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RESUMO

O surgimento de serviços como computação nas nuvens, redes sociais e comércio eletrônico
tem aumentado a demanda por recursos computacionais dos data centers. Preocupações
decorrentes para os projetistas de data center são sustentabilidade, custo, e dependabili-
dade, os quais são significativamente afetados pelas arquiteturas redundantes requeridas
para suportar tais serviços. Nesse contexto, modelos são ferramentas importantes para
projetistas quanto a tentativa de quantificar esses problemas antes mesmo de implementar
a arquitetura final.

Nessa tese, um conjunto de modelos é proposto para a quantificação integrada do im-
pacto na sustentabilidade, custo e dependabilidade das infraestruturas de refrigeramento
e potência de data centers. Isso é obtido com o suporte do ambiente de avaliação que é
composto pelas ferramentas ASTRO, Mercury e o módulo de otimização. A avaliação de
dependabilidade faz uso de uma estratégia de modelagem h́ıbrida que usa as vantagens
tanto das redes de Petri estocásticas como dos diagramas de blocos de confiabilidade.
Além disso, um modelo é proposto para realizar a verificação se fluxo de energia não ex-
cede a capacidade máxima de potência que cada equipamento pode prover (considerando
dispositivos elétricos) ou extrair (assumindo equipamentos de refrigeração). Adicional-
mente, um método de otimização é proposto para melhorar os resultados obtidos através
dos diagramas de blocos de confiabilidade, das redes de Petri estocásticas e do modelo
de fluxo de energia pela seleção automática dos dispositivos apropriados a partir da lista
de componentes candidatos. Essa lista corrresponde a um conjunto de componentes que
podem ser utilizados para compor a arquitetura de data center.

Vários estudos de casos são apresentados para analisar o impacto ambiental, a de-
pendabilidade e o custo operacional de energia elétrica de arquiteturas reais de potência
e refrigeração de data centers.

Palavras-chave: Redes de Petri, Diagrama de Blocos de Confiabilidade, Modelo de
Fluxo de Energia, Sustentabilidade, Dependabilidade e Arquiteturas de Data Center.

vi



ABSTRACT

The advent of services such as cloud computing, social networks and e-commerce has led
to an increased demand for computer resources from data centers. Prominent issues for
data center designers are sustainability, cost, and dependability, which are significantly
affected by the redundant architectures required to support these services. Within this
context, models are important tools for designers when attempting to quantify these
issues before implementing the final architecture.

This thesis proposes a set of models for the integrated quantification of the sustaina-
bility impact, cost, and dependability of data center power and cooling infrastructures.
This is achieved with the support of an evaluation environment which is composed of
ASTRO, Mercury and Optimization tools. The approach taken to perform the system
dependability evaluation employs a hybrid modeling strategy which recognizes the advan-
tages of both stochastic Petri nets and reliability block diagrams. Besides that, a model
is proposed to verify that the energy flow does not exceed the maximum power capacity
that each component can provide (considering electrical devices) or extract (assuming
cooling equipment). Additionally, an optimization method is proposed for improving the
results obtained by Reliability Block Diagrams, Stochastic Petri nets and Energy Flow
models through the automatic selection of the appropriate devices from a list of candidate
components. This list corresponds to a set of alternative components that may compose
the data center architecture.

Several case studies are presented that analyze the environmental impact and depend-
ability metrics as well as the operational energy cost of real-world data center power and
cooling architectures.

Keywords: Petri nets, Reliability Block Diagrams, Energy Flow Model, Sustainability,
Dependability and Data Center Architectures.
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CHAPTER 1

INTRODUCTION

Environmental impacts have received great attention from the scientific community
and industry due to diverse concerns: climate change, pollution and environmental degra-
dation. For instance, CO2 emissions could rise between 9% to 27% by 2030 depending
on the policies enacted [1]. Additionally, carbon dioxide released by the use of coal,
petroleum, natural gas and other sources contributes to the global warming. In U.S.,
coal burning generates almost half of the electricity consumed, but it emits 78 percent
of all CO2 provided from electric power plants [2]. Therefore, many countries have been
demanding the substitution of polluting energy sources with non-polluting ones (e.g., sun,
wind and hydropower).

In Information Technology (IT) systems, the emergence of paradigms, such as cloud
computing, e-commerce and social network services, has demanded data center infrastruc-
tures with several thousands of computers. To support those paradigms, a rapid increase
in computing and communication capabilities were provided by data centers which has
changed the global economy. For instance, more than two billion people now access the
Internet, up from less than 250 million a decade ago [3]. However, this remarkable growth
comes with an increase on the power consumption that accounts for about 2% of today’s
U.S. power generation [4]. Therefore, they also significantly contribute to the global
carbon emissions which are predicted to increase another 70% by 2020 [3].

To accomplish the high availability levels demanded by those paradigms, data center
infrastructures have evolved dramatically dealing with redundant strategies. However,
since redundancy leads to additional devices, more power resources are required which
may result in a negative impact on sustainability and cost of the system. Therefore,
concerns about dependability, sustainability and cost of data center systems are in sharp
focus by both the academic community and society.

Although in some organizations the sustainability concern may be a not important
factor, in others, the sustainability concern has been in sharp focus. For instance, IT
organizations are incorporating sustainable business practices into the design and opera-
tion of their products and systems [5]. Therefore, data center designers need to examine
several trade-offs concerning in addition to dependability, sustainability impact and cost
metrics to determine a data center architecture. However, at present, designers do not
have many mechanisms to conduct the integrated evaluation and optimization of depend-
ability, sustainability and cost on data center infrastructures. Indeed, two different data
center architectures with similar availability levels and cost may have very different sus-
tainability impacts. Additionally, a growing concern of data center designers is related

1
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to the identification of components that may cause the system failure as well as systems
parts that must be improved before implementing the architecture.

A prominent mechanism to compare data center equipment would be to assess their
energy consumption, material utilization, environmental impact and irreversible natural
losses for the next generations, both in the manufacturing as in the operational phase.
A given equipment could be considered the best option even having a greater energy
consumption, once it had a lesser negative impact on the future. As an index for this
global assessment, the thermodynamic property exergy is of utter importance due to the
fact that it estimates the energy conversion efficiency of a system. Exergy is defined as
the maximal fraction of the energy that could be theoretically converted in useful work
[6]. In this work, we quantify the environmental impact in terms of the carbon dioxide
(CO2) emissions [7] as well as the thermodynamic metric of exergy consumption.

In this thesis, we propose a set of formal models to the integrated quantification of
sustainability impact, cost and dependability issues on data center power and cooling
infrastructures. The adopted approach takes into account a hybrid modeling technique
that considers the advantages of both Stochastic Petri Nets (SPNs) [8] and Reliability
Block Diagrams (RBDs) [9] to evaluate system dependability. Additionally, we propose
the Energy Flow Model (EFM) to verify that the energy flow does not exceed the maxi-
mum power capacity that each component can provide (considering electrical devices) or
extract (assuming cooling equipment).

Algorithms that traverse the EFM are proposed to perform the power verifications
as well as to estimate data centers cost and sustainability impacts. Additionally, an
optimization method is proposed for improving the results obtained by RBD, SPN and
EFM models through the selection of the appropriate devices from a list of candidate
components. This list corresponds to a set of alternative components that may compose
the data center architecture. The evaluation of all possible combinations from the list of
candidate components provides the optimal result. However, this evaluation is quite time
consuming. The adopted optimization method is an alternative approach that is proposed
in this work that provides results close to the optimal ones in a reduced execution time.

The integrated environment, composed of the high-level interface named ASTRO as
well as the kernel named Mercury, has been implemented to support the joint evaluation
of sustainability, cost and dependability. ASTRO provides views that allow data center
designers to specify power, cooling and IT systems. Mercury is the modeling and eval-
uation kernel for the fundamental models (EFM, SPN, RBD and Markov Chain (MC)).
The models created in the views supported by ASTRO can be automatically converted
to the fundamental models supported by Mercury (considering dependability models).
This work focuses on the models supported by Mercury.

1.1 MOTIVATION

Sustainability has received great attention by the scientific community, due to concerns for
meeting current needs of energy without compromising, for instance, non-renewable re-
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sources for future generations. In addition, as a result of stringent availability constraints,
dependability plays a prominent role in the infrastructure that supports business service
through the Internet, particularly, the growth of cloud computing paradigm. Thus, there
has been a tremendous growth in the number, size and power densities of data centers.

A data center is not only composed of IT equipment, but also the power and cooling
infrastructures, which incur considerable energy consumption. Additionally, considering
the increase in energy costs as well as the global attention focused on sustainability, the
energy management and environment impacts of data centers are critical. In Western
Europe [10], the electricity consumption is estimated to increase from 56 terawatt hours
(TWh) in 2007 to 104 TWh by 2020, in which data center power consumption will play a
significant part of that increase. Indeed, data centers consume about 2% of the U.S. power
generation [4], and, so, they also significantly contribute to the global carbon emissions.

The data center infrastructures responsible for feeding and cooling a data center
room consume almost the same amount of energy than servers, storage and networking
hardware together [11]. Besides, power and cooling infrastructure costs can match, or
even exceed, the cost of the data center’s IT devices [12]. Therefore, a detailed study
focusing in those two infrastructures are important as well. Additionally, data center
energy requirements have grown massively in recent years going from 12GW in 2007 to
24GW in 2011 [13]. In the last year alone, it has increased to 38GW amid data explosion
and business expansion. Besides that, the energy consumed by data centers is estimated
to have a further rise of 17% going to 43GW in 2013. As IT as a whole is responsible for 2%
of the global carbon emissions [3], a small percentage savings in the energy consumption
of data centers will have a huge economic and environmental impact.

1.2 OBJECTIVES

The world has begun to understand the necessity to reduce the environmental impacts
by consuming sustainable energy. In this context, this work proposes a set of models
for the integrated quantification of sustainability impact, cost and dependability of data
center power and cooling infrastructures. The proposed approach takes into account
a hybrid modeling strategy that considers the advantages of both stochastic Petri nets
(SPN) [8] and reliability block diagrams (RBD) [9] to evaluate system dependability.
Besides, a model is proposed to allow the verification of the energy flowing does not exceed
the maximum power capacity that each component can provide (considering electrical
devices) or extract (assuming cooling equipment). Furthermore, the specific goals of this
research are:

� To propose a set of formal models for estimating dependability metrics of power
and cooling data center infrastructures.

� To construct and evaluate models that represent data center power and cooling
infrastructures in order to identify system parts that may be improved.
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� To propose indexes that identify the components on data center architectures that
most impact the system reliability. Therefore, data center architecture can be
proposed based on the components that are indicated to be replicated through
those indexes.

� To propose a model that represents electrical energy flow.

� To propose algorithms that traverse the energy flow model to verify the power
restrictions, to estimate data center cost and sustainability impacts.

� To propose a methodology that allows data center designers to analyze the system
piecewise and to combine the evaluation results.

� To develop a tool which supports the above models and allows data center de-
signers/administrators to conduct the joint evaluation of sustainability, cost and
dependability.

� To define a model that optimize the integrated sustainability, dependability and
cost evaluation of data center architectures.

In addition, it is important to state that the main value of the adopted methodology
lies in being able to provide assessment to support the planning of data center power and
cooling infrastructures taking into account sustainability impact, dependability metrics
and cost issues.

1.3 CONTRIBUTION

The expected contributions are a set of formal models for quantifying sustainability, de-
pendability and cost values on data center architectures as well as methods for performing
the verification of power restrictions. The computed metrics are dependability (e.g., avail-
ability, reliability and reliability importance), sustainability impact (exergy consumption
and CO2 emissions) and cost issues (acquisition and operational costs) on data center
power and cooling infrastructures. Additionally, an optimization method is also proposed
for optimizing the results achieved through the above models. To accomplish the inte-
grated approach to evaluate and optimize dependability, cost and sustainability issues,
a methodology is proposed for evaluating data center systems through a hybrid formal
modeling, which utilizes RBD, SPN and EFM whenever they are best suited.

Regarding the expected results of this research, we assume that the achieved goals will
have valuable importance for the academic community as well as for the IT companies. In
the academic community, we have been publishing the results in international conferences
and journals. Moreover, dissertations and thesis have been extending this research due
to the importance of the topic for IT companies and society as a whole.

In IT business, we expect that the proposed models as well as the tool may be applied
by companies to reduce the environmental impacts from data centers and also to improve
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the companies’ income and, as a consequence, to also increase the number and income of
employees.

1.4 OUTLINE

This work is organized as follows:

In Chapter 2, we introduce basic concepts on data center infrastructures, depend-
ability, sustainability, Petri nets, reliability block diagrams and optimization techniques.
Afterwards, we present the proposed models for sustainability, dependability, cost as well
as energy flow evaluation in Chapter 3. Next, Chapter 4 presents the conceived methodol-
ogy as well as the evaluation environment that is composed of ASTRO, Mercury and the
optimization module. Chapter 5 shows the experiments conducted using the proposed
models as well as illustrates the applicability of the adopted methodology. Chapter 6
presents related work. Finally, Chapter 7 presents conclusions as well as direction for
future work.



CHAPTER 2

BACKGROUND

This chapter introduces a summary of the background information needed
for a better understanding about this work. First of all, an overview of data
center infrastructures are presented. After that, dependability, sustainability
and total cost of ownership concepts are shown. Next, Petri nets, reliability
block diagrams and optimization techniques are explained.

2.1 DATA CENTER INFRASTRUCTURE

Data centers can be defined as a computer facility designed for safeguarding company’s
data properties [14]. Typically, data centers are adopted as host for website, to process
business transactions, to protect data (e.g., financial records, medical history of patients,
manage emails). In addition, organizations are looking for IT departments aiming to
receive support in many business sources such as productivity and revenue. Therefore,
data centers must have high availability levels to support new technology requirements.

To build a data center room, many infrastructures must be analyzed. For instance,
power, cooling, connectivity, space, protections (e.g., against fire) and temperature mon-
itoring. Additionally, data center designers should focus on increase productivity and
avoid downtime. Design strategies are important to accomplish those needs as shown
bellow.

Data center has to be reliable. In order to accomplish high reliability values, data
center infrastructures must be composed of: (i) multiply standby power supplies, which
are responsible for support the data center’s electrical load when the commercial utility
power fails; (ii) redundant network to keep the system working if a networking device has
failed; (iii) redundant data connections to provide alternative paths to the desire device.

Availability (or data center uptime) is a critical metric due to the fact that downtime
usually affect company’s production as well as business profit. Table 2.1 presents dif-
ferent availability levels in nines (−log(1− Availability(%)/100)) and its correspondent
downtime considering one year period.

Table 2.1: Correspondent downtime to different availabilities in one year.
Availabiliy (9s) Percent Downtime

Two nines 99 3 days, 15 hours, 40 minutes
Three nines 99.9 8 hours, 46 minutes
Four nines 99.99 52 minutes, 35 seconds
Five nines 99.999 5 minutes, 15 seconds
Six nines 99.9999 32 seconds

6
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In addition to the building facility, a generic data center system (Figure 2.1) essentially
consists of the following subsystems: (i) IT infrastructure; (ii) cooling infrastructure; and
(iii) power infrastructure [15].

Figure 2.1: Data Center Architecture

IT Infrastructure consists of three main components - servers, networking and stor-
age devices [15]. The storage devices are typically connected through a Storage Area
Network (SAN). Servers may also connect to remote file systems on Network Attached
Storage (NAS) over Ethernet. The network devices include the physical hardware adopted
to transmit data electronically such as switches, hubs, routers, bridges and gateways.
Software services are usually organized in a multi-tier architecture with separate tiers for
web servers, applications and database servers [16].

Cooling Infrastructure is basically comprised of Computer Room Air Conditioning
(CRAC) units, chillers and cooling towers [15]. The cooling infrastructure may account
around 40% of the total power consumption of the data center [17].

Figure 2.2 illustrates the cooling infrastructure. Heat dissipated from IT devices is
extracted by CRAC units and transferred to the chilled water distribution system. As
the heat is transferred from the air stream to the chilled water stream, the temperature
of the water increases. Heat is removed from the water via thermodynamic work in order
to improve the chiller refrigeration cycle. The refrigerated water is returned to the CRAC
unit, while the heat absorbed by the refrigerant is rejected to a secondary water stream.
The secondary loop ultimately transfers the heat to the outside environment in a cooling
tower.

Power Infrastructure is responsible for providing uninterrupted, conditioned power at
the correct voltage and frequency to the IT equipment hosted in data center racks as
well as to the cooling infrastructure [18]. From the electric utility, the power typically,
goes through Step Down Transformers (SDT), transfer switches, Uninterruptible Power
Supplies (UPS), Power Distribution Units (PDU), and finally to rack power strips. Fault-
tolerance is directly related to either resource or timing replication, and hence is related
to higher power consumption. The UPS conditions power and provides power backup in
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Figure 2.2: Cooling Infrastructure.

case of short outages. Generators or other local power sources may be used for longer
outages, or even for satisfying critical parts of the total power demand on a regular basis.

Redundancy is an essential issue in power infrastructures, since its availability affects
the overall system services. As depicted in Figure 2.1, the power infrastructure affects
every other subsystems, and a system outages can be very expensive, easily surpassing
millions of dollars per hour [19].

Power infrastructures are comprised of primary/secondary powers, UPS, Static Trans-
fer Switch (STS), PDUs (SDT and electrical circuit breaker panels), junction box and
rack power strip. The following lines detail the functionality of the main components of
a typical power system.

The data center primary power corresponds to the electrical power that can be derived
from different electrical substations. An electrical substation is a subsidiary station of an
electricity generation, transmission and distribution system where voltage is transformed
from high to low or the reverse using transformers. Electric power may flow through
several substations between generating plant and consumer, and may be changed in
voltage in several steps.

Considering the fact that the primary power may fail, a generator (secondary power)
must be able to provide the input power to the data center. This component helps
ensure continuous power availability to the racks and supporting cooling infrastructure
by compensating for fluctuations from the electrical power or temporary power loss.
Different techniques can be used for power generation in data centers, which can eliminate
dependence on electrical power or be used for backup power in situations where the
electrical power is expensive or unreliable. Power production is most commonly achieved
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via diesel generators, although some smaller facilities have also utilized fuel cells [14].

UPS units are used to improve power source quality as well as to protect the electri-
cal loads against disturbances such as frequency shifts, voltage spikes or interruptions.
A PDU is a device that distributes electrical power. For instance, rack PDUs (or power-
strips) are connected to breakers present on data center’s PDU. Static transfer switches
(STS) are responsible for switching from a power utility that has failed to backup batteries
or to other power sources at any stage of the delivery process. Step down transformers
(SDT) are used to reduce alternating current. In addition, SDT allows a device that
requires a low voltage power supply to operate from a higher voltage.

It is important to highlight that the cooling infrastructure is more tolerant to uncon-
ditioned power than the IT devices [20]. Therefore, UPS devices are usually adopted on
the IT data center system. Although uninterrupted cooling is required to the IT devices,
the CRAC can still be treated as a non-critical load in order to reduce the power delivery
costs.

2.2 DEPENDABILITY

The dependability [21, 22] of a system can be understood as the ability to deliver a set of
services that can be justifiably trusted. Indeed, dependability is related to issues such as
fault tolerance and reliability. Reliability is the probability that the system will deliver
a set of services for a given period of time, whereas a system is fault tolerant when it
does not fail even when there are faulty components [23]. Availability is also another
important concept, which quantifies the mixed effect of both failure and repair process
in a system [9].

For any given time period represented by the interval (0, t), R(t) is the probability
that the component has continued to function (not failed) from 0 until t. When an
exponentially distributed Time to Failure (TTF) is considered, reliability is represented
by:

R(t) = exp

[
−
∫ t

0

λ(t′)dt′
]

(2.1)

where λ(t′) is the instantaneous failure rate.

The simple definition of availability (A) can be outlined as the ratio of the expected
system uptime by the expected system up and down times:

A =
E [Uptime]

E [Uptime] + E [Downtime]
(2.2)

Consider that the system started operating at time t=t’ and fails at t=t”, thus ∆t =
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Figure 2.3: States of a repairable system.

t′′ − t′ = Uptime (see Figure 2.3). The system availability can be thus expressed by:

A =
MTTF

MTTF +MTR
(2.3)

where MTTF is the Mean Time to Failure, and MTR is the mean time to restore, defined
by MTR = MNRT + MTTR (MNRT - mean non-repair time, MTTR - mean time to
repair), so:

A =
MTTF

MTTF +MNRT +MTTR
(2.4)

If MNRT ∼= 0,

A =
MTTF

MTTF +MTTR
(2.5)

The instantaneous availability is the probability that the system is operational at a
specific time instant t, that is,

A(t) = P {Z (t) = 1} = E {Z (t)} , t ≥ 0. (2.6)

If system repairing is not possible, the instantaneous availability, A(t), is equivalent
to reliability, R(t). If the system approaches stationary states as the time increases, it is
possible to quantify the steady state availability, such that it is possible to estimate the
long-term fraction of time the system is available.

A = lim
t→∞

A (t) , t ≥ 0. (2.7)

Through transient analysis or simulation, the reliability (R) is obtained, and, then,
the MTTF can be calculated as well as the standard deviation of the Time To Failure
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(TTF ):

MTTF =

∫ ∞

0

tf(t)dt =

∫ ∞

0

−dR(t)

dt
tdt =

∫ ∞

0

R(t)dt (2.8)

sd(TTF ) =

√∫ ∞

0

t2f(t)dt− (MTTF )2 (2.9)

One should bear in mind that, for computing reliability of a given system service, the
repairing activity of the respective service must not be represented. Besides, taking into
account UA = 1−A (unavailability) and Equation 2.5, the following equation is derived

MTTR = MTTF × UA

A
(2.10)

The standard deviation of the Time To Repair (TTR) can be calculated as follows:

sd(TTR) = sd(TTF )× UA

A
(2.11)

Next, MTTF
sd(TTF )

(and MTTR
sd(TTR)

) are computed for choosing the expolynomial distribution that

best fits the TTF and TTR distributions [24, 8].

In many situations, modeling is the method of choice either because the system might
not yet exist or due to the inherent complexity for creating specific scenarios under which
the system should be evaluated. In a very broad sense, models for dependability eval-
uation can be classified as simulation and mathematical models. However, this does
not mean that mathematical models cannot be simulated. Indeed, many mathematical
models, besides being analytically tractable, may also be evaluated by simulation. Math-
ematical models can be characterized as being either state-based or non-state-based.

Dependability metrics (e.g., availability and reliability) may be calculated either by
using RBD or SPN (to mention only the models adopted in this work). RBDs allow
to represent component networks and provide closed form equations. Nevertheless, such
models face drawbacks for thoroughly handling failures and repairing dependencies that
are often faced when representing maintenance policies and redundant mechanism, par-
ticularly those based on dynamic redundancy methods. On the other hand, state-based
methods can easily consider those dependencies, so allowing the representation of com-
plex redundant mechanisms as well as sophisticated maintenance policies. However, they
suffer from the state-space explosion. Some of those formalism allow both numerical
analysis and stochastic simulation, and SPN is one of the most prominent models of such
class.

2.2.1 Time Distributions

The time to failure of a component is a non-negative continuous random variable. In this
section we briefly present Exponential and Expolynomial continuous distributions (e.g.
Erlang and Hyper-exponential) that are widely adopted in dependability evaluation.
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Exponential Distribution
A random variable X representing a component’s life time has exponential distribution if
its probability density function (pdf) is given by:

f(t) = λe−λt, t ≥ 0, (2.12)

where λ > 0 is a parameter of this distribution. The coefficient of variation (CV) is
one, and the respective reliability function, cumulative distribution function, failure rate,
mean (MTTF) and variance are, respectively:

R(t) = e−λt, t ≥ 0, (2.13)

F (t) = 1− e−λt, t ≥ 0, (2.14)

h(t) = λ, (2.15)

E(X) = MTTF =
1

λ
, (2.16)

V ar(X) = σ2 =
1

λ2
. (2.17)

Exponential distribution is important due to the fact that it is the only continuous
distribution that has the memoryless property. This property is related to the fact that
future steps depend only on relevant information about the present, information about
the past is completely irrelevant.

Exponential distribution is related to discrete Poisson random variable. Therefore, it
has the following properties:

� If n Poisson processes with distributions for the interarrival times 1 − e−λit, 1 ≤
i ≤ n, are merged into one single process, then it results in a Poisson process that
has the distribution 1− e−λit with λ =

∑n
i=1 λi as shown in Figure 2.4(a).

� If a Poisson process (distribution 1 − e−λt) is split into n processes, then ith sub-
process are created (distribution 1− e−qiλt) as depicted in Figure 2.4(b).

The exponential distribution is not a good approximation for experiments in which
the coefficient of variation is different of one. Therefore, other distributions are considered
to represent those systems.

Hyperexponential Distribution
The hyperexponential distribution is adopted to approximate empirical distributions that
have a coefficient of variation larger than one. Figure 2.5 depicts an example of a model
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Figure 2.4: (a) Merging, (b) Splitting.

with hyperexponential distribution time. The model is composed of k phases and λ1, λ2,
..., λk rates that are arranged in parallel. The probability of each i − th phase together
is qi, where

∑k
i=1 qi = 1. Additionally, it is important to stress that only one phase can

be occupied at a time.

Figure 2.5: A random variable with hyperexponential distribution.

Erlang Distribution
In this distribution the coefficient of variation is less than one. Figure 2.6 shows a
model that has an Erlang distribution in which k is the number of identical exponential
phases in series. Therefore, if the interarrival times of processes in a system are identical
exponentially distributed, it follows an Erlang distribution.

Figure 2.6: A random variable with erlang distribution.

Table 2.2 presents a summary of continuous distributions. In this table, the probabil-
ity density function, the respective reliability function, cumulative distribution function,
failure rate, mean (MTTF) and variance are represented. For more details, the reader
should refer to [25].
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Table 2.2: Distribution Summary.

Distributions f(t) R(t) F(t) h(t) E[X] Var[X] Parameter

Exponential λe−λt, e−λt, 1− e−λt, λ 1
λ

1
λ2 λ > 0,

t ≥ 0 t ≥ 0 t ≥ 0 λ : rate

e−kλt× 1− e−kλt× k ∈ Z+, λ > 0

Erlang
kλ(kλt)k−1

(k−1)!
e−kλt,

∑k−1
i=0

(kλt)i

i!
,

∑k−1
i=0

(kλt)i

i!
, λ 1

λ
1

kλ2 rates : kλ

t ≥ 0 t ≥ 0 t ≥ 0 k: num of phases

1−
∑k

i=1 qi
∑k

i=1 qi 2× k ∈ Z+(n of phases)

Hyper-
∑k

i=1 qiλie
−λit, (1− e−λit), (1− e−λit), 1∑k

i=1
qi
λi

∑k
i=1

qi
λi

∑k
i=1

qi
λ2
i

rates: λ1...λk

exponential t ≥ 0 t ≥ 0 t ≥ 0 = 1
λ

− 1
λ2 probabilities: q1...qk

λi > 0, qi > 0;∑k
i=1 qi = 1

2.2.2 Redundancy

Common used redundancy structures in reliability systems are the series and parallel
arrangements. In a series system, each of the components is essential for the function
of the whole system. The reliability of a series system is affected by the number of
components in the system, in which more components reduce the reliability of the system.
On the other hand, a parallel system requires at least one component to work. In parallel
systems, the reliability of the system is higher than the reliability of the best component.
Including components in a parallel arrangement increases the reliability of the whole
system.

Figure 2.7 depicts a comparison between series and parallel organizations as a function
of the number of components in the system. The component reliability p adopted for all
the components of the series system was 0.8, and for the parallel system the adopted p
value was 0.4. It is possible to notice that the reliability of the parallel system increases
when more components are considered. On the other side, in a series arrangement, the
reliability reduces once more device are adopted.

2.2.3 Measure of Component Importance

Component importance is a metric that indicates the impact of a particular component
in the system’s overall reliability. In this work, we adopt Reliability Importance (RI)
and Reliability and Cost Importance (RCI) to identify the most critical components for
system reliability.

Reliability Importance is a metric that may be useful for identifying the most critical
components. RI (or Birnbaum Importance) of a component i corresponds to the amount
of improvement in system reliability, when the reliability of component i is increased by
one unit [9]. The RI of component i can be computed as:
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Figure 2.7: Comparing the reliability of series and parallel systems.

RIi = Rs(1i,p
i)−Rs(0i,p

i), (2.18)

where, RIi is the reliability importance of component i, Rs is the reliability of the sys-
tem, pi represents the component reliability vector with the ith component removed, 0i
represents the component i failure, and 1i denotes the component i properly working.

As an example, consider the RBD in Figure 2.8 and the reliability values provided in
Table 2.3. The Reliability Importance of Component 1 is calculated as follows:

RIB1 = 11 × p2 × p3 − 01 × p2 × p3, (2.19)

in which pi is the reliability value of component i.

In a series structure, the least reliable component has the highest RI, as can be seen
in Table 2.3. In a parallel structure, the most reliable component has the highest RI [9].

Figure 2.8: Reliability Block Diagram Series with 3 Component

Reliability and Cost Importance (RCI) is a metric that relates the previous RI con-
sidering the acquisition cost of components. The RCI of component i can be computed
as:
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Table 2.3: Reliability Importance (Figure 2.8)

Component 1 Component 2 Component 3

Reliability Value 0.80 0.60 0.65
Reliability Importance 0.39 0.52 0.48

RCIi = RIi × (1− Ci

Csys

), (2.20)

in which RCIi is the proposed reliability and cost importance index; RIi is the reliability
importance of component i; Ci is the acquisition cost of the component i and Csys is
acquisition cost of the whole system.

2.3 SUSTAINABILITY

This work quantifies the environmental impact in terms of the carbon dioxide (CO2)
emissions [7] as well as the thermodynamic metric of exergy. Exergy is defined as the
maximal fraction of the energy that could be theoretically converted in useful work [6].
The exergy contained in one kJ of oil is greater than the exergy contained in one kJ of
water in the environment temperature. Oil can be used to move an automobile but water
in the environment temperature cannot. As given in equation 2.21, exergy is calculated
as the product of energy and a quality factor.

Exergy = Energy × F, (2.21)

where F is a quality factor represented by the ratio of Exergy/Energy as show in Table
2.4 [6]. For example, F is 0.16 for water at 80 degrees Celsius.

Table 2.4: Energy and exergy values of different energy forms.

Source Energy(J) Exergy (J) F

Water at 80 degrees Celsius 100 16 0.16

Steam at 120 degrees Celsius 100 24 0.24

Natural gas 100 99 0.99

Electricity 100 100 1.00

Although exergy might be considered a better index for quantifying sustainability
than simply energy, it must be used cautiously [6]. For example, although the exergy
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of solar radiation is high, the environmental impact in terms of carbon emissions is low.
Therefore its destruction or consumption is not as harmful as coal, which has high carbon
emission.

Notwithstanding these imperfections, exergy destruction is an important index to
express in a simple way both the energetic consumption and the environmental impact of
one equipment. Several works [26, 27, 28] present results and valuable conclusions about
the use of this index to compare different technological designs.

The exergy destruction metric is useful for quantifying the efficiency of a component
or architecture in relation to the energy consumption. Such a metric may be not enough
to estimate the environmental impact of identical data center architectures located in
different places around the world. This comparison may be assessed by estimating the
greenhouse gas emissions such as CO2, which represented 84% of the U.S. greenhouse
gas emitted in 2011 [29]. Due to the fact that different energetic mixes are adopted by
different countries, quantifying the energy consumption of different energetic mixes may
provide estimates about the corresponding environmental impact. Therefore, estimating
CO2 emissions related to determinate energetic mix may be considered as a metric for
the quantification of environmental impact.

2.4 PETRI NETS

Petri nets (PNs) were introduced in 1962 by the PhD dissertation of Carl Adams Petri
[30], at Technical University of Darmstandt, Germany. The original theory was devel-
oped as an approach to model and analyze communication systems. Petri nets [31] are a
graphical and mathematical modeling tool that can be applied in several types of systems
and allow the modeling of parallel, concurrent, asynchronous and non-deterministic sys-
tems. Since its seminal work, many representations and extensions have been proposed
for allowing more concise descriptions and for representing systems feature not observed
on the early models. Thus, the simple Petri net has subsequently been adapted and
extended in several directions, in which timed, stochastic, high-level, object-oriented and
coloured nets are a few examples of the proposed extensions.

2.4.1 Place-Transition nets

Place/Transition Petri nets are one of the most prominent and best studied class of Petri
nets, and it is sometimes called just by Petri net (PN). A marked Place/Transition Petri
net is a bipartite directed graph, usually defined as follows:
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Definition 2.4.1. (A Petri net) [31] is a 5-tuple:

PN = (P, T, F,W,M0)

where:

1. P = {p1, p2, ..., pm} is a finite set of places;

2. T = {t1, t2, ..., tn} is a finite set of transitions;

3. F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation);

4. W : F →{1, 2, 3, ...} is a weight function;

5. M0 : P → {0, 1, 2, 3, ...} is the initial marking;

This class of Petri net has two kinds of nodes, called places (P ) represented by circles
and transitions (T ) represented by bars, such that P ∩ T = Ø and P ∪ T ̸= Ø. Figure
2.9 depicts the basic elements of a simple PN. The set of arcs F is used to denote the
places connected to a transition (and vice-versa). W is a weight function for the set of
arcs. In this case, each arc is said to have multiplicity k, where k represents the respective
weight of the arc. Figure 2.10 shows multiple arcs connecting places and transitions in a
compact way by a single arc labeling it with its weight or multiplicity k.

Figure 2.9: Petri net basic elements.

Places and transitions may have several interpretations. Using the concept of condi-
tions and events, places represent conditions, and transitions represent events, such that,
an event may have several pre-conditions and post-conditions. For more interpretations,
Table 2.5 shows other meanings for places and transitions [31].

In the following definitions, we present a different representation for the PN’s elements.
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Figure 2.10: Compact representation of a PN

Input Places Transitions Output Places

pre-conditions events post-conditions

input data computation step output data

input signals signal processor output signals

resource needed tasks resource releasing

conditions logical clauses conclusions

buffers processor buffers

Table 2.5: Interpretation for places and transitions.

Definition 2.4.2. (Input and Output Transitions of a place) The set of input

transitions (also called pre-set) of a place pi ∈ P is:

label = •pi = {tj ∈ T |(tj, pi) ∈ F}.

and the set of output transitions (also called post-set) is:

label = pi• = {tj ∈ T |(pi, tj) ∈ F}.

Definition 2.4.3. (Input and output places of a transition) The set of input places

of a transition tj ∈ T is:
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label = •tj = {pi ∈ P |(pi, tj) ∈ F}.

and the set of output places of a transition tj ∈ T is:

label = tj• = {pi ∈ P |(tj, pi) ∈ F}.

Marked Petri nets

A marking (also named token) has a primitive concept in PNs such as place and transi-
tions. Markings are information attributed to places; the number and mark distributions
consist of the net state in determined moment. The formal definitions are presented as
follows.

Definition 2.4.4. (Marking) Considering the set of places P in a net N , the marking

definition is a function that maps the set of places P into non negative integers M : P →

N.

Definition 2.4.5. (Marking vector) Considering the set of places P in a net N , the

marking can be defined as a vector M = (M(p1), ...,M(pn)), where n = #(P ), ∀pi ∈ P /

M(pi) ∈ N. Thus, such vector gives the number of tokens in each place for the marking

Mi.

Definition 2.4.6. (A marked Petri net) is defined by a tuple NM = (N ;M0), where

N is the net structure and M0 is the initial marking.

A marked Petri net contains tokens, which reside in places, travel along arcs, and
their flow through the net is regulated by transitions. A peculiar distribution (M) of the
tokens in the places, represents a specific state of the system. These tokens are denoted
by black dots inside the places as shown in Figure 2.9 (d).

Transition enabling and firing

The behavior of many systems can be described in terms of system states and their
changes. In order to simulate the dynamic behavior of a system, a state (or marking) in
a Petri net is changed according to the following firing rule:
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1. A transition t is said to be enabled, if each input place p of t is marked with at
least the number of tokens equal to the multiplicity of its arc connecting p with t.
Adopting a mathematical notation, an enabled transition t for given marking mi is
denoted by mi[t >, if mi(pj) ≥ W (pj, t),∀pj ∈ P .

2. An enabled transition may or may not fire (depending on whether or not the re-
spective event takes place).

3. The firing of an enabled transition t removes tokens (equal to the multiplicity of the
input arc) from each input place p, and adds tokens (equal to the multiplicity of the
output arc) to each output place p′. Using a mathematical notation, the firing of a
transition is represented by the equation mj(p) = mi(p)−W (p, t)+W (t, p),∀p ∈ P .
If a marking mj is reachable from mi by firing a transition t, it is denoted by
mi[t > mj .

Figure 2.11 (a) shows the mathematical representation of a Petri net model with three
places (p0, p1, p2) and one transition (t0). Additionally, there is one arc connecting the
place p0 to the transition t0 with weight two, one arc from the place p1 to the transition
t0 with weight one, and one arc connecting the transition t0 to the place p2 with weight
two. The initial marking (m0) is represented by three tokens in the place p0 and one
token in the place p1. Figure 2.11 (b) outlines its respective graphical representation,
and Figure 2.11 (c) provides the same graphical representation after the firing of t0. For
this example, the set of reachable markings is m = {m0 = (3, 1, 0),m1 = (1, 0, 2)}. The
marking m1 was obtained by firing t0, such that, m1(p0) = 3 - 2 + 0, m1(p1) = 1 - 1 +
0, and m1(p2) = 0 - 0 + 2.

Figure 2.11: (a) Mathematical formalism; (b) Graphical representation before the firing of t0;

(c) Graphical representation after the firing of t0.

There are two particular cases which the firing rule happens differently. The first one
is a transition without any input place that is called as a source transition, and the other
one is a transition without any output place, named sink transition. A source transition
is unconditionally enabled, and the firing of a sink transition consumes tokens, but does
not produce any. Figure 2.12 (a) shows a source transition, and Figure (b) 2.12 depicts



2.4 PETRI NETS 22

a sink transition. In both, the markings are represented before and after their respective
firing.

Figure 2.12: (a) Source transitions; (b) Sink transitions.

Definition 2.4.7. (Source transitions) A transition is said to be source if, and only

if, I(p, t) = 0, ∀p ∈ P .

Definition 2.4.8. (Sink transitions) A transition is said to be sink if, and only if,

O(p, t) = 0, ∀p ∈ P .

Definition 2.4.9. (Inhibitor arc) Originally not present in PN, the introduction of the

concept of inhibitor arc increases the modeling power of PN, adding the ability of testing

if a place does not have tokens. In the presence of an inhibitor arc, a transition is enabled

to fire if each input place connected by a normal arc has a number of tokens equal to the

arc weight, and if each input place connected by an inhibitor arc has no tokens. Figure

2.13 illustrates an inhibitor arc connecting the input place p0 to the transition t0, which is

denoted by an arc finished with a small circle. In such Figure, the transition t0 is enabled

to fire.

Definition 2.4.10. (Pure net) A Petri net is said to be pure if it has no self-loops. A

pair of a place p and transition t is called a self-loop if p is both an input and output

place of t. Figure 2.14 shows a self-loop net.
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Figure 2.13: PN with an inhibitor arc.

Figure 2.14: Self-Loop.

2.4.2 Elementary structures

Elementary nets are used as building blocks in the specification of more complex appli-
cations. Figure 2.15 shows five structures, namely, (a) sequence, (b) fork, (c) synchro-
nization, (d) choice, and (e) merging.

Figure 2.15: Elementary PN Structures.

Sequence

Sequence structure represents sequential execution of actions, provided that a con-
dition is satisfied. After the firing of a transition, another transition is enabled to fire.
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Figure 2.15(a) depicts an example of this structure in which a mark in place p0 enables
the transition t0. The firing of transition t0 enables the transition t1 (p1 is marked).

Fork

Figure 2.15(b) shows an example of a fork structure that allows the creation of parallel
processes.

Join

Generally, concurrent activities need to synchronize with each other. This net (Figure
2.15(c)) combines two or more nets, allowing that another process continues this execu-
tion only after the end of predecessor processes.

Choice

Figure 2.15(d) depicts a choice model, in which the firing of the transition t0 disables
the transition t1. This building block is suited for modeling if-then-else statement, for
instance.

Merging

The merging is an elementary net that allows the enabling of the same transition by
two or more processes. Figure 2.15(e) shows a net with two independent transitions (t0
and t1) that have an output place in common (P2). Therefore, firing of any of these
two transitions, a condition is created (p2 is marked) which allows the firing of another
transition (not shown in the figure).

Confusions

The mixing between conflict and concurrency is called confusion. While conflict is a
local phenomenon in the sense that only the pre-sets of the transitions with common in-
put places are involved, confusion involves firing sequences. Figure 2.16 depicts two types
of confusions: (a) symmetric confusion, where two transitions t1 and t3 are concurrent
while each one is in conflict with transition t2; and (b) asymmetric confusion, where t1 is
concurrent with t2, but will be in conflict with t3 if t2 fires first.

2.4.3 Petri nets modeling example

In this section, a simple example is given in order to introduce how to model some basic
concepts such as parallel process in Petri nets.
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Figure 2.16: (a) symmetric confusion; (b) asymmetric confusion.

Parallel processes

In order to represent parallel processes, a model may be obtained by composing the
model for each individual process with a fork and synchronization models. Two transi-
tions are said to be parallel (or concurrent), if they are causally independent, i.e., one
transition may fire either before (or after) or in parallel with the other.

Figure 2.17 depicts an example of parallel process, where transitions t1 and t2 represent
parallel activities. When transition t0 fires, it creates marks in both output places (p0
and p1), representing a concurrency. When t1 and t2 are enabled for firing, each one may
fire independently. The firing of t3 depends on two pre-conditions, p2 and p3, implying
that the system only continues if t1 and t2 have been fired.

Figure 2.17 presents a net in which each place has exactly one incoming arc and
exactly one outgoing arc. Thus, such model represents a sub-class of Petri nets known as
marked graphs. Marked graphs allow representation of concurrency but not decisions or
conflicts.

2.4.4 Petri nets properties

The PN properties allow a detailed analysis of the modeled system. For this, two types
of properties have been considered in a Petri net model: behavioral and structural prop-
erties. Behavioral properties are those which depend on the initial marking. Structural
properties, on the other hand, are those that are marking-independent. The behavioral
property reachability is explained in the following section. For other properties, the reader
is redirected to [31].
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Figure 2.17: A Petri net representing parallel activities.

Reachability

The firing of an enabled transition changes the token marking in a Petri net, and
a sequence of firings results in a sequence of markings. A marking Mn is said to be
reachable from a marking M0 if there exists a sequence of firings that transforms M0 to
Mn.

A firing (or occurrence) sequence is denoted by σ = t1, t2, ..., tn. In this case, mi is
reachable from m0 by σ, and it is denoted by m0[σ > mi. The set of all possible reachable
markings from m0 in a net (PN, m0) is denoted by R(PN,m0), or simply R(m0). The
set of all possible firing sequence from m0 in a net (PN,m0) is denoted by L(PN, m0), or
simply L(m0).

2.4.5 Petri Net Analysis Methods

Petri net analysis methods may be divided into three groups: the reachability tree
method, analysis based on the matrix-equations and reduction techniques [31].

The first method involves essentially the enumeration of all reachable markings to
build the reachability graph (reachability tree). This method can be applied to all classes
of nets, however due to the complexity of the system modeled it may suffer from the
state-space explosion issue. The reachability graph is initial marking dependent and so it
is used to analyze behavioral properties. The main problem in using a reachability tree
is the high computational complexity, even if some interesting techniques are used, such
as reduced graphs, graph symmetries, symbolic graph, etc. The second method is based
on state equations. The main advantage of this method, over the reachability graph, is
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the existence of simple linear algebraic equations that aid in determining net properties.
However, it gives only necessary or sufficient conditions to the analysis of properties when
it is applied to general Petri nets. The third method is based on reduction laws. This
method provides a set of transformation rules which reduces the size of models while
preserves system’s properties. However, it is possible that, for a given system and some
set of rules, the reduction can not be completed. The matrix equations and reduction
techniques are applicable only to special subclasses of Petri nets. Therefore, this work
presents the analysis based on reachability tree.

Reachability Based Methods

The analysis method namely Reachability Tree is based on the building of a tree that
makes possible to represent all reachable markings of a net [32].

From the initial marking of a PN, it is possible to obtain some markings through
the fireable transitions. Such possibilities can be represented as a tree, where the nodes
correspond the markings and the arcs represent the fired transitions.

The reachability tree has been generated through initial marking of the net and adding
directly reachable markings as leaves. Next, the process proceeds by these new markings
in order to determine their directly reachable markings. These markings now become the
new leaves of the already generated part of the reachability tree. If the desired marking is
reached, it is not necessary to continue building the tree any further at that node. Such
Reachability trees can be transformed directly into graphs by removing multiple nodes
and connecting the nodes appropriately. This graph is called a reachability graph.

Definition 2.4.11. (Reachability Tree) Considering a Marked Petri netMN = (N ;M0),

a reachability tree is defined by RT = (S, A), where S represents the markings and A the

labeled arcs by tj ∈ T .

Some PN’s properties such as boundedness, safetness, deadlock freedom and reachabil-
ity can be analyzed through these reachability tree T by adopting the following rules [31]:

(i) A Marked Petri net (N ;M0) is bounded and thus R(M0) is finite if and only if (iff)
W (from the weight function - Definition 2.4.1) does not appear in any node labels
in T ;

(ii) A Marked Petri net (N ;M0) is safe iff only 0’s and 1’s appear in code labels in T ;

(iii) A transition t is dead iff it does not appear as an arc label in T ;

(iv) If M is reachable from M0, then there will be a node labeled M ′ such that M ≤ M ′.
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A major problem of this approach arises with the analysis of systems in which the
number of reachable markings is infinite (unbounded systems). Due to the infinite num-
ber of markings, such systems are not easily represented by enumeration.

2.4.6 Time Extensions

The original definition of Petri nets does not include any notion of time and their aims are
to model the logical behavior of systems by describing the causal relations between their
events. Many researches have been proposing different ways for incorporating timing in
Petri Nets, and the first ones related to them were presented by P.M Merlin et al. [33]
and J.D Noe et al. [34]. In Timed Petri nets (TPNs), time may be associated to places,
transitions or tokens [35] such that:

� Places : When the time is associated to places, the markings are only available
after a determinate amount of time.

� Token : The time can be added to the token, in which it have an information
indicating when the token will be available to fire a transition.

� Transitions : When the time is associated to a transition, the transition is only
able to fire after the delay correspondent to the time associated to it.

In TPN, the time can be deterministic, stochastic or between intervals.

� Deterministic : In this case, a deterministic time is adopted to represent the events.

� Interval Computations: In this case, intervals are adopted in order to describe the
higher and shorter limits related to the time of each activity.

� Stochastic : This model adopts a probabilistic approach.

Since transitions represent activities that change the state (marking) of the net, it
seems natural to associate time to transitions. For this, there are two different firing
policies in TPN:

� Three-phase firing: a first instantaneous phase in which an enabled transition re-
moves tokens from its input places, then a timed phase in which the transitions
are working, and a final instantaneous phase in which tokens are deposited into the
output places. Such time information is called duration;

� Atomic firing: Tokens remain in input places during the whole transition delay;
after that period such tokens are consumed from input places and generated in
output places when the transition fires. The firing itself does not consume any
time.
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In atomic firing, when a transition is able to fire, a timer associated to the transition
is started. Such timer decreases in a constant way, and the transition is fired when the
timer value goes to zero. There is an issue related to the other transitions timers and,
in order to solve such issue, the following approaches have been adopted to represent the
memory policies whenever a transition fires [35]:

� Resampling : the timers of all transitions are discarded (restart mechanism). New
values of timers are reset for all enabled transitions at a new marking;

� Enabling memory: transitions that are still enabled in the new marking keeps the
value of the timer; transitions that are not enabled have their timers reset. The
enabling time of a transition is measured since the last instant of time it became
enabled;

� Age memory: the timer value is kept, even if the transition is not enabled in the
new marking. Whenever this transition becomes enabled, the counting is resumed
from the kept value.

2.4.7 Stochastic Petri nets

Petri nets [36] are a classic tool for modeling and analyzing discrete event systems that
are too complex to be described by automata or queueing models. Time (stochastic de-
lays) and probabilistic choices are essential aspects for a performance evaluation model.
In this work, we adopt the usual association of delays and weights to transitions [37].
The transition firing times in SPNs correspond to exponential distribution. Due to the
memoryless property of this distribution, the stochastic process associated with SPNs
corresponds to a continuous time Markov chain. The Markov chain can be easily con-
structed from the reachability graph given the firing rates of the transitions of the SPN.
The extended stochastic Petri net [38] definition adopted in this work is:

Let SPN= (P, T, I, O,H,Π,M0, Atts) be a stochastic Petri net, where

� P = {p1, p2, ..., pn} is the set of places, which may contain tokens and form the
discrete state variables of a Petri net.

� T = {t1, t2, ..., tm} is the set of transitions, which model active components.

� I ∈ (Nn → N)n×m is a matrix of marking-dependent multiplicities of input arcs,
where ijk entry of I gives the (possibly marking-dependent) arc multiplicity of input
arcs from place pj to transition tk [A ⊆ (P×T )∪(T×P ) — set of arcs]. A transition
is only enabled if there are enough tokens in all input places.

� O ∈ (Nn → N)n×m is a matrix of marking dependent multiplicities of output arcs,
where ojk entry of O specifies the possibly marking-dependent arc multiplicity of
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output arcs from transition tj to place pk. When a transition fires, it removes
the number of tokens specified by the input arcs from input places, and adds the
amount of tokens given by the output arcs to all output places.

� H ∈ (Nn → N)n×m is a matrix of marking-dependent multiplicities describing the
inhibitor arcs, where hjk entry of H returns the possibly marking-dependent arc
multiplicity of an inhibitor arc from place pjto transition tk. In the presence of
an inhibitor arc, a transition is enabled to fire only if every place connected by an
inhibitor arc contains fewer tokens than the multiplicity of the arc.

� Π ∈ Nm is a vector that assigns a priority level to each transition. Whenever there
are several transitions fireable at one point in time, the one with the highest priority
fires first and leads to a state change.

� M0 ∈ Nn is a vector that contains the initial marking for each place (initial state).

� Atts : (Dist ,W,G,Policy ,Concurrency)m comprises a set of attributes for the m
transitions, where

– Dist ∈ Nm → F is a possibly marking dependent firing probability distribution
function. In a stochastic timed Petri net, time has to elapse between the
enabling and firing of a transition. The actual firing time is a random variable,
for which the distribution is specified by F . We differ between immediate
transitions (F = 0) and timed transitions, for which the domain of F is (0,∞).

– W ∈ R+ is the weight function, that represents a firing weight wt for immediate
transitions or a rate λt for timed transitions. The latter is only meaningful
for the standard case of timed transitions with exponentially distributed firing
delays. For immediate transitions, the value specifies a relative probability to
fire the transition when there are several immediate transitions enabled in a
marking, and all have the same probability. A random choice is then applied
using the probabilities wt.

– G ∈ Nn → {true, false} is a function that assigns a guard condition related
to place markings to each transition. Depending on the current marking,
transitions may not fire (they are disabled) when the guard function returns
false. This is an extension of inhibitor arcs.

– Policy ∈ {prd , prs} is the preemption policy (prd — preemptive repeat different
means that when a preempted transition becomes enabled again the previously
elapsed firing time is lost; prs — preemptive resume, in which the firing time
related to a preempted transition is resumed when the transition becomes
enabled again),

– Concurrency ∈ {ss, is} is the concurrency degree of transitions, where ss
represents single server semantics and is depicts infinity server semantics in
the same sense as in queueing models. Transitions with policy is can be
understood as having an individual transition for each set of input tokens, all
running in parallel.
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In many circumstances, it might be suitable to represent the initial marking as a
mapping from the set of places to natural numbers (m0 : P → N), where m0(pi) denotes
the initial marking of place pi and m(pi) denotes a reachable marking (reachable state)
of place pi. In this work, the notation #pi has also been adopted for representing m(pi).

SPN modeling example
A simple multi-processor system in which the processor requesting and gaining access to
the common memory can be modeled through SPN. A processor executes locally for some
time (mean duration 1/λ), and then requests access to common memory (gaining access
has mean duration 1/r). Once it has gained access, the duration of common memory
access is assumed to be 1/µ on average. We can model the behavior of a single processor
interacting with the common memory using the SPN depicted in Figure 2.18. Figure 2.19
shows the correspondent reachability graph for that SPN model. In the SPN:

� place Executing represents the local state of the processor when it is executing;

� place Requesting corresponds to the state of the processor when it is ready to start
accessing to the common memory;

� place Acessing is the state when the process is using the common memory;

� place Memory represents the local state of the common memory when it is not in
use;

� transition T0 models the action of the processor executing. The rate of this transi-
tion is λ;

� transition T1 represents the processor gaining access to the common memory. The
rate of this transition is r;

� transition T2 represents the processor accessing the common memory. The rate of
this transition is µ.

Figure 2.18: SPN representing a single processor in a shared memory system.
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Figure 2.19: Reachability Graph of the SPN model of Figure 2.18.

Time Distributions
Figure 2.20 depicts the generic simple component model using SPN, which provides a
high-level representation of a subsystem. One should notice the trapezoidal shape of
transitions (high-level transition named s-transition). This shape means that the time
distributions of such transitions are not exponentially distributed, instead they should
be refined by subnets. The delay assigned to s-transition f is the TTF and the delay of
s-transition r is the TTR. If the TTF and TTR are exponentially distributed, the shape
of the transitions should be the regular one (white rectangles) and TTF and TTR should
be summarized by the respective MTTF and MTTR.

Figure 2.20: Generic simple model - SPN

A well-established method that considers expolynomial distribution random variables
is based on distribution moment matching. The moment matching process presented in
[24] takes into account that Hypoexponential and Erlangian distributions have the av-
erage delay (µ) greater than the standard-deviation (σ) -µ > σ-, and Hyperexponential
distributions have µ<σ, in order to represent an activity with a generally distributed
delay as an Erlangian or a Hyperexponential subnet referred to as s-transition1. One
should note that in cases where these distributions have µ = σ, they are, indeed, equiv-
alent to an exponential distribution with parameter equal to 1

µ
. Therefore, according to

the coefficient of variation associated with an activity’s delay, an appropriate s-transition

1In this work, µ could be MTTF or MTTR and the σ could represent sd(TTF ) or sd(TTR), for

instance.
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implementation model could be chosen. For each s-transition implementation model (see
Figure 2.21), a set of parameters should be configured for matching their first and second
moments. In other words, an associated delay distribution (it might have been obtained
by a measuring process) of the original activity is matched with the first and second
moments of s-transition (expolynomial distribution). According to the aforementioned
method, one activity with µ<σ is approximated by a two-phase Hyperexponential distri-
bution with parameters

r1 =
2µ2

(µ2 + σ2)
, (2.22)

r2 = 1− r1 (2.23)

and

λ =
2µ

(µ2 + σ2)
, (2.24)

where λ is the rate associated to phase 1, r1 is the probability of related to this phase,
and r2 is the probability assigned to phase 2. In this particular model, the rate assigned
to phase 2 is assumed to be infinity, that is, the related average delay is zero.

Figure 2.21: Hyperexponential Model

Activities with coefficients of variation less than one might be mapped either to Hypo-
exponential or Erlangian s-transitions. If µ

σ
/∈ N, µ

σ
̸= 1, (µ, σ ̸= 0), the respective activ-

ity is represented by a Hypoexponential distribution with parameters λ1, λ2(exponential
rates); and γ, the integer representing the number of phases with rate equal to λ2, whereas
the number of phases with rate equal to λ1 is one. In other words, the s-transition is
represented by a subnet composed of two exponential and one immediate transitions. The
average delay assigned to the exponential transition t1 is equal to µ1 (λ1 = 1/µ1), and
the respective average delay assigned to the exponential transition t2 is µ2(λ2 = 1/µ2).
γ is the integer value considered as the weight assigned to the output arc of transition
t1 as well as the input arc weight value of the immediate transition t3 (see Figure 2.22).
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These parameters are calculated by the following expressions:

(
µ

σ
)2 − 1 ≤ γ < (

µ

σ
)2, (2.25)

λ1 =
1

µ1

and 2 =
1

µ2

, (2.26)

where

µ1 =
µ±

√
γ(γ + 1)σ2 − γµ2

γ + 1
, (2.27)

µ2 =
γµ∓

√
γ(γ + 1)σ2 − γµ2

γ + 1
(2.28)

If µ
σ
∈ N, µ

σ
̸= 1, (µ, σ ̸= 0), an Erlangian s-transition with two parameters, γ = (µ

σ
)2 is

an integer representing the number of phases of this distribution; and µ1 = µ/γ, where
µ1(1/λ1) is the average delay value of each phase. The Erlangian model is a particular
case of a Hypoexponential model, in which each individual phase rate has the same value.

Figure 2.22: Hypoexponential Model

For the sake of simplicity, the SPN models presented in the next chapters consider
only exponential distributions.

2.5 RELIABILITY BLOCK DIAGRAMS

Reliability Block Diagram (RBD) is a combinatorial model that was initially proposed as
a technique for calculating reliability of systems by intuitive block diagrams. The block
diagrams provide a graphical description of the system components and connectors, which
can be adopted to determine the overall system state given the state of its components.
The structure of RBD establishes the logical interaction among components defining
which combinations of failed and active elements are able to sustain system operation.
More specifically, the system is represented by subsystems or components connected
according to their function or reliability relationship [39]. Such a technique has also been
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extended to calculate other dependability metrics, such as availability and maintainability
[40].

In RBD models, it is possible to represent a physical component in the operational
mode by a block. On the other hand, to represent a failure of a component, it is necessary
to remove the correspondent block of the component that has failed. If there is at least
one path connecting input and output points, the system is still operating properly. In
other words, if enough blocks are removed in an RBD to interrupt the connection between
the input and output points, the system fails [9] [41].

2.5.1 Structure Properties

In this section, the arrangement of components in a system as well as the structure
function for determining if the system is functioning or not is presented. The structure
functions are adopted to present the relationship of individual components and the state
of the system. Assume that both components and system can either be functioning or
failed. The failed and functioning states (of both system and components) are denoted
by 0 and 1, respectively.

Definition 2.5.1. The state of component i is denoted by xi as follows:

xi =


1 if component i is functioning

0 if component i has failed

for i= 1, 2, ..., n.

where: n represents the number of components.

Additionally, a vector x = (x1, x2, ..., xn) may be adopted to represent the system
state taking into account those n component values. The structure function ϕ maps the
system state vector x to 1 or 0 as shown below:

Definition 2.5.2. The function ϕ determines the system state:

ϕ(x) =


1, if the system is functioning

0, if the system has failed

The blocks (e.g., components) are usually arranged using the following composition
mechanisms: series, parallel, bridge, k-out-of-n blocks, or, even, a combination of previ-
ous approaches. The following lines detail each one of those composition methods.
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Series system

Figure 2.23 shows a reliability block diagram of series system, which only functions
if all of its components are functioning. Therefore, the structure function ϕ(x) assumes
the value 1 when x1 = x2 = ... = xn = 1, and 0 otherwise. These can be represented by
three different ways as shown below:

Figure 2.23: Reliability block diagram of series system.

Definition 2.5.3. The function that determines the system state is:

ϕ(x) =


1, if xi = 1 for all i=1, 2, ..., n

0, if there exists an i such that xi=0

ϕ(x) = min(x1, x2, ..., xn)

ϕ(x) =
∏n

i=1 xi

The three ways of defining the function ϕ(x) that represents series system are equiv-
alent. However, the third option is more adopted due to its compactness [42].

Parallel system

Figure 2.24 shows a reliability block diagram of series system, which only functions
if one or more of its components are functioning. Therefore, the structure function ϕ(x)
assumes the value 0 when x1 = x2 = ... = xn = 0, and 1 otherwise. These can be
represented by different ways as shown below:

Definition 2.5.4. The function that determines the system state is:

ϕ(x) =


1, if there exists an i such that xi=1

0, if xi = 0 for all i=1, 2, ..., n

ϕ(x) = max(x1, x2, ..., xn)

ϕ(x) = 1−
∏n

i=1(1− xi)
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Figure 2.24: Reliability block diagram of parallel system.

Similarly to the series system definition, the three function ϕ(x) definitions are equiv-
alent. However, the third option is more adopted due to its compactness.

K-out-of-n system

A k-out-of-n system functions if and only if k or more of its n components are func-
tioning. Therefore, series and parallel systems represent particular cases of k-out-of-n
systems. The series system is an n-out-of-n system (all components of the system must
be functioning) whereas parallel system is an 1-out-of-n system (at least one components
must be functioning). The function ϕ for a k-out-of-n system is defined as follows:

Definition 2.5.5. The function that determines the system state is:

ϕ(x) =


1, if

∑n
i=1 xi ≥ k

0, if
∑n

i=1 xi < k

Figure 2.25 depicts a RBD example of 2-out-of-3 system. The block diagram indicates
that if at least two out of 3 components are functioning (e.g., 1 and 2, or 1 and 3, or 2
and 3) the system is also functioning. Thus, the structure function ϕ(x) for a 2-out-of-3
system is: ϕ(x) = 1− (1− x1x2)(1− x1x3)(1− x2x3).

Let p be the success probability of each of those blocks. The system success proba-
bility (reliability or availability) is depicted by

Σn
i=k

(
n

i

)
pk(1− p)n−k (2.29)



2.5 RELIABILITY BLOCK DIAGRAMS 38

Figure 2.25: Reliability block diagram of 2-out-of-3 system.

Bridge system

To find the structure function related to the bridge system depicted in Figure 2.26,
we should create a block diagram considering repeated components. It is possible to
note that the system represented on that bridge system operates when at least specific
components are functioning (e.g., (1,3,5); (1,4); (2,3,4); (2,5)). Therefore, an alternative
block diagram that is equivalent (in the failure point of view) is the one shown in Figure
2.27. The correspondent structure function is then ϕ(x) = 1− (1−x1x3x5)(1−x1x4)(1−
x2x3x4)(1− x2x5)

Figure 2.26: Reliability block diagram of bridge system.

2.5.2 Reliability Functions

In this section, we present the reliability functions of those previous structures. In order
to compute reliability of a system, two assumptions must be considered. The first one
is related to the fact that the components are nonrepairable. The structure functions
previously presented may be adopted for both repairable and nonrepairable system since
that functions only relates the components state with the system one. Another important
assumption is related to the components independence in the sense that a failure of one
device does not impacts the probability of failure of the others.
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Figure 2.27: Reliability block diagram of bridge system.

Different from the structure functions, to compute the system reliability (R(t)) a
time t must be considered. For instance, assuming independent failures, Equation 2.30 is
adopted for computing the reliability of series system. Therefore, the system reliability
cannot be greater than the smallest component reliability.

Rs(t) =
n∏

i=1

Ri(t) = exp(−λst), (2.30)

where Ri(t) is the probability that the ith component does not fail before time t; λs =∑n
i=1 λi; λi = is the failure rate of the ith component.

Additionally, the reliability of parallel systems can be obtained taking 1 minus the
probability that all n components fail (i.e., probability that at least one component does
not fail). Equation 2.31 computes the reliability of parallel systems. For other examples
and closed-form equations, the reader should refer to [9] [23].

Rs(t) = 1−
n∏

i=1

(1−Ri(t)) = 1−
n∏

i=1

(1− e−λit). (2.31)

Combined series-parallel systems

Usually, systems are composed of both series and parallel arrangement. Consider the
example depicted in Figure 2.28. To compute the system reliability, the block diagram
may be analyzed piecewise. For instance, starting from the subsystem A (composed of
two components in parallel); going to the subsystem in series (e.g., analyzing regions A
and B). Finally, the whole system can be analyzed for computing the system reliability.
Thus, the system reliability is computed as follows:

RA = 1− (1−R2)(1−R3)

RB = (RA)(R3)
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RS = [1− (1−RB)(1−R4)](R5)

Figure 2.28: Reliability block diagram of series and parallel systems combined.

Levels of redundancy

System redundancy may be achieved by two different approaches: (i) low-level and
(ii) high-level redundancies. The first case considers one or more parallel components,
whereas the high-level replicates the entire system. For instance, let us consider a system
composed of two serial components (1 and 2) which adopts the low-level redundancy
as shown in Figure 2.29. Similarly, Figure 2.30 depicts two components in high-level
redundancy.

Figure 2.29: Reliability block diagram of low-level redundancy.

Figure 2.30: Reliability block diagram of high-level redundancy.

An interesting question is related to which redundancy method has the higher reli-
ability values. There can be no doubt that for both redundant systems, in case both
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components 1 or both components 2 fails, the system will also fail. The reader should
observe that the high-level redundancy system may fail if one component 1 and one
component 2 fails. It is important to state that this behavior does not happen in the
low-level redundancy. Therefore, low-level redundant systems have higher reliability than
high-level redundancy.

The following lines present the reliability for both low-level and high-level redundant
systems. Assume that both components (1 and 2) have the same reliability R. The
reliability of low-level redundancy is:

Rlow = [1− (1−R)2]2 = [1− (1− 2R +R2)]2 = (2R−R2)2.

Considering high-level redundancy, the reliability is:

Rhigh = 1− (1−R2)2 = 1− (1− 2R2 +R4) = 2R2 −R4.

Additionally, Table 2.6 shows a comparison between the reliability values obtained for
those two examples considering low and high-level redundancies. It is possible to note
that when the reliability of those components (R) is greater, the reliability difference
computed for those different redundant systems is reduced.

Table 2.6: Reliability comparison of low and high-level redundancies.

R low-level high-level difference

0.8 0.870400000000 0.921600000000 0.051200000000

0.9 0.963900000000 0.980100000000 0.016200000000

0.99 0.999603990000 0.999800010000 0.000196020000

0.999 0.999996003999 0.999998000001 0.000001996002

0.9999 0.999999960004 0.999999980000 0.000000019996

For other examples and closed-form equations, the reader should refer to [9].

2.6 OPTIMIZATION

Many real-world problems can be modeled as an optimization problem that seeks to max-
imize or minimize a mathematical function of a number of variables while respecting the
system constraints [43]. This mathematical function that is optimized is called objective
function. The objective function can be composed of a single or multi variables depending
on the optimization problem.

Model
A general optimization model can be represented as follows:
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Find x to

Maximize f(x)

Subject to:

gi(x) ≤ 0, i=1, ..., m

hj(x) = 0, j=1, ..., p

where x is an n-dimensional vector named design vector, f(x) is the objective function,
and gi(x) and hi(x) are the inequality and equality constraints, respectively. The number
of variables n, the number of constrains m and p are not necessary related. The model
represented above is know as constrained optimization problem [44].

Let x be a set of variables as x=(x1, x2, ..., xn), then the optimization model for
multiple variables can be defined as follows:

Maximize f(x)

Subject to:

gi(x) ≤ gbi , i=1, ..., m

hj(x) = hbj , j=1, ..., p

Assume that gi(x) and f(x) are linear functions, then we can represent those functions
as follows:

f(x)= c1x1 + c2x2 + ... + cnxn

and

g1(x)= a11x1 + a12x2 + ... + a1nxn ≤ gb1

g2(x)= a21x1 + a22x2 + ... + a2nxn ≤ gb2

...

Where ci and ain are the coefficients of the objective and constraint functions, respectively.
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2.6.1 GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) [45] is an optimization algo-
rithm that has been applied for combinatorial optimization problems [46]. GRASP is
able to achieve values close to the optimal results[47] without analyzing all the possi-
ble solutions for the problem. In computer science, covering problems [48] represent the
problems that ask whether a certain combinatorial structure “covers” another, or how
large the structure has to be to do that. Covering problems are minimization problems
and usually linear programs.

The GRASP algorithm consists basically of two phases: construction and local search.
The construction phase builds a feasible solution in each iteration of the algorithm, whose
neighborhood is investigated until a local minimum is found during the local search phase.
The best solution overall iterations is returned as the result.

Similarly to other optimization methods, the algorithm starts from an initial solution
and then perform local searches to improve the quality of the first solution. In order to
accomplish this, greedy randomized procedures are considered and then the local search
is performed from the constructed model/solution. This two-phase process is repeated
until the stopping condition is satisfied.

2.7 SUMMARY

This chapter presented concepts related to the proposed set of models, ranging from the
definition of data center infrastructures to the Petri net formalism. Initially, data center
systems were presented focusing on the relation between each infrastructure that compose
a typical data center. Afterwards, the concept of dependability and its application was
presented. Next, sustainability was conceptualized in the context of data centers. After
that, attention was devoted to Petri nets models, giving particular focus to stochastic
Petri nets. SPNs are a family of formalisms very suitable for dependability modeling
of systems. Next, reliability block diagrams were presented focusing in dependability
evaluation of systems. Finally a brief review on the concepts related to optimization
techniques was performed with the focus on the adopted optimization method GRASP.



CHAPTER 3

MODELS

In this Chapter, we present the models adopted for verifying the energy flow
as well as to quantify system dependability, cost and sustainability of data
center infrastructures. First, we present the energy flow model, which verifies
the energy flow between the system components. Next, we describe the sus-
tainability model, presenting equations for estimating the operational exergy
destroyed. Finally, the dependability models, which are composed of RBD
and SPN, and the proposed optimization model are presented.

3.1 ENERGY FLOW MODEL

This model represents the energy flow between the system components considering the
respective efficiency and the maximum energy that each component can provide (consid-
ering electrical devices) or extract (assuming cooling devices).

The system under evaluation can be correctly arranged, in the sense that the required
components are properly connected, but they may not be able to meet system demand
for electrical energy or thermal load. For example, consider the power infrastructure
depicted in Figure 3.1 (a). Assuming the demanded power by the IT data center system
corresponds to 20kW (value associated to the target node T ), and the maximum power
capacity (Figure 3.1 (b)) of the internal nodes (i.e., components) UPSs and Power Strips
are for both 15kW. Figure 3.1 (c) depicts a possible energy flow, in which the energy
provided by each UPS is 10kW which is transferred to the Power Strips (10 kW). In
another example, instead of adopting two Power Strips, only one is considered. This
system is depicted in Figure 3.1 (d) and it is possible to support 15kW of the demanded
power (value associated to the target node T ). Thus, the system is not able to cope with
the demanded power.

Figure 3.1 (e) depicts a system with two Power Strips (Power Strip1 and Power Strip
2). The Power Strip1 is able to provide three times more power than the Power Strip2.
This system behavior is specified by weights on the edges of the graph.

Figure 3.2 (a) shows another example considering a data center cooling infrastructure.
Assume the amount of heat that should be extracted from the data center room is 10kW
(the value associated with the source node S), and the maximum cooling capacity (Figure
3.2 (b)) of the internal nodes (i.e., components) CRACs and chiller are 8kW and 18kW,
respectively. Figure 3.2 (c) depicts a possible energetic flow, in which heat is extracted
by both CRACs (with a load of 5 kW in each component) and transferred to the chiller

44
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Figure 3.1: a) Power System example; b) Maximum Power Capacity; c) Successful Energy

Flow; d) Failed Energy Flow; e) Representation with Weight.

(10 kW). The reader should notice here that the filled edges are representing the energy
flowing. Therefore, different from power systems (Figure 3.1), the edges are directed
from the source node S to the target node T when EFM is adopted for modeling cooling
systems. Figure 3.2 (d) depicts another example, in which instead of using two CRACs,
only one is considered. The system depicted in Figure 3.2 (d) is able to extract 8kW of
heat (the value associated to the target node T ). Thus, the system is not able to cope
with the required thermal load.

Figure 3.2: a) Cooling System example; b) Maximum Cooling Capacity; c) Successful Ener-

getic Flow; d) Failed Energetic Flow; e) Representation with Weight.
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Figure 3.2 (e) depicts a system with 2 CRACs (CRAC1 and CRAC 2). The CRAC1
extracts three times more heat than the CRAC2. Algorithms are proposed to compute
the cost and sustainability impact thought the EFM as further detailed in the following
sections. In this work, an energy flow model (EFM) is proposed to represent the energy
flow. This model is a directed acyclic graph and is defined as follows:

G = (N,A,w, fd, fc, fp, fη), where:

� N = Ns ∪ Ni ∪ Nt represents the set of nodes (i.e., the components), in which Ns

is the set of source nodes, Nt is the set of target nodes and Ni denotes the set of
internal nodes, Ns ∩Ni = Ns ∩Nt = Ni ∩Nt = ⊘;

� A ⊆(Ns × Ni) ∪ (Ni × Nt) ∪ (Ni × Ni) = {(a,b) | a ̸= b} denotes de set of edges
(i.e., the component connections);

� w : A → R+ is a function that assigns weights to the edges (the value assigned to
the edge (j, k) is adopted for distributing the energy assigned to the node j to the
node k according to the ratio w(j,k)/

∑
i∈j• w(j, i), where j• is the set of output

nodes of j);

� fd : N →

{
R+ if n ∈ Ns ∪Nt,

0 otherwise;

is a function that assigns to each node the heat to be extracted (considering cooling
models) or the energy to be supplied (regarding power models);

� fc : N →

{
0 if n ∈ Ns ∪Nt,

R+ otherwise;

is a function that assigns each node with the respective maximum energy capacity;

� fp : N →

{
0 if n ∈ Ns ∪Nt,

R+ otherwise;

is a function that assigns each node (a node represents a component) with its retail
price;

� fη : N →

{
1 if n ∈ Ns ∪Nt,

0 ≤ k ≤ 1, k ∈ R otherwise;

is a function that assigns each node with the energetic efficiency;

Verifying the Energy Flow
An algorithm is proposed to verify the power capacity of each component in a system
represented by the Energy Flow Model. The algorithm checks whether the demanded
power does not exceed the maximum power capacity that each component can provide
(considering electrical devices) or extract (assuming cooling devices). The algorithm
adopts a depth-first approach to traverse the graph. In addition, a vector (ccu), which
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has the size of the number of internal nodes, is adopted to associate to each node i ∈ Ni

the current power capacity used of the component.

Algorithm 1 initializeEnergyFlow(G, m)

1: if (m = cooling) then

2: Ss := Ns;

3: else

4: Ss := Nt;

5: end if

6: for i ∈ Ni do

7: ccui := 0;

8: end for

9: result := FALSE;

10: for n ∈ Ss do

11: result := verifyEnergyF low(G, fd(n), n,m) :

12: if result = FALSE then

13: break;

14: end if

15: end for

16: return result;

In the example depicted in Figure 3.2, only one source node (S) and one target node
(T ) are adopted. However, a set of source nodes (Ns) representing different electrical or
heating energy sources may be adopted. Similarly, a set of target nodes (Nt) may also
be considered.

In the case of power systems, the analysis starts from target nodes (or from source
nodes in the case of cooling systems). The Energy Flow Algorithm (Algorithm 1) begins
by checking the type of model to be analyzed (in the line 1, assumem = {cooling, power}).
In the example depicted in Figure 3.2, the set of starting nodes (Ss) corresponds to Ns

(cooling model). Line 7 initializes the vector ccu with zero. The algorithm proceeds by
performing calls to the function verifyEnergyFlow (line 11).

The function verifyEnergyFlow (Algorithm 2) starts by checking the type of model
under analysis to determine the set On. Assuming cooling systems, On represents the
output nodes of the node n (or the input nodes, considering power systems). In the
example depicted in Figure 3.2, the source node (n = S) is the first node to be visited
in G. The respective set of output nodes (On) is obtained in line 2. Line 6 tests if On is
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Algorithm 2 verifyEnergyFlow(G, dn, n, m)

1: if (m = cooling) then

2: On := {o|(n, o) ∈ A;n ∈ Ns ∪Ni; o ∈ Ni};

3: else

4: On := {o|(n, o) ∈ A;n ∈ Nt ∪Ni; o ∈ Ni};

5: end if

6: if (On = ∅) then

7: return TRUE;

8: end if

9: ws := Σo∈On w(n, o);

10: for o ∈ On do

11: if
(
fc(o) ≥ (dn × w(n,o)

ws
) + ccuo

)
then

12: ccuo := ccuo + (dn × w(n,o)
ws

);

13: else

14: return FALSE;

15: end if

16: end for

17: for o ∈ On do

18: verifyEnergyF low(G, out(o, dn × w(n,o)
ws

), o,m);

19: end for
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empty, in which case it returns TRUE. The node n has two output edges that connect
it to the internal nodes CRAC1 and CRAC2. Next, the sum of n′s output edge weights
(ws) is calculated to estimate the amount of energy that should be extracted from n (by
the cooling system).

For each o ∈ On (line 10), the function verifyEnergyFlow checks if the output node
has capacity to cope with the demanded power. Function fc(o) represents the maximum
cooling or power capacity of a component (information supplied by the designer); dn
represents the demanded energy transferred to (e.g, electricity) or extracted (e.g., heat)
from the node n; w(n, o)/ws is the ratio of the weight of the edge that connects node n
and node o to the sum of weights of all output nodes of n. Thus, line 11 evaluates the
capacity of the node o to support an additional demand from a node n. The function
verifyEnergyFlow may terminate and return FALSE (meaning that the demanded power
is greater than the maximum capacity of node o). Otherwise, ccu (of the node o) is
updated (line 12).

Table 3.1: Output power of different devices.

Device Equation

Electrical Ec

η

CRAC 1
η
×QIN

Chiller QF ×
(
1 + 1

COP

)
Cooling Tower Qq ×

(
1 + 1

µ

)
The function verifyEnergyFlow is recursively executed (line 18) for each output node

o, which corresponds to a depth-first approach that traverses the graph. This approach
visits every node in the graph and checks every edge. Therefore, Depth-first approach
complexity is O(N + A). This results in O(N2) complexity for the Algorithm 2. The Algo-
rithm 1 complexity is then O(N3). Additionally, the algorithm adopts specific equations
for computing the output energy of different devices as shown in Table 3.1.

In Table 3.1, η represents the equipment’s efficiency according to the second law of
thermodynamic; QIN is the input thermal energy; QF is the thermal energy of the CRACs
fluid; COP is the coefficient of performance; Qq corresponds to the thermal load that
flows to the cooling tower; and µ = MaximumCoolingPower

MaximumPowerConsumption
. Since the physical behavior

of each device is not the focus of this work, the reader should refer to [49][50].

Quantifying Cost
For the purpose of this study, data center cost is represented by acquisition and opera-
tional costs. The acquisition cost (AC) corresponds to the financial resources required to
purchase the data center infrastructure (according to the retail prices of equipment). To
compute the operational cost (OC), this work only recognizes the costs corresponding to
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the energy consumed, as illustrated in Equation 3.1. Other factors however, could also
be included.

OC = Pinput × T × Cenergy × (A+ α(1− A)), (3.1)

where Pinput is the electrical power consumed; T is the assumed period; Cenergy corre-
sponds to the energy price; A is the availability; and α is the factor adopted to represent
the amount of energy that continues to be consumed after a component has failed.

In order to calculate OC, designers need to first define the energy demanded by the
IT system during the period T. However, since no electrical component is 100% energy
efficient, this figure will differ from the actual energy consumed. Therefore the true
figure (Pinput) must first be calculated. A depth-first approach that traverses the EFM is
adopted to compute the OC.

Figure 3.3: a) System example; b) Efficiency values; c) Computing the energy consumed.

Figure 3.3 (a) shows an example of a power system, composed of two UPSs and one
powerstrip, which provides 100kW of power to IT devices. In the example, the weights
assigned to the edges that connect the internal nodes UPS1 and UPS2 to the Powerstrip
node are, respectively, one and three. In this case, UPS2 component provides three times
more power than UPS1. The efficiencies of UPS1, UPS2 and Powerstrip are 0.9, 0.95 and
0.99 (Figure 3.3 (b)), respectively. To provide the demanded power of 100kW, the power
consumed is 107.80kW as depicted in Figure 3.3 (c).

Algorithm 3 is adopted to compute the data center cost. A depth-first approach
is performed to traverse the graph. This approach visits every node in the graph and
checks every edge. Therefore, depth-first approach complexity is O(N + A). This results
in O(N2) complexity for the Algorithm 4 and O(N3) for the Algorithm 3.

Similarly to the EnergyFlow Algorithm (Algorithm 1), Algorithm 3 begins by identi-
fying (line 1) the model under analysis as cooling or power. In the example depicted in
Figure 3.3, the set of source nodes (Ss) corresponds to Nt (power system). The algorithm
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proceeds by performing calls to the function powerConsumed, which computes the power
consumed by each node n ∈ Ss. A local variable ec is adopted to hold the power returned
by that function (line 8). Afterwards, the algorithm computes the operational cost oc
(line 10) and the acquisition cost ac (line 11). Finally, the algorithm finishes and the
data center cost is returned (line 12).

In the function powerConsumed, n corresponds to the target node (n = T ) which is
the first node to be visited in G. Considering the node T , the set of income nodes is
composed of Powerstrip internal node (On = {Powerstrip}). The algorithm continues by
checking if the set On is empty (line 6). Next, the sum of its income edge weights (ws)
is calculated (line 9).

Algorithm 3 Cost(G,m, t, p, a)

1: if (m = cooling) then

2: Ss := Ns;

3: else

4: Ss := Nt;

5: end if

6: ec := 0;

7: for n ∈ Ss do

8: ec := ec+ powerConsumed(G, fd(n), n,m) :

9: end for

10: oc := result× t× p× a;

11: ac := Σi∈Ni
fp(i);

12: return ac+ oc;

In addition, a vector (oe), which has the size of the set On, is adopted to associate to
each node o ∈ On the value that represents the power that flows through the component.
For each node o ∈ On, the function powerConsumed updates the vector oe (line 11). In
the function power Consumed, fη is a function that relates each component with the
efficiency (supplied by the designer); dn represents the demanded power transferred to
(e.g, electricity) or extracted (e.g., heat) from the node n; w(n, o)/ws is the ratio of the
weight of the edge that connects the node n to the the node o by the sum of weights of
all output nodes of n. Thus, oe+((dn × (w(n, o)/ws))/fη(i)) represents the power that
flows from the component represented by the node o to the component represented by the
node n, taking into account the efficiency of each component. Afterwards, the function
powerConsumed is recursively called (line 15) to compute the power consumed of the
system.
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Algorithm 4 powerConsumed(G, dn, n,m)

1: if (m = cooling) then

2: On := {o|(n, o) ∈ A;n ∈ N ; o ∈ Ni ∪Nt};

3: else

4: On := {o|(n, o) ∈ A;n ∈ N ; o ∈ Ni ∪Ns};

5: end if

6: if (On = ∅) then

7: return oe;

8: end if

9: ws = Σo∈On w(n, o);

10: for o ∈ On do

11: oe = oe +
dn×w(n,o)

ws

fη(o)
;

12: end for

13: energySum := 0;

14: for o ∈ On do

15: energySum := energySum+ powerConsumed(G,
dn×w(n,o)

ws

fη(o)
, o,m);

16: end for

17: return energySum;



3.1 ENERGY FLOW MODEL 53

Quantifying Operational Exergy Consumption
The operational exergy destroyed (or consumption) can be understood as the fraction of
heat dissipated by each item of equipment that cannot be theoretically converted into
useful work. The following equation represents the system operational exergy consump-
tion.

Exop =
n∑

i=1

˙Exopi × T × (A+ α(1− A)), (3.2)

where ˙Exopi is the rate of the exergy destroyed by each device (Table 3.2); T is the
period of analysis; A is the system availability; and α is the factor adopted to represent
the amount of energy that continue to be consumed when a component has failed.

Specific equations are adopted to compute the operational exergy consumption by
each component due to the fact that each device may consume or destroy exergy in
different ways. Table 3.2 presents those equations.

Table 3.2: Operational exergy Equations of different devices.

Device Operational Exergy Equation

Electrical Pin × (1− η)

Diesel Generator Pin ×
(

φ
η
− 1

)
CRAC Qin ×

(
1− Tcold

Troom
+ 1

µ

)
Chiller Qin ×

(
1

COP
− Ttower−Tchilled

Tchilled

)
Cooling Tower Qin ×

(
1− Tamb

Twarm
+ 1

µ

)
In this table, η is the delivery efficiency; Pin is the total input power of the electrical

device; φ is the exergy correction; Qin is the total thermal input of the device; Troom is the
data center room temperature; Tcold corresponds to the CRAC’s cold water temperature;
µ is the ratio of the maximum cooling power by the maximum power consumption;
COP is the coefficient of performance; Ttower is the water temperature that goes to the
cooling tower; Tchilled corresponds to the chilled water temperature; Tamb is the ambient
temperature; Twarm corresponds to the warm water from chillers. All the temperatures
must be in Kelvin. Since the physical behavior of each device is not the focus of this
work, the reader should refer to [49][50].

The experiments present in Chapter 5 consider the following values: for a diesel
generator, the exergy correction φ is 1.06 and the energetic efficiency η=25%; for CRAC
devices, the Troom adopted is 293.15 K and Tcold is 280.15 K; for chillers, the adopted COP
is 4, the considered Ttower is 308.15 K and the adopted Tchilled is 280.15 K; for cooling
towers, the considered Tamb is 298.15 K and the Twarm is 308.15 K.
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Algorithm 5 computeExergyOperational(G,m, T,A)

1: if (m = cooling) then

2: Ss := Ns;

3: else

4: Ss := Nt;

5: end if

6: ex := 0;

7: for n ∈ Ss do

8: exa := 0;

9: ex := ex+ exergyOperational(G, fd(n), n,m) :

10: end for

11: return ex× T × A;

Algorithm 6 exergyOperational(G, dn, n,m)

1: if (m = cooling) then

2: On := {o|(n, o) ∈ A;n ∈ Ns ∪Ni; o ∈ Ni};

3: else

4: On := {o|(n, o) ∈ A;n ∈ Nt ∪Ni; o ∈ Ni};

5: end if

6: if (On = ∅) then

7: return exa;

8: end if

9: ws := Σo∈On w(n, o);

10: for o ∈ On do

11: exa := exa+ exergy(o, dn);

12: end for

13: for o ∈ On do

14: exergyOperational(G, out(o, dn × w(n,o)
ws

), o,m);

15: end for
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Algorithms 5 computes the system operational exergy destroyed by traversing the
graph G. The algorithm starts by checking the type of model that is analyzed (as-
sume m = {cooling, power}). Depending on the model under analysis, the set of source
nodes (Ss) may be Ns or Nt (lines 1-5). A local variable ex is adopted to hold the
exergy destroyed returned by the function exergyOperational (line 9). The function
exergyOperational returns the operational exergy of the system where fd(n) is the de-
manded energy specified by the designer. When the algorithm finishes, it provides the
system operational exergy (sum of the operational exergies of each device multiplied by
the period (T ) and availability (A).

The function exergyOperational starts checking the type of model under analysis
to determine the set On. For cooling models, On represents the set of output nodes of
the node n (or the income nodes when considering power models). A global variable
(exa) is adopted to compute the sum of operational exergies of each component (line
11). Function exergy(o, dn) is adopted to compute the exergy according to the Table
3.2. Additionally, the complexity for both Algorithm 5 and 6 are O(N3) and O(N2),
respectively.

3.2 DEPENDABILITY MODELS

This section presents the basic SPN building blocks for quantifying system dependabil-
ity and the approach utilized for combining them. The proposed models are generic
enough to represent a wide variety of complex redundancy mechanisms and scenarios,
and, are applicable to any equipment in a data center. Regarding SPN basic definitions
and semantic, the reader is referred to [38] for a thorough explanation. This section
also summarizes the well established RBD dependability closed form solutions. Firstly,
the adopted modeling strategy is presented. Next, RBD and SPN buiding blocks are
explained.

3.2.1 Modeling Strategy

A hybrid modeling strategy combining combinatorial and state-based models is employed
to represent system dependability features. This strategy recognizes the advantages of
both reliability block diagrams (combinatorial model) and stochastic Petri nets (state-
based model). Such a hierarchical approach mitigates the complexity of representing
large systems. Depending on the particular complexity and size, the system may be
either represented by one model or split into smaller models, corresponding to the system
parts. RBDs are used for modeling systems (or subsystems) when dynamic dependencies
are absent [51].

Subsystems represented by RBD may include dynamic dependencies between them,
SPN is then employed to compose the final model which corresponds to the entire sys-
tem. Therefore, SPN is used for subsystems that show dynamic dependencies within
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themselves. The subsystem results may then be used as parameters for the higher level
RBD or SPN model. It should be stressed that each subsystem may be represented by a
different formalism. Bearing in mind the characteristics of the system parts, subsystems
may be modeled using either SPN or RBD (Continuous Time Markov Chain - CTMC
and Fault Trees - FT could also be adopted). The results are then combined employing
either SPN or RBD depending on the interactions between the system parts.

3.2.2 RBD Models

The Reliability Block Diagram (RBD) [23] is a combinatorial model that was initially
proposed as a technique for calculating reliability of systems by using intuitive block
diagrams. Such a technique has also been extended to calculate other dependability
metrics, such as availability and maintainability [9]. Figure 3.4 depicts two examples,
in which independent blocks are arranged through series (Figure 3.4(a)) and parallel
(Figure 3.4(b)) compositions.

Figure 3.4: Reliability Block Diagram

In the series arrangement, if a single component fails, the whole system is no longer
operational. Assuming a system with n independent components, the reliability (instan-
taneous availability or steady state availability) is obtained by

Ps =
n∏

i=1

Pi, (3.3)

where Pi is the reliability Ri(t) (instantaneous availability (Ai(t)) or steady state avail-
ability (Ai)) of block bi.

For a parallel arrangement (see Figure 3.4b), if a single component is operational, the
whole system is also operational. Assuming a system with n independent components,
the reliability (instantaneous availability or steady state availability) is obtained by

Pp = 1−
n∏

i=1

(1− Pi), (3.4)

where Pi is the reliability Ri(t) (instantaneous availability (Ai(t)) or steady state avail-
ability (Ai)) of block bi.
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A k-out-of-n system functions if and only if k or more of its n components are func-
tioning. Let p be the success probability of each of those blocks. The system success
probability (reliability or availability) is depicted by:

Σn
i=k

(
n

i

)
pk(1− p)n−k (3.5)

For other examples and closed-form equations, the reader should refer to [9].

3.2.3 SPN Models

Petri nets (PN) [52] are a family of formalisms very well suited for modeling several
types of system, since concurrency, synchronization, communication mechanisms as well
as deterministic and probabilistic delays are naturally represented. In general, Petri nets
are a bipartite directed graph, in which places (represented by circles) denote local states
and transitions (depicted as rectangles) represent actions. Arcs (directed edges) connect
places to transitions and vice-versa.

Petri nets were extended by associating time with the firing of transitions, resulting
in timed Petri nets [53]. The firing time of a transition is the time that must elapse
from the instant that the transition is enabled until the instant it actually fires in iso-
lation. Stochastic Petri nets (SPN) [54] are formally defined as a special case of timed
Petri net where the firing times are considered to be random variables with exponential
distributions.

This work adopts Stochastic Petri Net, which allows the association of probabilis-
tic delays to transitions using the exponential distribution, for conducting dependability
analysis of data center architectures. In SPN, the underlying stochastic process is a ho-
mogeneous CTMC with state space isomorphic to the reachability graph of the PN [8].
Besides that, SPN allows the adoption of simulation techniques for obtaining dependabil-
ity metrics, as an alternative to the Markov chain generation.

In SPN, transitions are allowed to be either timed (exponentially distributed firing
time, drawn as rectangular boxes) or immediate (zero firing time, represented by thin
black bars). Immediate transitions always have priority over timed transitions. In ad-
dition, if both timed and immediate transitions are enabled in a marking then timed
transitions are treated as if they are not enabled. SPN also introduced the concept of
inhibitor arc (represented by a small hollow circle at the end of the arc) which connects
a place to a transition. A transition with an inhibitor arc can not fire if the input place
of the inhibitor arc contains more tokens than the multiplicity of the arc.

Next sections describe the SPN Simple component followed by the cold standby model
which are proposed for estimating the dependability (e.g., availability and reliability) of
data center components. After that, we present the model for common mode failure
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which is adopted when events are not statically independent. Finally, the approach for
combining the components in series and parallel arrangement is described.

3.2.3.1 Simple Component The simple component is a representative building
block characterized by the absence of redundancy, that is, the component might be in
two states, either functioning or failed. In order to compute its availability, the TTF
and TTR should be represented. If both TTF and TTR are exponentially distributed,
MTTF and MTTR are the only parameters needed for computing its availability. The
reliability is also straightforwardly computed by R(t) = exp

−t
MTTF , considering that the

repairing activity is not allowed.

The respective SPN model of the “simple component” is shown in Figure 3.5. This
component has two parameters (not depicted in the figure), namely X MTTF and
X MTTR, which represent delays associated to transitions X Failure and X Repair,
respectively. Both transitions are exponentially distributed (exp) and adopt single server
(ss) concurrency policy (or infinity server, depending on the application). Label “X” is in-
stantiated according to the component name, like UPS FAILURE and UPS REPAIR.
When the delay associated with transitions X Repair and X Failure are marking depen-
dent, additional constants, such as X MTTR i or X MTTF i, are considered. Unless
stated, the reader should assume the delays of both transitions being not marking depen-
dent as well as having single server concurrency policy.

Figure 3.5: Simple component model

Table 3.3 depicts the attributes related to transitions of the simple component model.

Places X ON and X OFF are the model component’s activity and inactivity states,
respectively. The simple component also includes an arc from X OFF to X Repair with
multiplicity depending on place marking. The multiplicity is defined through the expres-
sion IF(#X Rel F lag = 1) 2 ELSE 1, where place X Rel F lag models the evaluation
of reliability/availability. Hence, if condition #X Rel F lag = 1 is false (no token in
place X Rel F lag), then the evaluation refers to availability. Otherwise, the evaluation
concerns reliability. This approach enables us to parameterize the model and it grants
the system evaluation considering repairing (i.e., availability) or not (i.e., reliability).

Table 3.4 shows the conditions that represent the operational and failure states. A
component is operational if the number of tokens (#) in place X ON is greater than
0 and in a failure state, otherwise. Hence, if #X Rel F lag = 1, P{#X ON > 0}
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Table 3.3: Simple Component transition attributes.

Transition Type Delay Markup Concurrency

X Failure exp X MTTF( i) constant/dependent SS

X Repair exp X MTTR( i) constant/dependent SS

means the component’s availability (steady-state evaluation). If #X Rel F lag = 0, then
P{#X OFF > 0} allows computing the component’s reliability, if transient evaluation
is carried out and the initial marking is #X ON = 1 and #X OFF = 0. It should be
highlighted that the presented model is bounded (has only two states), reversible and
live [52]. The last two properties only hold if #X Rel F lag = 0.

Table 3.4: Conditions representing states of the simple component.

State Condition

Operational #X ON> 0

Failure #X ON= 0

3.2.3.2 Simple Component Models considering First and Second Moment
Matching In this section, an extension of the previous simple component model is
presented for modeling systems that consider other distributions (e.g., Erlang). Therefore,
a variation of the initial simple component presented in Section 3.2.3.1 considers the
refinement of transitions in order to take into account first and second moments. In
this particular model, transition X Failure of the model depicted in Figure 3.5 has been
refined for representing an Erlangian distribution (Erlangian s-transition). The parameter
X MTTF (µ) associated to this event has not an exponential distribution and the ratio
(X MTTF/standard deviation - µ

σ
∈ N, µ

σ
̸= 1, (µ, σ ̸= 0)) is an integer not equal to 1.

According to the moment matching method presented, this transition should be refined
into as an Erlang s-transition (see Figure 3.6).

Timed transitions X Failure Erlang1 and X Failure ErlangN represent the expo-
nential phases of Erlang distribution. The arcs connecting place X ON to time transition
X Failure Erlang1 and place p10 to immediate transition t10 has multiplicity depend-
ing on marking, and their arc expression are (γ − 1) = [(µ

σ
)2 − 1] and γ = (µ

σ
)2, re-

spectively (see Table 3.5). The delay assigned to transitions X Failure Erlang1 and
X Failure ErlangN is µ1 = µ/γ. It is worth observing that control elements have been
adopted in this model, so that one token is kept stored in place X ON during all Erlan-
gian phases’ firing; and then being only removed when transition t10 fires, ending all phase
firing and completing the Erlang s-transition execution. For depicting such behavior, one
single arc from transitionX Failure Erlang1 to place X ON and another from that place
to transition t10 had to be assigned as well as one inhibitor arc from the output place
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Figure 3.6: Simple Component with failure represented by Erlang distribution.

of transition X Failure Erlang1 back to itself. In this case, the inhibitor arc avoids
the first phase transition (X Failure Erlang1) unbounded firing of Erlangian model.
This transition might only be enabled again when no token remains in output place of
transition X Failure ErlangN . One might argue that after removing all tokens from
output place of transition X Failure ErlangN, transition X Failure Erlang1 could be
immediately fired again. However, one should bear in mind that immediate transitions
have firing priority over timed ones, so the transition X Failure Erlang1 could never be
fired again before transition t10 firing.

Table 3.5: Simple Component with failure represented by Erlang distribution - Transitions’

attributes

Transition Type Delay Weight Concurrency

X Failure Erlang1 exp X MTTF
γ

- SS

X Failure ErlangN exp X MTTF
γ

- SS

X Repair exp MTTR - SS

t10 im - 1 -

This component also includes an arc from place X OFF to transition X Repair
with multiplicity depending on a place marking. The arc’s multiplicity is defined by
the expression IF(#X Rel F lag1 = 1) 0 ELSE 1, where place X Rel F lag allows the
evaluation of reliability or availability metrics as depicted in previous sections. Table 3.6
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presents the state conditions that represent the operational and the failure component’s
states.

Table 3.6: States conditions of simple component with failure represented by Erlang distribu-

tion.

State Condition

Operational #X ON>0

Failure #X OFF>0

Many other variations of this model have been defined, including further X Failure
(see Figure 3.6) transition refinements (hyperexponential and hypoexponential subnets),
refinements of transition X Repair (see Figure 3.6) and the inclusion of failure coverage
and imperfect repairing.

The RBD availability closed form expression for a “simple component” with TTF
distributed according to an Erlang distribution and a TTR exponentially distributed is
A = γ×µ

(γ×µ)+MTTR
.

3.2.3.3 Cold standby A cold standby redundant system includes a non-active spare
module that waits to be activated when the main active module fails. Figure 3.7 is the
SPN model of such a system, which includes the places, X ON , X OFF , X Spare1 ON ,
X Spare1 OFF which respectively represent the operational and failure states of both
the main and spare modules. Initially the spare module (Spare1) is deactivated, hence at
the start no tokens are stored in places X Spare1 ON and X Spare1 OFF . When the
main module fails, transition X Activate Spare1 is fired to activate the spare module.

Table 3.7 details the attributes of each transition. In this table, MTActivate corre-
sponds to the mean time to activate the spare module. The availability may be computed
by the probability P{#X ON = 1 OR #X Spare1 ON = 1}.

Table 3.7: Cold standby model - Transition attributes.

Transition Priority Delay or Weight

X Failure - X MTTF

X Repair - X MTTR

X Activate Spare1 - MTActivate

X Failure Spare1 - X MTTF Spare1

X Repair Spare1 - X MTTR Spare1

X Desactivate Spare1 1 1
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Figure 3.7: Cold standby model.

3.2.3.4 Common mode failure A prominent feature of SPN regards the represen-
tation of common mode failure (CMF), which usually takes place when events are not
statically independent. In this case, one component failure may affect other system parts,
for instance, impacting the time to failure. Representing common mode failure through
RBD is not trivial, because the system structure changes over time. In the context
of SPN, the combination of simple component blocks can model such failure mode by
associating marking dependent delays to transitions of related components.

Figure 3.8: Common mode failure example

Figure 3.8 depicts an example composed of two components, in which the failure
of C1 impacts the C2’s MTTF. Assuming a failure rate λ, C1 may affect C2 in the
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following way: C2 MTTF = 1/(λ × (#C1 ON + 1)), where #C1 ON represents the
number of tokens in place C1 ON. Additional components may be taken into account,
and the respective MTTRs can be adjusted to consider a marking dependent failure delay,
similar to component C2.

3.2.3.5 Aggregation Component The proposed models also takes into account an
aggregation component (Figure 3.9), which represents the activity (X ON) and inactiv-
ity (X OFF ) states of a subsystem or system (e.g., group of simple component models).
Transitions X Failure and X Repair have one parameter associated (not shown in the
figure), namely, X Fail GE and X Repair GE, respectively, which are guard expres-
sions. More specifically, a transition (e.g., X Failure) can only fire if the respective guard
expression (e.g., X Fail GE) is true. Such transitions are immediate transitions (see
Table 3.8).

Figure 3.9: Simple logical component model

In the same way as simple component model, if condition #X Rel Flag=1 is false
(no token in place X Rel Flag), then the evaluation refers to availability. Otherwise, the
evaluation concerns reliability.

Table 3.8: Aggregation Component attributes.

Transition Type Guard Expression

X Failure im X Fail GE

X Repair im X Repair GE

3.2.3.6 Model composition The model composition is carried out using building
block models and an aggregation component (Figure 3.9) , which is adopted to represent
the relation among the components using appropriate guard expressions on the immediate
transitions.

Without loss of generality, the subsystems are combined by series, parallel, (non)
series-parallel, and hierarchical compositions. RBDs models are similarly combined and



3.2 DEPENDABILITY MODELS 64

well-established closed-form equations are available for those compositions. As an exam-
ple, series composition is presented as follows considering SPN building blocks.

Series Composition. Two components in a series composition means that if just
one of them fails then the whole composition also fails, i.e., the system is operational if
both components are operational. Figure 3.10 presents an equipment named Device that
is composed of two basic non-redundant components, C1 and C2, arranged serially. The
aggregation component, which is represented by the placesDevice Up andDevice Down,
may be adopted to represent operational and failure states, respectively.

Figure 3.10: Series composition of two basic non- redundant components

To completely specify the aggregation component model, enabling functions are de-
fined through guarded expressions that are associated to the immediate transitions De-
vice Repair and Device Failure. The guard expression associated to the transition De-
vice Failure represents the condition in which the system is in the failure state. Likewise,
the guard expression associated to the transition Device Repair defines the logic expres-
sion that describes the conditions referring to the operational state. Table 3.9 presents
the guarded expressions of the aggregation model depicted in Figure 3.10. In the first
row, the transition Failure is enabled when at least C1 or C2 has failed.

Table 3.9: Transitions’ guarded expressions of series composition

Transition Guard Expression

Device Failure (#C1 ON=0) OR (#C2 ON=0)

Device Repair negation of previous guard expression

The system availability is then computed by the probability expression P{#Device Up >
0}, where “#” represents the number of tokens in the place Device Up. Although the
use of aggregation component is very useful when modeling, its adoption increases the
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number of states of the associated CTMC. Therefore, its use is indicated for modeling
system and testing the behavior through the token game functionality that is described
in the Chapter 4. Exact the same availability results can be obtained (without the ag-
gregation component) by the evaluation of the probability expression P{(#C1 ON =
1)AND(#C2 ON = 1)} which represents the series characterization. Additionally, such
an approach can be adopted to combine N components represented by either a single
aggregation component model or probability expression.

Parallel Composition. The simplest example of redundancy could be achieved
by combining two devices in a parallel configuration. This composition only fails if
both components have failed. Assuming the SPN model depicted in Figure 3.10, the
the availability of the parallel composition of C1 and C2 is obtained by the probability
P{(#C1 ON = 1)OR(#C2 ON = 1)}.

Series-Parallel Composition. The rules defined to serial and parallel compositions
may be combined to define more complex arrangements. For instance, considering a
system composed of three components C1, C2 and C3. Assuming that the system is
operational if C1 is working and at lest one of C2 or C3 is operational. In this case, the
component C1 is in series to the parallel composition of C2 and C3. The SPN model
of this system is shown in Figure 3.11. The availability is computed by the probability
expression P{(#C1 ON = 1)AND((#C2 ON = 1)OR(#C3 ON = 1))}.

Figure 3.11: SPN model of Series-Parallel Composition

3.3 OPTIMIZATION

Many problems found in practice are either computationally intractable by their nature
or sufficiently large that may preclude the use of exact algorithms [45]. In this work we
adopted an algorithm based on the GRASP to optimize the dependability, sustainability
and cost issues estimated through the EFM and dependability models. GRASP is a
metaheuristic applied for combinatorial optimization problems [46]. GRASP is able to
achieve values close to the optimal results with error around 2% for solving covering
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problems[47]. In a cover problem, we deal with a given set of objects X and a set F of
subsets of X. The goal is to pick some subset of F that satisfies some constraints and
optimizes some objective value. For example, one might want to pick the smallest subset
of F that contains (covers) all objects of X. Covering problems are minimization problems
and usually linear programs. As further detailed in this section, the optimization model
in this thesis focuses in minimizing the downtime, cost and energy consumption of data
center architectures and a GRASP based algorithm was implemented to allow us to
perform such optimization technique.

The algorithm consists basically of two phases: construction and local search. The
construction phase builds a feasible solution in each interaction of the algorithm, whose
neighborhood is investigated until a local minimum is found during the local search phase.
The best solution overall iterations is returned as the result.

Similarly to other optimization methods, the adopted algorithm starts from an initial
model and then perform local searches to improve the quality of the first solution obtained.
In order to accomplish this, some greedy randomized procedures are adopted and then the
local search is performed from the constructed model/solution. This two-phase process
is repeated until the stopping condition is satisfied.

The Optimization algorithm has seven parameters. These parameters are: the graph
G (EFM), maxItr that represents the maximum number of iterations executed by the
Optimization method, solution which is the variable that holds the computed solutions,
β is a value between the range [0,1] which represents the greediness degree, nTriesNeighbor
is the number of tries to find other solutions by the neighbors, sizePollSol is the size of
the poll of solutions, CL is the candidate list. The following lines present the algorithm,
its functions, and briefly describe the method.

The Optimization method (Algorithm 7) begins by setting the result variable to an
infinity number (line 1). The algorithm proceeds by calling (the number of calls is de-
termined by the maxItr variable) the Construction and LocalSearch functions (lines 3
and 4). The Construction function constructs a solution through the candidate list of
components. The LocalSearch function generates a new solution created by the neighbor-
hood of the previous solution generated by the Construction function. Afterwards, the
algorithm checks if the new solution is better (in terms of cost) than the solution held by
the result variable (line 5). The result variable holds the new solution (line 6) when that
check returns TRUE. Otherwise, the algorithm proceeds to another iteration until reach
the maximum number of iterations to return the best solution obtained by the method.
The following lines present both Construction and LocalSearch functions in more details.

Construction
The construction phase, which is based on a greedy heuristic, creates feasible solutions
iteratively [55]. The Construction function (Algorithm 8) begins by emptying the solu-
tion variable (line 1). Afterwards, a restricted candidate list (RCL) is created for each
node element of the graph G according to the β greediness degree (line 3). Let β ∈ [0, 1],
in which β = 1 produces a random construction and β = 0 corresponds to a pure greedy
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Algorithm 7 Optimization(G, maxItr, solution, β, nTriesNeighbor, sizePollSol, CL)

1: result := ∞;

2: for i = 1 to maxItr do

3: solution := Construction(G, β, CL);

4: solution := LocalSearch(solution, nTriesNeighbor, sizePoll− Sol);

5: if (computeCost(solution) < result) then

6: result := computeCost(solution);

7: end if

8: end for

9: return result;

algorithm. For instance, β = 0.2 means that the 20% of the better solutions according
to the computed cost are selected and returned to the RCL. A node is then randomly
selected from the RCL and added to the solution vector (line 4). Next, the LC is updated
(line 5). This process is repeated for all node elements that compose the graph G.

Algorithm 8 Construction(G, β, CL)

1: solution := ⊘;

2: for (node = 0 to size(G)) do

3: RCL := getBestCandidates(CL, node, β);

4: solution[node] := getRandomNode(RCL);

5: CL := removeNode(CL, node);

6: end for

7: return solution;

Local Search
The solutions created by the Construction function are not guaranteed to be locally op-
timal [56]. A solution is locally optimal if there is no better solution in its neighborhood.
The LocalSearch function improves the previous obtained solution by the successive re-
placement of the current solution by a better one from the neighborhood of the current
solution. The success of the LocalSerach function depends on the starting solution re-
ceived as parameter as well as on the suitable choice of a neighborhood structure [56].

The LocalSearch function (Algorithm 9) starts by initializing the neighborhood solu-
tion (neighborSol), the poll of solutions (pollSol), cont1 and cont2 to null (lines 1 and
2). The algorithm proceeds by computing a new solution from the current solution (line
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4). This new solution is created after randomically changing one node of the current
solution by another element obtained from the RCL. If the neighborhood solution ob-
tained is feasible as well as its cost is smaller than the previous solution (line 5), then
the current position in the poll of solutions (cont2 ) receives this new solution (line 6).
Next, the cont2 is incremented (line 7) and the current solution (solution) is set as the
new solution created. These steps are repeated until the poll of solutions is filled in or
the number of tries to find new solutions in the neighborhood is reached. Afterwards, in
case the poll is not empty, a solution is randomically selected from the poll of solutions
(line 13) and it is returned to the Algorithm 7 (line 15).

Algorithm 9 LocalSearch(solution, nTriesNeighbor, sizePollSol)

1: neighborSol, pollSol := ⊘;

2: cont1, cont2 := 0;

3: repeat

4: neighborSol := getNeighborSol(solution);

5: if (neighborSol is feasible) && (computeCost (neighborSol) < computeCost (solu-

tion)) then

6: pollSol[cont2] := neighborSol;

7: cont2 + +;

8: solution := neighborSol;

9: end if

10: cont1 + +;

11: until (cont2 = sizePollSol)or(cont1 = nTriesNeighbor)

12: if (pollSol ̸= ⊘) then

13: solution := getRandom(pollSol);

14: end if

15: return solution;

3.3.1 Optimization Model

In this section, we present the proposed optimization model. This optimization model as
well as the algorithm are implemented with the support of the Mercury environment as
detailed in the proposed methodology (Section 4.1).

The objective is to minimize the overall costs by increasing the availability and the
energy efficiency while trading-off the acquisition costs subject to a given set of restric-
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tions. The following lines describe the optimization model.

Parameters
G is an EFM graph,
D is a dependability model (RBD or SPN),
dc is the downtime cost per hour of unavailability of the system under analysis.

Decision variables
MTTFi is the mean time to failure of the equipment i,
ηi is the energetic efficiency of the equipment i,
pi is the retail price of the equipment i.

Objectives
The objective is quantified by the following equations.

f1 : To minimize the cost related to the downtime of the system by increasing the avail-
ability.

f1 = (1− A)× T × dc, (3.6)

where A is the system availability, T is the period in hours, and dc is the mean downtime
cost per hour.

f2 : To minimize the operational cost by increasing the energetic system efficiency.

f2 = Pinput × Cenergy × T × (A+ α(1− A)), (3.7)

where Pinput is the electrical energy consumed, T is the assumed period, Cenergy is the
energy cost, A is the availability, and α is the factor adopted to represent the amount of
energy that continues to be consumed when a component has failed.

f3 : To minimize the acquisition cost.

f3 =
n∑

i=1

pi. (3.8)

Objective Function
We reduced the goals in the following objective function:

To minimize f = λ1f1 + λ2f2 + λ3f3,
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where λ1..3 represents the weight given to the f1..3 functions and the
∑3

i=1 λi = 1.

Restrictions
For all data center devices, the acquisition cost of each internal node of the EFM is
greater than or equal to zero,

∀n
i=1pi ≥ 0.

The energetic efficiency (η) of all devices must be in the range [0,1].

∀n
i=10 < ηi ≤ 1.

For all data center devices, the MTTF must be greater than or equal to zero.

∀n
i=1MTTFi ≥ 0.

The maximum power capacity of all devices must not be exceeded.

∀n
i=1CCUi ≤ fc,

where CCU is the current capacity used by each device i, and fc is a function that assigns
each node with the respective maximum energy capacity.

3.4 SUMMARY

In this thesis models are proposed to conduct the integrated evaluation of sustainability,
dependability and cost issues on data center architectures. This chapter presented those
proposed models. Initially, we presented the energy flow model and the algorithms that
traverse the graph to estimate the cost and sustainability impacts as well as that verifies
the power restrictions of each component. Next, the modeling strategy that considers the
advantages of both SPN and RBD models for dependability evaluation was described.
Afterwards, the adopted SPN and RBD models were presented. Finally, the proposed
GRASP based optimization algorithm that improves the evaluation results of EFM and
dependability models through the selection of the appropriate components from the list
of candidate devices was presented.



CHAPTER 4

EVALUATION ENVIRONMENT

This chapter presents an overview of the conceived methodology for evalu-
ating data center infrastructures taking into account dependability, cost and
sustainability issues. In addition, this chapter briefly presents the evaluation
environment that has been developed to provide support to the integrated
evaluation of dependability, sustainability and cost issues on data center in-
frastructures. The evaluation environment is composed of ASTRO, Mercury
and optimization module. This chapter starts by presenting the adopted
methodology that takes the advantages of RBD, SPN and EFM models. Af-
ter that, the ASTRO tool is shown. Next, the Mercury environment that
supports for modeling proposes RBD, SPN, CTMC and EFM is presented.
Finally, it shows the optimization module that supports two optimization
algorithms: a GRASP based and the PLDA.

4.1 METHODOLOGY: AN OVERVIEW

The main goal of this thesis is to propose a set of models for the integrated quantifica-
tion of sustainability impact, cost and dependability of data center power and cooling
infrastructures. A hybrid modeling strategy which combines combinatorial and state-
based models is adopted for representing the system dependability features. On one
hand, RBDs allow to represent component networks and provide closed form equations.
Nevertheless, such models face drawbacks for thoroughly handle failures and repairing
dependencies that are often faced when representing dynamic redundancy methods. On
the other hand, state-based methods can easily consider those dependencies, allowing
to represent complex redundant mechanisms for instance. However, they suffer from
the state-space explosion. Some of those formalisms allow both numerical analysis and
stochastic simulation, and SPN is one of the most prominent models of such class. This
work adopts closed form expressions for solving RBD, and analysis or simulation for
computing the SPN results.

In addition, a model is proposed for verifying that the energy flow does not exceed
the maximum power capacity that each component can provide (considering electrical
devices) or extract (assuming cooling equipment). In order to accomplish that, algorithms
that traverse the EFM are proposed to perform the power verifications as well as to
estimate data centers cost and sustainability.

An optimization technique is also adopted for improving the results obtained by RBD,

71
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SPN and EFM models through the selection of the appropriate devices from a list of
candidate components. This list corresponds to a set of alternative components that may
compose the data center power and cooling infrastructures. The optimal result can be
achieved by evaluating all possible combinations from the list of candidate components.
However such evaluation is quite time consuming. Therefore, the adopted optimization
method represents an alternative approach that provides similar results in relation to the
optimal ones in a reduced time.

An integrated evaluation environment has been developed to support both the pro-
posed set of models and algorithms previously mentioned. This engine is composed of
ASTRO, Mercury and an optimization module. ASTRO provides views (e.g. power and
cooling data center views) from which data center designers are able to model systems
without the need to know the formalisms that are adopted to compute the desired met-
rics. The models created in ASTRO can be converted to the fundamental models that are
supported by the evaluation environment Mercury. Mercury provides support to EFM,
SPN, RBD and CTMC models. In the Mercury engine, algorithms were implemented to
traverse the EFM to perform the power verifications as well as to estimate data centers
cost and sustainability impacts. Additionally, an optimization engine is able to com-
municate with Mercury to conduct the evaluation and provide the results for different
optimization algorithms.

Figure 4.1 depicts an overview of the proposed methodology for evaluating depend-
ability, cost and sustainability issues of data center infrastructures. The methodology
first step concerns understanding the system, its components, their interfaces and inter-
actions. This phase should also provide (as product) the set of metrics (e.g., availability,
reliability, costs) that should be evaluated. The next broad phase aims at creating the
high-level models (e.g., from ASTRO power view) that represent the data center architec-
ture. The high-level models allow data center designers to specify power, cooling and IT
systems following the standard adopted by engineers. These models can be converted to
dependability models (e.g., Fault tree, Continuous Time Markov Chain (CTMC), SPN
and RBD). It is important to state that submodels may be generated to mitigate the
complexity of the final model. The evaluation of each submodel provides the system
results.

The following step is the creation of dependability (e.g., RBD or SPN) and energy
flow models. These models allow the integrated evaluation of dependability, cost and
sustainability. Additionally, the EFM verifies if the energy flow does not exceed the max-
imum power capacity that each component can provide (considering electrical devices)
or extract (assuming cooling equipment). Both models (dependability and EFM) may
be the input of optimization methods (see Section 2.6). The optimization methods can
be either executed or not.

An evaluation process is directly conducted to provide the estimate results (e.g., ac-
quisition and operational costs, availability, downtime, exergy consumption) when the
optimization process is not selected. Otherwise, the data center designer informs the
metrics (e.g., cost, availability) that should be improved. A list of candidate elements
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Figure 4.1: Methodology

is also provided representing a library of components (e.g., UPS, STS, power strip) with
different MTTFs, acquisition cost and energetic efficiency, for instance. The method
evaluates first the dependability model to obtain the availability result. Next, it adopts
the availability result to compute the sustainability and cost issues while respecting the
system restrictions quantified by the EFM. The adopted optimization approach provides
both dependability and EFM models optimized. These models are composed of the ap-
propriate components from the candidate list that optimizes the desired metrics. Lastly,
the evaluation of those models provide the metrics (e.g., availability, cost and sustaina-
bility) optimized.

Optimization algorithms have been adopted to optimize the fundamental models
(RBD, SPN and EFM). This work considers a GRASP based algorithm and a Power
Load Distribution Algorithm (PLDA) [57]. The GRASP based method improves the re-
sults obtained by RBD, SPN and EFM models through the selection of the appropriate
devices from a list of candidate components. This list corresponds to a set of alternative



4.2 ASTRO 74

components that may compose the data center architecture. The PLDA is an algorithm
that improves the power load distribution among data center power devices by changing
the weights of the edges present on EFM models. The main goal of this algorithm is
to automatically provide a power distribution that help data center designers to define
power architectures respecting the system restrictions that are quantified by the EFM.
Additionally, it is important to highlight that this work has considered two optimization
algorithms, however, others methods can be easily included.

4.2 ASTRO

ASTRO [58] provides interfaces that allow data center designers to model power, cooling
and IT systems without knowing the formalism (e.g., SPN, RBD, CTMC and EFM)
that has been employed. This interface is according to the engineering standards [59].
The models created through ASTRO can be converted into the fundamental models.
Mercury provides support for modeling and evaluating the fundamental models that are
SPN, RBD, EFM and CTMC. Mercury is an independent environment with its graphical
interfaces that supports other tools such as ASTRO and the algorithms implemented
in the optimization module. Figure 4.2 illustrates the relationship between ASTRO,
Mercury and optimization module. The following sections present ASTRO.

Figure 4.2: Evaluation Environment.
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4.2.1 Power, Cooling and IT System editors

The power system editor provides a high-level view for modeling data center power sys-
tem infrastructures. The designer may define the component attributes of a system. For
instance, dependability, cost and sustainability attributes. Basically, the editor provides
icons to represent each component (i.e., equipment), in such a way that the designer
specifies the respective connections through arcs. For instance, if a component ‘A’ pro-
vides power to a component ‘B’, there is an arc that connects ‘A’ to ‘B’. Figure 4.3
depicts the power system editor. Since ASTRO provides high-level models, the models
created through these editors must be converted into RBD, SPN, CTMC or EFM to allow
dependability, sustainability and cost evaluations.

Figure 4.3: ASTRO environment - power system editor

Similarly to the power editor, the cooling and IT system editors adopt high-level
models for representing cooling and IT data center infrastructures. These editors also
provide functionalities to translate the high-level models into RBD, SPN, CTMC and
EFM models to compute dependability and sustainability metrics, for instance.

4.3 MERCURY

Dependability models are classified into state-space and non-state-space models[60]. Mer-
cury provides the support of RBDs for non-state-space models. Dependability evaluation
using RBDs can be conducted under the assumption that the failure of the system com-
ponents are independent. To model systems with more complex interactions between
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components, Mercury provides support for Markov Chain (MC). The hand construction
of Markov models are tedious and error-prone when the number of states becomes very
large [60]. Therefore, Mercury also provides the support for the creation and evaluation of
other state-space model, SPNs. SPN models can be automatically converted into Markov
models to be solved.

In addition, Mercury also support the creation and evaluation of EFM. The EFM
computes the sustainability and cost estimates of the power and cooling infrastructures
whilst conforming to the energy constraints of each device. These estimates are provided
by algorithms which compute the metrics of interest by traversing the EFM. The following
subsections present the SPN, CTMC, RBD and EFM editors and evaluators.

4.3.1 SPN editor and evaluator

In Markov Chain and SPN models, representative numerical techniques are available for
both stationary (i.e., GTH and Gauss-Seidel [61] [25]) and transient (i.e., Uniformiza-
tion and Runge-Kutta [8]) analysis. Time-dependent metrics are obtained by transient
analysis or simulations, whilst steady-state metrics are achieved with stationary analysis
or simulations. Regarding SPN models, the evaluation environment also allows depend-
ability evaluation through transient and stationary simulations [62]. The simulation is
adopted when the state space becomes very large.

Figure 4.4 depicts the SPN editor, in which the models can be obtained from a high
level model translation or created by the user from scratch. To assist the validation of
SPN models, the editor has a feature, namely, token game, which makes possible the
firing of transitions graphically and interactively according to the current net marking.
The following subsection presents the simulation process adopted in Mercury.

Simulation
Mercury adopts simulation as one of the mechanisms for evaluating SPN models. Two
modalities are available: (i) transient simulation, which is time-dependent; and (ii) sta-
tionary simulation, which assumes an infinite length of time (i.e., long-run behavior). The
simulation process for both modalities is almost the same, discerning in some aspects of
the stop criteria (e.g., the simulation time for the transient approach). In general, Mer-
cury environment allows setting the maximum relative error, the confidence interval, the
minimum number of firings for each transition and the maximum simulation time. For a
better understanding, the adopted simulation process (Figure 4.5) is presented as follows.

Firstly, statistical counters (variables adopted for storing statistical information about
system performance) are initialized and the parameters of the stop criteria are set. Next,
the simulation clock (variable indicating the current time of the simulation) is set to “0”
and the event list is created (i.e., list that stores the enabled transitions). Afterwards, the
simulation enters a loop, which corresponds to the actual evaluation of the SPN model.
In each iteration, the enabled transitions are added to the list and the disabled transitions
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Figure 4.4: Mercury - SPN editor and evaluator

are removed.

From the event list, the simulation engine selects the transition with the smallest
time, which was generated according to a random variable satisfying the transition’s
distribution (e.g., exponential distribution). The selected transition is fired, and the
simulation clock, statistical counters and the marking of the SPN model are updated. If
the simulation criteria are achieved (e.g., the relative error is satisfied), the simulation
stops.

It is important to state that batches of simulation runs are performed (i.e., groups of
simulations) to estimate the metrics of interest. Basically, the number of batches depends
on the specified confidence degree, relative error and the initial number of runs set by
the designer. Besides, the number of simulation batches are updated, whenever the error
calculated for the metrics (after the initial batches) does not satisfy the relative error
informed by the user [63].

4.3.2 CTMC editor and evaluator

Mercury environment provides an editor and evaluator (Figure 4.6), in which users can
create, edit and evaluate CTMC models. Representative numerical techniques are avail-
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Figure 4.5: Mercury - Simulation process

able for stationary analysis (i.e., GTH, Gauss-Seidel [8]) as well as transient evaluation
(i.e., Uniformization, Runge-kutta and Trapezoid-Euler [8]).

4.3.3 RBD editor and evaluator

The RBD editor and evaluator performs reliability and availability analysis using block
diagrams. The types of reliability configurations supported by the RBD editor and eval-
uator are: Series, Parallel, K-out-of-n and Bridge. In this editor, a diagram should
only contain one input and one output node. RBDs provide closed-form equations, so
the results are usually obtained faster than using SPN simulation. However, there are
many situations (e.g., dependency among components) in which modeling using RBD is
harder than adopting SPN. Figure 4.7 shows the RBD view of the tool, such that some
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Figure 4.6: Mercury environment - CTMC editor and evaluator

components are in series and parallel arrangement.

Additionally, the RBD evaluator allows the calculation of reliability importance, struc-
tural and logical functions as well as bounds of dependability measures. Reliability Im-
portance (RI) is a technique that allows to quantify the improvement in system reliability
due to a component, when the respective reliability is increased by one unit. Structural
and logical functions are alternative ways of representing the system mathematically, in
which the former adopts algebraic functions and the latter utilizes logical expressions.
The benefits of such representations contemplate additional tools which may indicate
system parts that can be replicated to increase overall availability in a simpler way, for
instance.

Bounds of dependability measures is a method to calculate dependability metrics
(e.g., reliability) when the RBD model is too large. In this case, such a technique can
provide approximations for the exact metric faster than solving all closed-form equations
precisely. In short, the bounds are obtained using minimal paths and/or minimal cuts.
Minimal path is the minimal number of components in operational state that guarantee
the system functioning, whereas minimal cut is the minimal number of components in
failure state that lead to system failure. As the bounds are calculated iteratively, ASTRO
environment shows the estimated bounds according to the user parameters and, also, all
intermediary values calculated (see Figure 4.8).
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Figure 4.7: Mercury environment - RBD editor and evaluator

Figure 4.8: Mercury environment - bounds evaluation

4.3.4 EFM Editor and Evaluator

Figure 4.9 depicts the EFM editor and evaluator. The EFM is proposed to compute the
sustainability and cost estimates of data center power and cooling infrastructures without
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exceeding the power constraints of each device. The EFM is defined as a XML file to
allow the model to communicate to other tools. For instance, the proposed GRASP based
method (Section 2.6) is implemented as a separate module that receives as a parameter
the EFM model to compute the exergy consumption and cost issues as well as the RBD
or SPN models to compute the dependability metrics. Each model is executed several
times with different parameters to generate the optimized versions of the models.

Figure 4.9: EFM Editor and Evaluator.

In the EFM, the demanded energy that should be provided or extracted is associated
to the TargetPoint1 node considering power models (or to the SourcePoint1 in case of
cooling system). The weights associated to each edge is adopted for representing the
energy that should flow when a fork structure is present. Although not shown in the
example depicted in Figure 4.9, multiple source and target nodes may be considered to
represent a data center with more than one source point.

Figure 4.10 shows the evaluation results of the energy flow (Figure 4.10 (a)) and
the integrated evaluation of sustainability, cost without exceeding the power constraints
(Figure 4.10 (b)). In the energy flow results depicted in Figure 4.10 (a), the reader should
notice that the first component exceeding the energy constraint is detected and shown in
the results.

4.4 OPTIMIZATION MODULE

The optimization module is able to evaluate RBD, SPN, CTMC and EFM models by
calling the Mercury engine. The Mercury conducts the evaluation and provides the results
to the optimization module. A GRASP based algorithm and a power load distribution
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Figure 4.10: EFM Example Results: a) Energy Flow Result; b) All Results.

algorithm (PLDA) [57] represent two optimization techniques that were implemented in
that module. The proposed GRASP based method improves the results obtained by
RBD, SPN and EFM models through the selection of the appropriate devices from a list
of candidate components. This list corresponds to a set of alternative components that
may compose the data center architecture. The PLDA is an algorithm that improves the
power distribution among devices by changing the weights of the edges present on EFM
models.

Optimization algorithms are able, for instance, to reduce the number of scenarios to
be evaluated and, therefore, the time spent to achieve a solution is also reduced. However,
there is no guarantee that the solution obtained through optimization algorithms provide
the optimal result. Indeed, in many cases, optimization algorithms achieve results close
to the optimal ones. Additionally, the necessary time to evaluate all possible scenarios
may turn this strategy not recommended for complex systems. Therefore, optimization
strategies represent an alternative option that is expected to achieve results close to the
optimal in a reduced runtime.

Figure 4.11 shows a screenshot of the optimization tool from which users are able
to select the optimization method as well as to set the respective parameters. In the
proposed Grasp based optimization algorithm, some parameters are the number of ele-
ments adopted by a benchmark to create the list of candidate devices that may compose
the final optimized model; the greedness degree; and the number of iterations that the
optimization algorithm executes, where a higher number provides results closer to the
optimal however demanding more time to be executed. Additionally, users define the
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desired metrics (e.g., cost, availability and sustainability) to be optimized. In the Grasp
based optimization algorithm, the optimization process consists on the evaluation of the
model considering different devices from the list of candidate components. In addition,
different seeds are also adopted. Figure 4.12 shows a spreadsheet that is automatically
filled out with the evaluation results.

Figure 4.11: Screenshot of the Optimization Tool.

Figure 4.12: Spreadsheet results of the Grasp based optimization algorithm.



4.5 SUMMARY 84

4.5 SUMMARY

This chapter presented the evaluation environment that is composed of ASTRO, Mer-
cury and optimization module. ASTRO was described showing the data center power and
cooling views. Next, the Mercury that supports SPN, RBD, EFM and CTMC models
was presented. After that, the optimization module and its functionalities were described
to allow data center designer to optimize the desired metrics such as dependability, sus-
tainability and cost of data center architectures.



CHAPTER 5

CASE STUDIES

This chapter presents case studies that illustrate the applicability of the pro-
posed methodology and models with the support of the developed evaluation
environment composed of ASTRO, Mercury and optimization module to eval-
uate data center power and cooling infrastructures. The first case study is
conducted to provide insights on validation of the proposed evaluation en-
vironment. Next, a study that analyzes more complex data center power
infrastructures through the proposed set of models and following the adopted
methodology was conducted. This study also considers RI index. After-
wards, the case study III main goals are to present a comparative study of
real-world data center architectures (from HP Labs Palo Alto, U.S. [64]) as-
sessing dependability as well as environmental impact and operational energy
cost associated to the energetic mix of U.S. and Brazil. Finally, the last two
case studies are conducted to present the proposed optimization algorithm
applied on simple data center power architectures as well as on a real-world
infrastructure.

5.1 CASE STUDY I

The main goal of this case study is to present the first evaluation results related to depend-
ability, cost and sustainability issues obtained through the proposed models following the
adopted methodology. This case study also provides insights on validation demonstrating
the accuracy of the evaluation environment (ASTRO and Mercury) results in comparison
to TimeNET [65] and Sharpe [66] tools.

Five data center power infrastructures have been considered (see Figure 5.1) with in-
creasing redundancy, such that each successive architecture has an additional component
duplicated. For each architecture, we estimate: (i) availability, (ii) sustainability impact
and (iii) costs. In the second part of this study, scenarios considering cheaper devices
with lower MTTFs are analyzed to show that similar availability levels can be obtained
with lower cost due to the redundancy strategies adopted.

5.1.1 Models

In the baseline architecture, A1, there are no redundant components. Figure 5.2 depicts
the EFM, SPN and RBD models correspondent to the architecture A1. The MTTFs,
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Figure 5.1: Data Center Power Infrastructures.

MTTRs, acquisition cost and energetic efficiency values for each equipment were taken
from [67] [68] [69] and are shown in Table 5.1.

Table 5.1: MTTF, MTTR, acquisition cost and efficiency values for power devices

Equipment MTTF (hs) MTTR (hs) AC (USD) Eff (%)

ATS 500,000.00 0.33 800.00 99.5

STS 240,384.62 6.00 800.00 99.5

Subpanel 1,520,000.00 2.40 200.00 99.5

Step Down Transformer 1,412,908.33 156.01 550.00 98.5

UPS 250,000.00 8.00 3,600.00 95.3

Power Strip 11,511,175.63 3.80 200.00 99.5

Regarding the SPN model (Figure 5.2 (c)), the MTTF related to the UPS compo-
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Figure 5.2: (a) EFM, (b) RBD and (c) SPN models.

nent is assigned to the transition UPS0 F, while the MTTR is depicted in the transi-
tion UPS0 R. Furthermore, the place UPS0 ON represents the UPS operational state,
while UPS0 OFF is the failure state. The same representation is adopted for all other
architecture components. The availability is computed by the probability expression
P{(#UPS0 ON=1)AND(#SDTransformer1 ON=1)AND(#Subpanel2 ON=1)AND(#Po
werStrip3 ON=1), where “#” represents the number of tokens present in a place.

Figure 5.2 (b) depicts the respective RBD model related to architecture A1. Note that
the RBD model adopts a series composition, because there is no redundancy. It is im-
portant to stress that the evaluation conducted through both models produce equivalent
results.

Figure 5.2 (a) presents the correspondent EFM model for the architecture A1. The
acquisition cost and energetic efficiency of each device is present on Table 5.1. In addition,
the demanded power (10kW) by the IT system is associated to the target node T of the
EFM model.

Architectures A2, A3, A4 and A5 have additional redundant devices, such as an UPS
(A2, A3, A4, A5), a transformer (A3, A4, A5), a subpanel (A4, A5) and a rack power
strip (A5). Architecture A5 corresponds to the baseline (A1) architecture considering all
components redundant. In this representation, a STS is not required, since modern IT
devices have dual corded systems.
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5.1.2 Experiment I - Results

Table 5.2 presents the summary results of the evaluation of those 5 architectures previ-
ously detailed, in which 9s represents the availability depicted in number of nines calcu-
lated using the following equation:−log(1−Avail(%)/100). As expected, the availability
increases when more redundant components were considered. However, the availability
increase from A1 to A2 is minimal due to the fact that to add the additional UPS, a STS
was also added. This additional STS component represents a single point of failure and,
therefore, the system availability increase was minimum. The number of nines doubles
from A1 to A5, as expected, since A5 is essentially two instances of A1 connected in
parallel.

Table 5.2: Summary results for all architectures.

Architecture Avail(%) (9s) Exergy(GJ) Cost (USD) Effic (%)

A1 99.98556 (3.84) 37.99 20038.43 93.3

A2 99.98627 (3.86) 44.28 24516.38 92.8

A3 99.99731 (4.57) 44.62 25068.09 92.8

A4 99.99989 (5.99) 45.03 25268.50 92.8

A5 99.99999 (7.68) 42.06 24590.67 93.3

In Table 5.2 Cost corresponds to both the retail price of the system and the operational
cost as a fraction of total data center costs, Exergy is the operational exergy destroyed
and Effic is the electrical system efficiency. The assumed period was 5 years.

For a better visualization, Figure 5.3 shows a comparison between the availability,
cost and exergy in relation to the baseline architecture A1. The big leap from A1 to
A2 in terms of cost reflects the high cost of UPS as compared to the other components.
The variations in the exergy destroyed are primarily due to additional hardware, since
the difference in operational power consumption is negligible. Moreover, from Figure 5.3,
it can be seen that the availability increased significantly from A2 to A3 (almost 20%)
and from A3 to A4 (about 35%), the sustainability impact increase is negligible. Thus,
minimizing redundancy may not always lead to optimal sustainability. The sustainability
impact decreased from A4 to A5, since a STS or ATS is not required in A5.

Additionally, Figure 5.3 also illustrates that both cost and sustainability impact
slightly increased from A2 to A4, although these parameters do not always change to-
gether. While A2 has a lower cost, A5 has lower exergy consumption. Thus, optimizing
cost will not necessarily lead to optimal sustainability. Therefore, architecture A5 corre-
sponds to an interesting alternative, since it has the highest availability, the cost is almost
identical to the architecture A2 and it has the smallest environmental impact.
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Figure 5.3: Comparison: Availability, Exergy Consumption and Cost.

5.1.3 Insights on validation

To demonstrate the accuracy of the availability results obtained by the proposed tools,
this work compared the obtained values for the case study I with the respective results
generated by TimeNET [65] and Sharpe tools [66]. Five different architectures (A1...A5)
for a data center power infrastructure were considered, and the results are detailed in
Table 5.3.

The paired-t test [70] was conducted to analyze the results between ASTRO and
TimeNET as well as between ASTRO and Sharpe. Assuming a significance level of
5%, the first test resulted in the following confidence interval:[-0.0037174, 0.004621]. As
0 (zero) is enclosed by that interval, there is no evidence to reject the hypothesis of
equivalence between the values generated by both tools. Similarly, the same test was
applied for ASTRO/Mercury and Sharpe, obtaining 0 ∈ [−0.0001475, 0.000452] and,
thus, the hypothesis of equivalence cannot be refuted.

5.1.4 Part II

The second part of this case study presents alternative scenarios in which cheaper devices
with lower MTTFs values were considered. Architecture A5 has been adopted as the
baseline, and each scenario has the same structure as well as the same amount of devices.

In the first scenario (S1), the devices are assumed to be 10% cheaper and the respective
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Table 5.3: Availability values obtained with Mercury, TimeNET and Sharpe

Architecture Mercury TimeNET Sharpe

A1 99.98556 99.9892 99.985

A2 99.98627 99.98032 99.98596

A3 99.99731 99.99712 99.99715

A4 99.99989 99.999904 99.999931

A5 99.99999 99.999997 99.9999977

MTTFs 50% lower than the ones considered in the baseline. The second scenario (S2)
adopts devices 20% cheaper than the ones in the baseline and the MTTFs are decreased
by 75%.

Table 5.6 presents the results for this study, in which the reader should observe that,
although considering cheaper devices with reduced MTTFs values, the availability is not
considerably reduced. Indeed, comparing the cost values of these two scenarios with the
part I of this study, it is possible to note that the part II results are cheaper than architec-
ture A4, A3, A2 (see Table 5.2 from part I) and the availability is higher. Therefore, the
adoption of cheaper devices represents an interesting option, in which the environmental
impacts are basically equivalent to the ones obtained from architecture A5.

Table 5.4: Summary results for case study I - part II.

Scenarios Avail(%) (9s) Exergy(GJ) Cost (USD)

S1 99.9999917 (7.07) 42.06 23680.67

S2 99.9999667 (6.47) 42.06 22770.67

5.2 CASE STUDY II

The main goal of this study is to analyze more complex data center power infrastructures
through the proposed set of models and following the adopted methodology. This study
also considers RI index that is adopted for supporting data center designers to identify
which component should be replicated to increase the system reliability/availability. From
a base line architecture, other architectures are proposed according to the RI index. Seven
data center power infrastructures were considered as depicted in Figure 5.4. For each
architecture, we estimate: (i) availability; (ii) the sustainability impact and (iii) costs.
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Figure 5.4: a) Architecture A1, b) Architecture A2, c) Architecture A3, d) Architecture A4,

e) Architecture A5, f) Architecture A6, g) Architecture A7.
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5.2.1 Architectures

From the power infrastructure A1 depicted in Figure 5.4 (a), we propose other architec-
tures that are created according to the component reliability importance index. Origina-
ting in the utility feed (i.e., AC Source), typically, the power goes through voltage panel,
uninterruptible power supply (UPS) unit, power distribution units (PDUs) (composed
of a transformer and an electrical subpanel), junction boxes, and, finally, to rack PDUs
(rack power distribution units).

The system is operational if the power infrastructure is able to supply energy to the
IT devices. For the sake of readability, each IT device block represents 10 racks and, so,
the adopted infrastructure provides electrical power to 50 IT racks. MTTFs and MTTRs
values for the components were obtained from [67].

We started performing the dependability evaluation of the baseline architecture (A1).
As it will be further explained, six new architectures are generated as shown in Figure
5.4. Table 5.5 presents the importance index for the components in each architecture. In
that table, it is possible to note that the AC Source on architecture A1 has the highest RI
value. Thus, architecture A2 (see Figure 5.4 (b)) is created replicating that equipment.
A static transfer switch (STS) is also added for switching from a failed AC Source to the
operational one.

Table 5.5: Reliability Importance Values of Architectures A1-A7.

ACS STS UPS SDT JB LVP SP ITD

A1 1 0.140 0.137 0.136 0.136 0.136 3.3E-08

A2 1 0.303 0.302 0.295 0.294 0.293 0.293 7.2E-08

A3 1 0.303 0.010 0.295 0.294 0.293 0.293 7.2E-08

A4 1 0.303 0.013 0.013 0.294 0.293 0.293 7.2E-08

A5 1 0.303 0.013 0.013 0.002 0.293 0.293 7.2E-08

A6 1 0.301 0.140 0.137 0.002 0.136 0.292 7.2E-08

A7 1 0.140 0.137 0.136 0.136 0.1361 7.2E-08

Key: ACS-AC Source, LVP-Low Voltage Panel, STS-Static Transfer Switch,

UPS-Uninterruptible Power Supply, SDT-Step Down Transformer, SP-Sub Panel,

JB-Junction Box, ITD-Information Technology Device.

In architecture A2, the RI index results (see Table 5.5) shows that the redundant AC
Sources still have the highest values. However, the cost to add another AC Source is
very high. Besides that, the STS (the second highest value in Table 5.5) is a component
that cannot be replicated separately. Therefore, architecture A3 (see Figure 5.4 (c))
corresponds to architecture A2 with redundant UPS components (i.e., the next item
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from RI index list with the highest value).

Similarly, architecture A4 (see Figure 5.4 (d)) is created from architecture A3 adopting
redundant transformers. Architecture A5 (Figure 5.4 (e)) is defined applying redundancy
to the Junction Box of A4. Architecture A6 (see Figure 5.4 (f)) is conceived with redun-
dancy applied to the low voltage panel. In such architecture, the STS component that
switches the AC Sources was eliminated. Finally, architecture A7 (see Figure 5.4 (g))
corresponds to architecture A1 with all components replicated.

5.2.2 Results

Table 5.6 summarizes the results separately for each infrastructure, in which: Architec
represents the architectures, Avail(%) (9s) is the availability level (A) with the respective
number of nines (-log [1 - A/100]), Exergy(GJ) is the exergy destroyed, and Cost(USD)
is the acquisition and operational costs in U.S. dollars. This study adopted the period of
one year.

Table 5.6: Summary results.

Architec Avail(%) (9s) Exergy(GJ) Cost(USD)

A1 99.8117 (2.725) 1996.09 647984.73

A2 99.9904 (4.017) 2088.94 667482.52

A3 99.9902 (4.012) 2178.66 741023.44

A4 99.9913 (4.061) 2178.68 741579.18

A5 99.9919 (4.094) 2178.70 741732.68

A6 99.9957 (4.376) 2089.05 738411.95

A7 99.9996 (5.450) 1999.84 735104.79

As expected, the availability increases when more redundant devices were considered
in the architectures. However, in some cases the addition of a component may require
other device. Therefore, the availability result of A3 is slightly smaller than A2 due the
fact that A3 considers an additional UPS and a STS. On the other hand, the expressive
availability increase from A6 to A7 can be explained by the absence of STS devices in
A7.

As expected, the availability increases when more redundant devices were considered
in the architectures. However, as previously presented in Table 5.5, STS has a significant
impact in the system availability. For instance, the availability result of A3 is slightly
smaller than A2 due the fact that A3 considers an additional UPS and a STS. Similarly,
the expressive availability increase from A6 to A7 can be explained by the absence of
STS devices in A7.
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Figure 5.5 depicts a graphical comparison between the availability, cost and exergy
destroyed for each power infrastructure architecture. The baseline corresponds to the
architecture A1. As the reader should note, architecture A7 is an interesting option,
since its cost is similar to the baseline (less than 15% more expensive) and provides the
highest availability (i.e., twice the value of A1). Therefore, the exergy destroyed was
smaller than the value estimated for the architectures A2 to A6.

Figure 5.5: Comparing Exergy, Availability and Cost.

5.3 CASE STUDY III

The exergy destroyed is a metric useful for quantifying the efficiency of a component
or architecture in relation to the energy consumption. This metric may be not enough
to estimate the environmental impact of identical data center architectures located in
different places around the world. This comparison may be assessed by estimating the
greenhouse gas emissions such as CO2.

The main goal of this case study is to present a comparative study of real-world data
center architectures (from HP Labs Palo Alto, U.S. [64]) assessing dependability as well
as environmental impact and operational energy cost associated to the energetic mix of
U.S. and Brazil. CO2 emissions (and exergy consumption) related to these energetic mix
are considered as a metric to the quantification of environmental impacts. Additionally,
this case study also illustrates the applicability of the RCI index, which relates the RI
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index with the acquisition cost of the devices that compose the data center architectures
under analysis.

Table 5.7 shows the energetic mixes adopted in Brazil [71] and U.S. [72]. Brazil electric
energy is mostly generated through hydroelectric power plants (around 80%). Whereas
in the U.S., coal power plants represent more than 46% of the energy used. The table
also presents the CO2 emissions (in g per kWh of energy consumed) of the four energy
sources most used in Brazil and U.S.. Additionally, Table 5.8 presents the energy price
(considering the energetic mix) for end-users from Brazil (São Paulo) and U.S.(Palo Alto)
[73]. Similarly, it shows the CO2 emissions generated according to the energetic mix in
Brazil and U.S.

Table 5.7: Electric energy price in Brazil and U.S. and CO2 emissions.

Energy Source U.S.(%) BRA(%) Price U.S.(USD) Price BRA(USD) CO2 Em.(g/kWh)

Coal 46.18 3.675 0.08250 0.2759 950

Natural Gas 22.65 11.025 0.06292 0.2529 515

Nuclear 20.35 2.5 0.20735 0.2628 150

Hydroelectric 6.44 80.3 0.16159 0.2710 20

Table 5.8: Electric Energy Price and CO2 Emissions

Energy Price (USD) CO2 Emissions (g/kWh)

Brazil 0.2689 114.3603

U.S. 0.1102 614.0666

The following subsections detail the data center architectures as well as present the
correspondent models. Besides, evaluation results are presented.

5.3.1 Architectures

This section presents the cooling and power architectures.

Cooling Architectures
From the baseline infrastructure (C1) depicted in Figure 5.6, alternative architectures are
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Figure 5.6: Cooling infrastructures.

created according to the RCI index. RCI quantifies both acquisition cost and reliability
importance of each component to the entire system. In that figure, the cooling infrastruc-
ture is represented by the components inside the blue rectangle, in which the red lines
represent the power connections and the blue lines delineate the heat connections (e.g.
ducts).

The cooling system is responsible, in this work, for extracting 500kW of heat from
the data center room. The cooling architecture C1 fails (and, thus, the system) whenever
one CRAC, chiller or cooling tower fails.

From the baseline architecture C1, four new architectures are generated considering
the RCI index shown in Table 5.9. The reader should notice that the indexes RI and
RCI may indicate different component to be replicated. For instance, architecture C2
is proposed by adopting a redundant cooling tower (it has the highest RCI value in
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the architecture C1). However, if the RI is adopted, the component suggested to be
replicated is the chiller (it has the highest RI value in the architecture C1). Similarly,
the architecture C3 is obtained from the architecture C2 by adopting a redundant chiller.

Table 5.9: RI and RCI Values of Architectures C1-C3.

RI RCI

Architecture Chiller Cooling Tower CRAC Chiller Cooling Tower CRAC

C1 0.22 0.19 0.17 0.17 0.18 0.14

C2 0.10 0.08 0.30 0.23 0.05 0.19

C3 0.08 0.26 0.23 0.09 0.07 0.27

Architectures C4 and C5 (Figure 5.6) use an additional CRAC unit as a cold and hot
standby component, respectively. At least one chiller, one cooling tower and five CRAC
units are demanded for the cooling data center environment to be working. For each
architecture, the availability, sustainability impact and costs are estimated considering
one year period.

Power Architectures
Four architectures for the power infrastructure have been considered with different con-
figurations, which include redundant components and/or particular arrangements. The
baseline architecture (A1) is depicted in Figure 5.7, in which the power infrastructure
is delineated by red dashed lines and the cooling infrastructure is represented by two
rectangles outside of the red dashed lines. The power infrastructure fails (and thus, the
system fails) whenever both paths depicted in Figure 5.7 are not able to provide the
power demanded (500 kW) by the IT components (50 racks). The reader should assume
a path as a set of redundant interconnected components inside the power infrastructure.

From the baseline architecture A1, alternative architectures are proposed based on
the RI and RCI indexes shown in Table 5.10. In the architecture A1, AC sources and
UPSs have the highest RI and RCI values. Therefore, it is possible to consider a diesel
generator or to replicate the UPS. Architecture A2 (Figure 5.8 (a)) provides replicated
UPSs. Besides considering replicated UPSs, the architectures A3(Figure 5.8 (b)) and
A4 (Figure 5.8 (c)) adopt one and two electricity generators (in parallel arrangement),
respectively, to support the system when both AC sources are not operational. For each
architecture, availability, sustainability impact and costs are estimated over a period of
one year.

5.3.2 Models

We divided the system into two subsystems, the cooling and power infrastructures, which
are explained as follows:
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Figure 5.7: Power Architecture A1.

Table 5.10: RI and RCI Values of Architectures A1-A2.

RI RCI

Arc ACS UPS ATS SDT Subpanel JBox ACS UPS ATS SDT Subpanel JBox

A1 0.788 0.063 0.058 0.054 0.054 0.052 0.595 0.062 0.058 0.054 0.054 0.052

A2 0.835 0.006 0.041 0.039 0.039 0.038 0.732 0.006 0.041 0.039 0.039 0.038

Cooling Models

Figure 5.9 shows the EFM for the cooling baseline architecture (C1). In this model,
the demanded thermal load corresponds to 500kW and such a value is associated to
the source node S. The evaluation of EFM provides the sustainability impact and cost
issues as well as the verification of the energy flow in each component (Section 3.1). In
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Figure 5.8: Power infrastructures: a) Architecture A2; b) Architecture A3; c) Architecture

A4.

this system, all components must be operational. A RBD model is adopted to compute
the dependability metrics of the architecture C1 in which all components are serially
connected. Table 5.11 presents the adopted MTTF (obtained from [67] [74]), MTTR
(based on SLA contracts [75] [76]) and acquisition cost [69] values for the cooling devices.

Similarly, other EFMs and dependability models are created to represent cooling ar-
chitectures C2, C3 and C4. Figure 5.10 depicts the EFM adopted for cooling architecture
C5. The difference between architectures C4 and C5 is the CRACs structural organiza-
tion. In the architecture C4, the CRAC6 is only activated once one of the other CRACs
has failed. In architecture C5, all six CRACs are working at the same time as a 5-out-of-6
system.

Architecture C4 corresponds to a cold standby system. Figure 5.11 shows the cor-
respondent SPN model to that system. The availability is computed by the following
probability: P{∧5

i=1((#CRACi ON=1)∨(#CRAC6 ON=1)) ∧(∨2
j=1((# Chiller j ON=
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Figure 5.9: EFM for the cooling C1.

Figure 5.10: EFM for the cooling C4.

Table 5.11: MTTF, MTTR, acquisition cost (AC) values for cooling devices

Equipment MTTF (h) MTTR (h) AC (USD)

Chiller 18,000 48 40,000.00

Cooling Tower 24,816 48 9,000.00

CRAC 37,059 8 30,000.00

1)∧((#C Tower 1 ON=1)∨(#C Tower 2 ON=1)) ))}.

Additionally, in order to mitigate the complexity of that model, it is important to state
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Figure 5.11: SPN model for the cooling architecture C4.

that an hierarchical approach is adopted. For instance, the four subnets highlighted on
that figure can be evaluated separately through a RBD model considering all those four
components in a serial representation. Once the results of both models are obtained, a
RBD model with two blocks representing those models in a serial arrangement is created.
The RBD evaluation provides the dependability results of the system.

Figure 5.12: RBD model for the cooling architecture C5.

Figure 5.12 shows the RBD model correspondent to the cooling architecture C5, in
which the block CRAC5/6 represents the 5-out-of-6 CRACs system behavior.

Power Models
Figure 5.13 depicts the EFM adopted to obtain the sustainability impact results as well
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as the cost issues for the power architecture A1. The power demanded (500kW) is
associated to the target node T present in the EFM model. The acquisition cost and
energetic efficiency values adopted by the EFM is shown in Table 5.12. Following the
adopted methodology, systems with no failure dependencies between components have
been evaluated through RBD models. For instance, Figure 5.14 depicts the RBD model
that represents the architecture A1. The MTTRs and MTTFs adopted in this study is
also present in Table 5.12.

SourcePoint1 TargetPoint1

ACSource2

ACSource1 ATS1

ATS2

Volpanel1

Volpanel2

UPS1

UPS2

Transformer1

Transformer2

Subpanel1

Subpanel2

JBox1

JBox2

Figure 5.13: EFM of Architecture A1.

Table 5.12: MTTF, MTTR, acquisition cost and efficiency(Eff) values for power devices

Equipment MTTF (hs) MTTR (hs) AC (USD) Eff(%)

AC Source 4,380 8 15,000.00 95.3

Generator 2,190 8 66,000.00 25.0

Junction box 5,224,000 8 150.00 99.9

STS 48,076 8 800.00 99.5

Subpanel 304,000 8 200.00 99.9

Transformer 282,581 8 550.00 98.5

UPS 50,000 8 60,000.00 95.3

Voltage Panel 304,000 8 200.00 99.9

Although not presented here, the power architecture A2 is also modeled considering
RBD to obtain the dependability metrics, and the EFM is similar to the previous one.
In power architecture A3 and A4, a generator is adopted to improve the availability. In
those architectures, the generator is activated when both AC sources are not operational.

Figure 5.15 shows the proposed SPN model to represent the power architecture A3
subsystem composed of one generator and two AC sources. Besides, we assume that
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Figure 5.14: RBD of Architecture A1.

the UPSs’ batteries support the system during the generator activation. The avail-
ability of that model is computed by the probability P{#ACSource1 ON = 1 OR
#ACSource2 ON = 1 OR #Generator ON = 1}. The other components of the ar-
chitecture A3 are modeled using RBD (not shown here).

Once the results of both models have been obtained (RBD and SPN), a RBD model
with two blocks (considering the results of both models) in a serial arrangement is created.
The RBD evaluation provides the dependability results of the power architecture A3.

The adopted MTTF and MTTR values for the power devices were obtained from [67]
[74] [75] [76] and are shown in Table 5.12. The results of each sub-system (power and
cooling) are considered to obtain the dependability, cost and sustainability results for the
whole system.

5.3.3 Results

Initially, we present the cooling and power results. Next, we show results for the whole
system (cooling and power together).

Cooling Results. Table 5.13 summarizes the results for each cooling infrastruc-
ture, where Arc represents the architecture evaluated; Avail(%) (9s) is the availability
level (A) with the respective number of nines (-log [1 - A/100]); Down(h) is the system
downtime considering the period of 8760 hours (one year); EX(GJ) is the operational
exergy destroyed in gigajoule; ACQ(USD) is the acquisition cost; OP-U.S.(USD) and
OP-BRA(USD) correspond to the operational cost considering the energetic mix adopted
in U.S. and Brazil, respectively.

The availability increases and the downtime decreases when redundant components
are included. For instance, the availability of architecture C2 is around 10% higher than
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Figure 5.15: SPN model for the Architecture A3.

Table 5.13: Summary results of Cooling infrastructures.

Arc Avail(%) (9s) Down(h) EX(GJ) ACQ(USD) OP-U.S.(USD) OP-BRA(USD)

C1 99.4341 (2.25) 49.56 9096.52 199000.00 286158.52 698551.39

C2 99.6986 (2.52) 26.40 9120.72 208000.00 286919.60 700409.30

C3 99.8911 (2.96) 9.54 9138.32 248000.00 287473.50 701761.45

C4 99.9989 (4.96) 0.09 9148.19 278000.00 287783.85 702519.05

C5 99.9988 (4.94) 0.10 9148.18 278000.00 287783.71 702518.70

architecture C1. C4 and C5 are the architectures with the must redundant devices.
Considering the availability results of those architecture C4 and C5, a small difference is
obtained (4.96 and 4.94, respectively in nines (9s)). Similar exergy destroyed and cost
are also obtained for that two architectures.

Figure 5.16 is a graphical comparison between the cost and CO2 emissions considering
the adopted energetic mix in U.S. and Brazil. Each cooling infrastructure is compared
to the baseline architecture C1 with the energetic mix of U.S. As the reader should
note, the Brazilian energetic mix emits around 80% less CO2 in comparison to the U.S
mix. However, the operational cost is more expensive in Brazil. For instance, in cooling
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Figure 5.16: Cooling results: comparing Cost and CO2 emissions in BRA and U.S.

Figure 5.17: Cooling Availability Results.

architecture C5, the cost in Brazil is the double of the baseline. Meanwhile, in U.S., the
cost is around 30% more expensive than the baseline.

Additionally, Figure 5.17 depicts the availability results of each cooling architecture.
The last two graphs show that the cooling architectures C4 and C5 are interesting options
due to the fact that both have the higher availabilities and the costs are not much more
expensive than the other architectures. Regarding sustainability impact, the adopted
energetic mix should be the Brazilian one.

Power Results. Table 5.14 presents a summary of results for the power infras-
tructure architectures. The availability improvement from considering redundant UPSs
(architecture A2) is not significant. In architecture A3, the additional generator increased
the availability of the power system from 5.5 to 7.5 nines as depicted in Figure 5.18. How-
ever, redundant generators (architecture A4) did not increase the availability significantly
enough to justify its adoption. Additionally, the operational exergy destroyed in all power
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Table 5.14: Summary results of Power infrastructures.

Arc Avail(%) (9s) Down(h) EX(GJ) ACQ(USD) OP-U.S.(USD) OP-BRA(USD)

A1 99.9996572 (5.46) 0.03003 1999.8495 123800.00 550753.55 1344463.43

A2 99.9996650 (5.47) 0.02934 1999.8496 243800.00 550753.78 1344463.99

A3 99.9999970 (7.52) 0.00026 2000.5330 309800.00 553486.07 1351133.88

A4 99.9999974 (7.58) 0.00023 2000.5355 375800.00 549858.38 1342278.20

Figure 5.18: Power Availability Results

Figure 5.19: Power results: comparing Cost and CO2 emissions in BRA and U.S.

infrastructures are similar, meaning that the energetic efficiency is not so different be-
tween those architectures.
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Figure 5.19 presents a comparison of CO2 emissions as well as the respective cost
differences of all power architectures in comparison to the baseline A1, adopting the U.S.
energetic mix. Similarly to the results obtained in the cooling infrastructures, the re-
sulting operational energy costs in Brazil are higher than in U.S. However, the Brazilian
energetic has a lower impact on the environment. Taking into account the previous re-
sults, architectures A3 and A4 are interesting due to their high availability and their
relatively small difference in operational costs compared to A1 and A2.

System Results (Power and Cooling). Considering the power architectures (A3
and A4) and cooling infrastructures (C4 and C5), a RBD model is adopted to combine
those architectures to represent the system final model. The RBD is represented by two
blocks (one for the power infrastructure and one for the cooling infrastructure) connected
serially.

Figure 5.20: Power and Cooling Availability Results.

Figure 5.20 presents the power and cooling availability results combined. In that fig-
ure, A4+C4 means that the power architecture A4 and cooling architecture C4 are com-
bined. Similarly, other results of combinations are also provided. There is no significant
difference between the availability results obtained considering the power architectures
A3 and A4 combined with the cooling infrastructures C4 and C5.

Figure 5.21 presents a comparison of the cost and CO2 emissions considering the
energetic mix adopted in Brazil and U.S. The adopted baseline is the power architecture
A1 combined to the cooling infrastructure C1, adopting the energetic mix of U.S.

Analyzing the previous results, it is possible to notice that to increase the availability
from 2.3 nines to close to 5 nines, the cost has increased around 140% considering the
energetic mix of Brazil (and around 30% adopting the U.S. energetic mix) in all archi-
tectures. An interesting option is the power architecture A3 combined to the cooling
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Figure 5.21: Power and Cooling results: comparing Cost and CO2 emissions in BRA and U.S.

infrastructure C4 due to the fact that the acquisition cost of the power architecture A3
is cheaper than A4 (only one generator is adopted). Additionally, the availability of
architecture A3 is a little bit higher than A4 (4.95 against 4.93 nines).

Considering the fact that the demanded energy for each architecture analyzed (power
and cooling) is established by the IT device needs, the energy consumption difference
between each architecture is determined by the energetic efficiency of each architecture.
Therefore, the operational costs and CO2 emissions do not vary much across the different
architectures.

5.4 CASE STUDY IV

The main goal of this study is to illustrate the proposed optimization algorithm applied
on data center infrastructures. This method improves the results obtained by RBD, SPN
and EFM models through the selection of the appropriate data center devices from a list
of candidate components. This case study is subdivided into two parts. In part I, the
list is automatically generated through a benchmark and, in part II, that list is defined
by the data center designer. The evaluation of all possible combinations from the list
of candidate components provides the optimal result. However, this evaluation is very
time consuming. The main goal of this experiment is then to show that the adopted
optimization algorithm represents an interesting option that provides results close to the
optimal ones in a reduced time. Therefore, this case study compares the results obtained
by the optimization algorithm to the results obtained evaluating all possible scenarios.

This case study is subdivided into two parts. The main goal of the first part is to
illustrate the applicability of the proposed methodology to optimize data center power
infrastructures in relation to cost (acquisition and operational costs) and dependability
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issues. It is important to state that once reducing the operational cost, which is impacted
by the energy consumption, the sustainability impact is also improved. In the first part
of this case study, a benchmark is adopted to create a list of candidate elements through
a random process that is further explained in the following sections. In the second part,
the list of candidate elements is fixed (defined by the designer).

5.4.1 Part I

Architectures
Five data center power infrastructures [68] have been considered (see Figure 5.22) with
increasing redundancy degree, such that each successive architecture has an additional
component duplicated. For each architecture, we estimate: (i) availability, (ii) the sus-
tainability impact and (iii) the cost.

Figure 5.22: Data Center Power Architectures.

Models
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Figure 5.23 (a) depicts the RBD model adopted to quantify the system dependability for
the architecture A3 while respecting the system restrictions quantified by the EFM (Fig-
ure 5.23 (b)). The EFM is also adopted to estimate the sustainability impact and cost of
the data center power infrastructure. The adopted MTTFs values for the power devices
of the RBD model were obtained from [67] [77] [78] and are shown in Table 5.15. The
MTTRs were constants in 8 hours for each component [76]. Table 5.15 also presents the
adopted acquisition cost and efficiency for each device modeled through EFM. Besides,
it is important to state that these power infrastructures have a power demand of 10kW
(value associated to the target node of the EFM).

Figure 5.23: (a) RBD and (b) EFM models for architecture A3.

Benchmark
A benchmark was adopted to create a list of candidate elements through a random pro-
cess. This process considered a range of values for each parameter (MTTF, acquisition
cost (AC) and efficiency (Eff)) on each type of component as shown in Table 5.15. In this
particular case study, five elements were added to the list for each type of component.
Once the list of candidate elements was created, the optimization process was started.

Results
Table 5.16 presents a summary results that compare the evaluation of all possible com-
binations (ALL) against the optimization algorithm (Opt.). In the table, Avail is the
column with the availability results, 9s is the availability level (A) in number of nines
(-log [1 - A/100]), Down is the downtime which is represented in hours as well as the
associated cost, Acq is the acquisition cost, Op is the operational cost, Tot is the total
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Table 5.15: Benchmark range values for the devices.

Equipment MTTF (hs) AC (USD) Eff(%)

UPS [25000, 75000] [11250, 18750] [90.535, 99.9]

STS [24038, 72114] [600, 1000] [94.525, 99.9]

Subpanel [152000, 456000] [150, 250] [94.905, 99.9]

Step Down Transformer [141290.5, 423871.5] [412.50, 687.50] [93.575, 99.9]

Power Strip [115111.8, 345335.3] [150, 250] [94.525, 99.9]

cost, Exergy corresponds to the results for the exergy destroyed, Sys Eff is the system
efficiency, Obj Func is the objective function, which is represented by the mean of m
executions as well as by the smaller result obtained, and Diff. is the difference which is
represented by the relation of the results obtained through the evaluation of all scenarios
by the results obtained from the optimization process.

The optimization method was executed m times considering different seeds that ran-
domly generate the list of candidate elements. In addition, for each seed, the method
was repeated m times. The m value has to be big enough to guarantee the confidence
level of 95% and not so huge that may increase the execution time. Therefore, m=30
was adopted. The reader should remember that the goal of this case study is to min-
imize the objective function and thus, the smaller value between the m executions is
the result of the optimization algorithm. Additionally, it is important to state that the
optimized results were computed considering 0.2 as the greediness degree (β parameter
of the optimization method in Section 2.6).

Figure 5.24 depicts the objective function results achieved through the evaluation of
all possible scenarios (All) and the results obtained by the optimization method (Opt.
Alg.). The reader should notice that both results are quite similar. The paired-t test [70]
was conducted to analyze the evaluation results. Assuming a significance level of 5%,
the test resulted in the following confidence interval:[-1004.36, 7881.47]. As 0 (zero) is
enclosed by that interval, there is no evidence to reject the hypothesis of equivalence
between the values generated by the evaluation of all possible scenarios and the results
obtained by the optimization method.

Additionally, Figure 5.25 presents a comparison between the execution time demanded
for both cases, in which it was possible to observe that the time needed to conduct the
evaluation of all possible combinations has increased when more complex system were
analyzed. However, this behavior was not observed during the optimization algorithm
results.

The main goal of this experiment is to compare the results obtained by an optimization
algorithm to the results obtained by the evaluation of all possible scenarios. For instance,
architecture A1 is composed of a UPS, a step down transformer, a subpanel and a power



5.4 CASE STUDY IV 112

T
a
b
le

5
.1
6
:
C
om

p
ar
in
g
op

ti
m
al

re
su
lt
s
(A

L
L
)
w
it
h
o
p
ti
m
iz
a
ti
o
n
a
lg
o
ri
th
m

(O
p
t.
)
es
ti
m
a
te
s.

A
rc
h

A
v
a
il
(9
s)

D
o
w
n
(h

s)
D
o
w
n
(U

S
D
)

A
cq

(U
S
D
)

O
p
(U

S
D
)

T
o
t
(U

S
D
)

E
x
er
g
y
(G

J
)

S
y
s
E
ff

O
b
j
F
u
n
c

O
b
j
F
u
n
c

R
u
n
ti
m
e

(M
ea

n
)

(M
ea

n
)

(M
ea

n
)

(M
ea

n
)

(M
ea

n
)

(M
ea

n
)

(M
ea

n
)

(M
ea

n
)

(M
ea

n
)

A
L
L

0
.9
9
9
8
(3
.7
3
)

1
.6
3

3
2
6
3
2
1
.7
5

4
4
4
0
.8
5

6
8
9
7
.9
2

1
1
3
3
8
.7
7

6
8
.0
9
9
3

0
.7
0
6
1

3
3
7
6
6
0
.5
2

3
0
9
6
5
8
.3
2

2
.3
s

A
1

O
p
t.

0
.9
9
9
8
(3
.7
1
)

1
.7
3

3
4
5
3
5
6
.0
8

4
5
8
7
.3
7

6
8
9
7
.7
9

1
1
4
8
5
.1
7

6
8
.0
9
7
1

0
.7
0
2
8

3
5
6
8
4
1
.2
5

3
0
9
6
5
8
.3
2

2
.0
s

D
iff

1
.0
0
(1
.0
1
)

0
.9
4

0
.9
4

0
.9
7

1
.0
0

0
.9
9

1
.0
0

1
.0
0

0
.9
5

1
.0
0

1
.2
0

A
L
L

0
.9
9
9
8
1
1
1
(3
.7
2
)

1
.6
6

3
3
1
0
0
7
.3
4

8
3
1
8
.9
5

7
4
0
6
.4
1

1
5
7
2
5
.3
6

8
4
.7
4
1
4
2
7
6
1

0
.6
5
5
1

3
4
6
7
3
2
.7
0

3
2
3
5
9
7
.8
3

3
9
.4
s

A
2

O
p
t.

0
.9
9
9
7
9
4
7
(3
.6
9
)

1
.8
0

3
5
9
7
5
3
.3
2

7
7
8
3
.5
0

7
3
7
7
.5
1

1
5
1
6
1
.0
1

8
3
.7
9
8
2
5
1
2
9

0
.6
5
8
1

3
7
4
9
1
4
.3
4

3
2
7
6
5
9
.8
1

4
.0
s

D
iff

1
.0
0
(1
.0
1
)

0
.9
2

0
.9
2

1
.0
7

1
.0
0

1
.0
4

1
.0
1

1
.0
0

0
.9
2

0
.9
9

9
.6
4

A
L
L

0
.9
9
9
8
2
8
9
(3
.7
7
)

1
.5
0

2
9
9
7
0
1
.1
6

8
8
5
5
.6
8

7
0
5
3
.8
8

1
5
9
0
9
.5
5

7
3
.2
0
1
1
0
0
4
7

0
.6
8
7
5

3
1
5
6
1
0
.7
2

2
8
4
4
8
3
.2
3

3
m
in
2
7
s

A
3

O
p
t.

0
.9
9
9
8
0
8
8
(3
.7
2
)

1
.6
7

3
3
4
9
4
0
.6
1

8
2
7
4
.0
6

7
1
1
2
.7
6

1
5
3
8
6
.8
2

7
5
.1
3
1
2
3
7
9
2

0
.6
8
1
4

3
5
0
3
2
7
.4
3

2
9
3
5
3
9
.0
3

5
.4
s

D
iff

1
.0
0
(1
.0
1
)

0
.8
9

0
.8
9

1
.0
7

0
.9
9

1
.0
3

0
.9
7

1
.0
1

0
.9
0

0
.9
7

3
8
.6
1

A
L
L

0
.9
9
9
8
4
6
2
(3
.8
2
)

1
.3
5

2
6
9
4
2
4
.5
1

8
9
7
4
.1
0

6
5
8
4
.3
9

1
5
5
5
8
.4
9

5
7
.8
3
3
3
6
7
4
2

0
.7
3
7
1

2
8
4
9
8
2
.9
9

2
5
4
1
8
7
.4
8

1
8
m
in
5
5
s

A
4

O
p
t.

0
.9
9
9
8
3
8
2
(3
.8
0
)

1
.4
2

2
8
3
4
4
8
.6
8

8
4
0
3
.3
9

6
5
7
2
.1
7

1
4
9
7
5
.5
5

5
7
.4
3
4
5
8
2
4
7

0
.7
3
9
0

2
9
8
4
2
4
.2
3

2
5
7
5
5
2
.0
5

6
.6
s

D
iff

1
.0
0
(1
.0
1
)

0
.9
5

0
.9
5

1
.0
7

1
.0
0

1
.0
4

1
.0
1

1
.0
0

0
.9
5

0
.9
9

1
7
2
.3
4

A
L
L

0
.9
9
9
9
9
9
9
4
(7
.2
2
)

0
.0
0
0
5
6

1
1
2
.8
0

7
4
1
3
.0
0

5
7
3
6
.1
3

1
3
1
4
9
.1
3

3
0
.0
4
7
8
5
6
6
4

0
.8
4
2
6

1
3
2
6
1
.9
3

1
2
2
3
0
.3
2

1
9
m
in
3
9
s

A
5

O
p
t.

0
.9
9
9
9
9
9
9
(7
.2
0
)

0
.0
0
0
5
8

1
1
5
.4
2

7
7
7
2
.5
8

5
7
9
6
.6
2

1
3
5
6
9
.2
0

3
2
.0
2
7
6
6
2
1

0
.8
3
3
5

1
3
6
8
4
.6
2

1
2
9
4
0
.7
5

8
.1
s

D
iff

1
.0
0
(1
.0
0
)

0
.9
8

0
.9
8

0
.9
5

0
.9
9

0
.9
7

0
.9
4

1
.0
1

0
.9
7

0
.9
5

1
4
6
.2
3



5.4 CASE STUDY IV 113

Figure 5.24: Objective Function.

Figure 5.25: Execution Time.

strip. Considering that the list of candidates elements for each component is composed of
five different devices (e.g., with different MTTF, efficiency and acquisition cost), there are
54 possible scenarios to be evaluated for the architecture A1. In addition, the optimization
method requires a reduced time to be executed in comparison to the evaluation that
computes the optimal results.

Significant results were obtained with the optimization algorithm that required a re-
duced time to be executed in comparison to the evaluation of all scenarios. This runtime
difference increases when more sophisticated architectures are modeled. For instance,
to compute the optimal result of the architecture A3 more than three minutes was de-
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manded, however only five seconds was needed to obtain the result taking into account
the optimization algorithm. In the architecture A5, the optimal evaluation demanded 146
more time to be executed than the results achieved through the optimization algorithm.

Additionally, it is important to stress that no significant difference was observed be-
tween the results obtained adopting the optimization algorithm and the evaluation of
all possible scenarios. Considering the objective function results, the higher difference
was 5% achieved in architecture A5. In A2 and A4, only 1% of difference was observed.
Besides, for architecture A1, the exact value was obtained for both the optimal and the
optimization algorithm results.

This case study has shown that the proposed optimization technique can be adopted
to obtain results close to the optimal ones without the need to execute all the scenarios
available. In addition, this case study also provided sustainability, dependability and cost
solutions whilst at the same time respecting the system restrictions as quantified by the
EFM.

5.4.2 Part II

The main goal of this part is also to compare the optimal results to the ones obtained
through the optimization algorithm. However, in this section a fixed list of candidate
components was adopted. Table 5.17 presents this list with the MTTFs, acquisition cost
(AC) and efficiency (Eff) considered for each device. The reader should notice that three
different diesel generators and UPSs were adopted.

Figure 5.26: A6 - Data Center Power Architecture.

Models
Figure 5.26 depicts the data center power architecture (A6) adopted in this study. This
architecture corresponds to the previous architecture A5 (Figure 5.22) with an addi-
tional diesel generator and an AC source. Assume that, in this particular case, the
batteries available on the UPSs are not enough to support the system during the ac-
tivation time demanded by the generator device. Besides, the generator is only ac-
tivated if the AC source does not provide the demanded power. Therefore, SPN is
adopted to evaluate the availability. Figure 5.27 shows the SPN availability model
for the architecture A6. The availability is described by the probability expression
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Table 5.17: MTTF, acquisition cost(AC) and efficiency(Eff) values.

Equipment MTTF (hs) AC (USD) Eff(%)

AC Source 4380 15000.00 95.3

Generator 2500 6000.00 25.0

Generator 3500 7500.00 30.0

Generator 4000 9000.00 32.0

UPS 50000 15000.00 95.3

UPS 60000 16500.00 94.0

UPS 75000 16000.00 95.3

Step Down Transformer 282581 550.00 98.5

Subpanel 304000 200.00 99.9

Power Strip 230223.512 200.00 99.5

P{((#ACSource0 ON = 1)OR(#Generator1 ON = 1)) AND(((#UPS 5kV A2 ON =
1)AND(#SDT4 ON = 1) AND(#Subpanel6 ON = 1)AND(#PowerStrip8 ON =
1))OR((#UPS 5kV A3 ON = 1)AND(#SDT5 ON = 1)AND(#Subpanel7 ON =
1)AND(#Power Strip9 ON = 1)))}, where #p denotes the marking of place p.

Figure 5.27: SPN of A6.

Similarly to the Part I, EFM is adopted to estimate the sustainability and cost issues
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Figure 5.28: EFM of A6.

without overstepping the power constraints of each device. Figure 5.28 depicts the EFM
for the architecture A6.

Results
Table 5.18 presents the summary results of the Part II of this case study. From this
table, it is possible to observe that the results for the object function are quite similar
in the optimization method and the evaluation of all scenarios. However, the runtime
needed for executing all the scenarios was over 2.8 times higher than the one spent
by the optimization technique. In addition, the reader should remember that the list
of candidate components was fixed (e.g., three generators and tree UPSs) reducing the
number of possible combinations. Besides, it is important to stress that in case the
list of candidate components increases, the difference between the runtime spent by the
optimization algorithm in comparison to the execution of all possible scenarios tends
to grow in such way that may turn impossible to perform the analysis of all possible
scenarios.

5.5 CASE STUDY V

This study focuses on conducting the previous optimization technique in a real-world
data center power architecture (from HP Labs Palo Alto, U.S. [64]) which assesses the
dependability as well as environmental impact and operational energy cost. In this case,
the number of scenarios to be analyzed through all possible combinations is huge. There-
fore, the optimization method was adopted. The following subsections present the data
center power architecture as well as show the corresponding models and results.

Architecture
Figure 5.29 depicts the data center power architecture modeled. This architecture sup-
plies energy for 50 racks, which are represented in this figure by only five racks (each
one representing 10 racks). The power infrastructure fails (and consequently the entire
system) when neither of the paths depicted in the figure are able to provide the 500kW
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Figure 5.29: Data Center Power Infrastructure.

of power required by the racks of IT components. In this study a path is defined as
a set of interconnected redundant components within the power infrastructure. In this
architecture, the diesel generator is only activated once both AC sources are not able to
provide the required power.

Models
Figure 5.30 illustrates the EFM correspondent to the previous power architecture. Ac-
cording to the adopted methodology, the dependability analysis of this system should be
performed through an RBD since neither active redundancies nor state-dependent inter-
actions between the components of the system exist. For instance, Figure 5.31 shows the
RBD model that represents the power system under analysis. It is important to state
that in this particular system, we assumed that batteries present in the UPSs support
the system during the activation time needed to start the diesel generator since both AC
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Figure 5.30: EFM for the power infrastructure.

Figure 5.31: RBD for the power infrastructure.

sources are not properly working. Therefore, the dependability analysis of this system
may be conducted by RBD as shown in Figure 5.31. The reader should remember that
the list of candidate devices was created in a random process similar to the case study
I (Part I). Table 5.19 shows the range of values adopted for the MTTF, acquisition cost
and efficiency to the creation of the list of candidate components.

Results
Table 5.20 is a summary results of the evaluated power infrastructure architecture. The
availability, cost and exergy destroyed were 6.67 (in number of 9s), 862,820.06 USD and
6311.18 kJ for this system taking into account the components according to the algo-
rithm that optimizes the objective function. This experiment has shown that following
the adopted methodology, we are able to perform the integrated evaluation and optimiza-
tion of dependability, cost and sustainability issues.
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Table 5.19: Benchmark range values for the devices.

Equipment MTTF (hs) AC (USD) Eff(%)

AC Source [2190, 6570] [11250, 18750] [90.535, 99.9]

Generator [1095, 3285] [45000, 75000] [23.75, 26.25]

Junction box [2612000, 7836000] [112.50, 187.50] [94.905, 99.9]

UPS [25000, 75000] [11250, 18750] [90.535, 99.9]

ATS [24038, 72114] [600, 1000] [94.525, 99.9]

Subpanel [152000, 456000] [150, 250] [94.905, 99.9]

Step Down Transformer [141290.5, 423871.5] [412.50, 687.50] [93.575, 99.9]

Voltage Panel [152000, 456000] [150, 250] [94.905, 99.9]

5.6 SUMMARY

This chapter presented the case studies adopted to illustrate the applicability of the pro-
posed set of models and the methodology for performing the integrated evaluation of
dependability, sustainability and cost issues on data center power and cooling infrastruc-
tures. For instance, real-world data center architectures from HP Labs Palo Alto were
analyzed. In addition, an analysis that assessed dependability as well as environmental
impact and operational energy cost associated to the energetic mix of U.S. and Brazil
were conducted. Finally, studies were presented to show that the proposed optimization
algorithm applied on data center architectures has provided interesting results close to
the optimal ones.



Table 5.20: Summary Results.

Results

Availability (%) 0.999999781

9s 6.67

Downtime (hs) 0.0019

Downtime Cost (USD) 384.17

Acquisition Cost (USD) 211279.68

Operational Cost (USD) 651540.38

Total Cost (USD) 862820.06

Exergy Destroyed 6311.18

System Efficiency (%) 0.74

Func Objective 863204.23



CHAPTER 6

RELATED WORK

A reasonable definition of sustainability and sustainable development is provided by
the World Commission on Environment and Development (WCED) [79] which states “...
development that meets the needs of the present without compromising the ability of the
future generations to meet their needs and aspirations”.

In the last few years, some research has been done on reliability analysis of data center
systems and a subset has also considered sustainability impact and cost issues as well as
some optimization techniques. The following sections presents those researches.

6.1 DEPENDABILITY

Reliability (which encompasses both the durability of the data and its availability for
access) corresponds to the primary property that data center users desire [12]. Regarding
data center power architectures, voltage interruption or transient voltage may require a
complete system restart or components repair. In both cases, the system mean time to
repair (MTTR) as well as the system reliability is impacted. Additionally, redundancies
on components to increase system reliability are costly. A design engineer needs to avoid
over-sizing electrical equipment, since it may waste not only power consumption but also
investment.

Wiboonrat [80] proposes an approach based on RBD to analyze the dependability
of data center power distribution topologies. Besides, Wiboonrat [81] extended that ap-
proach by proposing a model for data center design considering risk assessment and adopt-
ing a method for identifying single point of failure in data center power infrastructures.
Although both papers estimated the dependability of data center power architectures,
nothing is comment regarding cost and environmental impact issues.

Robidoux [82] proposes the Dynamic RBD (DRBD) model, an extension to RBD,
which supports reliability analysis of systems with dependence relationships. The ad-
ditional blocks (in relation to RBD) to model dependence, turned the DRBD model
complex. The DRBD model is automatically converted to a coloured Petri net (CPN)
model in order to perform behavior properties analysis which may certify the correctness
of the model [83]. Different from this work, this thesis considers SPN models for modeling
systems with dependence relationships. Therefore, we believe that instead of proposing
complex models, an interesting alternative would be to model the system directly using
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CPN or any other formalism (e.g., SPN) able to perform dependability analysis as well
as to model dependencies between components.

Wei [84] presents a hierarchical method to model and analyze a virtual data center
(VDC). The approach combines the advances of both RBD and General SPN (GSPN) for
quantifying availability and reliability. Data center power and cooling architectures are
not the focus of their research and the proposed models are specific to modeling VDC.

An approach for reliability evaluation and risk analysis of dynamic process systems
using stochastic Petri nets is proposed in [85]. The approach consists of connecting
interrelated nets and evaluating them adopting Monte Carlo simulation technique. As
a case study, that approach evaluates a process control system, in which the system
behavior is modeled and, next, qualitative/quantitative results are deduced. This work
focuses in dependability evaluation of complex system with dependencies, however, the
associated cost and sustainability impact are not mentioned.

Vilkomir [86] estimates the availability of fault-tolerant computer systems by classi-
fying processor failures into several types. A segregated failure model is proposed and
compared to their previously correspondent Markov chain model [87] considering a cluster
system as a case study. Adopting the proposed failure model, the influence of each failure
type on the system availability may be computed. This work is not focused in estimating
sustainability issues integrated with availability and cost of data center architectures.

6.2 SUSTAINABILITY

Gmach [88] proposes an approach to manage data center’s energy supply. The approach
estimates the power usage in a data center based on the average CPU utilization across
all servers. The paper does not provide any integrated comparison between the cost,
sustainability impact and availability of data center architectures.

In [89], the authors propose a platform for the evaluation of smart data centers taking
into account cooling, power and IT components. A coefficient of performance comprising
those components is proposed to measure the overall efficiency of energy flow. The paper
is not focused in presenting dependability and cost results.

Patterson [90] evaluates the impact of ambient temperature on energy efficiency. The
conducted analysis indicates the existence of an optimum temperature for data center
operation that depends on several factors. Herold [91] describes opportunities for energy
integration in the context of combined cooling, heating and power systems. However,
both works are not focused in an integrated approach considering cost, sustainability and
dependability issues.

The practice of monitoring, measuring, and reporting environmental impact represents
a challenge for many industries. Authors in [10] illustrates the importance of the Power
Usage Efficiency (PUE), which corresponds to the ratio of total facility power by IT
Equipment power. This work focuses only sustainability issues.
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Chang [92] proposes a method for estimating the exergy consumption during the raw
material extraction, manufacturing, operational, transport and disposal phases. Many
assumptions are used to take into account the entire device lifecycle, which may introduce
systematic errors.

6.3 COST

Urgaonkar [93] proposes an approach that focuses in energy storage devices to reduce
the average time of the electricity bill related to data centers. The main idea is to
avoid using the energy from the company provider during the day peaks of energy use
(which corresponds the time that the energy is more expensive). During that time, the
energy stored through UPS is adopted. The author focused only in the cost, nothing was
commented regarding availability or sustainability issues.

Bianchini [94] [95] presents an optimization-based framework that considers multi-
data center services, service-level agreements (SLAs) as well as energy consumption in
order to manage the cost and carbon foot print of those data centers. The enormous
electricity consumptions in US are translate into large carbon footprints, since most
of the electricity are produced by burning coal, a carbon intensive energy production
approach. The approach is focused in cost and environmental impacts of data centers,
nothing is considered regarding dependability.

6.4 OPTIMIZATION

Studies have been conducted in the last few years which attempt to evaluate dependability
and cost of data center infrastructures whilst others present optimization techniques.

In [96], an optimization-based framework, named REWIRE, is proposed to optimize
data center network architectures by the adoption of an algorithm that improves the
network bandwidth and minimize the end-to-end latency while respecting the user defined
constraints. The work does not focus on the power and cooling infrastructures.

Wang [97] proposes an optimization algorithm, named CARPO, to optimize the energy
consumption of data center networks. The algorithm focuses on reducing the number of
activated switches of data center networks through the dynamically consolidation of the
network traffic. The goal is to reduce the data flows into a small set of links and, then,
shuts down unused network devices for energy savings. In order to accomplish this,
the data flow is modeled as an optimal flow assignment problem in which the traffic
constraints must be satisfied while the energy consumption should be minimized. This
work focuses on the IT network without mentioning the other data center architectures
(e.g., power and cooling).

Tham and Ang [98] adopt Continuous-Time Markov-Chains (CTMC) models to com-
pute the data center cluster availability. Additionally, an approach based on Bellman
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optimality equation [99] and greedy-based algorithms is considered to improve the system
availability by determining the optimal secondary machine policy used. The approach
starts considering an arbitrary assignment policy. Then, the Markov Decision Process
(MDP) [100] graph (generated from the CTMC) with the Bellman optimally equation
are adopted for solving the state values of the current policy. To optimize the system
availability, other policies are generated by the greedy-based algorithms and evaluated
in the optimization approach. The authors have not the focus in analyzing data center
power and cooling architectures.

Table 6.1: Summary of the related works.

Related Work Dependability Sustainability Cost Optimization

[80], [81] RBD - - -

[82], [83] RBD, CPN - - -

[84] RBD, SPN - - -

[85] SPN - - -

[86] MC - - -

[88] - Power usage - -

[89] - Energy flow - -

[90], [91] - Energy - -

[10] - PUE - -

[92] - Exergy - -

[93] - - Yes -

[94], [95] - CO2 Yes Yes

[96] - - - Yes

[97] - Energy - Yes

[98] CTMC - - Yes

This Work RBD, SPN Energy, Exergy, CO2 Yes Yes

6.5 CONCLUDING REMARK

Table 6.1 presents a summary of the previous work main goals in comparison to the work
conducted in this thesis. The compared proprieties are dependability, sustainability and
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cost of data center systems. In dependability column of the table, we show the formalism
(e.g., Markov Chain (MC), SPN, RBD and CTMC) adopted for computing those metrics
for each particular related work. Similarly, the sustainability column presents the metrics
(e.g., energy, exergy, CO2) that were considered for estimating the environmental impact
on each work. In addition, some works also have performed studies to optimize those
issues of data center infrastructures.

Most related works focus in estimating only dependability [80][81][82][83][84][85][86],
sustainability [88][89][90][10][92] or cost [93] of data center architectures. Other works
have performed efforts to compute and optimize dependability [98] or sustainability [97].
Moreover, works also have focused in an integrated optimization techniques that improve
sustainability and cost issues [94][95] of data centers.

The mentioned works, in a way or another, aim at solving or dealing with aspects and
issues related to dependability, energy consumption or optimization. Nevertheless, none
of them proposes an integrated strategy to sponsor the design, by supporting modeling,
estimation and optimization of dependability, cost and sustainability issues for data center
infrastructures.



CHAPTER 7

CONCLUSION

With increased dependence on Internet services (e.g., cloud computing), data center
availability has become a more serious concern. For companies that heavily depend on
Internet for their operations, service outages can be very expensive, easily running into
millions of dollars per hour. A widely used design principle in fault-tolerance is to intro-
duce redundancy to enhance availability. However, since redundancy leads to additional
use of resources and energy, it is expected to have a negative impact on sustainability
and associated cost.

At present stage, data center designers do not have many mechanisms to support the
integrated sustainability, cost and dependability evaluation of data center infrastructures.
This work aims at reducing this gap by proposing models (supported by the developed
environment ASTRO/Mercury) that can be adopted to estimate those issues before im-
plementing data center architectures. The adopted methodology considers an integrated
approach based on dependability, cost and energy evaluation.

This work presented a comparative study of real-world data center architectures as-
sessing dependability as well as environmental impact and operational energy cost asso-
ciated to the energetic mix of U.S. and Brazil. To conduct those case study experiments,
ASTRO/Mercury environment has been adopted to support the integrated evaluation
of sustainability, dependability and cost issues. Additionally, an optimization method is
proposed for optimizing the dependability (RBD and SPN) and EFM models adopted for
the integrated evaluation of sustainability, dependability and cost issues on data center
power and cooling systems.

The following sections describe the main contributions of this thesis and proposes
possible extensions as future directions.

7.1 CONTRIBUTIONS

This thesis presented a set of formal models for analyzing data center infrastructures
considering dependability, sustainability and cost issues. Besides, the adopted method-
ology proposes that the system should be evaluated piecewisely to allow the composition
of simpler models representing a data center infrastructure appropriately. Nevertheless,
the reader should note that the models as well as implementations on the evaluation en-
vironment (ASTRO, Mercury and optimization module) represent contributions of this
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thesis. For a better visualization, the contributions are detailed below according to each
activity:

� Modeling: This thesis presented a set of formal models to allow the integrated
evaluation of dependability, sustainability and cost issues on data center power and
cooling infrastructures. The EFM is proposed to estimate sustainability impact in
terms of operational exergy consumption as well as to compute the associated costs
while respecting the power constraints of each device. Additionally, dependability
models such as RBD and SPN are adopted to evaluate dependability issues.

� Methodology: The conceived methodology represents a contribution which pro-
poses that the system under analysis may be evaluated piecewisely. Moreover,
the methodology also takes the advantage of both RBD and SPN formalism. For
instance, to compute dependability metrics (e.g., availability, reliability and down-
time) RBD or SPN may be adopted. RBD considers closed-form equations, the
results are exact and usually obtained faster than using SPN simulation. However,
to represent complex systems, particularly those based on dynamic redundancy
methods, RBD models experience drawbacks concerning the thorough handling of
failures and repairing dependencies. In this case, SPN models are more indicate as
previously mentioned in this thesis.

� Algorithms: In this thesis, algorithms that traverse the EFM are proposed to
perform the power verifications as well as to compute data centers costs (acqui-
sition and operational) and sustainability impacts. Additionally, an optimization
GRASP-based algorithm was proposed for improving the results obtained by RBD,
SPN and EFM models through the selection of the appropriate devices from a list
of candidate components. This list corresponds to a set of alternative components
that may compose the data center architecture.

� Evaluation environment: This thesis extends the Mercury environment besides
considering RBD, SPN and CTMC formalisms, to consider the EFM model. It is
important to state that the views supported by the ASTRO tool can be converted
to the fundamental models (SPN, EFM, CTMC and RBD) allowing non-specialized
users to create models as well as obtain the sustainability, dependability and cost
estimates as previously explained (Chapter 3). Therefore, the gap that data center
designers has to perform the integrated evaluation of sustainability, dependability
and cost is reduced. In addition, an optimization module was developed for allowing
the implementation of algorithms (e.g., GRASP-based algorithm and PLDA) that
improves the fundamental models.

� Data center architectures: From base line data center power and cooling ar-
chitectures, other architectures are proposed focusing in the availability/reliability
increase and trying to reduce the sustainability impact as well as the associated
costs. In order to accomplish this, RI and RCI are adopted to identify the compo-
nents that most impact the availability and reliability of the system. Additionally,
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optimization techniques have been adopted to optimize the results obtained through
the model evaluation.

7.2 FUTURE WORKS

Although this thesis tackles some issues regarding sustainability, dependability and cost of
data center architectures, there are many possibilities to improve and extend the current
work. The following items summarize some possibilities:

� In this work, the sustainability impact has been estimated considering the exergy
consumption during the operational phase of the data center. Although in some
works [101] [102] [103] [64] we already had performed studies considering embed-
ded (see Appendix A) and operational exergy consumption, this thesis focuses in
the operational exergy due to the fact that the estimative of the amount of en-
ergy consumed during the embedded phase (e.g., material extraction and device
manufacturing) seems to be obscure. A possible extension is to consider the sus-
tainability impact during the whole cycle (Life-cycle assessment - LCA) of the
equipment. Therefore, a study related how to obtain those energy consumption
estimative during the embedded phase must be performed.

� The exergy consumption is known as an interesting option to measure how effi-
cient is the energy consumption on each device. However, this work can be ex-
tended through the adoption of other metrics such as the Green Computing ones
(e.g., Global-warming potential (GWP), Power usage effectiveness (PUE), Data
center infrastructure efficiency (DCIE), Data Centre Efficiency (DCE), Data Cen-
ter Performance Efficiency (DCPE) and Corporate Average Data center Efficiency
(CADE)).

� Data center dependability values may be impacted by some factors, named hardened
computing, such as the temperature and humidity variation in the data center room.
There can be no doubt that electrical devices suffer degradations (e.g., availability
and reliability reductions) due to the rise on the temperature and/or humidity.
Therefore, the relation between data center cooling infrastructure and the IT system
can be analyzed. For instance, models that relates such relation can be proposed to
estimate the impact of the temperature variation on the availability of IT system. In
addition, the relation can be studied to be computed statically and/or dynamically.
By dynamic, the reader should understand that the relation between the cooling
infrastructure and the IT system can be monitored for simulating the impact of the
temperature on the availability of the IT devices on site.

� This thesis may be also extended to consider maintenance policies [104] as well as
different service level agreements (SLAs). For instance, the presented operational
cost of this thesis does not consider any cost associated to maintenance policies
as well as fines associated in case the contracted maintenance company does not
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provide the required availability. Therefore, a possible future direction is to extend
the proposed models in this work to couple with maintenance policies. In addition,
the equation adopted in this work to compute the operational cost may include the
associated cost of maintenance policies, which improves the operational cost.

� To improve ASTRO’s data center views in order to let them be closer to the en-
gineering representation of the power and cooling data center architectures. Ad-
ditionally, the conversion process from ASTRO’s views to the fundamental models
(EFM, SPN, RBD and CTMC) supported by the Mercury can also be improved.
For instance, to consider the k-out-of-n functionality, in which the data center de-
signer will not be an expertise to deal directly with the RBD and SPN formalism
to implement that type of system. In addition, the tool may also be extended to
consider other formalisms besides RBD, SPN, CTMC and EFM (e.g., fault tree).

� To consider other optimization methods (e.g., Ford Fulkerson algorithm [105] and
multi-objective optimization methods[106]) to optimize the evaluation results ob-
tained by the dependability and EFM models. A Ford Fulkerson based algorithm
may be proposed for dynamically improve the energy flow through the EFM model
by optimizing the weights on the edges. This can be performed in cooperation to
dependability models, in which the current state of the model could change the
actual state of the EFM. It is important to state that once changed the weights
on the edges and considering devices and paths with different energetic efficiency,
different energy consumption results will be obtained and so, an optimal solution
may be found. Multi-objective optimization analysis can be conducted to improve
the integrated evaluation of dependability, sustainability and cost issues presented
in this work. Additionally, the results obtained through multi-objective optimiza-
tion strategies can be compared against the optimization method proposed in this
thesis.

� Although power and cooling data center architectures may account for 50% of
the energy consumption of data center system, a natural extension of this work
is to consider the mentioned methodology to be applied for IT infrastructures.
In addition, performance metrics can be studied to try to relate them with the
integrated evaluation of dependability, cost and sustainability issues.

7.3 SUMMARY

This work proposed a set of formal models for the integrated evaluation of sustainability
impact, dependability and cost values on data center power and cooling architectures.
These models have the support of the developed evaluation environment which is com-
posed of ASTRO, Mercury and the Optimization module. In addition, the adopted
methodology that takes into account the advantages of both RBD and SPN formalism to
compute the dependability metrics, and the EFM to estimate the cost and sustainability
impacts whilst respecting the power constraints of each device.
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Optimization studies were also conducted in this work through the proposed algorithm
that is based on GRASP. This algorithm improves the results obtained by RBD, SPN
and EFM models through the selection of the appropriate devices from a list of candidate
components. This list corresponds to a set of alternative components that may compose
the data center architecture. The adopted optimization method is an alternative approach
to the evaluation of all possible combinations from the devices of the candidate list.
Interesting goals were achieved in which the optimization technique has provided results
close to the optimal in a reduced time. Despite the results presented, research on data
center has other open issues, which lay down several possibilities for further development
of new techniques.
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APPENDIX A

EXERGY LIFE CYCLE ASSESSMENT

In our previous work [103] [101] [102], we have computed the exergy consumption
taking into account embedded and operational exergies. The embedded exergy is related
to product design decisions which may include material extraction, manufacturing as well
as end-of-life; and the operational exergy corresponds to the decisions during product
use. Embedded exergy depends on the required energy to perform the raw material
extraction, the manufacturing process as well as the transportation phase. Embedded
energy consumption estimates are based on a LCA approach fed by [107]. To perform
the sustainability evaluation, a sustainability model that may represent the data center
power and cooling infrastructures is build considering those embedded energy estimates.
The evaluation of that model is conducted to obtain the embedded and operational
exergy consumptions. Section 3.1 presented how to compute the operational exergy
consumption. Due to the difficulty to take into account other exergy sources, which
is not on the method proper but on the data assessment, we adopted to consider the
embedded exergy consumption only in the appendix.

A.1 SUSTAINABILITY MODEL

Environmental impact may be computed in terms of the thermodynamic metric of exergy
(also called usable available energy). The following paragraphs presents the equations
adopted to compute the embedded exergy consumption.

A.1.1 Embedded Exergy

The embedded exergy, which involves impacts related to product design decisions, is
obtained as follows:

Exemb = Eman × [ηman + (1− ηman)× (1− Creuse)] (A.1)

where Eman is the energy required for manufacturing all equipments adopted in the
infrastructure (see Equation A.2); ηman is the manufacturing efficiency (2nd law of ther-
modynamics); and Creuse is the exergy reused in other processes.
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Eman =
n∑

i=1

Eeqi (A.2)

In the particular case of electrical energy, all energy can be theoretically converted into
work, thus, the variable Eman in Equation A.2 means the total exergy made accessible
during the manufacturing phase. A fraction of Eman is consumed. The complementary
fraction (1-Eman) can be reused in other processes (Creuse) or destroyed (1-Creuse).

In this work, the energy required for manufacturing each equipment (Eeqi) has been
obtained from [107].

A.1.2 Lifetime Exergy

The sum of the embedded and operational exergies is the lifetime exergy (LTE) consump-
tion.

LTE = Exemb + Exop (A.3)
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