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Abstract

Improvements in data storage systems may be limited by the low performance of hard

disk drives (HDDs) and the high cost per gigabyte of solid-state drives (SSDs). To mitigate these

issues, several architectures based on hybrid storage systems have been proposed. However,

energy consumption is usually neglected, and new approaches may not consider the impact on

the mechanical components of HDDs, which can result in malfunctions and data loss. Similarly,

the lifetime of SSDs can be reduced owing to their limited number of flash memory operations.

This thesis presents an approach based on generalized stochastic Petri nets (GSPNs) to evaluate

the performance and energy consumption of homogeneous (HDD and SSD) and hybrid storage

systems. Two analytical models have been proposed to represent distinct workloads and estimate

throughput, energy consumption, and response time. In addition, a performability model has

been conceived using the GSPN and reliability block diagram (RBD) formalisms to evaluate

the impacts of failures on the performance of storage systems. Hierarchical modeling approach

has been adopted, and the proposed model can estimate the availability and response time. A

benchmark tool is adopted in this study to generate workloads and collect data to characterize

storage devices. Simultaneously, this investigation estimates the power demand of HDDs and

SSDs from measurements. The results are utilized to validate the GSPN models using statistical

analysis and experiments based on industry-standard benchmarks. A design of experiment (DoE)

is performed to investigate the most important factors assumed in this study. An exploratory

analysis was conducted using industry datasets from Alibaba and Backblaze to investigate the

distinct effects of applications on storage failures. Results demonstrate the feasibility of the

proposed models and provide important observations regarding storage solutions for different

applications.

Keywords: Performance evaluation. Hybrid storage. Stochastic Petri nets. Cloud Computing.

Data management. Energy consumption. Performability.



Resumo

O aperfeiçoamento de sistemas de armazenamento de dados pode ser limitado pelo

baixo desempenho de dispositivos de disco rígido (HDDs) e pelo alto custo por gigabyte de

dispositivos de estado sólido (SSDs). Para mitigar essas questões, diversas arquiteturas têm

sido concebidas, baseadas em sistemas de armazenamento híbrido. No entanto, o consumo

energético é geralmente negligenciado, e novas abordagens não consideram os impactos nos

componentes mecânicos de HDDs, o que pode resultar em um mau funcionamento e perda de

dados. Da mesma forma, os SSDs podem ter seu tempo de vida reduzido devido ao número

limitado de operações em memórias flash. Esta tese apresenta uma abordagem baseada em

redes de Petri estocásticas generalizadas (GSPN) para a avaliação de desempenho e consumo

energético de sistemas de armazenamento homogêneos (HDD e SSD) e híbridos. Dois modelos

analíticos são propostos para representar diferentes cargas de trabalho e estimar vazão, consumo

energético e tempo de resposta. Além disso, um modelo de performabilidade foi concebido

utilizando os formalismos GSPN e diagrama de blocos de confiabilidade (RBD) para avaliar

o impacto de falhas no desempenho de sistemas de armazenamento. Uma abordagem de

modelagem hierárquica foi adotada, e o modelo pode estimar disponibilidade e tempo médio de

resposta. Uma ferramenta de benchmark foi adotada nesse estudo para gerar cargas de trabalho

e coletar dados para a caracterização dos dispositivos de armazenamento. Simultaneamente,

esta investigação estimou a potência demandada por HDDs e SSDs por meio de medições. Os

resultados foram utilizados para validar os modelos GSPN através de técnicas estatísticas e

experimentos baseados em benchmarks padrões da indústria. Um planejamento de experimento

(DoE) foi realizado para investigar os fatores mais impactantes assumidos nesse estudo. Uma

análise exploratória foi conduzida utilizando datasets das companhias Alibaba e Backblaze

para investigar os diferentes efeitos de aplicações na falha de dispositivos de armazenamento de

dados. Os resultados demonstram a viabilidade dos modelos propostos e fornecem importantes

observações em relação a soluções de armazenamento de dados para diferentes aplicações.

Palavras-chave: Avaliação de Desempenho. Armazenamento Híbrido. Redes de Petri Estocásti-

cas. Computação em Nuvem. Gerenciamento de dados. Consumo Energético. Performabilidade.
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1
INTRODUCTION

This chapter provides a comprehensive overview of the research conducted in this thesis.

Section 1.1 outlines the context of the proposed approach. Section 1.2 highlights the motivation

for this study. Section 1.3 discusses the general and specific objectives of the research to clarify

the intended outcomes. The contributions of this study are presented in Section 1.4. Finally,

Section 1.5 details the thesis structure, providing readers with an overview of the chapters and

their respective contents.

1.1 CONTEXT

Energy consumption in Data Centers (DCs) is a critical and challenging issue, which

has motivated many studies to reduce operational costs. For instance, reports indicate that the

cost of energy consumed by a server (during its lifetime) will exceed the hardware costs if the

current demand continues to increase (BHARANY et al., 2022). Estimates mention that in 2016,

approximately 416.2 billion kWh of energy was consumed by computer servers, which is more

than the total energy consumed in the entire United Kingdom (ZHOU et al., 2022).

The massive growth in structured and unstructured data requires significant computational

capabilities (VEF et al., 2020). As a result, information technology-related services currently

consume approximately 7% of global electricity, and this is expected to increase to 13% by

2030 (ZENG et al., 2022). By 2050, the energy consumption of DCs is expected to grow

twelvefold, with a fivefold increase projected by 2025 (ZHAO; ZHOU, 2022). Therefore, several

efforts have been made to maximize the energy efficiency of DCs, particularly in the context of

High-Performance Computing (HPC) and Cloud Computing (CC) (TULI et al., 2022).
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CC has been widely adopted since this paradigm reduces operational costs and improves

computational resources utilization. For instance, the United States Library of Congress has

moved its digital content to a cloud storage provider, and Netflix has adopted the Amazon S3

platform to store its videos (PALACIOS CHAVARRO et al., 2022). Nevertheless, the energy

consumption of cloud computing systems also needs to be addressed, as the amount of stored

data and applications using this paradigm continues to steadily increases (KATAL; DAHIYA;

CHOUDHURY, 2023). Of all data worldwide, 90% have been generated over the last few

years (YANG et al., 2022), and computer-stored data are predicted to reach 163 zettabytes by

2025 (BERISHA; MËZIU; SHABANI, 2022; SINGHAL et al., 2018). For example, Facebook

generates approximately 10 petabytes per month of log data and Google processes over 100

petabytes in the same period. (SIAPOUSH; JAMALI; BADIRZADEH, 2023; MANOGARAN;

THOTA; LOPEZ, 2022).

Existing solutions for increasing the energy efficiency and performance of storage devices

do not consider the adverse impacts on reliability (YIN et al., 2018a). For example, owing to their

excellent performance results, several approaches suggest concentrating intense workloads on

Solid-State Drives (SSDs). However, the durability of flash memory chips is directly associated

with the number of Program/Erase Cycles (P/Es). Therefore, intense write operations can

compromise the reliability of solid-state devices (ELYASI et al., 2018; WANG et al., 2022;

SALKHORDEH et al., 2021). The high energy consumption of Hard Disk Drives (HDDs)

has also motivated the development of new techniques. Although existing approaches obtain

significant results, they commonly involve frequent changes in the rotation of magnetic disks,

which can cause failures in their internal components and consequently decrease the HDD

lifetimes (YIN et al., 2018a). Consequently, storage failures cause downtime and disrupt system

operations (FRANK et al., 2019), which may result in financial penalties due to Service Level

Agreements (SLAs). On the other hand, high availability usually entails equipment redundancy,

which increases infrastructure costs.

Solid-state drives provide faster read operations than magnetic hard disks (WANG et al.,

2022). However, for some workloads, SSDs may not provide better sequential access results

than HDDs. As an alternative, hybrid approaches have been proposed. Hybrid storage systems

may perform better than HDD storage at an affordable cost, making them a promising solution

for many systems, such as those based on cloud computing (BOUKHELEF et al., 2019; WANG

et al., 2022). Consequently, research on storage architectures has been conducted (WANG et al.,
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2022).

Although many studies have evaluated storage system behavior, few approaches rely

on formal models and concomitantly consider Input/Output per Second (IOPS), availability,

and response time. Petri Nets (PNs) provide a mathematical foundation and, unlike simulators,

such a formalism supports the analysis/verification of quantitative (behavioral) and qualitative

(structural) properties (MURATA, 1989). Therefore, performance and dependability models are

quite important (MACIEL et al., 2011; OLIVEIRA et al., 2019), as different data-placement

policies and architectures can be assessed before implementing a real system.

This thesis presents an approach based on Generalized Stochastic Petri Nets (GSPNs)

and Reliability Block Diagrams (RBDs) for the evaluation of the performance, dependability, and

energy consumption of homogeneous (i.e., HDDs or SSDs only) and hybrid storage systems. The

proposed models can represent different workloads and architectures. Furthermore, the models

can estimate the throughput, response time, availability, and energy consumption. Experimental

results based on industry-standard benchmarks demonstrate the feasibility of the proposed

approach.

1.2 MOTIVATION

The performance of HDDs must be improved to meet the current demand for systems

that require high throughput, low latency, and reduced power consumption. For example, in

data centers that provide Infrastructure as a Service (IaaS), the use of HDDs in cloud storage

infrastructure has become a bottleneck for applications that demand progressively higher per-

formance levels (MIAO et al., 2022; CHIKHAOUI; BOUKHALFA; BOUKHOBZA, 2018).

The inherent characteristics of these devices, such as the need for mechanical movement of

some of their components (e.g., the platter, spindle, and actuator arm), hinder more significant

progress (MEI et al., 2019). This observation becomes particularly evident, especially when

considering workloads composed of random requests, which demand access to data in different

sectors, resulting in physical displacement to extreme points on the disk.

Despite these factors, the average response time for data access on magnetic disks has

reached a 15% reduction percentage per year (PARK; LEE; KIM, 2017). The decrease in seek

time (8%) and the increase in rotation speed (9%) are examples of factors responsible for this

improvement, which were obtained due to techniques such as caching, write buffering, prefetch-

ing, request scheduling, and parallel I/O (YANG et al., 2020). However, the pace of evolution
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of HDD technology in terms of performance does not match that of other system components,

thus, limiting the speed of data access and distribution to the storage device’s performance. For

example, one can cite an increase in the speed of processors, which have an annual evolution of

up to 60%, in addition to the decrease in access time in Random Access Memory (RAM), which

is 50% faster than the corresponding growth in magnetic disk performance (PARK; LEE; KIM,

2017).

Because they have no mechanical components and are based on flash memory, SSDs

are suitable substitutes, given their significant throughput rates, shorter average response times,

and low power consumption (LI et al., 2019). However, their exclusive adoption in data centers

is not possible, given that SSDs still need to meet all performance and reliability requirements.

For example, the low capacity of solid-state disks is a significant drawback, particularly for data

centers where large volumes of data are stored (MEI et al., 2018). Moreover, when subjected

to the same workload, the lifetime of SSDs is significantly reduced compared to that of HDDs.

This limitation results from the endurance limit of flash memory, which is directly related to the

number of programming and erasure cycles (P/E cycles) that can be tolerated, usually less than

100000 (ZHANG et al., 2018; MEI et al., 2019). The wear on flash memory chips results in the

generation of bad blocks, which leads to a decrease in the lifetime of SSDs; for example, in a

data center, 30–80% of SSDs develop bad blocks during their lifetimes (HAN et al., 2018).

According to the literature (YU et al., 2018; LI et al., 2019; WU et al., 2018), the

combination of SSDs and HDDs represents a possible solution to enhance the Quality of

Service (QoS) provided by clouds. However, achieving this improvement requires a balance

among aspects such as energy consumption, dependability, and performance. Neglecting these

considerations can render the entire system economically unviable due to maintenance costs. An

example of this is the annual loss of US$1.7 trillion incurred by cloud service providers due to

long response times and downtimes (HUANG et al., 2019).

To improve the utilization of storage drives, it is crucial to develop a solution that enables

cost-effective analysis and exploitation of their characteristics. This requires implementing

suitable storage architectures and data placement policies to facilitate the effective integration of

different technologies. By doing so, organizations can enhance performance and reduce costs

while ensuring the availability and durability of their stored data.
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1.3 OBJECTIVES

This thesis presents a modeling approach based on GSPNs and RBDs to evaluate the

performance, availability, and energy consumption of data storage systems under different

workloads. The specific objectives are as follows:

• Provide performance and power measurement values collected from data storage

devices (SSDs and HDDs) under different operations, access patterns (random or

sequential), numbers of workers (i.e., clients), and object sizes;

• Propose formal models based on generalized stochastic Petri nets to estimate the

performance and energy consumption of homogeneous and hybrid data storage

systems. These models should be able to represent different operations, access

patterns, and object sizes;

• Perform experiments to demonstrate the feasibility of using the proposed models

to represent storage devices. The performance and energy consumption of HDDs

and SSDs are investigated under various workloads. Furthermore, this study aims

to provide valuable insights into the impact of workload characteristics on hybrid

storage devices;

• Provide an exploratory analysis of industry logs containing information from HDD

and SSD sensors regarding the wear and utilization of such devices. This investigation

aims to provide insights into the effects of applications on storage health;

• Propose availability and performability models based on GSPN and RBD formalisms

for analyzing the impact of failures on the performance of data storage systems (i.e.,

the impact on the overall system performance when storage components occasionally

become non-operational). The proposed model adopts a hierarchical modeling

approach to provide a feasible solution for planning storage architectures and data

management strategies.

1.4 CONTRIBUTIONS

The main contribution of this thesis lies in the development of models based on the

GSPN and RBD mathematical formalisms. Specifically, these models allow the design of data
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storage systems (e.g., capacity planning and technology evaluation) that may be adopted for

purposes such as cloud computing services. Additionally, the proposed models may be utilized to

investigate different storage arrangements, considering cost and SLA constraints. The additional

contributions of this study can be summarized as follows:

• Measurement values. Performance and power values have been collected while

operating storage devices under different workloads. The collected values have been

used to validate and demonstrate the feasibility of the proposed models. However,

this contribution is not limited to this approach, as the acquired information can also

be utilized, for instance, to determine the appropriate storage technology for a given

service.

• Workload-driven storage technologies study. An investigation has been conducted

to assess the performance and energy consumption of a solid-state drive, various

hard disk drives, and a hybrid storage system. This study provides insights into

the impact of storage technology and workload characteristics on adopted metrics.

To demonstrate the practical applicability of this study, data-placement policies are

suggested by optimizing a set of metrics, thereby, identifying an optimal combination

of storage technologies and workloads.

• Workload-driven storage failures study. An exploratory analysis of storage fail-

ures has been conducted using datasets from two representative companies. This

study provides insight into the failure rates of SSDs under commonly used workloads.

In the case of HDDs, wear and failure evolution were analyzed by studying the data

collected from various sensors to investigate their behavior during utilization. The

results can be utilized, for instance, in planning storage architectures and devising

data placement strategies to mitigate the wear and failure of storage technologies.

• Storage technology analyses utilizing industry-based benchmarks. Experiments

have been performed to demonstrate the feasibility of the proposed models. This

study provides the main factors that impact the performance and energy consumption

of the storage devices adopted in this thesis. Results also demonstrate the behavior

of different storage technologies under workloads encountered in the industry. Such

insights can be employed for planning workload-driven data-management strategies
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considering storage technology characteristics. A storage-system architecture study

demonstrates the benefit of the proposed approach.

1.5 OUTLINE

This section briefly presents the contents of the remaining chapters of this thesis, which

are organized as follows.

Chapter 2 presents the basic concepts necessary to understand this thesis. First, the

concepts of the studied storage devices (HDD and SSD) are discussed. Next, it explains the

concept of hybrid storage in the existing literature and presents two storage policies aimed at

hybrid devices, which researchers have suggested several times. Subsequently, it introduces

concepts that have been adopted in this study to guide the metrics used to evaluate the storage

devices. The mathematical formalisms GSPN and RBD are also discussed to present the concepts

necessary to better understand the solution proposed in this thesis.

Chapter 3 describes previous works related to this study to highlight solutions and gaps in

the existing literature. This chapter is divided into analytical models, architectures, dependability

evaluation, energy consumption, data management, and flash memory management, and a

comparison is made between this thesis and previous solutions.

Chapter 4 describes the methodology used in this study. First, it describes the steps

necessary to define the problem, design and validate the analytical models, and plan the experi-

ments. In addition, the evaluation methodology assumed for planning the experiments is clarified

in detail. The statistical methods and techniques used to analyze the experimental results are

also discussed. Finally, the tools and environment for the measurement and data collection are

presented.

Chapter 5 introduces the GSPN and RBD models conceived in this study. This chapter

first presents the considerations and concepts assumed in this thesis. Furthermore, it explains

the metrics of interest and notations for each model. Subsequently, it describes the proposed

analytical models in detail.

Chapter 6 shows the results of the experiments conducted for this thesis. First, it shows

the validation of the proposed analytical models. The results and analysis of the experiments

performed using the conceived GSPN models and industry-based standards are then presented.

Finally, a case study is conducted to confirm the feasibility of the proposed solution.

Finally, Chapter 7 concludes this thesis by discussing its contributions. In addition, this
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chapter details possible future works and the limitations of the proposed solution.
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2
BACKGROUND

This chapter introduces the basic concepts necessary to understand this thesis. Section 2.1

describes the storage devices used in the proposed solution. Section 2.2 discusses hybrid storage

technologies and presents two commonly suggested architectures for didactic purposes. The

concepts of performance and dependability are explained in Sections 2.3 and 2.4, respectively.

Finally, Sections 2.5, 2.6 and 2.7 present the mathematical formalisms adopted in this thesis to

conceive the proposed analytical models.

2.1 DATA STORAGE SYSTEMS

This section introduces the basic concepts of the storage devices adopted in this thesis

(HDD and SSD). In addition, it explains aspects of the architecture of each technology and the

operation of their internal components. In addition, this section describes the performance and

reliability characteristics of SSDs and HDDs and identifies the advantages and disadvantages of

each of these technologies.

2.1.1 Hard disk drives

HDDs are essential for personal computers and large data processing systems (WANG

et al., 2019). Since their production began in 1956, the industry has fostered outstanding

innovations in design and manufacturing, reaching levels of evolution similar to those of the

semiconductor revolution (AL MAMUN; GUO; BI, 2006). Furthermore, in the domain of

magnetic storage systems, HDDs are the dominant devices (WANG et al., 2019), as far as

industrial production is concerned, owing to their large storage space, low cost per gigabyte, and
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broad productions infrastructure (WU et al., 2018).

With regard to the computer architecture, HDDs are situated between RAM and remov-

able drives. In this way, HDDs provide direct access to large amounts of non-volatile data;

therefore, no power is required for data preservation. Despite the existence of modern technology

(e.g., SSDs), HDDs are still widely used for data storage in DCs (WANG et al., 2019; YU et al.,

2018). In addition, HDDs have essential attributes for cloud computing platforms, such as low

cost, reasonable performance, and a long lifetime.

The proper functioning of hard-disk devices is directly related to the current states of

their various components. In HDDs, wear on mechanical and electronic components can result

in a loss of performance and reliability for the entire data storage system. The components (Fig-

ure 2.1) of HDDs are classified into four categories (AL MAMUN; GUO; BI, 2006): magnetic

components (disk and head slider), mechanical component (pivot), electromechanical compo-

nents (spindle motor, actuator arm, voice coil motor), and electronic components (integrated

circuits and interface).

Disk

Interface

Pivot

Spindle motor
Head slider

Voice coil
motor

Actuator
arm

Figure 2.1: HDD components (own work (2023)).

2.1.1.1 Performance

Systems that demand many accesses operations (e.g., cloud computing platforms) require

high throughput and low average response times to meet the performance requirements commonly

set in SLAs. Small delays in request delivery can significantly impair the data processing and

program execution (WU et al., 2018). Therefore, it is necessary to develop new techniques to
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improve the components that directly affect the performance of hard-disk devices.

The following parameters can be considered for evaluating the performance of HDDs (WANG;

TARATORIN, 1999):

• Rotational latency: is the time required for the displacement of read and write heads

between the data storage sectors;

• Access time: is the sum of the seek time, time for the read head to cease vibrations at

the end of the search for the requested data (head setting time), and rotational latency

time;

• Average response time: is directly related to the access time, in addition to the

execution of the requested operation;

• Throughput: represents the number of bits per unit of time that the read and write

heads can process.

The rotational latency of an HDDs is directly related to the speed of the spindle mo-

tor. Consequently, increasing the rotational speed reduces the access time to the data storage

sectors (WU et al., 2018) for applications that require a low mean response time. Similarly,

advances in actuators and read and write heads have increased the transfer rate of bits in hard-disk

devices (WU et al., 2018).

Although the number of revolutions per minute (RPM) of spindle motors has increased

over the years, there are still limitations that prevent the further advancement of the HDDs (WU

et al., 2018) performance. For example, as the speed of the axis motors increases, exact

synchronization with the actuator is required to ensure compliance with the written or read

bits. Furthermore, an increase in the mechanical motion can result in HDDs with higher energy

consumption (YIN et al., 2018a).

Improvements in the aforementioned components have optimized the performance of

HDDs. However, compared with other technologies (e.g., SSDs), hard disk devices still have

difficulties in handling requests for small and random objects (WU et al., 2018). Decreasing the

time required to move the mechanical components between disk sectors remains challenging

for industry and researchers. Thus, HDDs are typically recommended for data storage systems

characterized by sequential requests (LI et al., 2019).

This thesis considers only the metrics of throughput and average response time to

compare the performance of different data storage technologies (e.g., HDDs and SSDs). Both
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metrics have been commonly adopted in the literature to evaluate data storage systems (WU

et al., 2023; LEE; MOON; PARK, 2009).

2.1.1.2 Reliability

The reliability of storage devices is a significant concern for high-performance computing

systems and cloud service providers (MEI et al., 2018). Failure in storage devices can lead to

the unavailability of data in DCs, which can lead to huge financial losses as a result of fines set

in SLAs (WANG et al., 2019). In addition, the progressive increase in data generation may result

in the exhaustion of storage systems, resulting in more storage device failures.

HDD failures can occur under various operating conditions. For example, factors such

as temperature, humidity, distinct workloads, and operating hours can affect the same model

differently (MEI et al., 2018). Internal factors are also sources of disturbance and errors. In this

case, the control systems must achieve an exact level of regulation concerning servo mechanisms.

The lifetime of an HDDs is primarily related to the wear of its electromechanical com-

ponents. Spindle motors and actuators are components that may suffer premature wear if the

workload subjected to HDDs requires numerous movements (e.g., workloads composed mainly

of random requests) (ZHANG et al., 2019a). Despite this, the average time to failure reported

by HDDs manufacturers (i.e., the average time to replace a hard-disk device) is generally longer

than that for solid-state devices.

By contrast, HDDs have a shorter average time to data loss than SSDs (LI et al., 2019).

Although they contain fairly robust mechanical components with long lifespans HDDs, they are

still subject to failures of another natures, such as error sources that can affect the transfer of bits

during the processing of a given request (WANG et al., 2019). The primary sources of errors that

can affect the reliability of data transfer in HDDs are vibrations, external shocks, imprecision of

the reading and programming heads, and mechanical resonances in the actuator and disk.

2.1.2 Solid-state drives

SSDs incorporate solid-state memory for nonvolatile data storage (MICHELONI;

MARELLI; ESHGHI, 2012). The evolution of SSDs represents a significant change in storage

systems because such devices can achieve excellent throughput and mean response time values,

particularly when subjected to workloads composed mostly of random requests (AGRAWAL

et al., 2008).
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In enterprise environments, SSDs have become essential resources for improving the

performance of data storage systems (WU et al., 2018). For instance, migrating services to

cloud computing platforms has expanded the number of parallel applications that can be run

on a single DC. Consequently, transmission bottlenecks in the data storage system can lead to

significant financial losses; furthermore, random access accounts for a large proportion of online

transfers by large companies (WU et al., 2018).

With regard to computer architecture, SSDs typically have an interface-integrated con-

troller (e.g., PCI-Express, Serial Attached SCSI, or Serial Advanced Technology) to physically

connect to the host server physically. In solid-state devices, data management is performed using

an SSD controller. This component is responsible for wear leveling, garbage collection, bad block

management, and the mapping of logical blocks to physical blocks. These mechanisms constitute

a flash translation layer (EL MAGHRAOUI et al., 2010). Specific hardware executes an error

correction code (ECC) for error identification and repair, which is usually shared among multiple

flash channels (MICHELONI; MARELLI; ESHGHI, 2012; WOO; KIM, 2013). Figure 2.2

shows the architecture and functionality of SSD components.
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Figure 2.2: SSD architecture and controller functionalities (own work (2023)).

2.1.2.1 Performance

In SSDs, data storage is stored in flash NAND (Not And) memories. A NAND memory

chip consists of several blocks, usually 64 to 128 pages (MAO et al., 2012). A page is the

standard granularity for writing data to solid-state devices, and is usually 4KB.

Although they provide excellent speed for random data access (when compared to HDDs),

flash memory has some limitations. For example, writing data to flash memory requires deleting

the entire memory block in which the data will be stored. Consequently, relevant stored infor-
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mation must be rewritten in another memory space (erase-before-write) (WOO; KIM, 2013).

Excessive deletion operations are a performance bottleneck for flash memory (RICHTER, 2013)

and can amplify the internal fragmentation of data storage devices (BREWER; GILL, 2011).

Unlike in SSDs, the time required for data access in HDDs depends on the speed at which

the mechanical components can be moved (MEI et al., 2018). For example, the maximum data

throughput in HDDs is dictated by the rotational speed of the spindle motor in addition to the

transmission capacity of the read and program heads. Thus, although HDDs obtains significant

performance results when processing sequential requests, the limitations of their mechanical

components remains the predominant reason for their poor results when dealing with random

requests (MEI et al., 2018).

Compared with HDDs, solid-state devices perform better in terms of power consumption,

mean response time, impact resistance, and IOPSs for random read requests (MEI et al., 2019).

For example, the average response time in SSDs for processing random read requests can be on

the order of microseconds, whereas HDDs requires milliseconds. However, despite the increased

production and reduced price of flash memory, its high cost per gigabyte still makes it infeasible

to exclusively adopt solid-state devices (WANG et al., 2022).

2.1.2.2 Reliability

The execution of several writes and rewrite operations during the lifetime of flash memory

will eventually damage the nonvolatile cell components. Inevitably, the injection and removal of

electrons (storing or deleting data) causes irreversible damage. The degradation of flash memory

cells is estimated according to the number of write/delete cycles, averaging 100K cycles for

single-level cells (SLC) (WU et al., 2018). The limited programmability of flash memory cells is

the main reason why the lifespan of HDDs is longer than that of solid-state devices (LI et al.,

2019).

To increase SSDs capacity, multilevel cells (MLC) have been used instead of single-level

cells. This occurs because SLCs allow the storage of only one bit, whereas MLCs can double

this capacity (LI et al., 2019). However, the MLC approach has disadvantages in terms of the

lifetimes of the flash memory cells. This is because MLCs tolerate approximately 10K P/Es per

block for faults to arise, whereas SLCs support approximately 100 K P/Es (LI et al., 2019; MEI

et al., 2019).

The wear-leveling mechanism aims to minimize and uniformly utilize NAND memory
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blocks. Therefore, the maximum number of P/Es per block is estimated and considered in

the execution of this technique. This data distribution entails running a garbage collection

mechanism to identify data that can be discarded (LI et al., 2019). Starting at a limit value of

free blocks (set by the SSD manufacturer), the garbage collection starts checking for existing

copies of the same file, then deletes the duplicates. This activity can harm memory performance;

therefore, the garbage collectors typically operates in the background (MEI et al., 2019).

The balance between these two techniques (wear leveling and garbage collection) can

delay the lifetime of SSDs, and thus, the emergence of unused blocks. However, owing to

programming limitations in flash memory cells, the appearance of bad blocks is inevitable. The

unused block management module identifies and maps unused blocks. For this purpose, a new

blocks table (bad blocks table) is created upon the first initialization of the memory (MEI et al.,

2019), which contains a list of the bad blocks present in the factory test and is subsequently

updated during the use of the solid-state device.

2.2 HYBRID STORAGE SYSTEMS

Solid-state devices can be used in conjunction with magnetic disk devices because

they have an input and output interface similar to that of HDDs (LIN et al., 2017). Various

studies have devised new techniques for developing hybrid storage systems (SALKHORDEH;

BRINKMANN, 2019; WOO; KIM, 2013); however, improvement attempts have usually focused

on the software layer (i.e., the storage controller). To provide a better understanding of this topic,

this section presents two representative architectures for hybrid storage systems proposed by

several researchers (XIE et al., 2018; NAKASHIMA; KON; YAMAGUCHI, 2018; WU et al.,

2018).

2.2.1 SSD as Cache

Owing to the low performance of magnetic disks in handling random requests and

the high cost of traditional (RAM-based) cache memories, SSDs have, in principle, become

a suitable solution for improving the throughput and response time of computer systems. As

modifications to this approach are usually minimal, several studies have adopted SSDs as a

caching mechanism (LEE; MIN; EOM, 2015; WU et al., 2015; BU et al., 2012).

Figure 2.3 depicts a hybrid storage system using an SSD as the cache and an HDD for
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persistent storage. This architecture adopts the write-back storage policy, which is a common

data-management mechanism performed by a storage controller (LEE; MIN; EOM, 2015;

APPUSWAMY; MOOLENBROEK; TANENBAUM, 2012). This policy is characterized by

directing all write operations to the cache and periodically to the primary disk to reduce the

response time, access the most recent requests, and leverage the substantial reliability of the

magnetic disk systems.

SSD

HYBRID STORAGE

HDD

USER REQUISITIONS

CACHE

CONTROLLER

PERSISTENT DATA

Figure 2.3: Hybrid storage with a SSD as cache for HDD (BORBA; TAVARES, 2017).

2.2.2 SSD for Random Requests

Small-object requests in a storage system can cause significant performance degrada-

tion (CHEN; KOUFATY; ZHANG, 2011), and in this context, metadata may have a considerable

impact. Metadata blocks contain attributes related to each stored file, such as its location on the

drive and its size. Thus, metadata must be stored in memory before a file can be manipulated,

which significantly increases the number of input and output requests (MAO; WU; JIANG,

2015). These blocks, although generally small (STRUNK, 2012), account for 99% of I/O

operation time (CARNS et al., 2011). In HDDs, metadata manipulation significantly affects the

performance because of the rotations required to access the metadata and the data it refers to, as

both are usually in different chunks.

Because data searches usually follow a random-access pattern, several authors have

suggested storing metadata blocks on SSDs (CHEN; KOUFATY; ZHANG, 2011; APPUSWAMY;

MOOLENBROEK; TANENBAUM, 2012; WU et al., 2015). According to the results of these
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studies, SSDs are a suitable mechanism for reducing delays in random access to these blocks.

However, using SSDs exclusively for this purpose (metadata) can detract from the possible

benefits that can be achieved when storing other types of data on this device. Therefore,

performance improvements must consider factors such as the number of metadata blocks,

operation type (write or read), and access pattern (sequential or random). Furthermore, it is

important to state that such intense use of random requests may negatively affect the endurance

of an SSD; thus, this aspect should not be neglected.

Figure 2.4 illustrates a system in which SSDs are used for storing metadata blocks and

other random data accesses operations, whereas HDDs are responsible for storing sequential

data. Pattern recognition, that is, whether the workload is random or sequential, is a possible

procedure using both software- and hardware-based approaches (NIJIM et al., 2011; JOO et al.,

2014). For example, system calls in the Linux operating system kernel and the firmware of drives

(e.g., HDD, SDD, and hybrid) (JOO et al., 2014; NIJIM et al., 2011; CHEN; DING; JIANG,

2009) can detect whether a given read or write operation has a sequential pattern by observing

the request size, frequency, and distance between blocks.

SSD

HYBRID STORAGE

USER REQUISITIONS

CONTROLLER

HDD

SEQUENTIALRANDOM

Figure 2.4: Random data placement policy for hybrid storage (BORBA; TAVARES,
2017).

2.3 PERFORMANCE EVALUATION

Performance evaluation is a prerequisite for every stage in the life of a computer system,

from design to manufacturing, and for possible future enhancements (JAIN, 1990). Computer

systems appear in many areas and in various forms, such as embedded systems in cars, online
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banks, data centers, and smartphones. The widespread adoption of such systems demands that

both developers and users pay attention to the performance of the adopted equipment (LILJA,

2005).

When applied to computer science and engineering experiments, a performance analysis

should be conducted according to a combination of measuring, interpreting, and reporting the

studied metrics of a given computer system. However, it is often necessary to analyze only a small

independent portion of a system, such as a storage devices. Unfortunately, some components can

have very complex interactions that may constitute a challenge in making decisions regarding

the techniques, workload, and tools to be used.

In principle, for a performance evaluation, it is typically necessary to represent the

characteristics of the applications to be run on the system to be evaluated. Then, a real workload

can be collected by observing the system under normal operating conditions. However, these

conditions in a real system may be unlikely to be repeated and may even take a long time.

Therefore, a synthetic workload may be suitable depending on the experiment in question. In

addition to being similar to real workloads, synthetic workloads enable the investigation to be

repeated in a controlled manner, thereby allowing for a more precise analysis of the system

parameters. For example, the following workloads can be used to compare computer systems:

instruction addition, write and read operations, instruction mixing, kernel operations, synthetic

programs, and comparative applications.

The measurement of a real system, simulation, and analytical modeling are the three fun-

damental techniques for evaluating the performance of systems (JAIN, 1990). The measurement

technique involves collecting information from a real system regarding the specific aspects under

investigation. Although this approach can provide reliable information regarding a system, one

desirable performance evaluation characteristic is the tracking of behavioral differences as the

settings change, which this technique may not adequately address. Therefore, evaluating the

impact of modifying only one component may cause in a complex system can prove challenging.

In addition, measurements in real systems can be time-consuming and costly, as such equipment

may need to be purchased and observed for long periods to conduct a proper study (JAIN, 1990).

Analytical modeling techniques and simulations are not significantly affected by the

abovementioned disadvantages regarding the measurement of real systems (JAIN, 1990). The

simulation of a computer system is performed by using a program designed to model the essential

features to be analyzed (LILJA, 2005). The program can be modified to study the impact of
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changes in the simulated components. Depending on the level of detail of the simulated system,

the cost and time required for the analysis can be significantly reduced compared to experiments

on real machines. However, the difficulty in covering all the details and the reduced time required

to develop the simulator and run the simulator may limit the accuracy of the results.

Analytical models may be a simpler, more accurate, and less costly solution for evaluating

system performance (JAIN, 1990). An analytical model is a mathematical model with a closed-

form solution used to describe a system (LILJA, 2005). Usually, analytical modeling provides a

better understanding of the effects of the system parameters and their interactions. In addition, it

can help to validate the results produced by a simulator or the measured values in a real system.

Queueing theory is an important analytical modeling technique for systems. Many tasks

in computer systems do not share resources such as processor cores, disks, and network interfaces.

Nevertheless, when considering a system with only one resource for each piece of equipment,

the tasks must be executed individually, thereby generating queues. One of the purposes of

queue theory is to precisely determine the time spent on tasks, from the time in the queue to their

processing, that is, the time within the system.

One of the most common theorems used in the context of queue theory is Little’s

law, which is adopted in this thesis to analyze important aspects of the processing time of

requests in storage systems. The average response time of the system can be obtained using

Equation 2.1 (JAIN, 1990).

R =
L
λ

�
 �	2.1

where R is the average response time, L is the average number of requests, and λ is the task

arrival rate. This relationship can be applied to a system in which the number of incoming tasks

is equal to the number of completed tasks, i.e., the system is not overloaded.

2.4 DEPENDABILITY EVALUATION

Dependability is characterized as the ability of a system to provide services reliably (MA-

CIEL et al., 2011). Typically, the concept of dependability covers the following metrics: availabil-

ity, reliability, security, confidentiality, integrity, and maintainability. The criteria established for

these attributes can be qualitatively evaluated in systems (BERNARDI; MERSEGUER; PETRIU,

2012). Figure 2.5 shows the systematic organization of the concepts related to dependability.
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Figure 2.5: Dependability concepts (adapted from AVIZIENIS; LAPRIE; RANDELL
(2001)).



2.4. DEPENDABILITY EVALUATION 36

Dependability attributes define the ability of a system to provide the specific functionality

for which it was designed. However, certain threats can cause a system to behave differently

than expected. Specifically, a fault can be defined as the cause of an error, which is a part of the

system state that can lead to system failure. Therefore, an error can be defined as an intermediate

stage between a fault and failure (BERNARDI; MERSEGUER; PETRIU, 2012). A fault can be

considered a failure if it refers to a specific component of a system (MACIEL et al., 2011).

Four techniques ( means) can be used to define the reliability of a system within the

context of dependability (BERNARDI; MERSEGUER; PETRIU, 2012). Fault prevention

concerns the methods employed during a system’s design and production phases to prevent

undesirable future occurrences (AVIZIENIS et al., 2001). Fault removal occurs during the

development and operation phases. Therefore, there are three stages: verification, diagnosis, and

correction. However, despite the initial planning, fault tolerance strategies must be applied to

preserve the service offered, even in the presence of failures. Considering the planning aspects,

that is, predicting possible undesired behavior ( fault forecasting), the evaluation during the

system operation seeks to identify whether the dependability attributes are satisfied in advance.

The reliability attribute represents the probability that a system will perform the intended

functions for which it is designed within a specific time without the occurrence of failures (MA-

CIEL et al., 2011). This relationship is mathematically expressed by Equation 2.2, where T is a

continuous random variable representing the time to failure of a system. For a given value of t,

R(t) is the probability that the time to failure is greater than or equal to t (EBELING, 2004).

R(t) = P{T ≥ t},T ≥ 0
�
 �	2.2

Therefore, if we consider P{T < t}, the failure probability up to instant t can be obtained.

Equation 2.3 shows this relationship, in which F(t) represents the cumulative distribution

function of the failure distribution (EBELING, 2004).

F(t) = 1−R(t) = P{T < t},T ≥ 0
�
 �	2.3

Availability is the probability that a given system is in a working condition (MACIEL

et al., 2011). In particular, steady-state availability can be expressed as a function of the

mean time to failure (MTTF) and mean time to repair (MTTR) (Equation 2.4) (KANOUN;

SPAINHOWER, 2008).
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Availability =
MT T F

MT T F +MT T R
=

uptime
uptime+downtime

�
 �	2.4

where uptime represents the system uptime and downtime is related to the downtime period.

The mean time to failure specifies how long a given system or subsystem will function

correctly (MODARRES; KAMINSKIY; KRIVTSOV, 2009); that is, it represents the expected

time for a failure to be observed (BERNARDI; MERSEGUER; PETRIU, 2012). Estimating

the MTTF requires knowledge of the statistical distribution of the time-to-failure values (failure

distribution function) (KAPUR; PECHT, 2014). For example, in the case of the exponential

distribution, which has a constant failure rate (EBELING, 2004), the MTTF calculation follows

the Equation 2.5, where f (t) represents the probability density function, and λ is the failure rate.

MT T F =
∫

∞

0
R(t)dt =

∫
∞

0
t f (t)dt =

∫
∞

0
e−λ tdt =

1
λ

�
 �	2.5

Maintainability is the probability that a failing system or component will be restored or

repaired to a specific condition within a specified period of time (EBELING, 2004). Similar to

reliability, maintainability is characterized by a probability distribution; however, in this case, it

considers the time to repair. Maintainability is described by Equation 2.6, which represents the

probability that the repair will be completed within time t, where h(t) is the probability density

function.

P(T ≤ t) =
∫ t

0
h(t)dt

�
 �	2.6

The mean time to repair (MTTR) is typically used to quantify maintainability. However,

similar to the MTTF calculation, the statistical distribution must also be considered (EBELING,

2004). Equation 2.7 represents the calculation used to obtain this value, where H(t) is the

cumulative distribution function.

MT T R =
∫

∞

0
th(t)dt =

∫
∞

0
(1−H(t))dt

�
 �	2.7

Analytical models have been widely adopted for dependability assessments (BERNARDI;

MERSEGUER; PETRIU, 2012). A model is an abstraction of a system whose purpose is to

enable understanding before it is designed. A dependability model considers the abstractions

required to represent system failures and their consequences. Modeling can then be defined
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according to the interaction or structure of the components of a system.

For more complex interactions and representing dependencies between systems, state-

space models can provide a more accurate representation by analyzing the dynamic behavior

when events occur (MACIEL et al., 2011). Combinatorial models relate to the structural

relationships between the elements of a system; however, they assume that the failure or recovery

of one component is not affected by the behavior of another element.

Reliability block diagrams (RBD), fault trees, and reliability graphs are representative

combinatorial models, whereas Markov chains and stochastic Petri nets (SPN) are the most

widely used state space-based models (MACIEL et al., 2011).

2.5 CONTINUOUS MARKOV CHAINS

The Markov chain is a mathematical formalism based on state spaces, proposed in

(MARKOV, 1906) for modeling systems in several areas, both for descriptive purposes and for

analysis. A Markov model can be described as a discrete state space diagram associated with a

Markov process, that is, a case of stochastic processes (BOLCH et al., 2006).

A stochastic process is a collection of random variables (X(t)) indexed by a parameter t

belonging to a set T . Often, T is taken to be a set of non-negative integers (although other sets are

perfectly possible), and X(t) represents a measurable characteristic of interest at time t (BOLCH

et al., 2006). The set of all possible values of X(t) (for each t ∈ T ) is called the state space S. If

set T is discrete, the process is classified as discrete-time; otherwise, it is considered continuous.

Similarly, the state space S can be discrete or continuous; consequently, the stochastic processes

can also be discrete or continuous. In this thesis, discrete times are not adopted; therefore, the

continuity section focuses on continuous-time stochastic processes (T = {t : 0≤ t < ∞}).

A stochastic process is said to be Markovian if (HAVERKORT, 2000),

P{X(tk+1)≤ xk+1|X(tk) = xk,X(tk−1) =xk−1, ...X(t1) = x1,X(t0) = x0}=

P{X(tk+1)≤ xk+1|X(tk) = xk},

�
 �	2.8

for all t0 ≤ t1 ≤ ...tk ≤ tk+1. This means that a stochastic process is said to be a Markovian

process only if the future state depends exclusively on the present state (X(tk) = xk) and not

on the previous states. Therefore, this particular case of stochastic processes is also called the
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memoryless process (HAVERKORT, 2000).

A Markov chain can be represented as a state diagram, where the vertices represent the

states and the arcs represent the transitions between states. Transitions between states represent

the occurrence of events (MACIEL et al., 2011). The weights of the transitions are assigned

according to the type of random variable adopted to represent the duration of the events in

the system. For example, for Discrete-Time Markov Chains (DTMCs), one can assign a value

0 < p < 1 to the weight of an arc, where p represents the probability of transition from state

si to s j. For a Continuous-Time Markov Chain (CTMC), the value assigned to the arc weight

between two transitions represents the rate at which the change in state occurs (BOLCH et al.,

2006). Owing to the Markov (memoryless) property, the time between activities must follow a

memoryless distribution. Therefore, in CTMCs, an exponential distribution is adopted (BOLCH

et al., 2006).

X

YZ

λ β

rate
places

α

Figure 2.6: CTMC example (own work (2023)).

Figure 2.6 shows an example of a CTMC with three states, which is adopted to explain

the following analysis method. Markov chains can be represented in a matrix form (transition

rate or generator matrix). The generating matrix Q is composed of components qii and q ji, where

q is the transition rate from state i to j, and ∑qi j =−qii. Then, for this hypothetical CTMC with

the state space S = {X ,Y,Z}= {0,1,2}, it can be stated that the resulting generating matrix Q is

Q =


q00 q01 q02

q10 q11 q12

q20 q21 q22

 =


−β β 0

0 −α α

λ 0 −λ

 �
 �	2.9

The stationary analysis of a Markov chain consists of determining the probability that

the system will reach a specific state over a long runtime. These probabilities are independent of

the initial state of the system. They are represented by the vector π = {π1,π2,π3, ...,πn}, where
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πi is the stationary probability of state i. Equation 2.10 estimates the state probability vector.

π×Q = 0, ∑
i∈S

πi = 1
�
 �	2.10

Although Markov chains are a fairly representative mathematical formalism, this thesis

adopts generalized stochastic Petri nets (GSPNs) for the proposed models. However, as presented

in the next section, generating an equivalent CTMC is one step in performing a stationary analysis

of GSPNs (BOLCH et al., 2006; KLEINROCK, 1975). From the CTMC state space, the metrics

assumed in a given GSPNS model can be estimated through numerical analysis.

2.6 STOCHASTIC PETRI NETS

This section explains the mathematical formalism adopted in this thesis to represent the

data storage systems. This formalism has been adopted to create analytical models for evaluating

the performance, energy consumption, and dependability of such systems. First, the concept of

Petri nets is introduced to facilitate the understanding of its fundamentals. Then, its extension,

generalized stochastic Petri nets, is presented.

2.6.1 Petri nets

PNs are a family of formalisms suitable for modeling various systems because of their

features such as concurrency, synchronization, asynchronism, distribution, and non-determinism

are well represented (MURATA, 1989). Introduced by Carl Adam Petri in 1962 (PETRI, 1962;

BOLCH et al., 2006), Petri nets were not originally developed for the purpose of performance

evaluations, despite their ability to represent complex systems (FRANCÊS, 2003). As a graph-

ical tool, Petri nets can be used as a visual communication aid, similar to flow charts and

block diagrams (MURATA, 1989), thus, enabling a description of the existing relationships

between conditions and events (O’CONNOR; O’CONNOR; KLEYNER, 2012). The elements

constituting a Petri net are shown in Figure 2.7, which is explained below.

In general, a Petri net is a directed bipartite graph consisting of two types of nodes: place

and transition. Graphically, places are represented by circles or ellipses (REISIG, 2013) and are

associated with a passive component intended to portray a condition or store an object (BAUSE;

KRITZINGER, 2002). The changing conditions of a system, which can also be seen as a

change in values, are represented by transitions, which are symbolized by a rectangle and are
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Figure 2.7: Petri net elements (own work(2023)).

characterized as the active components of Petri nets (REISIG, 2013).

Because it is a bipartite graph, the connection between elements must be made by

considering both types of nodes; that is, a place can only connect to a transition, and vice

versa (BAUSE; KRITZINGER, 2002). Places and transitions are directly connected by arcs.

Graphically, an arc is represented by an arrow and does not constitute a system component but

only an abstract relationship, such as a logical connection (REISIG, 2013). Two types of arcs

exist: input arcs and output arcs. Input arcs represent a connection from an input place to a

transition, whereas the output arcs connect a transition to an output place (BOLCH et al., 2006).

For a transition to be executed (fired), it must be enabled. A transition is enabled if all

its entry places have at least one mark (token). A token, graphically represented by a black dot,

portrays the system’s state at a given moment (O’CONNOR; O’CONNOR; KLEYNER, 2012).

The firing of an enabled transition represents the execution of an action that causes the absorption

and generation of tokens at the input and output locations, respectively (Figure 2.8), thereby

taking the model to a new state of marking (O’CONNOR; O’CONNOR; KLEYNER, 2012).

enabled transition
transition firing

new marking

Figure 2.8: Firing of a transition (own work (2023)).

The formal definition of a Petri net is as follows (MURATA, 1989):

Definition 2.1. A Petri net is a 5-tuple, PN = (P,T,F,M,M0), where:

• P = {p1, p2, ..., pm} is the finite set of places;
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• T = {t1, t2, ..., tn} is the finite set of transitions;

• F ⊆ (P×T )∪ (T ×P) is the set of arcs;

• M : F →ℵ is the function that assigns weight to the arcs;

• M0 : P→ℵ is the initial marking, where P∩T = /0 and P∪T 6= /0.

All reachable markings and steps of a Petri net can all be compiled into a reachability

graph (RG). In this directed graph, the nodes represent reachable markings, whereas the edges

reflect the transitions between them. In principle, the reachability graph is an appropriate starting

point for net analysis and verification of some (behavioral and structural) properties, as long

as it presents a finite number of reachable markings (REISIG, 2013). Figure 2.9 illustrates a

hypothetical Petri net and its corresponding reachability graph.

p2

p1

t1 t2
p3

t1

p4
t3

[0,0,1,0][1,1,0,0] [0,0,0,1] [1,1,0,0]
t2 t3

Figure 2.9: Petri net and corresponding reachability graph (own work (2023)).

2.6.1.1 Petri nets properties

The study of Petri net properties allows for the analysis of several characteristics of a

modeled system. The properties of Petri nets can be divided into two major groups: behavioral

and structural (MACIEL; LINS; CUNHA, 1996; MURATA, 1989).

The behavioral properties depend on the markings of the Petri net model. The definitions

of the behavioral properties addressed in this thesis are as follows:

• Reachability: indicates the possibility of reaching a given marker by firing a finite

number of transitions from an initial marker. Given a marked Petri net RM = (R,M0),
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the firing transition t0 changes the marking of the Petri net. A marking M
′
is accessible

from M0 if there exists a sequence of transitions that, after firing, leads to marking

M
′
. That is, if marking M0 enables transition t0, firing this transition achieves the

marking M1. Marking M1 enables t1, which, if fired, achieves M2, and so on, until

marking M
′
is obtained;

• Boundedness: a Petri net is bounded if, for any reachable markingM
′
from the initial

marking M0, the number of tokens never exceeds the value k. Thus, this net is said to

be k-bounded;

• Liveness: this property is defined as a function of the possibility of firing transitions.

A Petri net is considered live if, regardless of the markings that are reachable from

M0, it is always possible to fire a transition in the Petri net through a sequence of

firing transitions. This property allows us to analyze whether events that will never

be fired have been included in the Petri net model. If a model is live, this means that

it is deadlock-free;

The structural properties of Petri nets reflect their marking-independent characteristics.

These properties depend solely on the structures of the Petri nets. The structural properties

discussed in this thesis are defined as follows:

• Boundedness: a Petri net R = (P,T,F,W,M0) is classified as structurally bounded if

it is bounded (it maintains the number of tokens) for any initial marking;

• Conservativeness: this property allows for the verification of non-destruction or

creation of resources through the conservation of token marks in a given Petri net. A

net is considered conservative if the weighted sum of the marks in the net does not

changed for any possible firing sequence;

• Consistency: a Petri net is considered consistent if firing a sequence of transitions

from an initial label M0 returns to the same initial label M0; but, all transitions are

fired at least once. A net can be considered partially consistent if M0[s > M0 and

some transitions ti (ti ∈ T ) fire at least once in a sequence of transitions s.
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2.6.2 Generalized stochastic Petri nets

Petri nets have proven to be suitable for modeling computer systems because of their

ability to represent concurrency and synchronization. Petri nets have demonstrated to be a

widely used resource for evaluating system properties by enabling the representation of the

relationships between events and conditions. However, performance and dependability analyses

are unfeasible because time is not considered in its definition. This demand has led several

authors to propose modifications to the basic definition to obtain a modeling tool more applicable

to the representation of real systems (AJMONE MARSAN; CONTE; BALBO, 1984a).

In particular, including time associated with a transition specifies the delay between

enabling and firing it. In this context, Zuberek et al. (ZUBEREK, 1980) established a fixed

time to model the performance of a computational system at a specific level. Moreover, Mer-

lin et al. (MERLIN; FARBER, 1976) introduced the timed Petri nets including a maximum

and minimum time to fire each transition. In contrast, Molloy et al. (MOLLOY, 1982) pro-

posed a Stochastic Petri Net (SPN) in which the firing time of the transitions is randomly and

exponentially distributed.

Using exponential distribution to define the temporal characteristics makes this extension

valuable, mainly because of its memoryless property. This property makes it unnecessary to

distinguish between the distributions of the current delay and those that are yet to occur (BALBO,

2001), thus, making the reachability graph of a bounded SPN isomorphic to a continuous-time

Markov chain (MURATA, 1989; TRIVEDI, 2008). For example, this characteristic allows the

computation of steady-state probabilities of a marking.

The introduction of SPNs makes it possible to combine the concepts of graphical and

probabilistic models, thus, becoming a useful tool for estimating the performance of a system,

as well as an alternative to the generation of Markov chains through the adoption of simulation

techniques (TRIVEDI, 2008). Its limitations are associated with the size of the represented

system, which can increase the complexity of its graphical representation and the number of

states of the associated Markov chain (in the case of stationary analyses). Therefore, SPNs are

appropriate for modeling systems with a limited state space (AJMONE MARSAN; CONTE;

BALBO, 1984a).

Next, a formal definition of stochastic Petri nets is presented (BAUSE; KRITZINGER,

2002):



2.6. STOCHASTIC PETRI NETS 45

Definition 2.2. Formally, an SPN is a 2-tuple, SPN = (PN,Λ), where:

• PN = (P,T,F,M,M0) is formed by the Petri net discussed in Definition 2.1;

• Λ = {λ1,λ2, ...,λn} is the set of rates, where the rate λi is associated with the transition ti.

Depending on the complexity of the system, not associating random times for the

representation of an action may become desirable. Moreover, representing short activities only

logically can be particularly convenient, especially if the number of states in the generated

Markov chain is reduced. In this regard, Balbo et al. (AJMONE MARSAN; CONTE; BALBO,

1984a) introduced generalized stochastic Petri nets, which have two types of transitions: timed,

represented by a white rectangle, and immediate, denoted by a black rectangle. By definition,

immediate transitions have no delay, whereas timed transitions are associated with an exponential

distribution time, as mentioned in the definition of SPNs. Note that immediate transitions, when

enabled, take precedence over timed transitions (MARSAN et al., 1994).

Other extensions have been proposed for GSPNs, the most relevant of which are explained

as follows (BOLCH et al., 2006):

• Inhibit arc: an inhibit arc connects a place to a transition and is graphically repre-

sented by a line with a white circle at the end opposite the place. When the number

of marks in a place is equal to or greater than the multiplicity constrained by the arc,

the transition is disabled;

• Priorities: although inhibit arcs can be used to specify priority relationships, such

assignments are best defined when they are explicitly introduced into a paradigm.

Priorities are specified by the integers associated with these transitions. Thus, a

transition ti can be enabled if its priority is higher than that of the other transitions in

the net, that is, ti > tn;

• Weight: if weights wi and w j are associated with the respective immediate transitions,

ti and t j, and only both are enabled, the firing probability of ti is given by wi/(wi +

w j) (BAUSE; KRITZINGER, 2002);

• Server semantics: this thesis addresses single-server and infinite-server semantics.

Enabling an immediate single-server transition allows the absorption of tokens in

an individual manner; that is, the occurrence of a new firing is conditional on the
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completion of the previous delay. As for infinite-server semantics, the absorption of

tokens is performed in parallel, so as the respective transition is enabled, it can be

fired (MARSAN et al., 1994).

Considering the presented GSPN extensions, their formalism can be defined as follows:

Definition 2.3. Formally, a GSPN is an 8-tuple, GSPN = (P,T, I,O,H,Π,W,M0), where:

• P = {p1, p2, ..., pm} is the finite set of places;

• T = {t1, t2, ..., tn} is the finite set of immediate (Tim) and timed transitions (Ttimed), P∩T =

/0 e T = Tim∪Ttimed;

• Π : T →ℵ is the priority function, where Π(t)≥ 1, if t ∈ Tim, or Π(t) = 0, if t ∈ Ttimed;

• I,O,H : T → Bag(P) are the input, output, and inhibit functions, respectively, where

Bag(P) is the multiset of P(Bag(P) : P→ℵ);

• W : T → ℜ is the weight or rate assignment function, where W (t) = wt , if t ∈ Tim, or

W (t) = λt , if t ∈ Ttimed;

• M0 : P→ℵ is the initial marking, where P∩T = /0 e P∪T 6= /0.

Adding the concept of immediate transitions to GSPNs has increased their ability to

model real systems; however, their analysis is more complex than that of SPNs. The isomorphism

between SPNs and CTMCs does not occur in the same way for GSPNs because of the existence

of two types of markings: vanishing and tangible (MARSAN et al., 1994). Volatile markings

represent states upon enabling at least one immediate transition, whereas tangible markings are

associated with timed transitions.

For a given GSPN, an Extended Reachability Graph (ERG) is generated, containing

information from both types of markings. However, to avoid stochastic discontinuity, volatile

markings must be eliminated to obtain a reachability graph isomorphic to a corresponding Markov

chain (MARSAN et al., 1994). Eliminating vanishing markings is an essential step in generating

an equivalent CTMC. Two techniques can be employed: on-the-fly and post-elimination.

Figure 2.10 shows the steps for eliminating volatile markings using an on-the-fly tech-

nique. Initially, the respective ERG is generated, which allows the identification of volatile

markings to be disregarded. Volatile markings are then avoided by redirecting the arcs to the
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markings that should constitute the reachability graph (in this example, m0 connects m3 and m4,

avoiding m1) (BOLCH et al., 2006). Finally, the corresponding CTMC is generated, allowing for

stochastic analysis. Notably, this splitting considers the probabilities of the immediate transitions

involved in the process and associates them with the rates of the resulting arcs.

Generating a CTMC from a GSPN makes it possible to estimate the performance and

dependability metrics of the represented system. The equivalent CTMC can then be computed

using numerical analysis (stationary analysis). Although it provides accurate results, the station-

ary analysis of a GSPN is a solution method that requires exponential statistical distributions

associated with timed transitions (BOLCH et al., 2006). An alternative to this restriction is the

use of the moment matching technique, with which it is possible to approximate nonexponential

delays using phase-type distributions (Section 2.6.3). Simulation techniques can also be used to

obtain performance and dependability metrics (BOLCH et al., 2006). However, it is important to

note that simulation methods provide results based on a particular significance level, whereas

numerical analyses of a GSPN result in a single-point value (TUFFIN et al., 2007).
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Figure 2.10: Eliminating vanishing markings demonstrated by (a) a given GSPN, (b)
equivalent ERG, (c) resulting RG, and (d) corresponding CTMC (adapted from BOLCH

et al. (2006)).
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2.6.3 Phase-type distributions

In GSPNs, timed transitions are associated to exponential distributions; however, a

non-exponential delay can be approximated using phase-type distributions (DESROCHERS; AL-

JAAR, 1995), more specifically, Erlang, hyperexponential and hypoexponential. A trapezoidal

transition, namely the s-transition (Figure 2.11), is adopted to denote a subnet, which models a

delay using a phase-type distribution.

This thesis utilizes the technique described in (DESROCHERS; AL-JAAR, 1995), in

which an algorithm adopts the inverse of the coefficient of variation (CV ): 1/CV = µd/σd . µd is

the mean delay, and σd is the standard deviation. The algorithm is as follows:

� If µd = σd , only a single timed transition is adopted;

� Assuming µd/σd ∈ N and µd/σd 6= 1, the phase approximation considers an Erlang

subnet (Figure 2.12), such that γ =
(

µd
σd

)2
and λ = γ/µd;

� Considering that µd > σd , a hypoexponential subnet is adopted (Figure 2.13) and
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 �	2.17
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Figure 2.11: s-transition (BORBA; TAVARES; MACIEL, 2022).
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Figure 2.12: Erlang distribution (BORBA; TAVARES; MACIEL, 2022).
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Figure 2.13: Hipoexponential distribution (BORBA; TAVARES; MACIEL, 2022).
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Figure 2.14: Hiperexponential distribution (BORBA; TAVARES; MACIEL, 2022).
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2.7 RELIABILITY BLOCK DIAGRAMS

A reliability block diagram (RBD) is a graphical representation of the combination of

successes or failures of components in a system. It represents the logical relationship among a

system, subsystems, and components, considering their individual reliability values (KAPUR;

PECHT, 2014; RAUSAND; ARNLJOT et al., 2004; KUO; ZUO, 2003). Furthermore, although

it was initially proposed for reliability calculations, RBDs can also be used to estimate other

dependability metrics, such as availability and maintainability (MACIEL et al., 2011).

RBDs consist of components and their logical relationships, which are graphically

represented by rectangles and arcs, respectively. In addition to connecting the components, the

arcs are also linked to the start and end vertices. The start vertex is typically positioned on the

left side of the model, whereas the end vertex is arranged on the opposite side (MACIEL et al.,

2011).

Usually, the arrangement of the components in a model corresponds to the physical

arrangement of the items in a system. However, some cases do not follow this rule, such as when

the failure of one of the two resistors physically arranged in parallel causes system failure. In

this case, the appropriate model would be two blocks arranged in series.

RBDs are often used to model the effects of system failures (MODARRES; KAMIN-

SKIY; KRIVTSOV, 2009). A serial RBD arrangement (Figure 2.15(a)) should be considered

when the failure of one block results in the failure of the entire system. This arrangement implies

that all the subsystems must be operational to allow the system to operate (KAPUR; PECHT,

2014). A system that maintains its operability as long as at least one of its n components is

functional is represented by parallel arrangements (RAUSAND; ARNLJOT et al., 2004), as

shown in Figure 2.15(b).

In the event of component failure, when redundancy exists, redundant behavior can occur

in the following ways (KAPUR; PECHT, 2014):

• Hot standby: redundant equipment governed by this concept is characterized by

being active, even when not in use. Therefore, it has the same failure rate as the com-

ponent being used. Parallel arrangements typically consider this type of redundancy;

• Cold standby: in this specific case, the standby component does not fail until it is

requested, because it is inactive until the main component fails;
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BEGIN END
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Figure 2.15: RBD arrangement (BORBA; TAVARES, 2017).

• Warm standby: the redundant component has a low failure rate compared with the

main component because it is only required at regular intervals (e.g., system backup).

Assuming n components (blocks) in series, the availability (As) or reliability (Rs) of a

system can be estimated as

Ds =
n

∏
i=1

di
�
 �	2.18

where di represents the availability (Ai) or reliability (Ri) of the i component (EBELING, 2004).

In a system with n parallel components, availability or reliability is calculated as

Ds = 1−
n

∏
i=1

[1−di]
�
 �	2.19

where di corresponds to the availability (Ai) or reliability (Ri) of the i component (EBELING,

2004).

2.8 SUMMARY

This chapter explored some of the fundamental concepts necessary to understand this

thesis. First, the storage devices studied in this thesis were presented in detail to provide an

understanding of their functionalities and components. In this way, the influence of these

elements on the performance, reliability, and power consumption of HDDs and SSDs was

discussed. Next, the concept of hybrid systems was approached, and for didactic purposes, two

commonly suggested storage policies for hybrid storage devices were demonstrated for didactic
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purposes. Subsequently, this chapter addressed the performance and dependability concepts

fundamental to the evaluations performed in this thesis. The mathematical formalisms of the

CTMC, GSPN, and RBD were introduced to better understand the analytical conceived in this

work. Finally, the optimal utilization of storage devices through data placement strategies was

discussed.
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3
RELATED WORKS

This chapter presents existing studies that propose solutions to address issues concerning

the performance, dependability, and energy consumption of data storage systems. The related

works detailed in this chapter are categorized into sections according to the main aspects

suggested for improving such storage devices. The following aspects are considered: analytical

models, architectures, dependability evaluation, energy consumption, data management, and

flash memory management. Finally, this chapter concludes by comparing the existing solutions

and the contributions of this thesis.

3.1 OVERVIEW

Hybrid storage devices have demonstrated their viability in data storage systems owing

to their significant contribution to the performance of computer systems. Several architectures

have been proposed to provide more efficient configurations for the growing number of requests,

which is a consequence of the considerable increase in the demand for cloud services. In this

context, data management in data storage devices is a prominent field of research that has

motivated several studies. For example, several researchers have proposed approaches for a more

appropriate data allocation to decrease the response time and energy consumption of storage

devices. However, these approaches do not consider using analytical models to concomitantly

investigate issues such as the energy consumption, dependability, and performance of data

storage systems.
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3.2 MODELS

Driven by the massive amount of data generated over the years, the demand for higher

storage capacity and throughput has grown steadily. In this sense, HDDs play an essential role in

data storage systems because of their high volumes and relatively low prices. However, HDDs

may become a performance bottleneck when subjected to random operations, as such an access

pattern demands intense movements from their mechanical components. Consequently, the

service time may substantially increase because of data seeking, disk rotation, and transmission

delays. Therefore, a balance between performance and price is essential for magnetic disks. Xie

et al. (XIE; XIA; XU, 2020) propose a numerical approach to estimate HDD performance. A

multiple-state-dependent approach is used to model HDDs, resulting in an M/G[b]/1/K queuing

model that can be solved to estimate throughput and response times under various workload

types. The authors present a method for computing steady-state probability using embedded

Markov chains to solve the proposed model. A comprehensive study of disk performance is

conducted, and experimental results show the benefits of their solution for workloads composed

of random write operations and small request sizes. In addition, the authors claim that the

proposed model is feasible and can be used in future HDD optimization studies concerning, for

example, the impact of different cache policies.

In flash-based storages, updating data means writing new information in an empty block

rather than overwriting old data and setting the block containing the former information as

erase-available. When the garbage collection mechanism is triggered, a cleaning algorithm

claims space and erases these marked blocks, which may still store information derived from a

different application (i.e., unrelated but valid data). This information is kept and copied to another

block, which therefore causes extra write operations; as such requests, in principle, should not

be required. This amplification is expressed as the ratio of the total pages written to the original

number of requests. Verschoren et al. (VERSCHOREN; VAN HOUDT, 2020) investigate the

performance of SSDs by specifically focusing on the influence of various garbage collection

algorithms. Of particular interest is the d-choice garbage collection algorithm, designed to

mitigate the adverse effects of write amplification (i.e., the volume of data a solid-state drive

controller writes relative to the data written by the host flash controller). However, these

algorithms can introduce variability in the number of program/erase cycles experienced by flash

memory cells, consequently affecting the lifespan of the SSD. To address these concerns, the
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authors propose a new HCWF (swap) mode, which is a mechanism through which it is possible

to balance wear and minimize write amplification. For this, a "hot" and "cold" data separation

is adopted, aiming to identify the most used memory cells and, consequently, avoid their use

during the execution of the proposed approach. A Markov chain model is developed to represent

the SDDs and proposed mode. Simulations demonstrate relative errors below 0.1%; therefore,

the authors consider that the model presents high accuracy in estimating SSD performance when

implementing the proposed solution.

Boukhelef et al. (BOUKHELEF et al., 2017) propose a cost model for storing database

objects in cloud infrastructure. The approach comprises costs from storage utilization (occupation

per GB), consumed energy, endurance, SLA violation, and object movement between storage

units. Constant values are assumed for the power cost model because the authors do not consider

the workload characteristics (e.g., access patterns) for this metric. The migration cost model

provides insights into the transfer of objects. However, different applications and their effects are

not considered in this approach. Additionally, the storage lifetime is estimated by considering the

number of operations a given storage has been subjected to and its respective manufactory-report

endurance. The authors built a hybrid storage system (HDD and SSD) and kernel module that

captures I/O requests from different devices. Factory specifications (e.g., average response time,

idle power, and endurance) from different storage technologies (HDD and SSD) were adopted

for the experiments using the cost models. The results indicate that energy consumption is

responsible for 5–28% of the overall cost of databases using HDDs. SSD failures were found to

be responsible for the highest costs and can account for up to 90% (for write-intensive workloads)

of the overall cost. These models do not consider network-related costs, and the authors intend

to approach their impacts in the future.

3.3 ARCHITECTURES

In (NAKASHIMA et al., 2017), the authors investigate the performance of hybrid

storage systems composed of M.2 SSDs (solid-state devices that use the PCI-express interface),

HDDs, and Serial Advanced Technology Attachment (SATA) SSDs. The experiments focus on

sequential requests, initially best processed by magnetic disk devices. Consequently, the hybrid

composition of HDD + M.2 SSDs (acting as a system cache) obtained higher I/O values than

the homogeneous devices (HDD, SATA SSD, and M.2 SSD). Nakashima et al. (NAKASHIMA;

KON; YAMAGUCHI, 2018) evaluate the SSD architecture as a cache and propose a method to
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increase the throughput by focusing on Big Data applications. This method considers the wear

level of SSDs when many writes are requested. In addition, considering the request behavior,

SSDs are adopted only for storing anticipated data (cache information), whereas massive writes

are directed to HDDs. Thus, read operations become predominant in SSDs. Experimental results

indicate a 78.2% improvement in the response time of the solid-state devices.

Li et al. (LI et al., 2019) claim that architectures with SSDs as cache are ineffective

because of the significant performance differences between solid-state and magnetic disk devices.

The authors justify their assertion by considering that a cache miss on the order of 1% can

degrade the I/O rate by a factor of 10 (considering that the adopted SSDs have a throughput rate

three times higher than that of HDDs). Therefore, the authors propose a scheme in which primary

replicas are stored on SSDs, whereas backups are saved on HDDs. The proposed architecture

includes a mechanism to transform small random writes into sequential requests to compensate

for the performance differences between the technologies. This mechanism is adopted only to

back up replicas (i.e., requests originally intended for HDDs). This proposal aims to provide

efficient virtual disks for virtual machines in cloud computing environments. The experimental

results demonstrate that the proposed approach can achieve better performance than commercial

block storage services such as Amazon Web Services (AWSs).

3.4 DEPENDABILITY EVALUATION

Han et al. (HAN et al., 2021) study the correlated failures in nearly one million SSDs

of 11 drive models based on a dataset of Self-Monitoring Analysis and Reporting Technology

(SMART) logs (COMMITTEE, 1995), trouble tickets, physical locations, and applications. The

authors conduct an exploratory analysis in order to guide the design of highly reliable storage

systems. The SMART attributes and storage drive characteristics (drive models, lithography,

and capacity) are approached to investigate their correlation with failures, and Spearman’s rank

technique (JAIN, 1990) is adopted. The results indicate the significant effects of write-dominant

applications and multi-level cell (MLC) technologies on SSD failures.

In (XU et al., 2021), the authors propose a technique to select the SMART log attributes

as learning features in an automated and robust manner. This technique combines different

feature ranking results and automatically generates the final feature selection based on change

point detection of wear-out degrees. The authors claim that the proposed method can be used for

large-scale SSD failure prediction of different drive models and suppliers, as experimental results
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indicate accuracy improvements of 10-14% compared to existing feature selection approaches.

Similarly, Zhang et al. (ZHANG et al., 2019b) suggest a machine learning approach to predict

HDD failures. This work address the lack of data about minority disks, that is, storage devices

deployed to augment system capacity or replace recently failed drives. A transfer learning

approach is adopted, and an iterative algorithm is developed to improve predictive accuracy.

Consequently, a prediction model might be leveraged for a different model by transferring

sufficient SMART training data (health state information) from an other disk model.

In (CHAMAZCOTI et al., 2017), the authors propose a solution to increase the reliability

of Redundant Array of Independent Disks (RAID)-based SSDs. Specifically, a new parity

bits distribution policy is proposed based on existing policies for RAIDs (e.g., the uniform or

unequal distribution of parity bits). A uniform distribution of bits among SSDs may increase the

probability of concurrent failures when, for example, the number of programming/deletion cycles

reaches the endurance limit of flash memory. Conversely, an uneven distribution accelerates

the wear of some solid-state devices, resulting in a high probability of failure. The authors

then suggest a structure called Hybrid RAID, which uses both of the mentioned parity policies

and adopts the number of programming/deletion cycles in each flash memory as the factor

determining the behavior of the designed control algorithm. Furthermore, a quantitative model is

adopted to estimate the reliability of SSD-based RAIDs, and the experimental results prove the

approach’s feasibility.

Yin et al. (YIN et al., 2018a) state that existing approaches for decreasing the power con-

sumption of storage systems do not consider the possibility of negative effects on the reliability.

For example, several techniques suggest dynamic power management by increasing or decreasing

the rotation of magnetic disks according to the frequency of the requests. Inevitably, the mechan-

ical components involved in this process will suffer from increased wear and, consequently, a

reduction in their lifetime. As an alternative, the authors propose a hybrid storage system and

suggest an approach to balance issues such as reliability, energy efficiency, and performance.

A middleware is designed to allocate frequent write requests to HDDs (because of the limited

number of write operations on SSDs). Simultaneously, less intense workloads are directed to

solid-state devices (to decrease the frequency at which the HDD spin-down is requested). The

approach is validated through experimental results, in which the proposed system achieved a

40% decrease in power consumption, a 50% increase in throughput (IOPS), and a 15% decrease

in reliability (a value considered acceptable by the authors) when compared to systems composed
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of SSDs only.

3.5 ENERGY CONSUMPTION

Energy consumption in data centers has been continuously increasing, and storage

systems may represent up to 40% of the overall demand. Existing energy-saving techniques

commonly do not consider their impacts on storage endurance, which becomes a challenging

issue, especially when it involves storage-as-a-service contracts, where data unavailability

penalties are considerably impactful. Previous solutions approach the rotation rate at which

magnetic disk devices should operate to reduce the power demand. The idea is to determine

an optimal trade-off between the HDD’s power states (active and sleeping), that is, to define

when the platters should rotate at high or low speeds. These approaches may cause HDDs to

malfunctioning, leading to permanent data loss. As for SSDs, intense write workloads may

shorten their lifetime owing to the limited number of erasure cycles of flash memory.

In this context, Yin et al. (YIN et al., 2018b) propose a middleware called DuoFS, which

improves the energy efficiency of storage systems. By integrating HDDs and SSDs, the proposed

system distributes data according to the number of requests and workload behavior. This approach

exploits the low power consumption and high performance of SSDs and the large storage capacity

and lifetime of HDDs to save energy in data storage systems. Moreover, DuoFS is scalable and

allows storage arrangements to expand as resource demand increases. Regarding I/O analyses,

access patterns are investigated to identify data popularity and categorize such requests as hot

(heavily accessed) or cold (lightly accessed). Specifically, two separate file systems (file system-

hot and file system-cold) are adopted for different types of storage nodes. Hot file systems

comprises SSDs (better performance and low power consumption), whereas HDDs are used

for cold file systems (larger capacity and longer lifetime). Frequently read data demand better

performance and, therefore, are cached into SSDs. The remaining of the stored data are led to

disks that are pushed to idle mode to save energy. The FIO benchmark tool (AXBOE, 2021)

is used for the experiments, and the results indicate that SSD-only architectures have better

performance values than the proposed DuoFS. However, the authors claim energy savings of up

to 60% when the number of concurrent processes is less than 32. In addition, a 5% reduction in

the expected storage lifetime was obtained because the solution was used to save energy. The

authors intend to extend this study to cover more I/O scenarios and consider fault tolerance.

Similarly, Yin et al. (YIN et al., 2016) propose a storage layer called RESS to improve the
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energy efficiency of storage systems without impairing their reliability. The authors developed a

middleware on which HDD-based storage nodes seamlessly integrate with SSDs. RESS uses

HDDs as the primary storage method because of their high capacity, and SSDs are employed

to handle recently accessed data. The proposed approach relies on disabling SSDs under many

requests because of the limitations of erasure cycles and shifting to active mode if the rate of

data access is low. In the active mode, the SSDs are used as a cache for HDDs transitioning into

low-power mode to save energy. More specifically, a workload monitor tracks the I/O patterns

to determine the number of active nodes, stores the data inside HDDs, and creates replicas to

be loaded into SDDs. In other words, energy savings are achieved by replicating data strips in

the SSD nodes and reducing the number of simultaneously operational disk nodes. Experiments

were conducted on a five-node cluster (four HDDs and one SSD) by using the MPI-IO benchmark

tool (GRIDER; NUNEZ; BENT, 2008) to generate synthetic workloads. Experimental results

show performance gains as the number of processes or concurrent I/Os increases. Additionally,

the authors claim substantial energy savings to compensate for the high prices of solid-state

devices. The authors intend to improve the measurement of the power values because the adopted

approach does not support continuous monitoring and may lead to inaccurate results.

3.6 DATA MANAGEMENT

Cloud service providers, such as Amazon EC2, and private cloud platforms, such as

OpenStack, use virtualization techniques to manage resources and efficiently provide dynamic

scalability efficiently. Although existing virtualization techniques provide efficient resource man-

agement, a significant amount of overhead can occur because of the additional abstraction layer

without a proper data management policy. For instance, in SSDs, sequential write workloads are

more likely to generate a small number of invalid blocks, whereas random write workloads may

generate numerous blocks with a small number of invalid pages. Consequently, random writes

increase the garbage collection overhead, which induces more internal page copy operations and

negatively impacting SSD performance.

In this regard, Kim et al. (KIM; EOM; SON, 2019) present an address-mapping technique

for SSDs to improve the spatial locality and performance of random write operations. This

technique transforms random write requests into sequential requests by changing the virtualiza-

tion layer. To achieve this, the authors create a metadata checker in the Virtual Machine (VM)

filesystem and a sequentializer in a Kernel-Based Virtual Machine (KVM). While the checker
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categorizes the data and metadata for a file type-oriented approach, the sequentializer remaps

random write requests from the VM into sequential write requests. The experimental results

indicate a performance improvement of 97% compared with the other systems.

In (BOUKHELEF et al., 2019), the authors investigate cost-based object placement

strategies for hybrid storage systems in a cloud infrastructure. This study aims to optimize the

overall storage cost while considering customer requirements and constraints such as capacity

and performance. The authors propose a heuristic-based solution and genetic algorithms to

optimize the object placement problem. The idea involves computing a data placement solution

for a given problem and improving it by considering the I/O characteristics and SLA penalties.

Experiments were conducted using synthetic workloads and two storage devices (one SSD and

one HDD). The results show an improvement of 40% in storage costs when the number of objects

is low. In addition, the authors claim an average resource over-provisioning of 8% to comply

with SLAs.

Wu et al. (WU; HUANG; CHANG, 2019) propose a data management method for

hybrid storage systems based on object priority. A migration mechanism moves high-priority

data (i.e., the most accessed objects) to SSDs, whereas low-priority objects are kept in HDDs.

Experimental results indicate improvements in I/O performance. Nevertheless, the approach

does not consider prominent issues, such as access patterns and object sizes, for defining object

priorities.

3.7 FLASH MEMORY MANAGEMENT

Flash memory requires a regular garbage collection mechanism to optimize space and

improve the efficiency of the entire storage device. However, this process involves identifying

valid data, copying them to an empty block, updating the address table, and deleting invalid

data. Although this is an essential element for the correct operation of SSDs, the aforementioned

mechanism may prevent the use of storage during the execution period. Moreover, because it does

not have a defined execution period (i.e., is nondeterministic), the system’s reliability (regarding

response time) for real-time applications can be compromised. In light of this, MCEWAN et

al. (MCEWAN; KOMSUL, 2018) present a solution for real-time garbage collection with a

deterministic runtime. Moreover, the proposed method considers the wear level of the memory

cells as a threshold to dynamically define the most appropriate execution time dynamically.

Simulations performed using the Disksim tool suggest that the proposed approach can increase
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the lifetime and performance of SSDs.

One disadvantage of SSDs is the limited amount of programs/deletions handled by each

memory block. The absence of a control mechanism can cause extreme numbers of programming

and deletions in certain blocks, leading to early deterioration. Therefore, SSDs have a wear

leveling mechanism that equalizes the usage of their memory blocks as much as possible.

Typically, wear-leveling techniques assume a uniform wear limit, provided by the manufacturer,

for all blocks. However, owing to manufacturing variations, different blocks in the same chip may

exhibit distinct P/E. In (SHI et al., 2018), a new wear leveling scheme is proposed to estimate the

wear of memory blocks in SSDs more accurately. In contrast to existing schemes, the authors

suggest a new technique that performs a dynamic and individual evaluation of memory blocks

concerning P/E and the number of performed deletions. The authors developed a simulator using

the C programming language to evaluate the proposed approach for four real workloads. The

results indicate a 17% reduction in the wear of the memory blocks; however, a performance loss

of 5% is also observed.

3.8 COMPARISON

This section compares this thesis and the aforementioned existing solutions in the

literature, which have been explained in this chapter. For didactic purposes, related works have

been classified according to the main aspects analyzed by the authors to solve issues related to

the energy consumption, performance, and dependability of storage systems.

Table 3.1 lists the studies mentioned in this chapter. For comparison purposes, the works

are classified according to the following approaches and contributions: measurement (meas.),

performance model (perf.), energy consumption (e.c.), dependability (dep.), performability

(perfor.), data management (d.m.), and cost (c.).

In contrast to previous studies, this thesis proposes models based on GSPNs and RBDs

mathematical formalisms to evaluate the performance, dependability, and energy consumption

of homogeneous and hybrid storage systems. The proposed models allow the design of data

storage systems that may be adopted, for instance, in data centers. In addition, the proposed

approach can be utilized to analyze distinct workloads, data management mechanisms, and

storage arrangements. This study also considers real-world workloads to demonstrate the

practical suitability of the proposed models.

Furthermore, issues related to the performability of data storage systems can be assessed
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Table 3.1: Comparison between this thesis and related work.

meas. perf. e.c. dep. perfor. d.m. c.
This thesis 4 4 4 4 4 4 4

(XIE; XIA; XU, 2020) 4 4 4

(VERSCHOREN; VAN HOUDT, 2020) 4 4 4 4

(BOUKHELEF et al., 2017) 4 4 4 4 4

(NAKASHIMA et al., 2017) 4 4

(NAKASHIMA; KON; YAMAGUCHI, 2018) 4 4 4

(LI et al., 2019) 4 4 4

(HAN et al., 2021) 4 4

(XU et al., 2021) 4 4

(ZHANG et al., 2019b) 4 4

(CHAMAZCOTI et al., 2017) 4 4 4

(YIN et al., 2018a) 4 4 4 4 4

(YIN et al., 2018b) 4 4 4 4

(YIN et al., 2016) 4 4 4 4

(KIM; EOM; SON, 2019) 4 4 4

(BOUKHELEF et al., 2019) 4 4 4 4

(WU; HUANG; CHANG, 2019) 4 4 4

(MCEWAN; KOMSUL, 2018) 4 4 4

(SHI et al., 2018) 4 4 4

using the proposed hierarchical modeling approach. For example, aspects such as SLA compli-

ance, disaster prevention, and job scheduling can be addressed using the solution presented in

this thesis because the effects of storage failures on the performance of the entire system can be

estimated. It is also important to note that the operation (read and write) delays adopted for the

validation, and experimentation of the proposed models, were collected from real devices under

industry-based workloads (HDDs, SSDs, and Hybrid). In addition, to demonstrate the feasibility

of the proposed approach, this thesis presents experimental results using the designed models

following established industry standards. The conceived models abstract away issues, such as

bad blocks, data addressing, file systems, and data migration between storage devices.

3.9 SUMMARY

This chapter summarized the representative works related to this thesis. It was demon-

strated that although many solutions involve analytical models, the ability to concomitantly

evaluate the performance, availability, and energy consumption of storage systems is not found

in the literature. Although some studies have investigated and proposed various approaches for

managing data storage systems, none of the previous studies have considered a solution that

allows the representation and evaluation of the impacts of different applications may cause. For
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example, in the context of new architectures, in addition to the cited solutions being restricted

to performance analysis, the suggested storage arrangements and policies are static and do

not consider the effects of different workloads on device endurance. Finally, a comparison of

previous works and this thesis has been presented to demonstrate the differences between the

proposed contributions and existing solutions.
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4
METHODOLOGY AND TOOLS

This chapter describes the methodology utilized to model and assess the performance,

dependability, and energy consumption of data storage systems. The proposed models’ de-

sign, validation, and experimentation are thoroughly explained, including the steps, methods,

techniques, and tools used. Preliminaries necessary to comprehend the notation adopted for

presenting the methodology are introduced in Section 4.1. Section 4.2 outlines the steps involved

in modeling and evaluating the performance and energy consumption of storage systems. Sec-

tion 4.3 covers these aspects specifically for dependability. Finally, in Section 4.4, the tools

and environment employed to collect the performance and power consumption data for the

considered data storage devices are demonstrated. In addition, storage failure datasets from

representative companies are detailed.

4.1 PRELIMINARIES

Figure 4.1 presents the elements used for the high-level representation of the methodology

proposed in this thesis through a process flow diagram based on Unified Modeling Language

(UML) notation (UML, 2023). Figure 4.1(a) shows the elements representing the activity to

perform. Figure 4.1(b) depicts the decision to be made that dictates the next step to be executed.

The element denoted in Figure 4.1(c) represents a feasible use case when adopting the solution

proposed in this thesis. Activities that can occur in parallel are shown in Figure 4.1(e), whereas

the joining of different flows is illustrated in Figure 4.1(d). Figures 4.1(f) and 4.1(g) show the

elements that represent the beginning and end of the flowchart, respectively.
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Activity
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(b)

Use Case
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Figure 4.1: UML elements adopted to illustrate the methodology proposed in this thesis
(own work (2023)).

4.2 MODELING STORAGE SYSTEMS FOR PERFORMANCE AND

ENERGY CONSUMPTION EVALUATION

This section provides a feasible methodology for estimating data storage systems’ perfor-

mance and energy consumption. Figure 4.2 illustrates the steps of the methodology proposed in

this study. Initially, the proposed modeling methodology consists of defining the problem and

gathering the requirements for the Conception of the abstract models. In the Investigation of

the real system step, data related to storage behavior are collected and analyzed using statistical

techniques to represent the devices in question. Subsequently, the Validate models activity

determines the need for adjustments to the designed models. In addition, in the computation

step, the models are fitted and computed (Refine models for experiments and Solve models)

to provide sufficient information for the analysis phase of the following experiments. In the

Workload-driven step, the performance and energy consumption of the homogeneous and hybrid

storage systems are evaluated for different workload characteristics. In the Optimizaton step,

a case study is performed to identify the optimal storage arrangements according to the given

constraint. Scalability step investigates the behavior of the conceived model as components are

added.

4.2.1 Conception of performance and energy consumption models

Regarding the Conception step, the Specify system characteristics and requirements

activity is concerned with observing and gathering the requirements required to represent

homogeneous and hybrid data storage systems in data centers. In addition, in this step, the

activity Define metrics of interest defines the metrics to be considered in the conception of the

analytical models as well as for validation and experimentation. The average response time,

throughput, and energy consumption were the metrics adopted in this study. The choice of

these metrics considers the essential requirements regularly encountered in SLAs with cloud
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Figure 4.2: Supporting methodology for performance and energy consumption modeling
of data storage systems (own work (2023)).

computing service providers (ARSHAD et al., 2022; MUSTAFA et al., 2019). In addition, energy

consumption is crucial for storage system designers in estimating the cost required to provide a

service. Activity Create abstract models represents the modeling stage, in which the requirements

and metrics defined previously are considered. In this thesis, the mathematical formalism GSPN

has been adopted to design the models. GSPN is a suitable formalism for storage system design,

as, differently from queueing network models (for instance), synchronization, resource sharing,

and conflicts are naturally represented. Also, phase approximation technique may be applied for

modeling non-exponential activities, and events with zero delays (e.g., workload selection) may

adopt immediate transitions (concepts detailed in Sections 2.6.3 and 2.6.2, respectively). The

conceived models represent requests from one or more clients, characterization of the workload

(e.g., access pattern, object size, and operation type), and execution of read or write operations.

Also, the proposed GSPN models can estimate the average response time, throughput, and energy

consumption of homogeneous and hybrid data-storage systems.
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4.2.2 Measurement and investigation of storage performance and energy

consumption

In Investigation of the real system, the Perform Measurement experiment activity is

about collecting performance and power values, which will be used in the following steps

(Moment matching activity, which adopts the technique explained in Section 2.6.3). The tools

and environment adopted are demonstrated in Section 4.4. Descriptive/exploratory analysis

provides an assessment of the performance and energy consumption of storage devices and

hybrid mechanisms in order to provide insights about the benefits of each technology. For

that, this work evaluates storage systems utilizing an approach based on Design of Experiment

(DoE) (MONTGOMERY; RUNGER, 2014). More specifically, a factorial design is adopted

(∏k
i=1 li) with 20 replications (to obtain mean values with an approximate normal distribution).

In this technique, factors (k) refer to the variables that can be controlled during the experiment,

while levels (l) represent the values each factor can take. A treatment (i) corresponds to a unique

combination of factor levels. Three experiments are carried out and the metrics of interest are

response time, IOPS (input/output per second) and energy consumption. The experiments are

explained below:

• The first experiment adopts a screening approach for identifying the suitable technol-

ogy to compose a hybrid storage system. Specifically, this is an experiment with the

purpose of identifying those factors (in this experiment, storage technologies) that

have the best values on the metrics of interest, considering all possible treatments.

• The second experiment assesses the performance and energy consumption of a hybrid

storage device and its components (HDD and SSD) individually. This experiment

considers main factors and second-order interactions, since higher order interactions

are usually negligible (MONTGOMERY; RUNGER, 2014). An analysis of variance

(ANOVA) (JAIN, 1990) is performed to calculate the impacts of such factors and

interactions. For this work, the hybrid storage system redirects the request only to

an idle device (which is not performing any request). Additional assessments are

also carried out for factor interactions and some factor levels are fixed to represent

real-world workloads.

• The third experiment adopts a composite desirability (CD) approach (MONTGOMERY;
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RUNGER, 2014) to estimate the best combination for all technology levels. CD aims

to optimize a set of metrics and the value ranges from 0 to 1. CD tends to 0 for the

worst configuration and 1 represents the best system.

4.2.3 Model validation, refinement, and solving

Computation step evaluates the abstract models created so that, if satisfactory, they

can be refined and computed according to the experiments to be performed. The first activity,

Validation, analyzes whether the estimated results of the performance metrics (e.g., average

response time and throughput) and energy consumption through stationary analysis of analytical

models are consistent with the values of the actual data storage devices obtained from the

measurement experiment. For this analysis, the delays associated with the execution of write

and read operations in the designed GSPNS models are derived from the results of applying

the moment matching technique. For validation, parameters such as technology (SSD, HDD,

or Hybrid), operation type (write or read), access pattern (sequential or random), and object

size (small or large) are considered. Validation is confirmed, for each metric, when under the

same conditions (i.e., subjected to the same workload); the value obtained through the stationary

analysis from the GSPN models is contained within the confidence interval estimated from the

results of the measurements performed on the real data storage systems. The non-conformity

between the results leads to performance and energy consumption model adjustments. Further

details regarding the validation conducted in this study can be found in Section 6.2. Refine

models for experiments and Solve models involve tuning and computing the models designed to

correctly represent and obtain data related to the planned performance and energy consumption

experiments. These activities assume that the designed formal state-space-based models are

validated. Similar to the validation step, this process considers, for all experiments, the delays

computed through the moment matching technique, which are assigned to the execution of write

and read operations in the designed GSPNs models.

4.2.4 Experiments utilizing the models

The following steps refer to experiments performed using the models proposed in this

thesis. Similar to the measurement experiment, a factorial design is adopted but, in this case, five

experiments are carried out using GSPN models to contemplate the workload characteristics high-

lighted as significant for storage evaluation by the Storage Performance Council (SPC) (COUN-
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CIL, 2019; HURSON, 2013). (Workload-driven step). This work also presents a case study

to illustrate the feasibility of the proposed models for assessing distinct storage arrangements

(Optimization step). Lastly, Scalability step demonstrate the size of state space (i.e., CTMC size)

and evaluation time of the conceived models considering the increase of storage components and

workers (clients). Further details regarding experiments are outlined below:

• The first experiment adopts a screening approach for identifying the magnitude

of each factor and interactions. For the sake of validation and comparison in the

experiments, the energy consumption is assumed for one second, aligning with the

sampling interval of the oscilloscopes used for voltage value collection. Subsequently,

a rank is created using the calculated impacts of the factors and interactions in

question. This rank is used as a reference for decision-making in the following

experiments.

Four additional experiments are adopted, which utilize the results from the screening

approach and the guidelines for benchmarks developed by the SPC. Such a council is

composed of companies that define methodologies to evaluate storage devices and

systems. The experiments also utilize two supplementary metrics: (i) IOPS/energy

consumption, and (ii) price/IOPS. The former represents energy efficiency and a

higher value is better. The latter is the relation between storage system price and

performance, and lower values are preferable. Storage system price is calculated

as storage capacity × cost per GB. In this work, US$0.075 and US$1.0 (YIN et al.,

2018a) per gigabyte for HDD and SSD, respectively, have been considered. The

same factors as those used in the screening approach were considered, and the levels

representing specific workloads were fixed according to each respective experiment.

The additional experiments are explained as follows.

• The second experiment evaluates the performance of storage systems, in which the

application’s access pattern is predominately random (e.g., database systems). In

this case, the objects are stored on device blocks without a specific order (SAXENA;

KUMAR, 2014). Besides, write operations contemplate 70% of the workload.

• The third experiment (sequential access) assesses the behavior of storage systems

for applications that require large-scale sequential data access, such as in financial

processing applications, where tasks involve analyzing historical market data, for
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instance. Sequential access assumes the objects are stored on contiguous blocks

in the storage devices (PARK et al., 2011). The workload also assumes an equal

proportion (50%) of write and read operations.

• The fourth experiment (read operations) evaluates storage systems for queries in

very large databases (e.g., data mining). In this case, the workload is predominantly

composed of sequential (100%) and read (99%) requests.

• The fifth experiment, namely, mixed, represents raw data workloads, which are

usually composed of small random requests (80%) and commonly have mixed

operations (50% write) from simultaneous clients (e.g., 4 workers) (COUNCIL,

2019; MONTAZERI et al., 2018). The workload also assumes 20% of sequential

requests with large object sizes (1MB).

• A case study demonstrates an evaluation of distinct storage arrangements in a cloud

computing environment. This study adopts composite desirability (CD) (MONT-

GOMERY; RUNGER, 2014) to evaluate the adoption of storage devices concerning

different workloads. CD aims to optimize a set of metrics (IOPS and response time),

and the value ranges from 0 to 1. CD tends to 0 for the worst configuration, and 1

represents the best system. The case study takes into account four distinct systems

(to assess all possible device type configurations, including HDD-only, SSD-only,

and hybrid configurations with varying HDD and SSD proportions), which may

only adopt two device types with the following costs (CLOUD, 2020): 1T BHDD -

US$40.96 and 120GBSSD - US$20.4. All designs consider the maximum amount

of devices, in which the total price is less than US$105.0, a value from which it is

possible to evaluate hybrid systems with more HDDs than SSDs and vice versa. For

workloads, the case study takes into account three applications previously mentioned:

database systems, data mining, and raw data.

4.3 MODELING STORAGE SYSTEMS FOR DEPENDABILITY EVAL-

UATION

This section aims to provide a methodology to estimate availability and performability of

data storage systems. Figure 4.3 illustrates the proposed approach. The activity flowchart denotes



4.3. MODELING STORAGE SYSTEMS FOR DEPENDABILITY EVALUATION 71

the main steps for the Conception of the models as well as the proposed Investigation of the

real system for a proper representation of storage reliability behavior. In the Computation step,

the abstract models are refined and the resulting hierarchical model is solved. Lastly, statistical

techniques can be employed to provide Optimization-based insights.
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Figure 4.3: Supporting methodology for dependability modeling of data storage systems
(own work (2023)).

Regarding the Conception step, the system characteristics and requirements (in this study,

the storage nodes arrangement, workloads, and metrics of interest) are essential to conceive the

abstract models. For instance, Metrics of interest activity may reflect the desired information (e.g.,

response time and availability) for diagnosing the represented data storage system. In addition,

this description may represent the dependability relationship between the storage devices and

the technologies adopted. RBDs and GSPNs are the mathematical formalisms employed in this

stage.

Investigation step comprises gathering failure-related data from SSDs and HDDs (in

this work, the datasets from Alibaba and Backblaze, both detailed further in Section 4.4.1). In

this activity (the first in this branch), only attributes related to storage reliability are considered.

Next, exploratory analysis is performed to identify the applications’ effects on SSDs and HDDs

failures. Subsequently, the results of such extraction are considered to estimate failure rates

regarding the related application.

The Computation step involves refining the abstract models and solving the hierarchical

model, considering the previous steps. Refine models activity consists of representing the
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previously conceived abstract models following the constraints from the planned experiments and

considering the outcomes derived from the Investigation step (e.g., storage system architecture

and parameters like MTTF/MTTR and request processing delays). Solve hierarchical model

activity involves first the computation of the refined availability model so that its results can be

employed as an attribute in the performability model (please, see Section 5.2.2.1).

The Optimization step involves using the results of computing the models to provide

solutions that meet the desired efficiency criteria, employing statistical techniques. If the results

are unsatisfactory (i.e., if the criteria that represent the required level of performance that must

be reached even in the presence of failures for a given modeled storage system are not met), the

models must be further refined and computed. Perform sensitivity analysis and Perform composite

desirability (MONTGOMERY; RUNGER, 2014) activities are examples of methods that can

be employed to conduct analyses to optimize the modeled storage system. SLA compliance,

disaster prevention, bottleneck identification, and performability ranking are studies that can be

performed using the proposed modeling approach. SLA compliance involves ensuring that the

storage system satisfies predefined service-level agreements. This guarantees that the system

provides the required performance, availability, and reliability to satisfy the expectations of

users. Disaster prevention concerns assessing and implementing measures to prevent or mitigate

potential disasters or data loss within storage systems. It aims to enhance the system’s resilience

and minimize the impact of unforeseen events. Bootleneck identification within a storage system

is essential for optimizing performance. This allows for identifying points in the system where

resource constraints limit the overall performance and addressing these bottlenecks to improve

system efficiency. Performability ranking evaluates and ranks system performance under failure

events, providing valuable insights for decision-making and facilitating system improvements.

4.4 TOOLS AND ENVIRONMENT SETTING

This work adopts the tool Iometer (LEVINE, 1998; NAKASHIMA; KON; YAM-

AGUCHI, 2018; LI et al., 2015) to characterize storage devices for read and write operations.

The results are utilized on the conceived GSPN models for validation and experiments.

Figure 4.4 depicts the adopted system, whose components are detailed in Table 4.1.

Using Iometer, the server executes the workload on each drive (or simultaneously for the hybrid

approach). An oscilloscope collects instantaneous voltage (using shunt resistors), the power

is estimated and, then, energy consumption is obtained using numerical integration . For each
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treatment, the system collects 20 samples, a sample size considered suitable for estimating mean

delays associated with read/write operations and the metrics of interest when assessing a storage,

as referenced in (LEVINE, 1998). These samples are then used to estimate IOPS, mean response

time, and energy consumption.

Figure 4.5 depicts the electrical circuit to collect voltage values from HDDs and SSDs.

V1, V2, and V3 represent the voltage the respective oscilloscope measures at a given time.

The HDD and SSD electric power (EPHDD and EPSSD) are then estimated using Equations 4.1

and 4.2, where R represents the resistance of a shunt resistor.

EPHDD =
(12−V1)

R
×V1 +

(5−V2)

R
×V2

�
 �	4.1

EPSSD =
(5−V3)

R
×V3

�
 �	4.2

Fio tool (AXBOE, 2021) has also been adopted to generate additional real-world work-

loads (KISHANI; AHMADIAN; ASADI, 2019; LEE et al., 2015; MOTI et al., 2021): OLTP

(online transaction processing) and Varmail. OLTP represents financial system transactions (WU

et al., 2016; PARK et al., 2011), which is mainly composed of small (4KB) random (100%) writes

(99%). Requests are performed by 211 threads (workers), which aligns with OLTP workload

characteristics. Regarding Varmail, the workload contemplates both small (4KB) random (50%)

and large (1MB) sequential (50%) requests (YANG; ZHU, 2015; KISHANI; AHMADIAN;

ASADI, 2019). 16 workers are adopted to perform the requests, in accordance with Varmail

workload characteristics.

SERVER

OSCILLOSCOPE

DC

DC

Figure 4.4: Environment setting (BORBA; TAVARES; MACIEL, 2022).



4.4. TOOLS AND ENVIRONMENT SETTING 74

12V

5V

V1 V2

R

R

R

V3

5V

Figure 4.5: Electrical circuit for measurement of HDD and SSD voltage values (own
work (2023)).

Table 4.1: Experiment components.

component description
Main HDD HDD 500GB
80GBHDD HDD 80GB
500GBHDD HDD 500GB
1T BHDD HDD 1TB
1T BWDHDD HDD 1TBWD
120GBSSD SSD 120GB
Server quad-core 3.10GHz 8GB RAM

This work adopts Mercury (SILVA et al., 2013; OLIVEIRA et al., 2017) and TimeNET

(ZIMMERMANN et al., 2006) tools for evaluating GSPN models. The validation has been

carried out on a computer with Intel core 2 Duo 2.4GHz, 8GB RAM, Windows 10.

4.4.1 HDDs and SSDs failure logs

This section outlines the monitoring software and datasets employed in this study to

acquire health and performance information from solid-state and hard disk drives.

4.4.1.1 SMART logs

SMART (COMMITTEE, 1995) is a commonly utilized software designed for monitoring

distinct characteristics of storage devices. To accomplish this, performance and reliability metrics

are gathered and compared to pre-established thresholds in order to report the current behavior

of such devices.

In this study, a subset of seven out of approximately 255 distinct attributes from SMART
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Table 4.2: SMART attributes adopted for HDD and SSD analysis (S means an attribute
is included in the respective technology).

attribute description SSD HDD
5 Reallocated sectors count S S

173 Wear leveling count S

187 Uncorrectable errors S

188 Command timeout S

198 Uncorrectable sector count S

241 Number of blocks written S S

logs has been selected, prioritizing those widely recognized as strongly correlated with device

failure (HAN et al., 2021; ZHANG et al., 2019b, 2020), to conduct the exploratory analysis and

failure behavior collecting. However, as SMART software is technology- and vendor-specific,

discrepancies between storage models may occur. Therefore, this selection process aims to

contemplate attributes in common among the storage devices featured in the utilized datasets.

Table 4.2 presents the chosen attributes for SSDs and HDDs and their respective descriptions.

4.4.1.2 Datasets

Two public datasets have been adopted to investigate the behavior and failure rates of

SSDs and HDDs. The first dataset contains 18387 failed SSD’ tickets from Alibaba’s data centers

containing 965495 SSDs from three distinct manufacturers and 11 models. Such SSDs were

monitored over two years. In addition, the dataset allows to identify which application was used

for a given SSD. The following applications have been identified: Data Analytics Engine (DAE),

Database (DB), Network Attached Storage (NAS), Resource Management (RM), SQL Services

(SS), Web Proxy Services (WPS), Web Services (WS), Web Service Management (WSM), none

(not identified).

The second dataset contains information regarding HDDs from a Backblaze data center,

including 231309 HDDs from four manufacturers and 29 models. Backblaze has been monitoring

such devices for eight years, during which 2963 failures have occurred. Unfortunately, this

dataset does not explicitly specify which applications have been adopted during the monitoring

period, which initially may reduce the accuracy of further failure predictions based on statistics

extracted from these logs.
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4.5 SUMMARY

This chapter presented the proposed methodology for modeling and evaluating homo-

geneous and hybrid storage systems. The methods explained herein consist of two approaches.

While one has dealt with modeling and evaluating models for performance and energy consump-

tion, the other has addressed a similar question for dependability. The model design process and

investigating data from real devices have been shown in both directions. The technique adopted

for planning the experiments has also been explained, along with the method and statistical

techniques for evaluating storage systems’ performance, dependability, and energy consumption.

It has then presented the tools and measurement environment adopted for validating the GSPN

models and obtaining essential data to conduct the experiments. This chapter also detailed the

datasets from data collection regarding SMART attributes of HDDs and SSDs, which have been

performed in the data centers of Alibaba and Backblaze companies.
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5
MODELS

This chapter presents the performance and dependability models conceived to represent

data storage systems. Section 5.1 briefly introduces the proposed performance models and

their limitations, assumptions, and metrics of interest. In addition, the mathematical notation

used in this thesis to calculate the performance and energy consumption metrics is introduced.

Subsequently, the two proposed performance models and metrics of interest are presented

in detail in Sections 5.1.1 and 5.1.2. These sections show how workload characteristics can

be modeled using the adopted GSPN formalism elements and how delays are approximated

through moment matching to non-exponential distributions. Section 5.1.1.1 describes how this

technique can be adopted for the latter. Section 5.2 explains the dependability modeling approach

proposed in this thesis. Then, the conceived availability and performability models are presented

in Sections 5.2.1 and 5.2.2, respectively. Section 5.2.2.1 shows an example of the adopted

hierarchical modeling technique.

5.1 PERFORMANCE MODELING

The conceived performance models represent read and write operations under different

workloads, access patterns, and object sizes. Besides, the modeling approach has been conceived

for stationary analysis (BALBO, 2001), in which (without loss of generality) the analysis assumes

a system’s long run.

Two models are proposed, and they are based on GSPN formalism: (i) single storage

model; and (ii) multiple storage model. The single storage model represents client requests to a

system with a single storage device (e.g., SSD) or a hybrid system as a black box (i.e., without
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distinguishing its components). The multiple storage model is adopted for assessing the impact

of workloads on different arrangements of storages (e.g., hybrid storage systems). Unlike the

single model, this approach allows system designers to explicitly evaluate the components of

hybrid systems.

The metrics of interest are throughput, mean response time, and energy consumption.

Throughput represents IOPS (MEISTER; BRINKMANN, 2010), which estimates the amount of

processed requests (write or read) in one second. Mean response time is the average time for a

single operation to complete.

The proposed modeling approach also allows the analysis/verification of behavioral and

structural properties (MURATA, 1989). As an example, a given model can be bounded and

live. The former indicates the state space size is finite, and, thus, no data overflow may occur

in buffers (e.g., multiple unprocessed write/read operations). The latter means the absence of

deadlock states (MURATA, 1989).

For the sake of explanation, the multiple storage model is presented with only two

different devices (HDD and SSD). However, this is not a limitation of the model, which is capable

of representing storage systems with additional components (e.g., 4 HDDs; 2 SDDs and 4 HDDs).

Additional storages may lead to state space size explosion (VALMARI, 1998), but simulation

techniques may also be taken into account, as an alternative to CTMC generation (MELO et al.,

2015).

Specific features, such as metadata manipulation, are not explicitly represented on the

conceived models, as, in the context of storage devices, there is no distinction of the data type

being accessed or stored. Also, this study has assumed that data management mechanisms

(garbage collection and wear leveling) eventually occur, and, thus, the time for their execution

is considered on mean delays for the write/read operations. Similarly, the proposed approach

does not deal with interferences in flash memory cells, since they are not the focus of this work.

However, as such occurrences may affect response time, they may also be considered on mean

delays. This abstraction level allows the assessment of different systems in a more concise

manner, without dealing with a detailed model that may not be feasibly evaluated.

Regarding workload, this work assumes two access patterns: random and sequential.

These two types of access represent widely relevant and comprehensive usage scenarios for most

storage applications and workloads. They represent real demands, applicability in various use

cases, and the ability to evaluate the maximum performance (such as maximum bandwidth)
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and minimum performance (minimum latency). Given the importance of assessing storage

systems when processing various object sizes, objects were chosen to be either small or large to

better evaluate their impact on HDDs and SSDs. The reason for not considering medium-sized

objects is that, concerning object sizes, minor variations usually do not significantly affect the

performance and energy consumption of the storage systems (WU et al., 2018; MEI et al., 2019;

HSU; SMITH, 2004).

Concerning energy consumption, the proposed approach has focused on assessing storage

devices during the active energy state (i.e, when processing read and write operations) and, thus,

other energy states are not explicitly represented. However, as idle and standby states may

eventually occur between requests, the respective effects on mean delays for power values have

been considered.

The following notation is adopted: E{#p} represents the mean value of the inner expres-

sion, in which #p denotes the number of tokens in place p; and W (T ) represents the firing rate

associated with transition T .

Additionally, function η : Timm→ [0,1] maps each immediate transition (t ∈ Timm) to a

normalized weight. More specifically, the weights represent the transition firing probability in a

conflict set (BALBO, 2001), and, for the adopted models, each immediate transition can only

be in one conflict set due to the characteristics of a request, which can be categorized as either

random or sequential, small or large, and read or write. Next sections present the models using

building blocks (i.e., submodels).

5.1.1 Single storage model

Figure 5.1 depicts the GSPN model for representing systems with a single storage.

Additionally, Table 5.1 shows the existing transitions in the model and their respective attributes

(type, server semantics, weight, and priority).

workload generator block is responsible for representing user requests. The marking

of place pRequests (N) denotes the amount of concurrent requests from simultaneous clients

(workers), and transition tRequesting indicates the arrival of a request within a storage. This

transition adopts infinite server semantics (BALBO, 2001) to represent concurrent arrivals.

Tokens in place pForward represent the request prepared for writing (tWrite) or reading (tRead).

A block workload classifierop is adopted for each operation. Transitions tWrite and

tRead denote the amount of requests for the respective activity, and they have weights indicating
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pRequests

tRequesting

N

workload classifierw

tWrite

tSequentialw

tRandomw

tSmallw,seq

tLargew,seq

tLargew,rnd

tSmallw,rnd

tWritingseq,sml

tWritingseq,lar

tWritingrnd,sml

tWritingrnd,lar

tReleasingw,seq,sml

tReleasingw,seq,lar

tReleasingw,rnd,sml

tReleasingw,rnd,lar

pRequestw

pSequentialw

pRandomw

pWrittenseq,sml

pWrittenseq,lar

pWrittenrnd,sml

pWrittenrnd,lar

tRead

pReadseq,sml

tSequentialr

tRandomr

tSmallr,seq

tLarger,seq

tLarger,rnd

tSmallr,rnd

tReadingseq,sml

tReadingseq,lar

tReadingrnd,lar

tReadingrnd,sml

tReleasingr,seq,sml

tReleasingr,seq,lar

tReleasingr,rnd,lar

tReleasingr,rnd,sml

pRequestr

pSequentialr

pRandomr

pReadseq,lar

pReadrnd,lar

pReadrnd,sml

tCommunicating

pResources

pReleasedw

pReleasedr

pAck
R

pForward

workload classifierr read operation

write operation

resource controller

workload generator

tAckw

tAckr

Figure 5.1: Single storage model (BORBA; TAVARES; MACIEL, 2022).

the probability of each operation. For instance, in mixed operations, read and write may have

the same probability (0.5). Tokens in places pRequestop indicate read or write requests are

queued. Immediate transitions tSequentialop and tRandomop define the access pattern for a

workload, and, similarly, their weights indicate the amount of requests associated with each

pattern. Transition tSmallop,pt and tLargeop,pt represent the object size.

write and read operation blocks model the operation execution, and the delay is denoted

by s-transition tWritingpt,os and tReadingpt,os (Section 2.6.3). Tokens in places pWrittenpt,os

and pReadpt,os represent the conclusion of an activity. tReleasin gop,pt,os and tAckop indicate the

notification of resource release to the storage controller.

resource controller block denotes the storage readiness to execute read or write operations.

A token in place pAck indicates a resource is ready to be released, in which the communication
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with the controller is depicted by transition tCommunicating. Besides, the marking of place

pResource (R) indicates the storage is ready for executing one or more operations. Also, the

marking of place pResouce (R) may denote the adopted technology. For instance, for traditional

SSDs (SATA interface), the marking of place pResource is 1, as only one operation at a time is

carried out (i.e., writing/reading and releasing of resource) (KIM; KIM; KIM, 2020). Concerning

SSDs-NVME, the marking in place pResources may be assumed as the number of threads for

concurrently processing I/O requests (I/O completion thread) (KIM; KIM, 2017). In general,

eight simultaneous threads are suitable to represent SSDs-NVMe (BAHN; CHO, 2020).

Table 5.1: Transition attributes - single storage model.

transition type server semantics weight priority
tRequesting timed infinite server - -
tWrite immediate κ 1
tRead immediate 1−κ 1
tSequentialop immediate 1−α 1
tRandomop immediate α 1
tSmallop,pt immediate β 1
tLargeop,pt immediate 1−β 1
tWritingpt,os timed single server - -
tReadingpt,os timed single server - -
tReleasingop,pt,os immediate 1 1
tAckop immediate 1 1
tCommunicating timed infinite server - -

For the proposed model, the mean response time is estimated using Little’s law (TRIVEDI,

2008), expressed in Equation 5.1, where R represents the mean response time, L is the average

number of requistions, and λ represents the arrival rate of requests. For this model, Equations 5.2

and 5.3 show the calculations used to obtain L and λ , respectively. The system throughput (i.e.,

IOPS) is estimated using Equation 5.4.

R = L/λ

�
 �	5.1

L = N−E{#pRequests}
�
 �	5.2

λ = E{#pRequests}×W (tRequesting)
�
 �	5.3
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T H = E{#pAck}×W (tCommunicating)
�
 �	5.4

For energy consumption, the workload features (e.g., access pattern) must be taken into

account, as they influence the system power consumption. This work takes into account the

proportion of each factor, which is represented as weights in immediate transitions (η(t)). For the

single device model, the following weights are taken into account: η(tWrite) = κ ; η(tRead) =

1− κ; η(tRandom) = α; η(tSequential) = 1−α; η(tSmall) = β ; and η(tLarge) = 1− β .

System energy consumption (EC) is then estimated as follows:

EPw =κ(EPw1 ∗α ∗β +EPw2 ∗ (1−α)∗β +EPw3

∗α ∗ (1−β )+EPw4 ∗ (1−α)∗ (1−β )),

�
 �	5.5

EPr =(1−κ)∗ (EPr5 ∗α ∗β +EPr6 ∗ (1−α)∗β+

EPr7 ∗α ∗ (1−β )+EPr8 ∗ (1−α)∗ (1−β )),

�
 �	5.6

EC = (EPw +EPr)∗T H ∗ time.
�
 �	5.7

EPop is the mean power consumption for an operation (read - r or write - w), which is

estimated using the mean power of each workload feature. For instance, EPw1 denotes the power

of a write operation (w) using random access (α) and a small object (β ). time is the time of

interest.

The equations above allow the evaluation of different storage technologies’ performance

and energy consumption when subjected to workloads with distinct characteristics. It is essential

to state that the modeled data storage systems and workloads must consider the devices’ write

and read operation delays (represented through phase-type distributions) and the composition

of the operations (described as weights of the immediate transitions), respectively. Table 5.2

presents the metrics adopted for the solution proposed in this thesis.

Notably, concerning behavioral properties, the single-storage model is reachable, bounded,

and free of deadlocks. For structural properties, the GSPN model is conservative and consistent.

Table 5.2: GSPN metrics - single storage model.

equation metric syntax
5.1 average response time R = (N−E{#pRequests})/(E{#pRequests}×W (tRequesting))
5.4 throughput T H = E{#pAck}×W (tCommunicating)
5.7 energy consumption EC = (EPw +EPr)∗T H ∗ time
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5.1.1.1 Phase-type distribution example

This section presents an example for the adoption of moment matching technique to

represent non-exponential distributions (Section 2.6.3). This example refers to the single storage

model, but the same technique may be adopted for the multiple storage model described in next

section.

Figure 5.2 contains a particular s-transition (tWritingseq,sml), which represents the ex-

ecution of a writing operation for a sequential workload (seq) and small object (sml). Let us

consider a measurement activity was carried out, in which the mean value (µd) is greater than the

standard deviation (σd) for such a write operation (µd > σd). This delay may be approximated

using a hypoexponential distribution.

tSmallw,seq tWritingseq,sml tReleasingw,seq,sml

pWrittenseq,sml pReleasedw

Figure 5.2: s-transition example (BORBA; TAVARES; MACIEL, 2022).

Figure 5.3 depicts the modeled delay using a hypoexponential subnet. The parameters γ

(number of phases), µ1, and µ2 are obtained using Equations 2.11, 2.13, and 2.14, respectively.

The average delay assigned to exponential transition tWriting1seq,sml is µ1 (λ1 = 1/µ1), and the

delay associated with transition tWriting2seq,sml is µ2 (λ2 = 1/µ2). γ is an integer value, which

is the arc weight from immediate transition t0 to place p1 and from tWriting2seq,sml to place

pWrittenseq,sml .

tWriting1seq,sml
tReleasingw,seq,sml

pWrittenseq,sml pReleasedwp0

t0

p1 p2

γ γ

λ1 λ2

tSmallw,seq tWriting2seq,sml

Figure 5.3: Hipoexponential subnet example (BORBA; TAVARES; MACIEL, 2022).

However, the measurement activity results may have a different mean and standard

deviation relation. In this case, the delay of the given operation can be approximated to other

distributions as follows:
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� If µd = σd , then the exponential distribution can be considered to represent write

operations in data storage systems. Figure 5.4 illustrates a subnet that represents

an exponential distribution with rate λ , which is associated with the tWritingseq,sml

transition;

tWritingseq,sml
tReleasingw,seq,sml

pWrittenseq,sml pReleasedwp0 λ

tSmallw,seq

Figure 5.4: Exponential example (own work (2023)).

� Assuming µd/σd ∈ N e µd/σd 6= 1, the delay is approximated to an Erlang distribu-

tion, which is modeled as shown in (Figure 5.5). In this case, the rate associated with

the transition tWritingseq,sml is λ , whereas the number of phases is represented by γ .

tWritingseq,sml
tReleasingw,seq,sml

pWrittenseq,sml pReleasedwp0

t0

p1

γ γ

λ

tSmallw,seq

Figure 5.5: Erlang subnet example (own work (2023)).

� If µD < σD, the approximation is modeled as a hyperexponential subnet (Figure 5.6).

The parameters of this distribution are λh (rate), w1 and w2 (weights). λh is associated

with the tWritingseq,sml transition, whereas w1 and w2 are assigned to immediate t0

and t2 transitions, respectively.

5.1.2 Multiple storage model

Figure 5.7 depicts the GSPN model for representing systems with multiple storage

devices. For a better understanding, this section presents the model using a hybrid storage system

(1 SSD and 1 HDD). However, it is essential to note that homogeneous device arrangements (i.e.,

only HDDs or SSDs) can be represented. The attributes of the transitions in the multiple model

are listed in Table 5.3, and the same terminology as in the previous section is adopted.
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tReleasingw,seq,sml

pWrittenseq,sml pReleasedwp0

t0

λh
p3

t2

t3

w1

w2

tSmallw,seq

tWritingseq,sml

Figure 5.6: Hiperexponential subnet example (own work (2023)).

Table 5.3: Transition attributes - multiple storage model.

transition type server semantics weight priority
tRequesting timed infinite server - -
tForwardd immediate η(tForwardd) 1
tControllerd immediate 1 1
tWrited immediate κ 1
tReadd immediate 1−κ 1
tSequentiald,op immediate 1−α 1
tRandomd,op immediate α 1
tSmalld,op,pt immediate β 1
tLarged,op,pt immediate 1−β 1
tWritingd,pt,os timed single server - -
tReadingd,pt,os timed single server - -
tReleasingd,op,pt,os immediate 1 1
tAckd,op immediate 1 1
tCommunicating timed infinite server - -

Similar to the previous model, workload generator block represents the creation of user

requests, in which the marking N in place pRequests indicates the number of concurrent requests.

Timed transition tRequesting adopts infinite server semantic to represent concurrent arrivals.

Immediate transitions tForwardd denote a request is redirected to a storage d. Tokens in places

pHDD and pSSD (pStorage) indicate read or write requests are queued in a storage device.

Similar to the single storage model, read operationd and write operationd blocks repre-

sent, respectively, the reading and writing activities. For each storage device in the system, both

blocks are adopted.

resource controllerd block models the available resources for performing an operation in a

request. The number of tokens (e.g., R1) in places pResourced denotes the number of operations

are concurrently carried out. Transition tControllerd represents the device is informing the

controller about the conclusion of an operation.
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In storage controller block, a token in place pAck represents a storage concluded the

operation, and transition tCommunicating denotes the controller delay for receiving the acknowl-

edgment. This work assumes the storage controller can simultaneously receive acknowledgments

from all devices (i.e., infinite server semantics). The marking in place pStorages (S) denotes the

number of devices in the system.

Mean response time and throughput are estimated using Equations 5.8 and 5.9, respec-

tively. Energy consumption (ECh) is obtained from the power consumption of the workload

features (EPd,op,i, j) in all storage devices (n):

Rh = (N−E{#pRequests})/(E{#pRequests}×W (tRequesting)),
�
 �	5.8

T Hh = E{#pAck}×1/W (tCommunicating),
�
 �	5.9

EPd = ∑
op

∑
i

∑
j

η(op)∗η(i)∗η( j)∗EPd,op,i, j,
�
 �	5.10

ECh =

(
n

∑
d=0

η(tForwardd)∗EPd

)
∗T Hh ∗ time,

�
 �	5.11

where op ∈ (tWrited, tReadd), i ∈ (tSequentiald,op, tRandomd,op) and j ∈ (tSmalld,op,i, tLarge

d,op,i).

The model has been presented considering two distinct devices for a hybrid system.

However, additional devices can be included by considering additional read, write and resource

controller blocks. For a better understanding, the equations utilized to calculate the metrics of

interest using the designed model have been gathered in Table 5.4.

Table 5.4: GSPN metrics - multiple storage model.

equation metric syntax
5.8 average response time Rh = (N−E{#pRequests})/(E{#pRequests}×W (tRequesting))
5.9 throughput T Hh = E{#pAck}×1/W (tCommunicating)
5.11 energy consumption ECh =

(
∑

n
d=0 η(tForwardd)∗EPd

)
∗T Hh ∗ time

Notably, concerning behavioral properties, the multiple storage model is reachable,

bounded, and free of deadlocks. For structural properties, the designed GSPN model is conserva-

tive and consistent.
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5.2 DEPENDABILITY MODELING

This section presents the dependability modeling approach proposed in this thesis, which

includes an availability model for assessing system availability and a performability model to

evaluate its impact on performance.

Regarding the availability model, arrangements in series or parallel (in this thesis, hot

standby redundancy) of different technologies can be described to represent several compositions

of a storage node. This model also allows the representation of spare components, which is a

common approach adopted by data centers and cloud computing environments. It is important to

emphasize that only storage devices have been considered for representing such composition, as

the refereed component is the focus of this work.

The performability model allows the representation of data requests (read or write)

and their processing, and can estimate the performance of storage nodes when subject to

failures. Specifically, this model assumes a composite measure to describe the degradation in

the performance of storage nodes as a result of a failure. In this work, a hierarchical modeling

approach has been adopted for combining results from the proposed availability model into

the conceived performability model. It is important to note that the performability model has

been conceived for stationary analysis (BALBO, 2001), in which (without loss of generality) the

analysis assumes a system’s long run. However, simulation techniques may also be adopted for

estimating performance and dependability metrics.

The metrics of interest are availability, throughput and response time. Mean response

time is the average time for a single operation to complete and is estimated using Little’s law

R = L/λ (TRIVEDI, 2008), in which R represents the mean response time, L is the average

number of requisitions and λ represents the arrival rate of requests. Throughput (IOPS) quantifies

the number of requests (write or read) processed within a single second. Availability is the

probability of a system to be in an operational state. The availability of the system may be

obtained by the mean time to failure (MTTF) and mean time to repair (MTTR) of a given system.

Thus, availability of a component j is estimated as A j = MT T F/(MT T F +MT T R) in which

MT T F is the mean time to failure and MT T R is the mean time to repair (MACIEL et al., 2011)

for such a component.

As a limitation of the conceived models, it is worth to state that filesystems, metadata

manipulation, cache memories, and energy states are not explicitly represented, since they are
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not the focus of this work. On the other hand, this abstraction level allows the assessment of

different systems without dealing with a detailed model that may not be feasibly evaluated.

For the sake of explanation, the availability and performability models are presented with

only three and two different nodes, respectively. However, this is not a limitation of the model,

which is capable of representing storage systems with additional nodes.

Additional storages may lead to state space size explosion (VALMARI, 1998), but simu-

lation techniques may also be taken into account, as an alternative to CTMC generation (MELO

et al., 2015). Next sections present the models using building blocks (i.e., submodels).

5.2.1 Availability model

Figure 5.8 depicts the conceived reliability block diagram for modeling the availability

of storage systems. Three distinct configurations are assumed, but other arrangements can be

adopted to represent more complex redundancy policies (e.g., RAID). For this specific abstract

model, the system’s operational state is given by its functional components; therefore, at least

one device (HDD or SSD) in any of the storage nodes must be operational.

A block Nodek models the arrangement in parallel (at least one of them must be oper-

ational) of distinct technologies (HDD and SSD). HDDx,k denotes the HDD of number x and

SSDw,k indicates the SSD of number w, both deployed at the same storage node k. It is worth to

note that, in this type of storage node, the number of hard-disk drives and solid-state drives are

not necessarily equal.

Nodei and Node j blocks denote homogeneous technologies in parallel. x indicates the

amount of redundant HDDs enforced at the storage node i. As for j, it represents a storage node

containing only SSDs, and, for this case, w represents the number of flash-based devices.

To represent a particular system, a refined model can be conceived and, in this case,

the respective MTTFs and MTTRs must be specified by the system designers. Afterwards, a

reduction technique based on series and/or parallel arrangement can be utilized to obtain the

single block (KUO; ZUO, 2003).

5.2.2 Performability model

Figure 5.9 depicts the GSPN model for representing data processing in storage systems

with multiple storage nodes. For a better understanding, this section presents the model using

two storage nodes.
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BEGIN END

Nodei

Nodej

Nodek

SSDw,k

SSDw,j

SSD1,j

HDD1,i

HDDx,i

HDDx,k

Figure 5.8: RBD model for three storage node configurations (own work (2023)).

N

tStorageNodej pRequestj

pRequests

tRequesting

pForward tProcessingj

tFailingj tRecoveringj

tReleasingj
pAck

pRequesti

tProcessingi

tFailingi tRecoveringi

tReleasingi

tStorageNodei

tCommunicating

Nodej

Nodei

Front-end Ack

pFailedj

pProcessedj

pFailedi

pProcessedi

Figure 5.9: Performability model (own work (2023)).

front-end block is responsible for representing the creation of data requests. The marking

of place pRequests (N) denotes the initial state, which indicates the number of concurrent

requests in the system. Transition tRequesting adopts infinite server semantics (BALBO, 2001)

in order to represent concurrent arrivals of requests. Tokens in place pForward represents a

request prepared to be redirected to the respective storage node.

Nodei and Node j blocks represent the processing of requests using two storage nodes
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(i and j). Firing of the immediate transitions tStorageNodei or tStorageNode j indicates a

request is redirected to one of the storage nodes. The probability of redirection to a storage

node is modeled as weight in the respective immediate transition (e.g., weight 0.5 for each

transition) (AJMONE MARSAN; CONTE; BALBO, 1984b)). However, since a storage node

may not be operational, an inhibitory arc guarantees this transition as active only when the

respective node is available (denoted by the absence of tokens at pFailed locations). Tokens in

places pRequest indicate read or write requests are queued and ready for processing. Transitions

tFailing firing represents a failure of a storage node. The loss of the requisition (due to a failed

storage node) is indicated by the presence of tokens in places pFailed. The maintenance of a

failed node is represented by transitions tRecovering. Transitions tProcessing denotes the actual

processing of the request, and its conclusion is depicted by tokens in places pProcessed. If the

respective storage node is not operational, an inhibitory arc prevents this transition from being

active. The immediate transition tReleasing and the timed transition tRecovering, respectively,

indicate the notification of resource release and the repair process for the corresponding storage

node. All timed transitions in this block adopt infinite server semantics, as each node may contain

one or more storage devices and, therefore, process multiple requests.

In Ack block, a token in place pAck represents a storage node concluded the operation,

and transition tCommunicating denotes the delay for transmitting the acknowledgment. This

work assumes the storage controller can simultaneously receive acknowledgments from all

storage nodes (i.e., it adopts infinite server semantics).

Additionally, this work considers the processing of requests based on exponential distri-

bution, an approach similar to that adopted in previous studies (VARKI et al., 2004; KHAZAEI;

MISIC; MISIC, 2012).

For the proposed model, mean response time is then estimated as follows:

R =
N−E{#pRequests}

E{#pRequests}×W (tRequesting)
.

�
 �	5.12

System throughput (i.e., IOPS) is estimated as:

T H = E{#pAck}×W (tCommunicating) .
�
 �	5.13

It is important to note that the model has been presented considering two distinct storage

nodes. However, additional nodes can be included by considering additional Nodei and Node j
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blocks. Nodek blocks may also be integrated to represent storage nodes with hybrid storage

technologies (HDDs and SSDs).

5.2.2.1 Hierarchical modeling example

This section presents an example of adopting a hierarchical modeling approach to

investigate the effects of data storage device failures on their performance. This example refers to

a storage system containing two nodes, but the same technique can be adopted to design systems

with more nodes and different internal arrangements of storage devices. In addition, an example

of the proposed performability model’s execution can be found in Appendix C.

Figure 5.10 depicts the modeled storage system using the proposed performability and

availability models. In the GSPN model, the storage node i contains the transitions tFailingi

and tRecoveringi, which represent the time between failures and repairs, respectively. The

MTTF and MTTR delays assigned to these respective transitions are obtained by computing the

blue-highlighted RBD. In other words, the parallel arrangement between HDD1,i and HDDx,i is

reduced to one single block (KUO; ZUO, 2003) and, next, the metrics of interest are estimated.

Similarly, the MTTF and MTTR delays assigned to transitions tFailing j and tRecovering j

also derives from the reduction of a parallel arrangement (SSD1, j, SSD2, j and SSDw, j). However,

in this case, the red-highlighted RBD one (Figure 5.10) represents the storage node of interest.

Finally, the computation of the resulting hierarchical modeled storage system can provide

performance results for the modeled storage nodes (Equations 5.12 and 5.13); however, in this

case, taking into account the possible effects that failures may infringe on performance.

ENDBEGIN

N

tStorageNodej pRequestj

pRequests

tRequesting

pForward tProcessingj

tFailingj tRecoveringj

tReleasingj pAck

pRequesti

tProcessing_i

tFailingi tRecoveringi

tReleasingi

tStorageNodei

tCommunicating

pFailedj

pProcessedj

pFailedi

pProcessedi

SSD2,j

SSDw,j

SSD1,j

BEGIN ENDHDDx,i

HDD1,i

Figure 5.10: Hierarchical modeling example (own work (2023)).
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5.3 SUMMARY

This chapter presented the GSPN and RBD models designed to represent data storage

systems and estimate performance, energy consumption, and availability. Initially, performance

and dependability models have been briefly introduced in their respective sections to present the

purpose of the proposed solution. Subsequently, the considerations and limitations of the adopted

approach have been addressed (e.g., specific features, such as metadata, are not represented).

The mathematical notation for understanding the metrics of interest is introduced, and then the

conceived models are presented. Examples have been provided to demonstrate the adopted

moment matching and hierarchical modeling technique. This chapter also detailed the metrics

of interest (average response time, throughput, availability, and energy consumption) and their

respective equations.

The models presented in this chapter make it possible to represent homogeneous and

hybrid storage systems under different workloads, which is of great importance for system

designers. However, it is important to emphasize that in order to adopt these models, it is

necessary to have a previous grounding regarding the formalism adopted for their conception.
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6
EXPERIMENTS

This chapter presents experimental results to demonstrate the practical feasibility of the

modeling approach proposed in this thesis. The conducted experiments follow the methodology

outlined in Chapter 4, which also contains the details and characteristics of the adopted tools,

techniques, and datasets. Section 6.1 shows an exploratory analysis of the performance and

energy consumption data collected by measuring an SSD and HDDs under different workloads.

Section 6.2 introduces the workloads, considerations, and storage characteristics assumed to

validate the proposed GSPN models. It then demonstrates the moment matching technique

for approximating delays to non-exponential distributions, in addition to the results of the

conducted validations. Section 6.3 details the experiments conducted using the proposed models.

Specifically, a screening and four workload-driven experiments demonstrate the feasibility of the

designed models for evaluating homogeneous and hybrid data storage systems. Furthermore, a

case study demonstrates the utilization of models for cost planning in data centers, followed by a

study on model scalability. Section 6.4 concludes the chapter with the results of an exploratory

analysis of industry-representative datasets containing information on storage failures.

6.1 MEASUREMENT EXPERIMENT - EXPLORATORY ANALYSIS

This section presents an evaluation of the performance and energy consumption of storage

devices and hybrid mechanisms in order to provide insights into the benefits of each technology.

This analysis employed performance and energy consumption values obtained from HDDs and

an SSD via a measurement experiment. These measurements are also used for the validation

and experiments with the proposed models, which are shown in the following sections. Lastly,
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a workload evaluation is presented to assist in the conception of an optimized data-placement

policy for hybrid storage systems.

6.1.1 Experiment I: screening

This experiment adopts an approach based on DoE for identifying the suitable technology

to compose a hybrid storage system. A factorial design is adopted, and five factors are taken

into account by which it is possible to represent the workloads most found in cloud providers

and, consequently, conduct a more credible analysis of storage systems (COUNCIL, 2019):

storage technology (technology), object size (ob ject_size), operation type (operation), access

pattern (pattern), and number of threads (workers). These factors contemplate the following

levels (Table 6.1): (i) technology - 80GBHDD, 500GBHDD, 1T BHDD, 1T BWDHDD, and

120GBSSD; (ii) ob ject_size - 4KB, 128KB, 512KB, 1MB; (iii) operation - write, read, and

mix (50% read + 50% write); (iv) pattern - rnd (random), seq (sequential), and 80%rnd (since

in real workloads it is common for more than 80% of the write and read requisitions to be

random (MONTAZERI et al., 2018); and (v) workers - 1, 2, and 4.

Table 6.1: Factors and levels.

Factor Levels
technology 80GBHDD, 500GBHDD, 1TBHDD, 1TBWDHDD, 120GBSSD
object_size 4KB, 128KB, 512KB, 1MB
operation write, read, mix
workers 1, 2, 4
pattern rnd, seq, 80%rnd

Table 6.2 shows the mean values for each technology level, standard deviation (StDev),

and the respective 95% confidence interval (95% C.I.). Results indicate 120GBSSD and

1T BWDHDD have the best values concerning response time (18.0905ms and 14.4540ms, re-

spectively) and IOPS (128.6322 and 157.4852), respectively. Regarding energy consumption,

120GBSSD saves on average 7.48J compared to 80GBHDD (the worst technology level).

Taking into account only HDD technology, 1T BWDHDD has the best results concerning

response time and IOPS. Although 500GBHDD seems to have a lower energy consumption, a

t-test for equal means indicates the difference between 500GBHDD and 1T BWDHDD is not

statistically significant.

Based on the aforementioned results, 1T BWDHDD and 120GBSSD are utilized to

compose the hybrid storage system adopted in the next experiments.
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Table 6.2: Experiment I - mean values.

technology Energy consumption (J) Response time (ms) IOPS
Mean StDev. 95% C.I. Mean StDev. 95% C.I. Mean StDev. 95% C.I.

80GBHDD 9.9047 2.1814 (9.7327; 10.0769) 36.1313 33.1560 (35.0180; 37.2440) 63.6399 95.1474 (62.1388; 65.2188)
500GBHDD 5.9244 1.0406 (5.7524; 6.0966) 28.5852 24.8860 (27.4720; 29.6980) 80.5769 131.6655 (78.1799; 83.1186)
1TBHDD 6.5848 0.6020 (6.4127; 6.7569) 28.9358 29.0490 (27.8230; 30.0490) 74.6976 89.7827 (72.6374; 76.8816)
1TBWDHDD 6.1126 7.4970 (5.9410; 6.2850) 14.4540 12.6020 (13.3410; 15.5670) 157.4852 252.5890 (148.5884; 167.5041)
120GBSSD 2.4209 4.5651 (2.2489; 2.5930) 18.0905 27.5640 (16.9780; 19.2030) 128.6322 101.0101 (122.6391; 135.2447)

6.1.2 Experiment II: hybrid storage evaluation

This section presents a comparative assessment of the performance and energy consump-

tion by examining a hybrid storage system and its constituent components, including HDD and

SSD.

Similar to the previous experiment, the same factors and levels are considered, but

technology factor contemplates 120GBSSD, 1T BWDHDD and Hybrid (120GBSSD+1T BWD

HDD). Some factor levels are fixed to represent real-world workloads. Real workloads may be

composed of small (4KB) random (80%) requisitions, which commonly have mixed operations

(read - 50.4%, write - 49.6%) from simultaneous clients (e.g., workers=4) (MONTAZERI et al.,

2018).

Table 6.3 shows the analysis of variance (ANOVA) with significance level α = 0.05.

Column Factor/Interaction describes the most significant factors and second-order interactions.

Other factors and interactions do not considerably impact the adopted metrics and, thus, they are

not shown for readability purposes. Error represents noise in the measurements. The influence

of each factor (or interaction) is represented by Var.% and df denotes the degree of freedom.

F-stat. represents the F statistic with the respective p-value.

As follows, results are described using Tukey’s procedure (a post-hoc test) (MONT-

GOMERY; RUNGER, 2014).

Table 6.3: Experiment II - ANOVA two-way analysis.

Factor/Interaction Energy consumption Response time IOPS
Var.% df F-stat. p-value Var.% df F-stat. p-value Var.% df F-stat. p-value

operation 0.11 2 11.89 ≤ 0.001 4.84 2 640.68 ≤ 0.001 5.29 2 628.85 ≤ 0.001
technology 58.81 2 6580.78 ≤ 0.001 1.47 2 194.94 ≤ 0.001 10.37 2 1231.87 ≤ 0.001
object_size 6.24 3 465.18 ≤ 0.001 21.42 3 1889.89 ≤ 0.001 23.49 3 1859.89 ≤ 0.001
pattern 0.06 2 6.96 ≤ 0.001 6.79 2 898.90 ≤ 0.001 8.35 2 992.03 ≤ 0.001
workers 0.00 2 0.33 0.721 15.88 2 2101.82 ≤ 0.001 0.03 2 3.12 0.044
operation*technology 0.19 4 10.58 ≤ 0.001 7.79 4 515.70 ≤ 0.001 12.53 4 744.29 ≤ 0.001
operation*workers 0.09 4 5.15 ≤ 0.001 1.60 4 106.00 ≤ 0.001 0.07 4 4.28 0.002
technology*object_size 4.69 6 174.85 ≤ 0.001 2.24 6 98.95 ≤ 0.001 5.67 6 224.58 ≤ 0.001
Error 28.69 6401 24.19 6401 26.94 6401
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Figure 6.1: Experiment II - energy consumption (BORBA et al., 2020).

6.1.2.1 Evaluation of the impact of factors on energy consumption

Table 6.3 indicates technology as the factor with the greatest impact on energy con-

sumption (58.81%), followed by ob ject_size (6.24%). Other factors have a small effect, even

with a p-value≤ 0.001. Concerning interactions, technology∗ob ject_size is the only one with a

substantial impact (4.69%). Error is also a significant source of variation (28.69%).

Figure 6.1 depicts an analysis about technology∗ob ject_size interaction using 95% con-

fidence interval. For this evaluation, pattern (80%rnd), workers (4), and operation (mix) have

been fixed. 120GBSSD provides the best saving for all object sizes. Compared to 1T BWDHDD,

the hybrid system increases the mean energy consumption for all object sizes: 29.53% (4KB),

43.85% (128KB), 133.57% (512KB), and 159.51% (1MB).

6.1.2.2 Evaluation of the impact of factors on response time

ob ject_size accounts for most of the impact on response time (21.42%), as depicted in

Table 6.3. Also, workers has a great influence (15.88%). Even with a p-value≤ 0.001, operation

(4.84%), technology (1.47%), and pattern (6.79%) have smaller contributions. Regarding

interactions, operation∗ technology (7.79%) and ob ject_size∗workers (6.33%) represent the

highest variation on response time.

Figure 6.2 shows an analysis about the most significant factors and their interactions

also using 95% confidence intervals. In Figure 6.2(a) (ob ject_size), pattern (80%rnd), workers

(4) and operation (mix) are also fixed. 120GBSSD is the best level for small data (4KB and

128KB), whereas 1T BWDHDD presents the best results for 512KB and 1MB object sizes. The
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Figure 6.2: Experiment II - response time: (a) ob ject_size; (b) workers; and (c)
operation∗ technology (BORBA et al., 2020).
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hybrid system decreases response time by 79.92% for small objects (4KB) in comparison to

1T BWDHDD. Besides, hybrid system presents a response time 13.38% lower than 120GBSSD

for larger objects (1MB).

Since workers has a substancial relevance on response time (Table 6.3), Figure 6.2(b)

depicts its influence in technology factor. operation (mix), ob ject_size (4KB), and pattern

(80%rnd) are kept fixed. 1T BWDHDD presents the worst results for all workers levels. Com-

pared to 1T BWDHDD, Hybrid decreases the mean response time in 80.21%, 80.19% and

79.92% for 1, 2 and four workers, respectively.

To evaluate the interaction of operation and technology the following factors have been

fixed: ob ject_size (4KB), pattern (80%rnd), and workers (4). Figure 6.2(c) highlights the

improvement obtained by Hybrid level. Indeed, for write operations, considering the confidence

intervals, Hybrid has a response time similar to 120GBSSD.

6.1.2.3 Evaluation of the impact of factors on IOPS

Regarding IOPS, ob ject_size presents the major variation (23.49%) (Table 6.3). technology

and pattern contemplate, respectively, 10.37% and 8.35% of variation for this metric. As

workers presents a p-value = 0.044, there is no statistical evidence that it influences IOPS.

operation∗ technology interaction provides a significant contribution (12.53%), but other inter-

actions have a minimal impact or do not statistically affects IOPS.

Figure 6.3 depicts an analysis regarding ob ject_size, pattern and technology, using 95%

confidence intervals. In Figure 6.3(a) (ob ject_size), factors operation, pattern, and workers

have fixed values: mix, 80%rnd, and 4, respectively. Hybrid approach provides better results

than 120GBSSD and 1T BWDHDD. For instance, Hybrid increases the IOPS over 12.87%

(4KB) and 53.62% (128KB) compared to 120GBSSD. Also, Hybrid presents a IOPS higher than

1T BWDHDD, 84.51% and 83.59% for 512KB 1MB levels, respectively.

Evaluation of technology ∗ operation is depicted in Figure 6.3(b). The levels for

ob ject_size, pattern and workers are 4KB, 80%rnd and 4, respectively. Hybrid provides

better results than 1T BWDHDD and 120GBSSD. For instance, Hybrid increases IOPS about

36.83% and 4.9% for write and read operations in comparison to 120GBSSD. For mix level,

there is no statistical difference between Hybrid and 120GBSSD levels.

Figure 6.3(c) depicts the influence of pattern in technology. For this investigation,

operation, ob ject_size, and workers are mix, 4KB, and 4, respectively. However, for seq level,
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Figure 6.3: Experiment II - IOPS: (a) ob ject_size; (b) operation∗ technology; and (c)
pattern (BORBA et al., 2020).
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Hybrid significantly increases IOPS in comparison to 120GBSSD (122.94%) and 1T BWDHDD

(113.69%).

6.1.3 Experiment III: composite desirability

To determine the optimal configuration for factor levels using the adopted metrics, this

work adopts composite desirability (CD). Table 6.4 details the estimated values. For the sake of

explanation, better configurations related to the hybrid approach (Hybrid) are highlighted.

For write operations, Hybrid has the highest CD with 80%rnd (4KB - CD=0.971670)

and rnd (4KB - CD=0.973242; 512KB - CD=0.874362). Assuming read operation, for 512KB

objects, Hybrid has better composite desirability than 120GBSSD and 1T BWDHDD: 0.933250

(80%rnd) and 0.933862 (rnd). Similarly, Hybrid presents the highest desirability factors for

mixed operations: 0.891833 (80%rnd) and 0.893063 (rnd).

Additionally, the results also indicate important configurations for HDD (1T BWDHDD)

and SSD (120GBSSD) individually, which are also helpful in conceiving new hybrid storage

systems.

Table 6.4: Experiment III - Composite desirability.

Write Read Mix
4KB 128KB 512KB 1MB 4KB 128KB 512KB 1MB 4KB 128KB 512KB 1MB

Hybrid
80%rnd 0,971670 0.930369 0.876671 0.856091 0.978956 0.955543 0.933250 0.913947 0.966710 0.942020 0.891833 0.860040
rnd 0.973242 0.921885 0.874362 0.856213 0.982986 0.949870 0.933862 0.916804 0.970997 0.926738 0.893063 0.863578
seq 0.984091 0.945875 0.916111 0.891693 0.97732 0.969090 0.957613 0.950324 0.972220 0.939454 0.922348 0.886884

1TBWDHDD
80%rnd 0.969087 0.945811 0.879324 0.875919 0.948292 0.944900 0.909992 0.907181 0.957243 0.931762 0.889341 0.873772
rnd 0.967672 0.934639 0.874346 0.873613 0.949542 0.936502 0.907860 0.907818 0.959230 0.934315 0.887870 0.875080
seq 0.976532 0.972171 0.938088 0.932333 1.00000 0.956782 0.956655 0.937133 0.984040 0.969712 0.939495 0.921194

120GBSSD
80%rnd 0.949314 0,905724 0.818134 0.807204 0.990064 0.979037 0.926342 0.916437 0.977825 0.943714 0.872314 0.849240
rnd 0.947593 0.895778 0.813897 0.806624 0.994225 0.972445 0.925801 0.918702 0.981559 0.937647 0.872200 0.852268
seq 0.989643 0.950569 0.887680 0.872018 0.97131 0.992339 0.979253 0.964988 0.998072 0.977784 0.929965 0.902654

6.2 PERFORMANCE MODEL VALIDATION

This section presents the validation for the conceived GSPN models. Experiments were

performed with real systems (Section 6.1) and compared to the values obtained with GSPN

models (using stationary analysis). The single model is validated for HDD and SSD storages, and

the multiple storage model is assessed utilizing a hybrid system composed of 1 HDD and 1 SSD,

as the objective is to validate a baseline before expanding to more complex configurations. Small

(4KB) objects (os) have been considered for both single and multiple storage models, and large
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(1MB) objects only for the single storage model. Two access patterns (pt) are assumed: random

(rnd) and sequential (seq). The validation also takes into account read and write operations (op).

The models utilize a delay of 1µs (following an exponential distribution) for transition

tRequesting. For all GSPN models, the marking of place pRequests is 1, which denotes only

one worker. The marking Rx (place pResourcesd) is also 1, as storages (1T BWDHDD and

120GBSSD) with the serial advanced technology attachment (SATA) interface have been adopted.

In that technology, a device does not carry out simultaneous operations. For the multiple storage

model, marking S (pStorages) is 2, since the system controller manages 2 devices.

The delays for write and read operations have been approximated using phase-type

distributions (Section 2.6.3). Table 6.5 details the results for the moment matching, considering

data collected on the real system using Iometer. mean is the mean delay and st.dev. is the

standard deviation. distribution denotes the probability distribution, and hypoexponential (hypo)

has been adopted due to the algorithm described in Section 2.6.3. phases represents the number

of phases. A limit of 10 phases has been adopted, since additional phases do not influence the

results (BOLCH et al., 2006). Table 6.6 shows the mean power of each drive (1T BWDHDD and

120GBSSD) for distinct workload features.

Table 6.5: Moment matching - HDD and SSD.

1TBWDHDD 120GBSSD
op os pt mean (ms) st.dev. (ms) phases distribution mean (ms) st.dev. (ms) phases distribution

write
4KB

rnd 3.510000 0.950510 10 hypo. 0.968840 0.778870 1 hypo.
seq 0.072336 0.024602 8 hypo. 0.223670 0.142030 2 hypo.

1MB
rnd 9.920000 3.820000 6 hypo. 29.950000 17.410000 2 hypo.
seq 5.690000 0.131970 10 hypo. 9.930000 4.540000 4 hypo.

read
4KB

rnd 8.000000 0.839160 10 hypo. 0.612730 0.056047 10 hypo.
seq 0.047958 0.019129 6 hypo. 0.210620 0.040588 10 hypo.

1MB
rnd 14.190000 0.276980 10 hypo. 4.470000 0.234440 10 hypo.
seq 5.580000 0.107310 10 hypo. 4.010000 0.022829 10 hypo.

Table 6.6: Mean power values.

power (W)
op os pt 1TBHDD 120GBSSD

write
4KB

rnd 0.0102094 0.0008643
seq 0.0003109 0.0001321

1MB
rnd 0.0411532 0.0328646
seq 0.0229215 0.0075362

read
4KB

rnd 0.0252030 0.0004737
seq 0.0001598 0.0001919

1MB
rnd 0.0455828 0.0086180
seq 0.0183449 0.0081872

A hypothesis testing has been adopted to assess whether the proposed model may



6.2. PERFORMANCE MODEL VALIDATION 103

adequately represent a storage system. In this case, the null hypothesis states that the difference

between the model estimate and the system mean value is not statistically significant. A 95%

confidence interval (for each considered workload feature) has been computed to determine

whether the null hypothesis may be rejected or not (MONTGOMERY; RUNGER, 2014).

Table 6.7 depicts the values for real systems and the estimates using the single storage

model. The metrics are energy consumption, response time and IOPS−1. For all metrics, the

model values are contained in the 95% confidence intervals (95% c.i.) obtained from the systems

and, thus, the hypothesis of equivalence cannot be refuted. Similarly, Table 6.8 provides results

for hybrid systems and multiple storage models. As the confidence intervals do contain the

model estimates, the hypothesis of equivalence cannot be discarded.

Table 6.7: Validation results - single storage model.

energy consumption (J) response time (ms) IOPS−1

device op os pt 95% c.i. GSPN 95% c.i. GSPN 95% c.i. GSPN

1TBHDD

write
4KB

rnd (2.8450; 2.9597) 2.8909 (3.4862; 3.5218) 3.5190 (0.003400; 0.003523) 0.003520
seq (3.5052; 4.3209) 3.9166 (0.0808; 0.0823) 0.0813 (0.000081; 0.000083) 0.000082

1MB
rnd (3.5870; 4.6392) 4.0975 (9.8138; 9.9631) 9.9290 (0.009818; 0.009966) 0.009930
seq (3.6820; 4.3836) 4.0297 (5.6867; 5.7031) 5.6989 (0.005689; 0.005705) 0.005699

read
4KB

rnd (2.9513; 3.1926) 3.0812 (8.0046; 8.0584) 8.0090 (0.008007; 0.008061) 0.008010
seq (2.8750; 2.9931) 2.9007 (0.0561; 0.0574) 0.0569 (0.000056; 0.000057) 0.000057

1MB
rnd (3.0870; 3.3231) 3.2061 (14.1660; 14.2321) 14.2000 (0.014171; 0.014238) 0.014200
seq (3.2260; 3.3567) 3.2888 (5.5831; 5.5922) 5.5900 (0.005585; 0.005594) 0.005590

120GBSSD

write
4KB

rnd (0.8625; 0.9753) 0.8830 (0.7839; 1.0923) 0.9778 (0.000785; 0.001095) 0.000978
seq (0.7909; 0.8507) 0.8195 (0.1456; 0.1754) 0.1602 (0.000146; 0.000176) 0.000161

1MB
rnd (1.1791; 1.6549) 1.4096 (22.5770; 23.7726) 23.3125 (0.022593; 0.023791) 0.023313
seq (0.9168; 1.1199) 0.9811 (5.8073; 8.9683) 7.6800 (0.005813; 0.008986) 0.007681

read
4KB

rnd (0.7598; 0.7708) 0.7647 (0.6145; 0.6217) 0.6217 (0.000615; 0.000622) 0.000622
seq (0.8585; 0.8875) 0.8701 (0.2183; 0.2200) 0.2196 (0.000219; 0.000220) 0.000220

1MB
rnd (1.3416; 2.5265) 1.9236 (4.4292; 4.4795) 4.4790 (0.004430; 0.004480) 0.004480
seq (1.4217; 2.6731) 2.0366 (3.9933; 4.0016) 4.0009 (0.003994; 0.004002) 0.004020

Table 6.8: Validation results - multiple storage model.

energy consumption (J) response time (ms) IOPS−1

op pt 95% c.i. GSPN 95% c.i. GSPN 95% c.i. GSPN

write
rnd (3.6922; 6.4811) 5.4950 (1.1334; 1.3907) 1.3634 (0.0005670; 0.0006960) 0.0006827
seq (3.9363; 6.1721) 4.6159 (0.0959; 0.1872) 0.0978 (0.0000487; 0.0000520) 0.0000492

read
rnd (3.5179; 4.6106) 4.0630 (1.1573; 1.1647) 1.1623 (0.0005791; 0.0005828) 0.0005811
seq (3.6575; 4.3266) 3.9854 (0.0871; 0.0907) 0.0874 (0.0000433; 0.0000435) 0.0000433

A model validation has also been conducted considering real-world workloads, more

specifically, OLTP (olt p) and Varmail (varmail) (Section 4.2.3). However, since processing

such workloads typically involves the use of multiple storages in data centers, only the multiple

storage model (1HDD + 1SSD) is assessed in this context, as it is specifically designed for

representing two or more storages. Particularly, simulation is adopted to avoid the state space

size explosion.
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Table 6.9 depicts the results for the real system (r.s.) and the multiple storage model

(GSPN). The metrics are response time and IOPS. Similar to previous validation, a hypothesis

testing is conducted to determine a significant difference between the model estimate and the

real system results. Confidence intervals (95% c.i.) contain the model estimates, and, therefore,

the hypothesis of equivalence cannot be discarded.

Table 6.9: Validation using Fio tool - multiple storage model.

workload system/model response time (ms) IOPS
mean st.dev. 95% c.i. mean st.dev. 95% c.i.

oltp
r.s. 0.007344 0.0027 (0.006131; 0.008556) 25781.0 7658.54 (22425.48; 29138.37)
GSPN 0.007633 1.22E-5 (0.007631; 0.007633) 27154.0 34.27 (27151.16; 27157.25)

varmail
r.s. 0.025723 0.0040 (0.023957; 0.027489) 630.0 111.42 (581.43; 679.09)
GSPN 0.027470 6.89E-5 (0.027447; 0.027484) 592.5 0.994 (592.11; 592.93)

6.3 EXPERIMENTAL RESULTS

This section presents experimental results to demonstrate the feasibility of the proposed

modeling approach. Specifically, the performance and energy consumption of homogeneous

and hybrid storages are analyzed utilizing the conceived models. First, a screening experiment

investigates the factors and interactions . Subsequently, four experiments evaluate the behavior

of storage systems under industry-based benchmarks. Next, a case study demonstrates cost

planning for different storage configurations. Finally, the scalability of the proposed models is

discussed.

6.3.1 Experiment I: screening

This experiment evaluates the effects of each factor and their interactions, taking into

account a DoE based on factorial design. Effect is the change in response due to a change in the

factor level. Five factors (k = 5) are taken into account: (i) storage technology (technology); (ii)

object size (ob ject_size); (iii) operation type (operation); (iv) access pattern (pattern); and (v)

number of threads (workers). Table 6.10 depicts the levels (li) for each factor, and the metrics of

interest are response time, IOPS and energy consumption.

Table 6.11 shows a rank for main and second-order interactions. The rank is ordered in

descending order taking into account the absolute values of all effects. This work considers only

main effects and second-order interactions, since high-order interactions do not considerably

impact the adopted metrics (MONTGOMERY; RUNGER, 2014). Besides, the nine most
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Table 6.10: Screening - factors and levels.

factor levels
technology 1TBWDHDD, 120GBSSD, Hybrid
object_size 4KB, 1MB
operation write, read
workers 1, 4
pattern random (rnd), sequential (seq)

significant effects are illustrated, as other effects do not remarkably affect the metrics. For

technology factor, the adopted levels for estimating an effect are indicated in parenthesis (e.g.,

technology(120GBSSD−Hybrid)).

Considering energy consumption, technology, ob ject_size, operation and respective

interactions (e.g., operation∗technology(120GBSSD−Hybrid)) are the most significant effects.

Nevertheless, the adoption of a hybrid system (i.e., technolog y(120GBSSD−Hybrid) and

technology(1T BWDHDD−Hybrid)) considerably contribute to energy consumption (change

of 5.6919J and 3.6281J).

The main effects account for most of the impact on response time, and interactions do

not significantly influence this metric. ob ject_size and workers are the factors with considerable

variation: 20.1874ms and 16.2618ms, respectively. Hybrid is the best level for technology, since

it reduces response time in 3.4529ms and 2.8260ms compared to 120GBSSD and 1T BWDHDD.

Regarding IOPS, ob ject_size has the greatest influence followed by technology. Hybrid

level considerably improves IOPS, as it may increase throughput by more than 280 oper-

ations per second. pattern also influences system throughput: rnd - 158.3573 and seq -

376.9530. Besides, some interactions also have an effect on IOPS, for instance, ob ject_size∗

technology(120GBSSD−Hybrid) (270.4418), and operation∗ technology(120GBSSD−Hyb

rid) (188.1111).

Table 6.11: Rank of main and interaction effects.

energy consumption (J) response time (ms) IOPS
factor/interaction effect factor/interaction effect factor/interaction effect
technology(120GBSSD-Hybrid) 5.6919 object_size 20.1874 object_size 721.7838
technology(1TBHDD-Hybrid) 3.6281 workers 16.2618 technology(1TBHDD-Hybrid) 285.0174
operation*technology(120GBSSD-Hybrid) 2.1027 pattern 9.7670 technology(120GBSSD-Hybrid) 281.6786
object_size*technology(1TBHDD-Hybrid) 2.0719 operation 7.2928 object_size*technology(120GBSSD-Hybrid) 270.4418
technology(1TBHDD-120GBSSD) 2.0637 technology(120GBSSD-Hybrid) 3.4529 pattern 218.5956
object_size 2.0182 technology(1TBHDD-Hybrid) 2.8260 operation*technology(120GBSSD-Hybrid) 188.1111
object_size*technology(120GBSSD-Hybrid) 1.8911 technology(1TBHDD-120GBSSD) 0.6269 operation*technology(1TBHDD-120GBSSD) 146.8808
object_size*operation 1.2833 object_size*technology(1TBHDD-120GBSSD) 0.0060 pattern*technology(1TBHDD-Hybrid) 144.0635
operation 1.0491 operation*technology(1TBHDD-Hybrid) 0.0040 object_size*operation 136.4913

Results show the factors do not similarly influence all metrics (i.e., have the same rank

position). Thus, for the next experiments, some factors levels have been fixed and mixed to better
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assess their effects on storage systems. This approach also aims to represent workloads found in

data centers. Furthermore, real-workloads are usually composed of concurrent requests (MON-

TAZERI et al., 2018); henceforth, workers is fixed on four to represent simultaneous clients.

This value is a prominent balance for assessing concurrent requests without affecting model

evaluation time (MEI et al., 2018; LIN et al., 2017).

6.3.2 Experiment II: random accesses

This section presents results for storages considering a workload mainly composed of

random requests (Table 6.12). This experiment contemplates the following factors and levels:

(i) technology - 1T BHDD, 120GBSSD and Hybrid; (ii) ob ject_size - 4KB; (iii) operation -

70%_w; (iv) pattern - rnd; and (v) workers - 4.

Table 6.12: Experimental results.

experiment technology energy consumption (J) response time (ms) IOPS

random accesses
SSD 0.850 3.162 1264.690
HDD 2.937 17.248 231.897
Hybrid 6.179 8.636 926

sequential access
SSD 2.055 36.901 108.396
HDD 3.580 21.299 187.793
Hybrid 10.734 14.173 564.599

read operations
SSD 1.719 18.494 216.281
HDD 2.887 18.565 215.450
Hybrid 8.464 17.927 446.447

mixed
SSD 1.571 10.862 368.226
HDD 3.089 19.711 202.922
Hybrid 6.639 11.746 681.211

Results indicate 120GBSSD as the best technology regarding all metrics due to the

absence of mechanical components. The performance of magnetic disks is jeopardized because

of excessive disk rotations. Compared to 1T BWDHDD, Hybrid has better values for response

time and IOPS, but hybrid system consumes more energy. Considering the ratios IOPS/energy

consumption and price/IOPS (Figures 6.4 and 6.5), SSD has better results followed by hybrid

system.

Usually, SSDs are known for their remarkable performance for read operations (WAN

et al., 2017). Additionally, this experiment corroborates the ability of SSDs to handle random

requests, even under a workload consisting mostly of write requests (70%) (MEI et al., 2018).
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Figure 6.4: Random accesses - IOPS/energy consumption (BORBA; TAVARES;
MACIEL, 2022).
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Figure 6.5: Random access - price/IOPS (BORBA; TAVARES; MACIEL, 2022).

6.3.3 Experiment III: sequential accesses

This section takes into account a workload represented by sequential requests. The

experiment considers the following levels: (i) technology - 1T BHDD, 120GBSSD and Hybrid;

(ii) ob ject_size - 1MB; (iii) operation - 50%_w; (iv) pattern - seq; and (v) workers - 4.

Similar to the previous experiment, the hybrid system has the worst values for energy

consumption (Table 6.12). However, this system is capable of reducing response time (33.45%)

and increasing IOPS (200.64%), compared to 1T BWDHDD (commonly considered the most
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suitable technology for sequential workloads (LIN et al., 2017)). Results highlight the improve-

ment obtained with Hybrid for large objects. Except for energy consumption, 120GBSSD has

not presented significant results.

Figure 6.6 depicts 120GBSSD does not have a prominent IOPS/energy ratio, compared

to other technologies. Regarding the ratio price/IO, Figure 6.7 indicates SSD has the highest

cost.
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Figure 6.6: Sequential accesses - IOPS/energy consumption (BORBA; TAVARES;
MACIEL, 2022).
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Figure 6.7: Sequential access - price/IOPS (BORBA; TAVARES; MACIEL, 2022).



6.3. EXPERIMENTAL RESULTS 109

6.3.4 Experiment IV: read operations
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Figure 6.8: Read operations - IOPS/energy consumption (BORBA; TAVARES;
MACIEL, 2022).
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Figure 6.9: Read operations - price/IOPS (BORBA; TAVARES; MACIEL, 2022).

Table 6.12 depicts the results for a workload mainly composed of read operations. The

following levels are assumed for this experiment: (i) technology - 1T BHDD, 120GBSSD and

Hybrid; (ii) ob ject_size - 1MB; (iii) operation - 99%_r; (iv) pattern - seq; and (v) workers - 4.

120GBSSD and 1T BWDHDD have closer results concerning performance, but energy

in magnetic disks is much higher (67.94%) than in solid-state memories. Hybrid has the best

values for response time and IOPS, but energy consumption is still an issue for this system. As a
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consequence, IOPS/energy is the lowest (Figure 6.8), and price/IOPS ratio is slightly better than

a system based only on SSD (Figure 6.9).

For this workload, results indicate Hybrid may not have a prominent balance regarding

cost and energy consumption, even having the best values for IOPS and response time.

6.3.5 Experiment V: mixed

Table 6.12 depicts the results for a workload composed of mixed operations, access

patterns and distinct object sizes. This experiment takes into account the following levels: (i)

technology - 1T BHDD, 120GBSSD and Hybrid; (ii) ob ject_size - 20%_los; (iii) operation -

50%_w; (iv) pattern - 80%_rnd; and (v) workers - 4.
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Figure 6.10: Mixed - IOPS/energy consumption (BORBA; TAVARES; MACIEL, 2022).

120GBSSD has the smallest value for response time (10.86ms), influenced by small

random requests (4KB and rnd). Hybrid has the highest IOPS (681.211) and 1T BWDHDD has

the worst performance, except for energy consumption.

Figure 6.10 indicates 120GBSSD has the best energy efficiency, about 128.30% higher

than Hybrid. However, Figure 6.11 shows Hybrid has the best price-performance. Indeed, for

the hybrid system, the high values for energy consumption and price are strongly compensated

by system throughput.
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Figure 6.11: Mixed - price/IOPS (BORBA; TAVARES; MACIEL, 2022).

6.3.6 Case study

This section presents a case study to illustrate the practical feasibility of the conceived

models for assessing storage systems in cloud computing environments. This work adopts a

composite desirability technique to obtain the best configuration for storage systems using the

adopted metrics (response time and IOPS).

Table 6.13: Case study - chosen configurations.

technology configuration capacity (GB) price (US$)
SSDhom 5 SSDs 600 102.00
HDDhom 2 HDDs 2048 81.92
Hybrid1 2 HDDs + 1 SSD 2168 102.32
Hybrid2 1 HDD + 3 SSDs 1384 102.16

Table 6.13 depicts 4 storage systems that meet the price constraint (US$105.0), which con-

sider homogeneous (HDDhom and SSDhom) and hybrid storage systems (Hybrid1 and Hybrid2).

Table 6.14 details results for each system. For better visualization, technology is ordered in

descending order taking into account the composite desirability values (CD).

For database applications (mostly composed of random operations), SSDhom and Hybrid2

have closer results concerning CD (1.0 and 0.946, respectively), but IOPS in the former (5952.38)

is much higher than in the latter (3676.47). These results confirm the ability of SSDs to better

handle random requests.

Concerning data mining application, both hybrid systems achieve significant results for
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IOPS and response time. However, Hybrid1 is the best configuration, as it has a composite

desirability value equal to 0.5, whereas Hybrid2 is equal to 0.495. For Hybrid1, IOPS and

response time are 929.281 and 12.931ms, respectively. The results corroborate the observations

in Section 6.3.4, in which the hybrid storage system (Hybrid) is indicated as the most suitable

technology.

Table 6.14: Case study results summary - composite desirability.

application technology IOPS response time (ms) CD

database systems

SSDhom 5952.380 3.355 1.000
Hybrid2 3676.470 4.364 0.946
Hybrid1 1044.932 11.489 0.574
HDDhom 760.282 10.521 0.529

data mining

Hybrid1 929.281 12.913 0.500
Hybrid2 1149.425 13.918 0.495
SSDhom 1082.251 18.483 0.223
HDDhom 431.127 18.555 0.066

raw data

Hybrid2 1980.198 8.070 0.834
SSDhom 2044.989 9.773 0.796
Hybrid1 902.934 13.290 0.612
HDDhom 406.058 19.701 0.235

Assuming raw data workloads, Hybrid2 presents the highest desirability value (0.834).

Considering this system, 1980.198 and 8.070ms are the values for IOPS and response time,

respectively. However, Hybrid2 is slightly better than a system based only on SSD. SSDhom

achieves significant results for performance (IOPS - 2044.989; response time - 9.773ms) and,

thus, may also be considered as a prominent solution.

The results indicate important insights, since all adopted configurations meet the price

constraints. Capacity has not been considered for computing the composition desirability, as

the focus has been on performance for this case study. However, a designer may consider other

metrics and attributes for jointly assessing storage systems using the proposed models (e.g.,

IOPS/byte and ms/byte).

6.3.7 Scalability

This section presents a scalability experiment concerning the conceived models. The size

of state space (i.e., CTMC size) and evaluation time are demonstrated considering the increase

of storage components and workers.

The experiment adopts the multiple storage model and raw data workload utilized in

Section 6.3.5. For evaluation, Mercury tool is utilized due to the scripting language that facilitates
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Table 6.15: Scalability evaluation - storages.

storages size time (min)
2 9816 1.7
4 58463 44.0
8 210300 720.0
16 - 0.2
32 - 0.21

Table 6.16: Scalability evaluation - workers.

workers size time (min)
4 9816 1.7
8 17532 2.4
16 32964 9.0
32 63828 24.0
64 125556 61.0
128 249012 158.0
1000 - 0.28

model creation. Tables 6.15 and 6.16 depict the results, in which: storages is the number of

storage devices; workers is the amount of concurrent clients; size is the CTMC size; and time is

the time spent for numerical evaluation or simulation.

Considering additional storage components and workers, the state space considerably

increases and, for some models, the tool was not able to generate the respective CTMC in a

feasible period. In these cases, a simulation has been utilized. Results indicate the addition of

storage components has a greater impact on state space than increasing the number of workers.

It is important to explain that the state space of the proposed models is finite (and so the

respective CTMC), as the models are structurally bounded (MURATA, 1989). Additionally, the

results may change (e.g., CTMC generation) using other evaluation tools.

6.4 HDDs AND SSDs FAILURES ANALYSIS

This section presents an explanatory analysis of storage failures using two representative

industry datasets. This investigation aims to understand the impact that workloads may have on

SSDs and HDDs and promote insights regarding the utilization of such devices. Such information

is fundamental, as extracted statistics can be utilized for assessing storage systems using the

proposed dependability models.

For instance, the annual failure rate (AFR) calculated in this analysis is determined using

Equation 6.1, where F represents the number of failed storages, T represents the total number
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Figure 6.12: SSD annual failure rate per application (own work (2023)).

of storages, and M indicates the operational duration in months. Based on this statistic, MT T F

(mean time to failure) can be expressed as a function of the number of hours in a year (Hyear)

and AFR, as shown in Equation 6.2. The resulting MT T F can then be utilized as an attribute in

the availability model of the respective modeled storage device, allowing for estimation of the

overall availability and mean time to failure of the storage system.

AFR =
F
T
× 12

M

�
 �	6.1

MT T F =
Hyear

AFR

�
 �	6.2

6.4.1 SSD analysis

Figure 6.12 depicts the annual failure rate of solid-state drives (SSDs) concerning

different applications (a detailed application overview can be found in Appendix A). The

horizontal blue line indicates an annual failure rate of nearly 0.8%, which is the average calculated

from all SSD failures for all applications. Two applications, "DAE" and "RM," had the highest

annual failure rate values, which suggests that these applications have a considerable effect on

SSD wear. In contrast, the remaining applications have values approximately equal to or below

the average and, thus, are not the most harmful to SSDs.

Figure 6.13 shows a graphical analysis of solid-state drives’ failure rate and wear level

over the number of blocks written considering different applications. More specifically, Fig-
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(a) Failed SSDs x #Blocks written.
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(b) Wear leveling x #Blocks written.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
#Blocks Written 1e12

0

5

10

15

20

25

30

Re
al

lo
ca

te
d 

Se
ct

or
s

app
none
RM
WS
WSM
WPS
NAS
DB
SS
DAE

(c) Reallocated sectors x #Blocks written.

Figure 6.13: Attributes and SSD failures over the number of written blocks (own work
(2023)).
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ure 6.13(a) depicts the failure rate of SSDs, while the other two subfigures (Figures 6.13(b)

and 6.13(c)) show the device wear level through two SMART parameters (wear leveling and

reallocated sector counts). As can be seen, the impact of applications with the same number of

blocks written on the SSDs is considerably different among the three analyses. Moreover, this

investigation reveals a similar steady increase in the SSD failure rate with a higher number of

written blocks, mainly for three specific applications: WSM, RM, and none. By comparing these

results with those illustrated in Figure 6.12, it is possible to visually identify the same applica-

tions that substantially influence the SSD annual failure rate, which strengthens the hypothesis

that distinct workloads are responsible for different wearing levels. As for DAE, despite this

application demonstrating a high annual failure rate (also observed in Figure 6.12), the same

was not observed when analyzing the evolution of the number of SSD failures according to

the number of blocks written. During the investigation, it was found that most of the devices

submitted to the DAE application lack a record of the number of blocks written; therefore, any

statistics involving this specific application may be inconsistent and, thus, unreliable.

This analysis provides essential information regarding SSDs subjected to different ap-

plications. This suggests that specific applications might be more prone to induce SSD failures

than others and that this risk should be considered when selecting and adopting such devices. In

addition, these findings are essential to estimate failure statics considering storage utilization,

which can be adopted for the conceived dependability models and to study optimized data

placement solutions.

6.4.2 HDD analysis

Figure 6.14 depicts the results of an exploratory analysis of HDD failures and the

evolution of their SMART attributes concerning the number of daily written blocks. The analysis

specifically focuses on HDDs sourced from Backblaze data centers. Additional information can

be found in Appendix B. The HDD model chosen for the exploratory analysis is highlighted in

Table 4.2.

Figures 6.14(b) – 6.14(e) show that the evolution of HDDs SMART attributes repre-

senting storage wear over the number of blocks written follows a similar pattern as depicted in

Figure 6.14(a). This suggests that the HDD failure rate may also be modeled as a function of

the number of written blocks, considering the workload type (similar to the insights obtained

from the previous SSD analysis). Furthermore, as illustrated in Figures 6.14(g) and 6.14(h),
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(a) Failed HDDs x #Blocks written.

3 4 5 6 7 8
#Blocks Written 1e10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Un
co

rre
ct

ab
le

 E
rro

rs

(b) Uncorrectable errors x #Blocks written.
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(c) Uncorrectable sectors errors x #Blocks
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(d) Reallocated sectors x #Blocks written.
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(e) Command timeout x #Blocks written.
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(f) Days between failures x #Blocks written.
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(h) #HDD failures per day x #Blocks written.

Figure 6.14: Attributes and HDD failures over number of blocks written (own work
(2023)).



6.5. SUMMARY 118

the number of blocks written per day when drive failures occur is nearly the same, indicating a

daily backup, which means that the information extracted from this dataset is mainly related to

a specific application. Therefore, although the dataset does not distinguish or mention which

applications are being used, it is still possible to use statistics extracted from it in the context

of workload-driven failures because the dataset includes at least one application. In addition,

Figure 6.14(f) depicts the relationship between the number of days to HDD failure as blocks are

written. As can be seen, the time between failures steadily decreases (resulting in more failures)

as the number of written blocks increases. This outcome strengthens the evidence that statistics

related to time to failure over the number of blocks written is a reasonable method to predict

storage failures arising from the application put into practice.

These results provide valuable insights into the aspects contributing to HDD failures and

highlight the importance of investigating multiple factors when modeling failure rates in storage

systems. Furthermore, the computed failure rates may be adopted as attributes for the proposed

dependability models.

6.5 SUMMARY

This chapter presented experimental results that demonstrated the feasibility of the pro-

posed analytical models. Initially, a descriptive analysis based on the results of the measurement

experiment for storage performance and energy consumption was presented. Subsequently, the

validation of the designed GSPN models was explained, and for this purpose, the composition

of the adopted workloads, storage devices, and initial definitions for the analytical models was

detailed. Then, the chapter presented the results of the application of the moment matching

technique, as well as the validation of the GSPN models. For experiments using these models,

a DoE technique was adopted, and a factorial design was assumed. A rank was then created

based on the results of the screening experiment to assess the most impactful factors and levels

for storage devices. Next, experiments were conducted considering distinct workloads, and

the results allowed a comparison of the performance and energy consumption between SSDs,

HDDs, and Hybrid technologies. A case study was presented to demonstrate the usability of

the models for applications, such as complaints of SLAs (in this case, cost planning). Next, a

scalability experiment assessed the size of the space state and evaluation time of such models

when increasing the number of storage components and workers. Finally, an exploratory analysis

of the data extracted from the datasets of Alibaba and Backblaze companies was shown.
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7
CONCLUSION

The infrastructure for cloud computing services demands high-throughput and low

response-time access to meet the requirements defined in SLAs (LI et al., 2019). Nowadays,

real-time data processing and access are required for many transactions. These transactions

typically consist of small random files and require high reliability. Therefore, several studies

have been conducted to improve the availability and performance of storage devices, which are

often bottlenecks in computing systems that operate services with intense requests (YIN et al.,

2018a).

Several techniques, such as data management across multiple disks, caching, write

buffering, prefetching, request scheduling, and parallel I/O, have been employed in traditional

storage devices to reduce these adversities (PARK; LEE; KIM, 2017). However, despite these

improvements, hard disk devices do not perform sufficiently well to fully meet the current

demands of cloud computing platforms, and they account for 78% of equipment replacements

in data centers (HUANG et al., 2019). Replacing HDDs with SSDs is one possible alternative,

as SSDs exhibit better performance and lower power consumption (ELYASI et al., 2018; YIN

et al., 2018a). However, the high cost per gigabyte and low durability (compared to HDDs) still

make it unfeasible to use SSDs exclusively in data centers. Consequently, data centers oversize

their architecture (which leads to additional costs) to meet the availability of contracted services

stipulated in service level agreements (NARAYANAN et al., 2016).

As an alternative, research on hybrid storage systems has attracted increasing attention

from industry and academia (WU et al., 2018; BOUKHELEF et al., 2019). Several architectures

have been proposed to create a storage system capable of taking advantage of both storage

technologies (e.g., the higher reliability of HDDs, and lower energy consumption of SSDs).
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Many studies have failed to concurrently and comprehensively evaluate multiple aspects. For

instance, it is crucial to consider the influence of storage reliability on both the performance and

energy consumption of storage systems. However, most related studies did not evaluate several

aspects concomitantly; for example, they did not consider the impact of storage reliability has on

the performance and energy consumption of storage systems.

This thesis proposed a stochastic model-based approach for analyzing the performance,

availability, and energy consumption of homogeneous and hybrid data storage systems. The

performance models are based on stochastic Petri nets, which enable the assessment of different

storage architectures under varying workloads. In addition, the proposed RBD and GSPN

dependability models estimate the availability of the data storage systems and their impact

on performance. To validate the proposed approach, the performance models were evaluated

using benchmark tool (Iometer and Fiotool) results and voltage measurements obtained using an

oscilloscope in the selected environment. The experiments involved analyzing both traditional

technologies (HDDs or SSDs only) and a hybrid storage system consisting of one HDD and one

SSD. The evaluation considered the most significant factors for assessing storage devices and

followed industry standards as benchmarks.

The experiments confirmed the practical feasibility of the modeling approach and pro-

vided meaningful evaluations for storage system designers. For instance, hybrid systems typically

consume more energy than conventional systems. However, whenever performance requirements

prevail over energy savings, hybrid storage is a prominent alternative, primarily for sequential

accesses and raw workloads. SSDs may exhibit performance issues with sequential accesses,

however, they are suitable for services with small random read operations. Concerning HDDs,

results confirm the issues associated with the processing of small objects. Nevertheless, HDDs

are still a feasible option for some systems represented by sequential accesses, owing to the

favorable IOPS/energy and price/IOPS ratios. Although the experiments confirm the practical

feasibility of the proposed approach, the results may not be generalizable to all types of data

storage systems. The following sections describe the principal contributions of the proposed

method and outline future works.

7.1 CONTRIBUTIONS

This thesis introduced a novel stochastic model-based approach for evaluating the per-

formance, availability, and energy consumption of data storage systems. This approach can
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facilitate decision-making regarding the selection and configuration of storage systems for vari-

ous workloads and enable the comparison of different architectures. The specific contributions

os this study are as follows:

• Measurement. An experiment was conducted using the Iometer tool and oscillo-

scopes to obtain performance and power values from real storage devices. Statistical

techniques were used to conduct an exploratory analysis of the collected values. The

results of the performance measurements and the estimated power values can be

helpful for future research on magnetic and solid-state storage devices;

• Performance and energy consumption models. Analytical models based on a state

space mathematical formalism (generalized stochastic Petri nets) that can be use

to represent read and write operations. Furthermore, workloads are characterized

according to their pattern (random or sequential) and object size (small or large).

These models allow the estimation of throughput, average response time, and energy

consumption of homogeneous and hybrid storage systems;

• Factor and interaction impacts. A screening characterization study to estimate

the effects of the main factors and interactions in homogeneous and hybrid storage

systems on performance and energy consumption. It is important to note that there

have been no reports of similar analyses in past work. Based on this study, it is

possible to identify and eliminate the least significant factors and interactions to allow

for a more accurate, noise-free analysis in experiments that evaluate the throughput,

average response time, and energy consumption of write and read requests;

• Experimental results. In this study, experiments have been performed using the

conceived GSPN models for assessing different storage technologies. In addition,

workload parameters have been defined using a characterization study (screening) and

industry-standard benchmarks. The results obtained from these experiments provide

a novel analysis for comparing hybrid systems with traditional devices. Specifically,

neither the computed performance and energy results nor analysis investigating ratios

IOPS/energy consumption and IOPS/price ratios are found in previous literature;

• Storage failure analysis. An exploratory analysis was performed on industry

datasets from Alibaba and Backblaze to investigate workloads’ impact on SSDs
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and HDDs failures. Such investigations provide a means of understanding the effects

of distinct workloads on these storage technologies;

• Availability and performability models. Two analytical models have been pro-

posed based on the mathematical formalisms RBD and GSPN to evaluate the avail-

ability and performance of the storage devices. A hierarchical modeling approach

is adopted for combining results from the proposed availability model into the con-

ceived performability model. These models allow the simulation of real-world

scenarios and the assessment of the impact of workloads on storage device failures

and, consequently, performance;

• Methodology to evaluate performance and energy consumption of data storage

systems. the methodology proposed in this thesis assists in making decisions regard-

ing the storage systems in data centers. The adoption of the designed GSPN models,

and the planning of experiments, allow the evaluation of different architectures and

storage policies for homogeneous and hybrid systems, while still in the design phase.

It is important to emphasize that using the designed models may demand a prior

grounding regarding the formalism adopted;

• Methodology to evaluate the dependability of data storage systems. the sug-

gested approach involves investigating in advance the effects on storage that a specific

application can cause on the storage system to be designed. Thus, a more accurate

dependability study can be conducted using the designed GSPN and RBD models.

The methodology also includes an optimization step, in which the models must be

refined for use cases such as SLA compliance, prevention of disasters, performability-

sensitive data management, and bottleneck identification. It is essential to state that a

GSPN and RBD practitioner may be required to adopt such a technique.

7.2 LIMITATIONS

The proposed stochastic models can be utilized to evaluate the performance and energy

consumption evaluation of homogeneous and hybrid storage systems. However, an abstraction

level has been adopted at which specific features are not directly represented. Therefore, this

section summarizes some assumptions of the proposed technique.
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The models do not distinguish between data types; thus, metadata manipulation is not

explicit in the conceived models. Interference due to data management mechanisms (garbage

collection and wear leveling) are not the focus of this work. However, their respective impacts

on the mean delays for write and read operations have been considered.

Regarding the workload, this study investigates only two access patterns (random and

sequential) and two object sizes (small and large). Concerning energy consumption, the assess-

ment of storage devices has focused on the active energy state. Nonetheless, the influence of idle

and standby states on the mean delays for power values has also been considered.

As presented in Section 6.3.7, although the state space of the proposed models is finite,

the explicit representation of many storage components considerably increases the size of the

state space (CTMC). However, the proposed approach allows for the abstraction of several

components in a storage submodel several components. Besides, simulation may be utilized as

an alternative to CTMC generation.

7.3 PUBLICATIONS

This section shows the articles written and published during this study. All the articles

presented here are related to the research conducted in this thesis and are listed below:

7.3.1 Journals

• Borba, Eric; TAVARES, EDUARDO. Stochastic modeling for performance and

availability evaluation of hybrid storage systems. JOURNAL OF SYSTEMS AND

SOFTWARE, 2017;

• Borba, Eric; TAVARES, EDUARDO; Maciel, Paulo. A modeling approach for

estimating performance and energy consumption of storage systems. JOURNAL OF

COMPUTER AND SYSTEM SCIENCES, 2022.

7.3.2 Conferences

• Borba, Eric; PONTES, JONAS; TAVARES, EDUARDO. Performance and avail-

ability modeling of hybrid storage systems. In: 2017 IEEE International Conference

on Systems, Man and Cybernetics (SMC), 2017, Banff;
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• Borba, Eric; TAVARES, EDUARDO; Maciel, Paulo; LIRA, VICTOR; ARAUJO,

CARLOS GOMES. Performance and Energy Consumption Evaluation of Hybrid

Storage Systems. In: 2020 IEEE International Systems Conference (SysCon), 2020,

Montreal;

• Borba, Eric; Tavares, Eduardo; Maciel, Paulo; Gomes, Carlos. Analytical models

for performance and energy consumption evaluation of storage devices. In: 36th

International Conference on Massive Storage Systems and Technology (MSST 2020),

2020.

7.4 FUTURE WORKS

This thesis has investigated various aspects of data storage systems, such as their perfor-

mance, dependability, and energy consumption. Despite the comprehensive analysis provided,

ample scope remains for further improvements and extensions to the present work. The following

points outline some potential avenues for such enhancements:

• Failure sources: the study conducted in this thesis has investigated storage failures

by considering the impacts different applications may have on performance. However,

other failures can be considered and extended to the designed models. Examples

include human error, silent errors, and silent data corruption (XU et al., 2019). The

latter two refer to errors that occur when a device sends corrupted data to the host

without any signaling. Fault correction mechanisms are also a potential extensions

of these models. Thus, different error correction code (ECC) techniques can be

proposed and evaluated;

• Data management solutions: the models proposed in this thesis allow for the

evaluation of data management solutions (i.e., defining which storage device will

process a given request) for a given data storage system architecture. Therefore,

optimization techniques other than those proposed in this paper can be used to

identify novel storage architectures and policies that have not yet been investigated.

For example, the greedy randomized adaptive search procedure (GRASP), is a

metaheuristic characterized by providing a good quality solution within a finite set of

elements, according to a defined maximum number of interactions (FEO; RESENDE,

1995);
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• Flash management modeling: Flash memories have a garbage collection mecha-

nism that can impact the data storage device in two ways: increased response time

(due to blocking for request execution) and wear on the flash memory chips (due

to excessive deletions) (MCEWAN; KOMSUL, 2018). Wear leveling is another

essential mechanism in the operation of solid-state devices. However, to equalize the

number of programs/deletions along the memory blocks, wear leveling can cause

premature wear on flash memory (CHIKHAOUI; BOUKHALFA; BOUKHOBZA,

2018). An extension of the models proposed in this thesis could provide a means for

system designers to estimate the impacts of different solutions on such mechanisms.
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A
SSD dataset - applications overview

Table A.1: SSD dataset - applications overview.

app #total #failed %write %read
DAE 16000 1214 81.80 19.20
DB 26781 203 26.71 73.29
NAS 14454 541 62.13 37.87
RM 183981 3016 76.11 23.89
SS 32936 184 42.09 57.91
WPS 44676 529 30.69 69.31
WS 17740 232 97.09 2.91
WSM 380170 8916 79.05 20.95
none 248757 3552 69.20 30.80
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B
HDD dataset - SMART attributes overview

Table B.1: HDD failures and attributes overview (S means that a specific attribute has
been found on logs from the respective HDD model).

model op_time (days) #total #failed r_sectors u_errors b_written command_timeout pending_sector u_sector AFR (%)
HMS5C4040BLE640 1641 15514 217 S - - - S S 0.30
HUH721212ALN604 1449 10973 164 S - - - S S 0.37
HUH728080ALE600 1641 1197 30 S - - - S S 0.54
ST12000NM0007 1641 38822 1981 S S S S S S 1.11
ST12000NM0008 993 20607 557 S S S S S S 0.97
ST14000NM001G 654 10880 151 S S S S S S 0.76
ST14000NM0138 576 1689 116 S S S S S S 4.29
ST16000NM001G 993 18181 118 S S S S S S 0.23
ST4000DM000 1641 32186 1864 S S S S S S 1.27
ST8000NM0055 1641 15290 907 S S S S S S 1.30
MD04ABA400V 1641 146 3 S - - - S S 0.45
MG07ACA14TA 1484 38831 551 S - - - S S 0.34
WUH721414ALE6L4 631 8446 37 S - - - S S 0.24
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C
Example of the performability model exe-

cution

The following example shows the important steps in the execution of the performability

model proposed in this thesis. Initially, the model’s behavior is presented when representing the

creation and forwarding of requests to the respective storage node. Next, the request processing is

illustrated. The failure of a storage node and its impact on request processing is also approached.

Finally, the repair of the storage node in question is presented. For a better understanding, the

transitions that are enabled are highlighted in yellow. Inhibitory arcs that prevent the activation

of a transition are highlighted in blue.

8

tStorageNodej pRequestj
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pForward tProcessingj

tFailingj tRecoveringj
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pAck

pRequesti
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tStorageNodei
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Nodej

Nodei
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pFailedj

pProcessedj

pFailedi
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Figure C.1: Performability model execution - initial marking (own work (2023)).
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Figure C.1 shows the initial marking of the model. In this example, the number of

concurrent requests that can be generated is represented by eight tokens in place pRequests. As

shown, transition trequesting is enabled to fire according to the delay assigned to it.

7

tStorageNodej pRequestj

pRequests

tRequesting

pForward tProcessingj
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pRequesti
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Nodej

Nodei

Front-end Ack
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pProcessedj

pFailedi
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Figure C.2: Performability model execution - all storage nodes available (own work
(2023)).

Figure C.2 depicts a generated request and the system’s readiness to forward it for process-

ing by storage nodes. Specifically, the firing of transition tRequesting results in the absorption

of a token from place pRequests and the generation of a token in place pForward. Transitions

tStorageNodei and tStorageNode j are enabled, and their firing as immediate transitions depends

on their assigned priorities.

Figure C.3 illustrates a token generated at place pRequest j, indicating the firing of

transition tStorageNode j and the absorption of the token from place pForward. At the current

stage of execution, transitions tRequesting, tFailing j and tProcessing j are enabled, with their

firing dependent on the respective assigned delays. The firing of transition tFailing j represents

the failure of the storage node in question, whereas triggering transition tProcessing j represents

the processing of a request.

Figure C.4 illustrates a processed request, denoted by the tokens in place pProcessed j.

This processing is represented by the firing of transition tProcessing j, resulting in the absorption

of the token from place pRequest j. The enabled transition tReleasing j indicates the storage node

can transmit information regarding the concluded processing of requests. Once this is fired, a

token is absorbed from place pProcessed j and generated in place pAck.

In Figure C.5, tCommunicating is depicted as enabled, and its firing absorbs a token
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Figure C.3: Performability model execution - ready for processing (own work (2023)).
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Figure C.4: Performability model execution - processing request (own work (2023)).

from place Ack and generates a token in place pRequests. This firing represents the transmission

of an acknowledgment regarding a processed request or storage node repair.

Figure C.6 shows the storage node j as unavailable, represented by tokens in place

pFailed j. Inhibiting arcs prevents transitions tStorageNode j and tProcessing j from being

enabled. This means that the respective storage node cannot receive new requests or processes

that might have been waiting at the time of failure. Therefore, new requests are directed to storage

node i, represented by tokens in place pForward and the enabling of transition tStorageNodei.

The repair of storage node j is shown in Figure C.7. This is represented by the absorption
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Figure C.5: Performability model execution - ready for communicating (own work
(2023)).
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Figure C.6: Performability model execution - storage node unavailable (own work
(2023)).

of tokens from place pFailed j and their generation in place pAck. As can be seen, new requests

can once again be directed to both storage nodes considered in this model. In this manner, the

tokens in place pForward enable transitions tStorageNodei and tStorageNode j.
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Figure C.7: Performability model execution - repairing storage node (own work (2023)).
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