Figure 17 illustrates the representation of multiple sensors, taking
into account the fault coverage probabilities. In this Markov chain model, 𝑀 denotes the
number of sensors. The sensor’s fault is covered with a probability of 𝐶 and not covered
with a probability of 1 − 𝐶. The parameter 𝛿𝑠 represents the time required to detect the
failure in the sensor. Additionally, 𝜆𝑠 and 𝜇𝑠 correspond to the failure and repair rates of
the sensor, respectively.

Figure 17 – Markov chain model of sensors.

M
 (M-1)
 2
 1
...
MCλs (M-1)Cλs 3Cλs 2Cλs

μs
 2μs
 (M-2)μs
 (M-1)μs


0


λs

Mμs


X2X3XM-1XM


M(1-C)λs 𝛿s 𝛿s 𝛿s 𝛿s
(M-1)(1-C)λs 3(1-C)λs 2(1-C)λs

Source: Elaborated by the author.

Utilizing the models depicted in Figure 12 and Figure 17, we estimate various met-
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rics, including availability (𝐴), unavailability (UA), uptime (UP), downtime (DT ), av-
erage number of applications available (ANAPPA), average number of sensors available
(ANSA), and capacity-oriented availability (COA). By employing the failure and repair
rates represented by 𝜆s and 𝜇s, we derive Equation 5.24 for the availability of edge and
fog nodes and Equation 5.25 for the availability of sensors.

Availability of Edge and Fog Nodes:

𝐴𝑛𝑜𝑑𝑒𝑠 =
𝑀∑︁

𝑖=1

(︃
1 −

𝜆𝑖𝐿
𝑎𝑝𝑝

(𝜆𝑎𝑝𝑝 + 𝜇𝑎𝑝𝑝)𝑖𝐿

)︃
× 𝑀 !

𝑖! (𝑀 − 𝑖)! ×
𝜆𝑀−𝑖

𝑝𝑛 𝜇𝑖
𝑝𝑛

(𝜆𝑝𝑛 + 𝜇𝑝𝑛)𝑀
. (5.24)

Availability of Sensors:

𝐴𝑠𝑒𝑛𝑠𝑜𝑟𝑠 = 𝑀(𝐶 − 1)𝜆𝑠𝜇
𝑀
𝑠

𝑃
+

𝑀−2∑︁
𝑖=1

(︃
𝑀 !

𝑖!(𝑀 − 1 − 𝑖)!

)︃
𝐶 − 1)𝜆𝑀−𝑖

𝑠 𝜇𝑖+1
𝑠

𝑄

−
𝑀∑︁

𝑖=0

(︃
𝑀 !

𝑖!(𝑀 − 𝑖)!

)︃
𝛿𝑠𝜆

𝑀−𝑖
𝑠 𝜇𝑖

𝑠

𝑄
,

where,

𝑃 = 𝛿𝑠(𝜆𝑠 + 𝜇𝑠)𝑀 − 𝑀(𝐶 − 1)𝜆𝑠𝜇
2
𝑠

(︃
𝑀−1∑︁
𝑖=1

(𝑀 − 1)!
𝑖!(𝑀 − 1 − 𝑖)!𝜆

𝑀−1−𝑖
𝑠 𝜇𝑖−1

𝑠

)︃
,

𝑄 = −𝛿𝑠(𝜆𝑠 + 𝜇𝑠)𝑀 + 𝑀(𝐶 − 1)𝜆𝑠𝜇
2
𝑠

(︃
𝑀−1∑︁
𝑖=1

(𝑀 − 1)!
𝑖!(𝑀 − 1 − 𝑖)!𝜆

𝑀−1−𝑖
𝑠 𝜇𝑖−1

𝑠

)︃
.

(5.25)

Average number of sensors available:

𝐴𝑁𝑆𝐴 =
𝑀∑︁

𝑖=1

𝑀 ! 𝜇𝑖
𝑠 𝜆𝑀−𝑖

𝑠 (𝜆𝑠 + 𝜇𝑠)−𝑀

𝑖! (𝑀 − 𝑖)! . (5.26)

𝐶𝑂𝐴𝑠𝑒𝑛𝑠𝑜𝑟𝑠 = 𝐴𝑁𝑆𝐴

𝑀
(5.27)

The primary objective of employing hierarchical modeling in our study is to capitalize
on the advantages offered by combinatorial models, known for their simplicity and ease
of analysis. The Reliability Block Diagram formalism is utilized to represent the system
state as a Boolean function, yielding a value of True when the system is deemed avail-
able. To facilitate a more streamlined solution, we assume that the failures of individual
components are independent within our model.
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Figure 18 – Hierarchical model with fault coverage probability.
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Figure 18 illustrates our proposed model for representing a smart building monitoring
service using continuous-time Markov chain and Reliability Block Diagram techniques.
It is assumed that all components must be operational for the service to be considered
functional, and any deviation from this state indicates a faulty condition.

The utilization of Markov chain modeling in this study is driven by its ability to derive
closed-form equations for calculating availability (CALIRI, 2000). In contrast, numerical
models lack the same level of scalability as analytical models, making them less suitable
for our purposes.

In the depicted model shown in Figure 18, our end-to-end application consists of a
collection of components denoted as 𝐶 = {𝑐𝑖|1 ≤ 𝑖 ≤ 𝑛}. Consequently, we make the
assumption that a random variable 𝑦𝑖(𝑡) represents the state of component 𝑖, yielding:

𝑦𝑖 =

⎧⎨⎩1, if the component i is operational at time t

0, if the component i is faulty at time t.
(5.28)

In our hierarchical model, we have three components arranged in a pure series struc-
ture, resulting in a Reliability Block Diagram (RBD) structure function expressed as:

Φ(𝑦𝑖) = 𝑦0 × 𝑦1 × 𝑦2 (5.29)

From the structure function, we are able to derive the availability of the system, thus:

𝐸(𝑦𝑖) = 𝐴𝑖 (5.30)
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𝐴𝑠 = 𝐸(Φ(𝑦𝑖)) = 𝐸[𝑦0 × 𝑦1 × 𝑦2]

as 𝑦𝑖 are independent, then

𝐴𝑠 = 𝐸[𝑦0] × 𝐸[𝑦1] × 𝐸[𝑦2]

finally

𝐴𝑠 = 𝐴0 × 𝐴1 × 𝐴2 (5.30)

Therefore, we can calculate the steady-state availability, which provides an estimate
of the system’s availability over a long period of time.

5.5 FINAL REMARKS

This chapter has presented a comprehensive exploration of availability and performance
proposed models for systems in the edge-fog-cloud continuum. By employing analytical
techniques, such as continuous-time Markov chains and Reliability Block Diagrams, we
have been able to derive closed-form equations that provide valuable insights into the
behavior of these systems.

The selection of continuous-time Markov chains (CTMCs) as the preferred modeling
approach for edge-fog-cloud applications was driven by several factors. CTMCs offer a
robust mathematical framework that facilitates the analysis and prediction of the intricate
behaviors exhibited by complex systems characterized by stochastic dynamics and state
transitions. Moreover, the continuous and time-dependent nature of these systems further
reinforces the suitability of CTMCs as a modeling formalism. The inherent versatility and
analytical capabilities of CTMCs make them an ideal choice for accurately representing
and studying the complex interplay of components within edge-fog-cloud applications.

Overall, the availability and performance proposed models presented in this chapter
serve as valuable tools for researchers, system designers, and practitioners in the field
of edge-fog-cloud environments. By understanding the behavior and limitations of these
systems, we can enhance their design, operation, and maintenance, ultimately leading to
more reliable, efficient, and resilient infrastructures.
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6 CASE STUDIES

The development of Internet of Things (IoT) applications entails the integration of com-
plex computational environments that encompass cloud, fog, and edge computing paradigms
(ARAUJO et al., 2019). In this chapter, we conducted a series of case studies, which we
categorized into four distinct sections: Availability Models, Performability Models, Hier-
archical Models, and Hierarchical Models With Coverage Probability. Each section serves
to validate our models by demonstrating their ability to accurately represent the baseline
edge, fog, and cloud computing environments. The case studies primarily focused on per-
forming steady-state availability (SSA) analyses of the underlying infrastructures. Within
these analyses, key measures of interest included downtime hours, mean time to failure,
mean time to repair, and availability metrics expressed in terms of nines. Furthermore,
additional case studies were conducted to evaluate capacity-oriented availability, allowing
for an assessment of the impact of resource scalability on service delivery. Cost evaluations
were also conducted, enabling a comparison of the actual expenses associated with each
environment.

6.1 AVAILABILITY MODELS

In this section, we have undertaken the development of a face recognition system as a
means to validate our models. Face recognition systems hold significant relevance in vari-
ous contexts, such as mobile banking applications, where they are employed for transaction
authentication purposes. Additionally, face recognition plays a crucial role in security and
safety systems deployed at locations like airports, stadiums, and other service establish-
ments. Recognizing the criticality of these systems in ensuring safety and security, we have
conducted thorough evaluations of availability models specifically tailored to address face
recognition services.

6.1.1 Case Study I - Availability model validation

In this case study, we present the experiments conducted to assess the validity of our
availability models in a real-world scenario. The experimental environment comprised a
set of components, including a drone, three machines (consisting of a fog node and two
clients), and a Raspberry Pi device serving as an edge node. The drone employed for the
experiment was the Dji Mavic Pro Platinum model, tasked with capturing video footage
and transmitting it to the fog and edge infrastructure. The captured video footage was in
MP4 format, with a frame rate of 30 frames per second and a resolution of 3840×2160.
The fog node utilized the XenServer 7.2.0 hypervisor platform, featuring 8 GB of RAM,
1 TB of storage, and an Intel i5 CPU running at 3.20 GHz quad-core with eight threads.
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The two client machines, used for testing purposes, were equipped with 8 GB of RAM,
1 TB of storage, and an Intel i7-4510U CPU running at 2.00 GHz. The Raspberry Pi,
functioning as the edge node, possessed a 1 GHz single-core processor with two threads and
512 MB of RAM. Both the fog node and edge node executed a Python script responsible
for face recognition tasks, in addition to an RTMP server (such as Nginx1) employed
for receiving the video stream transmitted by the drone. Figure 9 and Figure 19 provide
visual representations of the baseline environment concept.

Figure 19 – Testbed environment.

Source: Elaborated by the author.

The VGGFace2 model, developed by researchers at the Visual Geometry Group at
Oxford (CAO et al., 2018), was employed for face recognition in our experiments. Utilizing
pre-trained models was facilitated through the adoption of the Keras framework. Following
the establishment of the experimental environment, we conducted multiple case studies
by introducing faults using Python scripts.

Our baseline infrastructure consisted of two physical nodes, namely the edge and fog
nodes, with each node running a single application. The failure and repair rates utilized
in our models were obtained from previous studies (LISBOA et al., 2018; DANTAS et al.,
2016; PEREIRA et al., 2021). It was assumed that the time to failure and repair followed
an exponential distribution, with the failure and repair rates representing the reciprocals
of the Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR), respectively.
The values of MTTF and MTTR in hours, as adopted from the literature, are presented
in Table 5.
1 https://www.nginx.com/
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When assessing system availability, the fault injection technique is commonly em-
ployed due to the unpredictable nature or lengthy occurrence of faults (SOUZA et al., 2013;
BRILHANTE et al., 2014; JAMMAL et al., 2018; PEREIRA et al., 2021). The fault injection
mechanism allows for the acceleration, control, and monitoring of experiments during
fault events (AGARWAL et al., 2020). Upon the occurrence of a fault, it induces modifica-
tions within the system, leading to an erroneous state. Additionally, faults may propagate
throughout the system, resulting in disruptions to the availability of the provided services.

Table 5 – MTTF and MTTR from literature.

Node Components MTTF (h) MTTR (h)

Edge

Raspberry 4767.8 3.48
OS 2880 1
Python App 217.8 0.46
Nginx App 217.8 0.46

Fog

Hardware 8760 1.67
OS 2880 1
Cont. Management 2880 1
Python App 217.8 0.46
Nginx App 217.8 0.46

Source: Elaborated by the author based on Dantas et al. (2016).

In our baseline environment, we aimed to minimize the number of components required
to provide the service. Hence, we employed only the essential components for each node.
The minimal components for the edge node encompassed the Raspberry Pi, an operating
system, a Python application for face recognition, and an Nginx RTMP server responsible
for receiving the video stream from the drone. The fog computing node shared the same
minimal components as the edge node, differing only in the hardware utilized, where a
personal computer was employed.

To validate our models, it was necessary to induce stress on the system to accelerate
the Mean Time to Failure (MTTF) of the components. For this purpose, we developed a
fault injector capable of introducing faults into the nodes. Following the assumption that
the time to failure and repair of each component followed an exponential distribution,
the failure and repair rates were obtained as the inverses of the MTTF and Mean Time
to Repair (MTTR) values, respectively, obtained from the literature (LISBOA et al., 2018;
DANTAS et al., 2016; PEREIRA et al., 2021). By accelerating the MTTF, we increased the
speed by a factor of 876, effectively compressing one year into 10 hours. The specific values
set in the fault injector are presented in Table 6 in hours. As a result of this accelerated
MTTF, the system’s availability decreased accordingly.

By employing the abstraction approach utilized in our Markov chain model, we are
able to identify two distinct components within the edge and fog computing environment,
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Table 6 – MTTF and MTTR in the fault injector.

Node Components MTTF (h) MTTR (h)

Edge

Raspberry 5.4 3.48
OS 3.28 1
Python App 0.24 0.46
Nginx App 0.24 0.46

Fog

Hardware 10 1.67
OS 3.28 1
Cont. Management 3.28 1
Python App 0.24 0.46
Nginx App 0.24 0.46

Source: Elaborated by the author.

namely the application and the physical node. The abstraction process was conducted
using the Reliability Block Diagram (RBD) model, leveraging the Mercury tool (SILVA

et al., 2015). This approach effectively consolidates multiple components into a single
representative entity, simplifying the system representation and enabling the application
of analytical techniques based on Continuous-Time Markov Chain (CTMC) analysis. To
this end, the values provided in Table 6 were employed to derive the corresponding values
for the abstraction components, which can then be utilized as inputs in the model. These
mapped values for the abstraction components are presented in Table 7.

By combining the Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR)
values of serial components, we create an aggregated equivalent component that encapsu-
lates the unified representation of availability characteristics. This condensation procedure
significantly simplifies the modeling of individual components, enabling a more stream-
lined analysis of the entire system. By considering the combined availability behavior of
the condensed component, a comprehensive understanding of the system’s overall avail-
ability can be achieved.

This abstraction technique proves particularly advantageous when employing CTMC
analysis, as it allows for the system to be represented as a set of interconnected states
and transitions. The consolidation of multiple components into a single entity reduces
the number of states within the CTMC model, thereby facilitating a more manageable
analysis process. As a result, analytical solutions, such as steady-state probabilities and
performance measures, can be derived, providing valuable insights into the system’s avail-
ability.

Figure 20 illustrates the deployment of our fault-injection environment. To generate
the workload, we utilized a drone for capturing images and transmitting them to our nodes,
as described previously. The fault injector was executed on a personal computer equipped
with 8 GB of RAM, 1 TB of storage, and an Intel i7-4510U CPU running at 2.00 GHz.
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Table 7 – MTTF and MTTR for model.

Node Components MTTF (h) MTTR (h)

Edge Physical Node 2.04 2.34
Application 0.34 0.44

Fog Physical Node 2.48 1.29
Application 0.34 0.44
Source: Elaborated by the author.

Implemented in Python, the fault injector enumerates all components to be monitored
and subsequently fail. For each component, the fault injector spawns a dedicated thread
responsible for injecting faults. The time until failure for each component is assumed to
follow an exponential distribution based on the values specified in Table 6. Consequently,
the thread generates a random number adhering to this distribution and waits for the
specified duration before injecting a fault. Additionally, a separate thread continuously
monitors the availability of the system. The monitoring results, denoted as either 𝑈 for
system uptime or 𝐷 for system downtime, are stored in a text file. The interval between
samples is set to every 10 seconds.

Figure 20 – Fault-injection environment.

Source: Elaborated by the author.

Utilizing the environment depicted in Figure 20, we conducted two experiments, one
for the fog node and another for the edge node, each spanning a duration of 96 hours.
These experiments generated two text files, one for each node, containing a series of
occurrences denoted by 𝑈 (uptime) and 𝐷 (downtime). By analyzing the number of 𝑈s
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and 𝐷s, we computed the corresponding time to failure (TTF) and time to repair (TTR).
For example, if we observed 50 consecutive 𝑈s followed by a 𝐷, the duration of uptime
in that interval would be 50 × 10 seconds (the sampling interval), resulting in a TTF of
500 seconds. We employed this approach to calculate the TTFs and TTRs, resulting in
73 sample points for the edge node and 61 sample points for the fog node.

In accordance with the validation procedure outlined in Chapter 4, we performed a
data analysis and determined that no theoretical distribution adequately represented our
sample distribution. Consequently, we applied the Bootstrap technique to estimate the
confidence intervals for the availability of the fog and edge nodes. The Bootstrap technique
involves resampling a dataset with replacement to generate statistics that pertain to the
population (DEVORE, 2008).

Subsequently, we employed a statistical software package to generate 1000 bootstrap
samples for the availability of the edge and fog nodes. Each sample represented the mean
availability for a specific node, allowing us to calculate the confidence interval. The 25th
smallest and 25th largest values among these 1000 bootstrap samples served as the lower
and upper bounds, respectively, of the 95% confidence interval. It is important to note that
the correct interpretation of a 95% confidence interval is based on repeated experiments.
Over the long run, if the experiment were to be repeated multiple times, the availability
of the edge and fog nodes would be expected to fall within these calculated confidence
intervals approximately 95% of the time.

By employing the analytical models described in Section 5.1 and utilizing the compo-
nent values provided in Table 7, we obtained the availability values for the edge and fog
nodes. The point estimations and their corresponding confidence intervals are summarized
in Table 8, along with the results obtained from the models.

Table 8 – Validation result.

Node Model Result System Measurement CI 95% of the system
Edge 0.2030 0.2215 0.1972 < 𝜃 < 0.2459
Fog 0.2867 0.2598 0.2230 < 𝜃 < 0.2966

Source: Elaborated by the author.

Upon analysis of the confidence intervals, it is evident that the models’ estimations for
the nodes fall within these intervals. Thus, we cannot refute the notion that our models
accurately represent the actual environment. As a result, we can assert that our models
have been validated. The graphical representation of the result values from Table 8 is
depicted in Figure 21.

Henceforth, we can employ the models to compute the availability of the edge and
fog nodes. Furthermore, we can develop strategies to enhance availability levels in various
scenarios and conduct a comprehensive cost analysis.
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Figure 21 – Fault injection environment.
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6.1.2 Case Study II - Availability evaluation

In this case study, we employ the proposed analytical model to estimate the availability
of our baseline environment. This case study exemplifies the utility of our models in
investigating availability concerns within a system. Subsequent case studies involve the
analysis of hypothetical scenarios that surpass the scale of our baseline infrastructure.

Analytical models distinguish themselves from other modeling techniques, such as
Reliability Block Diagrams and Stochastic Petri Nets, due to their scalability. Through
the use of analytical models, we can assess multiple scenarios with reduced computational
costs (JAIN, 1990). It is important to note that, for the ensuing evaluations, we utilize the
literature values of Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR) for
the edge and fog nodes, as depicted in Table 5. These values are employed in the Mercury
tool (SILVA et al., 2015; PINHEIRO et al., 2021) to calculate the corresponding abstraction
values as shown in Table 9.

Table 9 – The abstraction MTTF and MTTR.

Node Components MTTF (h) MTTR (h)

Edge Physical Node 1795.45 1.93
Application 108.89 0.46

Fog Physical Node 2167.42 1.16
Application 108.89 0.46
Source: Elaborated by the author.
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Assuming that our single-edge physical node has the capability to run two applications,
while the single fog physical node can accommodate eight applications, we set the values
of 𝐿 to two for the edge environment and eight for the fog environment in our model. In
this initial evaluation, redundancy is not considered, resulting in 𝑀 being equal to one
for both the edge and fog environments.

Through the evaluation process, we obtained a downtime of 9.56 hours for the edge
node, indicating that within a year, the system would experience approximately 10 hours
of unavailability. Consequently, the uptime would amount to 8750.44 hours. By adopt-
ing the edge solution, the calculated number of nines is 2.9622. Conversely, for the fog
node, we obtained a downtime of 4.84 hours, corresponding to approximately 5 hours
of unavailability, which is half of the edge node. The resulting uptime for the fog node
is 8755.16 hours. The fog node achieves a number of nines of 3.2576, indicating effec-
tive management. The summary of the achieved results for both nodes can be found in
Table 10.

Table 10 – Results of the baseline environment.

Node Metric Values

Edge

Availability 0.9989
Unavailability 0.0011
# of 9’s 2.9622
Downtime (h) 9.56
Uptime (h) 8750.44

Fog

Availability 0.9994
Unavailability 0.0006
# of 9’s 3.2717
Downtime (h) 4.68
Uptime (h) 8755.32

Source: Elaborated by the author.

The enhancement of availability can be achieved through the implementation of re-
dundancy, which is a well-established mechanism. Redundancy can be classified into three
types: cold, warm, and hot standby, each suitable for different scenarios based on the crit-
icality of the process and the consequences of equipment failures (MELO et al., 2018).
Cold-standby redundancy is typically employed for non-critical services where human in-
tervention is deemed acceptable, and time is not of utmost importance. Warm-standby
redundancy, on the other hand, is utilized when the response to failure and time are
significant but not critical, allowing for temporary outages. Lastly, hot-standby redun-
dancy offers instantaneous process correction in the event of a failure, prioritizing time
and security with no tolerance for system interruptions. The selection of the appropriate
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redundancy type depends on the specific requirements and constraints of the system at
hand.

Table 11 – Results of the hot-standby redundancy.

Node Metric Values

Edge

Availability 0.9999988
Unavailability 0.0000012
# of 9’s 5.9381
Downtime (h) 0.0101
Uptime (h) 8759.9899

Fog

Availability 0.9999997
Unavailability 0.0000003
# of 9’s 6.5434
Downtime (h) 0.0025
Uptime (h) 8759.9975

Source: Elaborated by the author.

Given the critical nature of our surveillance environment, where system downtime is
unacceptable, we have opted for hot-standby redundancy. By implementing this mech-
anism, we have significantly reduced the downtime of the edge environment to 0.0101
hours, equivalent to a mere 36.36 seconds in a year. Similarly, the downtime of the fog
environment has been minimized to 0.0025 hours, representing just 9.02 seconds per year.
These remarkable improvements in availability have resulted in an impressive number of
nines for both the edge and fog nodes. The edge node now achieves a level of availability
represented by 5.9381 nines, transforming it into a highly available system. Likewise, the
fog node demonstrates exceptional availability with 6.5434 nines. The addition of a new
physical node has elevated the system from a well-managed state to one with exceptional
availability. Table 11 provides a comprehensive summary of the obtained results.

6.1.3 Case Study III - Capacity-oriented availability (COA)

In this case study, our focus lies in the estimation of the capacity-oriented availability
(COA) of our environment. COA takes into account the availability or unavailability
states and their impact on the service provided (MELO et al., 2017; Sousa et al., 2015;
PEREIRA et al., 2021). The primary objective of this study is to determine the actual
capacity, specifically the number of running applications, considering the infrastructure’s
availability. To achieve this, we have employed a Markov Chain model, as depicted in
Figure 12, to represent the system’s states. By computing the probabilities associated
with each state and multiplying them by the corresponding capacity, we can determine
the weighted average of the available applications. Finally, we divide this sum by the
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maximum system capacity to obtain the COA. In the context of edge and fog computing
scenarios, the COA is directly linked to the number of applications that the physical nodes
can support.

To summarize, the COA of our environments can be calculated by dividing the average
number of available applications by the maximum number of applications that our envi-
ronment can accommodate. Utilizing our analytical model, represented by Equation 5.7,
we can determine the COA for various configurations of the edge and fog infrastructure,
as long as they adhere to the abstraction framework presented in Section 4.

In this particular case study, we have assumed that a single physical node can handle
one application per CPU thread. For instance, a physical node equipped with a quad-
core CPU featuring eight threads can support up to eight applications. It is important to
note that each application is responsible for processing a camera stream. Accordingly, our
physical edge node, with two threads, can accommodate two applications. Conversely, the
fog node, with eight threads, can support eight applications. For the purpose of this case
study, we have examined the COA for four physical nodes, employing the input values
from Table 9. It is worth emphasizing that Equation 5.7 enables us to assess the COA for
any desired combination of physical nodes and applications.

Figure 22 – COA x Edge system’s capacity.
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The capacity axis depicted in Figure 22 and Figure 23 corresponds to the number
of applications operational within the environment. Upon examining these figures, we
observe an inverse relationship between resource availability and capacity-oriented avail-
ability. Specifically, as the number of available resources increases, the capacity-oriented
availability decreases. This phenomenon arises due to the heightened likelihood of resource
failures as the quantity of resources increases.
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Figure 23 – COA x Fog system’s capacity.
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Figure 22 and Figure 23 provide evidence that the capacity-oriented availability of
the fog environment surpasses that of the edge environment. This outcome aligns with
our expectations, given the lower failure rate of the fog node compared to the edge node.
However, it is important to note that the suitability of an edge computing environment
can still be sufficient depending on the specific needs of users or companies. Despite its
comparatively lower availability when compared to fog computing, as demonstrated in
the subsequent case study, an edge computing environment may fulfill the requirements
of certain scenarios.

6.1.4 Case Study IV - Cost analysis

There are numerous advantages associated with the utilization of edge and fog computing,
encompassing techniques for efficient resource utilization and the reduction of operational
costs by stabilizing infrastructure. While these benefits are evident, the precise financial
advantages that companies may derive from adopting edge and fog computing remain
uncertain. To address this issue, a comprehensive cost analysis is conducted in this case
study.

It is crucial to acknowledge the following assumptions made in this particular study:
The cost analysis in this case study is conducted under the following assumptions:

• The costs related to software, training, licensing, and maintenance are assumed to be
identical for both the edge and fog infrastructures. This assumption is made based on
the premise that the same software environment is employed in both environments.
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• Monitoring costs are considered to be the same for both the edge and fog infrastruc-
tures. This assumption is based on the notion that monitoring software may have
its own infrastructure, leading to comparable costs.

• Costs related to bandwidth and network usage are disregarded in this analysis. This
assumption is made to simplify the cost evaluation and focus solely on other factors.

• The costs associated with security and compliance are not considered in this analysis.
It is assumed that each company will already have its dedicated information security
team to handle these aspects independently.

To initiate our analysis, we conducted a thorough investigation of the procurement
costs associated with each component required to establish the edge and fog environments.
It is important to note that both the edge and fog environments consist of a single physical
node. To gather pricing information, we referred to reputable online platforms, including
Dell and Amazon, specifically focusing on websites based in the United States of America.
The price search was conducted between May 25th, 2020, and June 1st, 2020. In Table 12,
we present the corresponding online stores and the minimum costs observed for each
equipment.

Table 12 – Acquisition Costs

Edge Environment
Component Cost (USD) Store

Raspberry Pi Zero W 34.99 Amazon
TP-Link AC1750 WiFi 64.99 Amazon
C4Labs Zebra Raspberry Rack 34.99 Amazon

Fog Environment
Component Cost (USD) Store

PowerEdge R240 499.00 Dell
Switch Huacomm 5-Port 49.99 Amazon
Rack StarTech.com 12U 215.99 Amazon

Source: Elaborated by the author.

The subsequent step entails the computation of the annual energy costs associated
with our environment. Each component exhibits distinct power consumption levels (𝑊 ),
necessitating a meticulous examination of the manufacturer’s specifications. By employing
Equation 6.12, we can estimate the energy consumption (𝑘𝑊ℎ) of both the edge and fog
environments. It is important to note that Equation 6.1 is also utilized to assess the
2 http://dell-ui-eipt.azurewebsites.net/
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energy consumption of the edge, as it appropriately reflects the energy consumption of
the Raspberry3.

E = Power × NHD × NDY
1000 (𝑘𝑊ℎ), (6.1)

where 𝑁𝐻𝐷 represents the number of operational hours per day, while 𝑁𝐷𝑌 corresponds
to the number of days per year that the device remains in operation. In accordance with
the International System of Units, the unit of power is expressed in Watts. Consequently,
in Equation 6.1, we divide the power value by 1000 to convert it into kilowatt-hours (kWh).
For our analysis, we assume that each equipment operates continuously, encompassing 24
hours per day and seven days per week. Additionally, we consider the average electricity
price of 13.19 cents per kWh in the United States of America, as of April 20204. As a result,
we derive the values presented in Table 13, where the Cost (USD) column represents the
annual expenses in U.S. dollars.

Table 13 – Energy consumption by year

Edge Environment
Component Power (W) Cost (USD)

Raspberry Pi Zero W 3 3.46
TP-Link AC1750 WiFi 24 27.73

Fog Environment
Component Power (W) Cost (USD)

PowerEdge R240 65 75.10
Switch Huacomm 5-Port 65 75.10

Source: Elaborated by the author.

As evidenced by the analysis, the cost of establishing and maintaining an edge environ-
ment is considerably lower compared to a fog environment. However, the notable disparity
lies in the capacity-oriented availability, as demonstrated in the preceding case study. The
fog environment, consisting of a solitary physical node employing the server specified in
Table 12, possesses the capability to concurrently operate up to 32 applications, owing to
its robust processor power. Conversely, the edge environment is only capable of accommo-
dating two applications. Consequently, to support the execution of the 32 applications,
it would necessitate the deployment of 16 Raspberry Pi Zero W devices, incurring an
approximate cost of US$560.00. For illustrative purposes, let us examine two scenarios:
an airport surveillance system and a farm surveillance system.
3 https://www.pidramble.com/wiki/benchmarks/power-consumption
4 https://www.electricchoice.com/electricity-prices-by-state/
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Scenario #01

Surveillance systems incorporating facial recognition technology have become ubiquitous
in airports worldwide. These systems offer enhanced speed and accuracy in identifying
individuals, surpassing human visual capabilities (PETRESCU, 2019). However, when such
applications are hosted in a cloud environment, latency can be a critical factor in pre-
venting unauthorized access to airplanes. To mitigate this latency issue, edge and fog
computing environments have emerged as viable alternatives.

In the context of a surveillance system employing facial recognition technology within
an airport, ensuring maximum availability becomes imperative. Availability plays a cru-
cial role in determining the probability of a system operating during a specified period,
accounting for both failures and repairs within this timeframe (MACIEL et al., 2012). In this
scenario, we assume the hypothetical airport comprises 1000 cameras, with each camera
requiring a dedicated application. Consequently, considering the environments defined by
the components listed in Table 12, the edge computing environment can accommodate
2 applications per physical node, while the fog computing environment can support 32
applications (i.e., 𝐿 = 2 and 𝐿 = 32 in Equation 5.2, respectively). Accommodating the
1000 cameras necessitates 500 physical nodes for the edge environment (i.e., 𝑀 = 500
in Equation 5.2), whereas the fog environment requires 32 physical nodes (i.e., 𝑀 = 32
in Equation 5.2). The total cost of equipment acquisition for the edge computing en-
vironment would amount to approximately US$22,193.7, encompassing 500 Raspberry
Pi devices, 5 TP-Link routers, and 125 Raspberry Pi racks. Conversely, establishing a
fog computing environment would incur total equipment acquisition expenses of around
US$17,181.89, comprising 32 Dell PowerEdge R240 servers, 7 Huacomm 5-Port switches,
and 4 racks. Figure 24 depicts the annual expenses of edge and fog computing, factoring in
energy consumption as well. In the first year, accounting for acquisition costs and energy
consumption, the edge environment would incur expenses of approximately US$24,062.35,
while the fog environment would amount to US$20,110.79.

Assuming that all applications need to be running to consider the system available,
we need 1000 applications running, which means 1000 out of 1000 applications need to
be working. So using the inverse values in Table 5 as inputs of the model represented by
Equation 5.2, which represents the K out of N availability (i.e., 𝑁 = 𝑀 × 𝐿), we have the
values depict in Table 14.

As illustrated in Figure 24, the initial four-year period exhibits higher effective ex-
penses for the edge environment compared to the fog environment. Nevertheless, the dis-
crepancy in effective expenses gradually diminishes over the years. However, it is worth
noting that the edge environment, lacking redundancy, demonstrates unacceptable avail-
ability levels (as indicated in Table 14). This outcome can be attributed to the presence
of numerous components, which inherently increases the likelihood of failures. To address
this concern, the utilization of redundancy becomes crucial. However, it is important to
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Figure 24 – Effective Expenses Scenario #01 - Edge x Fog.
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Table 14 – Results of the airport facial recognition system.

Node Metric Values

Edge

Availability 0.0086
Unavailability 0.9914
# of 9’s 0.0037
Downtime (h) 8684.30
Uptime (h) 75.70

Fog

Availability 0.9994
Unavailability 0.0006
# of 9’s 3.2717
Downtime (h) 4.68
Uptime (h) 8755.32

Source: Elaborated by the author.

acknowledge that incorporating redundancy in the edge environment would entail addi-
tional effective expenses. Therefore, based on the findings of this scenario, deploying the
surveillance system using the fog environment is strongly recommended.

Scenario #02

Suppose an individual intends to deploy a surveillance system on their farm to detect
intruders. After analysis, the conclusion was reached that ten cameras would suffice to
adequately cover the entire area. However, if this intruder detection system were to operate



91

in a cloud environment, significant challenges might arise, particularly in rural settings
where the Internet connection may exhibit even higher latency.

Figure 25 – Effective Cost Scenario #02 - Edge x Fog.
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Taking into account the edge and fog environments with the components specified
in Table 12 and their corresponding characteristics, the edge environment supports the
execution of two applications per physical node (i.e., 𝐿 = 2 in Equation 5.2), while the fog
environment has a capacity of running 32 applications per physical node (i.e., 𝐿 = 32 in
Equation 5.2). Consequently, to accommodate ten cameras, the edge environment necessi-
tates five physical nodes (i.e., 𝑀 = 5 in Equation 5.2), while the fog environment requires
a single physical node (i.e., 𝑀 = 1 in Equation 5.2). The total cost of acquiring equipment
for the edge computing environment amounts to approximately US$275.00, involving five
Raspberries, one TP-Link router, and one Raspberry rack. Conversely, the fog computing
environment entails a total equipment acquisition cost of around US$766.00, encompass-
ing one Dell PowerEdge R240 server, one Huacomm 5-Port switch, and one rack. The
annual cost, considering energy consumption, edge and fog computing, is illustrated in
Figure 25.

It should be emphasized that each application is responsible for processing a single
camera stream. If we consider the system to be available only when all applications are
running simultaneously, a total of ten applications are required. In other words, a 10 out
of 10 application availability is needed. By utilizing the analytical model described by
Equation 5.2, the availability of each environment can be determined. The outcome is
presented in Table 15.

As depicted in Table 15, the availability of the fog environment significantly surpasses
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Table 15 – Results of the farm’s intruder detection system.

Node Metric Values

Edge

Availability 0.9535
Unavailability 0.0465
# of 9’s 1.3334
Downtime (h) 406.47
Uptime (h) 8353.53

Fog

Availability 0.9994
Unavailability 0.0006
# of 9’s 3.2717
Downtime (h) 4.68
Uptime (h) 8755.32

Source: Elaborated by the author.

that of the edge environment, indicating that the fog environment is better suited for a
surveillance system that requires high availability. However, it is crucial to consider the
substantial disparity in the effective annual expenses between the two environments. The
expenses associated with the fog environment are more than double the expenses incurred
by the edge environment. This implies that even with the implementation of hot-standby
redundancy, the edge environment remains more cost-effective while achieving higher
availability. Hence, for this particular scenario, the edge environment is the recommended
choice.

6.1.5 Insights from the case study

In this case study, it became clear that continuous-time Markov chains (CTMCs) serve as
a powerful mathematical framework for analyzing and predicting the behavior of complex
systems with stochastic dynamics and state transitions. The utilization of CTMCs en-
abled a comprehensive understanding of the intricate nature of face recognition systems,
particularly in edge-fog-cloud environments.

Additionally, the case study highlighted the significance of considering factors such
as system failures, repair times, and the impact of resource capacity on availability. The
examination of various scenarios, including the application of redundancy techniques, shed
light on the trade-off between availability and cost.

Ultimately, the case study emphasized the importance of carefully evaluating and
selecting the appropriate computational environment based on specific requirements and
constraints, taking into account factors such as latency, capacity-oriented availability,
and financial considerations. Overall, the case study provided valuable insights into the
availability aspects of face recognition systems and the significance of adopting analytical
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models for performance evaluation and decision-making processes.

6.2 PERFORMABILITY MODELS

In this section, we leverage a face recognition system to assess the performability models.
The significance of ensuring security and safety underscores the importance of evaluating
the availability and performance of such systems. By employing modeling techniques, we
can comprehensively explore a broad spectrum of possibilities and potential outcomes.

6.2.1 Case Study I - Performability model validation

In this case study, we delineate the experimental procedures employed to assess the rep-
resentativeness of our performability models in a real-world setting. Our experimental
environment comprised a drone, three computers (including a fog node and two clients),
and a Raspberry Pi5 serving as an edge node. The drone utilized was a Dji Mavic Pro
Platinum6, tasked with capturing video footage and transmitting it to the fog and edge
infrastructure. The captured video material was formatted as MP4, featuring a frame
rate of 30 frames per second and a resolution of 3840×2160. The fog node operated on
XenServer 7.2.0, functioning as the hypervisor platform, equipped with 8 GB of RAM,
1 TB of storage, and an Intel Core i5 3.20 GHz quad-core CPU with eight threads. The
remaining two client computers boasted 8 GB of RAM, 1 TB of storage, and an Intel
i7-4510U 2.00 GHz CPU. As for the Raspberry Pi functioning as the edge node, it pos-
sessed a 1 GHz single-core CPU with two threads and 512 MB of RAM. Both the fog node
and edge node executed a Python script tailored for face recognition purposes, alongside
an RTMP server (e.g., Nginx7) responsible for receiving the drone’s video stream. Fig-
ure 26 and Figure 9 provide visual illustrations of the foundational components within
the baseline testbed environment.

The VGGFace2 model, developed by researchers at the Visual Geometry Group at
Oxford (CAO et al., 2018), was employed for face recognition in our study. To utilize pre-
trained models, we employed the Keras framework8. Within the same Python script, we
encoded the processed video to deliver an HLS (HTTP Live Streaming) stream using the
Mux Plugin9. The HLS chunk size was set to 3 seconds (HOQUE et al., 2015). After con-
structing the experimental environment, we conducted multiple case studies by injecting
failures through a Python script and sending requests using the HLS JMeter plugin10,
developed by BlazeMeter Labs. This streaming plugin allowed us to evaluate the perfor-
5 https://www.raspberrypi.org/
6 https://www.dji.com/br/mavic
7 https://www.nginx.com/
8 https://keras.io/
9 https://mux.com/for/python/
10 https://www.blazemeter.com/blog/HLS-3.0-Release
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Figure 26 – Testbed environment to validate the models.
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Source: Elaborated by the author.

mance of live-streaming video servers under various load conditions. Typically, JMeter11

can handle more than 500 threads from a single machine, depending on the script and
the machine’s characteristics. It is important to note that we closely monitored the health
of the machines generating the workload, as unreliable results would be obtained if they
became saturated.

In our evaluation, we focused on a baseline infrastructure consisting of two physical
nodes, namely the edge and fog nodes, with each node running a single application. We
utilized failure and repair rates obtained from literature (LISBOA et al., 2018; DANTAS et

al., 2016; PEREIRA et al., 2021). Assuming exponentially distributed time to failure and
repair, the failure and repair rates were derived as the inverses of the mean time to failure
(MTTF) and mean time to repair (MTTR) values. Table 16 presents the adopted MTTF
and MTTR values.

To evaluate the performability of the systems, we employed a fault injection technique,
as faults are often unpredictable or occur infrequently (SOUZA et al., 2013; BRILHANTE

et al., 2014; JAMMAL et al., 2018). The fault injection mechanism allowed us to control
and monitor the experiment during fault events, accelerating the occurrence of faults and
observing their impact on the system. When a fault occurred, it introduced a modification
in the system, leading to an erroneous state. The fault could also propagate through the
system, affecting the availability of the provided service.

For our baseline infrastructure, we adopted a minimal component configuration for the
edge and fog nodes, consisting of the essential elements required to provide the service. The
edge node comprises the Raspberry operating system, a Python application responsible
for face recognition and HLS stream encoding, and an Nginx RTMP server to receive the
drone’s video streaming. The fog node shares the same components as the edge node, with
11 https://jmeter.apache.org/
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Table 16 – MTTF and MTTR from literature.

Node Components MTTF (h) MTTR (h)

Edge

Raspberry 4767.8 3.48
OS 2880 1
Python App 217.8 0.46
Nginx App 217.8 0.46

Fog

Hardware 8760 1.67
OS 2880 1
Cont. Management 2880 1
Python App 217.8 0.46
Nginx App 217.8 0.46

Source: Elaborated by the author based on Dantas et al. (2016).

the only difference being the hardware platform, where a personal computer is utilized.
To verify the validity of our models, it was necessary to subject the system to stress

in order to accelerate the mean time to failure (MTTF) of the components. For this
purpose, we developed a fault injector capable of introducing faults into each component
of the nodes. Similarly to our previous assumptions, we considered the time to failure
and repair to follow an exponential distribution, resulting in failure and repair rates being
the reciprocals of the MTTF and mean time to repair (MTTR), respectively (LISBOA et

al., 2018; DANTAS et al., 2016). In order to expedite the MTTF, we increased its rate by
a factor of 876, effectively compressing one year into a 10-hour timeframe. The values
employed in the fault injector are presented in Table 17. As a result of this accelerated
MTTF, the system’s availability experiences a decrease.

Table 17 – MTTF and MTTR in the fault injector.

Node Components MTTF (h) MTTR (h)

Edge

Raspberry 5.4 3.48
OS 3.28 1
Python App 0.24 0.46
Nginx App 0.24 0.46

Fog

Hardware 10 1.67
OS 3.28 1
Cont. Management 3.28 1
Python App 0.24 0.46
Nginx App 0.24 0.46

Source: Elaborated by the author.

In Table 16 and Table 17, we present the values for the mean time to failure (MTTF)
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and mean time to repair (MTTR) obtained from the literature and those accelerated
for use in the fault injector, respectively. However, in order to incorporate these values
into our performability models, we need to perform the abstraction process described in
Section 4. This abstraction involves establishing the relationship between the components
listed in Table 17 and the corresponding components specified in Table 18, as depicted in
Figure 9. In the abstraction, the physical node in Table 18 represents the hardware and
operating system, while the application represents the Nginx server and the Python script.
To obtain the corresponding values for Table 18, the abstraction process was conducted
using the Reliability Block Diagram (RBD) model, leveraging the Mercury tool (SILVA et

al., 2015; PINHEIRO et al., 2021).

Table 18 – MTTF and MTTR for model.

Node Components MTTF (h) MTTR (h)

Edge Physical Node 2.04 2.34
Application 0.34 0.44

Fog Physical Node 2.48 1.29
Application 0.34 0.44
Source: Elaborated by the author.

Figure 27 provides a visual representation of the deployment of our fault-injection
environment and illustrates the workload generated for the video stream. In our experi-
mental setup, we utilized a drone to capture images and transmit them to the designated
nodes, as previously described. The fault injector, implemented in Python, plays a pivotal
role in this environment by specifying the components that will experience failures and be
subject to monitoring. To facilitate fault injection, the fault injector creates a dedicated
thread for each component, responsible for simulating and injecting the respective faults.
The time to failure for each component follows an exponentially distributed distribution,
as indicated in Table 17. Consequently, each thread generates a random number adhering
to this distribution, awaiting the appropriate time to initiate fault injection. Addition-
ally, we employ another thread dedicated to monitoring the system’s availability. This
monitoring thread records the system’s state as either “up” (denoted as 𝑈) or “down”
(denoted as 𝐷) and stores this information in a text file. The monitoring process samples
the system’s state at regular intervals of 10 seconds.

Utilizing the depicted environment illustrated in Figure 27, we conducted two separate
experiments to evaluate the behavior of the fog and edge nodes. Each experiment was
conducted over a duration of 96 hours, resulting in the generation of two distinct text
files: one for the edge node and another for the fog node. These text files contained a series
of recorded states denoted by 𝑈 (indicating system uptime) and 𝐷 (indicating system
downtime). By analyzing the occurrence of these states, we were able to calculate the
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Figure 27 – Fault-injection environment and workload generator.
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time to failure and time to repair. For example, if we observe 50 consecutive occurrences
of 𝑈 before transitioning to a 𝐷 state, we can infer that the system experienced 50
intervals of 10 seconds (the sampling interval), resulting in a cumulative uptime of 500
seconds within that particular interval. Similar calculations were performed to determine
the time to repair.

To generate the workload, we employed the JMeter benchmark tool coupled with an
HLS JMeter plugin. This combination facilitated the monitoring of response times and
discard rates for each node, while utilization was observed through an auxiliary monitoring
tool. The JMeter plugin simulated user access to a video streaming server utilizing the
HLS protocol. It offered flexibility in configuring various parameters such as stream type,
playback time, network bandwidth, and device resolution. Table 19 provides an overview
of the specific configuration parameters employed within the HLS plugin to generate
the workload. We opted for utilizing the Hypertext Transfer Protocol (HTTP) for video
streaming, as it is a prevalent practice for devices with limited bandwidth (PEREIRA et

al., 2020).
Consequently, we conducted the experiment and closely monitored the system’s per-

formance to obtain performability metrics for both the edge and fog environments. As
anticipated, the system’s availability significantly impacted its overall performance, as
income requests were discarded during periods of system downtime. Upon completing the
96-hour experiment, we accumulated approximately 30,500 sample points for both the
edge and fog environments. This substantial amount of data allowed us to calculate 95%
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Table 19 – HLS plugin configuration parameters.

Variables Values
Video Type live stream
Play Back Time whole video
Protocol http
Bandwidth max available
Resolution max available
Source: Elaborated by the author.

confidence intervals for the performability metrics.
Assuming rate values for the edge system as 𝜆 = 900 𝑡𝑝ℎ (transactions per hour) and

𝜇 = 42.01 𝑡𝑝ℎ, and corresponding values for the fog system as 𝜆 = 900 𝑡𝑝ℎ and 𝜇 =
270.06 𝑡𝑝ℎ (YE, 2017; LONGBOTTOM, 2017), we utilized the analytical models described
in Section 5.2. With the specific component values provided in Table 18, we derived the
performability metrics for both the edge and fog nodes. These point estimations, along
with their respective confidence intervals, are summarized in Table 20, alongside the model
results.

It is noteworthy that the confidence intervals encompass the estimations derived from
our models, indicating that there is no evidence to suggest that our models fail to accu-
rately represent the real environment. Hence, we can reasonably assume that our validated
models reliably represent the behavior of the edge and fog nodes. This outcome enables
us to utilize these models to calculate performability metrics for future scenarios, develop
strategies to enhance performance levels, and conduct cost analyses. It is important to
mention that we did not validate the waiting time model, as JMeter does not provide
measurements for this particular aspect.

Table 20 – Validation result.

Metrics Node Model CI 95% of the system

Utilization Edge 0.2307 0.1999 < 𝜃 < 0.2616
Fog 0.2681 0.2342 < 𝜃 < 0.2944

Resp. Time
(h)

Edge 0.0094 0.0053 < 𝜃 < 0.0114
Fog 0.0018 0.0005 < 𝜃 < 0.0025

Disc. Rate Edge 174.20 172.43 < 𝜃 < 175.74
Fog 185.55 184.17 < 𝜃 < 187.32

Source: Elaborated by the author.

The performance of the nodes is observed to have a direct correlation with the system’s
availability. This relationship is particularly evident in the low utilization experienced
by each node. When a node encounters downtime, the utilization metric drops to zero,
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significantly impacting the average value of this metric. In the subsequent section, we will
delve into a detailed investigation of this phenomenon.

6.2.2 Case Study II - Performability vs performance models, and cost analysis

This case study is structured into two distinct sections. The first section utilizes the pro-
posed analytical model to explore the impact of availability on the performance of the
aforementioned environments. The second section focuses on conducting a comprehensive
cost analysis to determine the most suitable paradigm for specific scenarios. It is impor-
tant to reiterate that analytical models offer distinct advantages in terms of scalability
compared to other modeling techniques such as Reliability Block Diagram and Stochastic
Petri Nets. With analytical models, it becomes feasible to evaluate numerous scenarios
with reduced computational costs, as highlighted by Jain et al. (JAIN, 1990).

Comparison between performability and performance models

In the subsequent analysis, we employ the MTTF and MTTR values for the edge and
fog nodes as obtained from the literature (see Table 16). These values are utilized in
the Mercury tool (SILVA et al., 2015; PINHEIRO et al., 2021) to derive the corresponding
abstraction values, which are presented in Table 21.

Table 21 – The abstraction MTTF and MTTR.

Node Components MTTF (h) MTTR (h)

Edge Physical Node 1795.45 1.93
Application 108.89 0.46

Fog Physical Node 2167.42 1.16
Application 108.89 0.46
Source: Elaborated by the author.

With respect to the performance rates of the nodes, we have adopted specific values
for the edge and fog systems. The edge system is characterized by a rate of arrivals, 𝜆,
equal to 900 transactions per hour (tph), and a service rate, 𝜇, of 42.01 tph. Similarly,
the fog system exhibits a rate of arrivals, 𝜆, of 900 tph, and a service rate, 𝜇, of 270.06
tph. It is important to note that our model assumes a single-edge physical node capable
of running two applications, while the single fog physical node can accommodate up to
eight applications. Consequently, for our model, the value of 𝐿 is set to two for the edge
environment and eight for the fog environment. Each application in the edge environment
has a capacity of two, with one chunk of data being processed and another one in the
queue. Similarly, each application in the fog environment has a capacity of two.

In this investigation, we do not consider redundancy, which implies that the value of 𝑀

is equal to one for both the edge and fog environments. The first two levels of our Markov
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chain model, as illustrated in Figure 13, represent the availability of our environments,
while the third level pertains to performance. We will analyze the performance of the
environments with and without accounting for availability, and subsequently compare the
results. For the pure performance models, we employ the parameters 𝑚 = 2 and 𝐶 = 4
for the edge node, and 𝑚 = 8 and 𝐶 = 16 for the fog node. The following equations
represent the performance models of the nodes without considering availability:

𝑈 = 𝜆(1 − 𝜋𝐶)
𝑚 × 𝜇

, (6.2)

𝑅𝑇 =

𝐶∑︀
𝑛=1

𝑛𝜋𝑛

𝜆(1 − 𝜋𝐶) , (6.3)

𝑊𝑇 =

𝐶∑︀
𝑛=𝑚

(𝑛 − 𝑚)𝜋𝑛

𝜆(1 − 𝜋𝐶) , (6.4)

𝐷𝑅 = 𝜆𝜋𝐶 . (6.5)

By conducting this investigation, we can compare the impact of environment avail-
ability on performance. Model-based analysis techniques, such as Markov chains, offer an
appealing approach due to their cost-effectiveness in conceptualizing and evaluating vari-
ous scenarios. These methods enable stakeholders to efficiently analyze multiple scenarios
with different parameters (ANDRADE; NOGUEIRA, 2019).

Table 22 – Investigation of performance x performability models.

Node Metric Performance Performability

Edge

Utilization 0.9995 0.9984
Response (h) 0.04635 0.04650
Waiting (h) 0.02257 0.02269
Discard (r/h) 814.014 815.476

Fog

Utilization 0.4277 0.4159
Response (h) 0.00371 0.00421
Waiting (h) 1.79 × 10−5 1.94 × 10−5

Discard (r/h) 0.0107 0.0169
Source: Elaborated by the author.

As depicted in Table 22, the system’s availability has a notable impact on its per-
formance. Higher availability leads to performability metrics that closely align with the
performance model. The utilization in the performability model is lower compared to the
performance model due to the direct influence of availability on overall utilization. Con-
sequently, the system fails to achieve its full processing capacity, resulting in a waste of
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processing power. Additionally, we observe an increase in overall waiting time, response
time, and discard rate in the performability models. Although the differences may not
be significant for certain metrics, they become more pronounced when scaling up the
number of physical nodes and applications. Performability models provide a more com-
prehensive representation of the system’s total capacity compared to pure performance
models (SMITH; TRIVEDI; RAMESH, 1988).

Cost analysis

The utilization of edge and fog computing presents several advantages, such as optimiz-
ing resource utilization and reducing latency. However, the actual financial benefits that
organizations can derive from adopting these computing paradigms remain uncertain. To
shed light on this matter, we conduct a cost analysis in this subsection.

During this analysis, it is important to consider the following assumptions:

• The costs associated with software, training, licensing, and maintenance are assumed
to be the same for both edge and fog infrastructures, as we assume the utilization
of the same software environment.

• Monitoring costs are considered to be equal since monitoring software may have its
own dedicated infrastructure.

• Bandwidth and network costs are disregarded in this analysis.

• Security and compliance expenses are not accounted for, assuming that each com-
pany already maintains its information security team.

To initiate our analysis, we meticulously investigate the acquisition costs of each com-
ponent required to establish the edge and fog environments. In this case study, it is
assumed that both the edge and fog environments consist of a solitary physical node. To
gather the necessary information, we extensively surveyed various websites based in the
United States of America, including reputable sources such as Dell and Amazon. This
search was conducted over the period from August 25th to September 2nd. The resulting
findings, comprising the store details and the corresponding lowest equipment costs, are
presented in Table 23.

The subsequent step entails calculating the annual energy cost of our environment. As
each component exhibits distinct power consumption (𝑃 - measured in watts), it was im-
perative to gather the manufacturer’s specifications for accurate assessment. Equation 6.6
facilitates the estimation of energy consumption (𝐸 - measured in kilowatt-hours) for both
the edge and fog environment12. Additionally, Equation 6.6 was employed to determine
12 http://dell-ui-eipt.azurewebsites.net/
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Table 23 – Acquisition Costs

Edge Environment
Component Cost (USD) Store

Raspberry Pi 2 Model B 50.48 Amazon
TP-Link AC1750 WiFi 64.99 Amazon
C4Labs Zebra Raspberry Rack 34.99 Amazon

Fog Environment
Component Cost (USD) Store

PowerEdge R240 Rack 499.00 Dell
Switch Huacomm 5-Port 49.99 Amazon
Rack StarTech.com 12U 215.99 Amazon

Source: Elaborated by the author.

the edge consumption, as it serves as a representative of Raspberry’s energy consumption
as well13.

E = Power × NHD × NDY
1000 (𝑘𝑊ℎ). (6.6)

The variable 𝑁𝐻𝐷 represents the number of hours per day, while 𝑁𝐷𝑌 corresponds
to the number of days per year. In our analysis, we assume that each equipment operates
continuously for 24 hours per day and seven days per week. Furthermore, we consider the
average electricity price to be 13.19 cents of American Dollar per kilowatt-hour (kWh) in
the United States of America, as updated in April 202014. Based on these assumptions, we
have computed the values presented in Table 24, where the Cost (USD) column signifies
the annual expenses in U.S. dollars.

Table 24 – Energy consumption by year

Edge Environment
Component Power (W) Cost (USD)

Raspberry Pi 2 Model B 3 3.46
TP-Link AC1750 WiFi 24 27.73

Fog Environment
Component Power (W) Cost (USD)

PowerEdge R240 Rack 65 75.10
Switch Huacomm 5-Port 65 75.10

Source: Elaborated by the author.

13 https://www.pidramble.com/wiki/benchmarks/power-consumption
14 https://www.electricchoice.com/electricity-prices-by-state/
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It is evident that constructing and maintaining an edge environment is considerably
more cost-effective than a fog environment. However, the key distinction lies in their
performance capabilities, as demonstrated in the previous case study. The fog environ-
ment, consisting of a single physical node utilizing the server specified in Table 23, can
concurrently run up to 32 applications owing to its powerful processor. Conversely, the
edge environment has a limited capacity of running only four applications. Therefore, to
accommodate the 32 applications, it would necessitate the deployment of 8 Raspberry Pi
2 Model B devices, amounting to an approximate cost of US$400.00. To illustrate this
further, let us consider two scenarios: a surveillance system at a corporate facility and a
storage facility on a farm.

Scenario #01: in many organizations, the inability of security guards to recognize
employees can lead to significant financial losses resulting from potential burglaries (PATIL

et al., 2020). To address this issue, facial recognition-based surveillance systems are being
implemented in companies worldwide. However, when these surveillance systems are de-
ployed in cloud environments, latency can become a critical factor in preventing intruders
from accessing company premises. As a solution, edge or fog computing environments can
be employed to mitigate latency issues.

In the context of a company utilizing a facial recognition surveillance system, it is
crucial to ensure that the system meets performance requirements specified in service
level agreements (SLAs). Performability plays a vital role in this regard, as it assesses
the probability of achieving desired performance metrics during the expected operational
period, accounting for potential failures and repairs (MACIEL et al., 2012). In our scenario,
we consider a hypothetical company with 100 cameras (PATIL et al., 2020), each requiring
its dedicated application. Based on this information and the component specifications
presented in Table 23, we explore the edge and fog environments. The edge environment
can support four applications per physical node (i.e., 𝐿 = 4), while the fog environment
can accommodate 32 applications per physical node (i.e., 𝐿 = 32). To cater to the 100
cameras, the edge environment would require 25 physical nodes (i.e., 𝑀 = 25), whereas
the fog environment would need 4 physical nodes (i.e., 𝑀 = 4). The total equipment
acquisition costs for the edge computing environment are estimated to be approximately
US$1,571.92, involving 25 Raspberries, 1 TP-Link router, and 7 Raspberry racks. Con-
versely, the fog computing environment would incur equipment acquisition expenses of
approximately US$2,261.98, comprising 4 Dell PowerEdge R240 servers, 1 Huacomm 5-
Port switch, and 1 rack. The yearly expenses for edge and fog computing, considering
energy consumption, are illustrated in Figure 28.

Utilizing the reciprocal values provided in Table 16 as parameters for the first two
levels, we proceed with the performability analysis. Considering the edge system, we
assume an arrival rate of 𝜆 = 900 𝑡𝑝ℎ. Similarly, for the fog system, the corresponding
rate is 𝜆 = 900 𝑡𝑝ℎ. However, in this particular scenario, we consider the presence of
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Figure 28 – Effective Expenses Scenario #01 - Edge and Fog.
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ten physical machines in the alarm monitoring center. Consequently, the arrival rate for
the fog system is multiplied by 10, while the service rate (𝜇) remains unchanged. The
outcomes of this scenario are presented in Table 25.

Table 25 – Results of a hypothetical company facial recognition system.

Node Metric Performability

Edge

Utilization (%) 86.25
Response Time (ms) 2979.80
Waiting Time (ms) 3.56 × 10−4

Discard (request/hour) 0.5250

Fog

Utilization (%) 65.37
Response Time (ms) 1223.04
Waiting Time (ms) 8.10 × 10−6

Discard (request/hour) 4.97 × 10−5

Source: Elaborated by the author.

As depicted in Figure 28, the effective expenses of the fog environment progressively
surpass those of the edge environment over the years. However, the performance of the
edge environment significantly lags behind that of the fog environment, as indicated in
Table 25. Metrics such as utilization, response time, waiting time, and discard rate exhibit
higher values in the edge environment compared to the fog environment. This disparity
poses a notable challenge, as higher utilization is directly associated with an increased
likelihood of elevated discard rates. To address this issue, one possible solution is to intro-
duce redundancy or augment the number of physical machines in the edge environment.
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However, both options would also escalate the effective expenses of the edge environment.
Consequently, it is advisable to opt for the fog environment for deploying the surveillance
system in this particular scenario.

Scenario #02: given the intention to deploy a surveillance system in a farm storage
facility for intruder detection, the analyst determined that ten cameras would suffice for
comprehensive area coverage. It is worth emphasizing that running this intruder detector
in a cloud environment can give rise to significant challenges, particularly in rural areas
characterized by potentially higher latency in Internet connections compared to urban
areas.

Figure 29 – Effective Cost Scenario #02 - Edge and Fog.
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Considering the edge and fog environments, with the components listed in Table 23 and
their respective values, the edge environment has a capacity of running four applications
per physical node (𝐿 = 4), while the fog environment can accommodate 32 applications
per physical node (𝐿 = 32). Consequently, to support ten cameras, the edge environment
would require five physical nodes (𝑀 = 3), whereas the fog environment would only need
one physical node (𝑀 = 1). The total equipment acquisition cost for the edge computing
environment is estimated to be around US$250.00, consisting of three Raspberries, one
TP-Link router, and one Raspberry rack. Conversely, the total equipment acquisition cost
for the fog computing environment is estimated to be around US$766.00, comprising one
Dell PowerEdge R240 server, one Huacomm 5-Port switch, and one rack. The yearly cost,
considering energy consumption, edge, and fog computing, is presented in Figure 29. Fur-
thermore, Table 26 displays the results obtained from the performability models, utilizing
the inverse values from Table 16 as inputs for the first two levels, and 𝜆 = 900 𝑡𝑝ℎ and
𝜇 = 42.01 𝑡𝑝ℎ for the edge system, and 𝜆 = 900 𝑡𝑝ℎ and 𝜇 = 270.06 𝑡𝑝ℎ for the fog system
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in the third level.

Table 26 – Results of the farm’s intruder detection system.

Node Metric Performability

Edge

Utilization (%) 59.91
Response Time (ms) 2856.8
Waiting Time (ms) 246.6
Discard (request/hour) 0.0745

Fog

Utilization (%) 10.43
Response Time (ms) 1328.84
Waiting Time (ms) 1.15 × 10−17

Discard (request/hour) 5.34 × 10−4

Source: Elaborated by the author.

Analyzing Table 26, we observe that some performability metrics of the fog environ-
ment outperform those of the edge environment, suggesting that the fog environment
would be the preferred choice for a surveillance system, given its higher performance and
availability. However, it is crucial to consider the significant difference in the effective
yearly expenses between the fog and edge environments, with the fog costs exceeding
double those of the edge environment. Even with the utilization of multiple physical edge
nodes, the edge environment offers lower costs. Furthermore, the edge environment al-
ready demonstrates adequate performability metrics for a small-scale surveillance system,
while the utilization of the fog node remains low, indicating an underutilization of com-
putational resources. Hence, in this scenario, the edge environment is the recommended
choice.

6.2.3 Insights from the case study

In this case study, it was evident that availability plays a critical role in determining the
system’s overall performance. Higher availability directly translates to better performance,
as system downtime leads to the rejection of incoming requests. This correlation between
availability and performance highlights the importance of ensuring a reliable and accessible
system for face recognition applications.

Moreover, the study emphasized the significance of performability analysis, which con-
siders both performance and availability metrics. By incorporating failures and repairs into
the analysis, performability models provide a comprehensive understanding of how sys-
tem behavior evolves over time. This holistic approach enables a more accurate estimation
of performance metrics under real-world scenarios, accounting for both expected system
operation and unexpected events.
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6.3 HIERARCHICAL MODELS

In these case studies, we established an integrated edge-fog-cloud continuum environment
to assess the hierarchical availability model. Specifically, we focused on evaluating the
availability of a smart traffic management system. This service was motivated by the in-
creasing prevalence of smart city initiatives worldwide, where efficient traffic management
plays a vital role. By examining the availability of such systems within the edge-fog-cloud
architecture, we aimed to gain insights into their availability characteristics.

6.3.1 Case Study I - Availability model validation

In this case study, we present the experimental setup conducted to assess the representa-
tion of our hierarchical availability model in a real-world environment. Our experimental
environment consisted of a webcam, a Raspberry Pi (edge node), and a personal com-
puter (fog node). The webcam, an IP Camera D-LINK H.264 DCS-931L, captured video
at a rate of 30 frames per second and a resolution of 720×480. The captured video was
transmitted to the edge node for initial preprocessing, and subsequently relayed to the fog
node, which further processed the data before forwarding it to the cloud infrastructure.
The edge node, a Raspberry Pi, was equipped with a 1 GHz single-core processor, two
threads, and 512 MB of RAM. The fog node utilized XenServer 7.2.0 as the hypervisor
platform, boasting 8 GB of RAM, 1 TB of storage, and an Intel Core i5 3.20 GHz quad-
core CPU with eight threads. Both the fog and edge nodes employed a Python script for
vehicle recognition, with the fog node additionally running an RTMP server (e.g., Ng-
inx) to receive the video stream from the edge node. To simulate our cloud environment,
we utilized a virtual machine (t4g.nano) on Amazon EC2, featuring 2 vCPUs and 0.5
GiB of RAM. The overall experimental setup is illustrated in Figure 30, depicting the
foundational configuration of our testbed environment.

Figure 30 – Testbed environment.

Edge Fog CloudDevices

Webcam Raspberry PC Amazon EC2

Source: Elaborated by the author.

We utilized the AlexNet model developed by Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton (KRIZHEVSKY; SUTSKEVER; HINTON, 2017) for our case studies. The
adoption of pre-trained models involved the use of the PyTorch framework to facilitate
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the process. Once the experimental environment was established, we conducted multiple
case studies by introducing failures through a Python script.

For our availability evaluation, we adopted the failure and repair rates mentioned
in prior works such as (NGUYEN; MIN; CHOI, 2020; LISBOA et al., 2018; DANTAS et al.,
2016; PEREIRA et al., 2021). These rates were derived from the assumption that the time
to failure and repair follow an exponential distribution, with the failure rate being the
inverse of the mean time to failure (MTTF), and the repair rate being the inverse of the
mean time to repair (MTTR). The specific values of MTTF and MTTR utilized in our
study are provided in Table 27.

To assess the availability of systems, fault injection is a commonly employed technique.
This approach is particularly useful as faults are often challenging to predict or may take
an extended period to occur (RUIZ et al., 2004; SOUZA et al., 2013; BRILHANTE et al., 2014;
JAMMAL et al., 2018). By employing fault injection, we can accelerate, control, and monitor
experiments during fault events (AGARWAL et al., 2020). The introduction of faults causes
modifications within the system, leading to erroneous states and potentially propagating
issues that impact the availability of provided services.

Table 27 – MTTF and MTTR from literature.

Env. Components MTTF (h) MTTR (h)

Edge

Camera 8760 1.67
Raspberry 4767.8 3.48
OS 2880 1
Python App 217.8 0.46
Nginx App 217.8 0.46

Fog

Gateway 70080 1.67
Hardware 8760 1.67
OS 2880 1
Cont. Management 2880 1
Python App 217.8 0.46
Nginx App 217.8 0.46

Cloud

Gateway 70080 1.67
Storage 43800 24
Hardware 70080 1.67
OS 2880 1
Cont. Management 2880 1
Python App 217.8 0.46
Nginx App 217.8 0.46

Source: Elaborated by the author based on Dantas et al. (2016).

For the establishment of a baseline infrastructure for a smart traffic management



109

system, we adopted a minimalistic approach by utilizing nodes with the bare minimum
components necessary to provide the desired service. The edge node’s essential components
encompass the camera, Raspberry Pi, operating system, a Python application for vehicle
recognition, and an Nginx RTMP server responsible for receiving the camera’s video
streaming. Distinct from the edge node, the fog node includes the addition of a gateway
and utilizes a personal computer as the hardware platform for the remaining components.
Additionally, the cloud node consists of storage, a gateway, and a virtual machine hosted
in Amazon EC2.

To ensure the validity of our models, it was imperative to subject the system to stress
and accelerate the mean time to failure (MTTF) of its components. To facilitate this,
we developed a fault injector capable of introducing faults into each component of our
baseline infrastructure. Once again, we made the assumption that the time to failure and
repair for each component follows an exponential distribution, allowing us to determine
the failure and repair rates as the reciprocals of the MTTF and mean time to repair
(MTTR), respectively (NGUYEN; MIN; CHOI, 2020; LISBOA et al., 2018; DANTAS et al.,
2016). By accelerating the MTTF, we increased its rate by a factor of 100 compared to
the literature values, effectively compressing one year into a mere 87.6 hours. The specific
values employed in the fault injector are outlined in Table 28. It is important to note that
the accelerated MTTF significantly reduces the system’s availability.

By employing the abstraction approach utilized in our Markov chain model, we are
able to identify two distinct components within the edge and fog computing environment,
namely the application and the physical node. The abstraction process was conducted us-
ing the Reliability Block Diagram (RBD) model, leveraging the Mercury tool (SILVA et al.,
2015; PINHEIRO et al., 2021). This approach effectively consolidates multiple components
into a single representative entity, simplifying the system representation and enabling the
application of analytical techniques based on Continuous-Time Markov Chain (CTMC)
analysis. To this end, the values provided in Table 28 were employed to derive the corre-
sponding values for the abstraction components, which can then be utilized as inputs in
the model. These mapped values for the abstraction components are presented in Table 29.

By combining the Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR)
values of serial components, we create an aggregated equivalent component that encapsu-
lates the unified representation of availability characteristics. This condensation procedure
significantly simplifies the modeling of individual components, enabling a more stream-
lined analysis of the entire system. By considering the combined availability behavior of
the condensed component, a comprehensive understanding of the system’s overall avail-
ability can be achieved.

This abstraction technique proves particularly advantageous when employing CTMC
analysis, as it allows for the system to be represented as a set of interconnected states
and transitions. The consolidation of multiple components into a single entity reduces
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Table 28 – MTTF and MTTR in the fault injector.

Env. Components MTTF (h) MTTR (h)

Edge

Camera 87.6 1.67
Raspberry 47.6 3.48
OS 28.8 1
Python App 2.17 0.46
Nginx App 2.17 0.46

Fog

Gateway 700.8 1.67
Hardware 87.6 1.67
OS 28.8 1
Cont. Management 28.8 1
Python App 2.17 0.46
Nginx App 2.17 0.46

Cloud

Gateway 700.8 1.67
Storage 438 24
Hardware 700.8 1.67
OS 28.8 1
Cont. Management 28.8 1
Python App 2.17 0.46
Nginx App 2.17 0.46

Source: Elaborated by the author.

the number of states within the CTMC model, thereby facilitating a more manageable
analysis process. As a result, analytical solutions, such as steady-state probabilities and
performance measures, can be derived, providing valuable insights into the system’s avail-
ability.

The deployment of our fault-injection environment is illustrated in Figure 31. To gen-
erate the workload, we utilized a webcam to capture images, which were subsequently
transmitted to our designated nodes, as previously described. Our fault injector, devel-
oped in Python, maintains a list of all components that will be subject to failure and
monitoring. For each component, a dedicated thread is created within the fault injector,
responsible for injecting the fault. The time to failure for each component follows an expo-
nential distribution, as specified in Table 28. Accordingly, the thread generates a random
number based on this distribution and awaits the appropriate moment to inject the fault.
Additionally, we have another thread that continuously monitors the system’s availability.
The monitoring thread records the status of the system as either 𝑈 (up) or 𝐷 (down) in
a text file, with sample intervals set at 10-second intervals.

Utilizing the depicted environment shown in Figure 31, we conducted an experiment on
the edge-fog-cloud system. The experiment extended for a duration of 96 hours, generating
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Table 29 – MTTF and MTTR for model.

Env. Components MTTF (h) MTTR (h)

Edge
Camera 87.60 1.67
Physical Node 17.95 1.98
Application 1.08 0.50

Fog
Gateway 700.80 1.67
Physical Node 21.67 1.18
Application 1.08 0.50

Cloud

Gateway 700.80 1.67
Storage 438 24
Physical Node 27.66 1.02
Application 1.08 0.50
Source: Elaborated by the author.

a text file containing multiple occurrences of system states denoted by 𝑈 (up) and 𝐷

(down). By quantifying the number of 𝑈 and 𝐷 instances, we were able to compute
the time to failure (TTF) and time to repair (TTR). For example, if we observed 50
consecutive 𝑈 states followed by a 𝐷 state, the cumulative uptime during that interval
would be calculated as 50 multiplied by the 10-second sample collection interval, resulting
in 500 seconds of uptime. The same principle applies to calculate the time to repair.
Thus, by converting the 𝑈 and 𝐷 states into TTFs and TTRs, we obtained a total of
approximately 113 sample points.

Upon completing the validation procedure outlined in Chapter 4, a comprehensive
data analysis was conducted, revealing the absence of a theoretical distribution suitable
for representing our sample distribution. Consequently, we resorted to employing the
Bootstrap technique, a resampling method used to estimate statistics by sampling datasets
with replacement (DEVORE, 2008), to calculate the availability confidence intervals for
both the fog and edge nodes.

By utilizing a statistical computer package, we generated 1000 bootstrap samples for
the system’s availability, resulting in 1000 availability means for each node. Consequently,
we derived the confidence interval by selecting the 25th smallest and 25th largest values
from these 1000 bootstrap samples. This signifies that, in the long run, if the experiment
were repeated numerous times, the availability of the baseline system would fall within
these calculated confidence intervals approximately 95% of the time.

Using the analytical and hierarchical models described in Section 5.3, along with the
component values outlined in Table 29, we obtained the availability values for the baseline
system. The point estimations of availability, along with their corresponding confidence
intervals, are summarized in Table 30, alongside the model results.

The presence of confidence intervals containing the estimation of the hierarchical model
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Figure 31 – Fault-injection environment.
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Source: Elaborated by the author.

Table 30 – Comparison of availability results.

Model Result System Measurement CI 95% of the system
0.2434 0.2312 0.1838 < 𝜃 < 0.2589

Source: Elaborated by the author.

for the edge-fog-cloud system implies that we cannot assert with certainty that our model
does not represent the real environment. Nevertheless, based on the observations, it is
reasonable to assume that our model serves as a reliable representation of the edge-fog-
cloud environment, thus confirming its validation. Consequently, we can now utilize the
hierarchical model to calculate the availability of the edge-fog-cloud system. This enables
us to formulate strategies aimed at attaining elevated levels of availability across various
scenarios.

6.3.2 Case Study II - Availability evaluation

In this case study, we employ the proposed hierarchical model to estimate the availability
of our baseline environment, specifically for a smart traffic management system as de-
scribed previously. To facilitate this evaluation, we utilize analytical models at the initial
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level of the hierarchy due to their inherent scalability advantages over alternative model-
ing techniques such as Reliability Block Diagrams and Stochastic Petri Nets, as previously
highlighted (JAIN, 1990). By leveraging analytical models at this foundational level, we
can efficiently assess numerous scenarios at a reduced computational cost. To support this
evaluation, we refer to literature values of Mean Time to Failure (MTTF) and Mean Time
to Repair (MTTR) for the components within the edge-fog-cloud environment, as outlined
in Table 27. These literature values serve as inputs within the Mercury tool (SILVA et al.,
2015) to derive the corresponding abstraction values, as presented in Table 31.

Table 31 – The abstraction MTTF and MTTR.

Env. Components MTTF (h) MTTR (h)

Edge
Camera 8760 1.67
Physical Node 1795.45 1.98
Application 108.89 0.5

Fog
Gateway 70080 1.67
Physical Node 2167.42 1.18
Application 108.89 0.5

Cloud

Gateway 70080 1.67
Storage 43800 24
Physical Node 2766.31 1.02
Application 108.89 0.5
Source: Elaborated by the author.

Considering the capabilities of our single edge, fog, and cloud physical nodes, which
can respectively run two, eight, and eight applications, we set the value of 𝐿 as two for
the edge environment and eight for the fog and cloud environments in our model. In
this initial evaluation, we do not incorporate redundancy, resulting in 𝑀 = 1 for all the
environments when applying Equation 5.12.

Utilizing our hierarchical model for evaluation, we obtained a total downtime of 134.05
hours for our baseline edge-fog-cloud system. This implies that over the course of a year,
the system would experience approximately 135 hours of downtime, resulting in an uptime
of 8631.76 hours. The calculated availability corresponds to 1.81 nines, as per Table 1. This
categorizes our baseline system as falling between the unmanaged and managed levels. In
practical scenarios, these results would be deemed unacceptable, particularly for a critical
application like a smart traffic management system, where the safety of many lives is at
stake. The summary of results for this evaluation is presented in Table 32.

In order to enhance the availability of the system, it is crucial to investigate the
critical components, those that exert the greatest influence on the system’s availability.
Conducting this investigation is essential to avoid indiscriminate redundancy implemen-
tation, which can be costly. Without proper analysis, redundancy might be applied to
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Table 32 – Results of the baseline environment.

Metric Values
Availability 0.9847
Unavailability 0.0153
# of 9’s 1.8155
Downtime (h) 134.05
Uptime (h) 8631.76

Source: Elaborated by the author.

non-critical components, leading to unnecessary expenses. Therefore, to enhance system
availability, a sensitivity analysis is performed, utilizing the percentage difference tech-
nique. This method allows us to identify the components that have the most substantial
impact on system availability.

The Sensitivity Index (SI), as given in Equation 2.28, is employed to establish a ranking
of the components based on their impact on system availability. The sensitivity analysis
was carried out using the values provided in Table 33, which includes the maximum and
minimum values for each system component. These extreme values were calculated based
on the baseline values specified in Table 31. Specifically, the maximum values are set to
be 50% higher than the baseline values, while the minimum values are set to be 50%
lower than the baseline values (MATOS et al., 2015). This analysis aids in identifying the
components with the greatest influence on system availability.

By utilizing the Mercury tool (SILVA et al., 2015), with the values provided in Table 28,
we are able to calculate the Sensitivity Index (SI). This index assists us in determining the
criticality of components concerning the availability of our system in the edge-fog-cloud
environment. The rank of component criticality based on the SI is presented in Table 34.

Based on our sensitivity analysis, the parameters that have the greatest impact on the
availability of our edge-fog-cloud environment are the MTTF (Mean Time to Failure) and
the MTTR (Mean Time to Repair) of the applications. This indicates that in order to
achieve higher availability values, it is necessary to focus on improving these parameters
within our system. Figures 32, 33, and 34 illustrate the behavior of system availability
as we vary the MTTF and MTTR of components in the edge-fog-cloud environment.
While some components have a minor impact on availability, there are others where the
MTTF and MTTR play a critical role. Enhancing these critical components is essential
for increasing system availability.

When considering methods for improving system availability, one commonly employed
approach is redundancy. Redundancy can be classified into three types: cold, warm, and
hot standby. The choice of redundancy type depends on the criticality of the process and
the consequences of equipment failures (MELO et al., 2018). Cold-standby redundancy is



115

Table 33 – Min. and Max. values for the Sensitivity Analysis.

Env. Parameter Min. (h) Max. (h)

Edge

Camera’s MTTF 4380.0 13140.0
Camera’s MTTR 0.83 2.50
Phy. Node’s MTTF 897.72 2693.17
Phy. Node’s MTTR 0.99 2.97
Application’s MTTF 54.44 163.33
Application’s MTTR 0.25 0.75

Fog

Gateway’s MTTF 35040.0 105120.0
Gateway’s MTTR 0.83 2.50
Phy. Node’s MTTF 1083.71 3251.13
Phy. Node’s MTTR 0.59 1.77
Application’s MTTF 54.44 163.33
Application’s MTTR 0.25 0.75

Cloud

Gateway’s MTTF 35040.0 105120.0
Gateway’s MTTR 0.83 2.50
Storage’s MTTF 21900.0 65700.0
Storage’s MTTR 12.0 36.0
Phy. Node’s MTTF 1383.15 4149.46
Phy. Node’s MTTR 0.51 1.53
Application’s MTTF 54.44 163.33
Application’s MTTR 0.25 0.75

Source: Elaborated by the author.

suitable for non-critical services where human intervention is acceptable, and time is not
of utmost importance. Warm-standby redundancy is implemented when timely response
to failures is important but not critical, allowing for temporary outages. In contrast,
hot-standby redundancy offers instantaneous process correction in the event of a failure,
prioritizing time and security, and ensuring uninterrupted operation.

Considering that our environment is dedicated to smart traffic management, where
the lives of many depend on its continuous functioning, it is imperative that the system
remains operational at all times. Therefore, we have opted for hot-standby redundancy.
By implementing hot-standby redundancy on the edge, fog, and cloud physical servers, we
were able to significantly reduce the system’s downtime to 7.36 hours. The achievement
of 3.07 nines in the system’s availability rating indicates that it has transitioned from an
unmanaged state to a well-managed one. Thus, the addition of a new physical node to
each paradigm has transformed the system into a well-managed one. The results of this
improvement are summarized in Table 35.
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Table 34 – Sensitivity Index ranking.

Parameter SI
(Edge) Application’s MTTF 5.82×10−3

(Cloud) Application’s MTTF 5.81×10−3

(Fog) Application’s MTTF 5.80×10−3

(Cloud) Application’s MTTR 4.05×10−3

(Fog) Application’s MTTR 4.04×10−3

(Edge) Application’s MTTR 4.03×10−3

(Edge) Phy. Node’s MTTF 1.40×10−3

(Edge) Phy. Node’s MTTR 9.78×10−4

(Cloud) Storage’s MTTF 7.29×10−4

(Fog) Phy. Node’s MTTF 7.25×10−4

(Cloud) Storage’s MTTR 5.47×10−4

(Fog) Phy. Node’s MTTR 4.83×10−4

(Cloud) Phy. Node’s MTTF 4.71×10−4

(Cloud) Phy. Node’s MTTR 3.68×10−4

(Edge) Camera’s MTTF 2.43×10−4

(Edge) Camera’s MTTR 1.90×10−4

(Cloud) Gateway’s MTTF 3.05×10−5

(Fog) Gateway’s MTTF 3.04×10−5

(Fog) Gateway’s MTTR 2.38×10−5

(Cloud) Gateway’s MTTR 2.37×10−5

Source: Elaborated by the author.

Table 35 – Results of the hot-standby redundancy.

Metric Values
Availability 0.9991
Unavailability 0.0009
# of 9’s 3.0755
Downtime (h) 7.36
Uptime (h) 8758.44

Source: Elaborated by the author.

6.3.3 Insights from the case study

Through the case study conducted on availability using a hierarchical model in the con-
text of smart traffic management, we were able to note that the baseline edge-fog-cloud
system exhibited a moderate level of availability, falling between the unmanaged and
managed categories. This indicated the need for improvements to ensure a more robust
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Figure 32 – Sensitivity analysis of edge computing paradigm.

(a) MTTF of Camera. (b) MTTR of Camera. (c) MTTF of Physical Node.

(d) MTTR of Physical Node. (e) MTTF of Application. (f) MTTR of Application.

Source: Elaborated by the author.

and reliable system. Sensitivity analysis allowed for the identification of the most critical
components influencing the system’s availability, highlighting the importance of focusing
on enhancing the MTTF and MTTR of the applications. By implementing hot-standby
redundancy, significant improvements were achieved, reducing the system’s downtime and
elevating its availability to a well-managed level. This study emphasized the significance
of redundancy as a mechanism for enhancing system availability and showcased the po-
tential for transforming an initially unmanaged system into a highly reliable and resilient
one.
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Figure 33 – Sensitivity analysis of fog computing paradigm.

(a) MTTF of Gateway. (b) MTTR of Gateway. (c) MTTF of Physical Node.

(d) MTTR of Physical Node. (e) MTTF of Application. (f) MTTR of Application.

Source: Elaborated by the author.
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Figure 34 – Sensitivity analysis of cloud computing paradigm.

(a) MTTF of Gateway. (b) MTTR of Gateway. (c) MTTF of Storage.

(d) MTTR of Storage. (e) MTTF of Physical Node. (f) MTTR of Physical Node.

(g) MTTF of Application. (h) MTTR of Application.

Source: Elaborated by the author.
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6.4 HIERARCHICAL AVAILABILITY MODELS WITH FAULT COVERAGE PROBABILITY

In this section, we extend our evaluation to include a hierarchical model with fault cov-
erage probability. We apply this model to analyze a smart building monitoring service,
expanding our scope of study. As with previous case studies, we begin by validating the
model’s accuracy before proceeding to utilize it for service capacity planning purposes.
By incorporating fault coverage probability into our hierarchical model, we aim to assess
the system’s reliability and capacity to effectively monitor and manage a smart building
environment.

6.4.1 Case study I - Availability model validation

To ensure the reliability and accuracy of our proposed model, it is essential to validate
its performance against real-world data. In this section, we compare the results obtained
from our model with the data collected from the baseline service, as described in Sec-
tion 4. By evaluating the consistency between the model’s outputs and the experimental
environment, we can assess the model’s ability to accurately represent the system’s be-
havior. To perform this validation, we consider the failure and repair rates described in
(NGUYEN; MIN; CHOI, 2020; LISBOA et al., 2018; DANTAS et al., 2016), assuming an expo-
nential distribution for these rates. Table 36 presents the specific values of Mean Time to
Failure (MTTF) and Mean Time to Repair (MTTR) that were utilized for validating our
proposed model.

Table 36 – MTTF and MTTR from literature.

Env. Components MTTF (h) MTTR (h)
Sensors Hardware 4767.8 3.48

Edge
Raspberry 4767.8 3.48
OS 2880 1
Python App 217.8 0.46

Fog
Hardware 8760 1.67
OS 2880 1
Python App 217.8 0.46

Source: Elaborated by the author based on Dantas et al. (2016).

During the validation phase of our proposal, it was necessary to accelerate the occur-
rence of failures in the system in order to accurately measure the availability. To achieve
this, we employed a fault-injector mechanism (SOUZA et al., 2013; BRILHANTE et al., 2014;
JAMMAL et al., 2018), which allowed us to simulate and control the occurrence of faults in
a controlled manner.
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For the purpose of validation, we designed a baseline service with a minimal set of
components. The edge node consisted of a Raspberry Pi running the Raspberry Pi OS,
along with an application responsible for analyzing sensor data. Similarly, the fog node
was comprised of a personal computer running a Linux operating system, accompanied
by an application specific to its functionality.

In order to validate our model effectively, we accelerated the Mean Time to Failure
(MTTF) by a factor of 100 compared to the values reported in the literature. Conse-
quently, within our experiment, the duration of one year corresponded to approximately
87.6 hours. Table 37 provides a comprehensive overview of the values employed during
the validation process.

Table 37 – MTTF and MTTR in the fault injector.

Env. Components MTTF (h) MTTR (h)
Sensors Hardware 47.6 3.48

Edge
Raspberry 47.6 3.48
OS 28.8 1
Python App 2.17 0.46

Fog
Hardware 87.6 1.67
OS 28.8 1
Python App 2.17 0.46

Source: Elaborated by the author.

The values corresponding to each component are presented in Table 37. The abstrac-
tion form of the values is displayed in Table 38 are obtained by the abstraction process
conducted using the Reliability Block Diagram (RBD) model, leveraging the Mercury tool
(SILVA et al., 2015; PINHEIRO et al., 2021)

Table 38 – MTTF and MTTR for the model.

Env. Components MTTF (h) MTTR (h)
Sensors Hardware 47.6 3.48

Edge
Physical Node 17.95 1.98
Application 2.17 0.46

Fog
Physical Node 21.67 1.18
Application 2.17 0.46

Source: Elaborated by the author.

The validation environment is illustrated in Figure 35. To simulate failures, our fault
injector generates random numbers following an exponential distribution, utilizing the
values provided in Table 37. The fault injector then injects failures based on these gener-
ated numbers. Additionally, the fault injector continuously monitors the system’s status,
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Figure 35 – Fault-injection environment.

Sensors Edge Fog

Fault Injector
Source: Elaborated by the author.

checking if it is operational or experiencing downtime. The monitoring process occurs at
intervals of 10 seconds.

We conducted a thorough evaluation over a period of 100 hours, collecting multiple
samples that indicated the system’s operational and downtime states. These samples
enabled us to estimate the time to failure (TTF) and time to repair (TTR) for our
baseline service.

Upon analyzing the TTF and TTR data, we observed that it does not follow a nor-
mal distribution, and the sample size is relatively small. Consequently, we employed the
Bootstrap technique to calculate the confidence interval for availability (DEVORE, 2008).
The results obtained through the Bootstrap method are presented in Table 39.

Table 39 – Comparison of availability results.

Model Real System CI 95% of the system
0.2169 0.2014 0.1802 < 𝜃 < 0.2226

Source: Elaborated by the author.

The confidence intervals presented in Table 39 encompass the availability estimations
derived from the hierarchical model. This indicates that our model demonstrates a com-
parable behavior to the baseline service. With this validation, we can proceed to design
infrastructures that aim to achieve higher levels of availability in our smart building mon-
itoring system.
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6.4.2 Case study II - Availability evaluation

We will now utilize our hierarchical model to assess the availability of our experimental
system, as outlined in Section 4. To accomplish this, we employed the Mercury tool (SILVA

et al., 2015; PINHEIRO et al., 2021) to calculate the corresponding abstraction values based
on the literature. The abstraction values are presented in Table 40.

Table 40 – The abstraction MTTF and MTTR.

Env. Components MTTF (h) MTTR (h)
Sensors Hardware 4767.8 3.48

Edge Physical Node 1795.45 1.98
Application 217.8 0.46

Fog Physical Node 2167.42 1.18
Application 217.8 0.46

Source: Elaborated by the author.

Assuming that 𝐿 is equal to one for both the edge and fog components, and consid-
ering the absence of redundancy, the value of 𝑀 in Equation 5.24 is also set to one. By
applying our hierarchical model to calculate the availability, we obtained a downtime of
70.86 hours in a year, resulting in 8689.13 hours of uptime. The corresponding number of
nines is calculated to be 2.2120, indicating that our service falls between the unmanaged
and managed categories. However, this level of availability is deemed inadequate for a
smart building monitoring system, given the significant reliance on it to safeguard lives.
A summary of the evaluation results is provided in Table 41.

Table 41 – Results of the baseline environment.

Metric Values
Availability 0.9919
Unavailability 0.0080
# of 9’s 2.2120
Downtime (h) 70.86
Uptime (h) 8689.13

Source: Elaborated by the author.

Hence, it is imperative to enhance the availability of our system to ensure its suit-
ability for a smart building monitoring system. One well-established approach to achieve
this goal is through redundancy. Redundancy encompasses three types: cold, warm, and
hot standby, each catering to different service requirements (TRIVEDI et al., 1996). Cold-
standby redundancy is typically employed for non-critical services, where human inter-
vention is permissible and time is of lesser importance. Warm-standby redundancy, on the
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other hand, serves to address failures promptly, although the service itself is not deemed
essential. In contrast, hot-standby redundancy is employed when time and security take
precedence, mandating uninterrupted system operation.

Considering the criticality of our scenario, where the system must remain operational
due to its impact on lives, we have opted for hot-standby redundancy. By implementing
this mechanism and solely applying hot-standby redundancy to the edge and fog nodes,
we have successfully reduced the system’s downtime to 39.46 hours. This corresponds
to an availability achievement of 2.7973 nines, indicating that the system is managed.
Consequently, by incorporating an additional physical node in each paradigm, we have
effectively transformed an unmanaged system into a managed one. A comprehensive sum-
mary of the evaluation outcomes is presented in Table 42.

Table 42 – Results of the hot-standby redundancy.

Metric Values
Availability 0.9954
Unavailability 0.0045
# of 9’s 2.7973
Downtime (h) 39.46
Uptime (h) 8720.53

Source: Elaborated by the author.

6.4.3 Case study III - Fault coverage probability

In this particular case study, we examine the impact of fault coverage probability values
on the availability of sensors. Our analysis focuses on a building floor scenario, where
we explore variations in the number of sensors and the corresponding fault coverage
probabilities. The number of sensors under consideration ranges from 5 to 50, while the
fault coverage probability varies from 0.5 to 0.99. To provide a comprehensive overview
of these evaluation parameters, Table 43 presents a summary of their values.

Table 43 – Evaluation parameters variation.

Metric Range
Number of Sensors from 5 to 50
Coverage Failure from 0.5 to 0.99

Source: Elaborated by the author.

In this particular case study, we consider a scenario without redundancy, assuming
that all sensors are actively utilized. The outcomes of our analysis, as illustrated in Fig-
ure 36, provide valuable insights into the relationship between fault coverage probabil-
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Figure 36 – Fault Coverage Probability Analysis.
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ity and availability. The results clearly demonstrate that the fault coverage probability
significantly impacts availability. Specifically, a lower coverage probability results in a
prolonged replacement time for faulty sensors. Additionally, the number of sensors has a
direct influence on availability. This correlation arises from the fact that as the number of
sensors increases, the probability of encountering a faulty sensor also increases (TRIVEDI;

SATHAYE; RAMANI, ).

6.4.4 Insights from the case study

Through the case study on availability using a hierarchical model with coverage probabil-
ity in the smart building context, we could observe that fault coverage probability plays
a crucial role in determining the availability of sensors in a smart building. A higher fault
coverage probability translates to a shorter time required to replace faulty sensors, thereby
improving availability. On the other hand, a lower fault coverage probability results in
lengthier replacement times, impacting availability. Additionally, the study highlighted
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the significance of the number of sensors in relation to availability. Increasing the number
of sensors increases the likelihood of encountering faulty sensors, which can negatively
affect availability. These findings underscore the importance of optimizing fault coverage
probability and carefully considering the number of sensors to ensure optimal availability
in smart building systems.

6.5 FINAL REMARKS

In this chapter, we explored the use of analytical models to analyze and improve the
availability of face recognition systems. By employing availability analytical models, we
were able to estimate the downtime and uptime of the system, allowing us to assess its re-
liability and identify potential areas for improvement. Through this case study, we gained
a deeper understanding of how availability affects the performance of face recognition
systems and the importance of ensuring high availability in such critical applications.

Additionally, we extended our analysis to the performability of face recognition sys-
tems, considering both availability and performance metrics. This comprehensive evalua-
tion allowed us to assess the system’s overall capability to deliver reliable and efficient face
recognition services. The results obtained from this study can guide system designers and
operators in making informed decisions to enhance the performability of face recognition
systems.

Moving beyond face recognition, we applied hierarchical models to evaluate the avail-
ability of systems in different contexts. In the smart traffic management context, the
hierarchical models enabled us to estimate the availability of edge, fog, and cloud en-
vironments. By considering the impact of different components and their failure and
repair rates, we were able to identify critical components that significantly influenced the
availability of the system. Furthermore, the analysis revealed the potential benefits of
implementing redundancy to improve availability in smart traffic management systems.

In the smart building context, we explored the use of hierarchical models with coverage
probability to assess the availability of sensors. By varying the number of sensors and fault
coverage probabilities, we investigated their impact on system availability. The results
demonstrated that the fault coverage probability and the number of sensors are crucial
factors in determining the availability of smart building systems. These findings highlight
the need to optimize fault coverage probabilities and carefully consider the number of
sensors to ensure optimal availability in smart building environments.

This chapter highlights the significance and efficacy of our analytical models in the
assessment and evaluation of edge, fog, and cloud computing environments. The utilization
of these models enables the development of improved infrastructures and cost-effective
systems. By leveraging our models, stakeholders can make informed decisions and optimize
their resources to create efficient and economically viable computing setups.
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7 CONCLUSIONS AND FUTURE WORK

Numerous IT companies worldwide are actively developing Internet of Things (IoT) solu-
tions for various applications (STATISTA, 2022). While cloud computing has been widely
adopted by many companies, certain IoT solutions are sensitive to latency, requiring data
processing within defined time intervals to avoid system failure. To address this latency
issue, two emerging paradigms, namely edge and fog computing, have been introduced.
Although these paradigms mitigate latency concerns, the cloud still offers superior avail-
ability and performance, emphasizing the need for further research on availability and
performance in these contexts.

Furthermore, this thesis has yielded significant positive outcomes in the examined do-
mains, with notable contributions in the form of models to enhance and evaluate availabil-
ity and performability. The case studies conducted have demonstrated the effectiveness of
our proposed models in evaluating diverse scenarios, enabling improved capacity planning
and mitigating financial losses. These models can be employed to assess various infras-
tructures implemented within the edge-fog-cloud continuum, thereby directly impacting
the quality of service (QoS) metrics and reducing the likelihood of QoS violations.

7.1 CONTRIBUTIONS

This thesis introduces analytical and hierarchical models for evaluating the availability
and performability of applications within the edge-fog-cloud continuum. The proposed
models aim to assist engineers in capacity planning and minimizing financial losses. The
models utilize formalisms such as Markov chains, fault trees, and reliability block di-
agrams. Markov chains are employed to develop closed-form equations that assess the
availability and performability of individual components. The fault tree formalism repre-
sents the interoperation between the edge, fog, and cloud paradigms.

Furthermore, an investigation was conducted to analyze how availability impacts the
performance of edge, fog, and cloud environments, referred to as performability. Sensitivity
analysis was employed to identify the most critical elements in the system. Performability
plays a crucial role as it provides insight into the probability of performance metric be-
havior, considering system operation over an expected period while accounting for failures
and repairs (MACIEL et al., 2012). Additionally, a capacity-oriented availability model was
proposed to measure system availability based on average resource capacity. A cost evalu-
ation was performed to compare the performance and availability costs among edge, fog,
and cloud nodes. The study also presents key research studies and concepts concerning
the availability and performability of cloud, fog, and edge computing environments.

In summary, this work makes several significant contributions:
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• The development of analytical availability and performability models specifically
designed for infrastructure planning in edge and fog environments. These models
provide valuable insights for engineers in optimizing resource allocation and mini-
mizing financial losses.

• The proposal of hierarchical models that enable the evaluation of the entire edge-
fog-cloud continuum. These models offer a comprehensive approach to assess the
availability and performability of complex computing environments, taking into ac-
count the interdependencies between different layers.

• The introduction of hierarchical models with fault coverage probability, which are
particularly relevant for environments where failures may not be immediately de-
tected. These models provide a more accurate representation of the system’s behav-
ior and enhance the evaluation of availability.

• An investigation into the impact of availability on the performance of edge and
fog environments. This analysis sheds light on the relationship between these two
crucial factors and offers insights for optimizing system design and operations.

Additionally, this work includes an analytical capacity-oriented availability model for
efficient service provisioning in edge and fog nodes. A comprehensive cost evaluation is
conducted, comparing the performance and availability costs across edge, fog, and cloud
computing. Furthermore, a thorough comparison of existing works related to availability
and performance assessment in edge, fog, and cloud computing is presented, highlighting
the utilization of analytical and simulation-based models. Finally, the work provides a
detailed differentiation between edge and fog computing, delving into the distinct char-
acteristics and intertwined nature of these two paradigms.

7.2 SUMMARY OF RESULTS AND CONSTRAINTS

We have organized our case studies into four distinct sections to address various aspects
of availability and performance evaluation. In Section 6.1, our focus was on analytical
availability models applied to edge and fog nodes in a security face recognition system.
Through these case studies, we successfully transformed the system from a well-managed
state to a high-availability state. Moreover, we conducted a cost analysis that compared
the cost-benefit aspects of using edge and fog nodes, providing valuable insights for in-
frastructure capacity planning.

In Section 6.2, our case studies explored the relationship between availability and
system performance. By contrasting the results obtained from performability models with
those from pure performance models, we demonstrated the importance of considering
availability in performance evaluations. The outcomes of these case studies showcased
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improvements in infrastructure performance by taking availability into account, thereby
providing a more realistic assessment.

Section 6.3 introduced hierarchical models specifically designed to support a smart
traffic management application. Apart from evaluating availability, we conducted a sensi-
tivity analysis to identify the most critical components impacting availability. This anal-
ysis aids in more informed capacity planning decisions by highlighting the key elements
influencing system availability.

In Section 6.4, we extended our hierarchical model to incorporate the evaluation of
fault coverage probability in sensor networks. Through this expansion, we achieved sig-
nificant improvements in system availability. These case studies demonstrated the effec-
tiveness of our models in enhancing availability outcomes.

However, it is important to acknowledge the limitations of our work. We did not
consider the impact of storage mechanisms on the performance and availability of our
environments, which is a relevant aspect to explore in future studies. Additionally, our
analysis did not encompass modeling techniques such as Stochastic Petri Nets, which
offer more detailed representations of the environments. Furthermore, we did not address
sensitivity analysis techniques like Regression, Correlation, and Perturbation Analysis in
this study, leaving room for future exploration of these valuable methods.

7.3 FUTURE WORK

In Section 6.2, we focused on a steady workload for our evaluations. However, as part
of future work, we aim to explore different workloads to gain a deeper understanding
of the system’s behavior under varying conditions. Additionally, we plan to incorporate
machine learning techniques along with statistical methods to predict how the system
will perform when availability and performance parameters are modified. Furthermore, we
envision extending our research to include sensitivity analysis approaches that encompass
alternative modeling formalisms and explore diverse compositions for sensitivity indices.
Another intriguing avenue for future work is the development of a capacity planning tool,
allowing users to input specific parameters and obtain results in the form of tables and
charts, aiding in efficient resource allocation and decision-making processes.
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