
UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

A Time Petri Net-based Methodology for
Embedded Hard Real-Time Software

Synthesis

by

Raimundo da Silva Barreto

PhD Thesis

Recife

April 29th, 2005

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Raimundo da Silva Barreto

A Time Petri Net-based Methodology for
Embedded Hard Real-Time Software

Synthesis

A thesis submitted to the Centro de

Informática of Universidade Federal de

Pernambuco in partial fulfillment of

requirements for the degree of Doctor

of Philosofy.

Advisor: Paulo Romero Martins Maciel

Recife

April 29th, 2005

Then Samuel took a stone,

and put it up between Mizpah and Jeshanah,

naming it Ebenezer, and saying,

Up to now the Lord has been our help.

I Samuel 7:12.

i

This thesis is dedicated to

my mother,

my wife, and

my three children.

ii

Acknowledgments

Whatever you do, work at it with all your heart, as working for the Lord, not for men.

Colossians 3:23

This journey, which is pleased and difficult at the same time, has not been a solitary one.

First of all, I would like to acknowledge that my ability and patience to complete this work

comes from God. He has blessed me with the intellectual ability, the yearning for knowledge,

and the environments to allow those to grow. It is for Him that I work and live.

Many thanks to my wife Lu. Thanks to her unconditional love. She has stood me and

encouraged me throughout this process. Thanks also for patiently listening to me about this

thesis, even when she did not understand a thing what I said. Without her love, care, and

encouragement, I could not be where I am today. I am very grateful to my three children,

Lucas, Elizanne and Jessica. Many thanks to all my family, in particular, my mother, father

(in memoriam), and my sister Maria, for their part in my education. They have always done

what they could to encourage and support my desire to learn more and more.

Many thanks to my advisor professor Paulo Maciel. I could not have completed this thesis

without the support, encouragement, friendship, and tireless efforts of him. He believed in

the project, even when did not exist any possibility of good results. Certainly, he helped me

focus on the light at the end of the tunnel.

For their contributions and service as committee members, I thank Paulo Cunha, Nelson

Rosa, Ricardo Massa, Siang Wun Song, and Antonio Otávio Fernandes. I also wish to thank

professor Sergio Cavalcante for his support in the beginning of this research.

It has been very pleased to work with the ALUPA (informal name of our research group).

Thanks to all of you. Each one was very encouraging about my work. A special thanks

to Eduardo Tavares who helped me with several implementations; to Meuse who helped

me with case studies; Maŕılia for implementing the translator from specification to time

Petri net model; and Adilson and Gabriel for implementing part of the tools in the EZPetri

environment. I could not forget to thank Sergio Murilo, a person who, in the beginning of

this research, was the first to constantly encourage me for writing papers.

Thanks to several colleagues I made at CIn/UFPE. In order to not forget any name, feel

acknowledged all who read this thesis. Thanks to all professors and staff in the center for

informatics. Thanks for the partial financial support provided by CAPES.

On a more personal level, there are several people that deserve acknowledgment. Thanks

to several friends (outside the University) I made during my stay in Recife, mainly the

members of the Presbyterian Church in San Martin, which is a very pleasant church. Thanks

to all of you. I certainly learn a lot with you. Many thanks to Rev. Gilberto Barbosa Silva

and his wife Ana Lucia, by your friendship and affection. Thanks to Rev. Silvandro and his

iii

wife Helenilda, the first Pastor we had in Recife. Many thanks to Rev. Edmilson Marinho,

his wife Ilza, and their children Priscila and Gabriel, for their support and friendship.

iv

Abstract

The problem to be addressed in this thesis is expressed in the following question:

can a specification be translated into a computer program, in such a way that it executes

in a group of processors with all specified constraints satisfied?

This work considers embedded hard real-time systems development methodologies,

more specifically, the software generation phase. Regarding real-time systems, the

correct behavior depends not only on the integrity of the results, but also the time in

which such results are produced. In hard real-time systems, if timing constraints are

not met, the consequences can be disastrous, including great damage of resources or

even loss of human lives.

Nowadays, the human life has become more and more dependent of embedded sys-

tems. This includes not only critical systems, such as automotive, railway, aircraft,

spaceships and medical devices, but also, household appliances, network printers, au-

tomatic teller machines, cellular telephones, among others. Due to this great diversity

of applications, the design of embedded systems can be subject to several kinds of dif-

ferent constraints, including timing, size, weight, energy consumption, reliability, and

cost. An alternative to treat with such problem is the adoption of formal methods.

Such methods are important mechanisms for the analysis and verification of properties,

as well as, facilitate system validation. However, for the effective use of formalisms,

the availability of automatic tools for attending the designer is an important issue and

needs to be considered.

In this thesis, the software synthesis takes a specification (composed of concur-

rent and communicating tasks) and automatically generates a program source code

considering: (i) functionalities and constraints; and (ii) operational support for task’s

execution. Usually, complex systems adopt a general-purpose operating system to sup-

port the software execution. However, this solution is excessively general and may

introduce delays in the execution time. Moreover, it produces a higher rate of memory

usage. The software synthesis is a design alternative for these drawbacks. This method

automatically generates the program source code, satisfying the desired functionality,

the specified constraints, the runtime support, and the minimization of both delays

and memory consumption.

The embedded software synthesis has been receiving much attention. However, few

works treat with software synthesis for hard real-time systems considering arbitrary

precedence and exclusion relations. Code generation for meeting all timing and resource

constraints is not a trivial task. Thus, this research area has several open issues, mainly

related to generation of predictable-guaranteed scheduled code.

v

The main aim of this work is to propose a methodology and support tools to

translate a higher layer specification into a predictable program source code, such that,

timing constraints, energy, and resource access constraints are satisfied. The specific

objectives are: (i) to introduce a specification model that captures the information

of each task in the system, as well as the relations between tasks; (ii) to model the

specification using a formal model based on time Petri net; (iii) to provide a scheduling

mechanism for guaranteeing that timing and energy constraints, and precedence and

exclusion relations are satisfied; and (iv) to develop a method for code generation that

tackles specified constraints and maintain certain properties of interest, such as, mutual

exclusive access to resources, and deadlock and starvation-freedom.

vi

Contents

1 Introduction 1

1.1 Context . 3

1.2 Problem Description . 3

1.3 Motivation . 4

1.4 Objectives . 5

1.5 Proposed Method . 6

1.6 Contributions . 9

1.7 Outline . 10

2 Background 12

2.1 Formal Models . 12

2.1.1 Model Taxonomy . 12

2.1.2 Representative Models . 13

2.2 Embedded Systems . 26

2.2.1 Overview . 26

2.2.2 Design Representations . 27

2.2.3 Design of Embedded Systems 28

2.2.4 Embedded Software . 34

2.3 Real-Time Systems . 38

2.3.1 Timing Constraints . 38

2.3.2 Classes of Real-Time Systems 39

2.3.3 Periodicity of Tasks Execution 39

2.3.4 Characteristics of Real-Time Systems 40

2.3.5 Specification and Verification of Real-Time Systems 41

2.4 Scheduling . 41

2.4.1 Scheduling Complexity . 42

2.4.2 Methods for Scheduling . 42

2.4.3 Runtime versus Pre-runtime Scheduling 47

vii

2.5 Summary . 48

3 Related Works 50

3.1 Pre-runtime Scheduling . 50

3.2 Integration Between Runtime and Pre-runtime Scheduling 53

3.2.1 Operational Mode Changes . 53

3.2.2 Hybrid Scheduling . 55

3.3 Petri Nets in the Scheduling Theory . 57

3.4 Code Generation . 58

3.5 Summary . 62

4 Petri Nets 64

4.1 Introduction . 64

4.1.1 Transition Enabling and Firing 67

4.1.2 Elementary Nets . 68

4.1.3 Petri Net Subclasses . 70

4.2 Modeling with Petri Nets . 71

4.2.1 Parallel Processes . 72

4.2.2 Mutual Exclusion . 72

4.2.3 Dataflow Computation . 72

4.2.4 Pipelined Systems . 73

4.2.5 Communication Protocols . 74

4.2.6 Producer-Consumer . 75

4.3 Time Extensions . 75

4.3.1 Time Petri Nets . 76

4.3.2 Timed Petri Nets . 77

4.3.3 Stochastic Petri Nets . 77

4.4 Properties Analysis . 79

4.4.1 Behavioral Properties . 79

4.4.2 Structural Properties . 82

4.4.3 Analysis Methods . 83

4.5 Petri Net Synthesis . 89

4.5.1 Bottom-up Synthesis . 90

4.5.2 Top-down Synthesis . 91

4.5.3 Hybrid Synthesis . 91

4.6 Summary . 92

viii

5 Modeling Embedded Hard Real-Time Systems 93

5.1 Proposed Formal Model . 94

5.1.1 Computational Model for Timing Constraints 94

5.1.2 Computational Model for Timing and Energy Consumption . . 99

5.2 Specification Model . 101

5.2.1 Constraints Specification . 101

5.2.2 Behavioral Specification . 106

5.2.3 Specification Example . 107

5.3 Modeling the Specification . 107

5.3.1 Scheduling Period . 110

5.3.2 Net Composition Operators . 111

5.3.3 Modeling of Tasks . 118

5.3.4 Inter-task Relations Modeling 134

5.3.5 Modeling Inter-processor Communication 137

5.3.6 Modeling Dispatcher Overheads 140

5.4 Analysis and Verification of the Model 145

5.4.1 Qualitative Analysis . 146

5.4.2 Modeling Verification by Model Checking 148

5.5 Summary . 151

6 Software Synthesis 153

6.1 Scheduling Synthesis . 153

6.1.1 Minimizing State Space Size . 154

6.1.2 Pre-Runtime Scheduling Algorithm 157

6.1.3 Application of the Algorithm 158

6.2 Scheduled Code Generator Framework 160

6.2.1 Scheduled Code Generation . 161

6.2.2 Scheduled Code Generation with Multiple Modes 165

6.3 Summary . 167

7 Tools 170

7.1 EZPetri Environment . 170

7.2 Specification Editor . 171

7.3 Automatic Model Generation . 173

7.4 Schedule Generator . 174

7.5 Timing Diagram and Energy Chart . 176

7.6 Code Generator Engine . 176

ix

7.7 Summary . 178

8 Experiments 180

8.1 Simple Control Application . 183

8.2 Pulse Oximeter . 186

8.3 Heated-Humidifier . 188

8.4 Pulse Oximeter with Multiple Modes 193

8.5 Summary . 194

9 Conclusions 197

9.1 Contributions . 198

9.2 Limitations . 200

9.3 Future Works . 201

9.4 Closing Remarks . 203

A Model Checking 214

A.1 Challenge . 214

A.2 Model Checking . 215

A.3 A Simple System Model . 216

A.4 Paths and Specifications . 218

A.5 Model Checking in Practice . 221

B Model Checking Verification Steps 222

B.1 Mutual Exclusive Marking . 222

B.2 Processor Utilization . 224

B.3 Precedence Relation . 226

B.4 Exclusion Relation . 228

x

List of Figures

1.1 Project Overview . 2

1.2 Proposed Software Synthesis Methodology Phases 7

2.1 An Example of State Transition Diagram 14

2.2 Mearly Automata for an Elevator Controller 17

2.3 Moore Automata for an Elevator Controller 18

2.4 FSMD Model for an Elevator Controller 19

2.5 Statecharts: Hierarchical Concurrent States 20

2.6 Petri Net Example . 21

2.7 An Example of Program-State Machine 22

2.8 DRINKS state machine . 25

2.9 Composition CONVERSE-ITCH . 25

2.10 Main Phases of a Hardware-Software Codesign Methodology 29

2.11 Comparison between runtime and pre-runtime scheduling 49

3.1 Pre-scheduling Framework . 56

3.2 Pre-schedule and Online Generator . 57

4.1 Petri net. (a) Mathematical formalism; (b) Graphical representation

before firing of t1; (c) Graphical representation after firing of t1 67

4.2 Source and sink transition before and after the firing 67

4.3 Elementary Structures . 68

4.4 Confusions. (a) symmetric confusion; (b) asymmetric confusion 69

4.5 Five fundamental Petri net subclasses 71

4.6 Transitions T1 and T2 represents parallel activities 72

4.7 Mutual Exclusion . 73

4.8 Dataflow Computation . 73

4.9 Pipeline of two stages . 74

4.10 Communication Protocols . 74

4.11 Producer/Consumer . 75

xi

4.12 A Simple Petri net . 86

4.13 A net for illustrating traps and siphons 88

4.14 Six transformations preserving properties 89

4.15 An example of 1-way merge . 91

5.1 A Simple Example of Time Petri Net: (a) initial marking; (b) new

marking after firing if t0 . 95

5.2 Translation from Sporadic to Periodic Task 105

5.3 Specification Behavior . 109

5.4 Communication Pattern . 110

5.5 A Simple Example of Place Merging 112

5.6 An Example of Place Merging: (a) Before Place Merging; (b) After Place

Merging . 114

5.7 Place Refinement . 115

5.8 Building Block Arrival . 120

5.9 Building Block Arrival for Task T0 . 121

5.10 Building Block Preemptive Task Structure 122

5.11 Building Block Preemptive Task Structure for T0 123

5.12 Building Block Non-Preemptive Task Structure 124

5.13 Building Block Non-Preemptive Task Structure for Task T0 125

5.14 Building Block Deadline Checking . 125

5.15 Building Block Deadline Checking for Task T0 126

5.16 Building Block Send . 127

5.17 Modeling of Resources: (a) Processor; (b) Bus 128

5.18 Building Block Fork . 129

5.19 Building Block Fork for Task Set in Table 5.4 130

5.20 Building Block Join . 130

5.21 Building Block Join for Task Set in Table 5.4 131

5.22 Complete Model for Task T0 . 133

5.23 Complete Model for T0 and T1 Non-preemptive Tasks 134

5.24 Complete Model for T0 and T1 Preemptive Tasks 135

5.25 Precedence Relation Model for tasks T1 and T2 136

5.26 Exclusion Relation Model for Preemptive Tasks T0 and T2 137

5.27 Modeling of the Sending Task from τi to τk 139

5.28 Modeling of the Receiving Task . 140

5.29 Modeling the Second Message from τi to τk 140

5.30 Communication Graph . 141

xii

5.31 A Simple Example of Inter-processor Communication 142

5.32 Building Block Dispatcher Overhead 143

5.33 Tasks T0 and T1 modeled with dispatcher overhead 145

5.34 Model for Verifying Mutual Exclusive Marking 147

5.35 Model for Verifying Precedence Relation 150

5.36 Model for Verifying Exclusion Relation 150

6.1 Standard semantics of timed systems: (a) diamond property; (b) a time

Petri net model; (c) a reachability tree 156

6.2 Scheduling Synthesis Algorithm (Timing and Energy Constraints) . . . 157

6.3 TPN for the task set in Table 5.2 . 160

6.4 Proposed Code Generator Overview . 161

6.5 Simplified Version of the Dispatcher . 163

6.6 Example of a Schedule Table . 163

6.7 Timing Diagram for Schedule Table in Figure 6.6 164

6.8 TPN model for two non-preemptive tasks with dispatcher overheads

depicted in Table 5.2 . 164

6.9 Generated code for a simple example 165

6.10 Timing Diagram for the Simple Example 165

6.11 Simplified Version of the Dispatcher for Multiple Operational Modes . . 168

6.12 checkModeSwitching Function . 168

7.1 Tree-based Specification Editor . 172

7.2 New Task/Message . 172

7.3 Properties View . 172

7.4 Specification represented as a XML file 173

7.5 A TPN represented by a PNML file . 174

7.6 The same TPN represented by a specific file format for the schedule

generator . 175

7.7 Timing Diagram . 175

7.8 Timing Diagram for 2-Processors . 176

7.9 Energy Chart . 177

7.10 Velocity Framework . 177

7.11 Dispatcher Template . 178

8.1 Timing Diagram of the Xu-Parnas Example 3 180

8.2 Timing Diagram of the Xu-Parnas Figure 9 181

xiii

8.3 The Simple Control Application Graph 183

8.4 Simplified Simple Control Application Time Petri Net Model 184

8.5 Pulse Oximeter Architecture . 186

8.6 Heated-Humidifier Architecture . 189

8.7 PWM Control . 189

8.8 Pulse Generator Slot Time . 190

8.9 Heated-Humidifier Time Petri Net Model 191

8.10 Heated-Humidifier Timing Diagram . 192

8.11 Heated-Humidifier Generated Code . 192

8.12 Generated Code for the Pulse Oximeter Considering Multiple Modes . 196

A.1 The Model Checking Approach . 216

A.2 A simple two tank pumping system . 216

A.3 An SMV model description and requirements list 217

A.4 Intuition for CTL formulae which are satisfied at state s0 219

xiv

List of Tables

4.1 Interpretation for places and transitions 66

5.1 Specification Example . 108

5.2 Timing Constraints for a Simple Task Set 111

5.3 Modified Timing Constraints for a Simple Task Set 111

5.4 A Simple Example of Task Timing Specification and Inter-task Relations 119

6.1 Choice-priorities for each transition class 156

6.2 Illustrative Example (Timing and Energy Constraints) 159

6.3 Task Timing Specification . 166

8.1 Experimental Results Summary . 180

8.2 Task Set for the Simple Control Application 184

8.3 Execution Results for the Simple Control Application 185

8.4 Task Set for the Pulse Oximeter . 188

8.5 Specification for the Heated-Humidifier 188

8.6 Oximeter Task Timing Specification . 194

8.7 Oximeter Operational Modes Pre-Condition Specification 194

A.1 Some temporal connectives in CTL . 219

xv

Chapter 1

Introduction

Day after day, our lives become more dependent on embedded systems. This includes

not only safety-critical systems such as automotive, railways, aircraft, spaceships, and

medical devices, but also home automation, video game consoles, household appliances,

disk drives, network printers, automatic teller machines, cellular telephones, and so on.

Due to this diversity of applications, the design of embedded systems can be subject to

many different types of constraints, including timing, size, weight, power consumption,

reliability, and cost.

Originally, the most part of embedded systems were hardware-based, using for in-

stance ASIC’s (Application Specific Integrated Circuit). The processors computational

power increasing and the size and cost reduction have allowed moving more func-

tionalities to software. Nowadays, the software is responsible for more than 80% of

functionalities considering modern embedded systems [81]. In spite of the execution

time increment (due to the moving of functionalities from hardware to software), this

new method brought some advantages such as flexibility, lower cost and accessibility.

Indeed, the current microcontroller and microprocessor technology has allowed the de-

velopment of extreme fast processors making software-oriented design possible for most

embedded real-time systems.

Due to the increasing complexity and diversity of requirements, embedded software

has become much harder to design. For instance, since several applications demand

safety properties, the correctness and timeliness verification are an issue to be con-

cerned. Moreover, the complexity of software is greatly increased, since consumers

have demanded more functionalities. Another commonly required feature is reconfig-

urability. Thus, systems can download new modules in order to adapt themselves in a

mutable environment. Service demands, computing resources, and sensors may appear

and disappear. In the same way, demands for quality of service may change as well

1

2 CHAPTER 1. INTRODUCTION

as conditions change. The system is therefore continuously being redesigned while it

operates, and all the time it must not fail [51]. These are problems that designers of

embedded software have to deal with.

Several embedded systems are reactive, i.e., they react to stimulus produced by

the environment. If such reaction is time-sensitive, such systems are called embedded

real-time systems. In real-time systems, the correct behavior depends not only on

the integrity of the results, but also on the time the results are produced. Real-time

systems can be divided in two categories: hard and soft real-time systems. In hard

real-time systems, consequences can be disastrous if timing constraints are not met,

including resource damages or risks for human life. On the other hand, such constraints

may occasionally not be reached in soft real-time systems. In this case, the system may

just degradate its behavior, which may be tolerated in some cases.

Currently, automatic synthesis of embedded software is an important research field.

However, not many works deal with time-critical embedded software synthesis. Gener-

ating code that guarantees meeting all timing and resource constraints is not a simple

task. This research area has several open issues, mainly related to the generation of

predictable-guaranteed scheduled code. Formal development methodologies play an

important role to cope with those stringent requirements.

This chapter shows the context of this thesis, describes the problem to be solved,

presents the motivation and objectives, explains how the problem is planned to be

solved, summarizes the contributions, and finally, shows the outline of this thesis.

ANALYSIS/
VERIFICATION

S Y N T H E S I S

SW
SYNTHESIS

HW
SYNTHESIS

INTERFACE
SYNTHESIS

ESTIMATORS

Specification Constraints
Processor

Architecture

ResultsFinal
Product

Model for
Estimative

Figure 1.1: Project Overview

1.1. CONTEXT 3

1.1 Context

The context of this work is on embedded systems design methodologies. This thesis

is specifically interested in the software part of such methodologies. Usually, most

embedded systems have to consider timing aspects. The scope of this thesis is restricted

to hard real-time embedded software.

Figure 1.1 shows an overview of the project that our research group is investigating,

and the context of this work in this global project. The core of this project is the syn-

thesis. The synthesis is divided into three parts, that is, hardware synthesis, software

synthesis, and interface between hardware and software synthesis. The input of the

proposed methodology is composed of three parts, namely, specification, constraints,

and processor architecture. Processor architecture specifies the name of processors,

topology (interconnections, and distributed or shared memories) and instruction set

(size, execution time, and energy consumption of each instruction). The estimators

are used for estimating several metrics of interest, such as energy consumption, size,

area, execution time, and communication. The result of the estimation process is used

for feedbacking the synthesis phase. The estimator’s input is a model for this specific

purpose. Our research group is particularly interested in development of power-aware

embedded software synthesis, where estimators are responsible for evaluating power

consumption due to software. The analysis/verification of properties is performed and

the results may be used to adapt the specification, constraints, or processors.

1.2 Problem Description

The aim of any synthesis method is to implement the specification with the mini-

mum cost. In accordance with Gajski et.al. [34], software synthesis is the task of

converting a complex executable specification into a conventional software program in

such a way that this software program can be compiled by conventional compilers.

Balarin et.al. [11] defines software synthesis as an optimized translation process from a

high-level specification into C or assembly code, where the specification describes the

function that must be performed, rather than the way it must be implemented. Both

definitions are, in some sense, incomplete. In this thesis, the definition of software

synthesis provided by Cornero et.al [23] is adopted: “software synthesis starts from a

specification (typically composed of concurrent communicating processes) and auto-

matically generates source code considering: (i) the specified functionalities; and (ii)

the typical runtime support required. In other words, the software synthesis method

4 CHAPTER 1. INTRODUCTION

translates a high-level specification into a programing language with, additionally, all

the operational support code required for its execution”.

Software synthesis is important since it automatically generates code satisfying de-

sired properties, and it may also reduce the time-to-market. Software synthesis becomes

necessary since specifications have special characteristics which are not found in tra-

ditional programming languages. For instance, specifications are generally composed

by several concurrent tasks, so, scheduling and synchronization of multiple tasks are

important issues. In this particular situation, software synthesis should provide an ap-

propriate scheduler, in such a way that all specification constraints are satisfied. Thus,

software synthesis consists of two main activities [23]: (i) task handling, and (ii) code

generation. Task handling takes into account tasks scheduling, resource management,

and intertask communication. Code generation is responsible for static generation of

source code for each individual task.

Complex embedded systems adopt a conventional operating system to support the

software execution. However, this solution is typically very general and introduces

overheads, in execution time and memory requirements. On the other hand, the soft-

ware synthesis method represents an alternative to such operating systems usage. This

method automatically generates customized codes with the following benefits: (i) func-

tionality is attended; (ii) all constraints are met; (iii) typical runtime support is pro-

vided; and (iv) overheads are minimized.

The problem considered in this thesis is expressed in the following question: can a

specification be translated into a program, in such a way that it can be directly executed

in a specific set of processors with all specified constraints satisfied?

1.3 Motivation

The principal role of embedded software is the interaction with the physical world,

rather than the transformation of data. In this case, embedded software must acquire

some properties of the physical world, for instance, it takes time, it consumes power,

it access shared resources, and it does not terminate (unless it fails) [51].

One of the motivations of this thesis is related to the complexity of applications,

and consequently the size of programs, which is growing rapidly. Most of current

devices are networked. Even some programmable DSPs now run a TCP/IP protocol

stack. Besides, the applications are getting much more dynamic, with downloadable

and migrating code. In the mean time, reliability for embedded software remains very

high, unlike general-purpose software. In addition, the market pressure has demanded,

1.4. OBJECTIVES 5

at the same time, high complexity, and short time-to-market. Two conflicting criteria,

someway. Thus, in this context, writing assembly code by hand may not be sufficient.

Tools are necessary to assist the designer, starting from a high-level specification.

In accordance with the high complexity of embedded systems, another motivation

of this thesis is to deal with the increasing difficulty in verifying embedded systems

design correctness. This verification is critical due to safety considerations in several

application domains. Hence, code generators are necessary to guarantee correct designs

and, at the same time, to increase software quality and productivity.

1.4 Objectives

Considering the problem stated in the previous section, the main objective of this thesis

is to propose a methodology starting from a high-level specification, translating such

specification into a predictable source code, that is, a code where timing, energy and

resource constraints are satisfied.

The specific objectives are:

1. to propose a specification model that captures code, timing and energy informa-

tion of tasks, and inter-task relations such as precedence and exclusion relations;

2. to model the specification using a formal method;

3. to provide a scheduling synthesis framework that produces schedules guaranteeing

that timing, energy, precedence and exclusion constraints are satisfied;

4. to develop a code generator that generates scheduled code with guarantees that

the code maintain specified properties, such as mutual-exclusive resource access,

and deadlock and starvation-freedom.

Tasks of embedded real-time systems have timing characteristics that must be guar-

anteed. Usually, these tasks have also relations between them, such as precedence and

exclusion relations. One of the aims of this theses is to propose a specification model

that also captures such inter-task relations.

In order to improve the degree of confidence of time-critical systems, formal methods

are important mechanisms that allow analysis and verification of properties as well as

facilitate system validation. For this reason, this thesis aims to apply a formal method

in the system modeling phase. This model is intended to be used in the subsequent

phases of the proposed software synthesis method.

6 CHAPTER 1. INTRODUCTION

Meeting timing constraints is fundamental in embedded hard real-time systems.

Therefore, scheduling plays an important role. However, not all scheduling policies are

able to find a feasible schedule, even if such schedule exists. This situation is hardened

when considering arbitrary precedence and exclusion relations. The scheduling strategy

has to be carefully chosen.

In general, embedded software programs runs forever. Therefore, liveness is crucial

in such systems. In this case, in order to avoid runtime overheads, another aim of this

thesis is to generate already scheduled code.

Some properties are inherent to specifications. For instance, it is not interesting to

generate code that do not take into account mutual exclusive access to shared resources.

Another undesirable characteristic is deadlock and starvation. Thus, this thesis is of

interest in generating code that satisfies such properties.

1.5 Proposed Method

The specification considered in this thesis is composed by a set of tasks. These tasks

are executed in one or more processors. For each task, timing constraints are specified,

as well as inter-task relations, scheduling method, and allocation of task to processors.

This thesis proposes modeling tasks of a system using an transition-annotated time

Petri nets (TPN), that is, a TPN with code associated with transitions. Starting from

the resulting model, the proposal is to synthesize a feasible schedule (one that satisfies

all constraints), and generate a scheduled code in accordance with the found schedule.

In general, scheduling policies are classified as: (i) Pre-runtime scheduling; or (ii)

Runtime scheduling. However, considering time-critical systems, predictability is an

important concern. In order to guarantee that all critical tasks meet their deadlines,

pre-runtime scheduling is used, since runtime methods may constrain the possibility of

finding feasible schedules, even if such a schedule exists, especially when considering

arbitrary precedence and exclusion relations.

The generated code can be seen as a cyclic executive[10], since tasks are recurrently

executed in accordance with the previously computed schedule. Cyclic executive con-

sists of a single control loop where the execution of several periodic process is statically

interleaved (or scheduled) on a single CPU. The interleaving is done in a deterministic

fashion so that execution time is predictable. In this case, when the periods are differ-

ent, the period of the cyclic executive is equal to the least common multiple between

all periods of processes.

As presented before, embedded systems are becoming highly complex and hard

1.5. PROPOSED METHOD 7

to verify design correctness. An alternative to tackle this problem is the adoption of

formal methods. In order to improve the degree of confidence of critical system designs,

formal methods are important mechanisms that allow precise specification, verification

and/or analysis of qualitative as well as quantitative properties. However, for effective

use of formalisms, the availability of automated tools to assist the embedded software

design is an important issue. This work proposes the use of a Petri net-based formal

method in order to provide tools for software synthesis of embedded hard real-time

systems.

User
Requirements

Behavioral
Specification

Code of
 Tasks

Communication
Pattern

Scheduling
Method

MODELING

SCHEDULING
SYNTHESIS

CODE
GENERATION

Annotated
TPN Model

Schedule

Scheduled
Code

Constraints
Specification

Timing
Constraints

Inter-task
Relations

Allocation
Task

Processors

#Processors Topology,
ID of Processors

Hardware
Infra-Structure
Architecutre

USER REQUIREMENTS ANALYSIS

Figure 1.2: Proposed Software Synthesis Methodology Phases

Figure 1.2 presents a diagram of the phases composing the proposed methodology.

This section presents only a summary of each phase. More details is presented in the

next chapters. The phases are:

8 CHAPTER 1. INTRODUCTION

• Specification. In this phase, the result of the user requirement analysis is com-

posed of three parts:

1. Behavioral Specification. The behavioral specification is responsible for spec-

ifying both the code of each task, and the possible communication pattern

(if adopted a multi-processor architecture). The code of each task is spec-

ified by using a C programming language augmented with communication

constructs. Except from these constructs, the C-code has to be compliant

with the respective compiler. For instance, there are subtle differences be-

tween Keil C51 and GNU CC compilers. If the architecture chosen is a

multi-processor, then the communication pattern has to be specified by a

communication graph.

The code of each task is used in both modeling and code generator phases.

The communication graph is used in the modeling phase.

2. Constraints Specification. The constraints to be captured for each task are:

(i) timing constraints (phase, release time, worst-case execution time, energy

consumption, deadline, and period); (ii) scheduling method (preemptive or

non-preemptive); and (iii) inter-tasks relations, such as precedence and ex-

clusion relations. Additionally, when adopting a multi-processor architec-

ture, the allocation of tasks to processors has to be included. The proposed

methodology considers that this allocation is performed in advance by the

designer, and such allocation is beyond the scope of this thesis. It is worth

noting that the constraints specification already provides the worst-case ex-

ecution time for each task. The worst-case execution time is calculated in

the estimation phase (Figure 1.1).

All timing constraints and inter-tasks relations are considered in the mod-

eling phase. Scheduling method and the (possible) allocation of tasks to

processors are used in two phases, modeling and code generation.

3. Hardware Infra-Structure Architecture. This phase defines the architecture

of the hardware infra-structure, specifying the amount of processors, the

instruction set description (processor ID, instruction set, instruction exe-

cution time, instruction energy consumption, etc) for each processor, and

topology of interconnection between processors. The instruction set descrip-

tion may be used, for instance, for calculating the worst-case execution time

of tasks. The ID of each processor and topology are required in the code

generation phase. Each processor has intrinsic characteristics that have to

1.6. CONTRIBUTIONS 9

be considered when generating code. As an example, consider the timer

programming, which may be completely different when adopting different

processors.

In the code generation phase, topology is essential for the communication

synthesis, and the amount of processors is used in the modeling phase.

• Modeling. This phase deals with the translation from specification into the re-

spective time Petri net (TPN) model. In order to allow portability, the time Petri

net model is expressed in PNML (Petri Net Markup Language) [100] format. This

modeling is based on building blocks composition. There are specific blocks for

modeling the task structure (preemptive or non-preemptive), deadline-checking,

processor(s), communication channel(s), periodic arrival of tasks, precedence rela-

tions, exclusion relations, and inter-processor communication between tasks. The

resulting model is used in the scheduling synthesis phase. Part of this model, that

is the code of tasks, is also used in the code generation phase.

• Scheduling Synthesis. Since this work deals with time-critical systems, a pre-

runtime scheduling is adopted. Starting from the TPN model, a schedule is

entirely computed during design time. The algorithm is based on depth-first

search method.

• Code Generation. This phase aims to generate the respective scheduled code,

considering the previously computed schedule, constraints and processor archi-

tecture. If a mono-processor architecture is adopted, the code generation requires

the schedule found, code of each task (from the model), scheduling method (from

the specification of constraints), and processor name (from the hardware infra-

structure architecture). Additionally, if the hardware infra-structure has more

than one processor, the code generation phase requires the task to processors

allocation (from the constraints specification) and topology (from the hardware

infra-structure architecture). In order to automate the code generation phase, a

code generator engine based on templates was developed. Several templates are

provided, where dispatcher, interrupt handler, code-of-tasks, types, constants,

and schedule are examples of templates.

1.6 Contributions

This thesis provides a methodology for development of predictable scheduled code for

embedded hard real-time systems. The methodology per si is a contribution. The more

10 CHAPTER 1. INTRODUCTION

specific contributions are depicted as follows:

1. Specification. The user has requirements that have to be captured by the

designer. Generally, the specification is composed of a set of concurrent tasks,

where each task has its own attributes, e.g. task behavior, timing constraints,

and tasks communication pattern. Although the proposed specification model

is not new, this work joins different requirements into a complete and coherent

model. Additionally, a tool for inputing the specification is another contribution.

2. Modeling. The proposed method translates the specification into a time Petri

net model. As stated before, the modeling phase is based on composition of

building blocks. These building blocks are a contribution. The automatic trans-

lation from the specification to the respective time Petri net model is another

contribution. Usually, the time and energy consumed by the dispatcher and in-

terrupt handler are often neglected. This thesis considers such overheads at the

modeling phase, which leads to a more precise behavior of the system. This is a

very interesting contribution.

3. Schedule Synthesis. A pre-runtime scheduling that considers timing con-

straints (such as phase, release time, deadline, and period) and arbitrary intertask

relations is not new. However, there is no similar work that finds a feasible pre-

runtime scheduling based on Petri net formalism considering timing and energy

constraints. This is an important contribution, since it is the base for any software

synthesis method.

4. Code Generation. At the best of the present knowledge, there is no work that

generates scheduled code for embedded hard real-time systems, that considers

release time, deadline, periods, energy consumption, dispatcher overheads, and

arbitrary precedence and exclusion relations. This is the main contribution of

this thesis.

1.7 Outline

Following this introduction, Chapter 2 overviews the main concepts needed to un-

derstand this thesis, such as the main models of computation, embedded systems,

real-time systems, and scheduling. Chapter 3 reviews the related works with the real-

time scheduling and code generation areas. Chapter 4 introduces Petri nets, presenting

how to model several situations present in most systems, the main timing extensions,

1.7. OUTLINE 11

methods for properties analysis, and Petri net synthesis (bottom-up, top-down, and hy-

brid). Chapter 5 describes the method for modeling embedded hard real-time systems.

This chapter is composed by three main sections, namely, formal model, specification

model, and how to model the specification by the formal model. The formal model

syntax is given by an annotated time Petri net and the semantics by a timed labeled

transition system. The specification model consists in a set of tasks and their inter-

relations, where such tasks are executed in one or more processors. The modeling of

specification explains the method adopted for translating from the specification model

to a time Petri net model. Chapter 6 explains the method for synthesize the software.

Firstly, it presents a novel method to compute pre-runtime schedules based on the time

Petri net model. Later, this chapter describes how the code is generated starting from

a feasible found schedule. Chapter 7 shows several tools provided by this thesis. In

particular, this chapter details the integration between the software synthesis method

with EZPetri, which is a tool suite based on PNML and plug-in technology that per-

mits editing Petri nets, integration of Petri net tools, as well as importing/exporting

Petri nets from/to different Petri net tools. Chapter 8 shows experiments conducted

using the proposed methodology. Finally, Chapter 9 concludes this thesis and presents

future works.

Chapter 2

Background

This chapter introduces the main concepts needed to the understanding of this thesis.

It is divided into four sections: formal models, embedded systems, real-time systems,

and scheduling. The first section shows the main models used for specifying embedded

real-time systems. The next section deals with embedded systems and development

methodologies. After that, real-time systems is presented. Finally, scheduling consid-

ering timing constraints is surveyed.

2.1 Formal Models

Most often the set of activities on embedded system design are not specified in a

rigorous and unambiguous fashion, so the design process requires several iterations to

obtain the final result. Thus, one or more formal methods is highly recommended

for designing embedded real-time systems. These methods are used for describing the

behavior of the system at a high level of abstraction, and before a decision on its

decomposition into hardware and software is taken. Managing the design complexity

and heterogeneity are also key problems. Therefore, the use of formal methods and

high level synthesis improve design process reliability and productivity.

This section aims to present a model taxonomy and some representative models of

each class of such taxonomy, such as automata and extensions, Petri nets, program-

state machine, and process algebras.

2.1.1 Model Taxonomy

System designers may use many different models in hardware or software design method-

ologies. In general, these models fall into five distinct categories [35].:

12

2.1. FORMAL MODELS 13

1. state-oriented;

2. activity-oriented;

3. structure-oriented;

4. data-oriented; and

5. heterogeneous.

State-oriented models, such as an automata, is one that represents the system as

a set of states and a set of transitions between them, which usually are triggered by

external events. Such model is most suitable for control systems, such as reactive

systems, where the response to events is the most important aspect of the design.

Activity-oriented models, such as a dataflow graph, is one that describes a system

as a set of activities related by data or execution dependencies. This model is most

applicable to transformational systems, such as digital signal processing systems, where

data passes through a set of transformations at a fixed rate.

Structure-oriented models, such as a block diagram, describes a system as physi-

cal modules and interconnections between them. Unlike state-oriented and activity-

oriented models, which primarily reflect functionalities of a system, the structure-

oriented models focus mainly on the physical composition of a system.

Data-oriented model, such as an entity-relationship diagram, is another class of

models for representing the system as a collection of data related by their attributes,

class membership and interactions. This model is most suitable for information sys-

tems, such as databases, where the function of the system is less important than the

data organization of the system.

Finally, a designer could use a heterogeneous model, that is, a model that integrates

many characteristics of the previous models, whenever it needs to represent a variety

of different point of views of a complex system.

In the rest of this section, some common models adopted for representing the be-

havior of embedded systems are briefly discussed.

2.1.2 Representative Models

Many different models have been considered in the system design. This section presents

some representative models for capturing behavior of systems.

14 CHAPTER 2. BACKGROUND

Automata

Automata is more suitable for modeling discrete event systems, that is, systems where

the state space is naturally described by a discrete set, and state transitions are only

observed at discrete points in time [21]. Considering the state evolution of a system,

usually the first concern is with the sequence of visited states and the associated events

causing these state transitions. In general, the system behavior is described in terms of

event sequences e1e2 . . . en, where such behavior is modeled by a language. Automata is

one of the formal models widespread used for modeling languages, which is appropriate

for performing analysis and control of (discrete event) systems.

Usually, systems have an underlying finite event set E, which is the “alphabet”

of a language, and event sequences are “words” or “strings” in that language. So, a

language (defined over an event set E) is a set of finite-length strings formed from

events in E. A language specifies all admissible sequence of events that the system is

capable of generating.

Automaton is a device that is able to represent a language in accordance with

well-defined rules. The automaton may be represented as a directed graph (or state

transition diagram), where the states are associated with nodes and the labeled arcs

are associated with transition between states. Operations usually applied to a language

are those applied to a set, that is: union, intersection, difference and complement with

respect to E∗, where E∗ is the set of all strings of elements of E, including the empty

string ε.

x y

z

a

g
a,g

b

b

a

Figure 2.1: An Example of State Transition Diagram

For instance, supposing that the state set is X = {x, y, z} and the event set is

E = {a, b, g}. According with Figure 2.1, the transition functions are represented by

f(x, a) = x, f(x, g) = z, f(y, a) = x, f(y, b) = y, f(z, b) = z and f(z, a) = f(z, g) = y.

2.1. FORMAL MODELS 15

Three observations are worth making about such example. First, an event may

occur without changing the state, as in f(x, a) = x. Second, two distinct events may

occur at a given state resulting the exact same transition, as in f(z, a) = f(z, g) = y.

Third, the function f is a partial function on its domain X × E, that is, there is no

need of a transition to be defined for each event in E at each state of X. For instance,

f(x, b) and f(y, g) are not defined.

In order to completely define an automaton, two more ingredients are necessary:

an initial state, denoted by x0, and a subset Xm of X that represents the states of

X that are marked. Marked states are also referred as “accepting” states or “final”

states. The initial state x is represented by an arrow and the marked states, x and z,

are represented by double circles.

The formal definition of a deterministic automaton is as follows [21].

Definition 2.1 (Deterministic Automaton) A deterministic automaton, denoted

by G, is a six-tuple G = (X,E, f, Γ, x0, Xm), where:

X is the set of states

E is the finite set of events associated with transitions in G

f : X × E → X is the transition function: f(x, e) = y means that there is a

transition labeled by event e from state x to state y; in general, f is a partial

function on its domain

Γ : X → 2E is the active event function (or feasible event function), where 2E

is the power set of the set E: Γ(x) is the set of all events e for which f(x, e) is

defined and it is called the active event set (or feasible event set) of G at x.

x0 ∈ X is the initial state

Xm is the set of marked states.

Some remarks about this definition are as follows:

• the words state machine and generator are also often used to describe an automa-

ton;

• if X is a finite set, G is called deterministic finite-state automaton (DFA).

• the automaton is said to be deterministic, since f is a function over X × E. In

contrast, the transition structure of a non-deterministic automaton is defined by

means of a relation over X × E × X or, equivalently, a function from X × E to

2X

16 CHAPTER 2. BACKGROUND

• the inclusion of Γ in the definition of G is superfluous in the sense that Γ is

defined from f . The contents of Γ(x) for state x helps in distinguishing between

events e that are feasible at x but cause no state transition, that is, f(x, e) = x,

and events e′ that are not feasible at x, that is, f(x, e′) is undefined

• f may be extended from domain X × E to X × E∗, in the following recursive

manner:

f(x, ε) := x

f(x, se) := f(f(x, s), e) for s ∈ E∗ and e ∈ E.

The connection between languages and automata is easily made by inspecting the

state transition diagram of an automaton. This observation leads to the notion of

languages generated and marked by an automaton.

Definition 2.2 (Language Generated) The language generated by G = (X, E, f,

Γ, x0, Xm) is

L(G) := {s ∈ E∗ : f(x0, s) is defined }

The language L(G) represents all directed paths that can be followed along the

state transition diagram, starting at the initial state. The string s, corresponding to

a path, is the concatenation of the event labels of the transitions composing the path.

Therefore, s is in L(G) if and only if it corresponds to an admissible path in the state

transition diagram, or equivalently, if and only if f is defined at (x0, s)

Definition 2.3 (Language Marked) The language marked by G = (X, E, f, Γ, x0,

Xm) is

Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm}.

The second language represented by G, Lm(G), is the subset of L(G) consisting only

of the strings s for which f(x0, s) ∈ Xm, that is, these strings corresponds to paths

that end at a marked state in the state transition diagram. The language marked is

also called the language recognized by the automaton, and the given automaton is a

recognizer of the given language.

One limitation of the finite automaton defined so far is that its output is limited

to a binary signal “accept” (1) or “do not accept” (0). However, models in which the

output is chosen from some other alphabet have been considered. In this case, there

2.1. FORMAL MODELS 17

are two distinct approaches; the output may be associated with the state (called Moore

automata) or with the transition (called Mearly automata).

In Moore automata there is an output function (h : X → O) that assigns an output

(from the output alphabet O) to each state. In other words, an output symbol is

assigned to each state, and outputted when it enters in the respective state. The DFA

may be viewed as a special case of a Moore automata where the output alphabet is

{0, 1} and state x is accepting if and only if h(x) = 1.

Mealy automata, on the other hand, are input/output automata. Thus, transitions

are labeled by “events” of the form input event/output event. In this case, h maps

X ×E to O. Therefore, the interpretation of a transition ei/eo from state x to state y

is as follows: when the system is in state x, if the automaton receives input event ei,

it will make a transition to state y and in that process will emit the output event eo.

start

r1/n

S1 S2

S3

r2/u1

r1/d1

r3/n

r2/n

r3/u2
r1/d2

r2
/d

1

r3
/u

1

Figure 2.2: Mearly Automata for an Elevator Controller

Figure 2.2 shows a Mearly automaton that models the elevator controller in a

building with three floors. In this model, the set of events E = {r1, r2, r3} represents

the requested floor. For example, r2 means that floor 2 is requested. The set of outputs

O = {d2, d1, n, u1, u2} represents the direction and number of floors the elevator should

go. For example, d2 means that the elevator should go down 2 floors, u2 means that

the elevator should go up 2 floors, and n means that the elevator should stay idle. The

set of states represents the floors. In Figure 2.2, it can be seen that if the current floor

is 2 (i.e., the current state is S2), and floor 1 is requested, then the output will be d1.

Figure 2.3 shows the Moore automata for the same elevator controller, in which

the value of the output is indicated in each state. Each state has been split into three

states representing each of the output signals that the automaton in Figure 2.2 will

output when entering that particular state.

18 CHAPTER 2. BACKGROUND

S11/d2

S12/d1

S13/n

S21/d1 S31/n

S32/u1

S33/u2S23/u1

S23/n

r1

r1

r1

r3

r3

r3

r3

r3

r3

r3

r3

r3r1

r1

r1

r1

r1

r1

r2

r2

r2

r2

r2

r2

r2

r2start

Figure 2.3: Moore Automata for an Elevator Controller

In practical terms, the primary difference between these two models is that the

Moore automaton certainly will require more states than the Mearly automaton.

Finite State Machine (or Automaton) with Datapath

As presented before, another name used for representing automata is state machine.

In this, and following sections, automaton and state machine (or FSM that stands for

finite state machine) is used interchangeably.

If an automaton has to represent integer (or floating-point) numbers, a state-

explosion problem may occur, since if each possible value for a number requires its

own state, then the automaton could require an enormous number of states. For ex-

ample, a 16-bit integer can represent 216 or 65536 different states. One way to solve

this problem is extending an automaton with integer and floating-point variables.

This kind of finite state machine with datapath (FSMD) can model the elevator

controller example in Figure 2.2 with only one state, as shown in Figure 2.4. This

reduction in the number of states is possible because a variable cfloor is designated to

store the state value of the FSM in Figure 2.2 and rfloor to store the values of r1, r2

and r3.

In general, the FSM is suitable for modeling control-dominated systems, while the

FSMD can be suitable for both control and computation-dominated systems. However,

it is worth noting that neither the FSM nor the FSMD model is suitable for complex

2.1. FORMAL MODELS 19

S1
start

(cfloor != rfloor) /cfloor := rfloor; output := rfloor - cfloor

(cfloor = rfloor) / output := 0

Figure 2.4: FSMD Model for an Elevator Controller

systems, since neither one explicitly supports concurrency and hierarchy. Without ex-

plicit support for concurrency, a complex system will certainly have an state-explosion.

Consider, for example, a system consisting of two concurrent subsystems, each with

100 possible states. If trying to represent this system as a single FSM or FSMD, it

must represent all possible states of the system, in which there are 100×100 = 10, 000.

At the same time, the lack of hierarchy would cause an increase in the number of arcs.

For example, if there are 100 states, each requiring its own arc to transition to a specific

state for a particular input value, it would need 100 arcs, as opposed to the single arc

required by a model that can hierarchically group those 100 states into one state. The

problem with such models, of course, is that once they reach several hundred states or

arcs, they become incomprehensible to humans.

Hierarchical Concurrent Finite State Machine

The hierarchical concurrent finite-state machine (HCFSM) is essentially an extension

of the FSM model, which adds support for hierarchy and concurrency, thus eliminating

the potential for state and arc explosion that occurred when describing hierarchical

and concurrent systems with FSM models.

Like the FSM, the HCFSM model consists of a set of states and a set of transitions.

Unlike the FSM, however, in the HCFSM each state can be further decomposed into

a set of sub-states, thus modeling hierarchy. Furthermore, each state can also be

decomposed into concurrent sub-states, which execute in parallel and communicate

through global variables.

One language that is particularly well-adapted to the HCFSM model is State-

charts [39], since it can easily support the notions of hierarchy, concurrency and com-

munication between concurrent states. Statecharts uses unstructured transitions and a

20 CHAPTER 2. BACKGROUND

broadcast communication mechanism, in which events emitted by any given state can

be detected by all other states. Figure 2.5 shows an example of a system represented

by means of Statecharts. In this figure, it can be seen that state Y is decomposed

into two concurrent states, A and D; the former consisting of two further substates, B

and C, while the latter comprises substates E, F , and G. The bold dots in the figure

indicate the starting points of states. According to the Statecharts language, when

event b occurs while in state C, A will transfer to state B. If, on the other hand, event

a occurs while in state B, A will transfer to state C, but only if condition P holds at

the instant of occurrence. During the transfer from B to C, the action c associated

with the transition will be performed.

B

A
Y

C

a(P)/c b

D

E

F

G

r
s

a

u

Figure 2.5: Statecharts: Hierarchical Concurrent States

Because of its hierarchy and concurrency constructs, the HCFSM model is well-

suited to representing complex control systems. The problem with this model, however,

is that, like any other state-oriented model, it concentrates exclusively on modeling

control, which means that it can only associate very simple actions, such as assignments,

with its transitions or states. As a result, the HCFSM is not suitable for modeling

certain characteristics of complex systems, which may require complex data structures

or may perform in each state an arbitrarily complex activity. For such systems, this

model alone would probably not be sufficient.

Petri Nets

This section aims to present just an introduction about Petri nets. This subject will

be returned in next chapter (Chapter 4).

Petri net model [70, 75, 79] is an example of heterogeneous model, specifically

defined to model systems that comprise interacting concurrent tasks. A Petri net

2.1. FORMAL MODELS 21

model consists of a set of places, a set of transitions, and a set of tokens. Tokens

reside in places, and circulate through the Petri net by being consumed and produced

whenever a transition fires. More formally, a Petri net is a quintuple

〈P, T, F,W,m〉

where P = {p1, p2, . . . , pm} is a set of places, T = {t1, t2, . . . , tn} is a set of transitions,

and P and T are disjoint. Further, the relation function F , F ⊆ (P × T) ∪ (T × P),

defines arcs between places to transitions and between transitions to places. W :

F → N represents the weight of the flow relation (F). Finally, the marking function

m : P → N defines the number of tokens in each place, where N is the set of nonnegative

integers.

Figure 2.6: Petri Net Example

Figure 2.6 presents a graphic representation of a Petri net. Note that there are

five places (graphically represented as circles) and four transitions (graphically rep-

resented as solid bars) in this Petri net. In this instance, the places p2, p3, and p5

provide inputs to transition t2, and p3 and p5 are the output places of t2. The marking

function m assigns one token to p1, p2 and p5 and two tokens to p3, as denoted by

m(p1, p2, p3, p4, p5) = (1, 1, 2, 0, 1).

As mentioned above, a Petri net executes by means of firing transitions. A transition

can fire only if it is enabled – that is, if each of its input places has sufficient tokens to

fire. A transition is said to have fired when it has removed all of its enabling tokens

from its input places, and then deposited tokens into each output place. In Figure 2.6,

for example, after transition t2 fires, the marking m will change to (1, 0, 2, 0, 1).

Petri nets are useful because they can effectively model a variety of system charac-

teristics, and may be used to check several useful properties. Chapter 4 presents Petri

nets in more details. Although a Petri net does have many advantages in modeling

and analyzing concurrent systems, it also has limitations that are similar to those of

22 CHAPTER 2. BACKGROUND

an FSM, that is, it can quickly become incomprehensible with any increase in system

complexity [35].

Program-State Machine

A program-state machine (PSM) [34] is another instance of a heterogeneous model that

integrates an HCFSM with a programming language paradigm. This model basically

consists of a hierarchy of program-states, in which each program-state represents a

distinct mode of computation. At any given time, only a subset of program-states will

be active.

B

A

Y

C

D

variable A: array [1..20] of integer

variable i, max : integer;

max = 0;
for i = 1 to 20 do
 if (A[i] > max) then
 max = A[i];
 end if;
end for

e1
e2

e3

Figure 2.7: An Example of Program-State Machine

Figure 2.7 shows an example of a program-state machine, consisting of a root state

Y, which comprises two concurrent substates, A and D itself. State A, in turn, contains

two sequential substates, B and C. Note that states B, C, and D are leaf states, though

the figure shows the program only for state D. According to the graphic symbols, the

arcs labeled e1 and e3 are transition-on-completion arcs (will change state only when the

source program-state has completed its computation and the associated arc condition

evaluates to true), while the arc labeled e2 is a transition-immediately (change state

immediately whenever the arc condition becomes true, not considering if the source

program-state has completed its computation) arc. The configuration of arcs would

mean that when state B finishes and condition e1 is true, control will transfer to state

C. If, however, condition e2 becomes true while in state C, control will transfer to state

B regardless of whether C finishes or not.

2.1. FORMAL MODELS 23

Since PSMs can represent system states, data, and activities in a single model, they

are more suitable than HCFSMs for modeling systems which have complex data and

activities associated with each state. A PSM can also overcome the primary limitation

of programming languages, since it can model states explicitly. It allows a modeler to

specify a system using hierarchical statedecomposition until he/she feels comfortable

using program constructs. The programming language model and HCFSM model are

just two extremes of the PSM model. A program can be viewed as a PSM with only

one leaf state containing language constructs. A HCFSM can be viewed as a PSM with

all its leaf states containing no language constructs.

Process Algebra

The word “process” refers to behavior of a system. Usually, behavior comprises a

set of events (or actions) that a system can perform, the order in which they can be

executed and maybe other aspects of this execution such as timing or probabilities.

The word “algebra” denotes taking an algebraic/axiomatic approach when talking

about behavior [9]. So, process algebra is defined as an algebraic method for studying

concurrent processes. Process algebra tools are algebraic languages for the specification

of processes and the formulation of statements about them, together with calculi for the

verification of these statements [98]. Process algebra is an example of activity-oriented

model.

The main algebraic approaches to concurrency are:

(i) Milner’s CCS (Calculus of Communicating Systems) [65];

(ii) Hoare’s CSP (Communicating Sequential Processes) [41]; and

(iii) Bergstra and Klop’s ACP (Algebra of Communicating Processes) [13].

The simplest model of behavior is to see behavior as an input/output function. A

value or input is given at the beginning of the process, and at some moment there is

a value as output. This model was instrumental in the development of (finite state)

automata theory. In automata theory, a process is modeled as an automaton. An

automaton has a number of states and a number of transitions, going from one state

to another (or the same) state. A transition denotes the execution of an (elementary)

action, the basic unit of behavior. Besides, there is an initial state (sometimes, more

than one) and a number of final states. A behavior is a run, i.e. a path from initial

state to final state.

24 CHAPTER 2. BACKGROUND

When observing the automata theory, it can be seen that, basically, the notion of

interaction is missing. That is, during the execution from initial state to final state,

a system may not interact with another system. However, this is needed in order to

describe parallel or distributed systems, or so-called reactive systems. Concurrency is

the theory of interacting parallel and/or distributed systems. Process algebra is usually

considered as an approach to concurrency theory, so it will usually (but not necessarily)

have parallel composition as a basic operator.

Thus, process algebra is the study of the behavior of parallel or distributed systems

by algebraic means. It offers means to describe or specify such systems, and thus

it has means to talk about parallel composition. Besides this, it can usually also

talk about alternative composition (choice) and sequential composition (sequencing).

Moreover, by means of equational reasoning (argument using algebra), verification can

be performed, i.e. establishment that a system satisfies a certain property.

The basic laws of process algebra are usually called structural or static laws. As

basic operators, | denotes alternative composition, → denotes sequential composition

and || denotes parallel composition. Some basic laws are the following (| weakest, →

strongest):

• x|y = y = |x (commutativity of alternative composition)

• x|(y|z) = (x|y)|z (associativity of alternative composition)

• x|x = x (idempotency of alternative composition)

• (x|y) → z = x → z|y → z (right distributivity of | over ;)

• (x → y) → z = x → (y → z) (associativity of sequential composition)

• x||y = y||x (commutativity of parallel composition)

• (x||y)||z = x||(y||z) (associativity of parallel composition)

As an example of alternative (or choice) composition, suppose the description of a

dispensing machine which dispenses hot coffee if the red button is pressed, and iced

tea if the blue button is pressed. This is specified in the following way:

DRINKS = ((red → coffee → DRINKS) | (blue → tea → DRINKS))

Figure 2.8 depicts the graphical state machine description of the drinks dispenser.

The representation of parallel composition generates all possible interleavings of the

traces of its constituent process. For example, the process:

ITCH = (scratch → STOP)

2.1. FORMAL MODELS 25

0 1 2

blue

red

coffee

tea

Figure 2.8: DRINKS state machine

has a single trace consisting of the action scratch. The process:

CONVERSE = (think → talk → STOP)

has the single trace think → talk. The parallel composition is:

CONVERSE-ITCH = (ITCH || CONVERSE)

which has the following traces:

think → talk → scratch

think → scratch → talk

scratch → think → talk

0 1 2

think

0 1

scratch

talk

ITCH

CONVERSE

CONVERSE-ITCH 0 1 2

think talk

3

scratch

4 5

talk think

scratch

scratch

Figure 2.9: Composition CONVERSE-ITCH

Figure 2.9 depicts the graphical state machine description of the

CONVERSE-ITCH parallel composition.

26 CHAPTER 2. BACKGROUND

2.2 Embedded Systems

Embedded systems are everywhere, from home appliances to spaceships. Nowadays,

the great majority of systems have an embedded system into them. Some products

become possible thanks to the computational systems that are integrated into them,

for instance, cellular phones, electronic fuel injection, ABS break, and so on. This

phenomenon is somehow related to the technology advances (and reduced price) of

micro-processed systems started in the 80’s, which result in new conception of products.

This section provides an introduction to embedded systems. First, an overview

is presented. Next, the three main design representation are shown. Later, design

of embedded systems is depicted, where the two main methodologies are considered,

namely, hardware-software co-design and platform-based design. Finally, the main

problems with embedded software and challenges for embedded design methodologies

are presented.

2.2.1 Overview

In general, an embedded system is a specialized digital system that executes a group of

dedicated functions within a larger system in such a way that functionalities are added

or optimized. Typically, embedded systems consist of off-the-shelf general-purpose

processors, ASICs and/or FPGAs. They use a computer, but they are neither used

nor perceived as a computer. Virtually all appliances that have a digital interface, such

as watches, microwaves, VCRs, cars, etc, have an embedded system. Some embedded

systems include an operating system kernel, but many are so specialized that the entire

logic can be implemented as a single program.

Embedded systems and desktop computing application differ substantially on the

design constraints. For instance, in addition to the CPU and memory hierarchy, there

is a variety of interfaces that enable the system to measure, manipulate, and inter-

act with external environment. Embedded systems typically have tight constraints on

both functionality and implementation. In particular, they must guarantee reliabil-

ity of the application, cost pressure, real-time requirements, small size, low weight,

long-life cycle, low energy consumption, among others. Certainly, such restrictions

make those systems difficult to be successfully designed through traditional computing

methodologies. Another characteristic of embedded systems is that they usually do not

operate in a strict controlled environment. Excessive heat is often a problem. Some

systems need protection from vibration, shock, lightning, power supply fluctuations,

water, corrosion, fire, and several others physical abnormalities [47].

2.2. EMBEDDED SYSTEMS 27

As presented in Section 2.1 there are lots of models of computation available, which

arise two alternatives for designing complex and heterogeneous systems: (i) using a

single unified formalism; or (ii) mixing several models [35]. The first method is very

complicated to attain, since the semantics of models may be suited for one domain, but

not for another domain. Usually, the adopted solution is to use the second method.

The key problem in the mixed method is to define the semantics of interactions among

such models. This problem is not so easy as interfacing different languages, since the

issue is on the respective semantics of each model. The main objective of the Ptolemy

project [18] is to study the interaction semantics of mixed models of computation.

The software in embedded systems is much more constrained than in general-

purpose computing. For instance, embedded software cannot use unconstrained dy-

namic memory allocation nor virtual memory. For some highly critical applications,

even the use of a stack may be forbidden [50].

Designers have to deal with a dilemma, since embedded systems have increased com-

plexity and, at the same time, market pressures have shortened the time-to-market. In

order to cope with those stringent requirements, appropriated development method-

ologies play an important role.

2.2.2 Design Representations

Managing the design complexity and heterogeneity is the key problem in embedded

systems development. Usually, embedded systems are developed in several levels of

abstractions in such a way that the complexity is minimized. Embedded system design

have established three different representations [35]:

• Behavioral representation views the design simply as a black box. It defines how

the black box would respond to any combination of input values, but omits any

indication on how to design such black box. In other words, this representation

describes system functionality, and tells nothing about its implementation;

• Structural representation defines the black box in terms of a set of components

and their inter-connections. This representation concentrates on specifying the

product’s implementation. However, the structural representation does not ex-

plicitly describe the whole functionality;

• Physical representation specifies the physical characteristics of the components

described in the structural representation. For instance, a physical representation

28 CHAPTER 2. BACKGROUND

would provide dimensions and location of each component as well as physical

characteristics of the connections between them.

In general, the system design process starts from a behavioral representation, which

is then translated to a structural one, and finally it is translated to a physical repre-

sentation. This way, each translation adds implementation details in the design.

2.2.3 Design of Embedded Systems

Embedded systems are often used in life critical situations, where reliability and safety

are more important criteria than performance. Usually, embedded systems are designed

with an ad hoc method based on earlier experience of the designer. Development

methodology is important since the major goal is to produce new systems in a reliable

way. The methodology may be able to assess system requirements, sometimes develop

an architecture, and synthesize the embedded system. These activities have to be made

in such a way that predictable results may be obtained within an acceptable amount

of time.

In accordance with Edwards et al. [29], the concurrent design process for mixed

hardware/software embedded systems involves solving the following sub-problems: spec-

ification, validation, and synthesis. In that paper, the authors advocate a design process

based on precise mathematical representations, in such a way that both verification and

map from initial description to the various intermediate steps can be carried out with

tools. The design process takes a model at a level of abstraction and refines it at

lower ones. Moreover, the designer must ensure that the properties at each level of

abstraction are verified, the constraints are satisfied, and performance is satisfactory.

The increasing embedded system design complexity combined with a very tight

time-to-market has motivated research in embedded system development methodolo-

gies. The attempt to apply traditional computer design methodologies and tools to

embedded applications is difficult to be successful, once embedded systems have sev-

eral additional characteristics not found in traditional design.

There are some methodologies that have been used for embedded systems devel-

opment. However, this section concentrates only on hardware-software co-design, and

platform-based design.

Hardware-Software Codesign

Hardware-Software co-design can be defined as the cooperative design of hardware and

software. Therefore, it certainly has to deal with heterogeneous environments. Taking

2.2. EMBEDDED SYSTEMS 29

into account high complexity allied with short time-to-market, this methodology is

used to maintain the abstraction level in such a way that the designer can be kept

from design details, which are more suitable for automated tools.

The recent interest for hardware-software co-design can be justified by technolog-

ical advances, and by the increasing complexity of applications. Hardware-software

co-design is a design paradigm that comprises specification, design and synthesis of

systems that mix hardware and software components, such as embedded systems. The

growth of this paradigm owes mainly to hardware high-level synthesis development of

the 80’s. Therefore, the abstraction level has been raised, and hardware development

is becoming more and more closer to software development.

However, this method should trade-off reconfigurability (solved by hardware to soft-

ware migration) and performance (solved by software to hardware migration). Further,

there is a constant effort for lowering costs and reducing time-to-market.

SPECIFICATION

PARTITIONING

HARDWARE
SYNTHESIS

SOFTWARE
SYNTHESIS

INTERFACE
SYNTHESIS

REAL
PROTOTYPE

ANALYSIS AND
VERIFICATION

Figure 2.10: Main Phases of a Hardware-Software Codesign Methodology

Main Phases

The hardware-software codesign methodology is generally composed by four main

phases (Figure 2.10), where each one enforces different aspects of the concurrent design.

These phases are explained below:

a) Specification. This phase is related to high abstraction level requirement de-

scription of systems. The specification language should allow the description

of functional and non-functional requirements. Examples of non-functional re-

quirements can be: performance, energy consumption, cost, area, time-to-market,

dependability, etc. There are several formalisms for system specification, such as:

30 CHAPTER 2. BACKGROUND

Petri nets [74, 70], Finite State Machines [35], Statecharts [39], Process Algebra

[41], and so on.

b) Partitioning. This phase decides which components should be implemented in

hardware and those to be implemented in software. This process is carried out

in three general ways: by hand, using automatic tools, or interactively (using a

combination of the two previous methods). Since the partitioning is classified

as good or bad according to estimated metrics, it is important to have good

estimators. The most common metrics are: cost, execution time, silicon area,

communication rate, power consumption, pin numbers, memory area, data area,

program size, etc. Bad partitioning may affect the design time and cost, some-

times requiring re-implementation of the whole system. Designers are faced with

a difficult choice, since hardware may provide better performance than software,

but it is more expensive. On the other hand, software is cheaper than hardware,

but it is slower. Several methods have been used for automatic partitioning, such

as: hierarchical clustering [20], min-cut [49], simulated annealing [46], integer

linear programming [52], and others.

c) Co-Synthesis. The output of the partitioning phase is a set of communicating

modules, where some of them should be implemented in hardware and others in

software. This set of modules is called virtual prototype. The next step is called

co-synthesis, which is a method that allows the automatic mapping from the vir-

tual prototype to the real prototype in such a way that all system constraints

are satisfied. The synthesis decisions are considered in this phase. For instance,

the processor to be used, the interconnection network, communication protocols,

interface between hardware and software, concurrent processes scheduling, and

so on. This phase comprises the hardware synthesis, software synthesis, inter-

face synthesis (when one module is implemented in hardware and the other in

software) and communication synthesis (when both modules are implemented in

software but in different processors).

d) Analysis and Validation. The analysis of a system consists of providing several

quality metrics. These estimations are evaluated in order to make good design

decisions. The validation can be carried out after each phase, since before each

design refinement, its product may be validated through simulation or considering

a real prototype evaluation. Once systems having hardware and software com-

ponents are considered, this methodology may require the interaction between

different simulation environments in a process called co-simulation. In this case,

2.2. EMBEDDED SYSTEMS 31

the methodology should permit the concurrent utilization of several simulators.

For instance, co-simulation makes possible program interaction with an ASIC

without it has been implemented.

Since this methodology copes with heterogeneous environment, the design of em-

bedded systems should support the complete hardware-software co-design phases, in-

cluding partitioning, hardware, software, and interface synthesis.

Current Status and Trends

The main trends in hardware-software co-design are the subject of this section. In

accordance with Rolf Ernst [30], the main status and trends in hardware-software co-

design for embedded systems are:

• reusing components taken from previous designs or acquired from outside the

design group is a main design goal to improve productivity and reduce design

risk;

• hardware/software designers and system architects must synchronize their work

progress to optimize and debug a system in a joint effort. The early discovery of

design faults is a central requirement to that cooperation;

• the challenge is to support the migration of system functions between different

technologies and between hardware and software without a redesign;

• a major problem in the design process is synchronization and integration of hard-

ware and software design. This requires permanent control of consistency and

correctness, which becomes more time consuming with increasing levels of details;

• executable specifications depend on the application domain, which are based on

different models of computation;

• virtual prototypes do not cover most of the nonfunctional constraints and objec-

tives, such as power consumption or safety;

• a considerable amount of assembly code in embedded systems is still observed.

This is because the compilation is, in many cases, far less efficient than man-

ual code generation. Even if compilation improved, the problem of generating

efficient compilable code from abstract models is an important concern;

• guaranteed timing behavior of the generated code is another problem;

32 CHAPTER 2. BACKGROUND

• interface synthesis has been neglected for a long time in commercial tools;

• many embedded systems consist of a complex, heterogeneous set of standard

processors, ASIPs, co-processors, memories, and peripheral components. The

designer typically preselects the architecture to reduce the design space;

• when considering ASIPs (Application-Specific Instruction-Set Processors), gener-

ally, compilers, libraries, operating system functions, and simulation/debugging

environment have to be adapted;

• tools that cover a large variety of communication mechanism are still difficult to

develop;

• efficient synthesis tools and compilers are generally not available for all target

architectures;

Platform-Based Design

Platform-based design (PBD) is a powerful concept for dealing with the increased

pressure on time-to-market, design and manufacturing costs [31, 63, 80]. These de-

sign problems are pressing companies toward designs that can be assembled quickly

from pre-designed components versus full custom design methods. This implies in

high-priority on design re-use, correct assembly of components, and fast, efficient com-

pilation from specifications to implementations, correct-by-construction methodologies

and fast/accurate verification. This idea has been exploited a long time ago in the

design of personal computers, but now the method is generalized and formalized for

the design of electronic systems that consist of software and hardware components and

integrated circuits.

The establishment of an economically feasible electronic design flow requires a struc-

tured methodology in order to limit the space of exploration (in contrast with hardware-

software co-design methodologies, for instance) with the aim of achieving very good

results in the tight time-to-market constraints. This method has been very powerful in

design for both integrated circuits and computer programs. For computer programs,

the use of high-level programming languages has replaced for the most part assembly

languages, for integrated circuits, regular structures such as gate arrays and standard

cells have replaced transistors as a basic building block [80].

The concept of platform has been adopted for a long time. However, there are many

definitions of “platform”, where such definitions depend on the domain of application.

In the integrated circuit (IC) domain, a platform is considered a flexible integrated

2.2. EMBEDDED SYSTEMS 33

circuit where customization is achieved by programming components of the chip. In

the personal computer (PC) domain, PC makers have been able to develop their prod-

ucts quickly and efficiently around a standard “platform” (such as x86 instruction set

architecture, set of buses (ISA, PCI, USB), set of I/O devices, etc). Platform-based

design is defined as the creation of a stable microprocessor-based architecture that can

be rapidly extended, customized for a range of applications, and suitable for quick

development.

In this context, each platform represents a layer in the design flow for which the

underlying design-flow steps are abstracted, i.e., abstraction layers that hide the unnec-

essary details from lower level of abstractions. Often the combination of two consecutive

layers and their inter-relations can be interpreted as a unique abstraction layer with an

“upper” view, the top abstraction layer and a “lower” view, the bottom layer. Every

pair of platforms, together with the tools and methods used to map the upper layer

into the lower layer, is a platform stack.

The main issue of the application of such design principle is the careful definition of

the platform layers. Platforms can be defined at several points of the design process.

There are several distinct platforms. However, the two main platforms that need to

be defined together with methods and tools necessary to link them are: architecture

platform, and API platform.

Generally, integrated circuits used for embedded systems are developed as instances

of a particular architecture platform. In other words, instead of being assembled from a

collection of independently developed blocks of silicon, they are developed from specific

micro-architectures that can be extended or reduced by the system developer. An

architecture platform instance is derived from an architecture platform by choosing a

set of components from the architecture platform library and/or by setting parameters

of re-configurable components of that library. That is, the flexibility (or the ability of

supporting different applications) is guaranteed by programmable components.

The concept of architecture platform is not enough to achieve the required level of

software re-use. The architecture platform should abstract the layer called Application

Program Interface (API) or Programmers Model. This layer involve the essential parts

of the architecture platform: (i) programmable cores and memory subsystem via a Real

Time Operating System (RTOS); (ii) I/O subsystem via the Device Drivers; and (iii)

network connection via the network communication subsystem. Therefore, the API

layer is a platform itself called the API platform. In the conceptual platform-based

design framework, API platform is a unique abstract representation of the architecture

platform. With an API so defined, the application software can be re-used for every

34 CHAPTER 2. BACKGROUND

platform instance.

The system platform-stack is the combination of two platforms and the tools that

map one abstraction into the other. A platform-stack is a single layer obtained by

joining together both the top and bottom platforms, where the upper view is the

API platform and the lower view is the architecture platform. The mapping of the

application into the actual architecture may be carried out automatically if appropriate

software tools (e.g., software synthesis, RTOS synthesis, device-driver synthesis) are

available. It is clear that synthesis tools should consider architecture details as well as

API features.

2.2.4 Embedded Software

The general aim of embedded system design is to implement a specific set of functions

while satisfying constraints such as performance, cost, power consumption, size, and

weight. These functions may be implemented as a hardware component or as software

running on a programmable component.

Nowadays, the embedded systems functionalities have grown in number and com-

plexity that development time has become difficult to predict and control. This com-

plexity has forced designers to take into account flexible implementations. Further-

more, hardware-manufacturing cycles are more expensive and time-consuming. Hence,

software-based implementation has become a feasible alternative solution.

In this case, the computational processor power increasing, and the corresponding

processor size and const reductions have allowed moving more and more functionality

to software. Moreover, software-based implementation provides higher degree of flexi-

bility than hardware-based implementation, and so it is easier to meet time-to-market

constraint. Recent market analysis indicates that software accounts for more than 80%

of system development. Thus, in order to be competitive, companies have to have a

powerful software development environment [81].

Problems with Embedded Software

Sangiovanni-Vincentelli and Martin [81] show several problems with embedded software

development, which are summarized below.

Although software has several advantages when compared with hardware, it also

has some disadvantages. One of these disadvantages is related to performance. It is

clear that software has poorer performance than hardware. In order to overcome per-

formance constraints, programmers usually use assembly or C. However, this policy

2.2. EMBEDDED SYSTEMS 35

may affect the time-to-market, readability and maintainability of the resultant soft-

ware. In general, embedded software also needs hardware support for debugging and

performance evaluation, which are more important for embedded software than for

standard software.

Many companies have adopted object-oriented and other methods. Such methods

are certainly very important for dealing with embedded software structure, but they

are not sufficient for guaranteeing quality assurance and meeting time-to-market.

Another classical disadvantage is the increasing difficulty in verifying design cor-

rectness. This verification is critical due to safety considerations in several application

domains. Additionally, little attention has been given on hard deadline constraints,

low use of memory and power consumption of software.

Embedded Software Design Methodology

According with [82], a software development methodology for embedded systems has

to consider challenges such as:

• reusing;

• hardware/software co-design;

• modeling non-functional properties;

• extensive use of software components;

• system and SW architecture;

• system level validation and verification;

• adoption of HW and SW reconfigurable architectures and component plug and

play;

• composition of SW systems using reusable SW components;

• support of parallel development via integration technology

• development of process standards and common workflows.

The embedded software design methodology proposed by [81, 82] is intended to

have an optimized, semi-automated, transparent, verifiable, and mathematically cor-

rect flow from product specification to implementation of software-dominated prod-

ucts implemented with highly programmable platforms (this methodology is based on

36 CHAPTER 2. BACKGROUND

platform-based design). The aim of this section is to depict the main stages of design

(specification, refinement and decomposition, and analysis), implementation (target

platform definition, mapping, and links to implementation) and verification. These

stages are really associated with embedded systems design methodology. Nevertheless,

they are analyzed in this section by the software project perspective.

Specification

In this context, specification is the entry point of the design process. It should contain:

• description of the system’s functionality in such a way that it does not imply an

implementation;

• a set of constraints on the system final implementation; and

• A set of design criteria.

A set of criterion is often more qualitative than quantitative characteristics, such as

reliability, testability, maintainability, and manufacturability. The difference between

constraints and criteria is that constraints, must be met, whereas you do your best to

optimize criterion. For instance, a criterion may be higher autonomy, while constraint

may be the maximum power dissipation permitted.

Refinement and Decomposition

After obtaining a specification, the design process should progress toward implementa-

tion through well-defined stages. The method manipulates the description by introduc-

ing additional details while preserving both functionality, properties and meeting the

constraints. When steps are smaller, it is more easier to formally prove that constraints

are met and properties are satisfied. This process, called successive refinement, is one

of the main features of the proposed embedded software methodology of [81].

During successive refinement, it is often convenient to break parts of the design

description into smaller parts so that optimization techniques have a better chance of

producing interesting results. This is called decomposition. It must be determined

whether the decomposed system satisfies the original specification.

Analysis

While going to the final implementation, designers sometimes take paths that lead to

designs that do not satisfy some of the constraints. Hence, designers must have tools

that evaluate intermediate results with respect to the constraints.

2.2. EMBEDDED SYSTEMS 37

Target Platform Definition

Since most embedded systems are defined to map onto a target platform, it is necessary

to find the right form and notation with which a target platform can be described. This

description has to represent the full scope of its service (computation, communication,

coordination, etc) and configurations. When a platform offers reconfigurable logic, new

methods of describing the service and configuration are required.

Mapping

The mapping associates parts of the specification (usually they are already refined)

with specific implementation components of the target platform.

Link to Implementation

In general, platform-based design uses reusable components offered by the platform

together with the necessary configuration. However, resultant products often con-

tain new or modified functionality. Thus, the methodology must support software,

hardware, and interface synthesis to allow a comprehensive flow from specification to

implementation.

Verification

This phase consists in verifying if the system is in accordance with the design criteria.

If it is adopted a mathematical specification method, several properties are satisfied by

construction. In addition, verifying whether an implementation satisfies the original

specification can be made much easier if formal successive refinement techniques are

used.

When the embedded software to be developed is simple, there is no need for a

more sophisticated method. However, in complex embedded software applications,

this rather primitive method has become the bottleneck. Most of the issues raised

in this section is usually in ad hoc fashion. This is why Sangiovanni-Vincentelli and

Martin [82] say that the way in which embedded software is developed today have to

be changed radically.

38 CHAPTER 2. BACKGROUND

2.3 Real-Time Systems

In real-time systems, not only the logical result of the computation is important, but

also the time in which the result is obtained. In other words, real-time computing has

to satisfy both logical and timing correctness. The logical correctness concerns the

generated output by computation (correct result) and the internal state of the system

(not to reach prohibited states). The timing correctness decides if a computation meets

its timing constraints, such as completion time and deadlines.

Two different approaches for designing real-time systems can be identified: event-

triggered and time-triggered. In event-triggered, a system activity (communication

and/or processing) is initiated as a consequence of the occurrence of a significant event.

In time-triggered, all activities are initiated at predetermined points in time [48].

2.3.1 Timing Constraints

The distinction between real-time computing and fast computing is important in this

context. Fast computing aims to get results as quickly as possible while real-time

computing aims to get the desired results within prescribed timing constraints. It is

very common to see references to real-time systems when what is meant is just fast

systems. Obviously, real-time is not necessarily synonymous with fast; that is, it is not

the latency of the response per se that is an issue, but the fact that a bounded latency

sufficient to solve the problem is guaranteed by the system.

Real-time systems are particularly interested in timing constraint satisfaction. Such

constrains are generally specified by periods and deadlines. Periods denote execution

of tasks in regular intervals. Deadlines, however, correspond to the maximum time,

starting from the task arrival up to the task completion.

Other important timing constraints are: (i) arrival time, which is the time instant

where the system knows about the arrival of a task; (ii) start time, which is the instant

of the start of task processing in each activation; (iii) execution time, which is a sufficient

time to complete execution of a task; (iv) completion time, which is the time instant of

completion of task in each activation; (v) release time, which is the earliest start time

allowed for a task in each activation.

Real-time systems can only guarantee that deadlines are satisfied if the worst-case

execution times (WCET) of all application tasks are a priori known. The WCET of a

task is an upper bound for the time between task activation and task completion. It

must be valid for all possible input data and execution scenarios of the task.

2.3. REAL-TIME SYSTEMS 39

2.3.2 Classes of Real-Time Systems

Real-time systems can be easily distinguished into two categories: hard and soft real-

time systems. The main difference between them is the stringency of predictability

requirements.

Hard real-time systems require absolutely guaranteed predictable responses and

behaviors. These systems are often used to control life-critical operations in such a

way that, any failure to meet timing constraints results in disastrous consequences,

in some cases loss of human life. Furthermore, any lateness in execution of real-time

tasks is not permitted under any circumstances. Such systems also have to employ a

high degree of robustness and fault-tolerance. A good example is a robot that has to

pick up something from a conveyor belt. The piece is moving, and the robot has a

small window to pick up the object. If the robot is late, the piece will not be there

anymore, and thus the job failed, even though the robot went to the right place. If

the robot is early, the piece will not be there yet. Other examples of hard real-time

systems are aircraft navigation, nuclear power plant control, health care equipments,

automatic pilot, and so on.

In soft real-time systems, on the other hand, it is not catastrophic when deadlines

are not met. In this case, timing constraints may occasionally not be reached, causing

just degradation in the system behavior and such deadline missing can be tolerated.

Usually, this kind of system has a trade-off between execution time and desired results

accuracy. Moreover, results lateness may only increase system cost. A data acquisition

and display application (in which readings are periodically taken and displayed) is an

example of a soft real-time application. Although there may be a desired sample and

display rate, there will not be an error if the sample rate is not accurately met. The

worst that can happen is that samples are not displayed as quickly as desired. On-

line transaction systems, telephone switches, electronic games, and airline reservation

systems are other examples of soft real-time systems

2.3.3 Periodicity of Tasks Execution

Another important characteristic of real-time systems is based on activation regularity.

The task model contain three kinds of tasks:

• Periodic tasks are those where activations occur once by regular interval called

period.

• Aperiodic tasks are randomly activated.

40 CHAPTER 2. BACKGROUND

• Sporadic tasks corresponds to a subset of the aperiodic tasks, but with a minimum

interval between two activations.

Considering the predictability of periodic tasks, they are generally associated with

hard deadlines. On the other hand, aperiodic tasks usually have soft deadlines. Spo-

radic tasks may have hard deadlines, since their definition guarantees a minimum

interval between two activations of the same task.

2.3.4 Characteristics of Real-Time Systems

Real-time systems are characterized by their timely response to external stimuli, pre-

dictable behavior, dependability, accuracy of outputs, and concurrency of tasks. This

section is based on [89].

Timely Response. The most important characteristic of a real-time system is that

it must respond to some external stimuli within prescribed time constraints. Getting

a correct output is not the only goal. This output must also be produced in a timely

manner otherwise disastrous consequences may arise.

Predictability. A second requirement of real-time systems is that they must have

predictable performance. Each execution of the system should run in a more or less

similar manner, and one should be able to deterministically say when each of the tasks

is executed. In other words, the system should not be executing the tasks in some

non-deterministic fashion each time it runs.

Dependability. Predictability also implies dependability (or robustness) of the

system. The system should be immune to minor changes in its state and should be

able to run without degradation as when it was originally designed. Therefore, machine

overloads, execution delays, change in environment, and hardware failure should be

dealt with in such a way that the overall system performance is not degraded. This is

often the hardest part of a real-time system and very difficult to ensure.

Accuracy. Not only the system should be predictable and dependable, but it

should also give accurate results. In case of most real-time systems, inaccurate results

can be as bad as not meeting timing constraints and can have serious consequences.

Sometimes it is impossible to compute accurate results in the given timing constraints.

In such cases, a trade-off between computation time and accuracy results is very im-

portant. However, it is not easy to decide what is an acceptable level of accuracy and

how much time should be spent in order to try to achieve it.

Concurrency. The least visible of all real-time characteristics is the inherent con-

currency. Thus, viewing a real-time system as a collection of concurrent process is

2.4. SCHEDULING 41

actually quite common. The presence of such parallelism in real-time systems intro-

duces some additional complexities, such as: (i) parallel process must be scheduled

correctly to meet timing constraints. Conventional scheduling algorithms may not

provide best solutions when considering multiprocessors; (ii) synchronization between

tasks in such environment may not be easy; (iii) communication models can introduce

significant amount of overhead into the system; and (iv) the system is more susceptible

to failures, since there are several processing units.

2.3.5 Specification and Verification of Real-Time Systems

The fundamental challenge in the specification and verification of real-time systems

is how to incorporate the time. Methods (formal or informal) must be developed to

incorporate these timing criteria into the specifications of a real-time system. Similarly,

verification methods must make sure that these timing constraints are being met and

that the system is robust, predictable and accurate. This problem is made even more

difficult in the face of concurrency issues inherently present in real-time applications.

Many formal methods for specifying, analyzing, and verifying real-time systems

have been proposed over the years. Most of them have not being used because of the

difficulty of using such formalisms. However, many accidents could have been avoided if

formal methods were used. An example of such an accident is the delay in the first space

shuttle flight due to an improbable race condition that went undetected during the

multiple runs of the system [37]. Another problem was reported that during the Mars

Pathfinder mission, the spacecraft experienced repeated total system resets, resulting

in losses of data. The problem was reported to be caused by “priority inversion” [84]

in the real-time systems kernel that used priority scheduling.

2.4 Scheduling

Some kind of scheduling is required by almost all software synthesis methods to se-

quence the execution of concurrent tasks. Although, concurrent tasks are an excellent

specification mechanism they cannot be implemented as such on a standard CPU. The

scheduling problem amounts to find a linear execution order of tasks, so that all timing

constraints are satisfied.

Scheduling is a topic studied for many years. Although this section was restricted

to consider only real-time scheduling theory, there are an enormous amount of research

results. Therefore, this section presents just a summary of the main contributions

concerning scheduling with timing constraints.

42 CHAPTER 2. BACKGROUND

This section shows the scheduling complexity, three general methods for scheduling

real-time systems, and a brief comparison between runtime and pre-runtime scheduling.

2.4.1 Scheduling Complexity

Garey and Johnson [36] have shown that the problem of finding a feasible schedule

for a set of non-preemptable processes with release times and deadlines in a mono or

multiprocessor architecture is NP-complete.

The scheduling problem can be solved in polynomial time when considering pro-

cesses consisting of single segment that can be preempted by any other process (all

process are independent), even if n processors are used [58].

Other works use heuristics, branch-and-bound, depth-first, and other techniques

to find a feasible schedule (generally off-line) considering arbitrary precedence and

exclusion relations. This problem is also NP-Complete [105]. However, any algorithm

(using such techniques) for scheduling tasks in monoprocessors that takes into account

exclusion relations has to consider a special case where all tasks mutually exclude each

other. This is identical to the NP-complete problem studied in [36]. Thus, algorithms

have to deal with the complexity involved in solving that special case.

The problem becomes more complex when multiprocessor architectures are consid-

ered. In this situation, process allocation and scheduling are NP-complete problems,

even if the only goal is the minimization of the overall execution time.

2.4.2 Methods for Scheduling

In general, real-time scheduling policies are classified as:

• runtime (also called dynamic or on-line) scheduling; and

• pre-runtime (also called static or off-line) scheduling.

• hybrid scheduling.

Runtime policy is rigidly based on priorities, that is, the task to be chosen for

execution (from the ready queue) is the one with highest priority. Therefore, the

schedule is computed on-line when tasks arrive for execution. In pre-runtime policy,

on the other hand, the schedule is computed entirely off-line, and tasks are executed

in a fixed and predetermined order. In this case, this policy is not constrained by any

such priority. Hybrid policy is a combination of both previous policies.

Let us take a look at runtime, pre-runtime, and hybrid methods in more depth.

2.4. SCHEDULING 43

Runtime Method

As stated before, the runtime method usually assumes that processes have priorities

assigned to them. Priorities can be determined either statically, at design time, or

dynamically at runtime. Moreover, a runtime scheduler may be preemptive, if a running

task may be interrupted during its execution, or non-preemptive, otherwise.

This section presents the following runtime scheduling algorithms: (i) Rate Mono-

tonic Scheduling, representing a simple static priority algorithm; (ii) Priority Ceiling

Protocol, which is a static priority with access to shared variables; (iii) Deadline Mono-

tonic, which is an static priority based on deadline, but deadlines can be less than or

equal to the periods; and (iv) Earliest Deadline First, that represents the dynamic

priority assignments. In the presentation that follows, let us assume that ci is the

execution time, di is the deadline, and pi is the period of task τi.

Rate Monotonic Scheduling

Static priority runtime scheduling has received significant attention since the pioneer-

ing work of Liu and Layland [58], called Rate Monotonic Scheduling (RMS). RMS

produces schedules at runtime through preemptive schedulers driven by fixed priori-

ties. In spite of the theoretical results presented by Liu and Layland have improved

the understanding of real-time scheduling, the method is valid only for very limited

applications, since RMS premises define a very simple task model: (a) the tasks are

periodic and independent; (b) deadlines are equal to periods; (c) execution times are

known and constant; and (d) the context-switching time is assumed to be negligible.

In order to assign priorities, the adopted policy is based on the period of each task,

that is, shortest period highest priority. Therefore, at any time, the task with highest

priority, among all tasks ready to run, is assigned to the processor. Liu and Layland

showed that RMS is optimal in the sense that if the RMS priority assignment is not

feasible, a set of tasks is not schedulable.

The schedulability analysis (verification whether a given schedule satisfies all dead-

lines) is based on the utilization factor (U). Liu and Layland have found out the least

upper bound on processor use in a static priority scheme. In this case, for n tasks reach

timing constraints, the following test (sufficient condition) has to be satisfied:

U =
n

∑

i=1

(ci/pi) ≤ n(21/n − 1)

In other words, if the utilization factor is less than n(21/n − 1) that set of tasks is

schedulable.

44 CHAPTER 2. BACKGROUND

Priority Ceiling Protocol

The primary difficulty with the use of semaphores in real-time systems is that a high

priority process can be blocked by lower priority processes an unbounded number of

times. Consider for instance a high priority process H wishing to gain access to a critical

section that is controlled by a semaphore. Assume at the time of H’s request a low

priority process, L, has locked the critical section. The process H is said to be blocked

by L. This blocking is inevitable and is a direct consequence of providing resource

integrity (i.e. mutual exclusion) [7]. This situation is known as priority inversion.

The Priority Ceiling Protocol (PCP) [84] makes the same assumptions as RMS,

except that, in addition, processes may have critical sections guarded by semaphores,

and a protocol is provided for handling them in order to avoid priority inversion. For

each semaphore, it is assigned a priority ceiling, which is equal to the priority of the

highest priority process that may use this semaphore. The process that has the highest

priority among the processes which are ready to run, is assigned to the processor. Before

any process p enters its critical section, it must first obtain the lock on the semaphore S

guarding the critical section. If the priority of process p is not higher than the priority

ceiling of all semaphores currently locked by processes other than p, then process p will

be blocked and the lock on S denied. When process p blocks higher priority processes,

p inherits the priority of the blocked processes by p. When p has a critical section, it

resumes the priority it had at the point of entry into the critical section.

A set of n periodic processes using PCP can be scheduled by the rate-monotonic

algorithm if the following condition is satisfied:

c1

p1

+
c2

p2

+ · · · +
cn

pn

+ max

(

B1

p1

, · · · ,
Bn−1

pn−1

)

≤ n(21/n − 1)

where Bi is the worst-case blocking time of task τi due to any lower priority process.

Adopting PCP the following benefits are reached:

• A high priority process can be blocked at most once during its execution (per

activation);

• Deadlocks are prevented; and

• Transitive blocks are prevented.

Deadline Monotonic

The deadline monotonic scheduling (DMS) [53] extends the RMS task model in the

sense that the relative deadlines can be less than or equal to the periods. The priority

2.4. SCHEDULING 45

policy of the DMS defines a static assignment of priorities based on relative deadlines.

The priorities are assigned in inverse order of the relative deadline values. Similarly to

RMS, DMS is a static-priority and on-line scheduling algorithm. However, no schedula-

bility tests were given by Leung and Whitehead [53]. The work of Audsley [8] provides

schedulability tests for this scheme. One such schedulability test is given by:

∀i : 1 ≤ i ≤ n :
ci

di

+
Ii

di

≤ 1

where Ii is a measure of a higher priority processes interfering with the execution

of τi:

Ii =
i−1
∑

j=1

⌈

di

pj

⌉

cj

In other words, this sufficient tests states that for a process τi to be schedulable, the

sum of its computation time and the interference that is imposed upon it by a higher

priority processes, must be no more than di. Audsley [8] also shows an algorithm

presenting a more accurate schedulability test applicable to any fixed priority process

set, where process deadlines are no greater than periods, whatever the assignment rule

used for priorities.

Earliest Deadline First

The earliest deadline first (EDF) scheduling [58] also produces a schedule at runtime

based on priorities, but the priority policy is dynamic, not static as the RMS. The

premises are the same as RMS. The priority policy is defined following the absolute

tasks deadlines, that is, the task with earliest deadline (considering the current time)

has highest priority. At each arrival of a task, the ready queue is re-sorted taking into

account the new priorities distribution. In EDF, schedulability is also verified in design

time, taking as base the processor utilization factor. According to EDF, a set of tasks

is schedulable if and only if:

U =
n

∑

i=1

(ci/pi) ≤ 1

There are several examples where a set of tasks is not schedulable by RM, but it is

by EDF. Besides the higher processor utilization factor, another difference is that EDF

produces less preemptions than RM. In favor of RMS is simplicity and implementation

facility.

46 CHAPTER 2. BACKGROUND

Pre-runtime method

Pre-runtime method schedules processes off-line. This requires that the major charac-

teristics of process to be known in advance. If it is the case, an optimal schedule for

these processes can be scheduled beforehand. The advantage is that it allows the user

to know in advance if all deadlines can be met.

It is only possible to use pre-runtime scheduling to schedule periodic tasks. This

method computes off-line a schedule for the entire set of periodic processes occurring

within a time period that is equal to the least common multiple (LCM) of the periods of

the given set of processes [106]. Although most of hard real time systems (e.g. control

systems) have a large number of periodic processes [105], it is possible to translate an

sporadic process into an equivalent periodic process [67, 106], if the minimum time

between two consecutive requests is known in advance, and the deadline is not very

short. However, this strategy may impose significant overheads. Anyway, it is also

possible to schedule such sporadic process using pre-runtime scheduling.

Several algorithms and techniques is shown at Section 3.1 at Chapter 3 (Related

Works).

Hybrid Methods

Hybrid methods combine the two previous methods in order to obtain the best of both.

One way of integrating off-line/on-line scheduling is to consider strategies that mix

hard and soft real-time systems. Thus, pre-runtime scheduling may be employed for

hard real-time constraints, whereas runtime scheduling may be applied for soft real-

time constraints.

In situations where the translation from sporadic to periodic is not suitable, for

instance when the deadline is very short, another adopted strategy (e.g. [104, 108])

is to use the pre-runtime scheduling for periodic tasks, and runtime scheduling for

sporadic tasks. Of course the solution has to be carefully adopted if sporadic tasks

have hard deadlines.

Considering pre-runtime scheduling, several alternative schedules may be computed

off-line; each such schedule corresponds to a different mode of operation. A small

runtime scheduler can be used to switch among the alternative schedules in response

to external or internal events.

Such strategies are suited when the use of pure strategies are very limited by using

one of them alone. Mixed solutions may bring benefits of both methods.

2.4. SCHEDULING 47

2.4.3 Runtime versus Pre-runtime Scheduling

The schedule quality often depends on where processors spend most of their time.

In runtime scheduling, processors may spend precious time in on-line computation of

schedules (when a task arrives for execution). This overhead may not lead to a feasible

schedule, although this schedule may exists. In general, a solution for this problem

might be the use of faster processors, however, it certainly raises the cost. Pre-runtime

scheduling requires almost no CPU time when executing. The time required to compute

the schedule (before execution) may not be negligible, but it is required only once in

a system’s lifetime [12]. However, pre-runtime scheduling policy spends CPU time

due to sporadic-to-periodic translation. Sporadic arrivals are expected to be ready at

beginning of each period, but such constraint is not always satisfied. Nevertheless, in

accordance with Xu and Parnas [106], most hard real-time applications have periodic

processes as the main part of them. In summary, pre-runtime scheduling is best suited

for rigid periodic tasks [107].

Another overhead source is related to several context-switchings due to the schedul-

ing policy. Some authors do not take into account this overhead, but it is really a

concern, mainly in embedded systems, where the resources are scarce.

Schedulability analysis is needed in a runtime method in order to guarantee that

all tasks meet their deadlines. However, this is a hard problem to be solved, even if

the task model is simple and the main characteristics of tasks are precisely known. In

contrast, there is no need to perform any schedulability analysis when using pre-runtime

scheduling, as the schedulability is guaranteed when a feasible schedule is found.

Schedulability analysis is usually difficult to consider precedence relations, exclusion

relations, release time not equal to the beginning of their periods, low jitter require-

ments (in this context, jitter refers to the variation in time where a computed result is

output), etc. The reason for this difficulty is that additional applications constraints

are likely to conflict with priorities. In general, it is impractical to map application con-

straints into a fixed hierarchy of priorities. Pre-runtime scheduling is not constrained

by any priority scheme. Thus, when compared with runtime method, schedules con-

sidering complex timing and resource constraints are more feasible to be found.

When processes are scheduled at runtime, the scheduling strategy must avoid dead-

locks. Usually, deadlock avoidance at runtime requires a conservative synchronization

mechanism, resulting in situations where a process is blocked by the synchronization

mechanism, even though it could proceed without causing deadlock. This may re-

duce the level of processor utilization. In pre-runtime scheduling, on the other hand,

there is no need to worry about deadlocks, as a feasible schedule is guaranteed to be

48 CHAPTER 2. BACKGROUND

deadlock-free when it is found.

An inconvenience in the pre-runtime scheduling occurs when the process periods

are relatively prime. This would make the LCM become very long. In accordance

with [107], in practice the period length can be adjusted in order to obtain a satisfactory

length of the LCM of process period. However, this adjustment may cause processor

utilization reduction.

The behavior of runtime schedulers can be very difficult to analyze and predict

accurately. For example, suppose that a fixed priority scheduling is implemented by

priority queues, where tasks are moved between queues by a scheduler that runs at

regular intervals by a timer interrupt. It may be observed that, as the timer interrupt

handler has a priority which is greater than any application, even a high priority task

could suffer long delays while lower priority tasks are moved from one queue to another.

It is proved that the prediction of scheduler overhead is a very complicated task. When

computing a schedule off-line, it is much easier to analyze and predict the runtime be-

havior of the system, since the system is highly predictable. Nevertheless, dynamically

scheduled systems are much more difficult to tune and debug than statically scheduled

systems, since execution times and execution order are largely unpredictable [12].

Another problem with runtime scheduling (static or dynamic priority based schedul-

ing) is that it has less chance of finding a feasible schedule than an optimal pre-runtime

scheduling algorithm. This situation is hardened when considering arbitrary prece-

dence and exclusion relations. For instance, consider the task set consisting of five

tasks, A, B, C, D, E, and the respective timing constraints (release, computation, and

deadline): A = (0, 30, 161); B = (11, 30, 51); C = (60, 30, 90); D = (41, 10, 100); and

E = (90, 50, 140). This specification also considers that B PRECEDES D, A EXCLUDES B,

and A EXCLUDES D. Figure 2.11(a) shows that a runtime method could not find a feasi-

ble schedule, since tasks B and E miss their deadlines. However, a pre-runtime method

finds a feasible schedule (Figure 2.11(b)). It is worth observing that the processor must

be left idle between time 0 and 11, even though A’s release time is 0.

2.5 Summary

This chapter described the main concepts needed to the understanding of this thesis.

Firstly, it introduces the main formal models adopted in the design of embedded

real-time systems. Usually, formal models describe the behavior of the system at a high

level of abstraction in order to ensure safe and correct designs. This chapter presented

a model taxonomy and introduced some representative models such as automata, Petri

2.5. SUMMARY 49

Figure 2.11: Comparison between runtime and pre-runtime scheduling

nets, program-state machine, and process algebra.

After that, this chapter detailed embedded systems. Particular attention was given

to methodologies for design of embedded systems, where the two main methodologies

were presented, namely, hardware-software co-design and platform-based design. The

main problems with embedded software and challenges for embedded design method-

ologies are also considered.

In the following, real-time systems were introduced. A brief explanation about tim-

ing constraints, following by classes, periodicity, and some characteristics of real-time

systems were described. Next, a briefly explanation about specification and verification

of real-time systems was presented.

Finally, scheduling for real-time systems was explained. Scheduling complexity,

three general approaches for scheduling real-time systems, and a brief comparison be-

tween runtime and pre-runtime scheduling methods were depicted.

Chapter 3

Related Works

This chapter shows a summary of the relevant related works. It is divided into four

main sections: (i) pre-runtime scheduling; (ii) Petri nets in scheduling theory; (iii)

integration between runtime and pre-runtime scheduling; and (iv) code generation.

3.1 Pre-runtime Scheduling

Although the literature presents several methods for scheduling, this section restricts

the discussion to pre-runtime scheduling only.

Xu and Parnas [105] define the various terms and the exact scope of the problem of

finding pre-runtime schedules. The authors divide each process into a set of continuous

segments. Each segment has a release time, a fixed computation time and a deadline.

All time intervals are measured in time units, which is defined as the smallest amount

of time at which a segment can be in execution without being preempted. Exclusion,

precedence and preemption relations can exist between segments. The lateness of a

segment is calculated as the time at which the segment completes execution, subtracted

by the deadline for that segment. The lateness of a schedule for a set of processes is

the maximum lateness of any segment of any process in the set. A feasible schedule

satisfies the deadlines of all processes and an optimal schedule is a feasible schedule

with the minimum lateness. The algorithm proposed by Xu and Parnas considered a

branch-and-bound technique, where a large number of possible schedules are analyzed

in order to find the optimal solution.

The algorithm starts with the computation of an initial schedule, for the set of

processes, using an EDF-based strategy. This initial schedule is the root of a search

tree. Once the schedule has been computed, the segment with the maximum lateness,

say j, is identified. The only way the lateness of j can be reduced is by making it

50

3.1. PRE-RUNTIME SCHEDULING 51

complete before one of the segments that currently finishes execution before it. Hence,

two sets of segments G1 and G2 are identified such that the lateness of j can be

improved by either scheduling it before a segment in G1 or by preempting a segment

in G2. Finally, the lower bound for the delay is calculated. This value is the minimum

lateness that any schedule generated from the current schedule can have. For each

segment k in either G1 or G2 a child node is created. New relations are added to

ensure that j precedes k, if k is in G1, and j preempts k, if k is in G2. The earliest-

deadline-first schedule, the maximum lateness, and the lower bound (for that lateness)

are again calculated, at each successor node. If the lateness of the schedule, at the

child, is less than or equal to the minimum lower bound of any node, then the optimal

solution has been found. If the lateness is equal to the lower bound (at a child), then

this child is not further expanded, since a better schedule cannot be obtained in any

successor node. If the minimum lateness among all other schedules is less than the

lower bound at the child, then successor nodes are not generated, since the schedule

computed at any of those nodes will be non-optimal. If, at this stage, the optimal

solution has not been found, the node with the least lower bound among all nodes is

selected, successor nodes are generated and the process continues.

Xu and Parnas presented the first attempt to formalize a method of pre-runtime

schedules for real-time processes with arbitrary exclusion and precedence relations.

Furthermore, the authors were able to devise a solution for an NP-hard problem that

is applicable in most of real time applications. Although that work has proposed an

algorithm which greatly reduced the time and possibility of errors, as compared when

using ad-hoc methods, the authors did not present any real-world experimental results.

Shepard and Gagné [86] extended Xu and Parnas’ work by proposing an implicit

enumeration technique for dealing with multiprocessors. However, as pointed out in [3],

the algorithm occasionally fails in finding existing feasible schedules, since it attempts

to reduce schedule lateness by modifying only the schedule of the processor running

the latest segment of a process. In general, if the latest process has predecessors on

other processors it is possible to improve lateness by shifting these predecessors earlier

in their schedules. However, this aspect was ignored by the authors.

Xu [102] presents a method for finding a feasible schedule considering a multi-

processor architecture. However, this solution is very limited since the author assumes

that processors are identical, tasks are non-preemptable, can be resumed on any pro-

cessor at no additional cost, and neglects the cost of intertask communication.

Abdelzaher and Shin [2] proposed an extension to Xu and Parnas’ pre-run-time

scheduling algorithm in order to deal with distributed real-time systems. This al-

52 CHAPTER 3. RELATED WORKS

gorithm takes into account delays and precedence relations imposed by interprocess

communications. As in the Xu and Parnas work, an initial solution is computed using

an EDF-based scheduling and then a branch and bound approach is employed to find an

optimal solution. As the tasks are now scheduled on multiple processors and message

passing is also involved, there are more ways of improving the lateness of a schedule

and hence the algorithm should take into account more details than the original one

proposed by Xu and Parnas.

This algorithm uses three alternatives, or branching rules, to reduce the lateness

of a schedule, and three sets of child vertexes (L, M and N) are created. A set Bi is

first defined, which consists of modules that execute just before the latest module and

consequently affect its lateness. For the set L, the branching rule proposed by Xu and

Parnas is used, i.e. the exclusion relations between two modules in Bi are replaced

by precedence relations so that modules with late deadlines are scheduled after other

modules which need to finish earlier. For the child vertexes in set M , the priority of

a message to a module in Bi is set to the priority limit at the vertex. Further, the

priority limit is decremented for all child vertexes to ensure that the relative priority

of the current message remains unchanged in the future. For a child vertex, in the set

N , the deadline of a remote predecessor of a module in Bi is decreased such that the

lateness is equal to the schedule lateness.

Finally the child vertexes in all sets are created with the appropriate constraints,

priority changes or deadline modifications. That work proves that using three branch-

ing rules an optimal schedule can be obtained for a set of real-time processes. The

algorithm then calculates the lower bound of the lateness for each of the children and

deletes those for which the lower bound is greater than the minimum schedule lateness

observed up to then. The remaining children are added to the set of active vertexes and

the parent vertex is removed. The vertex with the least lower bound is selected from

among the active vertexes and child vertexes are created using the three branching

rules. This process is continued until only one vertex is left for which the schedule has

been computed.

The algorithm presented in [2] is very similar to the original one [105] and the

major steps are the same. However, it does not consider the preemption relation used

in the original algorithm but it extends the branching function by adding two more

rules dealing with messages and remote predecessors. The calculation of the lower

bound is also performed differently. Finally, the major contribution of that work is

the integrated strategy for scheduling both tasks and messages in distributed real-time

systems.

3.2. INTEGRATION BETWEEN RUNTIME AND PRE-RUNTIME SCHEDULING53

3.2 Integration Between Runtime and Pre-runtime

Scheduling

There are several ways for integrating runtime with pre-runtime scheduling. One way

is to consider strategies that mix hard and soft real-time systems. Thus, pre-runtime

scheduling may be employed for hard real-time constraints, whereas runtime scheduling

may be applied to soft real-time constraints. Another adopted strategy (e.g. [108]) is to

use the pre-runtime scheduling for periodic tasks, and runtime scheduling for sporadic

tasks. Such strategies are suited when pure strategies are very limited by using one of

them alone. Therefore, mixed solutions may bring benefits from both approaches.

This section discusses multiple operational modes, which provide several alternative

schedules, and hybrid scheduling.

3.2.1 Operational Mode Changes

Frequently, several alternative schedules may be computed pre-runtime for a given time

period. Each such schedule may correspond to a partially or totally new set of tasks. A

small runtime scheduler can be used to select among alternative schedules in response to

internal or external events, where the changing from executing one schedule to another

is referred to changing operational mode. An aircraft control system, for example,

performs different tasks during take off, flight, and landing phases. By switching among

a number of previously computed static schedules at runtime, a system may be able

to adapt its behavior in environment changing. This solution gives some degree of

deterministic flexibility to pre-runtime scheduling, considering that both schedules and

mode changes are computed in advance.

Jahanian et al. [43] present Modechart, a language for constructing modes, which

can be considered as control information imposing structure on the system operation.

Modes are arranged hierarchically. Each mode is either primitive, parallel, or serial.

A primitive mode has no internal structure. A parallel mode is constructed from a

collection of child modes by parallel composition. The parallel relationship among

several modes indicates that a system operates in all of these modes simultaneously.

In comparison, a serial mode is constructed from a collection of child modes by serial

composition, and the children are said to be in series. The serial relationship among

several modes indicates that (when in the parent mode) the system operates in exactly

one of these modes at any time. Modechart also allows at most one action to be

associated with each mode. The action is executed upon mode entry.

54 CHAPTER 3. RELATED WORKS

Modechart also provides specification of transitions between modes. A transition

is represented graphically by a directed edge between the two modes. A transition has

three components, a source mode, a destination mode, and a condition. A transition

between two modes represents a change in the control information of the system. A

mode transition is an instantaneous event which takes zero time units.

Sha et al. [85] developed an algorithm to manage mode changes in the context of

scheduling based on priority inheritance protocols. However, this approach views mode

changes as adding, deleting, and changing of just a single task. The supported task

model is limited to the use of semaphores as synchronization structure, and tasks have

deadlines equal to periods. Furthermore, the algorithm is limited to single processors.

Although the priority inheritance protocol has been extended to multiprocessors [77],

its application to distributed systems is severely restricted, since they consider that

communication delays are negligible, and they do not take into account overheads

introduced in handling global semaphores.

Fohler [33] proposes mode changes in the context of distributed hard real-time

systems. The implementation consists of a search algorithm based on precedence graph,

which is described by an acyclic directed graph, where nodes and edges represent

tasks and messages, respectively. This concept was extended to consider the modes of

operations, that is, each edge of the precedence graph has associated modes. Therefore,

the precedence constraints of a task τ in mode M are fulfilled, when all edges to τ in

mode M are fulfilled.

The problem to be solved is finding a connection between start and goal states,

which is nothing else than a search strategy. The search tree is designed as follows:

(i) every node represents the decision to schedule a given set of tasks or messages at a

given point in time; (ii) since nodes describe scheduling decisions, edges refer to choices

of these decisions; (iii) the root node describes the initial situation of the problem (the

empty schedule); (iv) the costs assigned to edges are the amount of CPU and bus slots,

respectively.

The aim of this search is to find a feasible schedule, not necessarily an optimal

one. This schedule corresponds to a path in the search tree, whose costs do not exceed

the maximal response time and which fulfills the requirements given in the precedence

graph. It traverses a search tree, with costs assigned to edges, and uses a heuristic

function composed of two factors to guide the search: the costs of the path encountered

so far, and an estimate of the remaining costs from the current node N to a goal node

(called h(N)). This heuristic is used for pruning paths in the search tree. But, when

considering multi mode scheduling construction, instead of traversing the precedence

3.2. INTEGRATION BETWEEN RUNTIME AND PRE-RUNTIME SCHEDULING55

graphs to search for a single schedule, the traversing is made at all graphs of all modes

at the same time, trying to construct an individual schedule for each mode. If a task

has to execute in more than one mode, it has to be scheduled at the same time in all

modes. This enables switching between schedules at runtime without re-phasing.

Considering hard real-time systems, the deadline of a mode change has to be consid-

ered, where it is the time interval between the mode change request and the completion

of the last task before the new mode is established.

3.2.2 Hybrid Scheduling

Hybrid scheduling is usually defined as a combination of runtime with pre-runtime

scheduling in order to obtain the best from each of these methods.

Young and Shu [108] propose a hybrid scheduling technique, which makes use of

pre-runtime scheduling for periodic tasks and runtime scheduling for sporadic tasks.

The authors extend the pre-runtime Xu and Parnas’ algorithm in order to generate

cyclic schedules for the periodic tasks. They use a priority-based scheduling technique

for runtime scheduling of sporadic tasks. In that work, the authors propose some mod-

ifications to the search strategy used in [105]. They implemented a depth-first search

strategy, in such a way that the schedule that uses the first late segment helps to find a

partial valid initial schedule instead of the complete initial schedule. Therefore, there

is no need to reconstruct the complete schedule since rescheduling involves segments

that have been scheduled before.

Wang, Mok, and Folhler [99] proposed a pre-scheduling method, which is a static

scheduling without assuming a constant and completely predictable resource avail-

ability. They consider heterogeneous workloads consisting of event-driven as well as

time-driven. In an effort to adapt to such changes, an integration of runtime with pre-

runtime scheduling (in the paper called composition scheduling schemes) have been

proposed. The time-driven workload (called subject workload) is scheduled statically,

but it depends on a resource supply contract, which gives to critical time intervals the

maximum of time reserved to the subject workload. This reserved time is specified by

supply constraints, where the aggregate execution time of all jobs within the interval is

upper bounded by the supply contract. The remaining time (critical time intervals) is

used for the competitive workloads, where, in general, competitive workloads consist

in sporadic and aperiodic tasks. At runtime, a supply function guarantees the contract

is satisfied. Figure 3.1 shows the pre-scheduling framework.

Pre-scheduling aims to generate the execution order of jobs taking into account

precedence constraints. Nevertheless, when the time interval between ready time and

56 CHAPTER 3. RELATED WORKS

Figure 3.1: Pre-scheduling Framework

deadline (called valid scopes) of two jobs are overlapped, one of them is replaced by

two jobs (in this case meaning a preemption). However, up to this phase, just the valid

scopes are considered, not the execution time, where it is computed by a linear pro-

gramming (LP) solver. Figure 3.2 shows the pre-scheduler (upper part) and two ways

for generating schedules runtime. Black boxes in the row supply functions, indicate the

time intervals in which the resource is not supplied to the pre-scheduling space. These

time intervals are used to execute competitive workloads. Each schedule is shown as a

sequence of gray boxes. Two valid schedules are generated according to two different

valid supply functions, but the order of jobs defined by the pre-scheduler is always

followed.

The drawbacks of this method are the following:

1. This method does not consider exclusion relations between tasks. However, the

authors suggest (as future works) a combination between LP-based with search-

based in order to solve this problem; and

2. That work does not present any real-world case study in order to show how their

solution is applicable in an example having requirements that they propose to

solve. Another problem is that the paper does not make clear if competitive

workload might have hard or just soft deadlines.

3.3. PETRI NETS IN THE SCHEDULING THEORY 57

Figure 3.2: Pre-schedule and Online Generator

3.3 Petri Nets in the Scheduling Theory

Several authors also use Petri nets in scheduling theory. However, most of them are

only concerned with schedulability analysis, e.g. [93, 101], that is, they are concerned

with analysis whether firing sequences are schedulable or not.

Tsai et al. [93] propose the Timing Constraint Petri Net (TCPN), which is an

extended Petri net by associating a minimum/maximum timing constraint with each

transition and place, and a duration constraint for firing each transition. TCPNs use

weak firing rule (it does not force an enabled transition to fire) instead of strong firing

rule (transition is forced to fire if it remains enabled in its firing timing interval). TCPN

can be more expressive, but it is certainly more difficult to use, since they propose dif-

ferent interpretations of timing constraints on net structures (such as synchronization

and concurrency). As pointed out in Xu et.al. [101], their definitions of earliest begin-

ning firing time (EBFT), and latest fire ending time (LFET) for week/strong firable

transition are inconsistent with the meaning of the timing constraints. Xu et.al. [101]

show examples of the problem and conclude stating that the complex timing constraints

provide little help for modeling and analyzing real-time systems. Another problem is

that Tsai et al. [93] assumes that resources are always available upon request.

Xu et al. [101] present a compositional approach to the schedulability analysis

of complex real-time systems modeled using time Petri nets [64]. They propose an

58 CHAPTER 3. RELATED WORKS

alternative analysis technique, which separates the analysis of timing properties from

the analysis of other non-timing behavioral properties. Therefore, the analysis can be

conducted in two phases: reachability analysis without considering timing constraints,

and timing analysis of task sequences. For instance, reachability may verify whether a

transition sequence δ is an occurrence sequence reaching a certain marking Mn. Next,

the δ is analyzed to verify whether δ is schedulable (or Mn is reachable) by means

of δ with timing constraints. In that paper, an enabled transition t is said to be

schedulable under marking M if t can be the first transition to fire, i.e., can fire before

any other enabled transitions. Thus, a transition sequence δ = (t1 . . . ti . . . tn) is said to

be schedulable (or δ is a schedule) if all transitions in δ are schedulable in the given order.

In other words, there exists markings M1, . . . ,Mn such that M0t1M1 . . . tiMi . . . tnMn

is a firing sequence in the underlying net, and ti(1 ≤ i ≤ n) is schedulable under Mi−1.

The main contributions of Xu et al [101] are twofold: (1) they propose an approach

for determining whether a specific transition sequence is schedulable or not, calculate

the time space of a schedulable task execution, or discover exactly non-schedulable

transitions to help adjust timing constraints and correct design errors; and (2) a com-

positional approach to deal with complex task sequence, where a firing sequence is

decomposed into a number of subsequences. The main restriction of [101] is that they

just consider mono-processor architectures.

Bruno et. al. [17] present a schedulability analysis, using high-level Petri nets,

based on PROTOB formalism (an object-oriented methodology). That work does not

generate feasible schedules, but it relies on Xu and Parnas’ algorithm in order to find

them.

The scheduler synthesis proposed by Altisen et.al. [4] uses an extension of Petri

nets called PND (Petri Nets with Deadline) as modeling language and TAD (Timed

Automata with Deadlines) as semantic model. Their approach synthesizes all dynamic

runtime scheduling satisfying a given property. In spite of their claim that using syn-

chronization modes lower the complexity, they do not directly address the state explo-

sion problem, stressed by the authors as a limitation of their approach.

3.4 Code Generation

There are several works that deal with code generation. However, code generation

considering hard timing constraints is little explored.

Lin [55] proposes a software synthesis approach based on static compilation that

generates ordinary C programs at compile-time without including (or generating) a

3.4. CODE GENERATION 59

runtime scheduler. Lin considers mono-processor asynchronous process-based speci-

fications written using a C-like programming language. The C language extension is

based on CSP formalism, where it provides mechanisms not found in C for concurrency

and communication. The specification is automatically translated into Petri nets by

using compositions (sequential, parallel, choice, recursive) [24]. The author advocates

that a key advantage for choosing Petri nets is that ordering relations across process

boundaries are made explicit. Another advantage is that the C code generated can

be easily re-targeted to different processors without requiring a runtime kernel. Af-

ter the composition, all internal communication between nets disappear. The code

is generated starting from a control-data-flow graph, which is constructed based on a

traversal of an expansion (an acyclic Petri net fragment), but the Petri net firing rules

is modified to consider the levels defined by a pre-ordering, such that transitions have

levels (or priorities) called π(t) in such a way that, if ti precedes tj, then π(ti) < π(tj).

The main drawback of this approach is that it does not consider timing and resource

constraints, which are key aspects in many embedded systems. Another problem is that

this approach is based on the strong assumption that the Petri net is safe (places can

only store at most one token). Safeness implies that algorithm always finishes, since

it is impossible from one place to accumulate tokens, and, consequently, systems are

always schedulable. Therefore, there is no need to check whether a specification is

schedulable. However, this assumption may considerably limit the modeling.

Cornero et al. [23] propose a methodology for development of real-time information

processing systems, which are systems that perform different kinds of functionalities,

such as signal processing and control-intensive tasks. The specification is based on

concurrent communicating processes with real-time constraints. Then, this specifica-

tion is translated into a set of program threads, whose behavior generally starts with

a non-deterministic operation, where its execution time is unknown at compile time,

such as wait statement. The purpose of extracting program threads from concurrent

processes is to isolate all the uncertainties related to the execution delay of a given

program. However, by their definition of program threads, this isolation only occurs

at the beginning of program threads. A program thread can be in one of four states:

(i) disabled, indicating a state of inactivity; (ii) enabled, i.e. waiting for a specific event

to occur; (iii) active, where it is ready to run; and (iv) running, that is, it is under

execution. Using explicit commands, the designer can impose dependencies between

threads.

Program threads are represented by a constraint graph model, such that where

vertexes represent threads, and edges represent precedence relations and timing con-

60 CHAPTER 3. RELATED WORKS

straints. The consistency of the constraint graph, with respect to timing constraints, is

introduced by the concept of well-posedness. Thus, a feasible timing constraint is well-

posed if it can be satisfied for all values of the unbounded delays from non-deterministic

operations. Specifically, a timing constraint is feasible, if it can be satisfied when the

delays of all events (i.e. non-deterministic operations) in the constraint graph are set

to zero. In the next phase on the proposed methodology, the initial constraint graphs

are partitioned into disjoint clusters of threads (also called thread frames), where each

cluster is triggered by a single event, in such a way that, analysis and synthesis can

be readily executed. Next, static scheduling is performed for determining the relative

ordering of threads in the same thread frame. This ordering is not changed anymore.

Based on the imposed timing constraints and on the relative thread ordering within

each frame, the time slack of each thread is determined (indicating the amount of time

the end of a thread can be postponed). The static information is finally used at runtime

by the dynamic scheduler, whose aim is to combine different thread frames according

to runtime system evolution.

Cornero’s methodology [23] can not be applied to safety time-critical systems, since

it is not guaranteed that all timing constraints will be satisfied. This situation oc-

curs because the approach considers that the arrival time of events is unknown at

compile-time, where this is reflected in the specification model by associating a non-

deterministic delay to event nodes. There are some situations in which the expected

conditions are not satisfied, mainly due to system overloading. Moreover, schedula-

bility analysis is not considered. Another issue concerns the assumption that events

always occur just at the beginning of the threads’ execution. This assumption may not

be efficient for long execution time of threads, since valid orderings may be discarded

because of the above approximation. Thus, this effect can only be reduced if the length

of threads is limited.

Sgroi et. al. [83] proposed a method for software synthesis considering a quasi-

static scheduling algorithm using a Petri net formalism. One restriction of this ap-

proach is that it is only applicable to a Petri net subclass, namely, free-choice Petri

nets [25]. However, this subclass exhibits a clear distinction between concurrency and

non-deterministic choices. The Petri net is partitioned in a number of tasks. Each

task is generated considering one source transition with independent firing rate (rep-

resenting the input from environment), which guarantees that the number of tasks is

minimum. Moreover, that feature allows a runtime overhead reduction and, conse-

quently, performance improvement.

A free-choice Petri net is considered schedulable if, for each possible choice, there

3.4. CODE GENERATION 61

exists a cyclic finite sequence in such way that it always return to the initial marking.

This is necessary to guarantee that no place will accumulate tokens arbitrarily, provid-

ing a way for estimating the amount of memory needed. If the net is schedulable, the

quasi-static scheduling is generated through decomposition of the net in conflict-free

components. Starting from a feasible schedule, a C code is generated by traversing the

schedule and replacing transitions with the respective associated code.

This solution has some limitations. First, it does not consider timing constraints.

This limitation reduces the applicability of this solution since most of embedded sys-

tems are time-sensitive. Second, they do not explicit how to deal with memory usage

estimation using Petri nets. Finally, they propose that the generated tasks are to be

scheduled by a real-time operating system. However, they do not take into account

schedulability analysis.

Su and Hsiung [91] improved the quasi-static scheduling proposed by Sgroi et.

al. [83], in the sense that they do not use free-choice Petri net, but a complex-choice

Petri net. In this net, it is possible to have confusions, i.e., a mixing of conflict and

concurrent transitions. The semi-static scheduling generation is almost the same as

presented in [83], except by the fact that transition’s firing may depend not only on

one place. Transitions which participate on a confusion, are separated into a complex

choice set (CCS). In order to analyze each CCS, an exclusion table is produced, where

a transition mutually excludes another transition, if the firing of one disables the other

one. Based on the exclusion table, a CCS is decomposed into two or more conflict-free

sub-nets. The remaining of the algorithm is equal to the Sgroi’s algorithm.

In the code generation phase, the authors added threads generation, where each

transition source corresponds to a thread. Therefore, a thread is activated whenever

there is an input event. The code generation algorithm for each thread visits all places

and transitions, starting from the source transition. The authors use a semaphore to

access the variable that controls a token, since two or more threads may be concurrently

accessing the same variable.

The problems with this approach are as follows: (i) The same way as [83], they do

not show how the threads are scheduled; (ii) The proposed algorithm uses semaphores

in all places. However, if applications have only free-choice, there will be unnecessary

overheads; (iii) Although the paper is related to code generation, they do not show any

generated code; and (iv) Although mentioned that their approach could estimate the

maximum memory usage, that work does not show how to obtain such memory limit.

Hsiung [42] presents a formal software synthesis based on Petri nets, mixing quasi-

static scheduling (for dealing with task generation with limited memory), and dynamic

62 CHAPTER 3. RELATED WORKS

fixed-priority scheduling (for satisfying hard real-time constraints). The aim of Hsiung’s

work is to give a more complete vision of the software synthesis process not detaining

only in the task generation, but also in the schedule of these tasks. The software is

specified as a set of time free-choice Petri nets (TFCPN), which is a free-choice Petri

nets (FCPN) extended with time. Therefore, confusions are not allowed. The time

semantics is equal to the time Petri net [64]. The algorithm for quasi-static scheduling

is the same as one presented in [83]. As in this scheduling each conflict-free component

corresponds to a cyclic finite sequence, the execution time interval can be calculated by

the sum of all EFT (earliest firing time) and LFT (latest firing time). For each TFCPN,

the maximum LFT is chosen as the worst-case execution time to this TFCPN. In this

way, a real-time scheduling algorithm, such as rate monotonic or deadline monotonic,

may be used to schedule the TFCPN. In the code generation, a real-time process is

created for each TFCPN. In each process, a task is created for each transition with

independent firing rate.

The main drawbacks of this approach are: (i) the schedulability analysis is carried

out manually; (ii) the limit of memory can be checked by observing the maximum

number of tokens in each place. The problem is that it is assumed that each data

has constant and fixed space, which is not always true; (iii) the case study presented

is not a real-world example, instead it is a hypothetical example; and (iv) although

applying dynamic scheduling, it is not shown how to add preemption in the proposed

methodology.

Amnell et al. [5] present a framework for development of real-time embedded sys-

tems based on timed automata extended with real-time tasks, that is, a timed automata

with annotated code. They describe how to compile the design model to executable

programs with predictable behavior. Their solution is well suited for independent

tasks, since it relies on a fixed-priority scheduling, where this policy may not reach

feasible schedules when considering arbitrary intertask relations (such as precedence

and exclusion relations).

3.5 Summary

This chapter summarized the main works related to scheduling and code generation.

Scheduling is a topic studied for many years. Although restricting this chapter to only

real-time scheduling, there are an enormous amount of works. Therefore, this chapter

just presented a summary of pre-runtime scheduling methods. This chapter also shows

related works with multiple operational modes and hybrid scheduling. Although there

3.5. SUMMARY 63

are several works that propose software synthesis (scheduling + code generation) tools,

none of them is intended for generating code for embedded hard real-time systems. So

far, software synthesis for time-critical systems is a research area little explored.

Chapter 4

Petri Nets

The aim of this chapter is to introduce Petri nets and some extensions. This chapter

is divided in five basic sections. First, Section 4.1 presents a brief introduction. This

section depicts transition enabling and what follows after transition firing, what the

elementary nets are, and the main subclasses of Petri nets. Section 4.2 deals with the

main models for several situations often present in most systems, for instance, how

to model parallel processing and mutual exclusion relations. Three important timing

extensions are shown in Section 4.3, that is, time Petri nets, timed Petri nets, and

stochastic Petri nets. In the following, Section 4.4 describes behavioral and structural

properties, and presents the main methods for the analysis of such properties. The

main techniques are reachability-based methods, structural methods, and reduction

rules. Finally, Petri net synthesis is shown in Section 4.5 which overviews synthesis of

large nets.

4.1 Introduction

Petri nets (PN) were introduced in 1962 by the PhD dissertation of Carl Adams

Petri [76], at Technical University of Darmstandt, Germany. The original theory was

developed as an approach to model and analyze communication systems. The simple

Petri net has subsequently been adapted and extended in several directions. Many

extensions to the simple Petri net model have been developed for various modeling

and simulation purposes. The main such extensions are: inhibitor arcs, deterministic

and stochastic timed nets, and high-level nets, such as object-oriented nets and colored

nets. Nowadays, Petri net is a well-established formal description technique for con-

current systems. Several research groups in all around the world adopt such formalism

in theoretical foundations as well as in practical development.

64

4.1. INTRODUCTION 65

Petri net can be defined as a mathematical formalism that allows specification

and verification of systems. It is possible to model systems, using Petri nets, that

are: concurrent (with real parallelism or not), synchronous or asynchronous, and/or

deterministic or non-deterministic.

Place/Transition Petri nets are one of the most prominent and best studied class

of Petri nets. This class is sometimes called just Petri net [26].

A marked Place/Transition Petri net is a bipartite directed graph, usually repre-

sented by a quintuple PN= (P, T, F,W,m0) such that,

• P = {p1,p2,...,pn};

• T = {t1,t2,...,tm};

• F ⊆ (P × T) ∪ (T × P) is a flow relation for the set of arcs;

• W : F → N
+ is a weight function for the set of arcs;

• m0 is the initial marking.

This class of Petri net has two kinds of nodes, called places (P) and transitions (T),

such that P ∩ T = ∅. The set of arcs F is used to denote the places connected to a

transition (and vice-versa). W is a weight function for the set of arcs. In this case,

each arc is said to have multiplicity k, where k represents the respective weight of the

arc.

A marked Petri net contains tokens, which reside in places, travel along arcs, and

their flow through the net is regulated by transitions. The set of reachable markings

is denoted by m = {m0,m1, · · · ,mi, · · · }, where m0 represents the initial marking.

Although the definition of reachable marking set may have infinite markings, in the

context of this thesis it is assumed that this set is finite. A marking mi of a Petri net is

an assignment of tokens to the places in that net. The vector mi = (mi1 ,mi2 , · · · ,min)

gives, for each place in the Petri net, the number of tokens in that place at respective

marking mi. Therefore, the number of tokens in place pj at marking mi is mij , for

j = 1, ..., n. It may also be defined a marking function mi : P → N, from the set

of places to the natural numbers. This allows using the notation mi(pj) to specify

the number of tokens in place pj at marking mi. In this case, for a marking mi,

mij = mi(pj). In this thesis both notations are used interchangeably.

High-level Petri nets may have complex types of markings, for instance, the marks

may be individualized by a color, or the mark may be a complex data structure.

Examples of high-level Petri nets are: colored Petri nets, object-oriented Petri nets,

66 CHAPTER 4. PETRI NETS

Table 4.1: Interpretation for places and transitions

input places transitions output places

pre-conditions events post-conditions

input data computation step output data

input signals signal processor output signals

resource granting tasks resource releasing

conditions logical clauses conclusions

buffers processor buffers

predicate/transition Petri nets, environment/relationship, and so on. However, high-

level Petri nets are beyond the scope of this thesis.

The Petri net mathematical formalism may be graphically represented, which al-

lows the visualization of processes, communication between them, and gaining an un-

derstanding of a particular model. Petri net graph uses circles and bars (or rectangles)

to represent places and transitions, respectively. The arcs are represented by edges

between the two types of nodes. The multiplicity of an arc is indicated by an inte-

ger adjacent to the arc. When the multiplicity is one, generally it is omitted in the

graphical representation. Markings are represented graphically by dots.

Transitions are active components, whereas places are passive components. There

are several interpretations for transitions and places. For instance, it can be adopted the

concept of condition (place) and event (transition), where an event may have several

pre- and post-conditions. Table 4.1, based on [70], shows other interpretations for

places and transitions.

The set of input transitions (also called pre-set) of a place pi ∈ P is:

•pi = {tj ∈ T | (tj, pi) ∈ F}

and the set of output transitions (also called post-set) is:

pi• = {tj ∈ T | (pi, tj) ∈ F}

The set of input places of a transition tj ∈ T is:

•tj = {pi ∈ P | (pi, tj) ∈ F}

and the set of output places of a transition tj ∈ T is:

tj• = {pi ∈ P | (tj, pi) ∈ F}

4.1. INTRODUCTION 67

4.1.1 Transition Enabling and Firing

The behavior of many systems can be described in terms of system states and their

changes. In order to simulate the dynamic behavior of a system, a state (or marking)

in a Petri net is changed according to the following firing rule:

1. A transition t is said to be enabled, if each input place p of t is marked with at

least the number of tokens equal to the multiplicity of its arc connecting p with

t.

2. An enabled transition may or may not fire. It depends on whether or not the

respective event takes place.

3. The firing of an enabled transition t removes tokens (equal to the multiplicity of

the input arc) from each input place p, and adds tokens (equal to the multiplicity

of the output arc) to each output place p’.

P = {p1, p2, p3}

T = {t1}

F = {(p1, t1), (p2, t1), (t1, p3)}

W = {(p1, t1)=1, (p2, t1)=2, (t1, p3)=1}

m0 = (1, 3, 0)

(a) (b)
(c)

Figure 4.1: Petri net. (a) Mathematical formalism; (b) Graphical representation before

firing of t1; (c) Graphical representation after firing of t1

Figure 4.1(a) shows a Petri net mathematical formalism for a model with three

places and one transition. Figure 4.1(b) outlines its respective graphical representation,

and 4.1(c) provides the same graphical representation after the firing of t1.

Figure 4.2: Source and sink transition before and after the firing

68 CHAPTER 4. PETRI NETS

A transition without any input place is called a source transition, and one without

any output place is called a sink transition. A source transition is unconditionally

enabled, and the firing of a sink transition consumes tokens, but does not produce any.

A pair of a place p and transition t is called a self-loop if p is both an input and output

place of t. A Petri net is said to be pure if it has no self-loops. Figure 4.2 shows source

and sink transitions before and after the respective firing.

P1 P0 P0 P0 P0 P1

P1

P1

P1P2 P2 P2
P2 P2

t1 t0 t0 t0 t0t1 t1

(a) (b) (c) (d) (e)

P0

t0

Figure 4.3: Elementary Structures

4.1.2 Elementary Nets

Elementary nets are used as building blocks in the specification of more complex appli-

cations. Figure 4.3 shows five structures, namely, (a) sequence, (b) fork, (c) synchro-

nization, (d) choice, and (e) merging.

Sequence

The sequence is a structure that represents sequential execution of action execution,

provided that a condition is satisfied. After the firing of a transition, another transition

is enabled to fire. In Figure 4.3(a) a mark in place p0 enables transition t0, and with

the firing of this transition, a new condition is established (p1 is marked). This new

condition allows the firing of transition t1.

Fork

This net (see Figure 4.3(b)) allows the creation of parallel processes.

4.1. INTRODUCTION 69

Synchronization (or Join)

Generally, concurrent activities need to synchronize with each other. This net (Fig-

ure 4.3(c)) combines two or more nets, allowing that another process continues this

execution only after the end of predecessor processes.

Conflict (or Choice)

If two (or more) transitions are in conflict, the firing of one transition disables the

other(s). As you can see in Figure 4.3(d), the firing of transition t0 disables transition

t1. This building block is suited for modeling if-then-else statement.

Merging

The merging is an elementary net that allows the enabling of the same transition by

two or more processes. In the case of Figure 4.3(e) the two transitions (t0 and t1) are

independent, but they have an output place in common. Therefore, after the firing

of any of these two transitions, a condition is created (p2 is marked) which allows the

firing of another transition (not shown in the figure).

Figure 4.4: Confusions. (a) symmetric confusion; (b) asymmetric confusion

Confusions

The mixing between conflict and concurrency is called confusion. While conflict is a

local phenomenon in the sense that only the pre-sets of the transitions with common

input places are involved, confusion involves firing sequences. Two types of confusions

are shown in Figure 4.4: (a) symmetric confusion, where two transitions t1 and t3

are concurrent while each one is in conflict with transition t2; and (b) asymmetric

confusion, where t1 is concurrent with t2, but will be in conflict with t3 if t2 fires first.

70 CHAPTER 4. PETRI NETS

4.1.3 Petri Net Subclasses

Net subclasses is defined exclusively by introducing constraints on the structure of the

nets [88]. By restricting the generality of the model, it may improve the study of its

behavior. In particular, powerful structural results allow us to fully characterize some

properties, such as liveness and reversibility.

Based on [70], let us introduce five important subclasses depicted in Figure 4.5.

State Machine

In this subclass (state machine-SM) (Fig. 4.5(a)) each transition has just one input

and output arc, i.e.,

| • t| = |t • | = 1 for all t ∈ T .

State machines can represent conflict and merging structures, but not fork and

synchronization. Several properties are obvious in this Petri net class. For instance,

the number of tokens are always the same (conservative property), which results in a

finite system.

Marked Graph

The subclass called marked graph (MG) (Fig. 4.5(b)) restricts each place p to have

exactly one input transition and one output transition, i.e.,

| • p| = |p • | = 1 for all p ∈ P .

Marked graphs can represent concurrency and synchronization, but not conflict and

merging structures. An important property of marked graphs is that the number of

tokens in the net do not change with transition firing. It is easy to see whether the net

is live or safe, and the reachability problem is decidable.

Free-Choice Petri Nets

The free-choice (FC)) (Fig. 4.5(c)) is a Petri net such that every arc from a place is

either a unique outgoing arc or a unique incoming arc to a transition, i.e.,

p1 • ∩p2• 6= ∅ => |p1 • | = |p2 • | = 1 for all p1, p2 ∈ P .

In other words, a place may be input for several transitions, however, it is the

only input for these transitions. Free-choice allows the modeling of conflict as well as

modeling concurrency and synchronization. However, this subclass is more restricted

when compared with general Petri nets, since when a conflict exists either all conflicting

transitions are enabled or not. Therefore, the choice is made freely.

4.2. MODELING WITH PETRI NETS 71

Extended Free-Choice Petri Nets

Extended free-choice nets (EFC) (Fig. 4.5(d)) extend free-choice nets allowing more

complex conflict structures. EFC models the conflict of two or more transitions even

if they have more than one input places. However, in such case, the input set of each

of these conflicting transitions should be the same, i.e.

p1 • ∩p2• 6= ∅ => p1• = p2• for all p1, p2 ∈ P .

Asymmetric Choice (or Simple Net)

An asymmetric choice (AC) (Fig. 4.5(e)) is a Petri net such that

p1 • ∩p2• 6= ∅ => p1• ⊆ p2 • or p1• ⊇ p2• for all p1, p2 ∈ P .

In other words, asymmetric choice nets allow that each transition has at most one

input place shared with other transitions. The typical basic example of an asymmetric

choice net is the model of a system in which a resource is shared by two or more

processes [88].

(a) (b) (c) (d) (e)

Figure 4.5: Five fundamental Petri net subclasses

In summary, SMs admit no synchronization, MGs admit no conflict, FCs admit no

confusion, and ACs allow asymmetric confusion (Fig. 4.4(b)), but disallow symmetric

confusion (Fig. 4.4(a)) [70].

4.2 Modeling with Petri Nets

This section shows several classical problems and their respective Petri net models.

These models are represented by using elementary net structures presented in previous

section.

72 CHAPTER 4. PETRI NETS

P0

P1

P2

P3

P4

P5

T0

T1

T2

T3

Figure 4.6: Transitions T1 and T2 represents parallel activities

4.2.1 Parallel Processes

In order to represent parallel processes, a model may be obtained by composing the

model for each individual process with a fork and synchronization models. Two tran-

sitions are said to be parallel (or concurrent), if they are causally independent, i.e., one

transition may fire either before (or after) or in parallel with the other.

Figure 4.6 shows an example of parallel activity, where transitions t1 and t2 represent

parallel activities. When transition t0 fires, it creates marks in both output places (p1

and p2), representing a concurrency. When t1 and t2 are enabled for firing, they may

fire independently. The firing of t3 depends on two pre-conditions, p3 and p4, implying

that the system can only continue whether t1 and t2 have been fired.

4.2.2 Mutual Exclusion

Some applications require sharing of resources and/or data. Most of resources and data

should be accessed in a mutual exclusive way. Usually, the resource (or data variable)

is modeled by a place with tokens representing the amount of resources. This place is

seen as pre-conditions for all transitions that need this resource. After the use of the

resource, it must be released.

Figure 4.7 shows an example of a machine accessed in a mutual exclusive way.

4.2.3 Dataflow Computation

Petri nets can be used to represent not only the control-flow but also the data-flow.

The net shown in Figure 4.8 is a Petri net representation of a dataflow computation. A

dataflow is characterized by the concurrent instruction execution (or transitions firing)

as soon as the operands (pre-conditions) are available. In the Petri net representation,

4.2. MODELING WITH PETRI NETS 73

P1 P2 P3

P4

start end

P5 P6

machine

Figure 4.7: Mutual Exclusion

tokens may denote values of current data as well as the availability of data. The

instructions are represented by transitions.

duplicate

a
a

a

b

b

b

Add

Subtract

a+b

a-b

(a-b <> 0)

(a-b = 0) x is undefined

divide x = (a+b)/(a-b)duplicate

Figure 4.8: Dataflow Computation

4.2.4 Pipelined Systems

A very important point to be considered in the dataflow computation is the pipelined

model. In this architecture, data is processed by successive stages, in such a way that,

each stage is busy in each operation cycle.

Each stage manipulates only the data supplied in its input and provides this data

transformed to the next stage. The dataflow is well-established, since the communi-

cation is restricted to neighbor stages. Furthermore, a pipelined system is composed

by a number of stages which can be in simultaneous execution. Figure 4.9 shows a

pipelined system consisting of two functional units.

Transitions are explained as follows: t0 reads the input of stage A; t1 represents

the start of operations on stage A; t2 represents the writing of results in the output of

stage A; t3 means the start of data transfer between stages; and t4 represents the final

74 CHAPTER 4. PETRI NETS

operation of data transfer between stages A and B.

The same way, places are as follows: p0 is the system input; p3 means stage A input

is empty or not (marked or not); p4 means stage A output is empty; p1 means that

the input is on stage A; p2 means that the functional unit (stage A) is in operation;

p5 implies that stage A output has a data; p6 finishes the operations related to data

transfer from stage A to stage B. Similarly, the same operations are valid for stage B.

p0

p1

p2

p4 p7 p10

p12

p11p8p5
p3

p6 p9

Input Output

Functional Unit A Functional Unit B

t0

t2

t1

t3

t4

t6

t5

t7

Figure 4.9: Pipeline of two stages

4.2.5 Communication Protocols

Communication protocols are another area where Petri nets have been widely used to

represent and specify systems’ features as well as analysis of properties.

Communicating entities may be modeled in several ways: (i) a single transition

representing the communication (Fig. 4.10(a)); (ii) the explicit representation of mes-

sage flow (Fig. 4.10(b)); or (iii) representing the sending of message and the rspective

acknowledgment (Fig. 4.10(c)).

send-msg

msg

receive-msg

msg

ack

send-msg receive-msg

receive-ack

send-ack
msg

sender receiver

(a) (b) (c)

Figure 4.10: Communication Protocols

4.3. TIME EXTENSIONS 75

4.2.6 Producer-Consumer

Many other classical problems in concurrency have been modeled by Petri nets, among

them the dining philosophers, readers-writers and producer-consumer problems. The

producer-consumer problem represents two kinds of processes: producers and con-

sumers. Producer process generates objects that are stored in a buffer. A consumer

process waits until one (or more) object is stored in the buffer in such a way that it

can consume such an object. The net that models the producer-consumer problem is

depicted in Figure 4.11, where we can see the producer, the consumer, and the buffer.

The number of tokens in p0 and p2 indicate the number of producers and consumers,

respectively. Transition t0 represents production of items and transition t1 the storage

of this item into the buffer. The same way, transition t2 represents the item removal

from the buffer by the consumer, and t3 the consumption of the item.

p0

p1

buffer

p2

p3

Producer Consumer

t0

t1

t2

t3

Figure 4.11: Producer/Consumer

4.3 Time Extensions

The original definition of Petri nets does not include any notion of time and is aimed to

model only the logical behavior of systems by describing the causal relations between

events. The introduction of timing specification is essential if we want to use this class

of model to consider, for instance, performance, scheduling, real-time control, and

so on. It is worth noting that some applications have requirements not only related

to logical correctness, but also associated to the time at which results are produced.

In several areas, such as hardware and architecture computer design, communication

protocols, and software system analysis, timing is essential for assuring that systems

are correct.

The time introduction in Petri nets should not modify the basic structure of the

76 CHAPTER 4. PETRI NETS

underlying untimed model. It must however add mechanisms for computation of per-

formance metrics. There are different ways for incorporating timing in Petri Nets.

Time may be associated with places, tokens, arcs, and transitions. Since transitions

represent activities that change the state (marking) of the net, it seems natural to

associate time to transitions.

The firing of a transition in a Petri net model corresponds to an event that changes

the state of the real system. There are two different firing policies:

• Three-phase firing: a first instantaneous phase in which an enabled transition

removes tokens from its input places, then a timed phase in which the transitions

are working, and a final instantaneous phase in which tokens are deposited into

the output places. Such time information is called duration;

• Atomic firing: Tokens remain in input places during the whole transition delay;

after that period they are consumed from input places and generated in output

places when the transition fires. The firing itself does not consume any time.

Memory policies represent the way transitions are affected whenever a transition

fires [62]:

• Resampling: the timers of all transitions are discarded (restart mechanism). New

values of timers are reset for all enabled transitions at a new marking;

• Enabling memory: transitions that are still enabled in the new marking keeps

the value of the timer; transitions that are not enabled have their timers reseted.

The enabling time of a transition is measured since the last instant of time it

became enabled;

• Age memory: the timer value is kept, even if the transition is not enabled in

the new marking. Whenever this transition becomes enabled, the counting is

resumed from the kept value.

Lets take a look at three important classes of timed extensions: time Petri nets,

timed Petri nets, and stochastic Petri nets. However, many other time extensions have

been proposed and adopted by the research community.

4.3.1 Time Petri Nets

Time Petri net [64] is defined by (PN, I), where PN is an underlying Petri net, and

I is a time interval expressing timing constraints, where Ii = (EFTi, LFTi) associated

4.3. TIME EXTENSIONS 77

with each transition ti. EFT stands for earliest firing time and LFT stands for latest

firing time. This non-negative interval express the minimum and maximum time for

firing the respective transition. The firing policy adopted is the atomic firing.

An enabled transition ti may only fire in the interval EFTi ≤ δ ≤ LFTi, that is, ti

must be continuously enabled for at least EFTi time units. But what happen when a

transition ti is enabled for LFTi time units? The firing mode concept is related to this

issue.

There are two firing modes: strong and weakest firing modes. Consider that transi-

tion ti is enabled at time θ. According to the strong firing mode, a transition is forced

to fire at time θ+LFTi, if ti has not fired and has not been disabled by other transition

firing. The weakest firing mode, on the other hand, does not force an enabled transition

to fire, that is, an enabled transition may or may not fire.

The reader should note that time Petri nets are equivalent to the standard Petri nets

if all EFT = 0 and all LFT = ∞. It is also important to note that the set of reachable

markings of the time Petri nets is either equal to or a subset of the equivalent untimed

model. This is true because the enabling rules for the timed model are the same for

the untimed model. The only difference is due to the timing restrictions imposed on

the firing rules. Thus, the time information may restrict the set of reachable markings,

but never increase it.

4.3.2 Timed Petri Nets

A timed Petri net is a pair (PN,D) [78], where PN is a conventional Petri Net and D

is a function which associates a non-negative real number to each transition ti, known

as the firing duration of transition ti. Transitions in a timed Petri net are enabled

by a marking mi the same way as a conventional Petri Net. The firing of an enabled

transition is in accordance with the three-phase firing presented above. Transitions in

a timed Petri net must fire as soon as they are enabled. The memory policy of this

model is enabling memory.

4.3.3 Stochastic Petri Nets

If performance evaluation is to be considered in system design, stochastic analysis must

be used since the system behavior is not yet completely known in advance. State space

of the stochastic process underlying a stochastic Petri net is defined by its tangible

markings, and so, generation of the tangible reachability graph is a prerequisite for the

quantitative analysis of a stochastic Petri net.

78 CHAPTER 4. PETRI NETS

A Stochastic Petri net (SPN) [68] is a Petri net where each transition is associ-

ated with an exponential distributed random variable that express the delay from the

enabling to the firing of the transition. In a case where several transitions are simul-

taneously enabled, the transition that has the shortest delay will fire first. Due to the

memoryless property of the exponential distribution of firing delays, it has been shown

that the reachability graph of a bounded SPN is isomorphic to a finite Markov Chain,

that is, the Markov Chain of a SPN can be obtained from the reachability graph of the

underlying Petri net.

The SPN models are complex to be analyzed due to the very large number of

reachable markings and also because the presence in one SPN model of activities that

take place on a much faster time scale than the one relating to the events that are

critical to the overall performance. The result is linear equations that are difficult to

solve with an acceptable degree of accuracy by means of the usual numerical techniques.

In 1984, Marsan et al. [60] introduced Generalized Petri Nets (GSPN). The GSPN

comprises two type of transitions: (i) timed transitions (drawn as white boxes), where

they have exponentially distributed firing delays, and have a weight associated which

represents the parameter of the negative exponential probability density function of the

transition firing delay; and (ii) immediate transitions (drawn as thin black bars), which

are transitions with zero firing time, or zero delay, with priority over timed transitions

and the weight is used for the computation of firing probabilities. GSPNs also permit

the use of inhibitor arcs, priority functions, and random switches. Inhibitor arcs are

used to prevent transitions from firing when certain conditions are true. Priority

functions is defined for the marking in which both timed and immediate transitions

are enabled. Immediate transitions have higher priority. Random switch is used to

resolve conflicts between two or more immediate transitions. The random switch is

basically a discrete probability distribution. These additional modeling capabilities do

not destroy the equivalence with Markov chains. The authors showed that a stochastic

Petri net with exponentially distributed firing times is isomorphic to a discrete space

continuous-time Markov chain.

Deterministic and stochastic Petri nets (DSPN) [61] were introduced by Marsan

and Chiola as an extension to GSPN. DSPN allows association of timed transition

with either deterministic or an exponentially distributed firing delay. DSPN allows

the association of a timed transition either with a deterministic or an exponentially

distributed firing delay. Therefore, system features such as propagation delay, time-

out and processor rebooting times, which are associated with constant delay can be

represented in a DSPN by deterministic timed transitions.

4.4. PROPERTIES ANALYSIS 79

4.4 Properties Analysis

Petri nets are a powerful description technique, which is able to model a large variety

of problems present in most concurrent and real-time systems. However, Petri nets are

not only restricted to design modeling, but also, for analyzing or verifying properties

of the modeled system.

Four kinds of techniques have been used to test the properties of a given system:

verification, proof, analysis, and validation. Verification is a deterministic algorithm

for checking if a system have or not a given property. A proof technique is a formal

argument for asserting or not if a model has or has not a given property. Analysis

techniques provide a variety of information about properties. They are used as a basis

for further arguments, generally for verification algorithms. Validation methods are a

process for checking system reliability, that is, if the system has the expected behavior.

Validation can be applied in real system (by testing) or models (by simulation).

Two types of properties have been considered in a Petri net model: behavioral and

structural properties. Behavioral properties are those which depend on the initial mark-

ing. Structural properties, on the other hand, are those that are marking-independent.

This section presents some behavioral and structural properties.

4.4.1 Behavioral Properties

This section, based on [70], describes some behavioral properties, since such properties

are very important when analyzing a given system.

Reachability

Reachability is a fundamental basis for studying the dynamics of any system. Given a

Petri net PN and initial marking m0, one would like to know if a specific marking mi

may be reached from the initial marking m0. A marking mi is said to be reachable from

marking m0, if there exists a sequence of firings that transforms m0 to mi. A firing (or

occurrence) sequence is denoted by σ = t1t2 · · · ti. In this case, mi is reachable from m0

by σ. It is denoted by m0[σ > mi. The set of all possible reachable markings from m0

in a net (PN,m0) is denoted by R(PN,m0), or simply R(m0). The set of all possible

firing sequence from m0 in a net (PN,m0) is denoted by L(PN,m0), or simply L(m0).

Lipton [57] has shown that the reachability problem is decidable, although it needs

exponential space for system verification in the general case.

80 CHAPTER 4. PETRI NETS

Boundedness and Safeness

A Petri net is said to be k-bounded (or simply bounded) if the number of tokens in each

place does not exceed a finite number k for any reachable marking from m0. A Petri

net is said to be safe if it is 1-bounded.

Places in a Petri net are often used to represent buffers for storing intermediate

data. By verifying that a net is bounded (or safe), it is guaranteed that there will be

no overflows in the buffers, no matter what firing sequence is taken.

Liveness

A Petri net is said to be live if, no matter what marking has been reachable from m0,

it is possible to fire any transition of the net by progressing through some further firing

sequence.

The absence of deadlock is closely connected to the liveness concept. Actually, if

a system is deadlock-free, it does not mean that system is live, although if a system

is live it is certainly deadlock-free. Examples of deadlock-free non-live Petri nets are

those that have not any dead state but they have at least one transition which is never

fired.

Liveness is an ideal property for many real systems. However, it is very strong

and too costly to verify. Thus, the liveness condition is relaxed in different levels. A

transition t is said to be live at the following levels:

• L0-Live (dead), if t can never be fired in any firing sequence in L(m0), it is a

dead transition.

• L1-Live (potentially firable), if it can be fired at least once in some firing sequence

in L(m0).

• L2-Live if, given any positive integer k, t can be fired at least k times in some

firing sequence in L(m0).

• L3-Live if there is an infinite-length firing sequence in L(m0) in which t is fired

infinitely.

• L4-Live (or simply live), if it is L1-Live for every marking m in R(m0).

A net is classified as live at level i, if every transition is live at the same level i. It

is worth noting that transition live at level 4, is also live at levels 3, 2, 1.

4.4. PROPERTIES ANALYSIS 81

Reversibility and Home State

A Petri net is said to be reversible if, for each marking (or state) m in R(m0), m0

is reachable from m. Thus, in a reversible net one can always get back to the initial

marking (or state). This property is very important mainly in the context of control

systems.

In many applications, however, it is not necessary to get back to the initial state as

long as one can get back to some (home) state. Therefore, the reversibility condition is

relaxed in such a way that the net can always get back to another marking mk (where

mk 6= m0). Marking mk is defined as home state.

Coverability

Coverability is closed related to reachability. A marking m is said to be coverable, if

there exists a marking m′ in R(m0) such that m′(p) ≥ m(p), for each place p in the

Petri net. If a marking m′ covers marking m, it means that m may be reached from

m′.

Persistence

A Petri net is said to be persistent if, for any two enabled transitions, the firing of

one transition will not disable the other. A transition in a persistent net, once it is

enabled, will stay enabled until it fires. Persistency is closed related to conflict-free

nets. It is worth noting that all marked graph are persistent, but not all persistent

nets are marked graphs. Persistence is a very important property when dealing with

parallel system design and speed-independent asynchronous circuits.

Fairness

This concept is closely related to starvation. Such property is related to the possi-

bility of a given part of a computational system to get the control (or be executed)

forever. This is an important system property which should be carefully looked at in

the qualitative analysis phase.

Petri net literature presents many different points of view about the fairness concept

(e.g.[15, 95, 70]). This section presents two of them: bounded-fairness and unconditional-

fairness. According to the bounded-fairness (B-fair) concept, two transitions t1 and

t2 are said to be bounded if the maximum number of times that one fires, while the

other does not fire, is bounded. A Petri net is said to be a B-fair net if every pair of

transitions in the net are in a B-fair relation.

82 CHAPTER 4. PETRI NETS

A firing sequence σ is said to be unconditionally (or globally) fair if it is (i) finite;

or (ii) every transition in the net appears infinitely often in σ. A Petri net is said to be

unconditionally fair net if every firing sequence σ from m in R(m0) is unconditionally

fair.

Conservation

In a Petri net context, tokens can be used for resource modeling. In a conservative net

resources are neither created nor destroyed. Nets in which any transition firing does

not change the number of tokens within the net are said to be strictly conservative.

For each transition in such nets, the number of input places are equal to the number of

output places, since their structure does not allow for changes in the number of tokens.

However, this property is not only restricted to conservation of the number of

tokens. There exist nets that are not classified as strictly conservative, but they can

be converted into strictly conservative nets. Such nets are said to be conservative.

One token in one place may represent several resources that may later be used to

create multiple tokens by firing a transition with more output arcs than input arcs.

These nets may provide a weighted sum of tokens for all reachable markings of the net.

A conservative net is one in which the weighted sum of tokens is constant.

4.4.2 Structural Properties

Structural properties are independent of the initial marking. These properties are

only dependent on the topological structure of the net. Therefore, such properties can

often be described in terms of incidence matrix-based analysis methods. Thus, in this

section, the nets are assumed to be pure. This section will not present details about

any property. The interested reader is referred to [59, 70] for further information.

The main structural properties are:

• Structural Boundedness. As was seen in previous section, a net is bounded

if the bound of each of its places is finite for a given initial marking. A net is

structurally bounded if it is bounded for any initial marking.

• Structural Liveness. A Petri net is structurally live if it is live for at least one

initial marking.

• Structural Conservativeness. A particular kind of structural boundedness is

called structural conservativeness. Such nets provide a constant weighted sum of

tokens for any reachable marking when considering any initial marking.

4.4. PROPERTIES ANALYSIS 83

• Repetitiveness. A net is classified as repetitive if there is an initial marking m0

and an enabled firing sequence from m0 such that every transition of the net is

infinitely fired. If only some of these transitions are fired infinitely often in the

sequence σ, this net is called partially repetitive.

• Consistence. A net is classified as consistent if there is an initial marking m0

and an enabled firing sequence from m0 back to m0 such that every transition of

the net is fired at least once. If only some of these transitions are not fired in the

sequence σ, this net is called partially consistent.

4.4.3 Analysis Methods

Petri net analysis methods may be divided into three classes. The first method is graph-

based and it builds on the reachability graph (reachability tree). The reachability graph

is initial marking dependent and so it is used to analyze behavioral properties. The

main problem in using a reachability tree is the high computational complexity, even if

some interesting techniques are used [96], such as reduced graphs, graph symmetries,

symbolic graph, etc.

The second method is based on state equations. The main advantage of this method,

over the reachability graph, is the existence of simple linear algebraic equations that aid

in determining net properties. However, it gives only necessary or sufficient conditions

to the analysis of properties when it is applied to general Petri nets.

The third method is based on reduction laws. This method provides a set of trans-

formation rules which reduces the size of models while preserves system’s properties.

However, it is possible that, for a given system and some set of rules, the reduction

can not be completed.

Reachability Based Methods

The reachability tree (reachability graph) is a graphical representation of the reachable

marking set (R(m0)) for a given Petri net PN . If it is possible to compute all reachable

markings, and their reachability relations, almost all qualitative behavioral properties

could be analyzed.

The procedure to build this graph works in the following way: consider a Petri net

and a given initial marking. The initial marking is represented as a node. Considering

this marking, if two transitions (ti and tj) are enabled and by firing each transition, one

will reach two new markings. These new markings are represented as new nodes and the

arcs between markings are labeled by each transition fired. If this procedure is repeated

84 CHAPTER 4. PETRI NETS

over and over, every reachable marking will eventually be produced. Moreover, consider

a net in which a pair of transitions (ti and tj) is concurrent. In the reachability graph,

ti and tj seems to be conflicting. This situation shows that concurrency and mutual

exclusion on firings cannot be studied on the reachability tree alone.

A major problem of this approach arises with the analysis of systems in which the

number of reachable markings is infinite (unbounded systems). Due to the infinite

number of markings, such systems are not easily represented by enumeration. Hence,

in order to deal with such systems, a finite representation of the reachable graph has

been proposed. This graphical representation is called a coverability tree (coverability

graph) [75].

To keep this tree finite, we introduce a special symbol ω, which can be thought of

“pseudo-infinite”, which represents a number of tokens that can be made very large.

Therefore, for any integer n, ω > n, ω + n = ω, ω − n = ω, and ω ≥ ω.

The coverability tree can be built using the following algorithm:

1. Label the initial marking as the “root” and tag it as “new”;

2. While “new” markings exist do:

2.1. Select a “new” marking M ;

2.2. If no transitions are enabled at M , tag M as “dead-end”;

2.3. If M is identical to a marking on the path from the root to M , label M as

“old” and go to another “new” marking;

2.4. For all transitions enabled at M do:

2.4.1. Obtain the marking M ′ by firing a transition t enabled at M ;

2.4.2. If from the “root” to M there exists a marking M ′′ such that M ′(pi) ≥

M ′′(pi) for each place pi and M ′ 6= M ′′ then replace M ′(pi) by ω wher-

ever M ′(pi) > M ′′(pi);

2.4.3. Introduce M ′ as a node, labeling the arc with t and tag M ′ as “new”.

An optimized version of the algorithm given above has been described in [32].

Although this approach allows for deciding about important properties such as cover-

ability and boundedness, it does not permit one to deal with reachability, liveness and

reversibility [75]. Of course if the symbol ω is absent from the tree, this tree is the

reachability tree.

4.4. PROPERTIES ANALYSIS 85

Structural Methods

The dynamic behavior studied in many systems in engineering can be described by

differential equations or algebraic equations. The advantage over the coverability-tree

analysis is the existence of simple linear-algebraic equations that aid in determining

Petri net properties. It would be interesting if it was possible to model and ana-

lyze completely the dynamic behavior of Petri nets by equations. However, the non-

deterministic nature inherent to Petri net models and the constraints of the solution

as non-negative integers make the use of such an approach somewhat limited. The

behavior of net models are non-linear, but the so-called state equation represents an

interesting linear relaxation. Nevertheless, the state equation may provide spurious

solutions [22], that is, a marking ms that results from the state equation, but do not

belong the reachability set (ms /∈ R(m0)).

Because of spurious solutions, this approach usually leads to semi-decision algo-

rithms, or rather, it only provides necessary or sufficient conditions for the analysis

of such behavioral properties as reachability, boundedness, liveness and reversibility.

Thus, for certain properties analysis it permits a fast diagnosis without enumeration.

Spurious solutions can be removed using some other approaches, for instance the inclu-

sion of implicit places [22]. A place is defined as implicit if it can be removed without

changing the behavior of the net. Thus, the addition of implicit places generates a new

model with identical behavior. The problem consists in where to insert the implicit

places.

Whenever matrix equations are discussed, it is assumed that a Petri net is pure or

is made pure by adding a dummy pair of a transition and a place.

Incidence Matrix

For a Petri net PN with n transitions and m places, the incidence matrix A = [aij] is

a m × n matrix of integers and its typical entry is given by: aij = [a+
ij − a−

ij], where

a+
ij = w(i, j) is the weight of the arc from transition i to its output place j, and

a−
ij = w(j, i) is the weight of the arc to transition i from its input place j. Thus, a−

ij,

a+
ij, and aij represent the number of tokens removed, added, and changed in place j

when transition i fires once.

For instance, the incidence matrix A of the net in Figure 4.12 is as follows:

a b c d e f

86 CHAPTER 4. PETRI NETS

Figure 4.12: A Simple Petri net

p1 −1 0 0 1 0 0

p2 2 −1 0 0 0 0

p3 0 1 0 −2 0 0

A = p4 1 0 −1 0 −1 1

p5 0 0 1 −1 0 0

p6 0 0 0 0 1 −1

State Equation

A marking Mk is written as a m × 1 column vector. The jth entry of Mk denotes the

number of tokens in place j immediately after the kth firing in some firing sequence.

The kth firing, uk, is an n × 1 column vector of n − 1 0’s and one nonzero entry, a 1

in the ith position indicating that transition i fires at the kth firing. Since the ith row

of the incidence matrix A denotes the change of the marking as the result of firing a

transition i, the following state equation for a Petri net can be written [69]:

Mk = Mk−1 + AT uk, k = 1, 2, . . . (4.1)

Necessary Reachability Condition

Suppose that a destination marking Md is reachable from M0 through a firing sequence

{u1, u2, . . . , ud}. Writing the state equation for i = 1, 2, . . . , d and summing them, it is

obtained

Md = M0 + AT u (4.2)

4.4. PROPERTIES ANALYSIS 87

which can be rewritten as

AT u = ∆M (4.3)

where ∆M = Md − M0 and u =
∑d

k=1 uk. Here u is an n × 1 column vector of

nonnegative integers and is called the firing count vector. The ith entry of u denotes

the number of times that transition i must fire to transform M0 to Md.

In fact, if a marking Md is reachable from another initial marking M0, then u

is a vector of non-negative integers. Moreover, the converse is not necessarily true.

If the state equation results in nonnegative integer solution u, Md may or may not

be reachable from M0. Hence, this is a necessary but not sufficient condition for

reachability. However, if no solution is found, then the desired marking is not reachable.

This is one of the drawbacks of this method.

Invariants

An P-invariant or S-invariant is an (m × 1) nonnegative integer vector x satisfying:

xT A = 0. (4.4)

Combining 4.2 and 4.4 yields

xT Md = xT M0. (4.5)

This equation implies that the total number of initial tokens in M0 weighted by the

P -invariant, is constant.

Similarly, a T-invariant is an (n × 1) nonnegative integer vector y satisfying:

Ay = 0. (4.6)

Combining 4.2 and 4.6 yields

Md = M0, (4.7)

with y = u. This implies that if the firing count vector is identical to a T -invariant,

then the final marking is equal to the initial marking.

Traps and Siphons

In order to help in verifying properties, such as deadlock and mutual exclusion, two

very useful set of places are considered: traps and siphons. Traps and siphons are a

new kind of invariants. Differently from those associated with flows, the invariant laws

associated with traps and siphons do not hold in every marking. However, once they

become true they remain true forever.

88 CHAPTER 4. PETRI NETS

Figure 4.13: A net for illustrating traps and siphons

A subset S of places such that S• ⊆ •S is called a trap. A trap is a set of places

such that any output transition of S is also an input transition of S. So, once a place

in a trap has a token, there will always be a token in at least one of the places in the

trap. Hence, a trap having at least one token can never lose all of its tokens.

A subset S of places such that •S ⊆ S• is called a siphon. A siphon is a set of

places such that any input transition of S is also an output transition of S. So, once

all places in a siphon have no token, there will never be a token in any place in the

siphon. Hence, a siphon having lost all of its tokens can never obtain a token again.

Suppose the net of Figure 4.13. S1 = {p3, p4, p5, p7} is a siphon since •S1 = S1• =

{t2, t3, t5, t6}. S2 = {p1, p2, p3} is both a siphon and trap (or a P-invariant).

Simple Reduction Rules

Another very common and useful technique for qualitative analysis is the transfor-

mation based approach. Analysis of properties in large dimension nets is not trivial.

Therefore, the availability of methods that allow for transforming models while preserv-

ing system properties has been studied. Normally, these transformations are reductions

that are applied to the models in order to obtain smaller models preserving qualitative

properties of the original ones. The reduction techniques are based on transforma-

tions of the original net into a more abstract model in such a way that properties such

as liveness, boundedness and safeness are preserved in the models obtained by these

reductions.

This section only presents simple reduction rules. For more detailed information

on this topic, readers may refer to [14, 70]. The following rules transform the nets by

applying fusion of places and transitions, and by elimination of loops. It is not difficult

to see that the following six operations preserve the properties of liveness, safeness,

4.5. PETRI NET SYNTHESIS 89

and boundedness:

1. Serial Places Fusion.

2. Serial Transitions Fusion.

3. Parallel Places Fusion.

4. Parallel Transitions Fusion.

5. Self-Loop Places Elimination.

6. Self-Loop Transition Elimination.

Figure 4.14 depicts these six transformations (reduction rules).

� � � �� �
� � � � � �

� � � � � �
Figure 4.14: Six transformations preserving properties

4.5 Petri Net Synthesis

The aim of this section is to present an overview of Petri net synthesis including

bottom-up, top-down, and hybrid techniques. Each sub-section also discusses the effect

of the technique on net preservation of properties, such as liveness, boundedness, and

90 CHAPTER 4. PETRI NETS

reversibility. This section is related to state-space generation methods and it is based

on [27].

Petri nets have been applied for modeling several kinds of concurrent systems.

However, problems arise when the system to be modeled is complex, yielding very

large models, which are difficult to analyze. There are two general approaches for Petri

net modeling. One is to model the system using a systematic procedure, and follow

that by analysing if this model has the desired properties. However, the number of

states may make the analysis practically impossible. In order to address this problem,

transformation methods which reduce the size of the net while maintaining properties

of interest have been developed. Thus, analysis can be performed on the reduced net.

However, this method may not be sufficient. For instance, reductions are not so efficient

for systems that have many shared resources. An alternative approach is to develop a

systematic modeling method which guarantees the design properties. These synthesis

methods may eliminate the need for analysis and avoid state space explosion problem.

4.5.1 Bottom-up Synthesis

The use of bottom-up or modular compositions methods is commonly used in method-

ologies for system design. Usually, this method involves the specification of subsystems

(or modules) and some systematic procedure for combining such modules into an in-

tegrated system. These subsystems are usually very simple and easy to verify. Some

interactions are represented by common places, transitions or paths in the individual

subsystems. In each synthesis step, these interactions are considered, and the corre-

sponding subsystems are combined through merging these places and/or transitions

into a larger subsystem. Analysis of the combined net is usually performed immedi-

ately after each synthesis step, so when the final stage is reached, the analysis is greatly

simplified. In this case, at the end of the synthesis steps, the final system and some of

its important properties are obtained.

The first initiative in bottom-up techniques was proposed by Agerwala and Choed-

Amphai [6]. They proposed a systematic bottom-up approach for synthesizing con-

current systems modeled by Petri nets. They suggest that synthesis can start with

basic nets (or structures), which can be easily verified. At each synthesis step, sub-

nets can be merged in such a way that a set of places, say Pδ, is merged into a new

place. This is called 1-way merge. Figure 4.15 shows the net obtained by merging

Pδ = {p3, p6} to a place named p′. Argewala and Choed-Amphai have provided a the-

orem which states that after every 1-way merge, the P-invariants of the resultant net

can be known from the P-invariants of the subnets. In this case, if places in Pδ ⊆ PI,

4.5. PETRI NET SYNTHESIS 91

where PI is a P-invariant, the merged place p′ belong to a new P-invariant PI ′, such

that PI ′ = (PI − Pδ) ∪ {p′}.

p1

p2

p3

p6

p4

p5

p1

p2

p'

p4

p5

(a) (b)

Figure 4.15: An example of 1-way merge

Narahari and Viswanadham [71] extended the work of Agerwala and Choed-Amphai

in the sense that they allow places to be merged in more than one way at each synthesis

step, that is, more than one set of places can be merged at one step, and the properties

of the resultant net can be obtained. However, the basic principles are the same.

4.5.2 Top-down Synthesis

Top-down synthesis usually begins with an aggregate model of the system and neglects

low-level detail. Then, refinement is done in a stepwise manner to incorporate more

detail in the model. There are two commonly used schemes for refinements: expanding

places and expanding transitions. The refinements continue until the level of detail sat-

isfies the specification of the system. Top-down methods have the advantage of viewing

the system globally from the beginning to the end of the synthesis. In addition, many

researchers (e.g. Valette [94]) have made efforts to provide methods that guarantee

that each synthesis step does not lose important properties of the system so that final

analysis will not be necessary.

4.5.3 Hybrid Synthesis

Most systems are characterized by a high degree of concurrency, choice and shared

resources. Problems arise when the complexity of a real-world system leads to a large

Petri net which has many places and transitions. One way to construct such a large

net is using bottom-up methods and merging subnets. However, it may be practically

impossible to analyze it using reachability graph or invariant methods. Alternatively,

92 CHAPTER 4. PETRI NETS

top-down methods are powerful when faced with a complex system. However, when

confronted with detailed shared resources, the analysis problem again becomes practi-

cally impossible.

For overcoming limitations on bottom-up and top-down methods, hybrid synthesis

has been proposed. For a formal presentation see [109, 110]. In this method, particular

attention is given for dealing with shared resource in such a way that properties, such

as liveness, boundedness and reversibility are preserved.

This design process is divided in two main phases: (a) the top-down phase where

designers start with a first-level Petri net description, and use stepwise refinement

to include more details up to the desired level is achieved; and (b) the bottom-up

phase where the resource (in this case, places) are added to the net. In this way, the

complexity of the detailed problem is reduced.

In order to avoid the qualitative analysis for a complex system, this method includes

a set of mutual exclusion structures which are used in the proposed synthesis procedure.

It is worth noting that resources may be divided in two kinds: resources whose number

is either fixed or variable at design time. The number of the second kind of resources

should be determined such that the system is neither deadlocked nor starved. This

is done by finding the appropriate number of initial tokens in these resource places.

Therefore, both net structure and initial marking are designed so that the desirable

qualitative properties of the final Petri net are guaranteed.

DiCesare and Jeng [27] propose a complete hybrid synthesis procedure. Following

this procedure, a bounded, live and reversible Petri net model is synthesized. However,

the details about such procedure is beyond the scope of this section.

4.6 Summary

Petri nets are widespread used, since it provides a mathematical formalism, a graphical

representation, simulation tools, and techniques for supporting specification, analysis,

design, and code generation. This chapter introduced several concepts related to this

subject. The expressiveness in modeling was highlighted by describing several clas-

sical problems and their respective Petri net models. Among such models it can be

mentioned: parallel processing, mutual exclusion, communication protocols, pipelined

systems, and dataflow computation. Special attention was given to properties and

the main methods for the analysis of such properties. Finally, Petri net synthesis was

described as a way for dealing with synthesis of large nets.

Chapter 5

Modeling Embedded Hard

Real-Time Systems

This chapter describes the method for modeling embedded hard real-time systems. It

is composed by four sections: formal model, specification, modeling the specification,

and analysis and verification of the modeling.

The formal model syntax is given by a time Petri net [64], which is a Petri net

extended with time, and its semantics is given by a timed labeled transition system.

Usually, the specification is composed by a set of tasks and their inter-relations,

where such tasks are executed in one or more processors. This specification of tasks is

divided into constraints specification, and behavioral specification. The specification

of constraints comprises: (i) timing constraints, perhaps including inter-task commu-

nication time; (ii) inter-tasks relations, such as precedence and exclusion relations; (iii)

scheduling method (preemptive, non-preemptive, or defined subtasks); and (iv) alloca-

tion of tasks to processors. The specification of behaviors are composed by: (i) source

code of tasks; and (ii) communication pattern, whether adopted a multi-processor ar-

chitecture.

Modeling is defined as a process of creating a representation of the objects of the

specification. Usually, modeling is a simplified view of the system and just contains

the characteristics of interest. In this work, the proposed modeling adopts a formal

method to describe systems with timing constraints.

The model is used not only in representing the given specification, but also, for

analysis, and verification of properties. The most important system property to be

verified is its schedulability. However, this model has some interesting properties, such

as, boundedness and deadlock-freedom. Other properties of interest are verified by

using a model checking technique.

93

94 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

5.1 Proposed Formal Model

This section is divided into two subsections. The first one defines the computational

model that enforce timing constraints. It defines time Petri nets, enabled transition

set, implicit clocks for each enabled transition, states in a time Petri net, fireable

transition set and its respective firing domain for each fireable transition, generation

of new reachable states, and timed labeled transition systems. Another definition is

on the feasible firing schedule, since one of the aim of this thesis is to find a schedule

that satisfies all constraints. Later, time Petri net is extended in order to add code

and priorities.

The second subsection extends the first one in order to define a computational model

to deal with timing and energy constraints. Some previous definitions are redefined to

precisely represent both constraints.

5.1.1 Computational Model for Timing Constraints

Definition 5.1 (Time Petri Net) A time Petri net (TPN) is a bipartite directed

graph represented by a tuple P = (PN , I), where PN is the underlying marked Petri

net, and I : T → N × N, is a bounded static firing interval that represents the timing

constraints, such that I(t) = (EFT (t), LFT (t)) ∀t ∈ T and EFT (t) ≤ LFT (t).

A Petri net is defined in Section 4.1. This definition is an extension to the Petri nets

concepts in order to add timing constraints. This extension is performed by introducing

the static firing interval I(t) associated with each transition t ∈ T . Therefore, I is the

allowed timing interval for the respective transition firing. The lower and upper bound

of I(t) are called earliest and latest firing time, respectively. EFT is the minimal time

that must elapse, starting from the respective transition enabling, until this transition

can fire. LFT , on the other hand, denotes the maximum time during which the

respective transition can be enabled without being fired.

Time can be modeled as either discrete or continuous. However, considering that in

computers the time is not really continuous, since computers are always synchronized

by a clock, this thesis adopts only the discrete case. Moreover, this definition is not

a important issue, since discrete models may be acceptable depending on the time

granularity. Thus, the definition of I implies in discrete time semantics.

Figure 5.1(a) shows a simple time Petri net, where:

• P = {p0, p1, p2, p3, p4, p5, p6, p7};

• T = {t0, t1, t2, t3, t4};

5.1. PROPOSED FORMAL MODEL 95

t0
[0,0]

t1
[1,3]

t2
[2,5]

t3
[5,8]

t4
[0,0]

p0

p1

p2

p3

p4

p5

p6

p7 t0
[0,0]

t1
[1,3]

t2
[2,5]

t3
[5,8]

t4
[0,0]

p0

p1

p2

p3

p4

p5

p6

p7

(a) (b)

Figure 5.1: A Simple Example of Time Petri Net: (a) initial marking; (b) new marking

after firing if t0

• F = {(p0, t0), (t0, p1), (t0, p2), (t0, p3), (p1, t1), (p2, t2), (p3, t3), (t1, p4), (t2, p5),

(t3, p6), (p4, t4), (p5, t4), (p6, t4), (t4, p7)};

• W (x, y) = 1, ∀(x, y) ∈ F ;

• m0(p0) = 1, m0(pi) = 0, 1 ≤ i ≤ 7; and

• I = {(0, 0), (1, 3), (2, 5), (5, 8), (0, 0)}.

The firing interval I of some transitions may be equal to zero, which means that

these firings are instantaneous; all such transitions are called immediate, while the

others are called timed transitions. The set of transitions (Figure 5.1) shows that tran-

sitions t0 and t4 are immediate transitions, while the remaining are timed transitions.

Definition 5.2 (Enabled Transition Set) Let P be a time Petri net, and mi a

reachable marking. The set of enabled transitions at marking mi is denoted by:

ET (mi) = {t ∈ T | mi(pj) ≥ W (pj, t)}, ∀pj ∈ P.

Definition 5.2 is more formal than the one presented at Section 4.1.1. In the net in

Figure 5.1(a), only transition t0 is enabled at the initial marking m0.

Definition 5.3 (Clocks) Let P be a time Petri net, and mi a reachable marking. The

clock is defined by ci : ET (mi) → N, where ci is a clock function (or vector), which

represents the time elapsed since the respective transition enabling.

Each enabled transition has an implicit clock, which starts to count at the moment

the transition is enabled. The clock function depends on the enabled transitions, which

depends on the respective marking.

96 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

In order to not overload notations, it can be used interchangeably mi for a marking

function (mi : P → N) as well as for the marking vector (mi ∈ N
|P |). The same

notation is considered for ci as the clock function (ci : ET (mi) → N), and as the clock

vector (ci ∈ N
|ET (mi)|).

In this model, in accordance to Merlin and Faber [64], tokens remain in places up

to the firing of the transition. In this thesis, it is considered that this firing is instan-

taneous, that is, the firing takes no time. This means that, when firing a transition a

new state is reached instantaneously. The firing semantics is single server semantics

with restart [62], i.e., the firing strategy is to analyze the firing of a single transition

per time. This semantics also implies that no transition may be fired more than once

simultaneously, and its clock is reset to zero after the firing.

Considering the analysis of TPNs, it is necessary to distinguish between static and

dynamic firing intervals associated with transitions. I(t) is the static firing interval for

transition t. The dynamic firing interval (ID(t) = (DLB(t), DUB(t))), where DLB

stands for dynamic lower bound, and DUB stands for dynamic upper bound. ID is

computed as follows: DLB(t) = max(0, EFT (t)−c(t)), and DUB(t) = LFT (t)−c(t).

As it can be seen, ID(t) is dynamically modified whenever the respective clock variable

is incremented, and t does not fire. Initially, at the moment transition t becomes

enabled, I(t) = ID(t).

As an example, suppose that at the time θ transition t1 (Fig. 5.1(a)) is enabled.

In this case, we have: c(t1) = 0, ID(t1) = [1, 3]. At time θ + 1, c(t1) = 1 and

ID(t1) = [0, 2], t1 is now fireable, but supposes that it does not fire. At time θ + 2,

c(t1) = 2, ID(t1) = [0, 1]. If t1 does not fire again, at time θ + 3, c(t1) = 3 and

ID(t1) = [0, 0], where, in this case, t1 is forced to fire, since the strong firing semantics

is assumed.

Definition 5.4 (States) Let P be a time Petri net, M be the set of all reachable

markings of P, and C be the set of all clock vectors of P. The set of states S of P

is given by S ⊆ (M × C), that is, a single state is defined by a pair (m, c), where

m is a marking, and c is its respective clock vector for ET (m). The initial state is

s0 = (m0, c0), where c0(t) = 0, ∀ t ∈ ET (m0).

In time Petri nets, a marking is not sufficient to describe a complete state of the

system. Thus, the state must also include timing information. This is given by the

clock function that, for each enabled transition, gives the amount of time that has

elapsed since it has become enabled.

According to Definition 5.4, the state may change in two situations. The first is

5.1. PROPOSED FORMAL MODEL 97

related to time elapsing, not to transition firing. In this case, besides clock incremen-

tation, there is no marking changing. The second is related to state change due to

transition firings. In this case, changes occur in both marking and clock. Although,

by definition, the first type represents a state change, this is not considered in this

thesis. The following definition takes into account this aspect when defining fireable

transitions.

In Figure 5.1(a), the initial state is s0 = ([1, 0, 0, 0, 0, 0, 0, 0], [0]), that is, the place

m0 is the only marked, and t0 is the only fireable transition. Supposing that transition

t0 fires, the new reachable state is s1 = ([0, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0]), that is, there are

three places marked (p1, p2, and p3), and three enabled transitions (t1, t2, and t3),

where all three clocks have value equal to zero. Supposing also that at time θ = 1

transition t1 fires. The new reachable state is s2 = ([0, 0, 1, 1, 1, 0, 0, 0], [1, 1]), that is,

there are three places marked (p2, p3, and p4), and two enabled transitions (t2, and t3),

where both clocks have value equal to one.

Definition 5.5 (Fireable Transition Set) Let s = (m, c) be a state of a TPN .

FT (s) is the set of fireable transitions at state s defined by:

FT (s) = {ti ∈ ET (m) | DLB(ti) ≤ min(DUB(tk)) ∀tk ∈ ET (m)}.

This definition states the conditions that must be satisfied for the firing of a tran-

sition to be possible. This definition enforces the strong firing semantics, which estab-

lishes that an enabled transition t cannot fire before it has been enabled for EFT (t)

time units and no later than LFT (t) time units. As it can be observed, an enabled

transition is a necessary, but not sufficient condition for that transition to be fireable.

It is easy to verify that FT ⊆ ET ⊆ T .

Definition 5.6 (Firing Domain) Let s = (m, c) be a state of a TPN . The firing

domain for a fireable transition t at a specific state s, is defined by the following time

interval:

FDs(t) = [DLB(t), min (DUB(tk))], ∀tk ∈ ET (m).

Fireable transition t at state s is only fireable in the interval expressed by FDs(t).

As an example, let us suppose that transition t0 has fired in the net of Figure 5.1(a)

resulting in the marking represented in Figure 5.1(b). In this situation, there are three

enabled transitions, that is, t1, t2, and t3. However, transition t3 is not fireable, since

DLB(t3) is greater than the minimum DUB of all enabled transitions. Furthermore,

the firing domain for transition t1 is [1,3], and for transition t2 is [2,3], since the

minimum DUB is 3.

98 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

Definition 5.7 (Reachable States) Let P be a time Petri net, and si = (mi, ci) a

reachable state, t a fireable transition (t ∈ FT (si)), and θ a specific time value in the

firing domain of t (θ ∈ FDsi
(t)). A new reachable state sj =fire(si, (t, θ)) denotes

that firing a transition t at time θ from the state si, a new state sj = (mj, cj) is reached,

such that:

• ∀p ∈ P, mj(p) = mi(p) − W (p, t) + W (t, p), as usual in Petri nets;

• ∀tk ∈ ET (mj), Cj(tk) =



















0, if(tk = t)

0, if(tk ∈ ET (mj) − ET (mi))

Ci(tk) + θ, otherwise

In a state si, the firing of a fireable transition t, at a specific time instant θ, leads

to a new state sj.

Continuing the previous example, analyzing the firing domain for each fireable

transition (t1 and t2), it is observed that there are five firing possibilities (three for t1

and two for t2), which can lead to five different states.

Definition 5.8 (Timed Labeled Transition System) A timed labeled transition

system is a quadruple L= (S,Σ,→,s0), where S is a finite set of discrete states, Σ is an

alphabet of labels representing activities (or actions), → ⊆ S ×Σ× S is the transition

relation, and s0 ∈ S is the initial state.

The semantics of a time Petri net P is defined by associating a timed labeled

transition system LP= (S, Σ,→, s0), such that: (i) S is the set of states of P ; (ii)

Σ ⊆ (T × N) is a set of activities labeled with (tis, θ) corresponding to the firing of a

fireable transition at a specific time value (θ) in the firing interval FDs(t
i
s), ∀s ∈ S;

(iii) → ⊆ S × Σ × S is the transition relation; (iv) s0 is the initial state of P .

This definition states that the firing of a transition tis, at a specific time θi at state

(si−1) defines the next state (si). A state transition 〈s, (tis, θ), s
′〉 in →, is denoted by

s
(tis,θ)
−→ s′, implying that the system can change its state from s to s′ through activity

represented by (tis, θ).

One of the aims of this thesis is to provide a scheduling synthesis framework in such

a way that all timing constraints are satisfied. Scheduling, considering a time Petri net

model, imposes the existence of an additional control mechanism, called scheduler, for

firing a sequence of fireable transitions. This firing sequence is feasible if the following

definition is satisfied. As it is shown later (Section 6.1), one of the aims of this thesis

is to find such feasible firing sequence (or schedule).

5.1. PROPOSED FORMAL MODEL 99

Definition 5.9 (Feasible Firing Schedule) Let L be a timed labeled transition sys-

tem of a time Petri net P, s0 its initial state, sn = (mn, cn) a final state, and mn = MF

is the desired final marking. s0
(tk1,θk1)
−→ s1

(tk2,θk2)
−→ s2 → . . . → sn−1

(tkn,θkn)
−→ sn is defined

as a feasible firing schedule, where si+1 = fire(si, (tki, θki)), i ≥ 0, tki ∈ FT (si), and

θki ∈ FDsi
(tki).

The automatic system modeling of the proposed methodology (Section 5.3) guar-

antees that the final marking MF is well-known since it is explicitly modeled.

Considering that the desired final marking is a token in place p7, a feasible firing

schedule for the TPN model in Figure 5.1 might be:

s0
(t0,0)
−→ s1

(t2,2)
−→ s2

(t1,1)
−→ s3

(t3,3)
−→ s4

(t4,0)
−→ s5.

Definition 5.10 (Code-Labeled Time Petri Net) A code-labeled time Petri net

(CTPN) is represented by Pc = (P , C). P is the underlying time Petri net, and

C:T 9 SC is a partial function that assigns transitions to behavioral source code,

where SC is a set of source codes.

It is worth observing that C is a partial function, therefore, some transitions may

have no associated source code.

5.1.2 Computational Model for Timing and Energy Consump-

tion

The computational model considers also priorities and energy consumption values.

Definition 5.11 (CTPN with Priorities and Energy Consumption) A code-la-

beled time Petri net with priorities and energy consumption (CTPNPE) is represented

by PE = (Pc, π, E) Pc is the underlying CTPN, π : T → N is a priority function, and

E : T 9 N is a partial function that assigns transitions with energy consumption values.

It is assumed that highest priority gets lowest number. Thus, zero represents the

highest priority. In this work, when the priority is not specified, it is assumed that

the default value is assigned (π(ti) = 0). Considering that E is a partial function, this

definition implies that some transitions may have no associated energy consumption

value.

The definition of state in a time Petri net is also extended in order to consider the

accumulated energy consumption.

100 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

Definition 5.12 (States with Energy Consumption) Let PE be a CTPNPE, C

be the set of all clock vectors in PE , and M be the set of reachable markings of PE .

The set of states SE of PE is given by SE ⊆ (M × N
|ET (M)| × N), that is, a single state

is defined by a triple (m, c, e), where m is a marking, c is its respective clock vector

for ET (m), and e is the accumulated energy consumption up to this state. The initial

state is s0 = (m0, c0, e0), where c0(t) = 0, ∀t ∈ ET (m0), and e0 = 0.

The definition of fireable transition set is extended to taking into account transitions

that satisfy both priorities and energy constraints.

Definition 5.13 (Fireable Transitions with Priorities and Energy) Let PE be

a CTPNPE, s = (m, c, e) be a state of PE , and emax the energy maximum value con-

straint. FTE(s, emax) is the set of fireable transitions at state s defined by:

FTE(s, emax) = {ti ∈ ET (m) | (E(ti) + e ≤ emax) ∧ π(ti) = min (π(tk)) ∧

(DLB(ti) ≤ min(DUB(tk))) ∀tk ∈ ET (m)}.

In this new definition, an enabled transition (ti) to be fireable must also have

π(ti) = min (π(tk)). Another constraint is related to the energy maximum value (emax).

It is worth observing that FTE ⊆ FT ⊆ ET ⊆ T . The definition of firing domain is

the same as Definition 5.6.

The definition of reachable states is extended in the following way.

Definition 5.14 (Reachable States with Energy Constraint) Let PE be a CTP-

NPE, and si = (mi, ci, ei) a reachable state, t a fireable transition (t ∈ FTE(si, emax)),

E(t) the energy consumption related to transition t firing, and θ a specific time value

in the firing domain of t (θ ∈ FDsi
(t)). sj =fire(si, (t, θ)) denotes that firing a

transition t at time θ from the state si, a new state sj = (mj, cj, ej) is reached, such

that:

• ∀p ∈ P, mj(p) = mi(p) − W (p, t) + W (t, p), as usual in Petri nets

• ej = ei + E(t)

• ∀tk ∈ ET (mj), cj(tk) =



















0, if(tk = t)

0, if(tk ∈ ET (mj) − ET (mi))

ci(tk) + θ, otherwise

A new state sj is reached from state si through the firing of a fireable transition (t ∈

FTE(si, emax)), at a specific time instant (θ ∈ FDsi
(t)). Additionally, Definition 5.14

is different from Definition 5.7 in the sense that it accumulates, on the new reachable

state, the energy consumption value (E(t)) of the fireable transition (t).

5.2. SPECIFICATION MODEL 101

5.2 Specification Model

This section depicts the specification model considered in this thesis. As introduced

in Section 1.5, one of the results of the user requirement analysis is the specification

model. The specification model construction consists of the following steps:

1. defining the timing constraints of a set of cooperating sequential tasks;

2. identifying all critical sections, that is, code of sections that access shared re-

sources, as well as any code sections of tasks that must be executed before some

sections of other tasks;

3. dividing each task into subtasks such that appropriate exclusion and/or prece-

dence relations can be defined in pairs of subtasks;

4. calculating the release time and deadline of each subtasks defined in previous

item;

5. defining appropriate inter-tasks relations, such as exclusion and precedence rela-

tions;

6. translating each sporadic task into an equivalent periodic one;

7. choosing the scheduling method (preemptive or non-preemptive) for each task-

subtask;

8. performing the allocation of tasks to processors;

9. providing the source code of each task/subtask;

10. analyzing the source code to obtain the communication pattern, whether adopted

a multi-processor architecture.

In the following subsections, this specification model is detailed. Chapter 7 shows

how this proposed specification model is integrated in the EZPetri environment [44].

5.2.1 Constraints Specification

This subsection aims to present details about the constraints of tasks. For each task,

it shows the timing constraints, inter-task relations, scheduling method, and allocation

of tasks to processors.

102 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

Task Constraints Specification

Let T be the set of tasks in a system. The proposed approach considers that tasks are

periodic. The definition of constraints of periodic task is as follows.

Definition 5.15 (Periodic Task Constraints) Let τi ∈ T be a periodic task, and

P is the set of processors. The constraints of τi is defined by (phi, ri, ci, di, pi,

proci), where phi is the phase time; ri is the release time; ci is the worst-case execution

time(WCET); di is the deadline; pi is the period; and proci ∈ P is the processor

allocated to such task.

A periodic task samples objects of interest at a fixed rate. The phase (phi) is the

delay associated to the first time request of task τi after the system starting. Whenever

not specified, it is considered that phi = 0. The periodicity in which τi is requested is

denoted by the period pi. In this context, period pi is a number and not an interval.

Release time ri, WCET ci, and deadline di, are time instants related to the beginning

of a period. Thus, ci is the WCET required for executing task τi; and di is the time

at which task τi must be completed. This work considers that ci ≤ di ≤ pi. All these

timing constraints (phase, release, computation, deadline, and period) are non-negative

integer values, that is, phi, ri, ci, di, pi ∈ N.

When adopting a multi-processor architecture, the allocation of tasks to processors

becomes necessary. This thesis proposes that this allocation have to be performed in

advance by the designer. However, this allocation is beyond the scope of this thesis.

Thus, task τi is allocated to processor proci ∈ P, where P is the set of processors.

The definition of the phase time is important, since non schedulable system may

become schedulable when a phase is specified. For instance, considering two tasks, τ1

and τ2, having equal timing constraints (ph1, c1, d1, p1) = (ph2, c2, d2, p2) = (0, 5, 5, 10).

As it can be seen, this system is not schedulable. However, if a phase time is specified,

i.e. ph2 = 5, the system becomes schedulable.

Particular attention is given to the WCET calculation, where although it is the

worst-case, it must not be so pessimistic. The proposed approach considers that the

instruction set architecture of the specific processor may help on this task. However,

WCET calculation is beyond the scope of this thesis.

Without loss of generality, all timing constraints are expressed in task time units

(TTUs), where each TTU has a correspondence with some multiple of a specific timing

unit (millisecond, second, etc). For instance, suppose that one TTU corresponds to 10

milliseconds. Suppose also that a worst-case execution time is equal to 50 milliseconds,

in this case, the same worst-case execution time is equal to 5 TTUs. If, on the other

5.2. SPECIFICATION MODEL 103

hand, one TTU is equal to 5 milliseconds, the same worst-case execution time becomes

equal to 10 TTUs. A TTU is the smallest indivisible granule of a task, during which

a task cannot be preempted by any other task. A TTU is also called a preemption

point. The granularity of the TTU is a designer choice. However, low granularity

implies in high complexity, since low granularity may increase the number of objects

to be analyzed.

Subtasks Definition

After identifying all critical sections and precedence constraints, usually a task has to

be divided in two or more subtasks where appropriate exclusion and/or precedence

relations can be defined on pairs of subtasks. This is performed in order to prevent

simultaneous access to shared resources and ensure proper execution order. This is

useful not only to guarantee mutual exclusion access to shared resources, and enforce

the right execution order between tasks, but at the same time, to maximize the chances

of finding a feasible schedule, since the relation is applicable only in part of the task

and not in the entire task.

Suppose that a task τi with release time ri, deadline di, and consisting of a se-

quence of subtasks τ 1
i , τ 2

i , · · · , τ j
i , · · · , τn

i , with execution times c1
i , c

2
i , · · · , cj

i , · · · , cn
i ,

respectively, the release time rj
i and deadline dj

i of each subtask τ j
i can be calculated

as follows:

rj
i = ri +

j
∑

k=1

ck
i dj

i = di −
n

∑

k=j+1

ck
i

Suppose, for instance, that task τi has timing constraints defined by (0, 0, 60, 120,

120). Suppose also that this task is divided into 3 subtasks, with all execution time

equal to 20 TTUs. In this case, the release time and deadline of each subtask can be

calculated as:

r1
i = ri = 0; r2

i = ri + c1
i = 20; r3

i = ri + c1
i + c2

i = 40.

d1
i = di − (c2

i + c3
i) = 80; d2

i = di − c3
i = 100; d3

i = di = 120.

In this thesis, each subtask is considered as if it is a complete task.

Inter-tasks Relations

The considered inter-tasks relations are precedence and exclusion relations.

104 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

A task τi PRECEDES task τj, if τj can only start executing after τi has finished. In

general, this kind of relation is suitable whenever a task (successor) needs information

that is produced by another task (predecessor). This relation imposes equal period for

both tasks involved.

A task τi EXCLUDES task τj, if no execution of τj can start while task τi is executing.

If it is considered a single processor, then task τi could not be preempted by task τj.

Exclusion relations may prevent simultaneous access to shared resources. In this work,

it is considered that the exclusion relation is symmetric, that is, when A EXCLUDES B

it implies that B EXCLUDES A.

Translation from Sporadic to Periodic

In real applications, there are some situations where the arrival of tasks is not periodic.

These tasks are generally called aperiodic tasks, since they arrive randomly. However,

there is a class of aperiodic tasks called sporadic tasks, where it is known the minimum

period between two activations. Therefore, sporadic tasks can have hard deadlines,

but aperiodic tasks cannot, once there is no guarantee that their deadlines will be met.

The definition of sporadic tasks is as follows.

Definition 5.16 (Sporadic Task) Let τk ∈ T be a sporadic task defined by τk =

(ck, dk, mink, prock), where ck is the worst-case execution time; dk is the deadline;

mink is the minimum time interval between two activations of task τk; and prock is the

respective processor.

However, pre-runtime approaches may only schedule periodic tasks. In order to

schedule sporadic tasks, each one should be translated into an equivalent periodic

task. After this translation, a pre-runtime scheduling algorithm may be applied in the

set of periodic tasks.

One technique, based on the Mok’s work [66], was derived in order to consider such

problem where each sporadic task (cs, ds,mins, procs) is translated into a corresponding

periodic task (php, cp, dp, pp, procp), satisfying the following conditions:

1. php = 0;

2. cp = cs;

3. ds ≥ dp ≥ cs;

4. cs ≤ pp ≤ min(ds − dp + 1,mins); and

5.2. SPECIFICATION MODEL 105

5. procp = prock.

As it can be seen, the choice of period and deadline is a trade off solution. Hence,

larger deadline implies shorter period, and vice-versa. It is worth observing that the

τp must be in accordance with Definition 5.15 and ci ≤ di ≤ pi.

For example, consider a sporadic task defined by phs = 0; cs = 2; ds= 9; and mins =

10. The corresponding periodic process may be: (0, 2, 2, 8), where php = 0, cp = cs = 2,

dp = cs = 2, and pp = min(ds − dp + 1,mins) = min(8, 10) = 8. In this case, periodic

executions are scheduled to start at time 0, 8, 16, ..., and if the sporadic request are,

for instance, 1, 11, and 30, then the start times of the sporadic tasks executions are 8,

16, and 32. As it can be noted, despite the arrival of sporadic tasks happen at random,

they can be dealt with as periodic ones by buffering such events. Furthermore, the

adopted translation from sporadic to periodic task allows ds to be always met.

Figure 5.2 graphically shows how the behavior of the equivalent periodic tasks is

related to the sporadic requests. In that figure, rsi’s are sporadic requests, and si’s are

actual sporadic executions. As it can be seen, all timing constraints for sporadic tasks

are satisfied by the equivalent periodic task.

21 30

rs0 mins

ds

10 200 8 16 32 40

0 8 16 24 32 40

p0

cp=dp

p1

cp=dp

p2

cp=dp

p3

cp=dp

p4

cp=dp

s0

11

rs1 mins

s1

ds

mins

ds

s2

rs2

Figure 5.2: Translation from Sporadic to Periodic Task

As presented in Section 2.4.2, another alternative is to use a hybrid solution to

schedule such sporadic tasks as shown in [104]. In this approach, a pre-runtime schedule

is constructed to deal with periodic tasks. Using the information in this pre-runtime

schedule, the sporadic tasks are scheduled by a runtime scheduler. In this case, a table

of “safe start time intervals” is constructed in such a way that it is guaranteed that if

a sporadic task is executed in such safe interval it will not interfere in the execution of

any previously computed execution of periodic tasks.

106 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

For instance (from [107]), suppose that two tasks are defined, one sporadic and

other periodic. The sporadic task is defined by τs = (3, 15, 15). The periodic task is

defined by τp = (0, 3, 3, 8). Suppose also that τp is not allowed to preempt task τs. In

this example, the safe start time interval for execution of task τs will be [3,5]. The

worst-case response time happens when τs arrives at time 6, and it is delayed until τp

has completed. In this case, τs completes its execution at time 14. So, this worst-case

response time is 14 − 6 = 8, which is less than its original deadline dτs
= 15.

Scheduling Method

For each task (or subtask) the designer has to choose what scheduling method is best

suited. The options are preemptive or non-preemptive. A task τi is said to be pre-

emptive if its execution can be suspended by another tasks, excluding the tasks that τi

excludes. A task τi is said to be non-preemptive if its execution cannot be suspended

by any other task. In this case, τi runs up to completion.

It is worth observing that if the tasks are all non-preemptive the chance to find a

feasible schedule is drastically minimized.

5.2.2 Behavioral Specification

The behavioral specification is divided into (i) source code of each task; and/or (ii) the

communication pattern for multi-processor architecture expressed as a communication

graph. However, as presented later in Section 6.2, this work calculates schedules, but

not perform code generation considering multi-processor architectures.

The source code of each task is programmed using the C language augmented with

communication constructs. These constructs are not found in standard C language,

but in this specification they are useful for generating the communication pattern.

Moreover, excluding the communication constructs, the code has to be in accordance

with the respective compiler for the chosen processor.

In order to capture the communication pattern, the C code augmented with com-

munication primitives is analyzed and a communication graph may be constructed.

If the communication occurs between tasks in the same processor, it is treated as a

precedence relation. If, on the other hand, the communication occurs between tasks in

different processors, a new communication task is included. The communication task

is formally defined in the following way.

Definition 5.17 (Communication Task) Let µm ∈ M be a communication task

defined by µm = (τi, τj, ctm, busm), where τi ∈ T is the sending task, τj ∈ T is the

5.3. MODELING THE SPECIFICATION 107

receiving task, ctm is the worst case communication time, busm ∈ B is the bus, B is the

set of buses, and proci 6= procj.

This definition enforces the point-to-point communication, since it explicitly defines

that communication can only occur between two tasks allocated in different processors.

The communication constructs are SEND (channel, to, item), and RECEIVE (chan-

nel, from, item). These constructs specify (i) the channel where the information

is read/written; (ii) the other task from which the message will be sent to (SEND

construct) or received from (RECEIVE construct); and the values read/written in

this channel. It is worth noting that channel is a high level abstraction for several

communication media, such as bus, serial/parallel ports, infrared, fiber optics, and so

on.

5.2.3 Specification Example

Table 5.1 shows part of a specification responsible for describing task information. In

this table, both periodic and communication tasks are specified. For periodic tasks,

timing constraints (phase time, release time, worst-case execution time, deadline, and

period), and the processor allocated are presented. For communication tasks, the

worst-case communication time, sender and receiver tasks are specified. This table

also shows inter-task relations, in this case, precedence and exclusion relations.

Another component of a specification can be seen in Figure 5.3. This table presents

a C code template for each task. However, this table only concentrates on showing

communication pattern between tasks. After associating code to each task, a com-

munication graph (Figure 5.4) may be generated for facilitating the communication

pattern presentation. This example does not consider energy constraints.

5.3 Modeling the Specification

The systems considered in this thesis are classified as embedded hard real-time systems.

These kind of systems are those that besides their functional correctness, timeliness

must be satisfied.

Time Petri net is a mathematical formalism that allows modeling of several features

present in most concurrent and real-time systems, such as, precedence and exclusion

relations, communication protocols, multiprocessing, synchronization mechanisms, and

shared resources. Therefore, in this thesis, the modeling phase is based on time Petri

net formalism.

108 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

Table 5.1: Specification Example
task phase release wcet deadline period proc/bus from to

A 0 0 2 10 30 proc1 - -

B 0 2 3 20 30 proc1 - -

C 0 4 3 30 30 proc1 - -

D 0 0 2 20 30 proc1 - -

E 0 2 3 30 30 proc1 - -

F 0 0 2 10 30 proc2 - -

G 0 2 3 30 30 proc2 - -

H 0 3 3 30 30 proc2 - -

I 0 5 2 30 30 proc2 - -

J 0 0 3 10 30 proc3 - -

K 0 2 3 30 30 proc3 - -

L 0 3 2 30 30 proc3 - -

M1 - - 1 - - bus1 F A

M2 - - 1 - - bus1 F J

M3 - - 2 - - bus1 B H

M4 - - 2 - - bus1 L H

Intertask Relations

A PRECEDES B, B PRECEDES C

A EXCLUDES D, D EXCLUDES A

D PRECEDES B, D PRECEDES E, C PRECEDES E

F PRECEDES G, G PRECEDES H, H PRECEDES I

J PRECEDES K, K PRECEDES L

F PRECEDES M1, M1 PRECEDES A

F PRECEDES M2, M2 PRECEDES J

B PRECEDES M3, M3 PRECEDES H

L PRECEDES M4, M4 PRECEDES H

5.3. MODELING THE SPECIFICATION 109

task A()
{
 .
 .
 .
 RECEIVE (bus, F, msgF);
 .
 .
 .
}

task B()
{
 .
 .
 .
 SEND (bus, H, msgBtoH);
 .
 .
 .
}

task C()
{
 .
 .
 .
}

task D()
{
 .
 .
 .
}

task E()
{
 .
 .
 .
}

task F()
{
 .
 .
 .
 SEND (bus, A, msgFtoA);
 .
 .
 .
 SEND (bus, J, msgFtoJ);
 .
 .
 .
}

task G()
{
 .
 .
 .
}

task H()
{
 .
 .
 .
 RECEIVE (bus, B, msgB);
 .
 .
 .
 RECEIVE (bus, L, msgL);
 .
 .
 .
}

task I()
{
 .
 .
 .
}

task J()
{
 .
 .
 .
 RECEIVE (bus, F, msgF);
 .
 .
 .
}

task K()
{
 .
 .
 .
}

task L()
{
 .
 .
 .
 SEND (bus, H, msgLtoH);
 .
 .
 .
}

Figure 5.3: Specification Behavior

The proposed modeling applies composition rules on building blocks models. These

blocks are specific for the scheduling policy adopted, that is, pre-runtime scheduling

policy. For instance, pre-runtime algorithm schedules tasks considering a schedule pe-

riod that corresponds to the least common multiple between all periods in the task

set. In this case, the modeling has to be adjusted to consider such slight intrinsic

differences. The proposed building blocks are: (i) periodic task arrival; (i) task struc-

ture, which considers preemptive and/or non-preemptive task scheduling method; (ii)

deadline checking, which uses elementary net structures; (iii) inter-task relations, such

110 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

P1 P2 P3

J

K

F

G

H

I

L

M1 M2

M3
M4

A

B

C

D

E

Figure 5.4: Communication Pattern

as precedence and exclusion relations, and (iv) inter-processor communication.

This section is divided into five subsections. The first one discuss about scheduling

period. Next subsection introduces several ways to perform net compositions, such

as place merging, addition and refinement, arc addition and removing, and net union.

The third subsection deals with the modeling of tasks. It details all building blocks

and latter shows two examples of composition of these blocks in order to model both

a single task and two tasks sharing a single processor. After that, inter-task relation

modeling is explained. This section finishes detailing how to model inter-processor

communication.

5.3.1 Scheduling Period

Instead of computing a pre-runtime schedule considering an infinite period, the ap-

proach is to schedule the entire set of periodic tasks occurring within a time period

that is equal to the least common multiple (LCM) among periods of the given set of

tasks. The LCM is also called schedule period (PS).

Within this new period, there are several tasks instances of the same task, where

N (τi) = PS/pi gives the instances of task τi. For example, consider the task set in

Table 5.2. In this particular case, PS = 24, implying that the two periodic tasks are

replaced by seven new periodic tasks (N (τ1) = 3, and N (τ2) = 4), where the timing

constraints of each task instance has to be transformed to consider that new period.

Table 5.3 depicts the modified timing constraints. Considering this new period, a

periodic task τi has a finite number of periodic task execution τ 1
i , τ 2

i , · · · , τ j
i , · · · , τ

N(τi)
i ,

with one task execution for each period. Furthermore, for the jth task execution of τi,

the corresponding release time is rj
i = ri+pi∗(j−1); and deadline is dj

i = di+pi∗(j−1).

5.3. MODELING THE SPECIFICATION 111

Table 5.2: Timing Constraints for a Simple Task Set

task r c d p

τ1 0 2 7 8

τ2 2 2 6 6

Table 5.3: Modified Timing Constraints for a Simple Task Set

τ 1
1 τ 2

1 τ 3
1 τ 1

2 τ 2
2 τ 3

2 τ 4
2

r 0 8 16 2 8 14 20

c 2 2 2 2 2 2 2

d 7 15 23 6 12 18 24

p 24 24 24 24 24 24 24

5.3.2 Net Composition Operators

The proposed modeling method is conducted by building block compositions in order

to form larger nets. This section provides several operators for net compositions. These

operators are: place merging, serial place refinement, place addition, arc addition, arc

removing, and net union. The use of such operators is presented latter at Sections 5.3.3

and 5.3.4.

(1) Place Merging Operator. Combining nets by place merging is a simple and effec-

tive way to model communication between blocks. In Figure 5.5, the left-hand

block produces tokens in its place send-message, and the right-hand block con-

sumes such tokens from its place recv-message. By merging such places, com-

munication between these blocks takes place. This work considers that place

merging can only occur among two nets. In this context, places send-message

and recv-message are called merging places, and place message is called merged

place. This operator assumes that the marking of the merged place is the maxi-

mum between the original marking of the merging places. The formal definition

of place merging operator is as follows.

Definition 5.18 (Place Merging) Consider the following nets:

N1 = (P1, T1, F1,W1,M01, I1);

N2 = (P2, T2, F2,W2,M02, I2);

Nc = (Pc, Tc, Fc,Wc,M0c, Ic),

where

112 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

(a)

(b)

send

fetch

tobesent

ready

send-message recv-message

receive
received

process
getnew

receive
received

process
getnew

send

fetch

tobesent

ready

message

Figure 5.5: A Simple Example of Place Merging

P1 = {p11
, p12

, . . . , p1n1
}; T1 = {t11

, t12
, . . . , t1m1

}

P2 = {p21
, p22

, . . . , p2n2
}; T2 = {t21

, t22
, . . . , t2m2

}

Pc = {pc1 , pc2 , . . . , pcn3
}; Tc = {tc1 , tc2 , . . . , tcm3

}.

Also consider the following three ordered set of places

δ1 = 〈p1
1, p

2
1, . . . p

i
1, . . . , p

u
1〉 ⊆ P1

δ2 = 〈p1
2, p

2
2, . . . p

i
2, . . . , p

u
2〉 ⊆ P2

δc = 〈p1
c , p

2
c , . . . p

i
c, . . . , p

u
c 〉 ⊆ Pc.

The composition by place merging is denoted by Nc = 〈Pmerg〉 (N1, N2, δ1, δ2,

δc), where N1 and N2 are two merging nets, δ1 is a set of merging places of N1,

δ2 is a set of merging places of N2, and δc of Nc is the set of merged places. The

net Nc is composed in the following way:

⋆ Pc = (P1 ∪ P2 ∪ δc) − (δ1 ∪ δ2).

⋆ Tc = T1 ∪ T2

⋆ ∀t ∈ Tc : Ic(t) =







I1(t), if t ∈ T1

I2(t), if t ∈ T2

⋆ Fc = {F1 − (δ1 × T1 ∪ T1 × δ1)} ∪

{F2 − (δ2 × T2 ∪ T2 × δ2)} ∪

{(pi
c, t1j

) | t1j
∈ T1 ∧ (pi

1, t1j
) ∈ F1, 1 ≤ i ≤ u, 1 ≤ j ≤ m1} ∪

{(t1j
, pi

c) | t1j
∈ T1 ∧ (t1j

, pi
1) ∈ F1, 1 ≤ i ≤ u, 1 ≤ j ≤ m1} ∪

{(pi
c, t2k

) | t2k
∈ T2 ∧ (pi

2, t2k
) ∈ F2, 1 ≤ i ≤ u, 1 ≤ k ≤ m2} ∪

{(t2k
, pi

c) | t2k
∈ T2 ∧ (t2k

, pi
2) ∈ F2, 1 ≤ i ≤ u, 1 ≤ k ≤ m2}

5.3. MODELING THE SPECIFICATION 113

⋆ ∀p ∈ Pc : M0c(p) =



















M01(p) if p ∈ P1, Pc

M02(p) if p ∈ P2, Pc

max (M01(p
i
1),M02(p

i
2)) if∃ pi

c = p, 1 ≤ i ≤ u.

⋆ ∀f ∈ Fc : Wc(f) =



















































W1(f) if f ∈ F1

W2(f) if f ∈ F2

W1(p
i
1, t1j

) if f = (pi
c, t1j

), pi
c ∈ δc, t1j

∈ T1

W1(t1j
, pi

1) if f = (t1j
, pi

c), pi
c ∈ δc, t1j

∈ T1

W2(p
i
2, t2k

) if f = (pi
c, t2k

), pi
c ∈ δc, t2k

∈ T2

W2(t2k
, pi

2) if f = (t2k
, pi

c), pi
c ∈ δc, t2k

∈ T2

such that, 1 ≤ i ≤ u, 1 ≤ j ≤ m1, 1 ≤ k ≤ m2.

The new set of places (Pc) is the union of the two sets of places (P1 and P2) of

the merging nets (N1 and N2), increased by the set δc and decreased by sets δ1

and δ2. The new set of transitions Tc is just the union of the set of transitions

(T1 and T2) of the merging nets. In the same way, the timing interval Ic is the

union of the timing interval (I1 and I2) of the merging nets. The new arcs (Fc) is

defined by: (i) removing arcs with places of δ1, and δ2; (ii) including arcs where

places in δ1 (in pre or post-conditions) are replaced by the respective places in δc;

and (iii) including arcs where places in δ2 (in pre or post-conditions) are replaced

by the respective places in δc. As it is assumed that merging places (δ1 and δ2)

are with no marking, the merged places (δc) is also with no marking.

In order to explain the new weight of arcs (Wc) consider the Figure 5.6. Suppose

that places p2 of net N1 and p3 of net N2 are merged into the place pm on the

new net Nc.

The new weight of arcs is defined in the following way.

(a) If the arc f is from F1, then the weight is W1(f). As an example, see

Wc(p0, t0) = W1(p0, t0) = 1.

(b) If the arc f is from F2, then the weight is W2(f). See, for instance,

Wc(p1, t1) = W2(p1, t1) = 1.

(c) If the arc f ∈ Fc has a place from δc and output transition from T1, then

Wc(f) is equal to weight of the arc between the corresponding place in δ1

and the same output transition. See Wc(pm, t2) = W1(p2, t2) = 4.

114 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

(d) If the arc f ∈ Fc has a place from δc and input transition from T1, then

Wc(f) is equal to weight of the arc between the same input transition and

the corresponding place in δ1. Refer to Wc(t0, pm) = W1(t0, p2) = 2.

(e) If the arc f ∈ Fc has a place from δc and output transition from T2, then

Wc(f) is equal to weight of the arc between the corresponding place in δ2 and

the same output transition. For instance, see Wc(pm, t3) = W2(p3, t3) = 6.

(f) Finally, if the arc f ∈ Fc has a place from δc and input transition from T2,

then Wc(f) is equal to weight of the arc between the same input transition

and the corresponding place in δ2. Refer to Wc(t1, pm) = Wc(t1, p3) = 3.

p0 p1

p2 p3

t0 t1

t3t2

p0 p1

pm

t0 t1

t3t2

(a) (b)

2

4

3

6

2

4

3

6

Figure 5.6: An Example of Place Merging: (a) Before Place Merging; (b) After Place

Merging

(2) Serial Place Refinement Operator

In this work, a serial place refinement can be seen as a replacement of a single

place (pδ) by a sequence of one place (pσ), one transition (tσ), and another place

(p′δ). In this context, the place pδ is called refining place, and places pσ and p′δ are

called refined places. In the same way, transition tσ is called refined transition.

Figure 5.7 depicts such serial place refinement. In order to maintain behavioral

and timing properties, it is worth observing the weight of the input (α) and

output (β) arcs of the refining place (pδ) is the same as the second refined place,

in this case, p′δ. Without loss of generality, this place refinement assumes that

the timing interval for the refined transition tσ is always [0, 0].

The formal definition of serial place refinement is as follows.

Definition 5.19 (Serial Place Refinement) Considering the following time

Petri

5.3. MODELING THE SPECIFICATION 115

α β1 1
p

σ

tσ

p'
δ

ta tb

βα

ta tb

pδ

Figure 5.7: Place Refinement

nets N= (P, T, F,W,M0, I), and Nc = (Pc, Tc, Fc,Wc,M0c
, Ic), the serial place

refinement is defined by Nc = 〈Pref〉 (N, pδ, pσ, tσ, p
′
δ), where pδ ∈ P . The new

net Nc is composed in the following way:

⋆ Pc = (P ∪ {pσ, p
′
δ}) − {pδ}

⋆ Tc = T ∪ {tσ}

⋆ Fc = (F − F 1) ∪ F 2 ∪ F 3, where:

– F 1 = {(ti, pδ), (pδ, tj) | ti ∈ •pδ, tj ∈ pδ•}

– F 2 = {(ti, p
′
δ), (p

′
δ, tj) | ti ∈ •pδ, tj ∈ pδ•}

– F 3 = {(pσ, tσ), (tσ, p
′
δ)}

⋆ ∀p ∈ Pc: M0c
(p) =







M0(pj), if p = pj ∧ pj ∈ P

0, if p = pσ ∨ p = p′δ

⋆ ∀t ∈ Tc: Ic(t) =







I(tj), if t = tj ∧ tj ∈ T

[0, 0], if t = tσ

⋆ ∀f ∈ Fc: Wc(f) =







































1, if f = (g, pσ), ∀g ∈ T

1, if f = (pσ, tσ)

W (•pδ, pδ), if f = (tσ, p
′
δ)

W (pδ, •pδ), if f = (p′δ, pδ•)

W (f), otherwise

116 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

Informally, the net obtained from the serial place refinement is composed as

follows.

The new set of places (after refinement) is increased by two places pσ and p′δ and,

at the same time, the refining place pδ is removed. The new set of transitions is

increased by tσ. The aim of this refinement is replacing the refining place (pδ) by

the following sequence: a place (pσ), a transition (tσ), and another place (p′δ).

In the definition of the flow relation (Fc), F 1 removes the arcs from and to the

place pδ. F 2 is used for adding pre and post-conditions for place p′δ, which are

the same as pre and post-conditions of the refining place pδ. F 3 is responsible

for adding arcs from pσ to tσ, and from tσ to p′δ.

The two refined places are assumed to have no initial marking, i.e., M0(pσ) =

M0(p
′
δ) = 0. The remaining places will continue with their respective markings.

This proposed refinement assumes that timing interval for firing the refined tran-

sition tσ is always [0, 0].

After the refinement, the arc weight of •pσ is assumed to be unitary. The same

occurs if the arc is from pσ to tσ. As shown at Figure 5.7, the weight of the

pre and post-conditions of place pδ (refining place) is the same as the weight of

the pre and post-conditions of place p′δ. As presented before, this refinement is

performed this way for maintaining both behavioral and timing properties. All

other arcs that do not refer to any refining element (places or transition) or the

place to be refined are the same as in the original net.

(3) Arc Addition Operator

Arc addition is an operator that adds an arc from a place to a transition or

from a transition to a place. Usually, arc addition must be used with care. If

not, some properties may not be satisfied. However, this work proposes that the

modeling method is performed automatically. Thus, the user does not have direct

participation in the modeling. The formal definition of arc addition is as follows.

Definition 5.20 (Arc Addition) Considering the following time Petri nets N =

(P, T, F, W, M0, I), and Nc = (Pc, Tc, Fc, Wc, M0c
, Ic), arc addition is an op-

erator that adds a single arc (x, y), such that (x ∈ P ∧ y ∈ T)∨ (x ∈ T ∧ y ∈ P).

Arc addition is represented by Nc = 〈Aadd〉 (N, (x, y), w), where N is the original

net, (x, y) is the arc, w is the weight of the arc, and Nc is the resultant net. Nc

is generated in the following way:

⋆ Pc = P ; Tc = T ; M0c
= M0; Ic = I;

5.3. MODELING THE SPECIFICATION 117

⋆ Fc = (F ∪ {(x, y)};

⋆ ∀f ∈ Fc: Wc(f) =







W (f), if f ∈ F

w, if f = (x, y)

The resultant net Nc is obtained by just adding a single arc (x, y) with weight w.

(4) Arc Removing Operator

Arc removing is an operator that removes an arc from a place to a transition

or from a transition to a place. In the same way as arc addition operator, arc

removing must be used with care. The formal definition of arc removing is as

follows.

Definition 5.21 (Arc Removing) Considering the following time Petri nets

N = (P, T, F, W, M0, I), and Nc = (Pc, Tc, Fc, Wc, M0c
, Ic), arc removing is

an operator that removes a single arc (x, y), such that (x ∈ P ∧ y ∈ T) ∨ (x ∈

T ∧ y ∈ P). Arc removing is represented by Nc = 〈Arem〉 (N, (x, y)), where N

is the original net, (x, y) is the removed arc, and Nc is the resultant net. Nc is

generated in the following way:

⋆ Pc = P ; Tc = T ; M0c
= M0; Ic = I;

⋆ Fc = (F − {(x, y)};

⋆ ∀f ∈ Fc: Wc(f) = W (f)

The resultant net Nc is obtained by just removing a single arc (x, y).

(5) Place Addition Operator

Place addition is another operator that adds a single place to a net. Hence, after

the place addition, the added place is disconnected from any other element (place

or transition). Therefore, the place addition has to be used with other operators

in order to obtain the desired modeling. In the same way as arc addition operator,

the place addition has to be used with care. However, as presented before, the

modeling is performed automatically, and all the operators usage is conducted

carefully. The formal definition of place addition is as follows.

Definition 5.22 (Place Addition) Considering the following time Petri nets

N = (P, T, F, W, M0, I), and Nc = (Pc, Tc, Fc, Wc, M0c
, Ic), place addition

is an operator that adds a single place into the respective net. Place addition is

represented by Nc = 〈Padd〉 (N, pδ,mδ), where N is the original net, pδ is the

place, mδ is its respective marking, and Nc is the output net. Nc is generated in

the following way:

118 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

⋆ Tc = T ; Fc = F ; Wc = W ; Ic = I;

⋆ Pc = P ∪ {pδ}

⋆ ∀p ∈ Pc, M0c(p) =







M0(p), if p ∈ P

mδ, if p = pδ

The output net Nc is obtained by just adding a single place pδ with marking mδ.

(6) Net Union Operator

Net union operator simply unifies two nets producing another net. Hence, after

using such operator, certainly the net is disconnected. The model should take

care in using such operator. The same considerations about automatic modeling

made in previous operators are also valid for this one.

Definition 5.23 (Net Union) Considering the following time Petri nets

N1 = (P1, T1, F1, W1, M01
, I1), N2 = (P2, T2, F2, W2, M02

, I2), and Nc = (Pc,

Tc, Fc, Wc, M0c
, Ic), the net union is an operator that unifies two nets. It is

represented by Nc = N1 ⊔ N2. The resultant net Nc is computed in the following

way:

Pc = P1 ∪ P2; Tc = T1 ∪ T2; Fc = F1 ∪ F2

∀f ∈ Fc, Wc(f) =







W1(f), if f ∈ F1

W2(f), if f ∈ F2

∀p ∈ Pc, M0c(p) =







M01(p), if p ∈ P1

M02(p), if p ∈ P2

∀t ∈ Tc, Ic(t) =







I1(t), if t ∈ T1

I2(t), if t ∈ T2

This operator simply joins two nets into a new net.

5.3.3 Modeling of Tasks

This section aims to describe how to represent the specification of tasks by adopting

a suitable formal model, in this case, a time Petri net model. In order to depict the

method for modeling of tasks and inter-tasks relations, this section considers the task

timing specification presented in Table 5.4.

5.3. MODELING THE SPECIFICATION 119

Table 5.4: A Simple Example of Task Timing Specification and Inter-task Relations

TaskID ph r c d p proc/bus from to

T0 0 0 10 100 250 proc1 - -

T1 0 0 15 100 250 proc1 - -

T2 0 0 20 150 250 proc1 - -

T3 0 0 40 200 250 proc1 - -

T4 0 0 20 50 150 proc2 - -

T5 0 0 10 100 150 proc2 - -

M1 - - 5 - - bus1 T4 T2

M2 - - 5 - - bus1 T3 T5

Intertask Relations

T0 EXCLUDES T1,

T0 PRECEDES T2, T1 PRECEDES T2,

T2 PRECEDES T3, T4 PRECEDES T5

The proposed modeling of tasks is performed by building block compositions. The

considered building blocks are: (i) Periodic Task Arrival; (ii) Task Structure; (iii) Dead-

line Checking; (iv) Inter-processor sending message; (v) Resources, such as processors

and buses; (vi) Fork; and (vii) Join. These blocks are detailed below.

When presenting these blocks, it is worth observing that places and transitions are

expressed with indexes. These indexes are used for instantiation purpose, or in other

words, the same block may have slight differences when applied to different tasks. For

instance, the timing interval for a transition that represents the execution of a task

may have different values when considering different tasks.

(i) Periodic Task Arrival Block

The Periodic Task Arrival Block (Figure 5.8) models the periodic invocation for

all task instances in the schedule period (PS). A transition tphi
models the initial

phase of the task first instance. Similarly, transition tai
models the periodic

arrival (after the initial phase) for the remaining instances. It is worth noting

the weight (αi) of the arc (tphi
, pwai

), where this weight models the invocation of

all remaining instances after the first task instance.

The building block periodic task arrival is a TPN Na = (Pa, Ta, Fa,Wa, M0a
, Ia),

such that:

⋆ Pa = {psti , pwai
, pwdi

, pwri
}. These places model the following conditions:

120 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

pwai
pwri

pwdi
psi

tai

tphi

αi

[pi, pi]

[phi, phi]

Figure 5.8: Building Block Arrival

psti : starting of task;

pwai
: waiting for the arrival of another task instance;

pwdi
: waiting for deadline missing; and

pwri
: waiting for release time.

⋆ Ta = {tai
, tphi

}. These transitions model the following actions:

tai
: arriving of a new task instance; and

tphi
: elapsing of the task initial phase.

⋆ Pre and post-conditions of the transitions are:

•tai
= {pwai

}

tai
• = {pwri

, pwdi
}

•tphi
= {psti}

tphi
• = {pwai

, pwri
, pwdi

}

⋆ Wa(m,n) =







αi, if (m = tphi
∧ n = pwai

), αi ∈ N

1, otherwise.

⋆ M0a
(p) = 0 ∀p ∈ P .

⋆ Ia(tphi
) = [phi, phi]; and I(tai

) = [pi, pi].

The timing intervals of transitions tai
and tphi

are fulfilled by the timing con-

straints specification, in this case, phi (phase) and pi (period) of task τi.

Figure 5.9 explains graphically the application of this block into the task T0 in

Table 5.4. Note that PS = 750, hence, in this case the number of task instances for

T0 is equal to N (T0) = 750/250 = 3. In this specific situation, α = N (T0)−1 = 2

(ii) Task Structure Block

5.3. MODELING THE SPECIFICATION 121

pwa0
pwr0

pwd0
ps0

ta0

tph0

2

[250, 250]

[0, 0]

Figure 5.9: Building Block Arrival for Task T0

The building block task structure models: release time, processor granting, com-

putation, and processor releasing. Although release time is a time instant related

to the beginning of the period, this is modeled by an interval [ri, di − ci]. This

interval is adopted since there are situations where a system has to be left idle

in order to reach all timing constraints (see Section 2.4.3 for more details). Pro-

cessor granting and releasing is needed in order to access this resource in mutual

exclusion. Computation can be modeled either as preemptive or non-preemptive

policy. In both policies, there is a specific transition for processor granting. Nev-

ertheless, processor releasing is performed by the respective computation transi-

tion.

In the following, it is shown how to model tasks that require either preemptive

or non-preemptive scheduling methods.

Preemptive Task Structure Block

This scheduling method implies that tasks are implicitly split into all possible

subtasks, where the computation time of each subtask is exactly equal to one task

time unit (TTU). Before computation, the processor is granted to the respective

task, and after computation the processor is released. This method allows the

running of another conflicting task, in this case, meaning that one task preempts

another task. Figure 5.10 presents the structure of the preemptive method. As

presented before (Section 5.2.1), a TTU is the smallest indivisible granule of a

task. Thus, the preemption points are equal to one TTU. This is modeled by

the time interval of computation transitions ([1,1]), and the entire computation

is modeled through the arc weights. Hence, ci tokens are put in place pwgi
, and

122 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

the same amount of tokens is needed for firing of transition tfi
. Depending on

the TTU granularity, this schedule method may generate much more states.

pwri pwgi pwci pwfi pfi

tri tgi tci

tfi

pprock pprock

pwdi

ci ci

[ri, di - ci] [0, 0] [1, 1]

[0, 0]

Figure 5.10: Building Block Preemptive Task Structure

The building block preemptive task structure is a TPN Np = (Pp, Tp, Fp, Wp,

M0p
, Ip), such that:

⋆ Pp = {pwri
, pwgi

, pwci
, pwfi

, pfi
, pdmi

, pprock
}. These places model the following

conditions:

pwri
: waiting for releasing;

pwgi
: waiting for processor granting;

pwci
: waiting for task computation;

pwfi
: waiting for task instance end;

pfi
: end of a task instance;

pwdi
: waiting for deadline missing.

pprock
: processor.

⋆ Tp = {tri
, tgi

, tci
, tfi

}. These transitions model the following actions:

tri
: task releasing;

tgi
: processor granting;

tci
: executing one task unit, and processor releasing; and

tfi
: concluding the task computation;

⋆ Pre and post-conditions of the transitions are:

•tri
= {pwri

}; tri
• = {pwgi

};

•tgi
= {pwgi

, pprock
}; tgi

• = {pwci
};

•tci
= {pwci

}; tci
• = {pwfi

, pprock
};

•tfi
= {pwfi

, pwdi
}; tfi

• = {pfi
}.

5.3. MODELING THE SPECIFICATION 123

⋆ Wp(pwri
, tri

) = Wp(pwgi
, tgi

) = Wp(pprock
, tgi

) = Wp(tgi
, pwci

= Wp(pwci
, tci

) =

Wp (tci
, pwfi

) = Wp(tci
, pprock

) = Wp(tfi
, pfi

) = 1; Wp(tri
, pwgi

) = Wp(pwfi
, tfi

)

= ci.

⋆ M0p
(pprock

) = β, β ∈ N
+; M0p

(p) = 0 ∀p ∈ P ∧ p 6= pprock
.

⋆ Ip(tri
) = [ri, di − ci]; Ip(tgi

) = [0, 0]; Ip(tci
) = [1, 1]; and Ip(tfi

) = [0, 0].

The timing interval of transition tri
is fulfilled by the timing constraints speci-

fication, in this case, ri (release time) of task τi. All remaining timing intervals

are constant. The same way, the arc weight (from tri
to pwgi

and pwfi
to tfi

)

comes from the ci (execution time) of task τi. The initial marking of the pprock
is

a non-zero integer.

Figure 5.11 shows the TPN of this block applied into the task T0. This figure

considers a preemptive scheduling method for T0.

pwr0
pwg0 pwc0 pwf0 pf0

tr0
tg0 tc0

tf0

pproc1 pproc1

pwd0

10 10

[0, 90] [0, 0] [1, 1]

[0, 0]

Figure 5.11: Building Block Preemptive Task Structure for T0

Non-Preemptive Task Structure Block

Considering a non-preemptive scheduling method, the processor is just released

after the entire computation to be finished. Figure 5.12 shows that time interval

of computation transition has bounds equal to the task computation time (i.e.,

[ci, ci]).

The building block non-preemptive task structure is a TPN Nnp = (Pnp, Tnp, Fnp,

Wnp, M0np
, Inp), such that:

⋆ Pnp = {pwri
, pwgi

, pwci
, pwfi

, pfi
, pwdi

, pprock
}. These places model the follow-

ing conditions:

124 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

[ci, ci]

pwri
pwgi pwci

pwfi pfi

tri tgi tci

tfi

pprock
pprock

pwdi

[ri, di - ci] [0, 0]

[0, 0]

Figure 5.12: Building Block Non-Preemptive Task Structure

pwri
: waiting for releasing;

pwgi
: waiting for processor granting;

pwci
: waiting for task computation;

pwfi
: waiting for task instance end;

pfi
: end of a task instance;

pwdi
: waiting for deadline missing; and

pprock
: processor.

⋆ Tnp = {tri
, tgi

, tci
, tfi

}. These transitions model the following actions:

tri
: task releasing;

tgi
: processor granting;

tci
: executing a task, and processor releasing; and

tfi
: concluding the task computation.

⋆ Pre and post-conditions of the transitions are:

•tri
= {pwri

}; tri
• = {pwgi

}

•tgi
= {pwgi

, pprock
}; tgi

• = {pwci
}

•tci
= {pwci

, pwdi
}; tci

• = {pfi
, pprock

}

•tfi
= {pwfi

}; tfi
• = {pfi

}.

⋆ Wnp(x, y) = 1 ∀(x, y) ∈ F .

⋆ M0np
(pprock

) = β, β ∈ N
+; M0np

(p) = 0 ∀p ∈ P ∧ p 6= pprock
.

⋆ Inp(tr) = [ri, di − ci]; Inp(tg) = [0, 0]; and Inp(tc) = [ci, ci].

The timing intervals of transitions tri
and tci

are fulfilled by the timing constraints

specification, in this case, ri (release) and ci (execution time) of task τi. The

5.3. MODELING THE SPECIFICATION 125

timing interval of transition tgi
is constant. The initial marking of the pprock

is a

non-zero integer.

As an example, Figure 5.13 depicts the application of the block non-preemptive

task structure into the task T0 of Table 5.4.

[10,10]

pwr0
pwg0 pwc0 pwf0 pf0

tr0
tg0 tc0

tf0

pproc1 pproc1

pwd0

[0, 90] [0, 0]

[0, 0]

Figure 5.13: Building Block Non-Preemptive Task Structure for Task T0

(iii) Deadline Checking Block

Some works (e.g. [4]) extended the Petri net model for dealing with deadline

checking. The proposed modeling method uses elementary net structures to

capture deadline missing. Obviously, deadline missing is an undesirable situation

when considering hard real-time systems. Therefore, the scheduling algorithm

(Section 6.1) must eliminate states that represent undesirable situations like this

one.

pwdi pwpci

pdmi

tdi tpci

pwci

[di, di] [0, 0]

Figure 5.14: Building Block Deadline Checking

The building block deadline-checking is a TPN Nd = (Pd, Td, Fd,Wd,M0d
, Id),

such that:

126 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

⋆ Pd = {pwdi
, pwpci

, pdmi
, pwci

}. These places model the following situations:

pwdi
: waiting for deadline missing;

pwpci
: waiting for computation removing;

pdmi
: deadline missed; and

pwci
: waiting for task computation.

⋆ Td = {tdi
, trci

}. These transitions model the following actions:

tdi
: deadline missing; and

tpci
: computation removing.

⋆ Pre and post-conditions of the transitions are:

•tdi
= {pwdi

}; tdi
• = {pwrci

};

•trci
= {pwrci

, pwci
}; trci

• = {pdmi
}.

⋆ Wd(x, y) = 1 ∀(x, y) ∈ F .

⋆ M0d
(p) = 0 ∀p ∈ P .

⋆ Id(tdi
) = [di, di]; Id(tpci

= [0, 0])

The timing interval of transition tdi
is fulfilled by the timing constraints specifi-

cation, in this case, di (deadline) of task τi. The timing interval of transition tpci

is constant.

Figure 5.15 shows the block deadline checking for the task T0 of Table 5.4.

pwd0 pwpc0

pdm0

td0
tpc0

pwc0

[100,100] [0, 0]

Figure 5.15: Building Block Deadline Checking for Task T0

(iv) Inter-processor Sending Message Block

As introduced before in Section 5.2.2 (Behavioral Specification), the specifica-

tion considers that all inter-processor communication are dealt with as a new

communication task. Table 5.4 shows M1 and M2 communication tasks.

5.3. MODELING THE SPECIFICATION 127

This section aims to present a specific block for modeling inter-processor message

sending. Figure 5.16 depicts such building block.

tgbij [0,0] tsendij [0,0] tcommij [cmij, cmij]

pwgbij pwsij psbufij prbufij

pbusk

Figure 5.16: Building Block Send

The building block inter-processor sending message is a TPN Nsm = (Psm, Tsm,

Fsm, Wsm, M0sm
, Ism), such that:

⋆ Psm = {pwgbij
, pwsij

, psbufij
, prbufij

}. These places model the following situa-

tions:

pwgbij
: waiting for bus granting;

pwsij
: waiting for sending a message;

psbufij
: sending buffer; and

prbufij
: receiving buffer.

⋆ Tsm = {tgbij
, tsendi,j

, tcommij
}. These transitions model the following actions:

tgbij
: bus granting;

tsendi,j
: sending the message; and

tcommi,j
: communication.

⋆ Pre and post-conditions of the transitions are:

•tgbij
= {pwgbij

}; tgbij
• = {pwsij

};

•tsendi,j
= {pwsij

}; tsendi,j
• = {psbufij

}.

•tcommi,j
= {psbufij

}; tcommi,j
• = {prbufij

}.

⋆ Wsm(x, y) = 1 ∀(x, y) ∈ Fsm.

⋆ M0sm
(pbusk

) = β, β ∈ N
+; M0sm

(p) = 0 ∀p ∈ P ∧ p 6= pbusk
.

⋆ Ism(tcommij
) = [ctm, ctm]; Ism(tgbij

) = Ism(tsendij
) = [0, 0])

The timing interval of transition tcommij
is fulfilled by the timing constraint spec-

ification, in this case, ctm (worst-case communication time) of the respective

128 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

communication task µm ∈ M. The timing intervals of transitions tgbij
and tsendij

are constant.

It is worthwhile to point out that inter-processor receiving message is modeled

by place refinement not by block composition. Section 5.3.5 presents an example

of modeling inter-processor communication (message sending and receiving).

(v) Resource Block

pproci
pbusk

(a) (b)

Figure 5.17: Modeling of Resources: (a) Processor; (b) Bus

The only explicitly modeled resources considered in this work are processors and

buses.

As this work considers that the allocation task-to-processor is performed in ad-

vance by the designer, and task migration is not allowed, so each processor has to

be explicitly modeled. The processor modeling (Fig. 5.17(a)) consists of a single

place pproci
, where its marking states how many processors are available. If a place

representing a processor is modeled having more than one marking, it represents

a multiprocessor architecture with unified memory architecture (UMA) [92].

Buses (Fig. 5.17(b)), on the other hand, are communication channels used for

providing communication between tasks from different processors. In the same

way as processors, a bus is modeled by a single place pbusk
, where it is assumed

that this place must have exactly one marking.

In order to compose resources (processor or bus) with a single task model, both

place and arc addition operators are adopted.

(vi) Fork Block

Let us suppose that the system has n tasks. The building block fork (Fig. 5.18)

is responsible for starting all tasks instances occurring in the schedule period (or

hyper-period). This block consists of the creation of n concurrent process starting

from a single parent process.

The fork block is modeled by a TPN Nf = (Pf , Tf , Ff ,Wf ,M0f
, If), where:

5.3. MODELING THE SPECIFICATION 129

pst1

tstart [0,0]

pstart

psti pstn

.

Figure 5.18: Building Block Fork

⋆ Pf = {pstart, pst1 , · · · , psti , · · · , pstn}. These places model the following situ-

ations:

pstart: waiting for system starting.

ptsi
: starting of the ith task, 1 ≤ i ≤ n.

⋆ Tf = {tstart}. This transition model the following action:

tstart: starting of all tasks of the system.

⋆ Pre and post-conditions of the transition are:

•tstart = {pstart}

tstart• = {pst1 , · · · , psti , · · · , pstn}

⋆ Wf (x, y) = 1, ∀(x, y) ∈ F .

⋆ M0f
(pstart) = 1; M0(p) = 0, ∀p ∈ P ∧ p 6= pstart.

⋆ If (tstart) = [0, 0]

The timing interval of transition tstart is constant. Figure 5.19 illustrates the

application of the fork block in the task set of Table 5.4.

(vii) Join Block

Usually, concurrent activities need to synchronize with each other. The join block

execution states that all tasks in the system have concluded their execution in

the schedule period. Figure 5.20 presents the join block.

130 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

pst1

tstart [0,0]

pstart

pst2 pst3 pst4 pst5pst0

Figure 5.19: Building Block Fork for Task Set in Table 5.4

Figure 5.20: Building Block Join

This block is modeled by a TPN Nj = (Pj, Tj, Fj,Wj,M0j
, Ij), where:

⋆ Pj = {pf1
, · · · , pfi

, · · · , pfn
, pend}. These places model the following situa-

tions:

5.3. MODELING THE SPECIFICATION 131

pfi
: end of the ith task, 1 ≤ i ≤ n.

pend: end of the system.

⋆ Tj = {tend}. This transition model the following action:

tend: end of tasks in the system.

⋆ Pre and post-conditions of the transition are:

•tend = {pf1
, · · · , pfi

, · · · , pfn
}

tend• = {pend}

⋆ Wj(x, y) = α, ∀(x, y) ∈ F, α ∈ N.

⋆ M0j
(p) = 0, ∀p ∈ P .

⋆ Ij(tend) = [0, 0]

The timing interval of transition tend is constant. It is worth remembering that

a marking in place pend represents the desirable final marking (or MF). In this

case, M(pend) = 1 indicates that a feasible firing schedule (Definition 5.9) was

found.

As an example, Figure 5.21 depicts the application of the join block in the task

set of Table 5.4.

pf1 pf3 pf5

tend [0, 0]

pend

pf4pf0 pf2

3
3 3 3 5

5

Figure 5.21: Building Block Join for Task Set in Table 5.4

(viii) Composition of a Single Task

Lets consider task T0 on Table 5.4 as a non-preemptive task. For generating such

task model the method is based on composition of building blocks. In this case,

132 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

the blocks are: its task structure (Nnp), periodic task arrival (Na) and deadline

checking (Nd) blocks. In order to instantiate such blocks some information are

needed, for instance, the period (for the periodic task arrival block), deadline

(for the deadline checking block), and releasing, deadline and execution time (for

the task structure block). After instantiating these blocks, they are named: Na0
,

Nnp0
, and Nd0

.

For composing this single task, the following suppositions are considered:

δ1 = 〈pwr0
〉 ∈ Pa0

(from Na0
);

δ2 = 〈pwr0
〉 ∈ Pnp0

(from Nnp0
);

δm1
= 〈pwr0

〉 ∈ P0 (from N0);

δ3 = 〈pwc0 , pwd0
〉 ∈ P0 (from N0);

δ4 = 〈pwc0 , pwd0
〉 ∈ Pd0

(from Nd0
);

δm2
= 〈pwc0 , pwd0

〉 ∈ P0 (from N0);

The net N0 = (P0, T0, F0,W0,M00
, I0), representing T0, is defined by:

(a) N0 = 〈Pmerg〉 (Na, Nnp, δ1, δ2, δm1
)

(b) N0 = 〈Pmerg〉 (N0, Nd, δ3, δ4, δm2
)

Figure 5.22 shows the composition of task T0 using building blocks models. This

composition is performed in two steps: First (Step 0a), merging places pwr0
(from

net Na0
) and pwr0

(from net Nnp0
) generating the place pwr0

on net N0. This

merging is depicted in Figure 5.22(a). Second (Step 0b), merging places pwc0 and

pwd0
(from net N0) and pwc0 and pwd0

(from net Nd0
) and obtaining places pwc0

and pwd0
on the same net N0. This merging is depicted in Figure 5.22(b). These

merged places, in Figure 5.22, are gray colored in order to highlight them.

If, instead of non-preemptive, task T0 is preemptive, the first composition should

consider Np0
instead of Nnp0

.

(ix) Composing Two Tasks and a Single Processor

The system is composed by two tasks T0 and T1 of Table 5.4. This example

considers that these two tasks share a single processor. The net representing

this system is called Naux = (Paux, Taux, Faux, Waux, M0aux, Iaux). The two nets

(N0 and N1) representing both tasks (T0 and T1) are already defined, as depicted

5.3. MODELING THE SPECIFICATION 133

pwa0 pwr0

pwd0pst0

ta0

tph0

2

[250, 250]

[0, 0]

pwg0 pwc0 pwf0

tr0 [0, 90] tg0 tc0[0, 0] [10,10]

pwpc0 pdm0

td0 tpc0[100,100] [0, 0]

pf0

tf0 [0, 0]

pwa0 pwr0

pwd0pst0

ta0

tph0

2

[250, 250]

[0, 0]

pwg0 pwc0 pwf0

tr0 [0, 90] tg0 tc0[0, 0] [10,10]

pf0

tf0 [0, 0]

(a)

(b)

Figure 5.22: Complete Model for Task T0

previously. The fork and join blocks (Nf and Nj) are instantiated (N ′
f and N ′

j)

considering that n = 2, that is, there are two tasks in the system.

For composing two tasks sharing a single processor, the following suppositions

are considered:

δst = 〈pst0 , pst1〉 ∈ Paux;

δf = 〈pst1 , pst2〉 ∈ Pf (from N ′
f);

δm1
= 〈pst0 , pst1〉 ∈ Paux;

δend = 〈pf0
, pf1

〉 ∈ Paux;

δj = 〈pf1
, pf2

〉 ∈ Pj (from N ′
j);

δm2
= 〈pf0

, pf1
〉 ∈ Paux;

pproc is a single place, where M(pproc) = 1.

In the proposed modeling method, the TPN representing this system (Naux) is

modeled as follows:

(a) Naux = (N0 ⊔ N1);

(b) Naux = 〈Padd〉 (Naux, pproc, 1)

(c) Naux = 〈Aadd〉 (Naux, (pproc, tg0), 1)

(d) Naux = 〈Aadd〉 (Naux, (pproc, tg1), 1)

(e) Naux = 〈Aadd〉 (Naux, (tc0, pproc), 1)

134 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

(f) Naux = 〈Aadd〉 (Naux, (tc1, pproc), 1)

(g) Naux = 〈Pmerg〉 (Naux, N
′
f , δst, δf , δm1

)

(h) Naux = 〈Pmerg〉 (Naux, N
′
j, δend, δj, δm2

)

Initially, the two nets N0 and N1, representing the two tasks, are joined in a

new net called Naux (Step 0a). N0 and N1 may be either preemptive or non-

preemptive. After that, place pproc is added into the Naux net (Step 0b). This

place has just one marking representing a single processor. The next four steps

(Steps from 0c to 0f) add the respective arcs that represents processor granting

((pproc, tg0) and (pproc, tg1)) and processor releasing ((tc0, pproc) and (tc1, pproc)).

Finally, place merging is used in order to compose the two tasks with the fork

(Step 0g) and join (Step 0h) nets.

Figure 5.23 shows a TPN representing both T0 and T1 as non-preemptive task. If,

however, both tasks are preemptive, the minor changes can be seen in Figure 5.24.

pwa0 pwr0

pwd0pst0

ta0

tph0

2

[250, 250]

[0, 0]

pwg0 pwc0 pf0

tr0 [0, 90] tg0

tc0

[0, 0]
[10,10]

pwpc0 pdm0

td0 tpc0[100,100] [0, 0]

pwa1 pwr1 pwg1 pwc1 pf1

pst1 pwd1 pwpc1 pdm1

ta1 [250, 250]

tph1 [0, 0]

tr1 [0, 85]

tg1
[0, 0]

tc1
[15,15]

td1 tpc1[100,100] [0, 0]

2

pproc

3

3

tend [0,0]

pend

pstart
tstart
[0,0]

pwf1
tf1

pwf0 tf0
[0, 0]

[0, 0]

Figure 5.23: Complete Model for T0 and T1 Non-preemptive Tasks

5.3.4 Inter-task Relations Modeling

This section presents how to model inter-task relations considered in this work, namely,

precedence and exclusion relations. These two inter-tasks relations are described below.

Precedence Relation

Precedence relations are defined between pairs of tasks, such that one task can only

start executing after the other has been finished. Considering that τi PRECEDES τj is

5.3. MODELING THE SPECIFICATION 135

pwa0 pwr0

pwd0pst0

ta0

tph0

2

[250, 250]

[0, 0]

pwg0 pwc0 pf0

tr0 [0, 90] tg0 tc0
[0, 0] [1,1]

pwpc0 pdm0

td0 tpc0[100,100] [0, 0]

pwa1 pwr1
pwg1 pwc1 pf1

pst1 pwd1 pwpc1 pdm1

ta1 [250, 250]

tph1[0, 0]

tr1 [0, 85]

tg1
[0, 0]

tc1
[1,1]

td1 tpc1[100,100] [0, 0]

2

pproc

3

3

tend [0,0]

pend

pstart
tstart
[0,0]

pwf1

tf1

pwf0

tf0 [0, 0]

[0, 0]

10 10

15 15

Figure 5.24: Complete Model for T0 and T1 Preemptive Tasks

specified, and supposing that both tasks are represented by the Naux net, the following

steps are performed in order to model such precedence relation:

1. Naux = 〈Padd〉 (Naux, pprecij
, 0)

2. for the preceding task τi:

(a) Naux = 〈Aadd〉 (Naux, tfi
, pprecij

)

3. for the preceded task τj:

(a) Naux = 〈Pref〉 (Naux, pwgj
, pwpij

, tprecij
, pwgj

).

(b) Naux = 〈Aadd〉 (Naux, tprecij
, pprecij

, 1)

A single place pprecij
is included for each defined precedence relation (Step 1). In

the preceding task, an arc is included (Step 2a) for stating that the included place

pprecij
is the post-condition of transition tfi

in net Ni (representing task τi). In the net

that represents the preceded task (in this case, Nj), the place pwgj
is refined (Step 3a)

in such a way that this place is replaced by the following sequence: pwpij
, tprecij

, and

pwgj
. Finally, an arc is added (Step 3b) stating that place pprecij

is pre-condition for

firing transition tprecij
on net Nj.

Figure 5.25 shows the TPN model for tasks T1 and T2, and the T1 PRECEDES T2

inter-task relation. It worth noting that task T2 can only proceed after task T1 has

finished its execution.

136 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

pwa2 pwr2

pwd2pst2

ta2

tph2

2

[250, 250]

[0, 0]

pwg2 pwc2 pwf2

tr2 [0, 130] tg2 tc2[0, 0] [20,20]

pwpc2 pdm2

td2 tpc2[150,150] [0, 0]

pwa1 pwr1 pwg1 pwc1 pwf1

pst1 pwd1 pwpc1 pdm1

ta1[250, 250]

tph1[0, 0]

tr1[0, 85]
tg1

[0, 0]

tc1
[15,15]

td1 tpc1[100,100] [0, 0]

2

pwp12

tprec12
[0, 0]

pprec12

pf1
tf1

[0, 0]

pf2

tf2[0,0]

Figure 5.25: Precedence Relation Model for tasks T1 and T2

Exclusion Relation

Exclusion relations are also defined between pairs of tasks. Supposing that τi EXCLUDES

τj represents a situation in which two tasks cannot be concurrently executing at the

same time. In other words, if task τi starts executing, task τj has to wait up to task

τi finishes its execution. Usually, this relation is well-suited for tasks that access the

same critical region.

The proposed modeling method adds a single place (with one marking), which is pre-

condition for executing both tasks. Therefore, just one of both tasks is executing at the

same time. It is worth observing that the proposed exclusion relation is symmetrical,

that is, if task τi excludes task τj, it implies that task τj also excludes task τi.

After modeling the two tasks (τi and τj), represented by the Naux net, the following

actions are performed in order to model this exclusion relation:

1. Naux = 〈Padd〉 (Naux, pexclij , 1);

2. In task τi, do:

(a) Naux = 〈Pref〉 (Naux, pwgi
, pwexclij , texclij , pwgi

);

(b) Naux = 〈Aadd〉 (Naux, pexclij , texclij);

(c) Naux = 〈Aadd〉 (Naux, tfi
, pexclij);

3. In task τj, do:

(a) Naux = 〈Pref〉 (Naux, pwgj
, pwexclji

, texclji
, pwgj

);

5.3. MODELING THE SPECIFICATION 137

(b) Naux = 〈Aadd〉 (Naux, pexclij , texclji
);

(c) Naux = 〈Aadd〉 (Naux, tfj
, pexclij);

Firstly, a new place pexclij is inserted (Step 1) into the net. This place has one token

and it is responsible for guaranteeing the mutual access to the critical section. Both

nets, which represent the pair of tasks, are serially refined (Steps 2a and 3a) in such a

way that:

⋆ the sequence (pwexclij , texclij , pwgi
) substitutes the single place pwgi

(from τi);

⋆ the sequence (pwexclji
, texclji

, pwgj
) substitutes the single place pwgj

(from τj).

After that, four arc additions (Steps 2b, 2c, 3b, 3c) are performed:

⋆ (pexclij , texclij) and (tfi
, pexclij) (from τi); and

⋆ (pexclij , texclji
) and (tfj

, pexclij) (from τj).

Figure 5.26 shows the TPN model for both tasks T0 and T2, and the T0 EXCLUDES

T2 inter-task relation. This figure considers that both tasks are preemptive.

pwa0 pwr0

pwd0pst0

ta0

tph0

2

[250, 250]

[0, 0]

pwg0 pwc0 pwf0

tr0 [0, 90] tg0 tc0
[0,0] [1,1]

pwpc0 pdm0

td0

tpc0

[100,100] [0, 0]

pwa2 pwr2
pwg2 pf2

pst2 pwd2 pwpc2 pdm2

ta2 [250, 250]

tph2[0, 0]

tr2
[0, 130] [0, 0]

tc2
[1,1]

td2 tpc2[150,150] [0, 0]

2

pwexcl02

texcl02

[0, 0]

pexcl02

tf2 [0,0]

pwf2

pf0

tf0 [0,0]

10 10

20 20
pwc2

tg2
[0,0]

pwexcl20

texcl20

Figure 5.26: Exclusion Relation Model for Preemptive Tasks T0 and T2

5.3.5 Modeling Inter-processor Communication

This work supposes that communication time between tasks allocated to the same

processor is negligible, since in embedded systems communication is usually performed

through shared memory. In this case, such communication is simply dealt with as

precedence relation.

138 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

However, when considering inter-processor communication the method is different,

since communication time is not negligible.

The proposed method schedules the communication for avoiding network con-

tention. Otherwise, it could result in different execution times for different runs of

the same system, which is not appropriated for hard real-time systems.

The proposed method for inter-processor communication considers that:

⋆ non-blocking message sending, implying that after sending a message the task

may continue its work;

⋆ message receiving is blocking, that is, the task can only continue after receiving

the complete message;

⋆ point-to-point communication (or unicasting);

⋆ buses are reliable;

⋆ before communication takes place, the specific bus has to be granted to the

respective task;

⋆ communication time is represented by the respective communication transition.

Communication tasks (Definition. 5.17) are specified by µm = (τi, τj, ctm, busm). In

this case, the communication is from task τi to task τj, the worst-case communication

time is ctm, and the bus to be used is busm. Figure 5.27 applies the building block

send message for modeling the sending task τi as well as Figure 5.28 presents the serial

place refinement for modeling the receiving task τj.

Taking into account that: (i) buses are specified (such as place pbusm
represents the

bus busm); (ii) nets Ni and Nj are defined, such that these nets represent tasks τi to

τj, respectively; (iii) there is just one transition in the pre-set of place pfi
. Formally,

inter-processor communication model is obtained by carrying out the following steps:

1. instantiate the block inter-processor message sending (let us call Nsmij
);

2. join three nets Ni, Nj and Nsmij
(Naux = ((Ni ⊔ Nj) ⊔ Nsmij

))

3. For the sending task (Ni), do:

(a) tprev = •pfi

(b) remove the arc from tprev to pfi
(Naux = 〈Arem〉 (Naux, tprev, pfi

));

(c) add an arc from tprev to pwgbij
(Naux = 〈Aadd〉 (Naux, tprev, pwgbij

)).

5.3. MODELING THE SPECIFICATION 139

(d) add an arc from tsendij
to pfi

(Naux = 〈Aadd〉 (Naux, tsendij
, pfi

)).

(e) add an arc to the bus pbusm
(Naux = 〈Aadd〉 (Naux, (pbusm

, tgbij
), 1));

(f) add another arc to the bus pbusm
(Naux = 〈Aadd〉 (Naux, (tcommij

, pbusm
), 1)).

4. For the receiving task (Nj), do:

(a) refine place pwcj
(Naux = 〈Pref〉 (Naux, pwcj

, precvij
, trecvij

, twcj
));

(b) add an arc from prbufij
to trecvij

(Naux = 〈Aadd〉 (Naux, prbufij
, trecvij

))

As it can be observed in this procedure, the modeling of communication between

tasks in different processors is performed by composing the nets representing both tasks

with the message sending block (Step 2). Considering the modeling of the sending task,

one arc is removed (Step 3b) and four arcs are added (Steps from 3c to 3f). Moreover,

for the receiving task, the place pwcj
is refined (Step 4a), and one arc is added (Step 4b).

Supposing another communication task µm2 = (τi, τk, ctm2, busm), where the com-

munication is from task τi to task τk, the worst-case communication time is ctm2, and

the bus to be used is busm. The composition of the second message sending block from

task τi is shown in Figure 5.29.

The adoption of tprev = •pfi
(Step 3a) is due to the fact that the same task may

send messages to more than one task, as presented previously. In Figure 5.27, tprev =

•pfi
= tfi

, however, in case of Figure 5.29, tprev = •pfi
= tsendij

.

tri
tgi tci tfi

10 10

tgbij
tsendij tcommij

pwri pwgi pwci pwfi pfi

pwgbij pwsij psbufij prbufij

pbusk

Figure 5.27: Modeling of the Sending Task from τi to τk

140 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

trj
tgj tcj tfj

15 15pwrj
pwgj precvij pwfj pfj

trecvij

pwcj

trj
tgj tcj tfj

15 15pwrj
pwgj pwfj pfjpwcj

Figure 5.28: Modeling of the Receiving Task

tri
tgi tci tfi tgbij

tsendij

tcommij

pwri pwgi pwci pwfi pwgbij pwsij

psbufij prbufij

tgbik
tsendik tcommik

pfi

pwgbik pwsik psbufik prbufik

pbusb

Figure 5.29: Modeling the Second Message from τi to τk

Figure 5.30 presents a communication graph that describes a communication pat-

tern between five tasks located in two processors. This communication pattern is

represented in the net of Figure 5.31. For sake of readability, this net not shows the

processor. It is worth observing that the communication between tasks in the same

processor is dealt with as precedence relation.

5.3.6 Modeling Dispatcher Overheads

An often neglected situation in software synthesis research is the dispatcher and timer

interrupt handler overheads. If the computation time of tasks is small, and the re-

spective deadline is short, this shortcoming may not reach all timing constraints. One

solution, adopted in several works, for instance [103], considers that the WCET of tasks

already includes this overhead. This solution is rather pessimistic, since it is not known

how many preemptions will occur in each task before a schedule has been found.

5.3. MODELING THE SPECIFICATION 141

T1

T2

T3

T4

T5

M1

M2

Proc 1 Proc 2

T0

Figure 5.30: Communication Graph

In this work, both dispatcher and timer interrupt handler overheads are simply

called dispatcher overhead.

On the other hand, the solution adopted in this work explicitly models the WCET of

the dispatcher. In this case, the overhead is considered during the schedule generation,

but only when needed, leading to a more realistic estimation for the system behavior.

This section shows the formal definition of the new task structure (preemptive and

non-preemptive), this time including the modeling of the dispatcher overheads.

The aim of the dispatcher and interrupt handler is made clear in Section 6.2.

Dispatcher Overhead Block

The dispatcher overhead is captured in the grant-processor transition. When the task

is non-preemptive, the timing interval of the grant-processor transition corresponds to

the WCET of the dispatcher.

When the task is preemptive, the model is slightly more complex. In this case, the

proposed modeling adopts the TPN with priorities.

The proposed model considers two grant-processor transitions: grant-processor-

with-overhead (tgwi
) and grant-processor-without-overhead (tgwoi

). As it can be seen in

Figure 5.32, the timing interval ([α, α]) for transition tgwi
models such timing overhead.

Place pprockTi
states that task τi was last executed task by the processor prock.

Transition tgwoi
has as one of its pre-condition the place pprockTi

.

The dispatcher overhead is considered in two situations: (1) when the next task

to use the processor is different from the task that used the processor before; or (2)

when a task instance ends its execution. The first situation is represented by the place

142 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

tg0

tc0

tprec02

tc2

tg2

trecv42

tprec23

tg3

tc3

tg4

tc4

tgb42

tprec45

tp5

tc5

trecv5

tcomm42

tcomm35

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T0 T2 T3 T4 T5

tsend42tgb35

tsend35

tg1

tc1

.

.

.

.

.

.

T1

tprec12

tf1 tf0

tf2
tf3

tf4 tf5

pbus1

Figure 5.31: A Simple Example of Inter-processor Communication

pprockTi
, where if such place is marked, it implies that the processor was lastly allocated

to task τi. However, the second situation deserves an explanation. Supposing that a

task instance i of task τj ends its execution, and the following task to be executed is

the task instance i+1 of the same task τj. In this case, although the two instances are

from the same task, the dispatcher calling is mandatory. In order to solve this problem

the model considers two final transitions: one removes the marking in place pprockTi

(highest priority); and the other does not (lowest priority).

In spite of this block may seem complicated, it is worth remembering that this

model is performed automatically. In other words, the user does not have to deal with

such complex modeling.

All places pprockTj
are mutually exclusive marked, that is, just one must be marked

5.3. MODELING THE SPECIFICATION 143

at a time. In order to assure this constraint, the model includes, for each task, nk

computation transitions tcij
, 1 ≤ j ≤ nk, where nk is the number of tasks that share

the same processor prock. These nk computation transitions are included in order to

guarantee that the only place marked is pprockTi
. Initially, no one of these places are

marked.

In this proposed model, transition tgwoi
has priority equal to zero (the highest) and

transition tgwi
has priority equal to one (lower than). In the same way, transitions

tcij
, 1 ≤ j ≤ nk i 6= j, for each task τi, has highest priority (value equal to zero)

related to transitions tcii
.

For sake of readability, Figure 5.32 does not show computation transitions having

an arc from them to place pprock
(meaning processor releasing).

pwri pwgi pwci pfitri

tgwi

tcii

tfi

pwdi

ci ci

[ri, di - ci]

[a,a]

[1,1]

[0, 0]

pprock

tgwoi
[0, 0] pprockTi

pprock

pwfi
...

pprockTnk pprockT1

. ..

tci1

tcink

[1,1]

[1,1]

ci
tfpi

[0, 0]

pwdi

Figure 5.32: Building Block Dispatcher Overhead

The building block dispatcher overhead is a TPN No = (Po, To, Fo, Wo, M0o
, Io),

such that:

⋆ Po = {pwri
, pwgi

, pwci
, pprockT1

, . . . , pprockTnk
, pwfi

, pfi
, pwdi

, pprock
}. These places

model the following:

pwri
: waiting for release time;

pwgi
: waiting for processor granting;

pwci
: waiting for task computation;

pprockTi
: states that task τi was the last to be allocated to the processor

prock, for 1 ≤ i ≤ nk;

144 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

pwfi
: waiting for task instance end;

pfi
: end of a task instance;

pwdi
: waiting for deadline missing.

pprock
: processor prock.

⋆ To = {tri
, tgwi

, tgwoi
, tci1

, . . . , tcink
, tfpi

, tfi
}. These transitions

model the following actions:

tri
: task releasing;

tgwi
: processor granting with dispatcher overhead (lowest priority);

tgwoi
: processor granting without dispatcher overhead (highest priority);

tcij
: executes one task unit, removes the marking in place pprockTj

(1 ≤ j ≤

nk, j 6= i), releases the processor, and marks place pprockTi
(highest priority);

tcii
: executes one task unit, releases the processor, and marks place pprockTi

(lowest priority);

tfpi
: concluding the task computation, and removes the marking pprockTi

(higher priority than tfi
)

tfi
: concluding the task computation (lower priority than tfpi

).

⋆ Pre and post-conditions of transitions are:

•tri
= {pwri

}; tri
• = {pwgi

};

•tgwi
= {pwgi

, pprock
}; tgwi

• = {pwci
};

•tgwoi
= {pwgi

, pprockTi
, pprock

}; tgwoi
• = {pwci

};

•tcij
= {pwci

, pprockTj
}; tcij

• = {pprockTi
, pwfi

, pprock
};

•tcii
= {pwci

}; tcii
• = {pprockTi

, pwfi
, pprock

};

•tfpi
= {pwfi

, pwdi
, pprockTi

}; tfpi
• = {pfi

}.

•tfi
= {pwfi

, pwdi
}; tfi

• = {pfi
}.

⋆ ∀f ∈ Fo : Wo(f) =







ci if f = (tri
, pwgi

) or f = (pwfi
, tfi

) or f = (pwfi
, tfpi

)

1 otherwise

⋆ M0o
(pprock

) = β; M0p
(p) = 0 ∀p ∈ P ∧ p 6= pprock

.

5.4. ANALYSIS AND VERIFICATION OF THE MODEL 145

⋆ Io(tri
) = [ri, di − ci];

Io(tgwoi
) = Io(tfi

) = Io(tfpi
) = [0, 0];

Io(tgwi
) = [α, α] α ∈ N;

Io(tcij
) = [1, 1], 1 ≤ j ≤ nk.

The release time of task τi is assigned to the timing interval of transition tri
. The

timing interval [α, α] of transition tgwi
comes from the WCET of the dispatcher and

timer interrupt handler. All remaining timing intervals are constants. The same way,

the arc weights ((tri
, pwgi

), (pwfi
, tfpi

), and (pwfi
, tfi

)) come from the ci (execution

time) of task τi.

Figure 5.33 shows the TPN of tasks T0 and T1 considering the modeling of the

dispatcher overhead. This figure shows that the dispatcher overhead is equal to two

TTUs. It is worth noting that the dispatcher overhead block is just applicable in tasks

that share the same processor.

pwa0 pwr0

pst0

ta0

tph0

2

[250, 250]

[0, 0]

pwg0 pwc0 pf0

tr0 [0, 90]

tgw0
[2, 2]

pwa1 pwr1 pwg1

pst1

ta1[250, 250]

tph1[0, 0]

tr1 [0, 85]

2

pproc1

3

3

tend [0,0]

pend

pstart
tstart
[0,0]

pwf0

tf0 [0,0]

10
10

15

pwd0

pwpc0

pdm0

td0 tpc0
[100,100] [0, 0]

pproc1T0

pproc1T1

tgwo0
[0, 0]

pwc1 pf1

tgw1
[2, 2]

pwf1

tf1
[0,0]

15

tgwo1
[0, 0]

pproc1T0

pwd1

pwpc1

pdm1

td1
tpc1[100,100] [0, 0]

pproc1T1

tc00

tc01[1,1]

[1,1]

tc11
[1,1]

tc10
[1,1]

10
tfp0
[0,0]

15

tfp1
[0,0]

Figure 5.33: Tasks T0 and T1 modeled with dispatcher overhead

5.4 Analysis and Verification of the Model

This section provides qualitative analysis and properties verification of the model.

146 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

Verification is usually associated to a deterministic algorithm for checking if a model

has a given property. Analysis, on the other hand, does not look for properties verifica-

tion, instead, the analysis provides information about several properties. Furthermore,

the results of the analysis may be used as a basis for verification algorithms.

5.4.1 Qualitative Analysis

INA [90] is a tool devoted to modeling, analysis and verification of place/transition

and several classes of timed Petri nets. This tool was adopted for carrying out quali-

tative analysis as well as for properties verification. This section presents qualitative

analysis result obtained for a basic model, that is, a model without considering inter-

task relations provided by designers. A basic model does not consider the deadline

checking block. This is a weak limitation, since the deadline checking block represents

undesirable states.

The result of the qualitative analysis is as follows:

• Bounded. As presented before in Section 4.4, a net is bounded if no place is

allowed to accumulate an infinite number of tokens. Therefore, this property

indicates a finite state space. This property is important since it guarantees that

the search-based algorithm (that traverses the state space) will stop.

• Deadlock-freedom. A net satisfies the deadlock-freedom property, if the max-

imal trap (where in this case it is not a proper subset of a trap) in each siphon

is sufficiently marked. A set of places is sufficiently marked, if it contains a place

with sufficiently many tokens to enable all its post-transitions. This property is

essential in concurrent systems, where deadlock is a situation not desired. This

property is also important to guarantee that the model does not introduce any

deadlock. Of course if the user specifies a system with precedence relations that

form a cycle, certainly a deadlock will occur. However, such deadlock is intro-

duced by the user, not from the proposed model. As presented before in this

subsection, the basic model does not consider the deadline checking block, since

the structure of this block, per se, is a deadlock.

• Liveness. Liveness guarantees the absence of deadlocks. Moreover, it is a

stronger condition than deadlock-freedom. A net may be deadlock-free but not

live. The converse is always true. A transition t is live if for all reachable mark-

ing, there exists a transition firing sequence σ leading to a marking m′ in which

5.4. ANALYSIS AND VERIFICATION OF THE MODEL 147

t is enabled. A net is live if all transitions are live. The same remark about the

deadline checking block is valid for this property.

One of the properties not found in the proposed model is structurally boundedness.

A net is structurally bounded, if it is bounded for every initial marking. Furthermore,

this property is stronger than boundedness.

A single model representing two tasks (T0 and T1) was developed for investigating

both boundedness and structural boundedness properties. Figure 5.34 presents such

model. First of all, structural properties do not consider priority, initial marking, and

time. Observing the behavior of the net (without such features), it has been found out

that there is a possibility of tokens to be accumulated into places pprockT0
and pprockT1

.

This situation occurs if transitions tc0 and tc1 is chosen for firing instead of transitions

tc01 and tc10 . In this case, this net systems cannot be structurally bounded.

As presented in subsection 5.4.2, the initial marking will stabilize at m(pprockT0
) +

m(pprockT1
) = 1 when considering priorities. However, it is not structurally guaranteed,

but only when analyzing behavioral properties, since such places are not covered by

P-invariants. Thus, this net system is bounded but not structurally bounded.

The model presented in Figure 5.34 has no inter-task relations. When introducing

such relations, there is no guarantee of liveness and deadlock-freedom preservation. For

instance, if the user specifies a cyclic precedence relation, a deadlock is introduced. In

the same way, this may occur with inter-processor communication. Therefore, a model

verification is required.

Tc10

Tgwo1

Ta0

Tf1

Tr0

Tc01

Tstart

Tgw0

Tgw1

Tc0

Tr1

Tgwo0

Tf0

Ta1

Tend

Tc1

Pwg0

Pwg1

PprocT0

PprocT1

Pproc

Pwc1

Pwc0Pwa0

Pwa1 Pwr1

Pwr0

Pwf0

Pwf1

Pstart

Pf0

Pf1

Pend

Figure 5.34: Model for Verifying Mutual Exclusive Marking

148 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

5.4.2 Modeling Verification by Model Checking

This section presents several verifications using the model checking method. For more

information about model checking, the interested reader is referred to Appendix A.

This work verifies several important properties, such as:

• verifying that most recent allocation of processor to tasks are mutually exclusive.

The verification of this property states that no more than one task was the last

to be allocated to the processor;

• verifying that the processor is used by one task at a time;

• verifying that exclusive access (of tasks) to critical regions is guaranteed;

• verifying that the preceded task can only start its execution after the preceding

task had finished.

The verifications of such properties are depicted below.

Mutual Exclusive Marking

As presented at Section 5.3.6, the set of places {pprockTi
, 1 ≤ i ≤ nk} is mutual

exclusive marked, that is, whenever one of these places has a token the other ones are

not marked. In order to verify this property, model checking is adopted.

Figure 5.34 shows a net system representing two tasks: T0, and T1. Using CTL

(Computation Tree Logic), the formula representing this property is

AG¬(pprocT0
∧ pprocT1

)

This formula states that for all paths (A - Always) the property holds in every

state (G - Globally). In other words, this property should be satisfied for all system

execution. The property states that places pprocT0
, and pprocT1

are not simultaneously

marked.

This formula was verified using the INA tool, and the result was TRUE, that is, the

model preserves the mutual exclusive condition between the set of places {pprockTi
, 1 ≤

i ≤ 2}. Since the model is automatically generated, it may be argued that this property

is satisfied for all places {pprockTi
, 1 ≤ i ≤ nk}.

Section B.1 (Appendix B) presents the steps performed by the INA tool for checking

this property.

If the model consists of three tasks, the formula would be

5.4. ANALYSIS AND VERIFICATION OF THE MODEL 149

AG(((pprocT0
∧ ¬(pprocT1

∨ pprocT2
)) ∨

(pprocT1
∧ ¬(pprocT0

∨ pprocT2
)) ∨

(pprocT2
∧ ¬(pprocT0

∨ pprocT1
))

Processor Utilization

The aim of this verification is to check if the model correctly represents that a specific

processor (represented by place pprock
) is used by just one task at a time. The solu-

tion adopted checks if all places immediately after the grant-processor transitions are

mutually-exclusive marked, i.e., just one of these places is marked at a time. This set

of places is {pwci
, 1 ≤ i ≤ nk}.

Considering the model in Figure 5.34, the formula representing this property is

AG¬(pwc0 ∧ pwc1)

This formula was also verified using the INA tool, and the result was TRUE, that

is, the model preserves the property of exclusive access to the respective processor.

This verification is performed considering two tasks. However, as the modeling is

performed automatically, it may be argued that this property is satisfied for all places

pwci
, 1 ≤ i ≤ nk.

Section B.2 (Appendix B) presents the steps performed by the INA tool for this

verification.

If the model consists of three tasks, the formula would be

AG(¬(pwc0 ∧ pwc1) ∧ ¬(pwc0 ∧ pwc2) ∧ ¬(pwc1 ∧ pwc2))

Precedence Relation

Precedence relations are defined between pair of tasks. So, let us suppose that the net

system represents the T1 PRECEDES T0 precedence relation. Figure 5.35 presents a

simplified model for verifying the precedence relation.

The aim of this verification is to check if after defining a precedence relation both

tasks are not executing at the same time.

The solution adopted checks if all places immediately before the task computation

transitions are mutually-exclusive marked, namely, just one of these places is marked

at a time. In this modeling specific situation, this set of places is {pwci
, 1 ≤ i ≤ nk}.

Using CTL, the formula representing this property is

150 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

Pprec10

Pf1

Pwp10
Pwf0

Pst1

Pend

Pwc1

Pstart

Pf0Pwg0

Pwg1

Pst0 Pwc0

Pwr1

Pwr0

Pwf1

Tend

Tg0

Tg1

Tf0

Tf1

Tph0

Tph1

Tstart

Tc0

Tc1

Tr0

Tr1

Tprec10

Figure 5.35: Model for Verifying Precedence Relation

AG¬(pwc0 ∧ pwc1)

This formula was also verified using the INA tool, and the result was TRUE.

Another way to perform the same verification is by using another formula. This

time, the aim is to verify if there is no path where pwg0
, pwc0 , and pwf0

are marked and

pf1
is not marked. The formula is

AG¬(pwg0
∧ pwc0 ∧ pwf0

∧ ¬pf1
)

The result of this formula is TRUE, that is, the model preserves the property of prece-

dence relation in all paths starting from the initial state. Section B.3 (Appendix B)

shows the steps performed by the INA tool for this verification.

Pf0

Pwf1

Pwexcl01 Pwf0

Pst1

Pend

Pwc1

Pstart

Pexcl10

Pwg0

Pwg1Pwexc10

Pwc0

Pwr1

Pst0 Pwr0

Tend

Tg0

Tg1

Tf0

Tf1

Tr0 Texcl01Tph0

Tph1

Tstart

Tc0

Tc1Texcl10Tr1 Pf1

Figure 5.36: Model for Verifying Exclusion Relation

5.5. SUMMARY 151

Exclusion Relation

Exclusion relations are also defined between pair of tasks. Thus, supposing that T1

EXCLUDES T0 exclusion relation is defined, Figure 5.36 presents a simplified model

for verifying the exclusion relation.

In order to verify if both tasks are not simultaneously executed, the solution adopted

checks if places pwc0 and pwc1 are not simultaneously marked at the same time.

Using CTL, the formula representing this property is

AG¬(pwc0 ∧ pwc1)

The result of applying such formula to the INA tool was TRUE, that is, the model

satisfies the property of exclusion relation in all paths starting from the initial state.

Section B.4 (Appendix B) explains the steps performed by the INA tool for this veri-

fication.

5.5 Summary

This chapter introduced three important aspects of modeling embedded hard real-time

systems, namely, formal model, specification, and the process for obtaining the model

from the specification.

The first section has shown the formal model syntax and semantics. The syntax

is based on an extension of time Petri nets considering priorities, source task code,

and energy consumption. The model semantics is described by enabling and timing

rules and is represented by a timed labeled transition systems. This section presented a

formal definition of time Petri net as well as the set of enabled transitions, clocks (which

are implicit for each enabled transition), states of a time Petri net, the set of fireable

transitions with its respective firing domain, reachable states, timed labeled transition

system, and feasible firing schedule (which is a timed labeled transition system where

the final state is specified and well-known). A source code transition labeling has also

been considered. Additionally, priorities have been defined for extending the basic

timed model as well as energy consumptions related to executions of activities. These

extensions required the redefinition of state, fireable transition set, and reachable states.

The second section described the specification model, explaining in detail all com-

ponents of this model. The specification model is divided in two parts: (i) specification

of constraints; and behavioral specification. Periodic task timing constraints, inter-task

relations, and allocation of tasks to processors were defined in the specification of con-

152 CHAPTER 5. MODELING EMBEDDED HARD REAL-TIME SYSTEMS

straints. This section also explained how to translate a sporadic task into an equivalent

periodic one, how to deal with subtasks, and scheduling methods (preemptive or non-

preemptive). In the behavioral specification, the source code of each task is specified

in C language augmented with communicating constructs. The syntax and semantics

of these communication constructs were detailed. If such communication occurs in the

same processor, it is considered as a precedence relation. However, if communicating

tasks are in different processors, a special communication task is added, and proper

precedence relations are also included. Finally, this section showed the components of

a complete specification using a simple example.

The modeling of embedded hard real-time systems using time Petri net formalism

was the main aim of the third section. The solution adopted is based on the compo-

sition of building blocks. The building blocks are (i) periodic task arrival; (ii) task

structure, where either preemptive or non-preemptive scheduling methods are consid-

ered; (iii) deadline checking; (iv) inter-processor sending message; (v) resources, such

as processors and buses; (vi) fork; and (vii) join. These blocks are composed by apply-

ing several operators, such as merging, addition and refinement of places, addition and

removing of arcs, and net union. This section also has shown how to model inter-task

relations, in this case, precedence and exclusion relations. It also explained how to

model inter-processor communication, that is, message sending and message receiving

considering that tasks are allocated to different processors. Next, in order to consider

the dispatcher and timer interrupt handler overheads, this section provided a specific

building block for modeling such overhead so that it may lead to a more realistic es-

timation of the system behavior. Finally, this section presented some analysis and

properties verification considering the proposed model. The model was analyzed and

it was found out that the model has interesting properties. A set of properties of

interest were also verified: (i) if conditions that assert last allocation of processor to

tasks are mutually exclusive; (ii) if the processor is used by one task at a time; (iii) if

the exclusive access of tasks to critical regions is guaranteed; and (iv) if the preceded

task can only start its execution after the preceding task finished. In this case, all such

properties are satisfied by the model.

Chapter 6

Software Synthesis

Software synthesis aims to generate the source program code with lower overheads and

satisfying all constraints. This chapter is divided in two sections: scheduling, and code

generation.

Embedded hard real-time systems have stringent timing constraints that must be

satisfied. Additionally, when considering safety or timing-critical systems, predictabil-

ity is one of the main concerns. Scheduling plays an important role for attaining such

constraints in a predictable way.

Starting from the found feasible pre-runtime schedule, a C-code is generated. There

are two ways for this code generation, namely, with and without multiple operational

modes. Each mode represents an alternative schedule, which is activated by a specific

condition.

Although the scheduling synthesis framework provides schedules considering multi-

processors, the code generation for this architecture is beyond the scope of this work.

6.1 Scheduling Synthesis

Starting from the time Petri net model, the proposed scheduling synthesis framework

generates and analyzes the timed labeled transition system (TLTS), resultant of this

model. It also analyzes the TLTS in order to find a pre-runtime schedule, provided

that such schedule exists.

This work uses state space exploration for automatic verification of finite-state sys-

tems [38]. It consists of recursively checking all successor states, starting from a given

initial state, by executing all enabled transitions at each state. In spite of the fact that

a scheduling can be found using this strategy, it may be limited by the excessive size of

153

154 CHAPTER 6. SOFTWARE SYNTHESIS

its state space. This problem comes up due to the analysis based on the interleaving of

concurrent activities. This exponential growth is known as the state explosion problem

[38, 97]. The proposed approach tackles this problem by applying techniques for state

space reduction, and a depth-first search algorithm.

The proposed scheduling policy is pre-runtime scheduling, where schedules are com-

puted entirely off-line. As presented previously, this strategy has advantages over oth-

ers, mainly when adopting arbitrary precedence and exclusion relations.

This section starts by showing how to minimize the state space size by modeling

dependencies between tasks, applying a partial-order reduction technique, and remov-

ing undesirable states. Next, it presents a depth-first search algorithm for finding, if

one exists, a feasible firing schedule. Finally, the proposed algorithm is applied to a

simple time Petri net model.

6.1.1 Minimizing State Space Size

The analysis of n concurrent events, using state space exploration, needs verifying all

n! interleaving possibilities of these events, unless there exist dependencies between

these events. The proposed method models explicitly such dependencies. For instance,

resources (including processors) with resource granting and releasing, precedence and

mutual exclusion relations, markings representing properties to be avoided or verified,

and synchronizations. The modeling methodology itself aids in minimizing the state

space size. Besides, this section presents two other ways of minimizing the state space

size, namely, partial-order reduction and elimination of undesirable states.

Partial-Order Reduction

When generating a timed labeled transition system of a time Petri net, the interleaving

of activities is the fundamental point to be considered in the analysis of the state space

explosion problem. However, if activities can be executed in any order, in which the

system always reaches the same state, these activities are independent. In other words,

it does not matter in which order the activities are executed. Partial-order reduction

methods are based on the independence of activities. The reduction is obtained by

throwing away one of these interleaving, i.e., executing a subset of the enabled activities,

usually called a persistent set. The interested reader is referred to [38] for a good

overview.

The correctness of partial-order methods is based on the diamond property (Fig-

ure 6.1(a)). Here, if two activities are independent, the order between them does not

6.1. SCHEDULING SYNTHESIS 155

matter. These techniques have been studied within the context of untimed systems,

whereas in the context of timed systems little progress has been made. The main

problem, in accordance with [54] is the global nature of time, which makes all clocks

in the system dependent on each other. The standard semantics for time Petri nets

implicitly stores the firing order of transitions in the timing constraints.

In case of Figure 6.1, the standard semantics defines the state as the composite be-

tween marking and clock. Analyzing the time Petri net (Figure 6.1(b)) it can be seen

that transitions t1 and t2 are really independent. However, suppose that both transi-

tions have been enabled at different time instants. Although they are independent, the

final state will not be the same, since the clocks are different. If it happens, the state

space will form a tree (Figure 6.1(c)) and the diamond property is never reached.

Lilius [54] studied such partial-order techniques and derived a semantics for time

Petri nets that does not store the firing order into timing constraints. Therefore, it

becomes possible to directly apply the theory of partial-order reductions to time Petri

nets. He defined state class, which is a pair (m, I), where m ⊆ P , and I is a set of

constraints over T . A state class describes the constraints on the possible firing times

of the enabled transitions in a specific marking. I can be represented as matrices,

where each matrix entry represents an inequation.

Starting from these definition, Lilius shows that independent transitions in time

Petri nets may be defined in the following way. Two transitions t1 and t2 are indepen-

dent, iff for all states s of the state space:

(i) if t1 is fireable in s and s
t1−→ s′, then t2 is fireable in s iff t2 is also fireable in s′;

and

(ii) if t1 and t2 are fireable in s, then there is a unique state s′ such that s
t1;t2
−→ s′,

and s
t2;t1
−→ s′.

In the example shown at Figure 6.1(b), the firing of t1, t2 or t2, t1 leads to the same

state class.

In the same way as Lilius [54], this work considers that two transitions are indepen-

dent if one is not in conflict with the other, i.e., when one is fired it does not disable

the other. Analyzing the specific transitions of the models generated by this work, it

was found out that arrival transitions are independent on other arrival transitions. The

same occurs with release, precedence, computation, final, send-message, and receive-

message transitions. Thus, when one of these class of transitions is fired the other

continues fireable. On the other hand, processor granting, and exclusion are examples

of dependent transitions.

156 CHAPTER 6. SOFTWARE SYNTHESIS

{p1, p2}

t1 t2

{p2, p3} {p1, p4}

{p3, p4}

t2 t1

p3

p1

t1

p4

p2

t2

{p1, p2}, C

t1 t2

{p2, p3}, C=> t1 < t2 {p1, p4}, C=> t2 < t1

{p3, p4}, C=> t1 < t2 {p3, p4}, C=> t2 < t1

(a) (b) (c)

t1t2

Figure 6.1: Standard semantics of timed systems: (a) diamond property; (b) a time

Petri net model; (c) a reachability tree

As it can be observed, there is a causal relationship between release and arrival,

processor-granting and release, computation and processor-granting, and so on. In

order to define the persistent set for each state, and considering the specific adopted

model, the causal relationship, the independent, and dependent class of transitions,

this method proposes to give each class of transitions a different choice-priority level.

In this case, the independent class of transitions have the highest choice-priorities. The

dependent class of transitions, such as processor-granting, and exclusion, have lowest

choice-priority. Therefore, when changing from one state to another, it is sufficient

to analyze the class with the highest choice-priority and pruning the other ones, in

such a way that the exploration occurs only in part of the state space. When all such

independent transitions are executed, the state will certainly be the same, since the

order between them does not matter. The priority-choice is detailed in Table 6.1. In

this table, transitions like deadline-checking and deadline-missing are not considered

since these transitions are undesirable and will not be fired.

Table 6.1: Choice-priorities for each transition class

Choice-priority Transition

1 Final
2 Arrival
3 Release
4 Precedence
5 Computation
6 SendMessage
7 ReceiveMessage
8 Exclusion
9 ProcessorGranting

10 BusGranting

This reduction method is not general, rather it is specific for the proposed model.

This reduction is important due to two reasons: (i) it reduces the amount of storage (the

6.1. SCHEDULING SYNTHESIS 157

1 scheduling-synthesis(S,MF ,TPN, Vmax)
2 {
3 if (S.M = MF) return TRUE;
4 tag(S);
5 PT = remove-undesirable(partial-order(firable(S,Vmax)));
6 if (|PT| = 0) return FALSE;
7 for each (〈t, θ〉 ∈ PT) {
8 S’= fire(S, t, θ);
9 if (untagged(S’) ∧ scheduling-synthesis (S’,MF,TPN,Vmax)){
10 add-in-trans-system (S,S’,t,θ);
11 return TRUE;
12 }
13 }
14 return FALSE;
15 }

Figure 6.2: Scheduling Synthesis Algorithm (Timing and Energy Constraints)

amount of main memory is the major limiting factor of most state space exploration

algorithms); and (ii) when the system does not have a feasible schedule, it returns more

rapidly.

Undesirable States

Section 5.3.3 presents how to model undesirable states, for instance, states that repre-

sent missed deadlines. The proposed method is interested in schedules that do not reach

any of these undesirable states. Therefore, undesirable states are simply discarded. As

all transitions are annotated with their class, it is easy to check the transitions which

their firing are leading to an undesirable state. For instance, all deadline-checking

transitions should not fire unless deadlines are not met.

6.1.2 Pre-Runtime Scheduling Algorithm

The proposed algorithm (Figure 6.2) is a depth-first search method that traverses a

TLTS. The stop criterion is obtained whenever the desirable final marking MF is

reached. The state space is not completely generated, because of the search method

adopted and the state space size minimization techniques.

Considering that the Petri net model is bounded (Section 5.4), and the timing

constraints are discrete, this implies that the TLTS is finite and thus the proposed

algorithm always finishes.

When the algorithm reaches the desired final marking (MF), it implies that a

feasible schedule satisfying both timing and energy constraints was found (line 3). It

is worth observing that the fireable function (line 5) takes into account timing, energy,

and priority. The state space generation is modified (also line 5) to incorporate the state

space pruning (partial-order and undesirable states pruning). PT is a set of ordered

158 CHAPTER 6. SOFTWARE SYNTHESIS

pairs 〈t, θ〉 representing, for each post-pruning fireable transition, all possible firing

time in the firing domain (Definition 5.6). The tagging scheme (lines 4 and 9) ensures

that no state is visited more than once. The function fire (line 8) returns a new

generated state (Definition 5.7) due to the firing of transition t at time θ. The feasible

schedule is represented by a TLTS generated by the function add-in-trans-system

(line 10). The whole reduced state space is visited only when the system does not have

a feasible schedule (line 14), where the algorithm returns FALSE.

The tagging scheme is needed to visit a state not more than once. This test (line

9) is needed so that termination can be guaranteed in reasonable time. In order to

verify such situation, an experiment was performed considering an unmanned ground

vehicle (Chapter 8) without such tagging scheme. The result is that a feasible schedule

was found after analyzing more than 2 billion states in more than 48 hours. Using the

tagging scheme, the same schedule was found in just 2.5 seconds after analyzing 14,761

states. However, this test may cause two problems. The first problem concerns the

(new) search that has to be made in the set of all previously visited states. This may

be very time consuming. The second problem is related to the set of visited states,

which may also be very large.

For minimizing the first problem, a binary-tree search was adopted. The first

attempt was to apply a hashing table technique. However, this solution caused lots of

collision. Thus, in this specific situation, this solution was not so efficient. The second

problem is beyond the scope of this work.

This algorithm has an important characteristic, namely, it is deadlock and starvation-

free. The aim of this algorithm is to start from the initial state and find the desirable

final state. Therefore, it is impossible to find such final state with either deadlock or

starvation. When considering a single processor architecture, this deadlock/starvation-

free is also guaranteed by the modeling based on compositions of building blocks. Since

the modeling is automatic, there is no way of introducing deadlocks. However, when

considering a multi-processor architecture, the communication between tasks in dif-

ferent processors may introduce deadlocks. Nevertheless, a technique for deadlock

avoidance is not implemented in this work. See more information about this subject

on Section 9.3 at Chapter 9.

6.1.3 Application of the Algorithm

The simple task set presented at Table 5.2 (Section 5.3.1 at Chapter 5) produces the

TPN model outlined in Figure 6.3. Table 6.2 shows the application of the proposed

algorithm in such TPN model. For illustrative purpose, it is worth noting that this

6.1. SCHEDULING SYNTHESIS 159

Table 6.2: Illustrative Example (Timing and Energy Constraints)
st ET C FT PT trans+time Energy

1 0 {tstart} {0} {tstart} {tstart} {tstart,0} 0
2 1 {tph1,tph2} {0,0} {tph1,tph2} {tph1,tph2} {tph1,0} 0
3 2 {tph2,tr1,ta1,td1} {0,0,0,0} {tph2,tr1} {tph2} {tph2,0} 0
4 3 {tr1,ta1,ta2,td1,td2} {0,0,0,0,0} {tr1} {tr1} {tr1,0} 0
5 4 {tp1,ta1,ta2,td1,td2} {0,0,0,0,0} {tp1} {tp1} {tp1,0} 0
6 5 {tr2,tc1,ta1,ta2,td1,td2} {0,0,0,0,0,0} {tr2,tc1} {tr2} {tr2,2} 0
7 6 {tc1,ta1,ta2,td1,td2} {2,2,2,2,2} {tc1} {tc1} {tc1,0} 2
8 7 {tf1,ta1,ta2,td1,td2} {0,2,2,2,2,2} {tf1} {tf1} {tf1,0} 2
9 8 {tp2,ta1,ta2,td2} {0,2,2,2} {tp2} {tp2} {tp2,0} 2

10 9 {tc2,ta1,ta2,td2} {0,2,2,2} {tc2} {tc2} {tc2,2} 4
11 10 {tf2,ta1,ta2,td2} {0,5,5,5} {tf2} {tf2} {tf2,0} 4
12 11 {ta1,ta2} {5,5} {ta2} {ta2} {ta2,2} 4
13 12 {ta1,ta2,tr2,td2,} {6,0,0,0} {ta1,tr2} {ta1} {ta1,2} 4
14 13 {ta1,ta2,tr1,tr2,td1,td2} {0,2,0,2,0,2} {tr1,tr2} {tr1,tr2} {tr1,0} 4
15 14 {ta1,ta2,tr2,td1,td2,tp1} {0,2,2,0,2,0} {tr2,tp1} {tr2} {tr2,0} 4
16 15 {ta1,ta2,td1,td2,tp1,tp2} {0,2,0,2,0,0} {tp1,tp2} {tp1,tp2} {tp1,0} 4
17 16 {ta1,ta2,td1,td2,tc1} {0,2,0,2,0} {tc1} {tc1} {tc1,2} 6
18 17 {ta1,ta2,td1,td2,tf1} {0,2,0,2,0} {tf1} {tf1} {tf1,0} 6
19 18 {ta1,ta2,td2,tp2} {2,4,4,0} {tp2} {tp2} {tp2,0} 6
20 19 {ta1,ta2,td2,tc2} {2,4,4,0} {ta2,td2} {ta2} {ta2,2} 6
21 20 {ta1,ta2,td2,tr2} {4,0,6,2} {td2} {td2} {td2,0} 6
22 15 {ta1,ta2,td1,td2,tp1,tp2} {0,2,0,2,0,0} {tp1,tp2} {tp2} {tp2,0} 4
23 16 {ta1,ta2,td1,td2,tc2} {0,2,0,2,0} {tc2} {tc2} {tc2,2} 6
24 17 {ta1,ta2,td1,td2,tf2} {0,2,0,2,0} {tf2} {tf2} {tf2,0} 6
25 18 {ta1,ta2,td1,tp1} {3,5,3,0} {tp1} {tp1} {tp1,0} 6
26 19 {ta1,ta2,td1,tc1} {3,5,3,0} {ta2} {ta2} {ta2,2} 6
27 20 {ta1,ta2,td1,tc1,tr2} {4,0,4,1,0} {tc1} {tc1} {tc1,1} 8
28 21 {ta1,ta2,td1,tr2,tf1} {4,0,4,0,0} {tf1} {tf1} {tf1,0} 8
29 22 {ta1,ta2,tr2} {4,1,1} {tr2} {tr2} {tr2,1} 8
30 23 {ta1,ta2,tp2} {5,2,0} {tp2} {tp2} {tp2,0} 8
31 24 {ta1,ta2,tc2} {5,2,0} {tc2} {tc2} {tc2,2} 10
32 25 {ta1,ta2,tf2} {5,2,0} {tf2} {tf2} {tf2,0} 10
33 26 {ta1,ta2} {8,5} {ta1} {ta1} {ta1,1} 10
34 27 {ta2,td1,tr1} {5,0,0} {tr1} {tr1} {tr1,0} 10
35 28 {ta2,td1,tp1} {5,0,0} {tp1} {tp1} {tp1,0} 10
36 29 {ta2,td1,tc1} {5,0,0} {ta2} {ta2} {ta2,1} 10
37 30 {td1,tc1,td2,tr2} {1,1,0,0} {tc1} {tc1} {tc1,1} 12
38 31 {tf1,td1,td2,tr2} {0,1,0,0} {tf1} {tf1} {tf1,0} 12
39 32 {td2,tr2} {1,1} {tr2} {tr2} {tr2,1} 12
40 33 {td2,tp2} {2,0} {tp2} {tp2} {tp2,0} 12
41 34 {td2,tc2} {2,0} {tc2} {tc2} {tc2,2} 14
42 35 {td2,tf2} {2,0} {tf2} {tf2} {tf2,0} 14
43 36 {tend} {0} {tend} {tend} {tend,0} 14

model does not consider dispatcher overhead.

This table shows the number of states searched, the respective state visited (which

can be returned by backtracking as we can see at state 15), the enabled transition set,

the clock set, the fireable transition set, the post-pruned fireable transition set, the

transition to be fired and its respective time, and the energy accumulated up to this

state. It is considered that both tasks consume 2nJ .

In this table, at state 13, two processor-granting transitions (tp1 and tp2) are fire-

able. The possible execution of task T1 (choosing tp1 for firing) is a wrong choice since,

after that, task T2 misses its deadline (state 17). The algorithm backtracks to state

13 and tries another alternative, that is, to grant the processor to the task T2 (firing

tp2). This new decision leads to a feasible schedule, since in the state 29 the firing of

transition tend reaches the desired final marking (MF). Thus, a feasible scheduling is

found after analyzing 35 states, where the minimum number of states is 30.

Therefore, the feasible firing schedule found to the TPN model of Figure 6.3, ex-

160 CHAPTER 6. SOFTWARE SYNTHESIS

Pstart Pend
tstart
[0,0]

tph2 [0,0]

ta2 [6,6]

ta1 [8,8]

ph1 [0,0]

tr2 [2,3]

tr1 [0,5]

tp2 [0,0]

tp1[0,0]

tend
 [0,0]

3

2

4

3

td1 [7,7] tpc1 [0,0]

td2 [6,6] tpc2 [0,0]

tc2
[2,2]

tc1
[2,2]

P
pr

oc

tf2
[0,0]

tf1
[0,0]

Figure 6.3: TPN for the task set in Table 5.2

pressed as a TLTS (Definition 5.9), is: s0
(tstart,0)
−→ s1

(tph1,0)
−→ s2

(tph2,0)
−→ s3

(tr1,0)
−→ s4

(tp1,0)
−→

s5
(tr2,2)
−→ s6

(tc1,0)
−→ s7

(tf1,0)
−→ s8

(tp2,0)
−→ s9

(tc2,2)
−→ s10

(tf2,0)
−→ s11

(ta2,2)
−→ s12

(ta1,2)
−→ s13

(tr1,0)
−→ s14

(tr2,0)
−→

s15
(tp2,0)
−→ s16

(tc2,2)
−→ s17

(tf2,0)
−→ s18

(tp1,0)
−→ s19

(ta2,2)
−→ s20

(tc1,1)
−→ s21

(tf1,0)
−→ s22

(tr2,1)
−→ s23

(tp2,0)
−→

s24
(tc2,2)
−→ s25

(tf2,0)
−→ s26

(ta1,1)
−→ s27

(tr1,0)
−→ s28

(tp1,0)
−→ s29

(ta2,1)
−→ s30

(tc1,1)
−→ s31

(tf1,0)
−→ s32

(tr2,1)
−→

s33
(tp2,0)
−→ s34

(tc2,2)
−→ s35

(tf2,0)
−→ s36

(tend,0)
−→ s37.

Another two ways to see this TLTS is by a timing diagram, and an energy chart.

These new views of the TLTS are explained in Chapter 7.

6.2 Scheduled Code Generator Framework

As presented before (Definition 5.9), the feasible firing schedule is expressed as a TLTS.

The code is generated by traversing the TLTS, and detecting the time where the tasks

should be executed. Thus, the generated code should execute the tasks in accordance

with the previously computed schedule. A special data structure called pre-runtime

schedule table is created for defining information about each task instance, for example,

start time, and a pointer to a C function containing the code. More details about this

data structure is presented in this Chapter. In the proposed method, the code for each

task comes directly from the code associated with each computation transition in the

TPN model.

In order to manage the execution of tasks, the code generation includes a small

dispatcher to deal with this activity. The timer is programmed by the dispatcher to

interrupt the processor at the time instant where the next task must be executed (or

resumed). It is worth observing that just one timer is needed since the generated code

is already scheduled.

6.2. SCHEDULED CODE GENERATOR FRAMEWORK 161

This section is divided in two sections: Scheduled Code Generation, and Scheduled

Code Generation with Multiple Operational Modes. The first section shows how to

generate code considering just one schedule. The second section describes how to

generate code considering several alternative schedules, which are activated by a specific

condition.

6.2.1 Scheduled Code Generation

The proposed method for code generation includes not only the code of tasks (im-

plemented by C functions), but also includes a timer interrupt handler, and a small

dispatcher. Such dispatcher is adopted to automate several controls needed to the

execution of tasks. Timer programming, context saving, context restoring, and tasks

calling are examples of such additional controls. The timer interrupt handler always

transfers the control to the the dispatcher, which evaluates the need of performing

either context saving or restoring, and calling the specific task. It is worthwhile to

remind that, as presented before (Section 5.2.1), the proposed method considers that

the timer is always programmed by a multiple of the TTU.

This code generation framework may be applied to several processor platforms. It is

sufficient to make the dispatcher and timer interrupt handler available for the respective

platform. In the experiments conducted in this work, the considered platform is 8051-

based family of micro-controllers.

Schedule
Table

Timer

Prog.
Timer

Dispatcher
Kernel

Calling of Tasks

Context
Saving

Context
Restoring

External
Memory

Code of Tasks
(C Functions)

D I S P A T C H E R

1

2

7

3

5

8

9

10

4

6

11

Figure 6.4: Proposed Code Generator Overview

162 CHAPTER 6. SOFTWARE SYNTHESIS

Figure 6.4 overviews the proposed code generator framework, where the dispatcher

is the main component. Figure 6.5 shows a simplified version of the proposed dispatcher

function. Using Figure 6.4, the description of the code generator framework can be

summarized as follows.

1. Considering that the system starts and that the clock value is equal to zero, the

timer interrupt handler is forced to be called, and the control is transferred to

the dispatcher kernel. This dispatcher kernel uses the current clock (line 4 of

Figure 6.5) to check if there is a task to be executed at this time;

2. The dispatcher kernel consults the schedule table for evaluating when and which

is the next task to be executed. This table is stored as an array of struct

scheduleItem. This array, representing the schedule table, is accessed as a cir-

cular list (line 13 of Figure 6.5);

3. The dispatcher kernel saves the context of current task (line 7 -Figure 6.5) if the

current task is being preempted by the new task. This information is obtained

by a global variable called existTaskInExecution (line 6 of Figure 6.5). This

variable has true value if, at a specific time instant, any task is running, and false

otherwise;

4. The dispatcher kernel uses the external memory for storing such context;

5. The dispatcher kernel restores the context of the new task (line 10 of Figure 6.5),

if it is returning from a preemption. This information comes from the schedule

table;

6. The dispatcher kernel accesses the external memory in order to get such context;

7. Using the schedule table, the dispatcher kernel assign the next task function

code (functionPointer at line 12 of Figure 6.5) to the global pointer variable

taskFunction. At this point, the next task becomes the current task;

8. The dispatcher kernel uses the information of the schedule table for programming

the timer to interrupt at the beginning of the next task execution (line 14 of

Figure 6.5). It is worth observing that scheduleIndex was incremented at line

13 of Figure 6.5.

9. The timer is activated (line 15 of Figure 6.5);

10. A C-function, that corresponds to the current task, is executed.

6.2. SCHEDULED CODE GENERATOR FRAMEWORK 163

11. When the timer interrupts, the control is again transferred to the dispatcher.

1 void dispatcher()
2 {
3 struct ScheduleItem newTaskInfo = scheduleTable[scheduleIndex];
4 globalClock = newTaskInfo.clock;
5
6 if(existTaskInExecution) { // current task is preempted
7 // context saving
8 }
9 if(newTaskInfo.isPreemptionReturn) {

10 // context restoring
11 }
12 taskFunction = newTaskInfo.functionPointer; // Store current function
13 scheduleIndex = ((++scheduleIndex) % SCHEDULE_SIZE); // Information of new task called
14 programmingTimer(scheduleTable[scheduleIndex].clock);// Timer programmed for next task
15 activateTimer(); // Timer activated
16 }

Figure 6.5: Simplified Version of the Dispatcher

As presented in Section 5.3.6, in order to lead to a more realistic estimation of the

system behavior, the proposed methodology considers the WCET of the dispatcher and

timer interrupt handler. In this case, the time reserved for execution of a task already

includes this time overhead.

As defined before in this section, the schedule table is stored in an array of struct

ScheduleItem. In particular, there is one entry in the array for each execution part of

a task instance. That is, in case of preemption, a task instance may have more than

one execution part. The struct ScheduleItem contains the following information: (i)

start time; (ii) a flag indicating if either it is a preemption returning or not; (iii) task

id; and (iv) a pointer to a function that represents the code of the respective task.

Figure 6.6 shows the schedule table for a preemptive example that contains 7 task

instances and 4 preemptions. Thus, the array has 11 entries. Figure 6.7 presents the

respective timing diagram.

struct ScheduleItem scheduleTable [SCHEDULE_SIZE] =
{{ 1, false, 1, (int *)TaskA},
{ 4, false, 2, (int *)TaskB},
{ 6, false, 3, (int *)TaskC},
{ 8, true, 2, (int *)TaskB},
{10, false, 4, (int *)TaskD},
{11, true, 2, (int *)TaskB},
{13, true, 1, (int *)TaskA},
{18, false, 1, (int *)TaskA},
{20, false, 3, (int *)TaskC},
{22, false, 2, (int *)TaskB},
{28, true, 1, (int *)TaskA}

};

Figure 6.6: Example of a Schedule Table

164 CHAPTER 6. SOFTWARE SYNTHESIS

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

A

B

C

D

A1 A1 A2 A2

B1 B1 B1 B2

C2C1

D

Figure 6.7: Timing Diagram for Schedule Table in Figure 6.6

pwa1 pwr1

pst1

ta1

tph1

2

[8, 8]

[0, 0]

pwg1 pwc1 pf1

tr1
[0, 5]

tgw1 tc1
[1,1] [2, 2]

pwa2
pwr2 pwg2

pst2

ta2
[6, 6]

tph2
[0, 0]

tr2
[0, 4]

3

pproc

4

3

tend
[0,0] pend

pstart
tstart
[0,0]

pwf1

tf1
[0, 0]

pwd1 pwpc1 pdm1td1 tpc1
[7, 7] [0, 0]

pwc2

tgw2 tc2
[1,1] [2,2]

pwf2

tf2
[0, 0]

pwd2 pwpc2 pdm2
td2 tpc2

[6, 6] [0, 0]

pf2

Figure 6.8: TPN model for two non-preemptive tasks with dispatcher overheads de-
picted in Table 5.2

The generated code has a set of global variables. Figure 6.5 shows some of them

which stores, for instance, the number instances of tasks (SCHEDULE SIZE), information

of the task currently executing (newTaskInfo), global clock value (globalClock); and

a pointer to the task function to be executed (taskFunction).

Let us take a look at how to apply the proposed code generation method in the

simple specification depicted at Section 5.3.1. This specification is automatically trans-

lated into the TPN model of Figure 6.8. A TLTS is generated by applying the proposed

algorithm (Figure 6.2) on this model. In this example, it is considered that the inter-

rupt and dispatcher overhead is equal to 1 TTUs. Analyzing the TLTS, it has been

found out that task T1 is to be executed three times, for clock values equal to 0, 11,

and 17. The same way, task T2 is executed four times, when clock values are equal to 3,

6.2. SCHEDULED CODE GENERATOR FRAMEWORK 165

8, 14, and 20. Figure 6.9 shows the C code generated for this example, and Figure 6.10

presents the respective timing diagram that depicts the dispatcher overhead.

void taskT1()
{

...
}

void taskT2()
{

...
}

#define SCHEDULE_SIZE 7

struct ScheduleItem schedule[SCHEDULE_SIZE] =
{

{ 0, false, 1, (int *)taskT1},
{ 3, false, 2, (int *)taskT2},
{ 8, false, 2, (int *)taskT2},
{11, false, 1, (int *)taskT1},
{14, false, 2, (int *)taskT2},
{17, false, 1, (int *)taskT1},
{20, false, 2, (int *)taskT2}

};

Figure 6.9: Generated code for a simple example

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T1

T2

T11d

d d

d T12 T13

d

d

T22 T23 T24T21 d

Figure 6.10: Timing Diagram for the Simple Example

6.2.2 Scheduled Code Generation with Multiple Modes

This section explains how to generate code considering multiple operational modes.

Usually, pre-runtime method lacks flexibility, since a pre-runtime schedule solely cannot

be adapted for handling environment changes at runtime. Therefore, new tasks cannot

be removed or added, unless the system is stopped and a new schedule replaces the

previous schedule.

A very common solution is to compute a pre-runtime schedule considering all pos-

sible tasks. However, there are situations where not all tasks need to be executed.

An airplane system, for instance, performs different tasks during the take off, flight,

and landing. Creating a pre-runtime schedule with all tasks will certainly result in an

166 CHAPTER 6. SOFTWARE SYNTHESIS

enormous overhead during system’s execution, or worse, a powerful processor will be

necessary in order to accommodate all such tasks.

One solution for this kind of problem is to adopt a multiple operational mode

technique. In this method, more than one mode is defined. Each mode represents

an alternative schedule, which is activated by a specific condition. Such conditions

usually use variables that are modified by events (internal or external). A problem

may occur if two or more conditions become true at the same time. It is said that

these conditions are in conflict. However, this work considers that all conditions are

conflict-free. Multiple operational modes may reduce the problems caused by an unique

pre-runtime schedule, and, additionally, increases flexibility.

Only one operational mode can be in execution at the same time. However, the

same task may exist in more than one mode. Besides that, the same task may have

different timing constraints in these modes.

As an example, consider the information of tasks in Table 6.3. In this table, it can

be seen the name of the operational mode, the condition for its execution, and for each

mode, the set of tasks timing constraints. This specification example does not have

any inter-task relations, and energy constraints are not considered.

This table shows two operational modes with different tasks. For each mode, a

pre-runtime schedule is generated using the proposed algorithm (Section 6.1.2). Mode

1 is defined as the starting mode. The dispatcher controls the mode switching based

on the specified conditions. In this case, if temperature becomes higher than or equal

to 100oC, a mode switching from mode1 to mode2 occurs. In the same way, if the

temperature becomes lower than 100oC, a mode-switching from mode2 to mode1 is

carried out. These conditions are defined with the use of a shared variable (temp),

which is modified by an external event.

Table 6.3: Task Timing Specification

Oper.Mode Condition Tasks Release Comp. Deadline Period

mode1 (starting) (temp < 100) T 1 0 2 7 8
T 2 2 2 6 6

mode2 (temp ≥ 100) T 3 0 4 7 8
T 4 1 1 9 10

The dispatcher is modified to control such mode switching. However, a mode switch-

ing may only be performed if there is no preempted task to be resumed. If a mode

switching is requested and there are preempted tasks, new tasks instances of the cur-

rent mode are not created. Thus, the required operational mode is set as the current

6.3. SUMMARY 167

mode only after termination of all preempted tasks. This waiting for the conclusion of

all preempted tasks is needed to avoid undesirable inconsistences.

The new dispatcher can be seen in Figure 6.11. Small modifications were made

from the version depicted in Figure 6.5. The first one is the update of the pre-runtime

schedule table, which now depends on the current mode (line 1). Two global variables

are added for keeping the information of the current operational mode:

• currentSchSize (at line 2) contains the size of the current schedule table;

• currentModeId (at line 3) identifies the actual operational mode.

Such variables may be modified in the beginning of dispatcher execution by a new

added function, namely checkModeSwitching(), which is depicted in Figure 6.12.

When this function is called, firstly, it verifies whether exist preempted tasks in the

current operational mode. If there are such tasks, this function simply returns without

checking any pre-conditions. This verification is important in order to guarantee that

the system will not become in a inconsistent state. After that, provided that there

are no preempted tasks, the following statements verify if a specific mode switching

can be performed. Such verification is done with the use of pre-condition functions

(e.g. checkMode1Switching()), which represent the pre-condition for each operational

mode switching.

In case of a pre-condition is satisfied and the current mode is different from the new

one, some actions are performed:

1. the current schedule table is updated with the new operational mode schedule

table (lines 8 and 16);

2. the size of the current schedule is also changed (lines 9 and 17);

3. the current mode id is set for the corresponding new mode id (lines 10 and 18);

4. the global clock (lines 11 and 19) and the table index (lines 12 and 20) are reset.

Section 8.4 provides an experiment showing the application of multiple operational

modes for a pulse-oximeter case study.

6.3 Summary

This chapter described the proposed software synthesis framework. It discussed about

the proposed scheduling and code generation phases.

168 CHAPTER 6. SOFTWARE SYNTHESIS

1 struct ScheduleItem *scheduleTable = scheduleTableMode1;
2 unsigned int currentSchSize = SCHEDULE_SIZE_MODE1;
3 unsigned int currentModeId = MODE1_ID;
4
5 void dispatcher()
6 {
7 struct ScheduleItem newTaskInfo;
8
9 checkModeSwitching()

10
11 newTaskInfo = scheduleTable[scheduleIndex];
12 globalClock = newTaskInfo.clock;
13
14 if(currentTaskPreempted) {
15 // context saving
16 }
17 if(newTaskInfo.isPreemptionReturn) {
18 // context restoring
19 }
20 else if(permitsNewTasksInstance) {
21 taskFunction = newTaskInfo.functionPointer; // Store current task
22 }
23
24 scheduleIndex = ((++scheduleIndex) % currentSchSize); // New task information
25 programmingTimer(scheduleTable[scheduleIndex].clock); // Timer programming
26 activateTimer(); // Timer activated
27 }

Figure 6.11: Simplified Version of the Dispatcher for Multiple Operational Modes

1 void checkModeSwitching()
2 {
3 if(existPreemptedTasks) {
4 return;
5 }
6
7 if(currentModeId != MODO1_ID && checkMode1Switching()) {
8 *scheduleTable = scheduleTableMode1;
9 currentSchSize = SCHEDULE_SIZE_MODE1;
10 currentModeId = MODE1_ID;
11 globalClock = 0;
12 scheduleIndex = 0;
13 }
14
15 if (currentModeId != MODE2_ID && checkMode2Switching()) {
16 *scheduleTable = scheduleTabelMode2;
17 currentSchSize = SCHEDULE_SIZE_MODE2;
18 currentModeId = MODE2_ID;
19 globalClock = 0;
20 scheduleIndex = 0;
21 }
22 }

Figure 6.12: checkModeSwitching Function

Firstly, it presented how to find a feasible pre-runtime schedule starting from the

formal model. It showed the way that this work is maintaining the state space size

under control by adopting a partial-order technique. It also explained about the pro-

posed algorithm, which is a depth-first search method on a reduced state space. The

proposed algorithm is interesting since it is deadlock- and starvation-free, where both

are undesirable situations often present in concurrent systems. However, two problems

6.3. SUMMARY 169

may arise in this algorithm. The first one is related to the search in the set of states

already visited, which may cause inefficiencies in the whole algorithm execution. The

second problem is concerned with the size of the set of visited states, which can be

much larger. The first problem was minimized by adoption of a binary-tree search, and

for the second problem data compression was used. Finally, it depicted the execution

of the algorithm in an simple example that has been conducted by this work.

The code generation method presented in this chapter was proposed in such a

way that the overheads were minimized. In order to attain such requirement, it was

proposed the addition of a dispatcher and a timer interrupt handler. The dispatcher

performs several controls needed to the execution of tasks, such as timer programming,

context saving, context restoring, and tasks calling. Another key feature of the pro-

posed solution is that the overheads of the dispatcher and timer interrupt handler are

considered before the code generation. This implies a more accurate estimation for

the system behavior. In order to provide more flexibility to the proposed scheduling

method, it was also shown the multiple operational mode solution. In this method there

are alternative pre-runtime schedules that may be switched, depending on whether the

respective pre-condition is satisfied. It is supposed that these pre-conditions are not in

conflict. The proposed code generation framework may be applied to several processor

platforms. It is sufficient to make the dispatcher and timer interrupt handler available

for the respective platform.

At the present moment, we do not know a similar work that generates timely and

predictable scheduled code, starting from a formal model, and considering arbitrary

precedence and exclusion relations.

Chapter 7

Tools

This chapter describes several tools for assisting the designer when using the proposed

methodology. First of all, this chapter describes the EZPetri environment, which is

used as the integration tool. In the following, each section explains specific tools that

are applied to each phase of the methodology, such as, specification, modeling, schedule

synthesis, and code generation.

7.1 EZPetri Environment

EZPetri [44] is an environment for integrating Petri net tools based on Petri Net Markup

Language (PNML) [100] and Eclipse Platform [56].

The number of Petri net classes and tools has significantly increased over the last

four decades. Such diversity represents an advance for the Petri net community. How-

ever, due to the use of specific file formats, these tools are usually incompatible. The

problem occurs even in tools supporting the same type of Petri nets. The lack of in-

tegration among these tools imposes serious limitations on productivity. Therefore,

functions for importing/exporting Petri nets from/to other tools are an important re-

quirement nowadays. In order to solve this drawback, PNML has been proposed as an

XML-based interchange format for Petri nets.

Eclipse Platform is designed for building integrated development environments

(IDEs), where each IDE can support the construction of a variety of tools for applica-

tion development. Such platform also provides useful building blocks and frameworks

that facilitate the developing of new tools as well as the integration of existent ones.

EZPetri is an extendable Eclipse-based tool suite that supports editing Petri nets,

as well as importing/exporting Petri nets from/to different Petri net tools, such as

INA [90] and PEPTOOL [16]. It takes advantage of the plug-in technology of Eclipse

to couple existing Petri net tools and to implement new functionalities.

PNML forms the kernel of EZPetri. It means that any Petri net type may be

170

7.2. SPECIFICATION EDITOR 171

represented through the PNML format in the EZPetri environment. Therefore, it

glues together the integration facilities provided by Eclipse with the PNML interchange

format.

EZPetri also contributes for reducing the gap between members of the Petri net com-

munity who use different Petri net classes, tools and file formats. Moreover, EZPetri

improves productivity in the development of new products by offering several function-

alities on a single development platform.

In this work, EZPetri is adopted for integrating several provided tools. Tasks (and

their interrelations) are specified, translated into a time Petri net model, which is

used for finding a feasible pre-runtime schedule, and generating a scheduled code. The

schedule can be visualized as a timing diagram. Another view is an energy chart, which

shows the energy consumption in the schedule. Moreover, all formal activities, from

the specification up to the final result, are hidden from the final user.

7.2 Specification Editor

This section describes the proposed specification editor tool for entering the specifica-

tion. This editor was plugged into EZPetri platform. This editor is composed by an

environment for specifying tasks and their attributes, inter-task relations, and inter-

task communications.

Figure 7.1 shows that the specification editor is a tree-based editor, where it is

easy to see the interrelation between tasks. For instance, task T4 precedes task T5 and

message M1. Message M1, on the other hand, precedes task T2. In this case, it implies

that task T4 sends a message to task T2, and both tasks (T4 and T2) are executed in

different processors.

The use of the specification editor is as follows:

1. with a right-click on mouse, new tasks or messages may be created (Figure 7.2);

2. using the property view, the attributes of a task may be updated (Figure 7.3);

3. inter-task relations and inter-task communication are defined by a drag-and-drop

feature;

4. the resultant specification is represented as a XML file (Figure 7.4).

The property-view shows the attributes of a task, such as, name, timing information

(phase, release, WCET, deadline, and period), code, scheduling method (preemptive

or non-preemptive), processor, and energy consumption.

172 CHAPTER 7. TOOLS

Figure 7.1: Tree-based Specification Editor

Figure 7.2: New Task/Message

Figure 7.3: Properties View

7.3. AUTOMATIC MODEL GENERATION 173

Figure 7.4: Specification represented as a XML file

7.3 Automatic Model Generation

Starting from the specification (XML file), the next phase is the automatic generation of

a time Petri net that represents such specification [72]. This translator is implemented

using the Java programming language. As presented before, the modeling phase is

based on the composition of building blocks. In order to automatically generate a

model from the specification, the following steps should be taken into account:

1. generate a model for arrival, deadline, and task structure blocks in each task;

2. generate each precedence relation;

3. generate each exclusion relation;

4. generate each inter-tasks communication;

5. generate each processor and/or bus;

6. generate the fork block;

7. generate the join block.

174 CHAPTER 7. TOOLS

During this procedure, the time Petri net model is stored in main memory. After

that, two files are generated: (i) a PNML file; and (ii) a specific file format for the

schedule generator. The PNML file (Figure 7.5) may be used for interchanging between

tools. The specific file format (Figure 7.6) represents the same time Petri net model,

but in a format suitable for reading by the schedule generator. Section 9.3 proposes

an extension to consider just the PNML format.

Figure 7.5: A TPN represented by a PNML file

There are several Java classes for implementing this translator. For instance, arc,

place and transition, are examples of such classes. There are also classes that models

the building blocks, such as, arrival, deadline, task structure (preemptive and non-

preemptive), send and receive message, precedence and exclusion relations. Another

important class is the one that performs the translation from PNML to the schedule

generator specific format.

7.4 Schedule Generator

The proposed algorithm depicted in Section 6.1.2 is implemented using the C pro-

gramming language. However, in order to reduce the amount of memory, the recursive

algorithm is converted into a iterative program.

7.4. SCHEDULE GENERATOR 175

Figure 7.6: The same TPN represented by a specific file format for the schedule gen-
erator

Figure 7.7: Timing Diagram

In the actual implementation, before choosing a computation transition to be an-

alyzed, the post-pruning fireable transitions set (PT) is sorted based on the deadline.

Hence, the task with earliest deadline is preferred to be analyzed first. The argument

for this kind of sorting is that, in most cases, this kind of approach allows finding a

feasible schedule more quickly.

The dispatcher consumes both time and energy. This overhead may be increased

if the dispatcher also performs context-switching. The method used to minimize the

number of context-switching is storing the last executed task by the processor. If the

same task (that had used the processor) is again concurrent to the processor, that

specific task is preferred to be analyzed first. This way, the context-switching occurs

only when it is strictly necessary.

176 CHAPTER 7. TOOLS

Figure 7.8: Timing Diagram for 2-Processors

7.5 Timing Diagram and Energy Chart

When successful, the schedule generator produces a timed labeled transition system,

which is a sequence of transitions to be fired at a specific time instant. Obviously,

this description is not easy to have a global view of the schedule. Therefore, only for

visualization purposes, the schedule (represented by a TLTS) may be seen as a timing

diagram (Figure 7.7).

For generating the timing diagram, the proposed method identifies all computation

transitions and the time instant where such transition starts execution. This informa-

tion is automatically rendered as a timing diagram. Figure 7.8 presents another timing

diagram, this way considering two processors.

Another way to visualize the schedule is by an energy chart (Figure 7.9). This chart

exhibits the accumulated energy consumption in each task time unit. The information

comes from the same TLTS, which also stores the accumulated energy consumed at

each state.

7.6 Code Generator Engine

A code generator engine was developed in order to automate the code generation

process. Such engine uses an open source framework named Velocity [1], which is

a Java code generator utility based on template files. Figure 7.10 depicts a visual

representation of Velocity execution. Each template file have a set of rules, which are

executed in accordance with a set of data informed by the user. A rule may verify

whether or not a block of code should be generated. Figure 7.11 shows a high level

example of a dispatcher template. The rules begin with the character “#”. This

template shows that hasPreemption is needed information.

7.6. CODE GENERATOR ENGINE 177

Figure 7.9: Energy Chart

Figure 7.10: Velocity Framework

The engine consists in a set of six pre-defined templates. There is a set of templates

for each specific processor architecture. Such templates are:

1. tasks generation;

2. schedule tables;

3. dispatcher;

4. interrupt handler;

5. system constants; and

6. global variables and types (e.g. a struct that represents a task context).

Before starting the code generation, the engine automatically generates a Java class

that represents the data to be merged with the templates. This Java class is called

178 CHAPTER 7. TOOLS

CodeSpecification, and contains the following data: (i) the specific architecture; (ii)

the pre-runtime schedule table; (iii) the body code of each task; and (iv) the task time

unit.

In order to generate the code, the engine checks the availability of the templates for

a specific architecture chosen by the user. If the templates are available, this engine

generates:

1. codes for each task;

2. schedule table;

3. the dispatcher file;

4. interrupt handler file;

5. a file with the system constants (for instance, the task time unit); and

6. a file containing global variables and types (e.g. task context).

void dispatcher()
{
struct SchItem item;

item = sch[schIndex];
globalClock = item.starttime;

#if($hasPreemption)
if(currentTaskPreempted) {
// context saving

}
if(item.isPreemptionReturn) {
// context restoring

}
else
#end

taskFunction = item.functionPointer;

schIndex = ((++schIndex)%currentSchSize);
progrTimer(sch[schIndex].starttime);
activateTimer();

}

Figure 7.11: Dispatcher Template

7.7 Summary

This chapter described several tools to assist the designer in adopting the proposed

methodology. Using the EZPetri environment is easier for integrating several tools.

In this work, the user specifies the tasks of a system using a specification editor.

The result of this phase is a XML file that is input for automatically translating this

7.7. SUMMARY 179

specification into a time Petri net model. This model is used for finding a feasible pre-

runtime schedule. If successful, the timed labeled transition system, which represents

the feasible schedule found, may be visualized as a timing diagram. Another possible

view is the energy consumption chart, which shows the energy consumption in the

schedule. With such tools, all formal activities, from the specification up to the final

scheduled code, are hidden from the final user.

Chapter 8

Experiments

This work has conducted several experiments, which are summarized in Table 8.1. In

this table, instances represent the number of task instances; state-min is the minimum

number of states to be verified, which is equal to the number of transitions to be fired;

found counts the number of states actually verified for finding a feasible schedule; time

expresses the algorithm execution time in seconds, where most of the time is spent

due to the tag/untag schema; and method states the chosen (preemptive (P) or non-

preemptive (nP)) scheduling method. The presented results were obtained in order to

find the first feasible schedule. All experiments were performed on a Duron 900 Mhz,

256 MB RAM, OS Linux, and compiler GCC 3.3.2.

Table 8.1: Experimental Results Summary
Example instances state-min found time (s) method

Simple Control Application 28 50 50 0.001 nP
Robotic Arm 37 150 150 0.014 nP
Pulse-oximeter (mode2) 19 78 78 0.110 nP
Pulse-oximeter (mode1) 19 78 78 0.100 nP
Xu&Parnas (example 3) 4 171 1558 0.120 P
Xu&Parnas (figure 9) 5 281 2406 0.220 P
Pulse-Oximeter 178 850 850 0.256 nP
Mine Pump Control 782 3130 3255 0.462 nP
Heated-Humidifier 1505 6022 6022 0.486 nP
Unmanned Ground Vehicle 433 4701 14761 2.571 P

A B C A
0 20 40 70 80

Figure 8.1: Timing Diagram of the Xu-Parnas Example 3

In Table 8.1 some case studies are expressed in boldface. The aim of this Chapter

180

181

AB CA
0 11 41 60 9051

D E
140 161

Figure 8.2: Timing Diagram of the Xu-Parnas Figure 9

is investigate such examples in more detail. In the following, the other examples are

briefly commented.

• Robotic Arm. This case study is a real application and comes from [4]. It is

a robotic arm programmed to take objects from a conveyor belt, store them in

a buffer shelf, and to put them eventually into a basket. This arm is controlled

by four critical tasks. This case study has stringent timing constraints, since the

CPU utilization factor is 81.7%. A feasible schedule was found after examining

150 states, which is the minimum, in 14 ms, for 37 instances of tasks.

• Xu&Parnas-example3. This example is the third presented in [105] that shows

that static or dynamic priority-driven scheduling algorithms (for instance, earliest

deadline first, or deadline monotonic) can fail in finding a feasible schedule, even

when such schedule exist. In general, this situation often occurs when the task

model imposes inter-task relations. The specification model considers three tasks

with execution times equal to 30, 20, and 30, respectively. Additionally, an

exclusion relation is defined. As it considers a preemptive scheduling method,

the execution of tasks are split in 80 (30+20+30) parts. The proposed scheduling

algorithm visited 1558 states, in 120 ms, for finding a feasible schedule. The

minimum number of states is 171 states. This case study shows the increased

complexity when adopting a completely preemptive solution. Figure 8.1 presents

a time diagram of the schedule found.

• Xu&Parnas-figure9. In accordance with [106], priority-driven scheduling poli-

cies are only capable of producing a very limited subset of the possible schedules

for a given set of tasks. For example, there are situations where, in order to

satisfy all given timing constraints, it is necessary to let the processor idle for a

certain time interval, even if there are tasks ready for execution. This situation is

presented in the Xu&Parnas-figure9 case study. The timing constraints require

that the processor must be left idle between the interval [0,11]. Neither static

nor dynamic priority-driven schemes can deal properly with such situation. The

scheduling method considered was the preemptive method. The specification

182 CHAPTER 8. EXPERIMENTS

model considers five tasks with execution times equal to 30, 30, 10, 10 and 50, re-

spectively. In this case, the execution of tasks are split in 130 (30+30+10+10+50)

parts. The proposed scheduling algorithm visited 2406 states, in 220 ms. The

minimum number of states is 281 states. Figure 8.2 shows a time diagram of the

schedule found.

• Mine Pump Control. This example is another real-world application known as

mine drainage system. Detailed specification for this example can be found in [19].

This problem has not tight timing constraints in general, but the schedule for

this problem is interesting because it has 10 tasks, implying 782 tasks’ instances

and, at the beginning, all 10 tasks arrive at the same time. Our solution searched

3268 states (where minimum number of states is 3130), in this case having an

overhead of 138 states (4.4%), which is very low considering the complexity of

this example. The time performance is 462 ms, using a non-preemptive (NP)

method.

• Unmanned Ground Vehicle. This kind of vehicle is designed to traverse

hazardous ground for collecting various kinds of data (data, images, etc). A

semi-autonomous capability for making local path decisions is triggered when it

encounters unforeseen hazards, e.g., debris, rubble, land miles, etc. An UGV

provides two main services: its own mobility, and collecting information of inter-

est for the controllers. The first one includes functions such as steering, braking,

and speed control as well as planning local autonomous movement. The second

service includes the capture of data sensors, such as infrared, microwave, radar,

and others. In accordance with [87], the tasks are all independent ones. This

task model has a processor utilization factor of about 61%, which is not very low.

This case study has 14 tasks, where four of then are sporadic and were translated

into periodic ones. The amount of tasks’ instances is 433. The proposed algo-

rithm finds a feasible schedule after analyzing 14761 states, where the minimum

number of states is 4701, in 2,5 seconds. It is worth noting the scheduling method

is preemptive, which certainly increases time and space complexity.

For depicting the practical usability of the proposed framework for scheduling syn-

thesis (with timing constraints), scheduling synthesis (with timing and energy con-

straints), and code generation (with and without multiple modes) in more details, four

of these examples are considered, namely, a simple control application, two examples

based on a pulse-oximeter, and a heated-humidifier, respectively.

8.1. SIMPLE CONTROL APPLICATION 183

8.1 Simple Control Application

This case study exemplifies the application of the scheduling synthesis framework con-

sidering a multi-processor architecture.

The simple control application consists of a sensory device mounted on a motor-

ized platform that must detect and track specific objects in the environment. This

application was originally described in [28], and later used in [2]. Four processors are

connected by a single bus. The model consists of 6 tasks split into 22 subtasks, which

exchanges 10 messages, 6 of them are sent across processor boundaries.

P1P2

P3
P4

S3

S22

S10

S2

S19 S1

S20

S11

S14

S6

S23

S5

S4

S28

S9

S25

S26

S16

S18

S8 S7

S12

M13

M21

M17

M24

M15

M27

Figure 8.3: The Simple Control Application Graph

Figure 8.3 shows the communication graph for this application, presenting the sub-

tasks allocated to processors, and its communication pattern, where the interprocessor

communications are labeled with “M” in the figure. Table 8.2 gives the worst-case

execution time and deadline for each subtask as well as the worst-case communication

time for each inter-processor message. Figure 8.4 presents a simplified time Petri net

model for this case study using a non-preemptive scheduling method. Transitions GP

stands for granting-processor, and GB stands for granting-bus. For a better under-

standing, this figure does not show the timing constraints, the deadline checking, the

184 CHAPTER 8. EXPERIMENTS

Table 8.2: Task Set for the Simple Control Application

Tarefa Ci Di Tarefa Ci Di Tarefa Ci Di Tarefa Ci Di

S1 3 100 S8 2 100 M15 1 S22 6 40

S2 3 200 S9 2 100 S16 10 100 S23 10 200

S3 3 40 S10 2 40 M17 1 M24 1

S4 3 100 S11 2 200 S18 1 100 S25 2 100

S5 3 100 S12 2 200 S19 5 200 S26 1 100

S6 3 200 M13 1 S20 7 100 M27 1

S7 2 100 S14 15 100 M21 1 S28 7 100

bus, and the shared processors (P2 and P3).

GP-S3

GP-S22

GP-S10

S3

S22

S10

GP-S2

GP-S19

GP-S20

GP-S11

S2

S19

S20

S11

M21

GB-M21

GB-M13

S1

M13

M15

GB-M15

S16

GB-M17

M17

S14

S18

S7

GP-S4

GP-S25

GP-S26

GP-S8

S4

S25

S26

S8M27

GB-M27

GP-S5

GP-S28

S5

S28

GP-S9

S9

S23

S6

M24

GB-M24

S12

End

Start

Figure 8.4: Simplified Simple Control Application Time Petri Net Model

The proposed algorithm found a feasible scheduling after examining the minimum

number of states (in this case 50 states) in just one millisecond. Table 8.3 presents the

8.1. SIMPLE CONTROL APPLICATION 185

algorithm execution results. The transitions’ labels are: gp means processor granting,

gb means bus granting, s means subtasks, and m means interprocessor messages. The

firable transitions are underlined. As it can be noted in this particular example, the

number of transitions to be evaluated are very often reduced compared with the firable

transition sets. As an example, in state six there are four firable transitions but only

one is to be evaluated, since it was not cut by the pruning.

Table 8.3: Execution Results for the Simple Control Application

state ET C PT trans+time

0 {start} {0} {start} {start,0}
1 {gp-s3, gp-s2, s1, gp-s4, gp-s5, s6} {0,0,0,0,0,0} {gp-s3, gp-s2, gp-s4, gp-s5} {gp-s3,0}
2 {s3, s1, gp-s4, gp-s5, s6} {0,0,0,0,0} {gp-s4,gp-s5} {gp-s4,0}
3 {s3, s1, s4, s6} {0,0,0,0} {s3,s1,s4,s6} {s3,3}
4 {gp-s2, s1, s4, s6} {0,3,3,3} {s1,s4,s6} {s1,0}
5 {gp-s2, gb-m13, s4, s6} {0,0,3,3} {s4,s6} {s4,0}
6 {gp-s2, gb-m13, gp-s5, s6} {0,0,0,3} {s6} {s6,0}
7 {gp-s2, gb-m13, gp-s5} {0,0,0} {gb-m13} {gb-m13,0}
8 {gp-s2, m13, gp-s5} {0,0,0} {gp-s2,gp-s5} {gp-s2,0}
9 {s2, m13, gp-s5} {0,0,0} {gp-s5} {gp-s5,0}
10 {s2, m13, s5} {0,0,0} {m13} {m13,1}
11 {s2, s5} {1,1} {s2,s5} {s2,2}
12 {gp-s19, s5} {0,3} {s5} {s5,0}
13 {gp-s19} {0} {gp-s19} {gp-s19,0}
14 {s19} {0} {s19} {s19,5}
15 {gp-s22} {0} {gp-s22} {gp-s22,0}
16 {s22} {0} {s22} {s22,6}
17 {gp-s10, gp-s20} {0,0} {gp-s10,gp-s20} {gp-s10,0}
18 {s10} {0} {s10} {s10,2}
19 {gp-s20} {0} {gp-s20} {gp-s20,0}
20 {s20} {0} {s20} {s20,7}
21 {gp-s11, gb-m21} {0,0} {gb-m21} {gb-m21,0}
22 {gp-s11, m21} {0,0} {gp-s11} {gp-s11,0}
23 {s11, m21} {0,0} {m21} {m21,1}
24 {s11, s14} {1,0} {s11} {s11,1}
25 {s14} {1} {s14} {s14,14}
26 {s16, gb-m15} {0,0} {gb-m15} {gb-m15,0}
27 {s16, m15} {0,0} {m15} {m15,1}
28 {s16, gp-s25} {1,0} {gp-s25} {gp-s25,0}
29 {s16, s25} {1,0} {s25} {s25,2}
30 {s16, gp-s28} {3,0} {gp-s28} {gp-s28,0}
31 {s16, s28} {3,0} {s16,s28} {s16,7}
32 {gb-m17, s28} {0,7} {s28} {s28,0}
33 {gb-m17, gp-s26, gp-s9} {0,0,0} {gb-m17} {gb-m17,0}
34 {m17, gp-s26, gp-s9} {0,0,0} {gp-s26,gp-s9} {gp-s26,0}
35 {m17, s26} {0,0} {s26} {s26,1}
36 {m17, gp-s8, gp-s9} {1,0,0} {m17} {m17,0}
37 {gp-s8, gp-s9, gb-m27, s23} {0,0,0,0} {gb-m27} {gb-m27,0}
38 {gp-s8, gp-s9, m27, s23} {0,0,0,0} {gp-s8,gp-s9} {gp-s8,0}
39 {s8, m27, s23} {0,0,0} {m27} {m27,1}
40 {s8, s23} {1,1} {s8} {s8,1}
41 {gp-s9, s23} {0,2} {gp-s9} {gp-s9,0}
42 {s9, s23} {0,2} {s9} {s9,2}
43 {s23} {4} {s23} {s23,6}
44 {s12, gb-m24} {0,0} {gb-m24} {gb-m24,0}
45 {s12, m24} {0,0} {m24} {m24,1}
46 {s18, s12} {0,1} {s18,s12} {s18,1}
47 {s7, s12} {0,2} {s12} {s12,0}
48 {s7} {0} {s7} {s7,2}
49 {end} {0} {end} {end,0}

186 CHAPTER 8. EXPERIMENTS

8.2 Pulse Oximeter

This case study is considered for applying the scheduling synthesis with timing and

energy constraints.

The pulse oximeter [45] is an equipment responsible for measuring the oxygen satu-

ration in the blood system using a non-invasive method. A pulse-oximeter may be used

in many circumstances, like checking if the oxygen saturation is lower or not than the

acceptable, when a patient is sedated with anesthetics for a surgical procedure. This

equipment is widely used in center care units (CCU) in hospitals.

SPECTROPHOTOMETRIC
SENSOR

CONVERSOR

LED DRIVER

PRE-AMPLIFIER DEMULTIPLEXER

DIGITAL/ANALOG
INTERFACE DEMODULATOR

ATENUATOR

SELECTOR
CONTROL

SELECTOR
SIGNAL/TEST

Test Signal

INTERFACE
PROGRAMMABLE

AMPLIFIER
FILTER

FILTERDC Signal

AC Signal

MICRO-CONTROLLER
UNIT

Figure 8.5: Pulse Oximeter Architecture

The architecture of this equipment can be seen in Figure 8.5. The architecture

consists of a micro-controller unit, a spectrophotometric sensor (which is compounded

by a infrared led, a red led, and a photo-diode), a digital/analog interface, a led driver,

a converter, a pre-amplifier, a demultiplex, a demodulator, a selector signal/test, two

filters, a programmable amplifier, an interface, an attenuator, and a selector control.

The micro-controller controls the synchronization and amplitude of the led driver,

which dispatches non-simultaneous stream pulses to the infrared and red leds. Both

leds generate, respectively, infrared and red radiation pulses that cross the finger of

a patient. After crossing the finger, a photo-diode catches the radiations level. A

sequence of operations occurs until data reaches the micro-controller. Lastly, the micro-

controller performs the calculation related to oxygen saturation level based on data

received, and shows the result on a display.

8.2. PULSE OXIMETER 187

The code was downloaded to an AT89S8252 micro-controller single board. The

energy measurement was obtained by inserting probes (commands before and after a

task) to synchronize the measurement with task events. It was measured instantaneous

current drawn by the processor during the execution of each task. For data acquisition

it was used a TDS220 digital oscilloscope linked to PC desktop computer by serial

port.

Table 8.4 shows the pulse oximeter task set. In this work, for sake of simplicity,

the task set of the oximeter was based only on two general processes: an excitation

(PA), and an acquisition-control process (PB). The excitation process (PA) is respon-

sible to dispatch stream pulses to the leds in order to generate radiation pulses. The

acquisition-control process (PB) captures radiations crossing patient’s finger, and real-

izes the calculation of oxygen saturation level. Both processes are divided in threads,

where each thread represents a task. It is considered that a thread of a process cannot

be interrupted by any other thread of the same process. In this case, context saving

and restoring are not performed between tasks of the same processes, but only between

threads (tasks) of different processes.

Using the proposed approach, a feasible schedule is found in 256 milliseconds. The

amount of visited states was the minimum, that is, 850 states. The energy consumed

by the system considering the generated schedule is:

32 TA1 instances x 8576,69 nJ +

32 TA2 instances x 52,35 nJ +

32 TA3 instances x 8576,69 nJ +

32 TA4 instances x 52,35 nJ +

5 TB1 instances x 55,58 nJ +

5 TB2 instances x 222,32 nJ +

5 TB3 instances x 55,58 nJ +

5 TB4 instances x 222,32 nJ +

5 TB5 instances x 55,58 nJ +

5 TB6 instances x 222,32 nJ +

5 TB7 instances x 55,58 nJ +

5 TB8 instances x 222,32 nJ +

5 TB9 instances x 430 nJ +

5 TB10 instances x 7089 nJ +

24 context-switching x 400 nJ,

resulting in 605,011.56 nJ.

188 CHAPTER 8. EXPERIMENTS

Table 8.4: Task Set for the Pulse Oximeter
TaskID Task Name r c d p energy(nJ)

TA1 SetExcitationLedRed 0 41 1000 2500 8576
TA2 ResetExcitationLedRed 371 41 1000 2500 52
TA3 SetExcitationLedInfra 576 41 1000 2500 8576
TA4 ResetExcitationLedInfra 947 41 1000 2500 52
TB1 StartChannelACRed 0 41 5000 16000 55
TB2 ReadChannelACRed 141 50 5000 16000 222
TB3 StartChannelACInfra 191 41 5000 16000 55
TB4 ReadChannelACInfra 323 50 5000 16000 222
TB5 StartChannelADRed 382 41 5000 16000 55
TB6 ReadChannelADRed 523 50 5000 16000 222
TB7 StartChannelADInfra 573 41 5000 16000 55
TB8 ReadChannelADInfra 714 50 5000 16000 222
TB9 StoreDataArrays 764 60 5000 16000 430
TB10 Control 0 90 10000 16000 7089

Intertask Relations
TA1 PRECEDES TA2, TA2 PRECEDES TA3, TA3 PRECEDES TA4,
TB1 PRECEDES TB2, TB2 PRECEDES TB3, TB3 PRECEDES TB4,
TB4 PRECEDES TB5, TB5 PRECEDES TB6, TB6 PRECEDES TB7,
TB7 PRECEDES TB8, TB8 PRECEDES TB9

8.3 Heated-Humidifier

This case study explains the application of the code generator framework.

Heated-humidifier is a control system that aims to insert water vapor in the gaseous

mixture used in a sort of electro-medical systems. For maintaining such vapor, the

system must warm up the water in a recipient and maintain the water temperature in

a prescribed value. This equipment is also very useful in critical care units (CCU).

Table 8.5: Specification for the Heated-Humidifier

Tasks r c d p

A (temp-sensor-start) 0 1 1,500 10,000

B (temp-sensor-handler) 11 1 1,500 10,000

C (PWM) 0 8 1,500 10,000

D (pulse-generator) 0 4 4 50

E (temp-adjust-part1) 0 1 5,000 10,000

F (temp-adjust-part2) 1501 2 5,000 10,000

Inter-Task Relations

A PRECEDES B

B PRECEDES C

E PRECEDES F

8.3. HEATED-HUMIDIFIER 189

A/D
CONVERTER

8051
MICRO-CONTROLLER

Vcc

temperature
sensor

electrical
resistance UP

DOWN

Figure 8.6: Heated-Humidifier Architecture

OV

5V

OV

5V

OV

5V

20% duty cycle

50% duty cycle

80% duty cycle

T T T T

Figure 8.7: PWM Control

The architecture of this equipment can be seen in Figure 8.6. This architecture con-

sists of a micro-controller (8051), two keys for adjustment of the desired temperature, a

temperature sensor, and an electric resistance (in a water recipient). Water warming is

controlled by pulse width modulation (PWM) technique, which switches the supplied

energy on and off. In this case, the DC voltage is converted to a square-wave signal,

alternating between fully on and zero. PWM control consists of changing the pulse

duty cycle (Figure 8.7) of a square wave in order to change its average value.

Table 8.5 shows the task set considering a 8051-family architecture. The values are

expressed in TTUs (task time units), where each time unit is equal to 10µs. Considering

190 CHAPTER 8. EXPERIMENTS

Figure 8.8: Pulse Generator Slot Time

such architecture, the overhead of the interrupt and dispatcher is equal to 200 µs (20

TTUs). Except task D, the period of all tasks are equal to 100ms (10,000 TTUs), since

this period is sufficient for meeting the specification constraints. The deadline of tasks

A and B takes into account that, after A/D conversion, the sensor has to be read at

most in 15ms. Tasks E and F consider that keys are kept pressed up to 50ms.

PWM task is responsible for increasing or decreasing the pulse duty cycle. Initially

it starts with duty cycle equal to 50%, and it is adjusted in conformity with the

measured water temperature. In this case, if the temperature is lower than the desired

temperature, the PWM task increases the duty cycle. On the other hand, PWM task

decreases the duty cycle.

The pulse-generator task generates a cyclic square wave with the duty cycle con-

trolled by PWM task. The pulse frequency considered is 40 Hz, which leads to a period

(T) equal to 25ms. The PWM resolution is 500µs, i.e., the duty cycle is increased or

decreased at 500µs steps. In this work, the computation time of the pulse-generator

task is equal to 40µs, remaining 460µs for executing other tasks. It is worth remem-

bering that the dispatcher is called before each task, which consumes 200 µs of time

in the worst-case. Figure 8.8 shows the pulse generator slot time and its relationship

with the PWM period.

Temperature adjustment is divided into two tasks (temperature-adjust-part1 and

temperature-adjust-part2) in order to avoid the key bouncing. If temperature-adjust-

part1 indicates that a key is pressed, after a specific minimal time (generally 15ms),

the temperature-adjust-part2 task must confirm such pressing. It is worth noting that

its release time is equal to 1501 time units (15,000µs (key bouncing) + 10µs (execution

8.3. HEATED-HUMIDIFIER 191

of task E)). Such timing constraints allow other tasks to be executed avoiding time

wasting due to key bouncing procedure.

The same solution is applied for reading the temperature sensor. The first task

(temperature-sensor-start) is responsible for starting the A/D conversion. Since this

conversion takes time, the processor may execute another tasks in the meantime. After

elapsing a specific time (generally 100µs), the second task (temperature-sensor-handler)

may start reading the temperature and updating the respective shared variable, which

is read by the PWM task. Note that the release time of the task temperature-sensor-

handler is equal to 11 TTUs (100µs (A/D conversion) + 10µs (execution of task A)).

start

end

Ph2

D2

Md2

A2

G2

C2

R2

Ph6

D6

Md6

A6

G6

C6

R6

Ph1

D1

Md1

A1

G1

C1

R1

Ph3

D3

M3

A3

G3

C3

R3

Ph4

D4

Md4

A4

G4

C4

R4

Ph5

D5

Md5

A5

G5

C5

R5

Task A Task B Task C Task D Task E Task F

Figure 8.9: Heated-Humidifier Time Petri Net Model

All communication between tasks is carried out by shared memory. For instance,

the temperature-sensor-handler task communicates the measured temperature to the

PWM task; the same way, the PWM task communicates the duty cycle rate to the

pulse-generator task; and the temperature-adjust-part2 sends the desired temperature

to the PWM task.

Figure 8.9 presents a simplified time Petri net model for this task set, where a

non-preemptive scheduling method is used. For sake of simplicity, the processor is

not modeled in this figure. The next step of the methodology searches for a feasible

scheduling using the TPN model. This schedule was found in 486 ms, verifying 6022

states, which is the minimum number of states to be verified.

192 CHAPTER 8. EXPERIMENTS

T1

T2

T3

T4

0 24 50 74

T5

100 124 150 174

d d d d

d

d

d

d

Figure 8.10: Heated-Humidifier Timing Diagram

Figure 8.10 depicts part of a timing diagram that shows the dispatcher and interrupt

handler overheads.

As presented in Section 6.2, C code is generated by traversing the feasible firing

schedule returned by the scheduling synthesis framework. Figure 8.11 shows parts of

the generated code, where constants, tasks, and the schedule table are defined.

// Constants
#define SCHEDULE_SIZE 505

// Tasks
void taskT1() {...}
void taskT2() {...}
void taskT3() {...}
void taskT4() {...}
void taskT5() {...}
void taskT6() {...}

// Schedule Table
struct SchItem sch[SCHEDULE_SIZE] =
{

{0, false, 4, (int *)taskT4},
{24, false, 1, (int *)taskT1},
{50, false, 4, (int *)taskT4},
{74, false, 5, (int *)taskT5},
{100,false, 4, (int *)taskT4},
{124,false, 2, (int *)taskT2},
{150,false, 4, (int *)taskT4},
{174,false, 3, (int *)taskT3},
{200,false, 4, (int *)taskT4},

.

.

.
}

Figure 8.11: Heated-Humidifier Generated Code

8.4. PULSE OXIMETER WITH MULTIPLE MODES 193

8.4 Pulse Oximeter with Multiple Modes

The pulse oximeter is used to show how to generate code considering multiple opera-

tional modes.

The considered pulse-oximeter has two operational modes: (i) executing; and (ii)

programming mode. Executing mode represents the normal functioning of the equip-

ment. This mode has tasks that perform the acquisition, control, calculation, analysis

and presentation of the results on a display. Programming mode is responsible for pro-

viding a different graphical interface, which is manipulated by an user for modifying

the acceptable levels of the arterial oxygen saturation, cardiac beats, and alarm vol-

ume. The alarm is triggered when the oxygen saturation is beyond acceptable levels.

Moreover, the programming mode is comprised by tasks that perform the acquisition,

control, presentation and supervision of the programming interface. Table 8.6 depicts

the oximeter task timing specification. Furthermore, the intertask relations are:

T 1 PRECEDES T 2, T 2 PRECEDES T 3, T 3 PRECEDES T 4, T 5 PRECEDES T 6, T 6 PRECEDES

T 7, T 7 PRECEDES T 8, T 8 PRECEDES T 9, T 10 PRECEDES T 11, T 11 PRECEDES T 12, T 12

PRECEDES T 13, T 15 PRECEDES T 16, T 17 PRECEDES T 18.

The mode changing is triggered when an user presses the programming button on

the oximeter panel. The tasks KeyPressChecking and KeyPressConfirmation, included

in both operational modes, are responsible to periodically verify the button state. Two

tasks are needed in order to avoid the key bouncing. Task KeyPressChecking indi-

cates if the key is pressed. After a specific minimal time, task KeyPressConfirmation

confirms such pressing, and, consequently, puts such state in a shared variable called

isButtonProgPushed. In the next dispatcher execution, the buttons state is verified

using a pre-condition function. If the programming button is pressed and there are no

preempted tasks, the mode changing is realized. The programming mode also has two

tasks responsible for verifying the state of the button OK. When this button is pressed,

the programming mode is replaced by the executing mode in the next dispatcher ex-

ecution, only if there are no preempted tasks. Table 8.7 depicts the specification of

operational mode pre-conditions for the pulse-oximeter.

The schedule for the programming mode was obtained in 0.100 seconds. In addition,

the schedule for the executing mode was found in 0.110 seconds. As presented before,

C code is generated by traversing the feasible firing schedule of each operational mode.

Figure 8.12 shows parts of the generated code for the pulse-oximeter. This figure

presents definition of shared variables, conditions for mode switching, constants, tasks,

and schedule table of each mode.

194 CHAPTER 8. EXPERIMENTS

Table 8.6: Oximeter Task Timing Specification

Oper. Mode ID Task Name Release Comp. Deadline Period

Executing T1 SetExcitationLedRed 0 41 1000 80000
T2 ResetExcitationLedRed 371 41 1000 80000
T3 SetExcitationLedInfra 576 41 1000 80000
T4 ResetExcitationLedInfra 947 41 1000 80000
T5 StartChannelACRed 0 41 5000 80000
T6 ReadChannelACRed 141 50 5000 80000
T7 StartChannelACInfra 191 41 5000 80000
T8 ReadChannelACInfra 323 50 5000 80000
T9 StartChannelADRed 382 41 5000 80000
T10 ReadChannelADRed 523 50 5000 80000
T11 StartChannelADInfra 573 41 5000 80000
T12 ReadChannelADInfra 714 50 5000 80000
T13 StoreDataArrays 764 60 5000 80000
T14 Control 0 90 10000 80000
T15 LevelsCalculation 5001 30000 80000 80000
T16 ResultAnalisys 5001 3000 45000 80000
T17 KeyPressChecking 5001 1000 40000 80000
T18 KeyPressConfirmation 6502 1000 40000 80000
T19 ReseultsDisplaying 45000 32000 80000 80000

Progr. T1 SetExcitationLedRed 0 41 1000 70000
T2 ResetExcitationLedRed 371 41 1000 70000
T3 SetExcitationLedInfra 576 41 1000 70000
T4 ResetExcitationLedInfra 947 41 1000 70000
T5 StartChannelACRed 0 41 5000 70000
T6 ReadChannelACRed 141 50 5000 70000
T7 StartChannelACInfra 191 41 5000 70000
T8 ReadChannelACInfra 323 50 5000 70000
T9 StartChannelADRed 382 41 5000 70000
T10 ReadChannelADRed 523 50 5000 70000
T11 StartChannelADInfra 573 41 5000 70000
T12 ReadChannelADInfra 714 50 5000 70000
T13 StoreDataArrays 764 60 5000 70000
T14 Control 0 90 10000 70000
T20 PrintMenuDisplaying 11000 25000 65000 70000
T17 KeyPressingChecking 5001 1000 40000 70000
T18 KeyPressingConfirmation 6502 1000 40000 70000
T21 MenuHandler 45000 2500 60000 70000
T22 LevelsAdjustment 50000 20000 70000 70000

Table 8.7: Oximeter Operational Modes Pre-Condition Specification

Operational Mode Pre-Condition

Operating Mode (initial) (isButtonProgPressed)

Programming Mode (isButtonOKPressed)

8.5 Summary

In order to illustrate the practical usability of the proposed software synthesis method,

this chapter has presented in details four experimental results. The first one deals with

8.5. SUMMARY 195

the method for finding a feasible schedule considering a multi-processor architecture.

In this case, a simple control application was used, which runs on 4-processors. This

case study is used for explaining how to find a feasible schedule considering timing and

resource constraints.

The second experiment was conducted in a pulse-oximeter case study, which is an

electro-medical equipment responsible for measuring the oxygen saturation in the blood

system using a non-invasive method. This case study was adopted for explaining the

proposed method for finding feasible schedules considering timing, resource and energy

constraints.

The third experiment was also performed in order to illustrate the code generation

phase in the proposed methodology. It was used a heated-humidifier case study, which

is a control system that aims to insert water vapor in the gaseous mixture used in

several electro-medical equipments.

The last experiment was applied for describing the proposed method of code gener-

ation considering multiple operational modes. The adopted case study was again the

pulse-oximeter. However, this time the specification have two separate modes.

These experiments empirically shows that the proposed scheduling synthesis and

code generator may be applied to several real-world case studies. In all these experi-

ments, the performance was acceptable and results are very promising.

196 CHAPTER 8. EXPERIMENTS

//Shared variables
bit isButtonProgPressed;
bit isButtonOKPressed;

// Constants
#define SCHEDULE_SIZE_MODE1 19
#define SCHEDULE_SIZE_MODE2 19

// Conditions
bit checkProgModeChanging() {

return (isButtonOKPressed);
}
bit checkOperModeChanging() {

return (isButtonOKPressed);
}

// Tasks
void taskT1() {...}
void taskT2() {...}
...
void taskT22() {...}

// Schedule Tables
struct SchItem sch_mode1[SCHEDULE_SIZE_MODE1] =
{{0, false, 1, (int *)taskT1},

{41, false, 5, (int *)taskT5},
{82, false, 14, (int *)taskT14},
{371, false, 2, (int *)taskT2},
{412, false, 6, (int *)taskT6},
{462, false, 7, (int *)taskT7},
{503, false, 8, (int *)taskT8},
{553, false, 9, (int *)taskT9},
{594, false, 3, (int *)taskT3},
{635, false, 10, (int *)taskT10},
{685, false, 11, (int *)taskT11},
{947, false, 4, (int *)taskT4},
{988, false, 12, (int *)taskT12},
{1038, false, 13, (int *)taskT13},
{5001, false, 15, (int *)taskT15},
{35001, false, 17, (int *)taskT17},
{36001, false, 18, (int *)taskT18},
{37001, false, 16, (int *)taskT16},
{45000, false, 19, (int *)taskT19}

};

struct SchItem sch_mode2[SCHEDULE_SIZE_MODE2] =
{{0, false, 1, (int *)taskT1},

{41, false, 5, (int *)taskT5},
{82, false, 14, (int *)taskT14},
{371, false, 2, (int *)taskT2},
{412, false, 6, (int *)taskT6},
{462, false, 7, (int *)taskT7},
{503, false, 8, (int *)taskT8},
{553, false, 9, (int *)taskT9},
{594, false, 3, (int *)taskT3},
{635, false, 10, (int *)taskT10},
{685, false, 11, (int *)taskT11},
{947, false, 4, (int *)taskT4},
{988, false, 12, (int *)taskT12},
{1038, false, 13, (int *)taskT13},
{11000, false, 17, (int *)taskT17},
{12000, false, 18, (int *)taskT18},
{13000, false, 20, (int *)taskT20},
{45000, false, 21, (int *)taskT21},
{50000, false, 22, (int *)taskT22}
};

Figure 8.12: Generated Code for the Pulse Oximeter Considering Multiple Modes

Chapter 9

Conclusions

Embedded system designers have to deal with a dilemma, since those systems have

increased complexity and, at the same time, market pressures have shortened the time-

to-market. The processors computational power increasing on the one hand, and the

size and cost reduction on the other hand, have allowed moving more and more func-

tionality to software. Nowadays, the software is usually responsible for more than

80% of the functions in embedded systems. However, due to the increasing complexity

and diversity of requirements, embedded software has become much harder to design.

Correctness and timeliness verification are issues that must be concerned, since several

applications demand safety properties.

For coping with those stringent requirements, embedded software development

methodologies play an important role. Formal methods are an alternative to deal

with the inherent complexity of embedded systems. In order to improve the degree of

confidence of critical systems, formal methods allow precise specification, verification

and/or analysis of qualitative as well as quantitative properties. However, for effective

use of formalisms, the availability of automated tools to assist the design of embedded

software is an important matter.

The goal of this thesis has been the development of a methodology for generating

predictable source code in a suitable programming language, where such code satisfies

timing, energy, and resource constraints.

The application domain is embedded hard real-time systems, where correct behavior

depends not only on the integrity of the results, but also on the time when results are

produced. Therefore, later results may have serious consequences, including resource

damages or risk of human life.

As it is considered time-critical systems, predictability is an important concern. In

order to guarantee that all critical tasks meet their deadlines, it was used the pre-

runtime scheduling, since the runtime scheduling may constrain the possibility of find-

ing a feasible schedule, even if such schedule exists, mainly when considering arbitrary

197

198 CHAPTER 9. CONCLUSIONS

precedence and exclusion relations.

In order to solve this problem, the proposed approach started from a specification

model, which is automatically translated to a formal model, in this case a TPN model,

where such formal model is analyzed for finding a feasible schedule. After that, the

code generation phase is performed. In the literature, the problem solved by this thesis

is commonly called software synthesis, which is defined as the task of translating a

complex specification into a source code such that functionality is attended, and the

typical runtime support is provided. However, software synthesis taking into account

time-critical systems is little explored in the research community.

This work applied the proposed methodology into several case studies, but only

four of them were detailed. It was presented examples for scheduling computation

considering timing and resource constraints on multi-processors, scheduling computa-

tion considering timing, energy and resource constraints on a single processor, code

generation for single and multiple operational modes.

This chapter summarizes this thesis, depicting the main contributions, limitations,

and future directions on this research.

9.1 Contributions

This work faced three main problems, namely, modeling, scheduling, and code gen-

eration; and contributed proposing alternatives for dealing with embedded software

system design.

Modeling

The starting point for all results produced by this thesis was the modeling. The

modeling phase described how to model embedded hard real-time systems using time

Petri net formalism.

Time Petri net is a mathematical formalism that allows specification, properties

verification, and modeling of several features present in most concurrent and real-

time systems, such as, stringent timing constraints, precedence and exclusion relations,

communication protocols, multiprocessing, synchronization mechanisms, and shared

resources.

The proposed modeling phase is based on composition of building blocks. The

building blocks considered in this thesis are: (i) periodic task arrival; (ii) task structure

(preemptive or non-preemptive), where dispatcher overheads might be considered or

not; (iii) deadline checking; (iv) inter-processor sending message; (v) resources, such as

processors and buses; (vi) fork; and (vii) join. These blocks are composed by application

9.1. CONTRIBUTIONS 199

of several operators, such as place merging, addition and refinement, arc addition and

removing, and net union. This modeling method also shows how to model inter-tasks

relations, in this case, precedence and exclusion relations. Finally, it explained how to

model inter-processor communication, that is, message sending and message receiving

considering that tasks are allocated to different processors.

Scheduling

Embedded hard real-time systems have stringent constraints that must be satisfied.

Hence, when considering safety or timing-critical systems, predictability should be

provided. Therefore, scheduling plays an important role for attaining such constraints

in a predictable way.

Starting from the time Petri net model, the proposed scheduling synthesis frame-

work analyzes the timed labeled transition system (resultant from this model) in order

to find a pre-runtime schedule, provided that such schedule exists.

This work uses state space exploration, which consists in recursively checking all

successor states, starting in a given initial state, by executing all enabled action in each

state. In spite of the fact that a scheduling can be found using this strategy, it may

be limited by the excessive size of the state space. This problem comes up due to the

analysis based on the interleaving of concurrent activities. This exponential growth is

known as the state explosion problem. This work starts by showing how to minimize

the state space size. It was used three approaches: (i) modeling explicitly dependencies

between tasks; (ii) applying a partial-order reduction technique, which is specific for

the proposed modeling, where it was identified a simple way to define persistent sets;

and (iii) removing undesirable states.

The proposed scheduling policy is pre-runtime scheduling, where schedules are com-

puted entirely off-line. As presented previously, this strategy has advantages over oth-

ers, mainly when adopting arbitrary precedence and exclusion relations.

The proposed algorithm for finding a feasible schedule is a depth-first search method

on the reduced state space. This algorithm is interesting since it is deadlock and

starvation-free, where both are undesirable situations often present in concurrent sys-

tems. However, one problem may arise in this algorithm: the search in the set of

states already visited, which may cause inefficiencies in the whole algorithm execution.

Nevertheless, this problem was minimized by adoption of a binary-tree search.

200 CHAPTER 9. CONCLUSIONS

Code Generation

The code generation method presented in this thesis was proposed in such a way

that the main overheads were minimized. In order to attain such requirement, it was

provided a dispatcher and a timer interrupt handler. The dispatcher performs several

controls needed to execution of tasks, such as timer programming, context saving,

context restoring, and tasks calling. The timer is programmed by the dispatcher to

interrupt at the time where the next task instance must be executed (or resumed). It

is worth observing that just one timer is needed since the generated code is already

scheduled. This solution eliminates the “busy-waiting”, which is very often adopted

strategy in practice.

Another key feature of the proposed solution is that overheads of the dispatcher

and timer interrupt handler are considered in the modeling phase, that is, before the

schedule computation. This overhead is often neglected in several research papers.

However, if it is not considered, this overhead may affect the deadline of tasks. One

usually adopted solution considers that the WCET of tasks already includes this over-

head. This solution is rather pessimistic, since it is unknown how many preemptions

will occur in each task before a schedule has been found. On the other hand, the so-

lution adopted in this thesis explicitly models the WCET of the dispatcher and timer

interrupt handler. In this case, the overhead is considered during the schedule gen-

eration, but only when needed, leading to a more realistic estimation for the system

behavior.

In order to give more flexibility to the pre-runtime method, it was also shown

the multiple operational mode solution. In this method, there are several alternative

pre-runtime schedules that may be switched, depending on whether the respective

pre-condition is satisfied.

The proposed code generation framework may be applied to several processor plat-

forms. It is sufficient to make the dispatcher and timer interrupt handler available for

the respective platform.

At the best of our present knowledge, there is no similar work that generates timely

and predictable scheduled code, starting from a formal model, and considering arbitrary

precedence and exclusion relations.

9.2 Limitations

This section aims to describe the limitations of the proposed scheduling strategy.

As shown previously, pre-runtime scheduling is often the only means for providing

9.3. FUTURE WORKS 201

predictability in complex real-time systems. However, this approach has some draw-

backs:

1. pre-runtime scheduling is based on the assumption that all information about

the system is known before runtime. Nevertheless, such information may not be

always available in advance. However, if this information is not known, it is not

possible to guarantee that all hard deadlines will be met.

2. another issue concerns the “periodic world” assumed in this methodology. Some

designers may have difficulties in fitting the problem in this paradigm. Although

having an elegant way for transforming a sporadic task into a periodic one, this

strategy may impose significant overheads. However, it is the price to be paid

for the predictability requirement.

3. pre-runtime schedule is computed considering a period equal to the least common

multiple (LCM) among all periods in the task set. If periods of a task set are

different prime numbers, the LCM might be very large. This problem can only

be reduced if the designer is able to change the periods of tasks.

9.3 Future Works

Software synthesis for embedded hard real-time systems remains a relatively new topic

in systems research. Consequently, this topic has several opportunities for further

improvement. This section presents future directions into specification, modeling,

scheduling, and code generation.

This thesis has not directly addressed the possibility of deadlock in both precedence

relation, and inter-processor communication. However, deadlock-detection may be

performed by a cycle search in the graph that represents the precedence relation and/or

the communication pattern.

Analysis of properties in large dimension nets is not trivial. Therefore, methods that

allow transforming models while preserving system properties has been largely studied.

Usually, these transformations are reductions that are applied to larger models in order

to obtain smaller ones while preserving properties. Reduction rules was not considered

in this thesis. However, certainly the complexity will decrease and, at the same time,

properties of interest will be preserved. This is a further work to be investigated.

Another interesting work would be formally proof that the TPN model faithfully

represents the specification. The idea is to prove that all building blocks really model

202 CHAPTER 9. CONCLUSIONS

the desired behavior. After that, it is necessary to prove that all compositions maintain

the aggregate behavior.

So far, two problems may arise in the proposed scheduling algorithm related to

the proposed tagging scheme, that is, the scheme that stores a set of visited states

for avoiding the analysis of them more than once. The first problem is related to the

search in the set of states already visited, which may cause inefficiencies in the whole

algorithm execution. This problem was minimized by the adoption of a binary-tree

search. The second problem, which may compromise the whole solution, is the size of

the set of visited states. This size can be huge. For minimizing this problem, a solution

might apply methods of compression to reduce the size of this set of states.

As stated before, the state space explosion problems is hardened by the interleav-

ing semantics when considering concurrent activities. It is well-known, however, that

Petri nets are widely used as a model of concurrency, which allows representing the

occurrence of independent events. Thus, Petri net models can also be a model of par-

allelism. Therefore, the simultaneity of the events is only considered when adopting

the step semantics. In this semantics, the execution is represented by a sequence of

steps, each of them being the simultaneous (or parallel) firing of enabled transitions.

Obviously, step semantics reduces the size of the state space to be analyzed, since,

instead of analyzing a single transition, this semantics analyzes a set of transitions.

However, a key problem in applying such semantics may be how much time is needed

to find how many transitions belongs to a single step, mainly when considering larger

models. This is a point to be investigated.

In this work, it is assumed that the scheduling algorithm always finds a feasible

schedule, provided that at least one schedule exists. However, no formal proof asserting

its correctness is given. One way to prove it is to use mathematical induction.

As presented at Section 7.3, the automatic modeling generates the same time Petri

net model in two file formats: (i) a PNML file format; and (ii) a specific file format for

the schedule generator. Another extension is to consider just the PNML format.

Although the scheduling synthesis may generate schedules considering a multi-

processor architecture, the code generator proposed in this thesis has been only focused

on uniprocessor architectures. Thus, a possible extension would be the addition of this

functionality into the code generator. Basically, synthesis of communication constructs

will be the major addition.

The aim of any synthesis method is to implement the specification with minimum

overhead. This is why the proposed code generation phase adopted a small dispatcher

for improving the management of execution of tasks. Another solution for minimizing

9.4. CLOSING REMARKS 203

the overhead due to tasks calling is the code concatenation approach. For instance,

if two (or more) tasks always are executed in a chain (or sequence), these two codes

are candidate to be concatenated. After the concatenation, both tasks can be seen as

being one single task. Obviously, this solution reduces the amount of dispatcher calls.

In order to add some flexibility in the proposed methodology, the code generation

method may generate code considering multiple operational modes. In this case, the

dispatcher looks for conditions that allow a mode to be switched, where a mode is

just an alternative pre-runtime schedule. However, such alternative schedules have

to be previously added in the system. In this case, another possible extension is to

propose a solution for adding, at runtime, new operational modes and conditions for

mode-switching. A little modification on this extension could be the addition of new

tasks.

9.4 Closing Remarks

The high complexity of embedded systems increases the difficulty in verifying design

correctness. This verification is critical due to safety considerations in several appli-

cation domains. In particular, this thesis proposed a formal approach for software

synthesis in embedded hard real-time systems. As these systems need high predictabil-

ity, this thesis proposed a code generator for guaranteeing that specified constraints

are satisfied and, at the same time, increasing software quality and productivity.

Software synthesis for time-critical systems is a fertile research area since it has

been little explored by the research community. New frontiers for automatic software

synthesis based on formal timed models is opened up.

Bibliography

[1] Apache Jakarta Project. Version 1.4. January 2005.

http://jakarta.apache.org/velocity/.

[2] T. F. Abdelzaher and K. G. Shin. Optimal combined task and message schedul-

ing in distributed real-time systems. In Proc. of the IEEE Real-Time Systems

Symposium, pages 162–171, December 1995.

[3] T. F. Abdelzaher and K. G. Shin. Comments on a pre-run-time scheduling

algorithm for hard real-time systems. IEEE Trans. Soft. Engineering, 23(9):599–

600, September 1997.

[4] K. Altisen, G. Göbler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A frame-

work for scheduler synthesis. IEEE Real-Time System Symposium, pages 154–

163, December 1999.

[5] T. Amnell, E. Fersman, P. Pettersson, H. Sun, and W. Yi. Code synthesis for

timed automata. Nordic Journal of Computing, 2003.

[6] T. Argewala and Y. Choed-Amphai. A synthesis rule for concurrent systems.

Design Automation Conference (DAC’78), pages 305–311, June 1978.

[7] N. Audsley and A. Burns. Real-time systems scheduling. Technical report, ycs

134, Department of Computer Science. University of York, 1990.

[8] N. C. Audsley. Deadline monotonic scheduling. Technical report, ycs 146, De-

partment of Computer Science. University of York, 1990.

[9] J.C.M. Baeten. A brief history of process algebra. Technical Report CSR 04-02,

Vakgroep Informatica, Technische Universiteit Eindhoven, 2004.

[10] T.P. Baker and A. Shaw. The cyclic executive model and ada. In Proceedings of

the IEEE Real-Time Systems Symposium. December 1988.

204

BIBLIOGRAPHY 205

[11] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

A. Sangiovanni-Vincentelli, E. Sentovich, and K. Suzuki. Synthesis of software

programs for embedded control applications. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 18(6):834–849, June 1999.

[12] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli. Scheduling

for embedded real-time systems. IEEE Design and Test of Computers, pages

71–82, Jan-Mar 1998.

[13] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-

tion. Theoretical Computer Science, 37(1):77–121, January 1985.

[14] G. Berthelot. Checking Properties of Nets Using Transformations. In G. Rozen-

berg, editor, Advances in Petri Nets, volume 222 of Lecture Notes in Computer

Science, pages 19–40. Springer-Verlag, 1986.

[15] E. Best. Fairness and conspiracies. In Information Processing Letter, volume 18,

pages 215–220. Elsevier, 1984.

[16] E. Best and B. Grahlmann. Pep - more than a petri net tool. In LCNS, volume

1055, pages 397–401. Springer-Verlag, 1996.

[17] G. Bruno, A. Castella, G. Macario, and M. Pescarmona. Scheduling hard real

time systems using high-level petri nets. In Lecture Notes in Computer Science;

13th International Conference on Application and Theory of Petri Nets 1992,

Sheffield, UK, volume 616, pages 93–112. Springer-Verlag, June 1992.

[18] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework

for simulating and prototyping heterogeneous systems. International Journal

of Computer Simulation, special issue on “Simulation Software Development”,

4:155–182, April 1994.

[19] A. Burns and A. Wellings. HRT-HOOD: A structured design method for hard

real-time systems. Real-Time Systems Journal, 6(1):73–114, 1994.

[20] R. Camposano and R. Brayton. Partitioning before logic synthesis. International

Conference on Computer Aided Design, 1987.

[21] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer

Academic Publishers, 1999.

206 BIBLIOGRAPHY

[22] J. M. Colom, E. Teruel, M. Silva, and S. Haddad. Structural methods. In

C. Girault and R. Valk, editors, Petri Nets for Systems Engineering: A Guide

to Modeling, Verification and Applications, chapter 15, pages 277–316. Springer,

2003.

[23] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli. Software synthesis for real-

time information processing systems. Code Generation for Embedded Processors,

pages 260–279, 1995.

[24] G. de Jong and B. Lin. A communicating Petri net model for the design of

concurrent asynchronous modules. Design Automation Conference (DAC’94),

1994.

[25] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press,

January 1995.

[26] J. Desel and W. Reisig. Place/transition nets. Lectures on Petri Nets I: Basic

Models, LNCS 1491, pages 122–173, June 1998.

[27] F. DiCesare and M. D. Jeng. Synthesis for manufacturing integration. In F. DiCe-

sare, G.Harhalakis, J. M. Proth, M. Silva, and F. B. Vernadat, editors, Practice

of Petri Nets in Manufacturing, chapter 3. Chapman & Hall, 1993.

[28] M. DiNatale and J. A. Stankovic. Dynamic end-to-end guarantees in distributed

realtime systems. In Proc. of the IEEE Real-Time Systems Symposium, pages

216–227, 1994.

[29] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. Design of

embedded systems: Formal models, validation, and synthesis. Proceedings of the

IEEE, 85(3):336–390, March 1997.

[30] R. Ernst. Codesign of embedded systems: Status and trends. IEEE Design and

Test of Computers, pages 45–54, April-June 1998.

[31] A. Ferrari and A. Sangiovanni-Vincentelli. System design: Traditional concepts

and new paradigms. In Proceedings of the International Conference on Computer

Design (ICCD’99), pages 1–12. Austin, Texas, October 1999.

[32] A. Finkel. The Minimal Coverability Graph for Petri Nets. In G. Rozenberg,

editor, Advances in Petri Nets, volume 674 of Lecture Notes in Computer Science,

pages 210–243. Springer-Verlag, 1993.

BIBLIOGRAPHY 207

[33] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time Systems. PhD

thesis, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.

Vienna, Austria, 1994.

[34] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and Design of

Embedded Systems. Prentice-Hall, New Jersey, 1994.

[35] D. Gajski, J. Zhu, and R. Domer. Essential issues in codesign. Technical Re-

port ICS-97-26, Department of Information and Computer Science. University of

California at Irvine, June 1997.

[36] M. Garey and D. Johnson. Computer and Intractability: a Guide to the Theory

of the NP-Completeness. W. H. Freeman and Company, 1979.

[37] J. R. Garman. The bug heard round the world. ACM SIGSOFT Software Engi-

neering Notes, 1981.

[38] P. Godefroid. Partial Order Methods for the Verification of Concurrent Systems:

An Approach to the State-Explosion Problem. PhD Thesis, University of Liege,

Nov. 1994.

[39] D. Harel. Statecharts: A visual formalism for complex systems. Science for

Computer Programming, 1987.

[40] K. Havelund, M. Lowry, and J. Penix. Formal analysis of a space-craft controller

using spin. IEEE Transactions on Software Engineering, 27(8):749–765, August

2001.

[41] C. Hoare. Communicating Sequential Process. Prentice-Hall, 1985.

[42] P.-A. Hsiung. Formal synthesis and code generation of embedded real-time soft-

ware. 9th Int. Symp. Hw/Sw Codesign (CODES’01), pages 208–213, April 2001.

[43] F. Jahanian and A. Mok. Modechart: A specification language for real-time

systems. IEEE Transactions on Software Engineering, 20(12):933–947, December

1994.

[44] A. Arcoverde Jr, G. Alves Jr, R. Lima, P. Maciel, M. Oliveira Jr, and R. Barreto.

Ezpetri: A petri net interchange framework for eclipse based on PNML. In

Proceedings of the 1st International Symposium on Leveraging Applications of

Formal Methods ISOLA’04. October 30 - November 2 2004.

208 BIBLIOGRAPHY

[45] M. Nogueira Oliveira Júnior. Desenvolvimento de Um Protótipo para a Medida

Não Invasiva da Saturação Arterial de Oxigênio em Humanos - Ox́ımetro de

Pulso (in portuguese). MSc Thesis, Departamento de Biof́ısica e Radiobiologia,

Universidade Federal de Pernambuco, August 1998.

[46] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing.

Science, 220(4589):671–680, 1983.

[47] P. Koopman. Embedded system design issues: The rest of the story. Proceedings

of the International Conference on Computer Design, Austin, October 7-9 1996.

[48] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, 1997.

[49] B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI net-

works. IEEE Transactions on Computers, 1984.

[50] L. Lavagno, A. Sangiovanni-Vincentelli, and H. Hsieh. Embedded system co-

design: Synthesis and verification. In G. DeMicheli and M. Sami, editors, Hard-

ware/Software Co-Design, pages 213–242. Kluwer Academic Publishers, 1996.

[51] E. A. Lee. Embedded software. In M. Zelkowitz, editor, Advances in Computers,

volume 56. 2002.

[52] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John

Wiley and Sons, England, 1990.

[53] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of

periodic, real-time tasks. Performance Evaluation, 2(4):237–250, December 1982.

[54] J. Lilius. Efficient state space search for time petri nets. In Electronic Notes in

Theoretical Computer Science, volume 18. Elsevier Science, 1998.

[55] B. Lin. Efficient compilation of process-based concurrent programs without run-

time scheduling. Design Automation and Test in Europe Conference (DATE’98),

February 1998.

[56] D. Lipcoll, D. Lawrie, and A. Sameh. Eclipse Platform Technical Overview.

Object Technology International Inc., July 2001.

[57] R. J. Lipton. The reachability problem requires exponential space. Research

report 62, Department of Computer Science. Yale University, January 1976.

BIBLIOGRAPHY 209

[58] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard

real-time environment. ACM Journal, 20(1):46–61, January 1973.

[59] P. Maciel. Petri Net Based Estimators for Hardware/Sofware Codesign. PhD

Thesis, Centro de Informática. Universidade Federal de Pernambuco, Dec 1999.

[60] A. Marsan, G. Balso, and G. Conte. A class of generalized stochastic petri nets

for the performance analysis of multiprocessor systems. In ACM Transactions

on Computing Systems, volume 2, pages 93–122. ACM, 1984.

[61] A. Marsan and G. Chiola. On petri nets with deterministic and exponentially

distributed firing times. In G. Rozenberg, editor, Advances in Petri Nets, volume

266 of Lecture Notes in Computer Science, pages 132–145. Springer-Verlag, 1987.

[62] M. Marsan, A. Bobbio, and D. Donatelli. Petri nets in performance analysis: An

introduction. LNCS: Lectures on Petri Nets I: Basic Models, 1491:211–256, June

1998.

[63] G. Martin, H. Chang, and et al. Surviving the SOC Revolution: A Guide to

Platform Based Design. Kluwer Academic Publishers, September 1999.

[64] P. Merlin and D. J. Faber. Recoverability of communication protocols: Implica-

tons of a theoretical study. IEEE Transactions on Communications, 24(9):1036–

1043, Sept. 1976.

[65] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1982.

[66] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-

Real-Time Environment. PhD Thesis, MIT, May 1983.

[67] A. K. Mok. The design of real-time programming systems based on process

models. IEEE Real-Time Systems Symposium, pages 5–17, 1984.

[68] M. K. Molloy. On the Integration of Delay and Throughput Measures in Dis-

tributed Processing Model. PhD Thesis, UCLA, Los Angeles, CA, 1981.

[69] T. Murata. State equation, controllability, and maximal matchings of Petri nets.

IEEE Transactions on Automatic Control, 22(3):412–416, June 1977.

[70] T. Murata. Petri nets: Properties, analysis and applications. Proc. IEEE,

77(4):541–580, April 1989.

210 BIBLIOGRAPHY

[71] Y. Narahari and N. Viswanadham. A Petri net approach to the modelling and

analysis of flexible manufacturing systems. Annals of Operations Research, 3:449–

472, 1985.

[72] M. L. Neves. Geração Automática de Modelos Temporizados para Geração Off-

line de Escalas (in portuguese). Graduation Final Project, Centro de Informática.

Universidade Federal de Pernambuco, August 2004.

[73] G. Palshikar. An introduction to model-checking.

Embedded Systems Programming, December 2004.

http://www.embedded.com/showArticle.jhtml?articleID=17603352.

[74] J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–252, September

1977.

[75] J. L. Peterson. Petri Nets: An Introduction. Prentice-Hall, 1981.

[76] C. A. Petri. Kommunikation mit Automaten. PhD Dissertation, Darmstad Uni-

versity, Germany, 1962.

[77] R. Rajkumar. Synchronizations in real-time systems: A priority inheritance

approach. 1991.

[78] C. Ramchandani. Analysis of Asynchronous Concurrent Systems by Petri Nets.

PhD Thesis, MIT, Cambridge, USA, February 1974.

[79] W. Reisig. A Primer in Petri Net Design. Springer-Verlag, New York, 1992.

[80] A. Sangiovanni-Vincentelli. Defining platform-based design. EEdesign, 2001.

http://www.eedesign.com/.

[81] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and sofware

design methodology for embedded systems. IEEE Design and Test of Computers,

pages 23–33, November-December 2001.

[82] A. Sangiovanni-Vincentelli and G. Martin. A vision for embedded software. In

Proceedings of the International Conference on Compilers, Architectures and Syn-

thesis for Embedded Systems (CASES’01), pages 1–7. Atlanta, Georgia, Novem-

ber 16-17 2001.

[83] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Synthesis of

embedded software using free-choice petri nets. Design Automation Conference,

1999.

BIBLIOGRAPHY 211

[84] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An

approach to real-time synchonization. IEEE Transactions on Computers,

39(9):1175–1185, September 1990.

[85] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change proto-

cols for priority-driven preemptive scheduling. Real-Time Systems, 1(3):243–265,

December 1989.

[86] T. Shepard and J. A. Gagné. A pre-run-time scheduling algorithm for hard

real-time systems. IEEE Trans. Soft. Engineering, 17(7):669–677, July 1991.

[87] L. Sieh, P. Haniak, and P. Richardson. Implementing transient fault tolerance

in embedded real-time systems. IEEE Electronics and Information Technology

Conference, 2001.

[88] M. Silva. Introducing petri nets. In F. DiCesare, G.Harhalakis, J. M. Proth,

M. Silva, and F. B. Vernadat, editors, Practice of Petri Nets in Manufacturing,

chapter 1. Chapman & Hall, 1993.

[89] A. Singhal. Real time systems: A survey. Technical report, Computer Science

Department. University of Rochester, December 1996.

[90] P. Starke and S. Roch. INA - Integrated Net Analyzer - Version 2.2. Humbolt

Universität zu Berlin - Institut für Informatik, 1999.

[91] F.-S. Su and P.-A. Hsiung. Extended quase-static scheduling for formal syn-

thesis and code generation of embedded software. International Symposium on

Hardware/Software Codesign (CODES’02), May 2002.

[92] A. Tanenbaum. Structured Computer Organization. Prentice-Hall, 2001.

[93] J. Tsai, S. Yang, and Y.-H. Chang. Timing constraint petri nets and their

application to schedulability analysis of real-time system specifications. IEEE

Trans. Software Enginenring, 21(1):32–49, January 1995.

[94] R. Valette. Analysis of Petri nets by stepwise refinement. Journal of Computer

Systems Science, 18:35–46, 1979.

[95] R. Valk. Infinite behavior and fairness. In Lecture Notes in Computer Science,

volume 254, pages 377–396. Springer-Verlag, 1987.

212 BIBLIOGRAPHY

[96] A. Valmari. Compositional state space generation. LNCS: Advances in Petri

Nets, 674:427–457, 1993.

[97] A. Valmari. The state explosion problem. LNCS: Lectures on Petri Nets I: Basic

Models, 1491:429–528, June 1998.

[98] R. J. van Glabbeek. Bounded nondeterminism and the approximation induc-

tion principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and

M. Wirsing, editors, Proceedings 4th Annual Symposium on Theoretical Aspects

of Computer Science (STACS 87), pages 336–347. Passau, Germany, LNCS 247,

Springer-Verlag, February 1987.

[99] W. Wang, A. Mok, and G. Fohler. Pre-scheduling. In IEEE Transactions on

Computers. IEEE, 2004.

[100] M. Weber and E. Kindler. The petri net markup language. Petri net Technology

Communication Systems. Advances in Petri Nets., 2002.

[101] D. Xu, X. He, and Y. Deng. Compositional schedulability analysis of real-time

systems using time petri nets. IEEE Trans. Soft. Engineering, 28(10):984–996,

October 2002.

[102] J. Xu. Multiprocessor scheduling of processes with release times, deadlines, prece-

dence, and exclusion relations. IEEE Trans. Soft. Engineering, 19(2):139–154,

February 1993.

[103] J. Xu. On inspection and verification of software with timing requirements. IEEE

Transactions on Software Engineering, 29(8):705–720, August 2003.

[104] J. Xu and K. Lam. Integrating run-time scheduling and pre-run-time scheduling

of real-time processes. In 23rd IFAC/IFIP Workshop on Real-Time Programming.

Shantou, China, june 1998.

[105] J. Xu and D. Parnas. Scheduling processes with release times, deadlines, prece-

dence, and exclusion relations. IEEE Trans. Soft. Engineering, 16(3):360–369,

March 1990.

[106] J. Xu and D. Parnas. On satisfying timing constraints in hard real-time systems.

IEEE Trans. Soft. Engineering, 19(1):70–84, January 1993.

BIBLIOGRAPHY 213

[107] J. Xu and D. Parnas. Priority scheduling versus pre-run-time scheduling. In Real-

Time Systems, volume 18, pages 7–23. Kluwer Academic Publishers, January

2000.

[108] M. Young and L-C. Shu. Hybrid online/offline scheduling for hard real-time

systems. 2nd International Symposium on Real-Time and Media Systems, pages

231–240, July 1996.

[109] M. Zhou. A Theory for the Synthesis and Augmentation of Petri Nets in Au-

tomation. PhD Thesis, Rensselaer Polytechnic Institute, May 1990.

[110] M. Zhou and F. DiCesare. Parallel and sequential mutual exclusions for Petri net

modeling of manufacturing systems with shared resources. IEEE Transactions on

Robotics and Automation, 1991.

Appendix A

Model Checking

Usually bad design requirements lead to high cost of maintenance. The cost of errors

in requirements are often high, requiring at least rework and maintenance. If you

implement the incorrect requirements as they are, it may lead to incorrect system

behavior in the field and high costs, such as loss of life and property, particularly in

real-time, embedded safety-critical systems. Similar problems exist in ensuring the

quality of system design.

In the last decade, the computer science research community has made tremendous

progress in developing tools and techniques for verifying requirements and design. One

of the most successful technique that has emerged is called model checking. When

combined with strict use of a formal modeling language, it may automate the verifica-

tion process fairly well. The aim of this appendix is to introduce model checking and

show how it works. This appendix is based on [73].

A.1 Challenge

When checking design requirements, usually the designer is seeking for answers to a

series of questions. Here are the general questions when checking requirements:

• Do they accurately reflect the users’ requirements?

• Does everything stated match what the users want and have you included every-

thing the users have requested?

• Are the requirements clearly written and unambiguous?

• Are they flexible and realizable for the engineers?

• Can the requirements be used to easily define acceptance test cases to check the

conformance of the implementation against the requirements?

214

A.2. MODEL CHECKING 215

• Are the requirements written in an abstract and high-level manner, away from

design, implementation, technology platforms and so on, so as to give enough

freedom to the designer and developers to implement them efficiently?

Finding the answers to these questions is difficult and there is no easy way to do it.

Despite some help from modeling tools, the problem of ensuring the quality of

requirements remains. The process is heavily manual and time consuming, involv-

ing reviews and sometimes partial prototyping. Using multiple notations introduces

additional problems:

• which notation to use for what requirements?

• how to ensure that the descriptions in different notations are consistent with each

other?

One way for improving the quality of requirements and design is to use automated

tools to check the quality of various aspects of the requirements and design. But what

tools? Building tools to check requirements or design written in natural language

(Portuguese, English, etc) is clearly extremely difficult. It is necessary to enforce a

clear, rigorous, and unambiguous formal language for stating the requirements. If the

language for writing requirements and design has well-defined semantics, it may be

feasible to develop tools to analyze the statements written in that language. This basic

idea using a rigorous language for writing requirements or design is now acknowledged

as a foundation for system verification.

A.2 Model Checking

Model checking is one of the most successful method for verifying requirements. The

essential idea behind model checking is shown in Figure A.1. A model-checking tool

accepts system requirements or design (called models) and a property (called specifica-

tion) that the final system is expected to satisfy. The tool then outputs yes if the given

model satisfies given specifications and generates a counterexample otherwise. The

counterexample details why the model does not satisfy the specification. By studying

the counterexample, you can find the source of the error in the model, correct the

model, and try again. The idea is that by ensuring that the model satisfies enough

system properties, the confidence is increased in the correctness of the model. The

system requirements are called models because they represent requirements or design.

But what formal language works for defining models? There is no single answer,

since requirements (or design) for systems in different application domains vary greatly.

216 APPENDIX A. MODEL CHECKING

Figure A.1: The Model Checking Approach

For instance, requirements of a banking system and an aerospace system differ in size,

structure, complexity, nature of system data, and operations performed. In contrast,

most real-time embedded or safety-critical systems are control-oriented rather than

data-orientedmeaning that dynamic behavior is much more important than business

logic (the structure of and operations on the internal data maintained by the system).

Such control-oriented systems occur in a wide variety of domains: aerospace, avionics,

automotive, biomedical instrumentation, industrial automation and process control,

railways, nuclear power plants, and so forth. Even communication and security proto-

cols in digital hardware systems can be thought of as control oriented.

Section 2.1 presented a model taxonomy and some representative models of each

class of such taxonomy, such as automata and extensions, Petri nets, program-state

machine, and process algebras.

A.3 A Simple System Model

How model checking can be used for verifying properties of a simple embedded system?

In order to answer this question, the symbolic model verifier (SMV) model-checking

tool from Carnegie-Mellon University will be adopted. Of course, this model can also

be written in other model-checking tools.

Figure A.2: A simple two tank pumping system

Consider a simple pumping control system that transfers water from a source tank

A.3. A SIMPLE SYSTEM MODEL 217

A into another sink tank B using a pump P, as shown in Figure A.2. Each tank has two

level-meters: one to detect whether its level is empty and the other to detect whether

its level is full. The tank level is ok if it is neither empty nor full; in other words, if it

is above the empty mark but below the full mark.

Initially, both tanks are empty. The pump is to be switched on as soon as the water

level in tank A reaches ok (from empty), provided that tank B is not full. The pump

remains on as long as tank A is not empty and as long as tank B is not full. The pump

is to be switched off as soon as either tank A becomes empty or tank B becomes full.

The system should not attempt to switch the pump off (on) if it is already off (on).

While this example may appear trivial, it easily extends to a controller for a complex

network of pumps and pipes to control multiple source and sink tanks, such as those

in water treatment facilities or chemical production plants.

MODULE main
VAR

level_a : {empty, ok, full}; -- lower tank
level_b : {empty, ok, full}; -- upper tank
pump : {on, off};

ASSIGN
next(level_a) := case

level_a = empty : {empty, ok};
level_a = ok & pump = off : {ok, full};
level_a = ok & pump = on : {ok, empty, full};
level_a = full & pump = off : full;
level_a = full & pump = on : {ok, full};
1 : {ok, empty, full};

esac;
next(level_b) := case

level_b = empty & pump = off : empty;
level_b = empty & pump = on : {empty, ok};
level_b = ok & pump = off : {ok, empty};
level_b = ok & pump = on : {ok, empty, full};
level_b = full & pump = off : {ok, full};
level_b = full & pump = on : {ok, full};
1 : {ok, empty, full};

esac;
next(pump) := case

pump = off & (level_a = ok | level_a = full) &
(level_b = empty | level_b = ok) : on;
pump = on & (level_a = empty | level_b = full) : off;
1 : pump; -- keep pump status as it is

esac;
INIT

(pump = off)
SPEC

-- pump if always off if ground tank is empty or up tank is full
-- AG AF (pump = off -> (level_a = empty | level_b = full))
-- it is always possible to reach a state when the up tank is ok or full
AG (EF (level_b = ok | level_b = full))

Figure A.3: An SMV model description and requirements list

The model of this system in SMV is as follows and is shown in Figure A.3. The

first VAR section declares that the system has three state variables. Variables level a

and level b record the current level of the upper and lower tank respectively; at each

“instant” these variables take a value, which can be either empty, ok, or full. Variable

pump records whether the pump is on or off.

218 APPENDIX A. MODEL CHECKING

A system state is defined by a tuple of values for each of these three variables. For

example, (level a = empty, level b=ok, pump=off) and (level a = empty, level b=full,

pump=on) are possible system states. The INIT section, near the end, defines initial

values for the variables (here, initially the pump is assumed to be off but the other two

variables can have any value).

The ASSIGN section defines how the system changes from one state to another.

Each next statement defines how the value of a particular variable changes. All these

assignment statements are assumed to work in parallel; the next state is defined as the

net result of executing all the assignment statements in this section. The lower tank

can go from empty to the empty or ok state; from ok to either empty or full or remain

ok if the pump is on; from ok to either ok or full if the pump is off; from full cannot

change state if the pump is off; from full to ok or full if the pump is on. Similar changes

are defined for the upper tank.

A.4 Paths and Specifications

Initially, the system could be in any of the nine states where there are no restrictions

on the water level in A or B but the pump is assumed to be off. Let us denote a

state by an ordered tuple <A,B,P> where A and B denote the current water level

in tank A and B, and P denotes the current pump status. To illustrate, let us as-

sume the initial state to be <empty,empty,off>. The next state from this state could

be any of the <empty,empty,off>, <ok,empty,on>. From <ok,empty,on> the next

state could be either of <ok,empty,on>, <ok,ok,on>, <full,empty,on>, <full,ok,on>,

<empty,empty,off>, or <empty,ok,off>. For each of these states, the next possible

states can be calculated.

The states can be arranged in the form of an infinite execution (or computation)

tree, where the root is labeled with our chosen initial state and the children of any

state denote the next possible states. A system execution is a path in this execution

tree. In general, the system has infinitely many such execution paths. The aim of

model checking is to examine whether or not the execution tree satisfies a user-given

property specification.

The question now is how do we specify properties of paths (and states in the paths)

of an execution tree? Computation tree logic (CTL) technically a branching time

temporal logic is a simple and intuitive notation suitable for this purpose. CTL

is an extension of the usual Boolean propositional logic (which includes the logical

connectives such as and, or, not, implies) where additional temporal connectives are

available.

A.4. PATHS AND SPECIFICATIONS 219

Table A.1: Some temporal connectives in CTL
EX ϕ true in current state if formula ϕ is true in at least one of the next states

EF ϕ true in current state if there exists some state in some path beginning in

current state that satisfies the formula ϕ

EG ϕ true in current state if every state in some path beginning in current state

satisfies the formula ϕ

AX ϕ true in current state if formula ϕ is true in every one of the next states

AF ϕ true in current state if there exists some state in every path beginning in

current state that satisfies the formula ϕ

AG ϕ true in current state if every state in every path beginning in current state

satisfies the formula ϕ

Table A.1 and Figure A.4 illustrate the intuitive meaning of some of the basic

temporal connectives in CTL. Basically, E (for some path) and A (for all paths) are

path quantifiers for paths beginning from a state. F (for some state) and G (for all

states) are state quantifiers for states in a path.

Figure A.4: Intuition for CTL formulae which are satisfied at state s0

Given a property and a (possibly infinite) computation tree T corresponding to the

system model, a model-checking algorithm essentially examines T to check if T satisfies

the property. For example, consider a property AF g where g is a propositional formula

not involving any CTL connectives. Figure A.4(b) shows an example of a computation

tree T . The property AF g is true for this T if it is true at the root state s0 in other

words, if there is some state in every path in T starting at s0 such that the formula g

is true in that state.

Figure A.4(b) shows that g is true at the root of the left subtree (indicated by the

filled circle). Hence all paths from s0 to left child and further down in the left subtree

satisfy the property. Now suppose g is not true at the right child of s0; hence the

property is recursively checked for all its children. Figure A.4(b) shows that g is true

at all children of the right child of s0 (indicated by filled circles) and hence the property

is true for the right subtree of s0. Thus the property is true for all subtrees of s0 and

hence it is also true at s0.

220 APPENDIX A. MODEL CHECKING

Figure A.4 summarizes the similar reasoning used to check properties stated in other

forms such as EG g and AG g. Of course, in practice, the model-checking algorithms

are really far more complex than this; they use sophisticated tricks to prune the state

space to avoid checking those parts where the property is guaranteed to be true.

In SMV, a property to be verified is given by the user in the SPEC section. The

logical connectives not, or, and, implies (if-then) are represented by !, |, &, and →

respectively. The CTL temporal connectives are AF , AG, EF , EG, and so on. The

property AF (pump = on) states that for every path beginning at the initial state,

there is a state in that path at which the pump is on. This property is clearly false in

the initial state since there is a path from the initial state in which the pump always

remains off (for example, if tank A forever remains empty). If this property is specified

in the SPEC section, SMV generates the following counterexample for the property.

The loop indicates an infinite sequence of states (in other words, a path) beginning at

the initial state such that tank B is full in every state of the path and hence pump is

off.

-- specification AF pump = on is false

-- as demonstrated by the following execution sequence

-- loop starts here

state 1.1:

level_a = full

level_b = full

pump = off

state 1.2:

The dual property AF (pump = off) states that for every path beginning at the

initial state, there is a state in that path at which the pump is off. This property is

trivially true at the initial state, since in the initial state itself (which is included in all

paths) pump = off is true.

You can specify interesting and complex properties by combining temporal and

logical connectives. The property AG ((pump = off) → AF (pump = on)) states that

it’s always the case that if pump is off then it eventually becomes on. This property

is clearly false in the initial state. The property AGAF (pump = off → (level a =

empty | level b = full)) states that pump is always off if ground tank is empty or the

upper tank is full. The property AG(EF (level b = ok | level b = full)) states that it

is always possible to reach a state when the upper tank is ok or full.

A.5. MODEL CHECKING IN PRACTICE 221

A.5 Model Checking in Practice

Model checking has proven to be a tremendously successful technology to verify re-

quirements and design for a variety of systems, particularly in hardware systems and

real-time embedded and safety-critical systems. For example, the SPIN model-checker

was used to verify the multi-threaded plan execution module in NASA’s DEEP SPACE

mission and discovered five previously unknown concurrency errors [40].

However, there are some major issues to deal with when using model checking in

practice. For example:

• Every model-checking tool comes with its own modeling language that provides

no way to automatically translate informal requirement descriptions into this

language. This translation is necessarily manual and hence it is difficult to check

whether the model correctly represents your system. In fact, there may be parts

of your requirements that may be difficult or even impossible to model in the

given modeling notation.

• Similar problems exist for the tool-specific property specification notation, which

is often a variant of CTL, CTL*, or propositional linear temporal logic (PLTL).

Some properties to be verified may be difficult or even impossible to express in

the notation.

• The number of states in your model may be extremely large. Although model-

checking algorithms include ingenious ways to reduce this state space, the model

checker may still take too long to verify a given property or “give up” during this

task. In such cases the user has to put in more work, such as verifying parts of the

model separately or reducing the state space by reducing domains of variables.

Nevertheless, model checking is likely to prove an invaluable way to verify system

requirements or design. It often leads to early detection of the shortcomings in the

requirements or design, thereby leading to large savings in later rework.

Appendix B

Model Checking Verification Steps

B.1 Mutual Exclusive Marking

s1 sat? AG-(P16 &P17)

..s1 sat? -(P16 &P17)

...s1 sat? (P16 &P17)

....s1 sat? P16

....s1 sat P16 : FALSE

...s1 sat (P16 &P17): FALSE

..s1 sat -(P16 &P17): TRUE

..s1 =16=> s2

..s2 sat? -(P16 &P17)

...s2 sat? (P16 &P17)

....s2 sat? P16

....s2 sat P16 : FALSE

...s2 sat (P16 &P17): FALSE

..s2 sat -(P16 &P17): TRUE

..s2 ==1=> s3

..s3 sat? -(P16 &P17)

...s3 sat? (P16 &P17)

....s3 sat? P16

....s3 sat P16 : FALSE

...s3 sat (P16 &P17): FALSE

..s3 sat -(P16 &P17): TRUE

..s3 ==2=> s4

..s4 sat? -(P16 &P17)

...s4 sat? (P16 &P17)

....s4 sat? P16

....s4 sat P16 : FALSE

...s4 sat (P16 &P17): FALSE

..s4 sat -(P16 &P17): TRUE

..s4 ==7=> s5

..s5 sat? -(P16 &P17)

...s5 sat? (P16 &P17)

....s5 sat? P16

....s5 sat P16 : FALSE

...s5 sat (P16 &P17): FALSE

..s5 sat -(P16 &P17): TRUE

..s5 ==8=> s6

..s6 sat? -(P16 &P17)

...s6 sat? (P16 &P17)

....s6 sat? P16

....s6 sat P16 : FALSE

...s6 sat (P16 &P17): FALSE

..s6 sat -(P16 &P17): TRUE

..s6 =15=> s7

..s7 sat? -(P16 &P17)

...s7 sat? (P16 &P17)

....s7 sat? P16

....s7 sat P16 : FALSE

...s7 sat (P16 &P17): FALSE

..s7 sat -(P16 &P17): TRUE

..s7 ==4=> s8

..s8 sat? -(P16 &P17)

...s8 sat? (P16 &P17)

....s8 sat? P16

....s8 sat P16 : FALSE

...s8 sat (P16 &P17): FALSE

..s8 sat -(P16 &P17): TRUE

..s8 ==6=> s9

..s9 sat? -(P16 &P17)

...s9 sat? (P16 &P17)

....s9 sat? P16

....s9 sat P16 : FALSE

...s9 sat (P16 &P17): FALSE

..s9 sat -(P16 &P17): TRUE

..s9 =12=> s10

..s10 sat? -(P16 &P17)

...s10 sat? (P16 &P17)

....s10 sat? P16

....s10 sat P16 : FALSE

...s10 sat (P16 &P17): FALSE

..s10 sat -(P16 &P17): TRUE

..s10 ==9=> s11

..s11 sat? -(P16 &P17)

...s11 sat? (P16 &P17)

....s11 sat? P16

....s11 sat P16 : TRUE

.........s11 sat? P17

.........s11 sat P17 : FALSE

...s11 sat (P16 &P17): FALSE

..s11 sat -(P16 &P17): TRUE

..s11 ==5=> s12

..s12 sat? -(P16 &P17)

...s12 sat? (P16 &P17)

....s12 sat? P16

....s12 sat P16 : TRUE

.........s12 sat? P17

.........s12 sat P17 : FALSE

...s12 sat (P16 &P17): FALSE

..s12 sat -(P16 &P17): TRUE

..s12 =11=> s13

..s13 sat? -(P16 &P17)

...s13 sat? (P16 &P17)

....s13 sat? P16

....s13 sat P16 : TRUE

.........s13 sat? P17

.........s13 sat P17 : FALSE

...s13 sat (P16 &P17): FALSE

..s13 sat -(P16 &P17): TRUE

..s13 no successor

s13 sat AG-(P16 &P17): TRUE

..s8 =12=> s14

..s14 sat? -(P16 &P17)

...s14 sat? (P16 &P17)

....s14 sat? P16

....s14 sat P16 : FALSE

...s14 sat (P16 &P17): FALSE

..s14 sat -(P16 &P17): TRUE

..s14 ==9=> s15

..s15 sat? -(P16 &P17)

...s15 sat? (P16 &P17)

....s15 sat? P16

....s15 sat P16 : TRUE

222

B.1. MUTUAL EXCLUSIVE MARKING 223

.........s15 sat? P17

.........s15 sat P17 : FALSE

...s15 sat (P16 &P17): FALSE

..s15 sat -(P16 &P17): TRUE

..s15 ==5=> s16

..s16 sat? -(P16 &P17)

...s16 sat? (P16 &P17)

....s16 sat? P16

....s16 sat P16 : TRUE

.........s16 sat? P17

.........s16 sat P17 : FALSE

...s16 sat (P16 &P17): FALSE

..s16 sat -(P16 &P17): TRUE

..s16 ==6=> s12 visited

..s15 ==6=> s11 visited

..s5 =12=> s17

..s17 sat? -(P16 &P17)

...s17 sat? (P16 &P17)

....s17 sat? P16

....s17 sat P16 : FALSE

...s17 sat (P16 &P17): FALSE

..s17 sat -(P16 &P17): TRUE

..s17 ==9=> s18

..s18 sat? -(P16 &P17)

...s18 sat? (P16 &P17)

....s18 sat? P16

....s18 sat P16 : TRUE

.........s18 sat? P17

.........s18 sat P17 : FALSE

...s18 sat (P16 &P17): FALSE

..s18 sat -(P16 &P17): TRUE

..s18 ==5=> s19

..s19 sat? -(P16 &P17)

...s19 sat? (P16 &P17)

....s19 sat? P16

....s19 sat P16 : TRUE

.........s19 sat? P17

.........s19 sat P17 : FALSE

...s19 sat (P16 &P17): FALSE

..s19 sat -(P16 &P17): TRUE

..s19 ==8=> s20

..s20 sat? -(P16 &P17)

...s20 sat? (P16 &P17)

....s20 sat? P16

....s20 sat P16 : TRUE

.........s20 sat? P17

.........s20 sat P17 : FALSE

...s20 sat (P16 &P17): FALSE

..s20 sat -(P16 &P17): TRUE

..s20 =13=> s21

..s21 sat? -(P16 &P17)

...s21 sat? (P16 &P17)

....s21 sat? P16

....s21 sat P16 : TRUE

.........s21 sat? P17

.........s21 sat P17 : FALSE

...s21 sat (P16 &P17): FALSE

..s21 sat -(P16 &P17): TRUE

..s21 =10=> s22

..s22 sat? -(P16 &P17)

...s22 sat? (P16 &P17)

....s22 sat? P16

....s22 sat P16 : FALSE

...s22 sat (P16 &P17): FALSE

..s22 sat -(P16 &P17): TRUE

..s22 ==6=> s23

..s23 sat? -(P16 &P17)

...s23 sat? (P16 &P17)

....s23 sat? P16

....s23 sat P16 : FALSE

...s23 sat (P16 &P17): FALSE

..s23 sat -(P16 &P17): TRUE

..s23 =11=> s24

..s24 sat? -(P16 &P17)

...s24 sat? (P16 &P17)

....s24 sat? P16

....s24 sat P16 : FALSE

...s24 sat (P16 &P17): FALSE

..s24 sat -(P16 &P17): TRUE

..s24 no successor

s24 sat AG-(P16 &P17): TRUE

..s18 ==8=> s25

..s25 sat? -(P16 &P17)

...s25 sat? (P16 &P17)

....s25 sat? P16

....s25 sat P16 : TRUE

.........s25 sat? P17

.........s25 sat P17 : FALSE

...s25 sat (P16 &P17): FALSE

..s25 sat -(P16 &P17): TRUE

..s25 ==5=> s20 visited

..s25 =13=> s26

..s26 sat? -(P16 &P17)

...s26 sat? (P16 &P17)

....s26 sat? P16

....s26 sat P16 : TRUE

.........s26 sat? P17

.........s26 sat P17 : FALSE

...s26 sat (P16 &P17): FALSE

..s26 sat -(P16 &P17): TRUE

..s26 =10=> s27

..s27 sat? -(P16 &P17)

...s27 sat? (P16 &P17)

....s27 sat? P16

....s27 sat P16 : FALSE

...s27 sat (P16 &P17): FALSE

..s27 sat -(P16 &P17): TRUE

..s27 ==5=> s22 visited

..s27 ==6=> s28

..s28 sat? -(P16 &P17)

...s28 sat? (P16 &P17)

....s28 sat? P16

....s28 sat P16 : FALSE

...s28 sat (P16 &P17): FALSE

..s28 sat -(P16 &P17): TRUE

..s28 ==5=> s23 visited

..s4 ==8=> s29

..s29 sat? -(P16 &P17)

...s29 sat? (P16 &P17)

....s29 sat? P16

....s29 sat P16 : FALSE

...s29 sat (P16 &P17): FALSE

..s29 sat -(P16 &P17): TRUE

..s29 =15=> s30

..s30 sat? -(P16 &P17)

...s30 sat? (P16 &P17)

....s30 sat? P16

....s30 sat P16 : FALSE

...s30 sat (P16 &P17): FALSE

..s30 sat -(P16 &P17): TRUE

..s30 ==4=> s31

..s31 sat? -(P16 &P17)

...s31 sat? (P16 &P17)

....s31 sat? P16

....s31 sat P16 : FALSE

...s31 sat (P16 &P17): FALSE

..s31 sat -(P16 &P17): TRUE

..s31 ==6=> s32

..s32 sat? -(P16 &P17)

...s32 sat? (P16 &P17)

....s32 sat? P16

....s32 sat P16 : FALSE

...s32 sat (P16 &P17): FALSE

..s32 sat -(P16 &P17): TRUE

..s32 ==7=> s9 visited

..s31 ==7=> s8 visited

..s30 ==7=> s7 visited

..s3 ==7=> s33

..s33 sat? -(P16 &P17)

...s33 sat? (P16 &P17)

....s33 sat? P16

....s33 sat P16 : FALSE

...s33 sat (P16 &P17): FALSE

..s33 sat -(P16 &P17): TRUE

..s33 ==2=> s5 visited

..s33 =12=> s34

..s34 sat? -(P16 &P17)

...s34 sat? (P16 &P17)

....s34 sat? P16

....s34 sat P16 : FALSE

...s34 sat (P16 &P17): FALSE

..s34 sat -(P16 &P17): TRUE

..s34 ==9=> s35

..s35 sat? -(P16 &P17)

...s35 sat? (P16 &P17)

....s35 sat? P16

....s35 sat P16 : TRUE

.........s35 sat? P17

.........s35 sat P17 : FALSE

...s35 sat (P16 &P17): FALSE

..s35 sat -(P16 &P17): TRUE

..s35 ==2=> s18 visited

..s35 ==5=> s36

..s36 sat? -(P16 &P17)

...s36 sat? (P16 &P17)

....s36 sat? P16

....s36 sat P16 : TRUE

224 APPENDIX B. MODEL CHECKING VERIFICATION STEPS

.........s36 sat? P17

.........s36 sat P17 : FALSE

...s36 sat (P16 &P17): FALSE

..s36 sat -(P16 &P17): TRUE

..s36 ==2=> s19 visited

..s2 ==2=> s37

..s37 sat? -(P16 &P17)

...s37 sat? (P16 &P17)

....s37 sat? P16

....s37 sat P16 : FALSE

...s37 sat (P16 &P17): FALSE

..s37 sat -(P16 &P17): TRUE

..s37 ==1=> s4 visited

..s37 ==8=> s38

..s38 sat? -(P16 &P17)

...s38 sat? (P16 &P17)

....s38 sat? P16

....s38 sat P16 : FALSE

...s38 sat (P16 &P17): FALSE

..s38 sat -(P16 &P17): TRUE

..s38 =15=> s39

..s39 sat? -(P16 &P17)

...s39 sat? (P16 &P17)

....s39 sat? P16

....s39 sat P16 : FALSE

...s39 sat (P16 &P17): FALSE

..s39 sat -(P16 &P17): TRUE

..s39 ==1=> s30 visited

..s39 ==4=> s40

..s40 sat? -(P16 &P17)

...s40 sat? (P16 &P17)

....s40 sat? P16

....s40 sat P16 : FALSE

...s40 sat (P16 &P17): FALSE

..s40 sat -(P16 &P17): TRUE

..s40 ==1=> s31 visited

..s40 ==6=> s41

..s41 sat? -(P16 &P17)

...s41 sat? (P16 &P17)

....s41 sat? P16

....s41 sat P16 : FALSE

...s41 sat (P16 &P17): FALSE

..s41 sat -(P16 &P17): TRUE

..s41 ==1=> s32

s1 sat AG-(P16 &P17): TRUE

B.2 Processor Utilization

s1 sat? AG-(P6 &P7)

..s1 sat? -(P6 &P7)

...s1 sat? (P6 &P7)

....s1 sat? P6

....s1 sat P6 : FALSE

...s1 sat (P6 &P7): FALSE

..s1 sat -(P6 &P7): TRUE

..s1 =16=> s2

..s2 sat? -(P6 &P7)

...s2 sat? (P6 &P7)

....s2 sat? P6

....s2 sat P6 : FALSE

...s2 sat (P6 &P7): FALSE

..s2 sat -(P6 &P7): TRUE

..s2 ==1=> s3

..s3 sat? -(P6 &P7)

...s3 sat? (P6 &P7)

....s3 sat? P6

....s3 sat P6 : FALSE

...s3 sat (P6 &P7): FALSE

..s3 sat -(P6 &P7): TRUE

..s3 ==2=> s4

..s4 sat? -(P6 &P7)

...s4 sat? (P6 &P7)

....s4 sat? P6

....s4 sat P6 : FALSE

...s4 sat (P6 &P7): FALSE

..s4 sat -(P6 &P7): TRUE

..s4 ==7=> s5

..s5 sat? -(P6 &P7)

...s5 sat? (P6 &P7)

....s5 sat? P6

....s5 sat P6 : FALSE

...s5 sat (P6 &P7): FALSE

..s5 sat -(P6 &P7): TRUE

..s5 ==8=> s6

..s6 sat? -(P6 &P7)

...s6 sat? (P6 &P7)

....s6 sat? P6

....s6 sat P6 : FALSE

...s6 sat (P6 &P7): FALSE

..s6 sat -(P6 &P7): TRUE

..s6 =15=> s7

..s7 sat? -(P6 &P7)

...s7 sat? (P6 &P7)

....s7 sat? P6

....s7 sat P6 : FALSE

...s7 sat (P6 &P7): FALSE

..s7 sat -(P6 &P7): TRUE

..s7 ==4=> s8

..s8 sat? -(P6 &P7)

...s8 sat? (P6 &P7)

....s8 sat? P6

....s8 sat P6 : FALSE

...s8 sat (P6 &P7): FALSE

..s8 sat -(P6 &P7): TRUE

..s8 ==6=> s9

..s9 sat? -(P6 &P7)

...s9 sat? (P6 &P7)

....s9 sat? P6

....s9 sat P6 : FALSE

...s9 sat (P6 &P7): FALSE

..s9 sat -(P6 &P7): TRUE

..s9 =12=> s10

..s10 sat? -(P6 &P7)

...s10 sat? (P6 &P7)

....s10 sat? P6

....s10 sat P6 : TRUE

........s10 sat? P7

........s10 sat P7 : FALSE

...s10 sat (P6 &P7): FALSE

..s10 sat -(P6 &P7): TRUE

..s10 ==9=> s11

..s11 sat? -(P6 &P7)

...s11 sat? (P6 &P7)

....s11 sat? P6

....s11 sat P6 : FALSE

...s11 sat (P6 &P7): FALSE

..s11 sat -(P6 &P7): TRUE

..s11 ==5=> s12

..s12 sat? -(P6 &P7)

...s12 sat? (P6 &P7)

....s12 sat? P6

....s12 sat P6 : FALSE

...s12 sat (P6 &P7): FALSE

..s12 sat -(P6 &P7): TRUE

..s12 =11=> s13

..s13 sat? -(P6 &P7)

...s13 sat? (P6 &P7)

....s13 sat? P6

....s13 sat P6 : FALSE

...s13 sat (P6 &P7): FALSE

..s13 sat -(P6 &P7): TRUE

..s13 no successor

s13 sat AG-(P6 &P7): TRUE

..s8 =12=> s14

..s14 sat? -(P6 &P7)

...s14 sat? (P6 &P7)

....s14 sat? P6

....s14 sat P6 : TRUE

........s14 sat? P7

........s14 sat P7 : FALSE

...s14 sat (P6 &P7): FALSE

..s14 sat -(P6 &P7): TRUE

..s14 ==9=> s15

..s15 sat? -(P6 &P7)

...s15 sat? (P6 &P7)

....s15 sat? P6

....s15 sat P6 : FALSE

...s15 sat (P6 &P7): FALSE

..s15 sat -(P6 &P7): TRUE

..s15 ==5=> s16

..s16 sat? -(P6 &P7)

...s16 sat? (P6 &P7)

B.2. PROCESSOR UTILIZATION 225

....s16 sat? P6

....s16 sat P6 : FALSE

...s16 sat (P6 &P7): FALSE

..s16 sat -(P6 &P7): TRUE

..s16 ==6=> s12 visited

..s15 ==6=> s11 visited

..s5 =12=> s17

..s17 sat? -(P6 &P7)

...s17 sat? (P6 &P7)

....s17 sat? P6

....s17 sat P6 : TRUE

........s17 sat? P7

........s17 sat P7 : FALSE

...s17 sat (P6 &P7): FALSE

..s17 sat -(P6 &P7): TRUE

..s17 ==9=> s18

..s18 sat? -(P6 &P7)

...s18 sat? (P6 &P7)

....s18 sat? P6

....s18 sat P6 : FALSE

...s18 sat (P6 &P7): FALSE

..s18 sat -(P6 &P7): TRUE

..s18 ==5=> s19

..s19 sat? -(P6 &P7)

...s19 sat? (P6 &P7)

....s19 sat? P6

....s19 sat P6 : FALSE

...s19 sat (P6 &P7): FALSE

..s19 sat -(P6 &P7): TRUE

..s19 ==8=> s20

..s20 sat? -(P6 &P7)

...s20 sat? (P6 &P7)

....s20 sat? P6

....s20 sat P6 : FALSE

...s20 sat (P6 &P7): FALSE

..s20 sat -(P6 &P7): TRUE

..s20 =13=> s21

..s21 sat? -(P6 &P7)

...s21 sat? (P6 &P7)

....s21 sat? P6

....s21 sat P6 : FALSE

...s21 sat (P6 &P7): FALSE

..s21 sat -(P6 &P7): TRUE

..s21 =10=> s22

..s22 sat? -(P6 &P7)

...s22 sat? (P6 &P7)

....s22 sat? P6

....s22 sat P6 : FALSE

...s22 sat (P6 &P7): FALSE

..s22 sat -(P6 &P7): TRUE

..s22 ==6=> s23

..s23 sat? -(P6 &P7)

...s23 sat? (P6 &P7)

....s23 sat? P6

....s23 sat P6 : FALSE

...s23 sat (P6 &P7): FALSE

..s23 sat -(P6 &P7): TRUE

..s23 =11=> s24

..s24 sat? -(P6 &P7)

...s24 sat? (P6 &P7)

....s24 sat? P6

....s24 sat P6 : FALSE

...s24 sat (P6 &P7): FALSE

..s24 sat -(P6 &P7): TRUE

..s24 no successor

s24 sat AG-(P6 &P7): TRUE

..s18 ==8=> s25

..s25 sat? -(P6 &P7)

...s25 sat? (P6 &P7)

....s25 sat? P6

....s25 sat P6 : FALSE

...s25 sat (P6 &P7): FALSE

..s25 sat -(P6 &P7): TRUE

..s25 ==5=> s20 visited

..s25 =13=> s26

..s26 sat? -(P6 &P7)

...s26 sat? (P6 &P7)

....s26 sat? P6

....s26 sat P6 : FALSE

...s26 sat (P6 &P7): FALSE

..s26 sat -(P6 &P7): TRUE

..s26 =10=> s27

..s27 sat? -(P6 &P7)

...s27 sat? (P6 &P7)

....s27 sat? P6

....s27 sat P6 : FALSE

...s27 sat (P6 &P7): FALSE

..s27 sat -(P6 &P7): TRUE

..s27 ==5=> s22 visited

..s27 ==6=> s28

..s28 sat? -(P6 &P7)

...s28 sat? (P6 &P7)

....s28 sat? P6

....s28 sat P6 : FALSE

...s28 sat (P6 &P7): FALSE

..s28 sat -(P6 &P7): TRUE

..s28 ==5=> s23 visited

..s4 ==8=> s29

..s29 sat? -(P6 &P7)

...s29 sat? (P6 &P7)

....s29 sat? P6

....s29 sat P6 : FALSE

...s29 sat (P6 &P7): FALSE

..s29 sat -(P6 &P7): TRUE

..s29 =15=> s30

..s30 sat? -(P6 &P7)

...s30 sat? (P6 &P7)

....s30 sat? P6

....s30 sat P6 : FALSE

...s30 sat (P6 &P7): FALSE

..s30 sat -(P6 &P7): TRUE

..s30 ==4=> s31

..s31 sat? -(P6 &P7)

...s31 sat? (P6 &P7)

....s31 sat? P6

....s31 sat P6 : FALSE

...s31 sat (P6 &P7): FALSE

..s31 sat -(P6 &P7): TRUE

..s31 ==6=> s32

..s32 sat? -(P6 &P7)

...s32 sat? (P6 &P7)

....s32 sat? P6

....s32 sat P6 : FALSE

...s32 sat (P6 &P7): FALSE

..s32 sat -(P6 &P7): TRUE

..s32 ==7=> s9 visited

..s31 ==7=> s8 visited

..s30 ==7=> s7 visited

..s3 ==7=> s33

..s33 sat? -(P6 &P7)

...s33 sat? (P6 &P7)

....s33 sat? P6

....s33 sat P6 : FALSE

...s33 sat (P6 &P7): FALSE

..s33 sat -(P6 &P7): TRUE

..s33 ==2=> s5 visited

..s33 =12=> s34

..s34 sat? -(P6 &P7)

...s34 sat? (P6 &P7)

....s34 sat? P6

....s34 sat P6 : TRUE

........s34 sat? P7

........s34 sat P7 : FALSE

...s34 sat (P6 &P7): FALSE

..s34 sat -(P6 &P7): TRUE

..s34 ==9=> s35

..s35 sat? -(P6 &P7)

...s35 sat? (P6 &P7)

....s35 sat? P6

....s35 sat P6 : FALSE

...s35 sat (P6 &P7): FALSE

..s35 sat -(P6 &P7): TRUE

..s35 ==2=> s18 visited

..s35 ==5=> s36

..s36 sat? -(P6 &P7)

...s36 sat? (P6 &P7)

....s36 sat? P6

....s36 sat P6 : FALSE

...s36 sat (P6 &P7): FALSE

..s36 sat -(P6 &P7): TRUE

..s36 ==2=> s19 visited

..s2 ==2=> s37

..s37 sat? -(P6 &P7)

...s37 sat? (P6 &P7)

....s37 sat? P6

....s37 sat P6 : FALSE

...s37 sat (P6 &P7): FALSE

..s37 sat -(P6 &P7): TRUE

..s37 ==1=> s4 visited

..s37 ==8=> s38

..s38 sat? -(P6 &P7)

...s38 sat? (P6 &P7)

....s38 sat? P6

....s38 sat P6 : FALSE

...s38 sat (P6 &P7): FALSE

..s38 sat -(P6 &P7): TRUE

..s38 =15=> s39

226 APPENDIX B. MODEL CHECKING VERIFICATION STEPS

..s39 sat? -(P6 &P7)

...s39 sat? (P6 &P7)

....s39 sat? P6

....s39 sat P6 : FALSE

...s39 sat (P6 &P7): FALSE

..s39 sat -(P6 &P7): TRUE

..s39 ==1=> s30 visited

..s39 ==4=> s40

..s40 sat? -(P6 &P7)

...s40 sat? (P6 &P7)

....s40 sat? P6

....s40 sat P6 : FALSE

...s40 sat (P6 &P7): FALSE

..s40 sat -(P6 &P7): TRUE

..s40 ==1=> s31 visited

..s40 ==6=> s41

..s41 sat? -(P6 &P7)

...s41 sat? (P6 &P7)

....s41 sat? P6

....s41 sat P6 : FALSE

...s41 sat (P6 &P7): FALSE

..s41 sat -(P6 &P7): TRUE

..s41 ==1=> s32

s1 sat AG-(P6 &P7): TRUE

B.3 Precedence Relation

s1 sat? AG-((P10 &P6)&(P8 &-P2))

..s1 sat? -((P10 &P6)&(P8 &-P2))

...s1 sat? ((P10 &P6)&(P8 &-P2))

....s1 sat? (P10 &P6)

.....s1 sat? P10

.....s1 sat P10 : FALSE

....s1 sat (P10 &P6): FALSE

...s1 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s1 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s1 =12=> s2

..s2 sat? -((P10 &P6)&(P8 &-P2))

...s2 sat? ((P10 &P6)&(P8 &-P2))

....s2 sat? (P10 &P6)

.....s2 sat? P10

.....s2 sat P10 : FALSE

....s2 sat (P10 &P6): FALSE

...s2 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s2 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s2 =10=> s3

..s3 sat? -((P10 &P6)&(P8 &-P2))

...s3 sat? ((P10 &P6)&(P8 &-P2))

....s3 sat? (P10 &P6)

.....s3 sat? P10

.....s3 sat P10 : FALSE

....s3 sat (P10 &P6): FALSE

...s3 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s3 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s3 ==7=> s4

..s4 sat? -((P10 &P6)&(P8 &-P2))

...s4 sat? ((P10 &P6)&(P8 &-P2))

....s4 sat? (P10 &P6)

.....s4 sat? P10

.....s4 sat P10 : FALSE

....s4 sat (P10 &P6): FALSE

...s4 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s4 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s4 =11=> s5

..s5 sat? -((P10 &P6)&(P8 &-P2))

...s5 sat? ((P10 &P6)&(P8 &-P2))

....s5 sat? (P10 &P6)

.....s5 sat? P10

.....s5 sat P10 : FALSE

....s5 sat (P10 &P6): FALSE

...s5 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s5 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s5 ==8=> s6

..s6 sat? -((P10 &P6)&(P8 &-P2))

...s6 sat? ((P10 &P6)&(P8 &-P2))

....s6 sat? (P10 &P6)

.....s6 sat? P10

.....s6 sat P10 : FALSE

....s6 sat (P10 &P6): FALSE

...s6 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s6 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s6 ==6=> s7

..s7 sat? -((P10 &P6)&(P8 &-P2))

...s7 sat? ((P10 &P6)&(P8 &-P2))

....s7 sat? (P10 &P6)

.....s7 sat? P10

.....s7 sat P10 : FALSE

....s7 sat (P10 &P6): FALSE

...s7 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s7 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s7 ==2=> s8

..s8 sat? -((P10 &P6)&(P8 &-P2))

...s8 sat? ((P10 &P6)&(P8 &-P2))

....s8 sat? (P10 &P6)

.....s8 sat? P10

.....s8 sat P10 : FALSE

....s8 sat (P10 &P6): FALSE

...s8 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s8 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s8 ==4=> s9

..s9 sat? -((P10 &P6)&(P8 &-P2))

...s9 sat? ((P10 &P6)&(P8 &-P2))

....s9 sat? (P10 &P6)

.....s9 sat? P10

.....s9 sat P10 : FALSE

....s9 sat (P10 &P6): FALSE

...s9 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s9 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s9 =13=> s10

..s10 sat? -((P10 &P6)&(P8 &-P2))

...s10 sat? ((P10 &P6)&(P8 &-P2))

....s10 sat? (P10 &P6)

.....s10 sat? P10

.....s10 sat P10 : TRUE

..........s10 sat? P6

..........s10 sat P6 : FALSE

....s10 sat (P10 &P6): FALSE

B.3. PRECEDENCE RELATION 227

...s10 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s10 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s10 ==5=> s11

..s11 sat? -((P10 &P6)&(P8 &-P2))

...s11 sat? ((P10 &P6)&(P8 &-P2))

....s11 sat? (P10 &P6)

.....s11 sat? P10

.....s11 sat P10 : FALSE

....s11 sat (P10 &P6): FALSE

...s11 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s11 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s11 ==1=> s12

..s12 sat? -((P10 &P6)&(P8 &-P2))

...s12 sat? ((P10 &P6)&(P8 &-P2))

....s12 sat? (P10 &P6)

.....s12 sat? P10

.....s12 sat P10 : FALSE

....s12 sat (P10 &P6): FALSE

...s12 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s12 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s12 ==3=> s13

..s13 sat? -((P10 &P6)&(P8 &-P2))

...s13 sat? ((P10 &P6)&(P8 &-P2))

....s13 sat? (P10 &P6)

.....s13 sat? P10

.....s13 sat P10 : FALSE

....s13 sat (P10 &P6): FALSE

...s13 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s13 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s13 ==9=> s14

..s14 sat? -((P10 &P6)&(P8 &-P2))

...s14 sat? ((P10 &P6)&(P8 &-P2))

....s14 sat? (P10 &P6)

.....s14 sat? P10

.....s14 sat P10 : FALSE

....s14 sat (P10 &P6): FALSE

...s14 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s14 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s14 no successor

s14 sat AG-((P10 &P6)&(P8 &-P2)): TRUE

..s3 =11=> s15

..s15 sat? -((P10 &P6)&(P8 &-P2))

...s15 sat? ((P10 &P6)&(P8 &-P2))

....s15 sat? (P10 &P6)

.....s15 sat? P10

.....s15 sat P10 : FALSE

....s15 sat (P10 &P6): FALSE

...s15 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s15 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s15 ==7=> s5 visited

..s15 ==8=> s16

..s16 sat? -((P10 &P6)&(P8 &-P2))

...s16 sat? ((P10 &P6)&(P8 &-P2))

....s16 sat? (P10 &P6)

.....s16 sat? P10

.....s16 sat P10 : FALSE

....s16 sat (P10 &P6): FALSE

...s16 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s16 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s16 ==6=> s17

..s17 sat? -((P10 &P6)&(P8 &-P2))

...s17 sat? ((P10 &P6)&(P8 &-P2))

....s17 sat? (P10 &P6)

.....s17 sat? P10

.....s17 sat P10 : FALSE

....s17 sat (P10 &P6): FALSE

...s17 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s17 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s17 ==2=> s18

..s18 sat? -((P10 &P6)&(P8 &-P2))

...s18 sat? ((P10 &P6)&(P8 &-P2))

....s18 sat? (P10 &P6)

.....s18 sat? P10

.....s18 sat P10 : FALSE

....s18 sat (P10 &P6): FALSE

...s18 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s18 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s18 ==4=> s19

..s19 sat? -((P10 &P6)&(P8 &-P2))

...s19 sat? ((P10 &P6)&(P8 &-P2))

....s19 sat? (P10 &P6)

.....s19 sat? P10

.....s19 sat P10 : FALSE

....s19 sat (P10 &P6): FALSE

...s19 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s19 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s19 ==7=> s9 visited

..s18 ==7=> s8 visited

..s17 ==7=> s7 visited

..s16 ==7=> s6 visited

..s2 =11=> s20

..s20 sat? -((P10 &P6)&(P8 &-P2))

...s20 sat? ((P10 &P6)&(P8 &-P2))

....s20 sat? (P10 &P6)

.....s20 sat? P10

.....s20 sat P10 : FALSE

....s20 sat (P10 &P6): FALSE

...s20 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s20 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s20 ==8=> s21

..s21 sat? -((P10 &P6)&(P8 &-P2))

...s21 sat? ((P10 &P6)&(P8 &-P2))

....s21 sat? (P10 &P6)

.....s21 sat? P10

.....s21 sat P10 : FALSE

....s21 sat (P10 &P6): FALSE

...s21 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s21 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s21 ==6=> s22

..s22 sat? -((P10 &P6)&(P8 &-P2))

...s22 sat? ((P10 &P6)&(P8 &-P2))

....s22 sat? (P10 &P6)

.....s22 sat? P10

.....s22 sat P10 : FALSE

....s22 sat (P10 &P6): FALSE

...s22 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s22 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s22 ==2=> s23

228 APPENDIX B. MODEL CHECKING VERIFICATION STEPS

..s23 sat? -((P10 &P6)&(P8 &-P2))

...s23 sat? ((P10 &P6)&(P8 &-P2))

....s23 sat? (P10 &P6)

.....s23 sat? P10

.....s23 sat P10 : FALSE

....s23 sat (P10 &P6): FALSE

...s23 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s23 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s23 ==4=> s24

..s24 sat? -((P10 &P6)&(P8 &-P2))

...s24 sat? ((P10 &P6)&(P8 &-P2))

....s24 sat? (P10 &P6)

.....s24 sat? P10

.....s24 sat P10 : FALSE

....s24 sat (P10 &P6): FALSE

...s24 sat ((P10 &P6)&(P8 &-P2)): FALSE

..s24 sat -((P10 &P6)&(P8 &-P2)): TRUE

..s24 =10=> s19

s1 sat AG-((P10 &P6)&(P8 &-P2)): TRUE

B.4 Exclusion Relation

s1 sat? AG-(P6 &P7)

..s1 sat? -(P6 &P7)

...s1 sat? (P6 &P7)

....s1 sat? P6

....s1 sat P6 : FALSE

...s1 sat (P6 &P7): FALSE

..s1 sat -(P6 &P7): TRUE

..s1 =12=> s2

..s2 sat? -(P6 &P7)

...s2 sat? (P6 &P7)

....s2 sat? P6

....s2 sat P6 : FALSE

...s2 sat (P6 &P7): FALSE

..s2 sat -(P6 &P7): TRUE

..s2 =10=> s3

..s3 sat? -(P6 &P7)

...s3 sat? (P6 &P7)

....s3 sat? P6

....s3 sat P6 : FALSE

...s3 sat (P6 &P7): FALSE

..s3 sat -(P6 &P7): TRUE

..s3 ==7=> s4

..s4 sat? -(P6 &P7)

...s4 sat? (P6 &P7)

....s4 sat? P6

....s4 sat P6 : FALSE

...s4 sat (P6 &P7): FALSE

..s4 sat -(P6 &P7): TRUE

..s4 =11=> s5

..s5 sat? -(P6 &P7)

...s5 sat? (P6 &P7)

....s5 sat? P6

....s5 sat P6 : FALSE

...s5 sat (P6 &P7): FALSE

..s5 sat -(P6 &P7): TRUE

..s5 ==8=> s6

..s6 sat? -(P6 &P7)

...s6 sat? (P6 &P7)

....s6 sat? P6

....s6 sat P6 : FALSE

...s6 sat (P6 &P7): FALSE

..s6 sat -(P6 &P7): TRUE

..s6 =13=> s7

..s7 sat? -(P6 &P7)

...s7 sat? (P6 &P7)

....s7 sat? P6

....s7 sat P6 : FALSE

...s7 sat (P6 &P7): FALSE

..s7 sat -(P6 &P7): TRUE

..s7 ==5=> s8

..s8 sat? -(P6 &P7)

...s8 sat? (P6 &P7)

....s8 sat? P6

....s8 sat P6 : TRUE

........s8 sat? P7

........s8 sat P7 : FALSE

...s8 sat (P6 &P7): FALSE

..s8 sat -(P6 &P7): TRUE

..s8 ==1=> s9

..s9 sat? -(P6 &P7)

...s9 sat? (P6 &P7)

....s9 sat? P6

....s9 sat P6 : FALSE

...s9 sat (P6 &P7): FALSE

..s9 sat -(P6 &P7): TRUE

..s9 ==3=> s10

..s10 sat? -(P6 &P7)

...s10 sat? (P6 &P7)

....s10 sat? P6

....s10 sat P6 : FALSE

...s10 sat (P6 &P7): FALSE

..s10 sat -(P6 &P7): TRUE

..s10 =14=> s11

..s11 sat? -(P6 &P7)

...s11 sat? (P6 &P7)

....s11 sat? P6

....s11 sat P6 : FALSE

...s11 sat (P6 &P7): FALSE

..s11 sat -(P6 &P7): TRUE

..s11 ==6=> s12

..s12 sat? -(P6 &P7)

...s12 sat? (P6 &P7)

....s12 sat? P6

....s12 sat P6 : FALSE

...s12 sat (P6 &P7): FALSE

..s12 sat -(P6 &P7): TRUE

..s12 ==2=> s13

..s13 sat? -(P6 &P7)

...s13 sat? (P6 &P7)

....s13 sat? P6

....s13 sat P6 : FALSE

...s13 sat (P6 &P7): FALSE

..s13 sat -(P6 &P7): TRUE

..s13 ==4=> s14

..s14 sat? -(P6 &P7)

...s14 sat? (P6 &P7)

....s14 sat? P6

....s14 sat P6 : FALSE

...s14 sat (P6 &P7): FALSE

..s14 sat -(P6 &P7): TRUE

..s14 ==9=> s15

..s15 sat? -(P6 &P7)

...s15 sat? (P6 &P7)

....s15 sat? P6

....s15 sat P6 : FALSE

...s15 sat (P6 &P7): FALSE

..s15 sat -(P6 &P7): TRUE

..s15 no successor

s15 sat AG-(P6 &P7): TRUE

..s6 =14=> s16

..s16 sat? -(P6 &P7)

...s16 sat? (P6 &P7)

....s16 sat? P6

....s16 sat P6 : FALSE

...s16 sat (P6 &P7): FALSE

..s16 sat -(P6 &P7): TRUE

..s16 ==6=> s17

..s17 sat? -(P6 &P7)

...s17 sat? (P6 &P7)

....s17 sat? P6

....s17 sat P6 : FALSE

...s17 sat (P6 &P7): FALSE

..s17 sat -(P6 &P7): TRUE

..s17 ==2=> s18

..s18 sat? -(P6 &P7)

...s18 sat? (P6 &P7)

....s18 sat? P6

....s18 sat P6 : FALSE

...s18 sat (P6 &P7): FALSE

B.4. EXCLUSION RELATION 229

..s18 sat -(P6 &P7): TRUE

..s18 ==4=> s19

..s19 sat? -(P6 &P7)

...s19 sat? (P6 &P7)

....s19 sat? P6

....s19 sat P6 : FALSE

...s19 sat (P6 &P7): FALSE

..s19 sat -(P6 &P7): TRUE

..s19 =13=> s20

..s20 sat? -(P6 &P7)

...s20 sat? (P6 &P7)

....s20 sat? P6

....s20 sat P6 : FALSE

...s20 sat (P6 &P7): FALSE

..s20 sat -(P6 &P7): TRUE

..s20 ==5=> s21

..s21 sat? -(P6 &P7)

...s21 sat? (P6 &P7)

....s21 sat? P6

....s21 sat P6 : TRUE

........s21 sat? P7

........s21 sat P7 : FALSE

...s21 sat (P6 &P7): FALSE

..s21 sat -(P6 &P7): TRUE

..s21 ==1=> s22

..s22 sat? -(P6 &P7)

...s22 sat? (P6 &P7)

....s22 sat? P6

....s22 sat P6 : FALSE

...s22 sat (P6 &P7): FALSE

..s22 sat -(P6 &P7): TRUE

..s22 ==3=> s14 visited

..s5 =13=> s23

..s23 sat? -(P6 &P7)

...s23 sat? (P6 &P7)

....s23 sat? P6

....s23 sat P6 : FALSE

...s23 sat (P6 &P7): FALSE

..s23 sat -(P6 &P7): TRUE

..s23 ==5=> s24

..s24 sat? -(P6 &P7)

...s24 sat? (P6 &P7)

....s24 sat? P6

....s24 sat P6 : TRUE

........s24 sat? P7

........s24 sat P7 : FALSE

...s24 sat (P6 &P7): FALSE

..s24 sat -(P6 &P7): TRUE

..s24 ==1=> s25

..s25 sat? -(P6 &P7)

...s25 sat? (P6 &P7)

....s25 sat? P6

....s25 sat P6 : FALSE

...s25 sat (P6 &P7): FALSE

..s25 sat -(P6 &P7): TRUE

..s25 ==3=> s26

..s26 sat? -(P6 &P7)

...s26 sat? (P6 &P7)

....s26 sat? P6

....s26 sat P6 : FALSE

...s26 sat (P6 &P7): FALSE

..s26 sat -(P6 &P7): TRUE

..s26 ==8=> s10 visited

..s25 ==8=> s9 visited

..s24 ==8=> s8 visited

..s23 ==8=> s7 visited

..s4 =13=> s27

..s27 sat? -(P6 &P7)

...s27 sat? (P6 &P7)

....s27 sat? P6

....s27 sat P6 : FALSE

...s27 sat (P6 &P7): FALSE

..s27 sat -(P6 &P7): TRUE

..s27 ==5=> s28

..s28 sat? -(P6 &P7)

...s28 sat? (P6 &P7)

....s28 sat? P6

....s28 sat P6 : TRUE

........s28 sat? P7

........s28 sat P7 : FALSE

...s28 sat (P6 &P7): FALSE

..s28 sat -(P6 &P7): TRUE

..s28 ==1=> s29

..s29 sat? -(P6 &P7)

...s29 sat? (P6 &P7)

....s29 sat? P6

....s29 sat P6 : FALSE

...s29 sat (P6 &P7): FALSE

..s29 sat -(P6 &P7): TRUE

..s29 ==3=> s30

..s30 sat? -(P6 &P7)

...s30 sat? (P6 &P7)

....s30 sat? P6

....s30 sat P6 : FALSE

...s30 sat (P6 &P7): FALSE

..s30 sat -(P6 &P7): TRUE

..s30 =11=> s26 visited

..s29 =11=> s25 visited

..s28 =11=> s24 visited

..s27 =11=> s23 visited

..s3 =11=> s31

..s31 sat? -(P6 &P7)

...s31 sat? (P6 &P7)

....s31 sat? P6

....s31 sat P6 : FALSE

...s31 sat (P6 &P7): FALSE

..s31 sat -(P6 &P7): TRUE

..s31 ==7=> s5 visited

..s31 ==8=> s32

..s32 sat? -(P6 &P7)

...s32 sat? (P6 &P7)

....s32 sat? P6

....s32 sat P6 : FALSE

...s32 sat (P6 &P7): FALSE

..s32 sat -(P6 &P7): TRUE

..s32 ==7=> s6 visited

..s32 =14=> s33

..s33 sat? -(P6 &P7)

...s33 sat? (P6 &P7)

....s33 sat? P6

....s33 sat P6 : FALSE

...s33 sat (P6 &P7): FALSE

..s33 sat -(P6 &P7): TRUE

..s33 ==6=> s34

..s34 sat? -(P6 &P7)

...s34 sat? (P6 &P7)

....s34 sat? P6

....s34 sat P6 : FALSE

...s34 sat (P6 &P7): FALSE

..s34 sat -(P6 &P7): TRUE

..s34 ==2=> s35

..s35 sat? -(P6 &P7)

...s35 sat? (P6 &P7)

....s35 sat? P6

....s35 sat P6 : FALSE

...s35 sat (P6 &P7): FALSE

..s35 sat -(P6 &P7): TRUE

..s35 ==4=> s36

..s36 sat? -(P6 &P7)

...s36 sat? (P6 &P7)

....s36 sat? P6

....s36 sat P6 : FALSE

...s36 sat (P6 &P7): FALSE

..s36 sat -(P6 &P7): TRUE

..s36 ==7=> s19 visited

..s35 ==7=> s18 visited

..s34 ==7=> s17 visited

..s33 ==7=> s16 visited

..s2 =11=> s37

..s37 sat? -(P6 &P7)

...s37 sat? (P6 &P7)

....s37 sat? P6

....s37 sat P6 : FALSE

...s37 sat (P6 &P7): FALSE

..s37 sat -(P6 &P7): TRUE

..s37 ==8=> s38

..s38 sat? -(P6 &P7)

...s38 sat? (P6 &P7)

....s38 sat? P6

....s38 sat P6 : FALSE

...s38 sat (P6 &P7): FALSE

..s38 sat -(P6 &P7): TRUE

..s38 =10=> s32 visited

..s38 =14=> s39

..s39 sat? -(P6 &P7)

...s39 sat? (P6 &P7)

....s39 sat? P6

....s39 sat P6 : FALSE

...s39 sat (P6 &P7): FALSE

..s39 sat -(P6 &P7): TRUE

..s39 ==6=> s40

..s40 sat? -(P6 &P7)

...s40 sat? (P6 &P7)

....s40 sat? P6

....s40 sat P6 : FALSE

...s40 sat (P6 &P7): FALSE

..s40 sat -(P6 &P7): TRUE

230 APPENDIX B. MODEL CHECKING VERIFICATION STEPS

..s40 ==2=> s41

..s41 sat? -(P6 &P7)

...s41 sat? (P6 &P7)

....s41 sat? P6

....s41 sat P6 : FALSE

...s41 sat (P6 &P7): FALSE

..s41 sat -(P6 &P7): TRUE

..s41 ==4=> s42

..s42 sat? -(P6 &P7)

...s42 sat? (P6 &P7)

....s42 sat? P6

....s42 sat P6 : FALSE

...s42 sat (P6 &P7): FALSE

..s42 sat -(P6 &P7): TRUE

..s42 =10=> s36

s1 sat AG-(P6 &P7): TRUE

