
Pós-Graduação em Ciência da Computação

“Mapping Live Sequence Chart into Coloured Petri Nets
for Analysis and Verification of Embedded Systems”

Por

Leonardo Amorim de Barros

Dissertação de Mestrado

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/∼posgraduacao

RECIFE, MARÇO/2006

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Leonardo Amorim de Barros

“Mapping Live Sequence Chart into Coloured Petri

Nets for Analysis and Verification of Embedded

Systems”

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO
EM CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE IN-
FORMÁTICA DA UNIVERSIDADE FEDERAL DE PERNAM-
BUCO COMO REQUISITO PARCIAL PARA OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIA DA COMPUTAÇÃO.

ORIENTADOR: Dr. Paulo Romero Martins Maciel

RECIFE, MARÇO/2006

Barros, Leonardo Amorim de
Mapping Live Sequence Chart into Coloured Petri

Nets for Analysis and Verification of Embedded Systems /
Leonardo Amorim de Barros. – Recife : O Autor, 2006.

xii, 134 folhas : il., fig.

Dissertação (mestrado) – Universidade Federal de Per-
nambuco. CIn. Ciência da Computação, 2006.

Inclui bibliografia e anexos.

1. Ciência da computação – Sistemas digitais. 2. Sis-
temas embarcados – Análise e verificação de propriedades.
3. Mapeamento de Live Sequence Chart(LSC) para
Coloured Petri Nets(CPN) – Verificação de propriedades. I.

T́ıtulo.

004.414.23 CDU (2.ed.) UFPE

004.21 CDD (22.ed.) BC2006-363

i

Acknowledgements

I would like to thank Dr. Paulo Maciel for his patience, friendship and
confidence in my work, as well as, for his guidance through this project.

Thanks to my friend Meuse Nougueira, who contribute with valuable
informations in a case study presented in this work.

Thanks to TechnoOK Corporation, represented by Frederico Braga, for

having allowed that one of its products could be used as a case study.

Thanks to Dr. Ricardo Massa and Cleyton Moura, who helped me in the
development of the engine presented in this work.

Thanks to my friends Dr. Raimundo Barreto, Eduardo Almeida and
Eduardo Valentim for their contributions in this work.

Thanks to C.E.S.A.R Company for having stimulated and helped me in
the attainment of the master degree.

Last, but not least, I would like to extend a thanks to my parents,
Joao de Barros and Carmem Lucia, to my sister, Liliane Amorim, to my
friend, Bernardo Caldas and to my girlfriend, Luciana, for their support
and patience.

ii

Abstract

Nowadays, embedded systems are present in almost any human interacting
environment and activities. The crescent adoption of embedded-system-
controlled machines is direct related to the decreasing costs of such sys-

tems.
Due to the cost and the complexity of an embedded system architecture,

it is essential high-level system design tools and methods, where functional
and architectural description validation and verification might be carried
out.

A more recent way to specify requirements, which is popular in the
realm of object-oriented systems, is to use Message Sequence Charts
(MSC). Both MSC and UML’s sequence diagrams specify scenarios as se-
quences of message interactions between object instances. Scenarios cap-
ture the desired relationships among the processes, tasks, or object in-
stances. Such models are applied for describing what the system should

execute, but they do not allow designers specifying what must not be car-
ried out (anti-scenarios).

Live Sequence Chart (LSC) is an MSC extension that allows the specifi-
cation of anti-scenarios as well as activities that must occur. LSC fills out
the gaps of the previous models, distinguishing things that can happen of
things that must happen, through the use of some types of diagrams.

Nowadays, no tool and method is available for LSC properties’ verifi-
cation. Therefore, this works proposes a PN model for LSC language as a
mean for allowing verification and analysis of system’s properties.

Keywords: Petri Net, Coloured Petri Net, Modeling, Specification Lan-
guages, LSC, Properties Analysis.

iii

Resumo

Atualmente, os sistemas embarcados estão presentes em quase todas as
atividades e ambientes do homem. A crecente adoção dos sistemas embar-

cados está diretamente relacionado com a queda do custo de tais sistemas.
Devido ao custo e complexidade da arquitetura de um sistema embar-

cado, é essencial ferramentas e métodos de alto ńıvel que permitam a
validação e verificação dos requisitos funcionais e arquiteturais do sistema.

A forma mais recente de especificar requisitos, que é popular no âmbito
dos sistemas orientados a objetos, é o Message Sequence Chart (MSC)
ou diagrama de sequências (UML). Ambos especificam os cenários com
uma sequência de interações de mensagens entre instâncias de objetos. Os
cenários capturam a relação desejada entre processos, tarefas e instâncias
de objetos. Tais modelos são utilizados para descrever o que o sistema
pode fazer, mas não permitem especificar o que deve ocorrer, assim como

também não permite a modelagem dos anti-cenários.
A linguagem Live Sequence Chart (LSC) é uma extensão da MSC que

permite especificar anti-cenários, assim como também permite modelar o
que deve ocorrer. A linguagem LSC preenche a lacuna dos modelos an-
teriores, distinguindo as coisas que podem ocorrer das coisas que devem
ocorrer através da utilização de alguns tipos de diagrama.

Atualmente, não existe uma ferramenta ou método que permita veri-
ficar propriedade para um cenário LSC. Então, este trabalho propõe um
modelo de Rede de Petri para a linguagem LSC, através do qual pro-
priedades do cenário LSC podem ser analisadas e verificadas.

Palavras chaves: Redes de Petri, Redes de Petri Coloridas, Modelagem,
Linguagem de Especificação, LSC, Análise e Verificação de Propriedades.

iv

Contents

1 Introduction 1

1.1 Context . 1

1.2 Our Approach . 5

1.3 Goals . 6

1.4 Related Works . 7

1.5 Dissertation Structure . 10

2 Basic Concepts 11

2.1 Object-Oriented Analysis and Design 11

2.2 Message Sequence Chart (MSC) 12

2.3 Live Sequence Chart (LSC) 14

2.4 Petri Nets (PNs) . 33

2.5 Coloured Petri Nets (CPNs) 44

2.6 Concluding Remarks . 50

3 Mapping LSC to CPN 51

3.1 Object Properties, Types and Variables 51

3.2 Charts . 53

3.3 Messages . 57

3.4 External Functions . 72

3.5 Assignments . 75

3.6 Conditions . 79

3.7 If-then-else Construction . 83

3.8 Loops . 85

3.9 Time Restrictions . 90

3.10 Time Events . 92

3.11 Joining LSC Constructions 93

3.12 Comparing Petri Net and LSC Semantics 95

3.13 Concluding Remarks . 104

v

vi CONTENTS

4 Case Studies 105
4.1 Pulse Oximeter . 105
4.2 ConnectOK . 110
4.3 Concluding Remarks . 117

5 Conclusion 119

A Support Engine 123

B Basic Theory 125
B.1 Logic . 125
B.2 Functions . 126

B.3 Sets . 127

C Glossary 129

List of Figures

2.1 Simple MSC chart . 13

2.2 Simple LSC chart . 14

2.3 An universal chart . 18

2.4 An existential chart . 19

2.5 An LSC subchart . 21

2.6 Hot and cold messages . 22

2.7 User sending a message . 25

2.8 External function call . 26

2.9 LSC scenario with assignments 27

2.10 Cold and hot conditions . 28

2.11 An if-then-else construction 29

2.12 A non-deterministic choice 30

2.13 Fixed, dynamic and unbound loops 31

2.14 A Vertical Delay time restriction 32

2.15 A Message Delay time restriction 32

2.16 Timers . 33

2.17 PN basic elements . 35

2.18 Compact representation of a PN 35

2.19 Enabled transition t1 . 36

2.20 Marking after the firing event of transition t1 37

2.21 PN with an inhibitor arc . 37

2.22 Sequence net . 37

2.23 Distribution net . 38

2.24 Junction net . 38

2.25 Non-deterministic Choice net 39

2.26 Structural and Effective conflicts 39

2.27 A bounded PN . 40

2.28 A safe PN . 40

2.29 A live PN . 41

2.30 A reversible PN . 41

2.31 A B-fair PN . 42

vii

viii LIST OF FIGURES

2.32 A structurally live PN . 42

2.33 A structurally bounded PN 43

2.34 A conservative and consistent PN 43

2.35 A repetitive and consistent PN 43

2.36 A Simple CPN . 48

3.1 Representation of synchronization points for the MainSwitch

instance . 56

3.2 Representation of synchronization points for the Thermo1 in-
stance . 57

3.3 Representation of a minimum event 59

3.4 CPN model for the message Switch2.Change(Med) 63

3.5 CPN model of an asynchronous message 66

3.6 LSC chart with symbolic messages 69

3.7 CPN model for the first occurrence of the variable Xs for
sender and receiver instances 69

3.8 CPN model of SwCtrl.SetState(Xs) method call for sender
and receiver instances . 71

3.9 CPN model that represents an external function 74

3.10 CPN model of an assignment that stores an object property
value . 76

3.11 CPN model for synchronization point of a condition 80

3.12 CPN model that represents a cold condition that constrains
an object’s property . 83

3.13 Condition using a variable and its corresponding CPN model 84

3.14 CPN model of an if-then-else construction 86

3.15 CPN model for a fixed loop 89

3.16 CPN model for an unbounded loop 90

3.17 CPN model for a Vertical Delay time restriction 93

3.18 Validation phases . 95

3.19 LSC scenario . 96

3.20 Reachability graph of the LSC scenario presented in Fig-
ure 3.19 . 97

3.21 CPN model for Chan1 instance 98

3.22 CPN model for Phone1 instance 98

3.23 CPN model for Switch instance 99

3.24 CPN model for Chan2 instance 100

3.25 CPN model for Phone2 instance 101

3.26 Reachability graph of the CPN model 102

3.27 “Hidden” states of reachability graph of the CPN model . . . 103

LIST OF FIGURES ix

3.28 Reachability graph of the CPN model without the “hidden”
states . 103

4.1 Excitement scenario . 106
4.2 Cross-section scenario . 107
4.3 Management scenario . 108
4.4 Battery Manager Scenario 1 111
4.5 Battery Manager Scenario 2 112
4.6 Battery Manager Scenario 3 112
4.7 Battery Manager Scenario 4 113
4.8 Battery Manager Scenario 5 114

4.9 Battery Manager Scenario 6 115
4.10 Battery Manager Scenario 7 116

C.1 Aprovação . 135

x LIST OF FIGURES

List of Symbols

CPN Coloured Petri Net

CPN ML Coloured Petri Net ML Language

ASKCTL CPN Model Checking Query Language

LSC Live Sequence Chart

MSC Message Sequence Chart

GUI Graphical User Interface

PN Petri Net

XML eXtensible Markup Language

UML Unified Modeling Language

XUML Executable Unified Modeling Language

RTOS Real Time Operating System

SA Structured Analysis

SD Structured Design

OOAD Object-Oriented Analysis and Design

RISC Reduced Instruction Set Computer

VLIW Very Long Instruction Word

OMG Object Management Group

DSP Digital Signal Processor

JDOM Java API for XML Processing

xi

xii LIST OF SYMBOLS

Chapter 1

Introduction

This chapter presents an introduction to embedded systems,

highlighting the importance of the specification in the initial phase

of a embedded system project, where several specification models

are presented revealing their advantages and disadvantages, as

well as presenting some methods that allows to verify if a specifica-

tion is according to the functional and nonfunctional requirements

imposed by specified system.

1.1 Context

Embedded systems are present in practically all human activities, and due
to low technological costs, they tend to increase their presence. Examples

of such systems are cellular telephones with camera and calendar, cars and
buses system controls, portable computers, microwave ovens with an intel-
ligent control of temperature, washing machines and other appliances.

An embedded system project is a complex activity, because it involves
concepts such as portability, energy consumption constraints, performance,
low memory availability, safety and reliability.

Embedded systems projects face several challenges, because there is a
vast design space to be explored. The hardware architecture of an em-
bedded system may contain one or more processors, memories, interfaces
for peripherals and dedicated blocks. These components are linked by a
communication structure that can vary from a bus to a complex net [37].
The processors can be of several types (RISC, VLIW, DSP) according to
the application. In the case of systems containing programmable compo-
nents, the software application may be composed of multiple processes,
distributed among different processors and communicating through var-

1

2 CHAPTER 1. INTRODUCTION

ied mechanisms. A real time operating system (RTOS) offering services as
communication and processes stagger may be necessary [13]. Besides the
precious time that can be spent with a systematic exploration of this project
space, it should be considered the necessary time for designing and validat-
ing all dedicated components of the system, processors, hardware blocks,
software routines, RTOS, as well as the time for validating the whole sys-
tem.

Another problem of an embedded system project is the cost. The project
of an embedded system of great complexity is quite expensive for a com-
pany, involving different teams (digital hardware, analogical hardware,

software, test) and usually demands specialized tools often of very high
costs. The production cost of integrated systems in a tablet is high, so the
companies are pushed to implement components that have a high produc-
tion volume, in order to reduce the production costs.

Starting from a high level specification, the design space should be ex-
ploited for possible architectural solutions, taking into account the impact
of different hardware and software solutions. After or while defining the
architecture, the communication should be considered for the synthesis in-
tegrating the hardware components [36].

Due to the complexity of embedded system architectures, containing

multiple hardware and software components, sophisticated communication
structure, the variety of possible solutions, performance, energy consump-
tion constraints, correctness and robustness, it is essential the adoption of
tools to automate design phases and supporting designers in decision mak-
ing.

An embedded system project usually begins with a specification of each
desired functionality, done through a language or an appropriate formal-
ism. Ideally, this specification should have a high abstraction level, which
is independent of implementation, hardware components or software. This
specification should be preferably executable, for validation ends.

Design methodologies should provide means for functional and archi-

tectural validation. Improving system reliability can be carried out by sim-
ulation or through formal analysis/verification that is quite attractive be-
cause they spare exhausting simulations.

The initial system specification is usually a functional description, in
which no structural information or architecture dependent features is con-
sidered. This description should be neutral in relation to possible imple-
mentations of software functions or hardware platforms, and usually does
not contain detailed information on how to implement the timing require-
ments. The system is described as a group of functions (tasks or objects,
depending on the adopted language), that communicate through high-level

1.1. CONTEXT 3

communication primitives, for instance in the form of messages or services
requests. Each request may transport several items of data simultaneously.
This abstraction level allows the validation of the functional specification
of the system and serves as input for the architectural exploration process.

Over the last decades, the main approaches to high-level system mod-
eling have been structured-analysis/structured-design (SA/SD) and object-
oriented analysis and design (OOAD). Both approaches have yielded visual
formalisms for capturing the various parts of a system model. The linking
of structure and behavior is crucial and by no means a straightforward is-
sue. In SA/SD, for example, each system function or activity is associated

with a state machine or a state chart [22] that describes its behavior. In
OOAD, as Unified Modeling Language (UML) [40, 18] and the XUML [23],
each class is associated with a state chart, which describes the behavior of
every instance object.

When developing a complex system, it is very important to be able to
test and debug the model before investing extensively in implementation
[21].

Requirements are the basis for testing and debugging models. They
constitute the constraints, desires, and hopes we entertain concerning the
system under development. We want to make sure, both during develop-

ment and when we feel development is over, that the system does, or will
do, what we intend or hope for it to do.

A more recent way of specifying requirements, which is popular in
the realm of object-oriented systems, is to use Message Sequence Charts
(MSCs) [14]. The International Telecommunication Union (ITU) adopted
this visual language as a standard.

Both MSCs and UML’s sequence diagrams specify scenarios as sequences
of message interactions between object instances. In the early stages of sys-
tem development, engineers typically come up with use cases [27] and then
specify the scenarios that instantiate them. Scenarios capture the desired
relationships among the processes, tasks, or object instances. The modeler

uses MSCs to specify the scenarios, that the final system hopefully will sat-
isfy and support, and these scenarios are instantiations of the more abstract
and generic use cases.

As a requirement language, all known versions of MSCs, including the
ITU standard and the sequence diagrams adopted in the UML, are weak
in expressive power. Their semantics are little more than a set of simple
constraints on the partial order of possible events in a system execution.
Nothing can be said in MSCs about what the system will actually do when
it runs. These diagrams can state what might possibly occur, not what must
occur. Another drawback of MSCs is their inability to specify unwanted

4 CHAPTER 1. INTRODUCTION

scenarios (anti-scenarios). We want to forbid the occurrence of these anti-
scenarios, and they are crucial in setting up safety requirements.

Due to the weakness of the previous models, a new language for sys-
tem specification, called Live Sequence Chart (LSC) was proposed in 1998
by Damm and Harel [17]. Later, in another work of Harel together with
Marelly [24], the Play-Engine tool was presented allowing the modeling of
LSC scenarios and also permitting the simulation of these scenarios through
an executable model that does not need the source code. As the name sug-
gests, LSCs specify liveness, things that must occur. They let modelers dis-
tinguish between possible and necessary behavior and also make possible

to specify anti-scenarios.
LSC language fills out the gaps of the previous models, distinguishing

things that can happen from those that must happen, through the use of
some types of diagrams. Sequence of events that can happen in an execu-
tion of the system can be specified using existential chart that serves as a
system test case. On the other hand, sequence of events that should happen
for all and any execution of the system should be modeled using universal
charts. Each universal chart possesses a pre-condition (prechart) that, if
successfully executed, forces the execution of the scenario specified in the
chart body, that if not satisfied, indicates a requirement violation.

Besides the simulation, the requirements validation process can be
made by formal specification methods, which allow the development of
systems without ambiguities, through well defined syntaxes and semantics.
With such formal models, it could:

• accomplish mathematical verification that guarantee that models pos-
sess the requested properties;

• analyze if the proposed solution is acceptable under the performance
point of view, indicating best strategies for implementation;

• accomplish the software development and improve the reliability
about correct implementations (generation of correct code).

Several class of formal specification models have been proposed, among
them algebraic methods, process algebras, logic based methods and Petri
Nets.

CSP [25], CCS [38] and LOTOS [9, 54] are examples of process al-
gebras used to model concurrent processes. They are languages for the
specification of processes and the formulation of statements about them,
together with calculations for the verification of these statements.

Petri Net (PN) [39, 41] is a family of formal models suit for represent-
ing synchronization, concurrency or resource sharing. Actually, Petri Nets

1.2. OUR APPROACH 5

was the first model for formally describing concurrent systems [46]. The
graphic representation of a PN structure consists of elements connected by
directed arcs. There are two types of elements vertexes, places represented
by circles and transitions (rectangles). An arc connects places to transitions
or transitions to places. A PN is a multi-graph, since it allows multiple arcs
from an element to another.

Coloured Petri Nets (CPNs) [28, 29] are high-level PNs that support
complex data types and hierarchy. CPNs combine the strengths of ordi-
nary PNs with the strengths of a high-level programming language. PNs
provide the primitives for process interaction, while the programming lan-

guage provides the primitives for the definition of data types and the ma-
nipulations of data values.

1.2 Our Approach

Early system design modeling allows error detection due to imperfection in
the design process as well as those related to requirement analysis phase.
Therefore, preventing larger and costly problems due to late detection, es-
pecially with those embedded systems that must be correct, robust and
efficient (critical embedded systems).

Modeling processes of real time systems must take into account both
functional and nonfunctional requirements. Some models, as MSC and
UML Sequence Diagram, seemed to supply such needs, however they pos-
sess some deficiencies:

• they are unable to verify critical properties of a system;

• they do not allow performance evaluation to be accomplished;

• they do not allow specify scenarios that should happen for all system
run (liveness);

• they do not allow the modeling of anti-scenarios.

Due to the costs and the complexity of embedded systems, it is es-
sential a system specification in a high-level of abstraction, where func-
tional and architectural descriptions validation are necessary. Validation
can be carried out by simulation or complemented through formal analy-
sis/verification that is quite attractive because they spare exhausting simu-
lations.

Live Sequence Chart (LSC), reduces some shortcomings inherent to
MSC based models, such as allowing the possibility of specifying liveness

6 CHAPTER 1. INTRODUCTION

and anti-scenarios. LSC allows modelers distinguish between possible and
necessary behavior and specify anti-scenarios.

As well as the previous models (MSC and UML), LSC language possesses

some deficiencies. It is not possible to verify system properties and to ac-
complish any system performance evaluation. So, if one wants to detect
and reduce some risks that may lead to project failure, a formal approach,
like PNs, could be used to allow execute such tasks.

As LSC language uses object oriented notions, in order to provide a
faithful representation of LSC charts, this work uses a PN variant, called
Coloured Petri Nets (CPNs), due to the possibility of representing complex
data types. Besides this advantage, CPN models can be evaluated in many
different ways.

The first evaluation method is interactive simulation. It is very similar to
debugging and prototyping. This means that we can execute a CPN model,
to make a detailed investigation of the behavior of the modeled system.

The second method is automatic simulation which is similar to program

execution. It allows a fast execution of thousands or millions of transitions.
The purpose is to investigate the functional correctness of the system or to
investigate the performance of the system, e.g. to identify bottlenecks, to
predict the use of buffer space or the mean/maximal service time.

The third method is based on the analysis of reachability graphs. The
reachability graph is a directed graph which has a node for each reachable
system state and an arc for each possible state change. Obviously, such a
graph may become very large, even for small CPNs. However, it can be
constructed and analyzed totally automatically, and there exist techniques
which makes it possible to work with condensed occurrence graphs without
losing analytic power.

The fourth analysis method is place invariants. This method is very sim-
ilar to the use of invariants in ordinary program verification. The user con-
structs a set of equations which is verified for all reachable system states.
The equations are used to verify properties of the modeled system, e.g.,
absence of deadlock.

1.3 Goals

The goal of this work is to aid the development process of embedded sys-
tems, through an approach that allows to verify the correctness and robust-
ness of such systems, through an analysis and verification of properties of
the modeled system.

1.4. RELATED WORKS 7

Due to embedded system characteristics, its functional and architectural
descriptions should be validated, reducing risks that may lead the design of
an embedded system to failure. So, in order to provide a validation mech-
anism, this work presents a methodology for mapping the Live Sequence
Chart (LSC) language to an equivalent Coloured Petri Net (CPN) model
as an approach for analysis and verification of embedded systems’ proper-
ties. As LSC language has data-types and adopts high-level concepts such
as method invocation, Coloured Petri Nets have been adopted as a suit Petri
net variant since it supports complex data-types, annotations, hierarchy as
well as have an associated programming language (CPN-ML) that improves

value’s handling. Therefore, the proposition of a CPN model for LSC allows
verification and analysis of systems described in LSC, hence, contributing
for increasing designers’ confidence on the system development process
and reducing risks that may lead to project failure.

1.4 Related Works

Some works have been published as an approach to properties analysis and
performance evaluation of system’s specifications, starting from scenarios,
which are described using a requirement specification language, such as
UML, MSC, LSC and so on. Some related works are presented next.

The growing popularity of sequence charts, first of all Message Se-
quence Charts and UML Sequence Diagrams, for the description of com-
munication behavior has evoked criticism regarding the semantics of the
charts which led to extensions of these standardized visual formalisms.
One such extension are Live Sequence Charts which allow to distinguish
mandatory and possible behavior in protocol specifications. In the original
language definition for LSCs the semantics are only described informally,

although a sketch for a possible formalization has been provided as well.
Klose and Wittke [31] intend to fill in the semantic blanks of the original
LSC definition. Following the sketched path they define the semantics of
an LSC by deriving a Timed Buchi Automata from it. They also consider
qualitative and quantitative timing aspects. They finally show how LSCs
are integrated into a verification tool set for Statemate designs.

Merseguer [26] proposes an approach to analyze performance for mo-
bile agents systems, in which security and performance are the most critical
aspects. This approach maps Message Sequence Charts (MSC) to a Gener-
alized Stochastic Petri Nets (GSPN) model, through which, performance
indexes may be computed by applying quantitative analysis techniques al-
ready developed in the literature. This approach proposes a UML with

8 CHAPTER 1. INTRODUCTION

performance annotation (pa-UML) to model performance on these kind of
systems. The problem domain is modeled using pa-UML, describing static
and dynamic views when necessary. Through pa-UML, it is obtained the
corresponding formal model expressed as Petri Nets.

Baresi [8] proposes High-Level Timed Petri Nets (HLTPN) for UML dy-
namic models in order to obtain a flexible and customizable representation
to dynamic aspects of object-oriented models, in order to simulate partic-
ular parts of these models and if necessary analyze them. The proposal
describes the main UML elements with formal semantics in terms of func-
tionally equivalent to HLTPNs and shows results from execution and anal-

ysis as decorations to UML symbols.
Live Sequence Charts (LSCs) are a promising graphical specification for-

malism, usually applied to software systems. Bunker and Slind [12] adapt
LSCs for the purpose of hardware requirements specification and verifica-
tion. The main contribution of their work is an algorithm for generating
temporal logic formulas from an LSC. The generated formulas are used as
specifications for a model checker to verify compliance of hardware imple-
mentations.

The problem of relating state-based intra-agent (or intra-object) behav-
ioral descriptions with scenario-based inter-agent (inter-object) descrip-

tions has recently focused much interest among the software engineering
community. Bomtemps and Heymans [55] investigate this problem. As
inter-agent formalism, they adopt a simple variant of Live Sequence Charts.
For the intra-agent perspective, they consider a game-theoretic foundation,
looking at agents as “strategies” which encompasses the popular “state-
based” paradigm. Three classes of relationships between models are stud-
ied: scenario checking (called eLSC checking), synthesis, and verification.
They set a formally defined theoretical stage that allows to express these
three problems very simply, to discuss their complexity, and to describe
optimal solutions. Their study reveals the intrinsic high computational dif-
ficulty of these tasks. Consequently, many related problems and solutions

are surveyed, some of which can be the basis for practical solutions. In this,
we also offer a panorama of current research and directions for the future.

Bontemps [10] proposes an approach to obtain an automata represen-
tation from High-Level Live Sequence Charts (HLSC). This work builds au-
tomata from HLSC scenarios and show that standard algorithms on this
(low-level) formalism can be used to check consistency and refinement,
and to synthesize a state-based specification from a set of consistent re-
quirements. The disadvantage of this approach is the description of the
system that is given as an automata, which is difficult to read, and thus, of
little interest for the later stages of development.

1.4. RELATED WORKS 9

Kluge [32] focuses on Petri Nets as a formal model for analysis and
simulation of Message Sequence Charts (MSC). Additionally, it proposes
to use this Petri Net based formal model as a formal semantics for MSC.
This approach provides a formally precise as well as an intuitive semantics
for MSC. A further advantage of this approach is, that existing algorithms,
methods and tools for analysing and simulating Petri nets can be employed
for the analysis and simulation of MSCs. A drawback of this approach is
that it is necessary changes of an MSC specification in order to derive a
low-level Petri Net with the correct behavior.

Kugler and Harel [20] provide semantics for the powerful scenario-
based language of live sequence charts (LSCs). They show how the se-
mantics of live sequence charts can be captured using temporal logic. This
is done by studying various subsets of the LSC language and providing an
explicit translation into temporal logic. They show how a kernel subset of
the LSC language (which omits variables, for example) can be embedded
within the temporal logic CTL. For this kernel subset the embedding is a
strict inclusion. They show that existential charts can be expressed using
the branching temporal logic CTL, while universal charts are in the inter-
section of linear temporal logic and branching temporal logic.

Sun and Dong [52] investigate theoretical relations between LSCs and

CSP. LSCs are formalized using trace and failure semantics so as to facilitate
the semantic transformation from LSCs to CSP. The practical implication is
that mature tool supports for CSP can be reused to validate LSCs.

Verification and validation are critical and costly for high-assurance sys-
tems. Even though many formal specification techniques are available to
verify various properties for embedded systems, it takes much effort to de-
velop the state model and specify properties using temporal logic. Tsai and
Yu [53] present a process to rapidly generate the state model by simulat-
ing system scenarios, and formal model checking techniques can then be
applied to the state model to verify various properties. Because system

scenarios are widely used during embedded system development, the ef-
fort needed to develop the state model for the embedded system is thus
greatly reduced. Their work present how informal system scenarios can be
formalized and used in simulation to generate the state model. The simu-
lation tool developed is also capable of performing runtime checking such
as completeness and consistency checking, and timing analysis. The state
model generated can be mapped to UML’s state chart. Furthermore, they
use a pattern based approach to specify properties to be checked rapidly. In
this way, various formal model checking techniques can be applied to the
embedded system development.

10 CHAPTER 1. INTRODUCTION

1.5 Dissertation Structure

This dissertation presents a methodology for representing LSC diagrams by
a Coloured Petri Net (CPN). The CPN model is considered for analysis and

verification of qualitative properties. Thus, taking an important concern in
embedded system design process.

Chapter 2 addresses some specification models and a formal approach
that can be used to analyze and verify the behavior of a specified system. In
Chapter 3, the mapping of the LSC language to an equivalent CPN model
are presented. Chapter 4 presents two case studies, on which the map-
ping is applied in order to analyse and verify some properties. Finally, a
conclusion and future works are presented in Chapter 5.

Chapter 2

Basic Concepts

This chapter presents some details on object-oriented analy-

sis and design, mentioning some specification models with their

advantages and disadvantages in the system modeling process. Fi-

nally, in order to allow properties analysis and verification, PNs

are presented as a possible approach to formal verification.

2.1 Object-Oriented Analysis and Design

The late 1980s saw the first proposals for object-oriented analysis and de-
sign (OOAD). As in structured analysis/structured design (SA/SD), the
basic idea in modeling system structure was to lift concepts up from the
programming to the modeling level and to use visual formalisms. Inspired

by entity-relationship diagrams [15], several methodology teams recom-
mended various forms of class and object diagrams for modeling system
[11, 16, 51]. To model behavior, most object-oriented modeling approaches
adopted state charts [22]. Each class has an associated state chart, which
describes the behavior of any object instance.

The issue of connecting structure and behavior is subtler and more com-
plicated in the OOAD world than in the SA/SD world. Classes represent
dynamically changing collections of concrete objects. Behavioral modeling

must thus address issues related to object creation and destruction, mes-
sage delegation, relationship modification and maintenance, aggregation,
inheritance, and so on.

The links between behavior and structure must be defined in sufficient
detail and with enough rigor to support the construction of tools that en-
able model execution and full code generation. Only a few tools have been
able to do this. One is Object-Time, which is based on the Real-Time Object-

11

12 CHAPTER 2. BASIC CONCEPTS

Oriented Modeling method [7] and is now part of the Rational RealTime
tool [6].

Another tool is Rhapsody [5], which is based on the work of Gery and
Harel of executable object modeling with state charts [23]. This work cen-
ters on a carefully constructed language set that includes class/object di-
agrams adapted from the Booch method [11] and the OMT method [51],
driven by state charts for behavior.

This pair of languages also serves as the executable heart of the Uni-
fied Modeling Language (UML) [18], put together by a team led by Grady
Booch, James Rumbaugh, and Ivar Jacobson, which the Object Manage-

ment Group (OMG) adopted as a standard in 1997 [40]. The class/object
diagrams and the state charts part of the UML is often called XUML. Thus,
XUML is the part of UML that specifies unambiguous, executable, and
therefore implementable, models.

2.2 Message Sequence Chart (MSC)

The language of message sequence charts (MSCs) is a popular mechanism
for specifying scenarios that describe possible interactions between pro-

cesses or objects. MSCs are particularly useful in the early stages of system
development. The language has found into many design methodologies,
and a variant of it has been made part of UML, where it is called sequence
diagrams. There is also a standard syntax for MSCs that appears as a rec-
ommendation of the ITU [14].

In many object-oriented system development methodologies, the user
first specifies the system’s use cases and some specific instantiations of each
use case are then described using sequence diagrams (MSCs). In a later
modeling step, the behavior of a class is described by a state diagram [22]
that prescribes a behavior for each of the instances of the class. Finally, the
objects are implemented as code in a specific programming language. Parts

of this design flow can be automated, such as the generation of code from
object model diagrams and state charts, as exemplified in ObjecTime [42]
and Rhapsody [23, 5].

In such design flows, the main role of MSCs is to capture system re-
quirements in the form of “good” scenarios that the implemented system
should exhibit. Sometimes an MSC is prepared for a “bad” scenario that the
implementation should not allow. System requirements captured in this in-
tuitive fashion can serve as a useful interface between the end-users of the
system and the system designer. They can also serve as a test for validating
some aspects of the implementation. A substantial portion of research on

2.2. MESSAGE SEQUENCE CHART (MSC) 13

MSCs has been driven by this way of using MSCs, with the focus on mecha-
nisms for describing collections of scenarios, techniques for analyzing such
collections and relating them to a state-based executable specification.

Figure 2.1 depicts a simple MSC chart. This chart captures a scenario
in which a user (U) sends a request to an interface (I) to gain access to
a resource (R). The interface in turn sends a request to the resource, and
receives “grant” as a response, after which it sends “yes” to the user. The
vertical lines represent the life-lines of the processes taking part in the sce-
nario . As usual, time is assumed to flow downwards along each life-line.

The directed arrows going across the life-lines represent the causal link
from a send event (the source of the arrow) to the corresponding receive
event (the target of the arrow), with the label on the arrow denoting the
message being transmitted.

Figure 2.1: Simple MSC chart

An MSC chart is guided by the following rules:

• all the events that a process takes part in are linearly ordered, each
process is a sequential agent;

• messages must be sent before they can be received;

• there are no dangling communication edges in an MSC, therefore all
sent messages have also been received;

• the causality relation between the events in an MSC is completely de-
termined by the order in which the events occur within each process
and communication relation relating a send-receive pairs.

14 CHAPTER 2. BASIC CONCEPTS

2.3 Live Sequence Chart (LSC)

LSC [17] is a system specification language based on scenarios that allows
to specify anti-scenarios as well as it permits specify what should happen for
all system runs. LSC language fills out the gaps of the previous models, dis-
tinguishing things that can happen of things that must happen, through the
use of some types of diagrams. Sequence of events that can happen in an
execution of the system can be specified using existential chart that serves
as a system test case. On the other hand, sequence of events that should
happen for all and any execution of the system should be modeled using

universal charts. Each universal chart possesses a pre-condition (prechart)
that, if successfully executed, forces the execution of the scenario specified
in the chart body. Otherwise it indicates a requirement violation.

An LSC specification is formed by many scenarios, that can be specified
using universal charts or existential charts.

Definition 2.3.1. (Specification) An LSC specification S for a system Sys is

defined as a disjoint union S = SU ∪ SE, where SU is a set of universal charts

and SE is a set of existential charts.

Figure 2.2 depicts an LSC universal chart that contains three instances,
User, MainSwitch and MainLight. This diagram specifies that every time the
User modifies MainSwitch to On, then the instance MainLight should sets it-
self to On. User and MainSwitch participate in prechart (denoted by dashed

lines) and chart body (denoted by solid lines) scenarios. MainLight partici-
pates in chart body scenario only. An instance is participating in a scenario,
when its instance line (vertical line) is present inside the scenario’s scope.

Figure 2.2: Simple LSC chart

LSC language possesses a vast number of constructions that can be used
inside a chart, such as messages, conditions, assignments, loops, if-then-else

construction, forbidden elements, time restrictions.

2.3. LIVE SEQUENCE CHART (LSC) 15

Definition 2.3.2. An LSC chart L is defined to be: L = (IL, VL, ML, [PchL],
AL, CL, SUBL, ITEL, LOOPL, M̄L, C̄L, Strict, event, subchart, temp), where

IL is the set of LSC instances, VL is the set of variables used in L, ML is

the set of messages in L. A message Mi ∈ ML is represented by a directed

“arrow” (graph), with a location point on an instance line that represents the

sending event and other location point on an instance line (can be the same

instance line) that represents the receiving event. PchL is the prechart of L (in

universal charts), which is optional, AL is the set of assignments in L, CL is

the set of conditions in L, SUBL is the set of subcharts in L, ITEL is the set of

if-then-else constructions in L, LOOPL is the set of loops in L, M̄L is the set of

forbidden messages in L, C̄L is the set of forbidden conditions in L, , Strict is

a boolean flag indicating whether the LSC is strict or tolerant, temp function

assigns temperature to locations, messages, conditions, forbidden messages

and forbidden conditions, event function maps a location to the event it is

associated with, and subchart is a function that returns the corresponding

subchart for a particular location.

Despite the visual, LSCs constitute a formal language, which will not
always be appropriate for the people involved in the early stages of re-
quirement capturing. So, a higher-level approach to the problem of speci-
fying scenario-based behavior, termed play-in scenarios, was proposed and
briefly sketched, together with the Play-Engine tool [24] that supports it.

The main idea of the play-in process is to raise the level of abstraction
in requirements engineering, and to work with a look-alike version of the
system under development. This enables people who are unfamiliar with
LSCs, or who do not want to work with such formal languages directly,
to specify the behavioral requirements of systems using a high-level, intu-
itive and user friendly mechanism. These could include domain experts,
application engineers, requirements engineers, and even potential users.

What play-in means is that the system’s developer first builds the GUI
(interface) of the system, with no behavior built into it. In systems for

which there is a meaning to the layout of hidden objects, the user may
build the graphical representation of these objects as well. In fact, for GUI-
less systems, or for sets of internal objects, we simply use the object model
diagram as a GUI. In any case, the user “plays” the GUI by clicking but-
tons, sending messages (calling functions) to hidden objects in an intuitive
drag & drop manner. With an object model diagram as the interface, the
user clicks the objects and/or the methods and the parameters. By similarly
playing the GUI, the user describes the desired reactions of the system and
the conditions that may or must hold. As this is being done, the Play-Engine

continuously constructs LSCs automatically. It queries the application GUI

16 CHAPTER 2. BASIC CONCEPTS

(that was built by the user) for its structure, and interacts with it, thus ma-
nipulating the information entered by the user and building and exhibiting
the appropriate LSCs.

After playing in the specification, the natural thing to do is to verify
that it reflects what the user intended to say, and here is where the play-

out mechanism enters, allowing to test and validate the requirements as
well. In play-out, the user simply plays the GUI application as he/she would
have done when executing a system model, or the final system, but limiting
him/herself to “end-user” and external environment actions only. While do-
ing this, the Play-Engine keeps track of the actions and causes other actions
and events to occur as dictated by the universal charts in the specification.
Here, the engine interacts with the GUI application and uses it to reflect the
system state at any given moment, with no intra-object model having to be

built or synthesized. This makes it very easy to let all kinds of people partic-
ipate in the process of debugging the specification, since they do not need
to know anything about the specification or the language used. It yields a
specification that is well tested and which has a lower probability of errors
in later phases, which are a lot more expensive to detect and eliminate.

In the LSC language, the system is modeled using object oriented no-
tions and terminologies. So, a system is composed of objects that represent
instances of a given class, which are formed by properties based on some
application data type. These objects can be created in an independent way
or they can be based on another existent object, inheriting their character-
istics and methods.

A property has a name. It is identified by a unique ID and it is based on
a data type with a certain domain, starting from the value for the property
is chosen.

In order to provide an intuitive and user-friendly support, Play-Engine

tool [24] requires object properties to also have the following characteris-
tics:

• Prefix - It is a verb used to describe the action of changing the prop-
erty’s value;

• IsDefault - If a property is default, its name is not shown in the LSC
message;

• InOnly - Object properties are usually changed by either operating
the object, or by right-clicking the object and choosing a value to an
object’s property. An InOnly property can be changed only by using
the first of these;

2.3. LIVE SEQUENCE CHART (LSC) 17

• Can be changed externally (ExtChg) - This indicates that the property
can be changed by the system’s environment;

• Affects - When the value of an object’s property is changed, a message

is drawn (a directed arrow as seen in Definition 2.3.2) in the LSC
chart. The value of the Affects flag shows how this arrow is drawn and
the possibilities are User, Env and Self, and the arrow is drawn toward
the user, toward the environment, or as a self arrow, respectively;

• Synchronous (Sync) - A synchronous message may be propagated only

if both the sender and receiver are ready.

Definition 2.3.3. (Property) An object property P is defined as P = (Name, D,

InOnly, ExtChg, Affects, Sync, Prefix, IsDefault), where Name is the property

name, D is a finite set of possible property’s values and Prefix is a verb used to

describe the action of changing the property’s value. InOnly, ExtChg, Sync and

IsDefault range over {true, false} and Affects ranges over {User, Env, Self}.

Definition 2.3.4. (Class) A class C is defined as C = (Name, CP, SM), where

Name is the class name, CP is the set of class properties and SM is the set of

class methods.

Each object may be an instance of some defined class. An object that is
not explicitly associated with a class is considered to be the single object.

Definition 2.3.5. (Object) Let O be the set of concrete objects. An object

oi ∈ O is a concrete object of some class and is therefore defined as oi =

(Name, C, PV), where Name is the object’s name, C is its class name and PV is

a function that assigns a value to each of object’s property.

Application data types can be created starting from primitive types, such
as:

Enumerated defines a finite group of values. For example, Week = Sun,
Mon, Tue, Wed, Thu, Fri, Sat;

Discrete defines a minimum value, a maximum value and a step that de-
termines the interval between consecutive values. For example, Byte

can be represented by a discrete type ranging from 0 to 127 with a
step of 1;

String defined by a maximum length.

18 CHAPTER 2. BASIC CONCEPTS

A LSC system specification defines the set of application types, the set
of classes and the set of externally implemented functions that can be used
in any scenario of the specification. Coupled to this system specification a
global clock is used to check time restrictions that can be imposed inside a
LSC scenario.

Definition 2.3.6. (LSC model) An LSC model is defined as Sys = (AT, C,
O, F, Clock), where AT is the set of application data types, C is the set of

classes, O is the set of objects, F is the set of externally implemented functions

and Clock is the system global clock.

Inside of an LSC specification two types of charts can be used: universal
and existential. The first is denoted by a solid border line and it is used to
specify restrictions that are applied for all system runs. The last is denoted
by a dashed border line and it can be used to specify system tests, which
are applied to at least one system’s execution.

Each universal chart has a pre-condition, called prechart. If this pre-
condition is successfully executed then the chart body should be satisfied
by the system. In that way, an universal chart establishes an action-reaction

relationship between the prechart and the chart body.

Figure 2.3: An universal chart

Figure 2.3 shows an universal chart. This chart says that whenever the
instance User sets State property (IsDefault is true) of MainSwitch to On,
then MainLight must set its State property (IsDefault property is configured
as true) to On.

Figure 2.4 shows an existential chart. It is necessary to observe that
there is no execution order between events, therefore, it is possible a sce-
nario in which MainLight is turned on (Turn(On)), and then the User sets
MainSwitch to On (Click(On)).

A system specification has many LSC charts, which represent LSC sce-
narios where some system’s functionalities are modeled using a large num-

2.3. LIVE SEQUENCE CHART (LSC) 19

Figure 2.4: An existential chart

ber of available LSC constructions, such as messages, conditions, assign-

ments, loops, if-then-else constructions, forbidden elements, time restric-
tions. Some of these constructions will be shown later.

An LSC chart has several instances attached to it, which are the repre-
sentation of a concrete object (Definition 2.3.5). Every instance line (ver-
tical line starting from the rectangle that represents the instance) contains
locations. An instance progresses from one location to the next by partic-
ipating in some activity associated with the location. Such activity could,
for example, be the sending or receiving of a message. Every instance has
also an initial location and a final location, in which the instance begins
and terminates, respectively.

Each location has a “temperature” that can be hot or cold. A hot location
forces the instance to progress throughout its instance line, while a cold

location allows the instance to stay in this location without violating the
chart.

An LSC event is an action that occurred inside of a chart, which consists
of two disjoint sets. An LSC event can be an actual system event of sending
or receiving a message, or it can be one of the acts of entering the prechart,
exiting it, entering the chart body or reaching its end. The first kind of
event is called a visible event and the second is called a hidden event.

Definition 2.3.7. (Events) Let EL be the set of LSC events. An LSC event ei ∈
EL is an action that occurred inside of a chart L, such as messages, conditions,

assignments and synchronization points, described as a tuple [Pos, Location],
where Pos may represent the scenario (prechart, chart body or subchart) in

which the event occurred or it may represent a message inside the chart L,

and Location represents the event’s location, which can be Start, End, Send
and Recv. Start and End are used when Pos represents a scenario, and they

denote beginning and ending of the scenario, respectively. Send and Recv are

used when Pos represents a message, and they denote sending and receiving

event of the message, respectively.

20 CHAPTER 2. BASIC CONCEPTS

Definition 2.3.8. (Functions loc and evnt) Let lL be the set of locations of a

chart L. An LSC event may have cold or hot locations, therefore it can define a

function evnt : lL 7→ EL that maps each location into the event it is associated

with, as well as its inverse, loc : EL 7→ 2lL = evnt−1 that maps an event into

the set of locations associated with it. 2lL is applied because a location can be

cold or hot.

A LSC event may be visible or hidden, with locations associated with
it. A hidden event may be entering or exiting a prechart, a chart body
or a subchart. So by applying the function loc for the events [Pch, Start],
[Pch,End], [CB, Start], [CB,End], [Sub, Start], [Sub,End], it returns, re-
spectively, the locations associated with the beginning of the prechart, the
locations associated with the ending of the prechart, the locations associ-
ated with the beginning of the chart body, the locations associated with the
ending of the chart body, the locations associated with the beginning of a
subchart, and the locations associated with the ending of a subchart.

An object instance is a representation of a concrete object of a certain
class. Each instance has a set of locations, which indicate events in which
the instance is participating in the scenario. Besides this, an instance has
a set of bind expressions that compare their properties’ values, a reference
for the chart’s type and a set of prohibited elements which the instance is

not allowed to bind to.

Definition 2.3.9. (Instance) An instance I is defined as I = (l, O, ψ,Mode, φ)
where l is the set of instance locations, O is the concrete object represented by

I, ψ = {ψi}, ψi = {(p, o, r) | p ∈ P, o ∈ Oper, r ∈ RHS} is a binding

expression of the set of binding expressions ψ, where P is a set of instance

properties, Oper is a set of relational operators and RHS can be a constant

value, a variable or a function call, Mode ∈ {Existential, Universal}, and φ
is a set of forbidden objects, which the instance is not allowed to bind to. We

denote by lix the xth location of instance ii, and by ii.l the set of locations of

instance ii.

Inside a LSC chart, it is possible to delimit scenarios using subcharts. A
subchart is a chart’s fragment, denoted by a rectangle with a solid border
line, which encloses all the participant instances.

Figure 2.5 shows a subchart with two constructions, the condition
TermSelect.Therm=1 and the assignment Tc:=Thermo1.Temp. These con-
structions will be presented later in this work. Only instances TermSelect

and Thermo1 are participating in the scenario of the presented subchart.
Alike prechart and chart body, the beginning and ending of a subchart

are synchronization points. Hence, every participant instance of a subchart

2.3. LIVE SEQUENCE CHART (LSC) 21

Figure 2.5: An LSC subchart

enter and exit its scenario simultaneously. Besides, it can be attached any
of the construction that can be inserted in the prechart or chart body, such
as messages, conditions, assignments, loops, if-then-else.

Let ML be the set of messages in chart L, AL be the set of assignments
in chart L, CL be the set of conditions in chart L, IL be the set of instances
in chart L, IA ⊆ IL be the set of instances involved in some activity with
an assignment ai ∈ AL, IC ⊆ IL be the set of instances involved in some
activity with a condition ci ∈ CL, SUBL be the set of subcharts, subchart :
ML ∪ AL ∪ CL → SUBL be a function that returns for each construction
the subchart to which it belongs, and Subi ∈ SUBL be a subchart in chart
L. The set of instances, ISubi

, participating in a subchart Subi is defined as
the set of all instances that are involved in some activity in Subi: ISubi

=
{ii ∈ IL| ∃mi ∈ ML s.t. (subchart(mi) = Subi ∧ (ii = mi.iSrc ∨ ii =
mi.iDst)) ∨ ∃ ai ∈ AL s.t. (subchart(ai) = Subi ∧ ii ∈ IA) ∨ ∃ ci ∈ CL s.t.
(subchart(ci) = Subi ∧ ii ∈ IC)}, where mi.iSrc is the object sending the
message and mi.iDst is the object receiving the message.

Alike locations, messages in the LSC can be hot or cold. A hot message
must be received after sent and the cold one can be sent and not received.
Hot messages are denoted by red solid lines, while cold messages are de-
noted by blue dashed lines. Through this work, we consider that a cold

message eventually arrive after it is sent. Figure 2.6 depicts some hot and
cold messages.

Besides the “temperature” that can be applied to messages, messages
can represent a synchronous or asynchronous communication. A syn-
chronous message is denoted by an arrow with a closed triangle and the
asynchronous message is represented by an arrow with an open triangle.
The messages Thermo1.Change(30) and Console.Show(Cold Oven!), pre-
sented in Figure 2.6, are asynchronous and synchronous, respectively.

A message can have as sender or receiver, the User, the Environment,

22 CHAPTER 2. BASIC CONCEPTS

Figure 2.6: Hot and cold messages

other objects or the Clock object that represents the global clock, which has
the Time property that returns the current time and the Tick method that
increments a time unit in the current time. When the sender and receiver
are the same, it is called a self message .

Every message has two locations, one for the sender and other for the
receiver, therefore the steps to obtain the CPN model should be applied for

both. Let mi ∈ ML be an LSC message, so by applying the function loc for
the events [mi, Send] and [mi, Rcv], it returns, respectively, the location at
the sending point of message mi and the location at the receiving point of
message mi.

A system message can set a property value of an object or just pass the
value ahead, as a method call. Each system message has a sender and
receiver. If the message represents a modification of property value, then
the property that has its value modified belongs to the receiver instance.
Those messages can inform the values through constants (exact) or through
variables (symbolic) that allows the construction of more general scenarios.

The Play-Engine tool [24] allows that applications with graphical inter-

face supply external functions, which are identified by a name, name and
type of the parameters and the type of the result. Play-Engine tool can inter-
act with a GUI application and request a function by passing the expected
parameters and receiving the returned value.

Definition 2.3.10. (External function) Let AT be the set of LSC application

types (domains), D ∈ AT be a finite set of values. An external function is

defined as Name : d1 ×d2 × ...×dn → dF , where Name is the function name,

di ∈ D is the type of its ith formal parameter, and dF ∈ D is the type of its

returned value.

Definition 2.3.11. (Function information structure) Let F be the set of exter-

nal functions. A function information structure λF
f is defined for f ∈ F ∪ {⊥}

as follows:

2.3. LIVE SEQUENCE CHART (LSC) 23

• λF
f =

{

(v1 ∈ f.d1, ..., vn ∈ f.dn), if f ∈ F ;
⊥, if f = ⊥.

,

where v1, ..., vn are variables which represent formal parameters of a

external function and ⊥ represents an absence of information.

Definition 2.3.12. (Object method) Let AT be the set of LSC application types

(domains), D ∈ AT be a finite set of values. An object method M is defined

as (Name(d1, d2, ..., dn), Sync), where Name is the method name, Di ∈ AT is

the type of ith formal parameter, and Sync ∈ {True, False} indicates whether

calling this method is a synchronous operation.

Definition 2.3.13. (Method information structure) Let C be a class and

C.SM be the set of class methods. A method information structure λM
m is

defined for m ∈ C.SM ∪ {⊥} as follows:

• λM
m =

{

v1 ∈ m.d1, ..., vn ∈ m.dn, if m ∈ C.SM ;
⊥, if m = ⊥.

,

where v1, ..., vn are variables which represent formal parameters of a

method call and ⊥ represents an absence of information.

Definition 2.3.14. (System message) Given a system model Sys (Defini-

tion 2.3.6), a system message mS is defined as mS = (P, V, f, λF
f , m, λM

m ,
Symbolic), where P is the property changed, V is a variable holding a new

value for the property P , f is a function describing a new value for P , λF
f is

a function information structure, m is the method of Dst called by Src, λM
m

is a method information structure, and Symbolic is a boolean flag indicating

whether the message is symbolic, where (P 6= ⊥) ∨ (m 6= ⊥) represents either

a property change or a method call.

A LSC message is a system message with two instances, one represent-
ing the sender and other representing the receiver.

The system message represents how the message is formed and pre-
sented inside the scenario, and the LSC message represents the event, indi-

cating the sender and receiver of the message.

Definition 2.3.15. (Message) Let IL be the set of instances of chart L and

mS be a system message. A message mi ∈ ML is defined as mi = (iSrc, iDst,
mS), where iSrc ∈ IL is the instance representing the sender, iDst ∈ IL is the

instance representing the receiver, and mS is the system message represented

by mi.

In LSC scenarios the events are executed top-down. Each event has two
locations, sending and receiving locations. At the synchronization points,

24 CHAPTER 2. BASIC CONCEPTS

instances’ locations are executed at the same time. For the synchronous
messages, sending and receiving locations are executed at the same, on
the other hand at asynchronous messages the sending location has a prece-
dence over the receiving location.

Let ii, ij ∈ IL be instances of chart L, x, y ∈ N be natural numbers, lix and
liy be locations of an instance ii, ljy be a location of an instance ij, MS

L ⊆ ML

be the set of synchronous messages, MA
L ⊆ ML be the set of asynchronous

messages. The function first checks if it is the first occurrence of a variable
in a chart. The function affects checks if a variable is modified, and uses
is a function that checks if a variable is used but not modified. lix ≤ L liy
denotes lix precedes liy, and lix = L liy denotes lix and liy are executed at the
same time. The execution order is defined as follows:

• the locations along a single instance line are ordered top-down. Thus,
things higher up are carried out earlier x < y ⇒ lix < L liy;

• for an asynchronous message m ∈ MA
L , the location of ([m,Send])

event precedes the location of the ([m,Rcv]) event. For synchronous
messages, two events take place simultaneously:
∀mi ∈ MA

L : mi ⇒ loc([mi, Send]) < L loc([mi, Rcv])
∀my ∈ MS

L : my ⇒ loc([my, Send]) = L loc([my, Rcv])

• all instances participating in the prechart and the chart body are syn-
chronized at the beginning and at its end.

∀lix, l
j
y ∈ loc([Pch, Start]) : lix = L ljy

∀lix, l
j
y ∈ loc([Pch,End]) : lix = L ljy

∀lix, l
j
y ∈ loc([CB, Start]) : lix = L ljy

∀lix, l
j
y ∈ loc([CB,End]) : lix = L ljy

• all instances that participate in a subchart are synchronized at start
and end.
∀Subi ∈ SUBL

∀lix, l
j
y ∈ loc([Subi, Start]) : lix = L ljy

∀lix, l
j
y ∈ loc([Subi, End]) : lix = L ljy.

• the first location that affects a variable precedes all other locations
that affect or use the variable.
∀l, l

′

∈ lL : first(l, X) ∧ (affects(l
′

, X) ∨ uses(l
′

, X)) ⇒ l < L l
′

.

• all instances that participate in an assignment are synchronized there.
∀ai ∈ AL,∀lix, l

j
y ∈ loc(ai) : lix = L ljy.

• all instances that participate in a condition are synchronized there.
∀ci ∈ CL,∀lix, l

j
y ∈ loc(ci) : lix = L ljy.

2.3. LIVE SEQUENCE CHART (LSC) 25

When a diagram becomes active, the instances begin in their initial lo-
cations and progress in their instance lines while the execution continues
until they reach their final locations. A cut contains the next location to
be executed for each instance inside a chart. A cut is hot if at least one of
the instances is in a hot location, and it is cold if every instance is in a cold

location. Figure 2.7 presents a cut which is denoted by a hatched line.

For several cuts that exist during the execution of a diagram, there are
events that can happen and events that if happen will cause a violation.
An event that appears in a diagram is said enabled (ee) if it appears im-
mediately after the cut, in other words, all of the events that should have
happened before, already have successfully happened. For example, in
Figure 2.7, the event Switch2.Change(Med) appears immediately after the
cut (hatched line), so it is enabled. If an event does not appear immedi-

ately after the cut it is violating event(ev). If a violating event happens in
the prechart scenario then the diagram is interrupted without causing er-
rors. It just indicates that the scenario was not successfully contemplated.
The same happens with a violating event if it happens in the chart body
while the cut is cold, because a cold location does not force an instance to
progress. However, if this violating event happens in the chart body while
the cut is hot, then the diagram is aborted indicating a violation. In Fig-
ure 2.7, the event Switch1.Change(Med) does not appear immediately after
the cut, so it is a violating event at this point.

Figure 2.7: User sending a message

The Play-Engine tool [24] allows applications with graphical interface
supply external functions, which are identified by a name, name and type
of the parameters and the type of the result. Play-Engine tool can inter-
act with a GUI application and request a function by passing the expected
parameters and receiving the returned value.

26 CHAPTER 2. BASIC CONCEPTS

The intention of this work is not to consider an equivalent model for
the source code of these external functions. The code that will be exe-
cuted must be considered as a “black box”, where it is enough to know that
parameters will be passed and a value will be returned.

Figure 2.8 presents an example of an external function invocation. The

message Display.Show(X174 + X176) makes a function call (Show) which
uses the variables X174 and X176 as parameters.

Figure 2.8: External function call

An assignment is an LSC construction that allows storing properties’
values, constant values or a result of a external function, for a subsequent
use inside the chart. The expression that is on the right side of the operator
“:=” can be any of these mentioned values. On the left side of the operator,
those values are stored in variables. Variables that are on the operator’s
left side are said affected by the assignment, while the ones that are on the
right side are used variables.

An assignment may have several instances that synchronize their activ-
ities with it. None of these instances can continue beyond the assignment,
until all of them have successfully executed their previous tasks. Synchro-
nization points are represented by semi-circles that link the assignment to
the participant instance line (see Figure 2.9).

Additionally, an assignment can be used to construct a time restriction
that is a feature available in the LSC language, which permits to define time
restrictions for real-time system’s events.

Definition 2.3.16. (Assignment) An assignment ai ∈ AL is defined as

ai = (V, IA, C, P, f, λF
f , T imed), where V is the variable, IA ⊆ IL is the set of

instances that are synchronized with the assignment, C ∈ (
⋃

D∈AT D) ∪ {⊥}
is a constant of some type in case the assignment stores a constant and ⊥ if

2.3. LIVE SEQUENCE CHART (LSC) 27

Figure 2.9: LSC scenario with assignments

not, P ∈ (
⋃

I∈IA
I.O.P) ∪ {⊥} is the property stored in case this assignment

stores a property value and ⊥ if not, f ∈ F ∪ {⊥} is a function in case the

assignment stores some function and ⊥ if not, λF
f is a function information

structure in case f 6= ⊥, and Timed ∈ {True, False} is a flag indicating

whether ai is a timed assignment.

A condition represents a decision structure that can be composed of a
conjunction of expressions and can be evaluated as true or false.

A “temperature” can also be applied to conditions. A cold condition is
denoted by a hexagon with a blue dashed lines. If a cold condition eval-

uates to true, then the execution of the diagram progresses to the next
location after the condition, otherwise the diagram or the underlying sub-
chart is abandoned. A hot condition is denoted by a hexagon with red solid
lines. A hot condition should be evaluated to true, otherwise indicates a
requirement violation. Figure 2.10 depicts cold and hot conditions.

Like assignments, a condition can be considered to synchronize several
instances, i.e., a synchronized instance can not progress beyond the con-
dition until all participating instances have reached the condition location.
The instances that are synchronized with the condition have a semi-circle
that links the condition to the participant instance line.

Figure 2.10 depicts two conditions, the hot condition Light1 <> Green,
which is synchronized with the Light1 instance and the cold condition
Light1=Green, which is synchronized with instances Light1 and Console.

A condition is composed of one or more of the following expressions:

• a basic expression that constrains a property or a variable, using some
operator, with a constant value, another variable or with a function;

28 CHAPTER 2. BASIC CONCEPTS

Figure 2.10: Cold and hot conditions

• a basic expression that consists of the reserved words SYNC, TRUE,
FALSE, or the SELECT statement with probability;

• a basic expression that is a timing constraint, which constrains the
current time with respect to a time value stored in some variable and
a delay that can be a constant value, another variable or a function.

Definition 2.3.17. (Condition) A condition ci ∈ CL in an LSC chart L is

defined as ci = (IC , ϕ, T imed), where IC ⊆ IL is the set of instances that

are synchronized with the condition, ϕ is the set of basic expressions and

Timed ∈ {True, False} is a flag indicating whether ci is a timed condition.

A condition uses all variables appearing in its expressions. Therefore, a
condition can be executed whenever assigning values to all used variables.
Besides the variables, the temperature of a condition may alter the moment
in which this condition can be executed. In the case of a cold condition, it is
immediately executed and may produce a true or false value. On the other
hand, a hot condition is evaluated until having a true value. The execution

will be stopped at this point if the specification is incorrect, because the
value will never become true.

The if-then-else construction allows different scenarios to be executed
depending on a condition. This construction consists of two adjacent sub-
charts, one that represents the then part and other that represents the else

one, surrounding by a controlling condition at the top of the first subchart.
The else part is not mandatory.

Figure 2.11 presents an example of an if-then-else construction. In this
construction, the condition Prb-Ctrl.Probing=True defines which scenario
should be executed. If this condition is true, then the scenario of then part

2.3. LIVE SEQUENCE CHART (LSC) 29

Figure 2.11: An if-then-else construction

is executed, so the message Set Probing(False) must occur. Otherwise, the
message Set Probing(True) of else scenario is executed.

Definition 2.3.18. (If-then-else construction) Let SUBL be the set of sub-

charts of a chart L. An if-then-else construction ITE in a chart L is defined

as ITE = (IITE, C, SubT , SubE), where IITE = IC ∪ ISubT
∪ ISubE

is the set of

instances participating in the if-then-else construction. C is the main condi-

tion of the if-then-else construction, SubT ∈ SUBL is the subchart containing

the then part, SubE ∈ SUBL ∪ {⊥} is the subchart containing the else part

(if there is no such part, SubE = ⊥), IC is the set of instances that synchro-

nizes with the condition C, ISubT
is the set of instances that participates in

the scenario of SubT , and ISubE
is the set of instances that participates in the

scenario of SubE.

A peculiar case of an if-then-else construction is the non-deterministic
choice, which uses the reserved word SELECT that defines probabilities for
the condition to be evaluated as true or false values. Figure 2.12 shows a
non-deterministic choice example, which indicates a probability of 50% for

the message Accept to occur and other 50% for the message Reject.
A loop construction allows the execution of a scenario several times.

LSC language offers three types of loops: fixed, dynamic and unbound.
A fixed loop executes a determined number of iterations, depicted at the

left corner of the loop’s subchart, which can be indicated by a constant or
a variable, as shown in Figure 2.13(a).

Alike fixed loops, dynamic loops have a determined number of itera-
tions, which is defined by the user at execution time in the Play-Engine

tool. Figure 2.13(b) shows a dynamic loop. Such loop is denoted by “?” at
the left corner of the loop’s subchart.

30 CHAPTER 2. BASIC CONCEPTS

Figure 2.12: A non-deterministic choice

Unbound loops, on the other hand, execute infinitely often until a cold

condition, presented inside of the loop’s scenario, is evaluated as false,
forcing the loop’s scenario to be abandoned, and the execution continues
in the next location after the loop. These loops are denoted by “*” at the
left corner of the loop’s subchart, as shown in Figure 2.13(c).

It is worth pointing out that dynamic and fixed loops can also be aban-
doned when a condition inside loop’s scenario is evaluated as false.

Definition 2.3.19. (Loop construction) A loop construction Loop in a chart

L is defined as Loop = (Kind, µ, Sub), where Kind ∈ {Fixed, Unbound,
Dynamic} is the loop’s kind, µ ∈ N ∪ {∞} is the loop’s number of itera-

tions, and SubLOOP ∈ SUBL is the subchart containing the loop events to be

iterated. ILoop is the set of instances participating in the loop’s scenario.

LSC language allows to establish time restrictions for real-time systems.
The Play-Engine tool has a clock (an instance with a property called time

and a method called tick), which is associated to the internal clock of the
computer host, so that the time can be manipulated inside of the LSC sce-

narios. The value of the property time informs the current time in time
units and the method tick increases the current time by a time unit.

A time restriction is basically formed by a combination of assignments
and conditions, which can be cold or hot. Several types of time restrictions
can be built inside of a LSC scenario: Vertical Delay, Message Delay and
Timer.

Vertical Delay indicates a minimum and maximum time allowed be-
tween two consecutive events in an instance line. This restriction has an as-

2.3. LIVE SEQUENCE CHART (LSC) 31

(a) (b)

(c)

Figure 2.13: Fixed, dynamic and unbound loops

signment and two hot conditions. The assignment is used to store the time
after the occurrence of the first event. The allowed minimum time is spec-
ified with a hot condition in the form “Time Oper Time-Var + Min-Delay”,

before the second event, where Time is the property of Clock instance, Oper

is a relational operator (> or >=), Time-Var is the variable that stores the
time and Min-Delay is an integer number. In agreement with the seman-
tic of a hot condition (Section 3.6), the execution moves forward when
the established period of time have passed. The allowed maximum time
is specified with a hot condition in the form “Time Oper Team-Var + Max-

Delay”, after the second event, where Time is the property of Clock instance,
Oper is a relational operator (< or <=), Time-Var is the variable that stores
the time and Max-Delay is an integer number. If this condition is reached
after the established maximum time has expired, the condition is evaluated

32 CHAPTER 2. BASIC CONCEPTS

to false, causing a requirement violation.

Figure 2.14 shows a Vertical Delay time restriction, where message
O1.M1() must be sent between two and three time units after receiving
message O2.M2().

Figure 2.14: A Vertical Delay time restriction

Message Delay indicates the minimum and maximum delay between
sending and receiving a message. This restriction is specified like a Ver-

tical Delay, with the exception that the time is stored in an instance line
and verified in another instance line, as displayed in Figure 2.15. The sce-
nario of Figure 2.15 specifies that after message O1.M1() is sent, it must be
received between three and four time units after.

Figure 2.15: A Message Delay time restriction

Through timers, the LSC language allows to express a minimum time
between two consecutive events or a maximum time between two or more
consecutive events. Those timers cannot be shared by different instances,
in other words, just events in the same instance line can be restricted.

2.4. PETRI NETS (PNs) 33

A Timer is formed starting from a Vertical Delay time restriction. When-
ever the intention is expressing the minimum delay between two consec-
utive events, an assignment is used after receiving the first event and a
condition is inserted before calling the second event. But if the intention
is expressing the maximum delay, the condition should be inserted after
calling the second event.

Figure 2.16 shows two examples of timers. The first establishes a max-
imum delay between two consecutive events, in which the event O1.M1()

and the second call of O2.M2() must be executed at most three time units
after the first call of O2.M2(). The second scenario defines a minimum de-
lay between two consecutive events, in which the event O1.M1() must be
executed at least two time units after the event O2.M2().

Figure 2.16: Timers

2.4 Petri Nets (PNs)

PN is a family of formal modeling techniques that allows the modeling of
parallel, concurrent, asynchronous and non-deterministic systems.

PNs have an origin dating back to 1962, when Carl Adam Petri [46]
wrote his PhD thesis on the subject. Since that time, PNs have been ac-
cepted as a powerful formal specification tool. PNs also have applications
in a number of different disciplines including engineering, manufacturing,
business, chemistry, mathematics, and even within the judicial system.

There are many extensions to PNs. Some of them are completely back-
wards compatible (e.g. coloured Petri nets) with the original PN, some
add properties that cannot be modeled in the original PN (e.g. timed Petri
nets). If they can be modeled in the original PN, they are not real exten-
sions, instead are convenient ways of showing the same thing, and can be

34 CHAPTER 2. BASIC CONCEPTS

transformed with mathematical formulas back to the original PN, without
loosing any meaning. Extensions that cannot be transformed are some-
times very powerful, but usually lack the amount of mathematical tools
available to analyse normal PNs.

The term high-level PN is used for many PN formalisms that extend the
basic place/transition one. This includes coloured PNs, hierarchical PNs,

and all other extensions sketched below.

In a standard PN, tokens are indistinguishable. In a coloured PN, the
values of tokens are typed, and can be tested and manipulated with a func-
tional programming language. A subsidiary of coloured PNs are the well-
formed PNs, where the arc and guard expressions are restricted to make it
easier to analyse the net.

Another popular extension of PNs is hierarchy, which supports different
levels of refinement and abstraction.

Prioritized PNs add priorities to transitions, whereby a transition cannot
fire, if a higher-priority transition is enabled (i.e. can fire). Thus, transitions
are in priority groups, and e.g. priority group 3 can only fire if all transitions

are disabled in groups 1 and 2. Within a priority group, firing is still non-
deterministic.

In certain cases, however, the need arises to also model the timing, not
only the structure of a model. For these cases, timed PNs have evolved,
where there are timed and immediate transitions. A subsidiary of timed
petri nets are the stochastic PNs that add non-deterministic time to transi-
tions.

There are other extensions to PNs, however, it is important to keep in
mind, that as the complexity of the net increases in terms of extended prop-
erties, the harder it is to use standard tools to evaluate certain properties
of the net. For this reason, it is a good idea to use the most simple net type
possible for a given modeling task.

Place/Transition net (PT-PN, for short called hereafter PN) is the most
wide spread PN variant [45, 39]. Its structure consists of nodes, connected
by directed segments called arcs. There is two types of nodes, places (P)
represented by circles and transitions (T) represented by bars. Arcs connect
places to transitions or transitions to places. Figure 2.17 depicts the basic
elements of a simple PN.

PN is a multi graph, since it allows multiple arcs from a node to another,

it is bi-parted, since the graph elements are parted in two sets (places and
transitions) and the arcs connect elements of different groups and it is di-
rected, since the arcs have source and target nodes.

Definition 2.4.1. A PN structure can be formally defined as a quadruple

2.4. PETRI NETS (PNs) 35

Figure 2.17: PN basic elements

(P, T, I, O), where:

• P = {p1, p2, ..., pm} is a set of places, where m ∈ N is the number of

places in the net;

• T = {t1, t2, ..., ts} is a set of transitions, where s ∈ N is the number of

transitions in the net;

• I : P × T → N is the function that defines the input arcs to the transi-

tions. If I(pj, ti) = k, then there is k ∈ N arcs from place pj to transition

ti, and in the case of I(pj, ti) = 0, there is no arc from place pj to tran-

sition ti;

• O : T × P → N is the function that defines the output arcs to the

transitions. If O(ti, pq) = k, then there is k ∈ N arcs from transition

ti to place pq, and in the case of O(ti, pq) = 0, there is no arc from

transition ti to place pq;

Usually, in the graphic representation, multiple arcs connecting places

and transitions are represented in a compact way by a single arc labeling it
with its weight or multiplicity k (see Figure 2.18).

Figure 2.18: Compact representation of a PN

36 CHAPTER 2. BASIC CONCEPTS

A PN with tokens associated to its places is called a marked Petri Net
1 PN = (P, T, I, O,M0), where M0 is the initial marking. A peculiar dis-
tribution (M) of the tokens in the places, represents a specific state of the
system. These tokens are denoted by black dots inside the places.

• M = (M(p1),M(p2), ...,M(pm)), where M(pj) ∈ N is the marking of
place pj, that is the number of of tokens in place pj, and m ∈ N is the
number of places in the net.

A transition firing represents the occurrence of an event that modifies
the state of a system, modifying the current marking (Mi) to a new one
(Mi+1). A transition ti ∈ T is said to be enabled to fire if for each input
place pj, I(pj, ti) > 0, the number of tokens is at least equal to the arc
weight (I(pj, ti)), so M(pj) ≥ I(pj, ti) for any place pj ∈ P .

A firing of an enabled transition ti removes, from each input place pj,
a number of tokens equal to the arc weight I(pj, ti) that connects place
pj to transition ti, and adds, to each output place pq, a number of tokens

equal to the arc weight O(ti, pq) that connects the transition ti to place
pq. Figure 2.19 depicts an enabled transition t1 and Figure 2.20 shows the
marking after firing this transition.

Figure 2.19: Enabled transition t1

The introduction of the concept of inhibitor arc, originally not present
in PN, increases the modeling power of PN, adding the ability of testing
if a place does not have tokens [56]. Figure 2.21 illustrates an inhibitor
arc connecting the input place p2 to the transition t1, which is denoted by
an arc finished with a small circle. In the presence of an inhibitor arc, a
transition is enabled to fire if each input place connected by a normal arc
has a number of tokens equal to the arc weight, and if each input place
connected by an inhibitor arc has no tokens. In Figure 2.21, the transition

t1 is enabled to fire.

1The term PN is adopted for representing both Place/Transition net structure and
marked Place/Transition nets whenever is avoided.

2.4. PETRI NETS (PNs) 37

Figure 2.20: Marking after the firing event of transition t1

Figure 2.21: PN with an inhibitor arc

Petri Net modeling has some basic net structures from which more com-
plex constructions are accomplished. These basic models are presented
below:

Sequence represents an execution of an action, since a certain condition is
satisfied. After the execution of an action (transition to firing), other
action (transition t1) can be fired, since a certain condition (m(P1) =
1) is satisfied (see Figure 2.22).

Figure 2.22: Sequence net

Distribution is used to create parallel processes starting from parent pro-
cess. The child processes are created through the distribution of par-
ent’s tokens. A distribution net is presented in Figure 2.23. It is im-
portant to note that if there was a token in p1, this token would be
“propagated” to p2 and p3.

38 CHAPTER 2. BASIC CONCEPTS

Figure 2.23: Distribution net

Junction synchronizes concurrent activities. In Figure 2.24, the transition
t1 only fires when p1 and p2 have tokens, establishing the synchronism.

Figure 2.24: Junction net

Non-deterministic Choice is specified by a set of conflicting transitions,
where choosing which should fire is carried out in non-deterministic
manner (see Figure 2.25). The conflict can be classified as structural
or effective. Both conflicts are associated to the fact of two transitions
possess the same set of places as input. However, if the net does not
have tokens, the conflict is said to be structural. If there is a single
token in the common input place to the transitions, the conflict is said

to be effective. Figure 2.26 illustrates both conflicts.

The study of PN properties allows a detailed analysis of the modeled
system. Two types of PN properties can be distinguished:

Behavioral Properties depend on both the state (or on initial marking)
and on PN’s structure;

Structural Properties depend on PN’s structure.

2.4. PETRI NETS (PNs) 39

Figure 2.25: Non-deterministic Choice net

Figure 2.26: Structural and Effective conflicts

Among behavioral properties, we can highlight:

Reachability refers to the possibility of a system to reach a certain state.

A marking Mi is reachable starting from marking M0, if there is a
transition firing sequence that takes the net with marking M0 to
the marking Mi. A firing or occurrence sequence is denoted by
σ = M0 t1 M1 t2 M2 ... ti Mi or simply σ = t1 t2 ... ti. In this case,
Mi is reachable from M0 by σ, so M0[σ > Mi. The set of all possible
reachable markings from M0 in a net (N,M0) is denoted by R(N,M0)
or simply R(M0). The set of all possible firing sequences from M0 in
a net (N,M0) is denoted by L(N,M0) or simply L(M0);

Boundedness A PN is said to be k-bounded if the number of tokens in each
place does not exceed a finite number k for any reachable marking
from M0, i.e., Mp ≤ k for every place p and every marking M ∈
R(M0). A PN is said to be safe if it is 1-bounded. Figure 2.27 depicts a
bounded PN and Figure 2.28 depicts a safe PN;

40 CHAPTER 2. BASIC CONCEPTS

Figure 2.27: A bounded PN

Figure 2.28: A safe PN

Deadlock Freedom A PN is said to be deadlock free if there is no reachable
marking such that no transition is enabled;

Liveness A PN (N,M0) is said to be live if, no matter what marking has
been reached from M0, it is possible to fire any transition of the net
by progressing through some further firing sequence. This means
that a live PN guarantees deadlock-free operation, no matter what
firing sequence is chosen. Figure 2.29 depicts a live PN. However, a
deadlock free PN might not be live, if a transition does not belong to
a firable transition sequence in any reachable marking;

Reversibility A PN is said to be reversible if, for each marking M ∈ R(M0),
M0 is reachable from M . Thus, in a reversible net, one can always
get back to the initial state. In many applications, it is not necessary
to get back to the initial state as long as one can get back to some
(home) state. A marking M

′

is said to be a home state if, for each
marking M ∈ R(M0), M

′

is reachable from M . Figure 2.30 depicts a

2.4. PETRI NETS (PNs) 41

Figure 2.29: A live PN

reversible PN;

Figure 2.30: A reversible PN

Coverability A marking M in a PN (N,M0) is said to be coverable if there
is a marking M

′

∈ R(M0) such that M
′

(p) ≥ M(p) for each p in the
net;

Persistence A PN (N,M0) is said to be persistent if, for any two enabled
transitions, the firing of one transition will not disable the other. A
transition in a persistent net, once it is enabled, will stay enabled until
it fires. The net presented in Figure 2.29 is persistent;

Fairness Many different notions of fairness have been proposed in the lit-
erature on PN. We present here two basic fairness concepts: bounded-

fairness and unconditional fairness. Two transitions t1 and t2 are said
to be in a bounded-fair(B-fair) relation if the maximum number of

42 CHAPTER 2. BASIC CONCEPTS

times that either one can fire while the other is not firing is bounded.
A PN (N,M0) is said to be a B-fair net if every pair of transitions in
the net are in B-fair relation. A firing sequence σ is said to be un-

conditionally fair if it is finite or every transition in the net appears
infinitely often in σ. A PN (N,M0) is said to be an unconditionally fair

net if every firing sequence σ from M ∈ R(M0) is unconditionally fair.
Figure 2.31 depicts a B-fair PN, while the net presented in Figure 2.29
is unconditionally fair.

Figure 2.31: A B-fair PN

Structural properties, include:

Structural Liveness A PN N is said to be structurally live if there is a live

initial marking for N . Figure 2.32 depicts a structurally live PN;

Figure 2.32: A structurally live PN

Structural Boundedness A PN N is said to be structurally bounded if it
is bounded for any finite initial marking M0. Figure 2.33 depicts a
structurally bounded PN;

Conservativeness A PN N is said to be conservative if there is a positive
integer y for every place p such that the weighted sum of tokens,
MT Y = MT

0 Y = a constant, where Y = [yi] , yi ∈ N, for every M ∈
R(M0) and for any fixed initial marking M0. Figure 2.34 depicts a
conservative PN;

2.4. PETRI NETS (PNs) 43

Figure 2.33: A structurally bounded PN

Figure 2.34: A conservative and consistent PN

Repetitiveness A PN is said to be repetitive if there is a marking M0 and a
firing sequence σ from M0 such that every transition occurs infinitely
often in σ. Figure 2.35 depicts a repetitive PN;

Figure 2.35: A repetitive and consistent PN

Consistency A PN is said to be consistent if there is a marking M0 and
a firing sequence σ from M0 back to M0 such that every transition
occurs at least once in σ. The nets presented in Figure 2.34 and
Figure 2.35 are consistent

PNs can be grouped in two classes: Ordinary and Non-Ordinary (high
level). Ordinary nets use a basic type of tokens, the non-negative integer
type. Making an analogy to programming languages, high level nets [19]
can possess more sophisticated tokens, as data types defined by the user or
composed types that are formed by several elementary types. The ordinary
nets are subdivided in:

44 CHAPTER 2. BASIC CONCEPTS

Condition event and Elementary nets are the most elementary [48, 49].
This kind of net allows, at most, one token in each place and all arcs
have an unitary value;

Place-Transition net allows the accumulation of tokens in the same place,
as well as natural numbers value in its arcs.

The high level nets differ from the ordinary ones, because they indi-
vidualize the tokens. This individualization can be realized through several
artifices, for instance, tokens’s color or objects representing the tokens. High
level nets allows a higher modeling abstraction. Coloured Petri Nets (CPNs)
[28], presented in the next section, is an example of a high level PN.

2.5 Coloured Petri Nets (CPNs)

Coloured Petri Nets (CPNs) [29, 28] use the power of the programming lan-
guages providing compact descriptions of concurrent systems by including

abstract data types within the basic Petri net framework.

Each place in a CPN model has an associated type which is defined in a
set of declarations in a language called CPN ML, a variant of Standard ML
[44].

A marking of a place defines a collection of data values, known as to-

kens, that are associated with that place. The token’s value ranges over the
type of the place. This collection of tokens is a multi-set, since it may con-
tain several tokens of the same value. CPNs also include the initial state of
the system, called the initial marking.

Transitions in a CPN model may also have guards associated with them,
which are included in square brackets. Guards are boolean expressions
which are important for describing CPN dynamics.

Arcs in a CPN model have expressions associated with them. The ex-

pressions are built from constants, variables and functions and are written
next to their associated arcs using CPN ML language. The functions are
defined, and constants and variables declared, in a set of CPN ML declara-
tions.

Inscriptions are associated to CPN net components, i.e. places, arcs,
and transitions. Some inscriptions are CPN ML constructs that affect the
behavior of a net, while other inscriptions do not affect the behavior of
nets. Inscriptions vary in their syntactic requirements depending on the
type of inscriptions. There are three types of inscriptions: place inscriptions,
arc inscriptions and transition inscriptions.

2.5. COLOURED PETRI NETS (CPNs) 45

There are three inscriptions that may be associated with a place. Two
are optional and one is required:

Colour set inscription It determines the colour set, i.e. the type, of all
places;

Initial marking inscription It is a multi-set expression that specifies the
initial tokens for each place. The initial marking inscription is op-
tional;

Place name inscription It is an optional label that identifies the place, and

it may contain any sequence of characters.

Arcs have only one inscription – the arc inscription. An arc inscription
is a CPN ML expression that evaluates to a multi-set or a single element.

There are four inscriptions that may be associated with a transition. All
are optional:

Transition name inscription It is an optional label that identifies the tran-
sition, and it may contain any sequence of characters;

Guard inscription A guard is a CPN ML boolean expression that evaluates
to true or false;

Time inscription A transition delay must be a positive integer expression.
The expression is preceded by @+, and this means that the time in-
scription has the form @+ delay-expr;

Code segment inscription Each transition may have an attached code
segment which contains ML code. Code segments are executed when
their parent transition occurs.

Types, variables and functions are defined in what is called the declara-
tions of a CPN. They are written in the functional programming language
ML [44]. The variant, known as CPN ML, has some special key words.

Color is used to denote a type.
Types can be simple colour sets as boolean, integer, string and enumer-

ated, as well as they can be compound colour sets as record, list and union.
Besides, types can be timed. A colour set is timed by appending the key-
word timed to the end of its declaration.

CPN variables are used in CPN inscriptions. Binding is the association of
a value with a variable. A binding has both scope and content. Scope is the
locations in a model in which a particular binding can be referred. Extent is
the interval during which a particular binding is in effect. A CPN variable
has the following characteristics:

46 CHAPTER 2. BASIC CONCEPTS

• they are declared using the reserved word var and the name of a
previously declared colour set;

• they are bound to a variety of different values (from their colour set)
when evaluates if a transition is enabled;

• a variable is bound to a value, the scope of a variable is local to the
transition;

• there can be multiple bindings simultaneously active on different
transitions. These bindings can exist simultaneously because they
have different scopes;

• the extent of a CPN variable binding is the firing of a particular tran-
sition;

• they provide arc inscriptions with the ability to refer different values.

The CPN ML identifiers are alphanumeric sequences of letters, digits,
primes/apostrophes (’), and underscores () – starting with a letter. They
are used for: colour sets, record colour set field labels, value constructors,
variables, operators and function symbols, prefixes of place, transition, and
page names.

Transitions can be enabled and can then occur (fire). A transition is
enabled if its input places have the required tokens and its guard is evalu-

ated as true. These enabling requirements are determined by binding the
transition’s variables to values taken from their types. The required tokens

are defined by evaluating the input arc expressions for a particular binding
of the variables. The same binding is used for evaluating the guard. The
occurrence of a transition removes tokens from its input places and adds
tokens to its output places. The removed tokens are defined by the eval-
uated expressions on the corresponding incoming arcs for this binding of
variables, while the values of the added tokens are determined by evalu-
ating the arc expressions on the corresponding outgoing arcs for the same
binding. Hence, transitions can occur in different modes, depending on the
bindings of the variables.

CPN models can be created using hierarchical constructs. Hierarchies
are built using the notion of a substitution transition, which may be consid-
ered a macro expansion. The model starts with a top-level CPN diagram,
which provides an overview of the system being modeled and its environ-
ment. In hierarchical CPNs, the top-level diagram contains a number of

2.5. COLOURED PETRI NETS (CPNs) 47

substitution transitions. Each of these substitution transitions is then re-
fined by another CPN diagram, which may also contain substitution tran-
sitions. The top-level diagram and each of the substitution transitions are
defined by a module, called a page. The relationships between the differ-
ent pages are defined by a page hierarchy. The page hierarchy also includes
the name of the page that defines the declarations required for the CPN in-
scriptions, called the Global Declaration node.

Definition 2.5.1. A CPN model is a nine-tuple CNET = (Σ, P , T , A, N ,

C, G, E, I), where Σ is a finite set of non-empty types, called color sets,

P is a finite set of places, T is a finite set of transitions, A is a finite set

of arcs, N : A → P × T ∪ T × P is a node function, C : P → Σ is

a color function, G is a guard function. It is defined from T into expres-

sions such that ∀t ∈ T : [Tp(G(t)) = Bool ∧ Tp(V ar(G(t))) ⊆ Σ], E is an

arc function. It is defined from A into expressions such that ∀a ∈ A :
[Tp(E(a)) = C(p(a))MS ∧ Tp(V ar(E(a))) ⊆ Σ], where p(a) is the place of

N(a) and CMS denotes the set of all multi-sets over C, I is an initializa-

tion function. It is defined from P into expressions such that ∀p ∈ P :
[Tp(I(p)) = C(p)MS ∧ V ar(I(p)) = ⊘], where Tp(expr) denotes the type of

an expression, V ar(expr) denotes the set of variables in an expression, C(p)MS

denotes a multi-set over C(p).

A small example [1] of a CPN is shown in Figure 2.36. It describes a
simple transport protocol transferring a number of packets over a unreli-
able network from a sender to a receiver. The ellipses and circles are called
places. They describe the local states of the system. The rectangles are
called transitions. They describe the actions. The arrows are called arcs.
The arc expressions describe how the state of the CPN changes when the
transitions occur. Each place contains a set of marks called tokens. In con-
trast to low-level PNs (such as Place/Transition Nets), each of these tokens
carries a data value, which belongs to a given type. As an example, place
Send has seven tokens in the initial state. All the token values belong to

the type INTxDATA and they represent seven packets which are ready to be
sent. Each of the places NextSend and NextRec starts with a single token
with value 1 (belonging to type INT). Place Received starts with a token
which contains the empty string “” (belonging to type DATA). To be able to
occur, a transition must have sufficient tokens on its input places, and these
tokens must have token values that match the arc expressions. As an exam-
ple, let us consider transition SendPacket. It has three surrounding arcs of
which two are double arcs. The three arc expressions involve the variable
n of type INT and the variable p of type DATA. In order to fire transition
SendPacket, we must bind these two variables to values in their types, in

48 CHAPTER 2. BASIC CONCEPTS

such a way that the arc expression of each incoming arc evaluates to a to-

ken value that is present on the corresponding input place. Since NextSend

only contains one token with value 1, it is obvious that n must be bound to
1. Next we see that p must be bound to “Modellin”, since Send only has one
token in which the first element of the pair is 1. With the binding <n=1,

p=“Modellin”> transition SendPacket is enabled, because there is a 1 token

on place NextSend and a (1,“Modellin”) token on place Send. When the
transition occurs, it removes the two specified tokens from the input places,
but it immediately puts two other with the same values back, due to the
two double arcs. Simultaneously, it produces a copy of the (1,“Modellin”)

token on place A. When the (1,“Modellin”) token is put on place A, transi-
tion TransmitPacket becomes enabled with two different bindings: <n=1,

p=“Modellin”, ok=true> and <n=1, p=“Modellin”, ok=false>. If the first
binding is chosen, the packet is transferred from place A to place B. If the
second binding is chosen, the packet is lost on the network.

Figure 2.36: A Simple CPN

CPNs are used to three different purposes.

First of all, a CPN model is a description of the modeled system, and it
can be used as a specification (of a system to be built) or as a presentation

2.5. COLOURED PETRI NETS (CPNs) 49

of a system to be explained to other people, or ourselves. By creating a
model, we can investigate a new system before we construct it. This is an
obvious advantage, in particular for systems where design errors may harm
security or be expensive to correct.

Secondly, the behavior of a CPN model can be evaluated, either by simu-
lation (which is equivalent to program execution and program debugging)
or by means of more formal analysis methods (which are equivalent to

program verification).

Finally, it should be understood that the process of creating the descrip-
tion and performing the analysis usually gives the modeler a dramatically
improved understanding of the modeled system – and it is often the case
that this is more valid than the description and the analysis results them-
selves.

CPN models can be evaluated in many different ways, similar to basic

Petri Nets, in which the same properties can be analysed and verified, but
using different techniques.

The first method is the interactive simulation. It is very similar to de-
bugging and prototyping. This means that we can execute a CPN model, to
make a detailed investigation of the behavior of the modeled system.

The second method is the automatic simulation which is similar to pro-
gram execution. It allows a fast execution of thousands or millions of transi-

tions. The purpose is to investigate the functional correctness of the system
or to investigate the performance of the system, e.g. to identify bottlenecks,
to predict the use of buffer space or the mean/maximal service time.

The third approach is based on the analysis of occurrence graphs (also
called state spaces or reachability graphs). The basic idea behind occur-
rence graphs is the construction of a directed graph which has a node for
each reachable system state and an arc for each possible state change. Obvi-
ously, such a graph may become very large, even for small CPNs. However,

it can be constructed and analysed totally automatically, and there exist
techniques which makes it possible to work with condensed occurrence
graphs without losing analytic power.

The fourth method is based on place invariants. This method is very
similar to the use of invariants in ordinary program verification. The user
constructs a set of equations which is verified to be satisfied for all reach-
able system states. The equations are used to verify properties of the mod-
eled system, e.g., absence of deadlock.

50 CHAPTER 2. BASIC CONCEPTS

2.6 Concluding Remarks

This chapter presented some details on object-oriented analysis and design,
and described a formal approach to properties verification.

MSCs and UML sequence diagram are a popular mechanisms for speci-

fying scenarios that describe possible interactions between processes or ob-
jects. However these specification languages possess some disadvantages:
they can not specify what must occur for all system run and they can not
specify anti-scenarios.

LSC is a system specification language based on scenarios that allows to
specify anti-scenarios as well as it permits specify what should happen for
all system runs. However, analysis and verification is not possible.

As the mentioned specification languages do not handle properties anal-
ysis and verification, a formal approach should be used in order to provide
such tasks, hence permitting to verify some properties at the beginning of
the project contributing to reduce some risks that may lead to project fail-

ure.
PN is a family of formal modeling techniques that allows the modeling

of parallel, concurrent, asynchronous and non-deterministic systems. They
are presented as a possible approach to formal verification.

CPN is a class of PNs that use the power of the programming languages
providing compact descriptions of concurrent systems by including abstract
data types within the basic Petri net framework.

Chapter 3

Mapping LSC to CPN

This chapter describes how to obtain the corresponding CPN

models for the LSC constructions presented in the previous Chap-

ter. Once the individual models were obtained, a joining process

composes those individual models and provides a final model that

represents the LSC scenarios. Finally, the semantics of LSC and

CPN models are compared.

3.1 Object Properties, Types and Variables

In the LSC language, the system is modeled using object oriented notions

and terminologies, in which, a system is composed of objects that represent
instances of a given class, which are formed by properties based on some
application data type that can be Enumerated, Discrete, String.

In order to obtain a CPN type that represents the data type used in an

LSC specification, the following steps should be followed:

1. for mapping an enumerated type, it is necessary to create a CPN
type declared like color enum-name = with id1|...|idn, where color

and with are CPN ML reserved words, enum-name is the type name
and id1|id2|...|idn are items of the enumerated set. For example, color

week = with Sun|Mon|Tue|Wed|Thu|Fri|Sat;

2. for mapping a discrete type, a CPN type like color type-name = int

with min..max or color type-name = real with min..max should be
created, where type-name is the type’s name, int and real are CPN ML
primitive types. For example, color byte = int with 0..127;

3. The String type is represented by color type-name = string, where

51

52 CHAPTER 3. MAPPING LSC TO CPN

type-name is the type’s name, string is a CPN ML primitive type. For
example, color name = string.

Definition 3.1.1. (Function for mapping application types) Let AT be the set

of LSC application types (domains), D ∈ AT be a finite set of values, and Σ
be a finite set of non-empty CPN types. A function MDT : D 7→ Σ that maps

an LSC type to a CPN type must be defined as:

• MDT (d) = “color D = with id1|...|idi”, idi ∈ D, if D is an enumerated

type;

• MDT (d) = “color D = int with min..max”, if D = 〈dmin, di, dmax|dmin,
di, dmax ∈ N〉 is an ordered set of values, |D| = n ∈ N, and D is a

discrete type;

• MDT (d) = “color D = real with min..max”, if D = 〈dmin, di, dmax|dmin,
di, dmax ∈ Q〉 is an ordered set of values, |D| = n ∈ N, and D is a

discrete type;

• MDT (d) = “color D = string”, if D is a string type.

A LSC object has several properties which are of a certain type. In order
to represent an LSC object in a CPN manner, it must be declared a CPN
type which encapsulates object’s properties, as “color TypeName=record

id1:Type1*...*idn:Typen”, where color and record are CPN ML reserved
words, TypeName is the object name, id1...idn are the properties names,
“*” is a symbol used to separate property’s definition and Type1...Typen are

the properties types which must be created following the rules for mapping
a LSC application data type.

Definition 3.1.2. (Function for representing an object) Let O be the set of con-

crete objects, oi ∈ O be a concrete object of some class. A function MDTI : O 7→
Σ that maps each LSC object into a CPN type which represents their structures

must be defined as: MDTI(oi) = color oi.Name = record oi.C.p1.Name :
MDT (oi.C.p1.D) ∗ ... ∗ oi.C.pj.Name : MDT (oi.C.pj.D), where oi.C is the ob-

ject’s class, oi.Name is the object’s name, oi.C.pj is a property of the object oi,

oi.C.pj.Name is the name of property pi of the object oi and oi.C.pj.D is the

domain of property pi.

In order to enable the modeling of more general scenarios, the LSC
language allows the use of variables instead of using constant values. The
variable’s type is one of the application data types and its value is picked
up from the type’s domain.

3.2. CHARTS 53

Definition 3.1.3. (Variable) Let AT be the set of LSC application types, VL =
{vi} be the set of variables of a chart L, Type : VL 7→ AT be a function that

returns the variable’s type. A variable vi ∈ VL is represented by its value, so vi

is a value within the domain Type(vi).

Definition 3.1.4. (Function for mapping an LSC variable) Let V S = {vsi} be

a set of CPN variables and vi ∈ VL be an LSC variable. A function MV : VL →
V S maps each LSC variable to CPN variable, where vsi should be declared as:

var Nm(L) ⊕ “ ” ⊕ vi : MDT (vi), where Nm is a function that returns the

chart’s name and ⊕ represents a concatenation operation.

After mapping LSC application data types, it is necessary to create CPN
variables, based on CPN created types in order to represent the instances
that are used in LSC charts:

• if the instance is the User or the Environment, that are mere actors
and do not have properties, the variable should be of int type, and the
names should be composed of the chart’s name, followed by “ User”
or “ Env” depending on the instance;

• for other instances, the variable should be of type that represents the
structure of the object. The name of the variable is formed by the
chart’s name, followed by “ ”, accompanied by the instance’s name.

Definition 3.1.5. (Function for mapping LSC instances) Let L be an LSC

chart, IL = {ii} be the set of instances of L, ii.O be the concrete object of

instance ii, ii.O.Name be the name of concrete object ii.O, V S be the set of

CPN variables and vsi ∈ V S be a CPN variable. A function MO : IL 7→ V S
maps each LSC instance to a CPN variable, where vsi should be declared as:

var vsi : MDTI(ii.O), where var is a CPN ML reserved word. The label of vsi

must be created in the following way:

• Nm(L) ⊕ “ User”, if ii = User;

• Nm(L) ⊕ “ Env”, if ii = Env;

• Nm(L) ⊕ ii.O.Name, if ii 6= User ∧ ii 6= Env.

3.2 Charts

The beginning and ending of prechart and chart body of a scenario are
considered synchronization points for the participant instances. Every par-
ticipant instance of the prechart enter in this scenario simultaneously, while

54 CHAPTER 3. MAPPING LSC TO CPN

the chart body can only be reached after all these instances have executed
their activities successfully. The CPN models which represent the synchro-
nization points at the beginning and ending of prechart and chart body are
described in the following way:

1. observe each instance separately and for each synchronization point
this instance participates, create a transition, whose label is defined
by the following rules:

• “chart-name Pch Start” to the beginning of prechart;

• “chart-name Pch End” to the ending of prechart;

• “chart-name CB Start” to the beginning of chart body;

• “chart-name CB End” to the ending of chart body,

where chart-name is the name of the diagram.

2. create one input and one output place for each transition created in
the previous step. These places should be of the type that was created
to represent the instance;

3. the CPN variable that represents the instance should be assigned to
the inscriptions of the input and output arcs of the transition created
in Step 1.

When mapping the events inside of a chart, the mapping process takes
each event from up to bottom and generates their corresponding CPN mod-
els. These CPN models are joined in order to obtain a final CPN model,
which represents the whole specification. So, N can be defined as the set
composed of all individuals CPN models. Ni ∈ N is defined as a tuple (Σ,
P, T, A, C, G, E, I), where Σ is a finite set of non-empty types, which is
formed by applying the steps presented earlier, P is the set of places, T is
the set of transitions, A is a set of arcs, C is a color function that assigns

a color to a place, G is a guard function, E is an arc function that assigns
inscriptions to arcs and I is an initialization function, which picks up a
random value for each type used in the CPN model. When describing the
mapping process, if an element of this tuple is not presented in the formed
net structure, it is because there is no need to specify this element at that
point.

Let ti ∈ T be a transition, we denote •ti as the set of inputs to transition
ti and t•i as the set of outputs to transition ti.

When mapping the synchronization points at the beginning and ending
of a prechart and chart body, the mapping process must be applied to each

3.2. CHARTS 55

instance participating in each corresponding scenario (prechart or chart
body).

Definition 3.2.1. (Function for mapping synchronization points at charts)

Let ii ∈ IL be an instance of chart L, li ∈ lL be a location of chart L and LAB
be a function that assigns a label to a transition. A function SP : lL 7→ N , that

maps each location that represents a synchronization point at the beginning

or ending of a prechart or a chart body to a CPN structure, must be applied,

where li ∈ loc([Pch, Start])∨li ∈ loc([Pch,End])∨li ∈ loc([CB, Start])∨li ∈
loc([CB,End]). Ni ∈ N is defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(ii.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(ii);

• LAB(tii) =















Nm(L) ⊕ “ Pch Start”, iff li ∈ loc([Pch, Start]);
Nm(L) ⊕ “ Pch End”, iff li ∈ loc([Pch,End]);
Nm(L) ⊕ “ CB Start”, iff li ∈ loc([CB, Start]);
Nm(L) ⊕ “ CB End”, iff li ∈ loc([CB,End]).

Figure 3.1 shows how the CPN model for MainSwitch instance, pre-
sented in Figure 2.3, was obtained by applying the rules for mapping the
synchronization points. Figure 2.3 shows that MainSwitch instance partic-
ipates in prechart and chart body sections, therefore four transitions must
be created, according to the presented steps.

Inside a LSC chart, it is possible to delimit scenarios using subcharts.
Alike prechart and chart body, the beginning and ending of a subchart

are synchronization points. In order to mapping the synchronization points

of a subchart, the following steps must be followed:

1. observe each instance and create a transition for each synchroniza-
tion point this instance participates, whose label is defined by the
following rules:

• “chart-name Sub ID Start” to the beginning of subchart;

• “chart-name Sub ID End” to the ending of subchart,

where chart-name is the chart’s name and ID is an unique se-
quential number greater than zero.

56 CHAPTER 3. MAPPING LSC TO CPN

Figure 3.1: Representation of synchronization points for the MainSwitch

instance

2. create one input and one output places for each transition created in
the previous step. These places should be of the type that was created
to represent the instance;

3. the CPN variable that represents the instance should be assigned to
the inscriptions of the input and output arcs of the transition created
in Step 1.

Definition 3.2.2. (Function for mapping synchronization points at sub-

charts) Let Sub ∈ SUBL be a subchart in chart L, and N+ be the set of

natural numbers excluding zero. A function SPS : lL 7→ N , that maps each

location that represents a synchronization point at the beginning or end of a

subchart to a CPN structure, must be applied, where li ∈ loc([Sub, Start]) ∨
li ∈ loc([Sub,End]). Ni ∈ N is defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(ii.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(ii);

• LAB(tii) =

{

Nm(L) ⊕ “ Sub ID Start”, iff li ∈ loc([Sub, Start]);
Nm(L) ⊕ “ Sub ID End”, iff li ∈ loc([Sub,End])

,

where ID ∈ N+.

Figure 3.2 shows how the synchronization points of the subchart pre-
sented in Figure 2.5 are mapped.

3.3. MESSAGES 57

Figure 3.2: Representation of synchronization points for the Thermo1 in-
stance

3.3 Messages

A message may represent a minimum event, i.e. event responsible for en-
abling a chart. The following steps should be taken to obtain a CPN model
of a message that is a minimum event and modifies a property value of
some instance.

For the sender instance, it should:

1. create a transition, whose label is formed by the name of the receiver
instance followed by “ ” accompanied by the property’s name that is
being modified, followed by “ ”, accompanied by the value that is
being assigned to the property;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created

to represent the sender instance;

3. assign the CPN variable that identifies the instance to the inscriptions
of the input and output arcs of the transition.

Definition 3.3.1. (Function for mapping a minimum event for sender in-

stance) Let li ∈ lL be a location of chart L, mi ∈ ML be an LSC message,

mi.iSrc is the instance sending the message, mi.iDst is the instance receiv-

ing the message, mi.iDst.O is the concrete object that represents the instance

mi.iDst, mi.iSrc.O is the concrete object that represents the instance mi.iSrc,

mi.iDst.O.Name is the name of the concrete object of receiving instance,

mi.mS.P.Name is the name of the property been altered, and mi.mS.V is

the value assigned to the property mi.mS.P . A function MES : lL 7→ N maps

an instance’s localization for sending event of a minimum event to a CPN

structure, must be applied, where li ∈ loc([Mi, Send]). Ni ∈ N is defined as

follows:

58 CHAPTER 3. MAPPING LSC TO CPN

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iSrc.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iSrc);

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.P.Name ⊕ “ ” ⊕ mi.mS.V .

For the receiver instance, it should:

1. create a transition, whose label is formed by the name of the receiver
instance, followed by “ ”, accompanied by the property’s name that
is being modified, followed by “ ”, accompanied by the value that is
being assigned to the property;

2. create an input and an output places for the transition created in the
previous step. The type of these places should be the type created to
represent the receiver instance;

3. assign the CPN variable that identifies the instance to the inscription
of the input arc of the transition;

4. assign the expression “cs.set idi c v” to the inscription of the output

arc of the transition, where cs is the type that represents the instance,
idi is the property’s name that is being modified, c is the variable that
represents the instance and v is the value that is being assigned to the
property.

Definition 3.3.2. (Function for mapping a minimum event for receiver in-

stance) A function MER : lL 7→ N , that maps an instance’s localization for

receiving event of a minimum event to a CPN structure, must be applied, where

li ∈ loc([mi, Rcv]). Ni ∈ N is defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iDst.O);

• E((pii, tii)) = MO(mi.iDst);

3.3. MESSAGES 59

• E((tii, pii+1)) = MDTI(mi.iDst.O) ⊕ “set ” ⊕ mi.mS.P.Name ⊕
MO(mi.iDst) ⊕ “ ” ⊕ mi.mS.V ;

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.P.Name ⊕ “ ” ⊕ mi.mS.V .

In Figure 2.3, the message Click(On) is a minimum event, so by ap-
plying the above steps for the sender and receiver instances, we obtain

the corresponding CPN models shown in Figure 3.3(a) and Figure 3.3(b),
respectively. The transition MainSwitch Power On is created by applying
the first step for sender instance and the corresponding input and out-
put places are created following the second step for the same instance.
The variable POn User that represents the User must be assigned to the
arc inscriptions of those places. The main difference noted in receiver in-
stance model is the arc inscription that was applied. The inscription Main-

Switch.set Power POn MainSwitch On assigns On to Power property for the
variable POn MainSwitch that represents the instance MainSwitch. This is
achieved by applying the fourth step of the receiver instance.

Figure 3.3: Representation of a minimum event

Among possible senders of a message, some possess a predictable be-
havior and others are unpredictable. The User and the Environment are
actors that generate an unpredictable sequence of actions. These can exe-
cute enabled actions, actions that violate the scenario, as well as operations
that were not specified in the current scenario. According to this, the steps

presented below are needed to map this kind of message.

For the sender instance, which is the User or the Environment, it should:

1. create a transition to represent the enabled event, whose label should
be formed by the name of the receiver instance, followed by the con-
stant “ ”, accompanied by the name of the property that is being mod-
ified, followed by the constant “ ”, accompanied by the value that is
being attributed to the property;

60 CHAPTER 3. MAPPING LSC TO CPN

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the sender instance;

3. assign the CPN variable that identifies the instance to the arc inscrip-
tions of the transition created in Step 1;

4. create a transition for each violating event, whose label should be
formed by the name of the receiver instance, followed by the constant
“ ”, accompanied by the name of the property that is being modified,
followed by the constant “ NE” (not enabled). The input place of this
transition is the same input place created in the second step;

5. create an output place for each transition created in the previous step,
whose label should be composed by the name of the diagram, accom-

panied by the constant “ Stop” if the message is cold (the chart is
stopped without a violation) or by the constant “ Abort” if the mes-
sage is hot (the chart is aborted indicating a violation on the require-
ments);

6. assign the CPN variable that identifies the instance to the arc inscrip-
tions of each transition created in Step 4.

Definition 3.3.3. (Function for mapping an event for sender instance) Let

LABP be a function that assigns a label to a place, NS1
i ∈ N be the CPN

model for enabled event, and NS2
i ∈ N be the CPN model for violating event

if exists. A function MUES : lL 7→ N , that maps instance’s localizations to

a CPN structure of enabled and violating events for sending instance with the

User or the Environment as sender, must be applied, where mi.Src = User
∧ mi.Src = Env, and evnt(loc([mi, Send]) is an enabled event ee or is a

violating event ev.

NS1
i is defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iSrc.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iSrc);

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.P.Name ⊕ “ ” ⊕ mi.mS.V .

3.3. MESSAGES 61

And NS2
i is defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iSrc.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iSrc);

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.P.Name ⊕ “ NE”;

• LABP (pii+1) =

{

Nm(L) ⊕ “ Stop”, if mi is cold;

Nm(L) ⊕ “ Abort”, if mi is hot.

For receiver instances, it should:

1. create a transition to represent the enabled event, whose label is
formed by the name of the receiver instance, followed by “ ”, accom-
panied by the property’s name that is being modified, followed by “ ”,
accompanied by the value that is being assigned to the property;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created

to represent the receiver instance;

3. assign the CPN variable that identifies the instance to the inscription
of the input arc of the transition created in Step 1;

4. assign the expression cs.set idi c v to the inscription of the output arc
of the transition, where cs is the type that represents the instance, idi

is the property’s name that is being modified, c is the variable that
represents the instance and v is the value that is being assigned to the
property;

5. create a transition for each violating event, whose label should be
formed by the name of the receiver instance, followed by the constant
“ ”, accompanied by the name of the property that is being modified,
followed by the constant “ NE” (not enabled). The input place of this
transition is the same input place created in Step 2;

62 CHAPTER 3. MAPPING LSC TO CPN

6. create an output place for each transition created in the previous step,
whose label should be composed by the name of the diagram, accom-
panied by the constant “ Stop” if the message is cold (the chart is
stopped without a violation) or by the constant “ Abort” if the mes-
sage is hot (the chart is aborted indicating a violation on the require-
ments);

7. assign to the arc inscriptions of each transition created in Step 5, the
CPN variable that identifies the instance.

Definition 3.3.4. (Function for mapping an event for receiver instance) Let

NR1
i ∈ N be the CPN model for enabled event, NR2

i ∈ N be the CPN model

for violating event if exists. A function MUER : lL 7→ N , that maps instance’s

localizations to a CPN structure of enabled and violating events for receiving

instance with the User or the Environment as sender, must be applied, where

mi.Src = User ∧ mi.Src = Env, and evnt(loc([mi, Rcv]) is an enabled event

ee or is a violating event ev.

NR1
i is defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iDst.O);

• E((pii, tii)) = MO(mi.iDst);

• E((ti, pii+1)) = MDTI(mi.iDst.O) ⊕ “set ” ⊕ mi.mS.P.Name ⊕ “ ” ⊕
MO(mi.iDst) ⊕ “ ” ⊕ mi.mS.V ;

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.P.Name ⊕ “ ” ⊕ mi.mS.V .

And NR2
i is defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iDst.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iDst);

3.3. MESSAGES 63

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.P.Name ⊕ “ NE”;

• LABP (pii+1) =

{

Nm(L) ⊕ “ Stop”, if mi is cold;

Nm(L) ⊕ “ Abort”, if mi is hot.

Figure 2.7 presents an LSC scenario, in which, according to the cur-
rent cut (hatched line), the event Switch2.Change(Med) is enabled and
the event Switch1.Change(Med) causes a violation if it occurs before
Switch2.Change(Med). Figure 3.4 shows, respectively, the CPN model of
User, Switch2, Switch1 for the message Switch2.Change(Med). With this
current cut, the message Switch2.Change(Med) is enabled (appears imme-

diately after this cut) and the message Switch1.Change(Med) is a violating
event (does not appear immediately after this cut), according to the defini-
tions presented early. In Figure 3.4, firing the transition Switch1 State NE

indicates that the violating event occurs. The enabled event, in this
case the message Switch2.Change(Med), is represented by the transition
Switch2 State Med.

Figure 3.4: CPN model for the message Switch2.Change(Med)

Besides User and Environment, a message has system objects that could
be a message sender. Those objects have a certain behavior that can be pre-
dictable, so the process to obtain the corresponding CPN model is simpler
than User and Environment models. The steps that should be taken are the
same as those applied when modeling the receiver instance of a message
that represents a minimum event.

64 CHAPTER 3. MAPPING LSC TO CPN

A LSC message represents a synchronous or an asynchronous commu-
nication. Both possess sending and receiving locations, however there is a
difference in the execution order of these locations between these two types
of messages. In the synchronous message, sending and receiving locations
have the same execution order, i.e., the sending action and reception of the
message happen at the same time. On the other hand, in the case of the
asynchronous messages, the sending location has a precedence over the re-
ceiving location, indicating that the message is received after it is sent. In
order to find a CPN model that represents an asynchronous message, the
steps described next must be followed.

For the sender instance, it should:

1. create a transition, whose label is formed by the constant “SND ”,
accompanied by the name of the receiver instance, followed by the
constant “ ”, accompanied by the name of the property that is being
modified, followed by the constant “ ”, accompanied by the value that
should be assigned to the property;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the sender instance;

3. assign to the arc inscriptions of the transition created in Step 1, the
variable that identifies the instance.

Definition 3.3.5. (Function for mapping an asynchronous message for sender

instance) Let lL be the set of locations of a chart L, li ∈ lL be a location of

chart L, MA
L be the set of asynchronous message of a chart L and mi ∈ MA

L

be an asynchronous message. A function MASS : lL 7→ N that maps an

instance’s localization for sending event of an asynchronous message to a CPN

structure must be applied, where li ∈ loc([mi, Send]). Ni ∈ N is defined as

follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iSrc.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iSrc);

• LAB(tii) = “SND ” ⊕ mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.P.Name ⊕ “ ”

⊕ mi.mS.V .

3.3. MESSAGES 65

For the receiver instance, it should:

1. create a transition, whose label is formed by the constant “RCV ”,
accompanied by the name of the receiver instance, followed by “ ”,
accompanied by the property’s name that is being modified, followed
by the constant “ ”, accompanied by the value that is being assigned
to the property;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the receiver instance;

3. assign the CPN variable that identifies the instance to the inscription
of the input arc of the transition;

4. assign the expression cs.set idi c v to the inscription of the output arc
of the transition, where cs is the type that represents the instance, idi

is the property’s name that is being modified, c is the variable that
represents the instance and v is the value that is being assigned to the
property.

Definition 3.3.6. (Function for mapping an asynchronous message for re-

ceiver instance) Let lL be the set of locations of a chart L, li ∈ lL be a location

of chart L, MA
L be the set of asynchronous message of a chart L and mi ∈ MA

L

be an asynchronous message. A function MASR : lL 7→ N that maps an in-

stance’s localization for receiving event of an asynchronous message to a CPN

structure must be applied, where li ∈ loc([mi, Recv]). Ni ∈ N is defined as

follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iDst.O);

• E((pii, tii)) = MO(mi.iDst);

• E((tii, pii+1)) = MDTI(mi.iDst.O) ⊕ “set ” ⊕ mi.mS.P.Name ⊕ “ ” ⊕
MO(mi.iDst) ⊕ “ ” ⊕ mi.mS.V ;

• LAB(tii) = “RCV ” ⊕ mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.P.Name ⊕ “ ”

⊕ mi.mS.V .

66 CHAPTER 3. MAPPING LSC TO CPN

The CPN models for sender and receiver of an asynchronous message
must be linked by a place, that acts like a buffer, whose label is formed by
the constant “BUF ”, accompanied by the name of the receiving instance,
followed by the constant “ ”, accompanied by the name of the property
that is being modified, followed by the constant “ ”, accompanied by the
value that should be assigned to the property. This place must be of int

type, where the input arc, that comes from the transition responsible for
the sending event, has the constant value “1” in its inscription, to denote
that a resource is being passed. The output arc of this place has the same
inscription of the input arc.

Figure 3.5: CPN model of an asynchronous message

Figure 3.5 shows the CPN model of the asynchronous message pre-
sented in Figure 2.6. One should observe that the Environment instance
sends the message SND Thermo1 Temp 30 and continues its execution, and
the Thermo1 instance waits for a resource in the buffer and continues its ex-
ecution after receiving the message RCV Thermo1 Temp 30.

Usually, it is natural to specify more general scenarios. LSC language
has symbolic messages to allow the modeling of such scenarios. When
the scenario is in symbolic mode, the values shown in messages labels are
replaced by variables. The first occurrence of a variable affects its value
while the subsequent occurrences use the value that was assigned. There
are two situations to concern on, when modeling this type of message. The
steps to model a symbolic message are presented next.

For the sender instance, it should:

1. create a transition, whose label is formed by the name of the receiver
instance, followed by “ ”, accompanied by the property’s name that is
being modified, followed by “ ”, accompanied by the LSC variable;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the sender instance;

3.3. MESSAGES 67

3. assign the CPN variable that identifies the instance to the inscriptions
of the input and the output arcs of the transition.

Definition 3.3.7. (Function for mapping a symbolic message for sender in-

stance) A function MSS : lL 7→ N that maps an instance’s localization for

the sending event of a symbolic message to a CPN structure must be applied,

where li ∈ loc([mi, Send]) ∧ mi.mS.Symbolic = True. Ni ∈ N is defined as

follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iSrc.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iSrc);

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.P.Name ⊕ “ ” ⊕ mi.mS.V .

For the receiver instance, it should:

1. create a CPN variable to represent the LSC variable, whose label is
formed by the name of the receiver instance, followed by “ ”, accom-
panied by the LSC variable label;

2. create a transition, whose label is formed by the name of the receiver
instance followed by “ ”, accompanied by the property’s name that is
being modified, followed by “ ”, accompanied by the LSC variable;

3. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the receiver instance;

4. assign the CPN variable that identifies the instance to the inscription

of the input arc for the transition created on Step 2;

5. assign the expression cs.set idi c v to the inscription of the output arc
of the transition, where cs is the type that represents the instance, idi

is the property’s name that is being modified, c is the variable that
represents the instance and v is the variable name;

6. for the first occurrence of a variable:

68 CHAPTER 3. MAPPING LSC TO CPN

• create one output place for the transition created in Step 2. The
type of this place should be the type created to represent the LSC
variable, whose label is the variable name created in Step 1;

• assign the variable created in the first step to the inscription of
the output arc of the place created in previous step.

7. for subsequent occurrences of a variable:

• create a place that is an output and an input for the transition
created in Step 2. The type of this place should be the type
created to represent the LSC variable, whose label is the variable

name created in Step 1;

• assign the variable created in Step 1 to the inscription of the
output arc and input arc of the place created in previous step.

Definition 3.3.8. (Function for mapping a symbolic message for receiver

instance) Let vi ∈ VL be an LSC variable. A function MSR : lL 7→ N
that maps an instance’s localization for the receiving event of a symbolic

message to a CPN structure must be applied, where li ∈ loc([mi, Rcv]) ∧
mi.mS.Symbolic = True. Ni ∈ N is defined as follows:

• T = {tii};

• P = {pii, pii+1, pii+2};

• A = {(pii, tii), (tii, pii+1), (tii, pii+2)}, if it is the first occurrence of the

variable, otherwise A = {(pii, tii), (tii, pii+1), (tii, pii+2), (pii+2, tii)};

• C(pii) = C(pii+1) = MDTI(mi.iDst.O);

• C(pii+2) = MDT (mi.mS.V);

• E((pii, tii)) = MO(mi.iDst);

• E((tii, pii+1)) = MDTI(mi.iDst.O) ⊕ “set ” ⊕ mi.mS.P.Name ⊕ “ ” ⊕
MO(mi.iDst) ⊕ “ ” ⊕ MO(mi.iDst);

• E((tii, pii+2)) = MV (vi);

• E((pii+2, tii)) = MV (vi), if it is not the first occurrence of the variable;

• LAB(tii) = mi.iDst.O.Name⊕ “ ”⊕mi.mS.P.Name ⊕ “ ” ⊕ mi.mS.V ;

• LABP (pii+2) = Nm(L) ⊕ “ ” ⊕ mi.mS.V .

3.3. MESSAGES 69

Take a look at the example of symbolic messages presented in Fig-
ure 3.6. The goal of this scenario is to assign the same state that was
applied to the instance MainSwitch for the instance MainLight, i.e., when
the user activates MainSwitch, then MainLight is also activated. When the
user disables MainSwitch, then MainLight is also disabled. In this scenario,
it is possible to represent two situations in just one LSC diagram. Figure 3.7
depicts the CPN model obtained for the first occurrence of the variable Xs

in the message Click(Xs) by applying the aforementioned steps.

Figure 3.6: LSC chart with symbolic messages

Figure 3.7: CPN model for the first occurrence of the variable Xs for sender
and receiver instances

The messages seen up to now modify the property value of an object,
but other message type allows to transfer data or control signs between
objects. Such message is related with method calls. Figure 3.6 presents
a scenario with two method calls. MainSwitch invokes the method Set-

State(Xs) of Sw-Crtl, that passes the information ahead calling the method
SetState(Xs) of MainLight.

In order to obtain the CPN model for method calls, the steps described
next must be followed.

For the sender instance, it should:

1. create a transition, whose label is formed by the name of the receiver
instance, followed by “ ”, accompanied by the method’s name;

70 CHAPTER 3. MAPPING LSC TO CPN

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the sender instance;

3. assign the CPN variable that identifies the instance to the inscriptions
of the input and the output arcs of the transition.

Definition 3.3.9. (Function for mapping a method call for sender instance)

Let li ∈ lL be a location of chart L, mi ∈ ML be an LSC message of a chart

L, mi.mS.m be a method and mi.mS.m.Name be the method’s name. The

function MFMCS : lL 7→ N maps an instance’s localization for sending event

of a method call to a CPN structure, where li ∈ loc([mi, Send]) ∧ mi.mS.m 6=
⊥. Ni ∈ N is defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iSrc.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iSrc);

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.m.Name.

For the receiver instance, it should:

1. create a transition, whose label is formed by the name of the receiver
instance, followed by “ ”, accompanied by the method’s name;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the sender instance;

3. assign the CPN variable that identifies the instance to the inscriptions
of the input and the output arcs of the transition;

4. create one input place to the transition created in Step 1 for repre-
senting each parameter used in the method call. The type of these
places should be the type of the parameter;

5. in the case of an exact message (message that uses a constant value
instead of a variable), assign the constant value to the inscriptions of
the input and the output arcs of the places created in the previous
step. Otherwise applies the steps applied to a symbolic message.

3.3. MESSAGES 71

Definition 3.3.10. (Function for mapping a method call for receiver instance)

Let li ∈ lL be a location of chart L, mi ∈ ML be an LSC message of a chart L
and vi ∈ VM be the parameter of method mi.mS.m. The function MFMCR :
lL 7→ N maps an instance’s localization for receiving event of a method call

to a CPN structure, where li ∈ loc([mi, Recv]) ∧ mi.mS.m 6= ⊥. Ni ∈ N is

defined as follows:

• T = {tii};

• P = {pii, pii+1, pii+2};

• A = {(pii, tii), (tii, pii+1), (pii+2, tii)}, if mi.mS.Symbolic = False or

{(pii, tii), (tii, pii+1), (pii+2, tii), (tii, pii+2)}, if mi.mS.Symbolic = True;

• C(pii) = C(pii+1) = MDTI(mi.iDst.O);

• C(pii+2) = MDT (vi);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iDst);

• E((tii, pii+2)) = MV (vi), if mi.mS.Symbolic = True;

• E((pii+2, tii)) = MV (vi), if mi.mS.Symbolic = True or vi, if

mi.mS.Symbolic = False;

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.m.Name.

Figure 3.8 shows the CPN models of SwCtrl.SetState(Xs) method call,
for sender and receiver instances (see Figure 3.6) obtained by applying the
steps described earlier.

Figure 3.8: CPN model of SwCtrl.SetState(Xs) method call for sender and
receiver instances

72 CHAPTER 3. MAPPING LSC TO CPN

3.4 External Functions

The Play-Engine tool [24] allows applications with graphical interface sup-
ply external functions.

In order to obtain a CPN model that represents an external function call,
the next steps must be followed.

If sender and receiver are different instances, it should:

1. create a transition, whose label is formed by the chart’s name, fol-
lowed by “ ”, accompanied by the function’s name;

2. create one input and one output places for the transition created in

the previous step. The type of these places should be the type created
to represent the sender instance;

3. assign the CPN variable that identifies the instance to the inscriptions
of the input and the output arcs of the transition.

Definition 3.4.1. (Function for mapping a external function call for sender

instance) Let li ∈ lL be a location of chart L, mi ∈ ML be an LSC mes-

sage of a chart L, vi ∈ VM be a parameter of external function mi.mS.f and

mi.mS.f.Name the external function’s name. The function MFEFS : lL 7→ N
maps an instance’s localization for sending event of an external function call

to a CPN structure, where li ∈ loc([mi, Send]) ∧ mi.mS.f 6= ⊥. Ni ∈ N is

defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(mi.iSrc.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iSrc);

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.f.Name.

The steps below must be executed for the receiver instance or when the
sender and receiver are the same instance:

1. create a transition, whose label is formed by the chart’s name, fol-
lowed by “ ”, accompanied by the function’s name;

3.4. EXTERNAL FUNCTIONS 73

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the sender instance;

3. assign the CPN variable that identifies the instance to the inscriptions

of the input and the output arcs of the transition;

4. if the function has a variable as parameter, create a CPN variable,
whose name is composed of the chart’s name, followed by “ ”, ac-
companied by the name of the LSC variable;

5. create a place to represent the function parameter. If this parameter
is a variable, then the label of the place must be composed of the
chart’s name, followed by the constant “ ”, accompanied by the name
of the variable created in the previous step. These places are input
and output to the transition created in Step 1;

6. if the function has a variable as parameter, assign the corresponding
variable created in Step 4 to the inscriptions of the arcs that arrive
and leave the places created in the previous step. If the function
has constants values as parameters, these values are assigned to the
inscriptions of these arcs;

7. create a variable to represent the result of the function. The name of
this variable must be formed by “RST ”, followed by the chart’s name,
accompanied by “ ”, followed by the function’s name. The type of this
variable must be equivalent to the result type of the function;

8. create one output place for the transition created in Step 1, whose
label must be formed by “RST ”, followed by the chart’s name, ac-
companied by “ ”, followed by the function’s name. The type of this
place must be equivalent to the result type of the function;

9. assign the variable created in Step 7 to the inscription of the arc that
arrive in the place created in the previous step.

Definition 3.4.2. (Function for mapping a external function call for receiver

instance) Let li ∈ lL be a location of chart L, mi ∈ ML be an LSC message

of the chart L, vi ∈ VM be a parameter of external function mi.mS.f . The

function MFEFR : lL 7→ N maps an instance’s localization for receiving event

of of an external function call to a CPN structure, where li ∈ loc([mi, Recv])
∧ mi.mS.f 6= ⊥. Ni ∈ N is defined as follows:

• T = {tii};

74 CHAPTER 3. MAPPING LSC TO CPN

• P = {pii, pii+1, pii+2};

• A = {(pii, tii), (tii, pii+1), (pii+2, tii)}, if mi.mS.Symbolic = False or

{(pii, tii), (tii, pii+1), (pii+2, tii), (tii, pii+2)}, if mi.mS.Symbolic = True;

• C(pii) = C(pii+1) = MDTI(mi.iDst.O);

• C(pii+2) = MDT (vi);

• E((pii, tii)) = E((tii, pii+1)) = MO(mi.iDst);

• E((tii, pii+2)) = MV (vi), if mi.mS.Symbolic = True;

• E((pii+2, tii)) = MV (vi), if mi.mS.Symbolic = True or vi, if

mi.mS.Symbolic = False;

• LAB(tii) = mi.iDst.O.Name ⊕ “ ” ⊕ mi.mS.f.Name;

• LABP (pii+2) = “RST ” ⊕ Nm(L) ⊕ “ ” ⊕ mi.mS.f.Name.

Figure 3.9 shows the CPN model that represents the external function
presented in Figure 2.8. Places ShowSum X174 and ShowSum X176 repre-
sent the variables X174 and X176, respectively. One should observe that
these places are input and output for the transition ShowSum Sum. There-
fore they represent the second occurrence of the respective variables. A to-

ken in place RST ShowSum Sum, after firing the transition ShowSum Sum,
represents the returned value of the external function.

Figure 3.9: CPN model that represents an external function

3.5. ASSIGNMENTS 75

3.5 Assignments

An assignment is an LSC construction that allows storing properties’ values,
constant values or a result of a external function, for a subsequent use

inside the chart.
In order to obtain the CPN model for an assignment that allows stor-

ing properties’ values, the steps below should be executed for all of the
instances that are synchronizing their activities with the assignment:

1. create a CPN variable of the same type of the property that is being
stored, whose name is composed of the chart’s name, followed by “ ”,
accompanied by LSC variable;

2. create a transition, whose label is formed by the chart’s name, fol-
lowed by “ AS ID”, where ID is a integer sequential number, larger
than zero;

3. create one input and one output places for the transition created in

the previous step. The type of these places should be the type created
to represent the instance;

4. assign the CPN variable that identifies the instance to the inscriptions
of the input and the output arcs of the transition;

5. for the instance whose property is been saved, create an output place
for the transition created in Step 2, whose type is the type of the
property that is being saved. The label of this place is composed by
the chart’s name, followed by “ ”, accompanied by the name of the
variable that is saving the value;

6. assign #id VarName to the inscription of the arc that arrives in the
place created in the previous step, where id is the property that been
saved and VarName is the variable that represents the instance.

Definition 3.5.1. (Function for mapping an assignment that stores a property

value) Let pi
x be a property of an instance ii ∈ IA, which is synchronized with

an assignment ai and ai.P be the property that should be stored. A function

MASP : IA 7→ N must be applied to instances that synchronizes with an

assignment that stores a property value in order to obtain a CPN model, where

∃pi
x : pi

x = ai.P . Ni ∈ N is defined as follows:

• T = {tii};

• P = {pii, pii+1, pii+2};

76 CHAPTER 3. MAPPING LSC TO CPN

• A = {(pii, tii), (tii, pii+1), (tii, pii+2)};

• C(pii) = C(pii+1) = MDTI(ii.O);

• C(pii+2) = MDT (pi
x.D);

• E((pii, tii)) = E((tii, pii+1)) = MO(ii);

• E((tii, pii+2)) = #ai.P.Name MDT (ai.P.D);

• LABP (pii+2) = Nm(L) ⊕ “ ” ⊕ ai.V ;

• LAB(tii) = Nm(L) ⊕ “ AS ID”,

where ID ∈ N+, pi
x.D represents the domain of a property of a synchro-

nized instance, ai.P is the stored property, ai.P.Name is the property’s

name, ai.P.D represents the domain of the stored property, and ai.V is

the variable which contains the assigned value.

Figure 3.10 depicts the CPN model obtained for the assignment N1 :=

Display.Value presented in Figure 2.9. The first model on the left hand
side represents instance Display and the second one depicts the model of
instance Plus. One should observe the difference between these models. In
the first model (Display), there is a place SS N1 of the type STRING that
represents the variable N1, which contains the property value of Display

instance. In the second model (Plus) there is no such place, because the
instance Plus is just synchronizing its activities with the assignment.

Figure 3.10: CPN model of an assignment that stores an object property
value

When the expression on the right side of the assignment operator is a
function result, the place that represents the function result (Section 3.4)
must be an input place of the transition created to represent the assignment
construction, so the following steps should be taken:

3.5. ASSIGNMENTS 77

1. create a CPN variable of the same type of the function result, whose
name is composed by the chart’s name, followed by “ ”, accompanied
by LSC variable;

2. create a transition, whose label is formed by the chart’s name, fol-
lowed by “ AS ID”, where ID is a integer sequential number, larger
than zero;

3. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the instance;

4. assign the CPN variable that identifies the instance to the inscriptions
of the input and the output arcs of the transition;

5. the place that represents the function result must be an input place of
the transition created in Step 2;

6. create an output place for the transition created in Step 2, whose
type is the type of the function result. The label of this place should
be composed by the chart’s name, followed by “ ”, accompanied by
the name of the variable that is saving the value;

7. assign the variable created in Step 1 to the inscription of the arc that
arrives in the place created in the previous step.

Definition 3.5.2. (Function for mapping an assignment that stores a function

result) Let ai ∈ AL be an assignment of chart L, ii ∈ IA be an instance that is

synchronized with the assignment ai, ai.f is an external function used in the

assignment ai and ai.f.df is the result value of the external function ai.f . The

function MAFR : IA 7→ N maps each of the instances that synchronizes with

an assignment that stores a function result to a CPN model, where ai.f 6= ⊥.

Ni ∈ N is defined as follows:

• T = {tii};

• P = {pii, pii+1, pii+2};

• A = {(pii, tii), (tii, pii+1), (tii, pii+2)};

• C(pii) = C(pii+1) = MDTI(ii.O);

• C(pii+2) = MDT (ai.f.df);

• E((pii, tii)) = E((tii, pii+1)) = MO(ii);

78 CHAPTER 3. MAPPING LSC TO CPN

• E((tii, pii+2)) = MV (ai.V);

• LABP (pii+2) = Nm(L) ⊕ “ ” ⊕ ai.V ;

• LAB(tii) = Nm(L) ⊕ “ AS ID”.

And if the expression on the right side of the assignment is a constant,

then it should:

1. create a transition, whose label is formed by the chart’s name, fol-

lowed by “ AS ID”, where ID is an unique sequential number;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the instance;

3. assign the CPN variable that identifies the instance to the inscriptions
of the input and the output arcs of the transition;

4. create an output place for the transition created in Step 1, whose
type is the type of the value that is being saved. The label of this
place should be composed by the chart’s name, followed by “ ”, ac-
companied by the name of the variable that is saving the value;

5. assign the constant value, presented on the right side of the assign-
ment, to the inscription of the arc that arrives in the place created in
the previous step.

Definition 3.5.3. (Function for mapping an assignment that stores a constant

value) Let ai ∈ AL be an assignment of chart L, ii ∈ IA be an instance that

is synchronized with the assignment ai and ai.C is the constant used in the

assignment ai. The function MACV : IA 7→ N maps each instance that

synchronizes with an assignment that stores a constant value to a CPN model,

where ai.C 6= ⊥. Ni ∈ N is defined as follows:

• T = {tii};

• P = {pii, pii+1, pii+2};

• A = {(pii, tii), (tii, pii+1), (tii, pii+2)};

• C(pii) = C(pii+1) = MDTI(ii.O);

• C(pii+2) = MDT (ai.C);

• E((pii, tii)) = E((tii, pii+1)) = MO(ii);

3.6. CONDITIONS 79

• E((tii, pii+2)) = ai.C;

• LABP (pii+2) = Nm(L) ⊕ “ ” ⊕ ai.V ;

• LAB(tii) = Nm(L) ⊕ “ AS ID”.

3.6 Conditions

A condition represents a decision structure that can be composed of a con-
junction of expressions and can be evaluated as true or false.

In order to obtain the CPN model for each instance that synchronizes
with a condition, the following steps must be taken:

1. create a transition, whose label is composed by the chart’s name, fol-
lowed by “ CD ID SYNC”, where ID is an unique sequential number;

2. create one input and one output places for the transition created in
the previous step. The type of these places should be the type created
to represent the instance;

3. assign the CPN variable that identifies the instance to the inscriptions
of the input and the output arcs of the transition.

Definition 3.6.1. (Function for mapping synchronization points at a con-

dition) Let ii ∈ IC be an instance that synchronizes with the condition ci

and ii.O be the concrete object of the synchronized instance ii. The function

MCSP : IC 7→ N must be applied to each instance that synchronizes with a

condition in order to obtain a CPN model, where Ni ∈ N is defined as follows:

• T = {tii};

• P = {pii, pii+1};

• A = {(pii, tii), (tii, pii+1)};

• C(pii) = C(pii+1) = MDTI(ii.O);

• E((pii, tii)) = E((tii, pii+1)) = MO(ii);

• LAB(tii) = Nm(L) ⊕ “ CD ID SYNC”

, where ID ∈ N+.

80 CHAPTER 3. MAPPING LSC TO CPN

Figure 3.11: CPN model for synchronization point of a condition

Figure 3.11 shows the CPN models of the instances Light1 and Console,
for the condition Light1=Green presented in Figure 2.10, respectively. As

condition Light1=Green has two instances synchronizing their activities,
then it is necessary to model the synchronization point.

In order to obtain the CPN model of an instance which has a property
constrained by a condition using some comparison operator with a constant
value, another variable or a function result, the following steps must be
taken:

1. create a transition to represent the true value, whose label is com-
posed by the chart’s name, followed by “ CD ID TRUE”, where ID is
an unique sequential number;

2. assign the guard condition “#id VarName oper value” to the transition
created on the previous step, where id is the property that is being
compared, VarName is the variable that represents the instance, oper

is the relational operator used in the condition expression, and value

is the value that is being compared, which can be a constant value,
another variable or a function result;

3. create a transition to represent the false value, whose label is com-
posed by the chart’s name, followed by “ CD ID FALSE”, where ID is

the same used in Step 1;

4. assign the guard condition “#id VarName oper value” to the transition
created on the previous step, where id is the property that is being
compared, VarName is the variable that represents the instance, oper

is the opposite relational operator used in the condition expression,
and value is the value that is being compared, which can be a constant
value, another variable or a function result;

3.6. CONDITIONS 81

5. create a common input place for the transitions created in the previ-
ous steps. The type of this place should be the type created to repre-
sent the instance;

6. create an output place for the transition created in Step 1. The type
of this place should be the type created to represent the instance;

7. create an output place for the transition created in Step 3. The type of
this place should be the type created to represent the instance. This
place is not the same as the input place for this transition if it is a

cold condition, or if it is a FALSE condition, or still if it is a hot condi-
tion used at the end of Vertical Delay, Message Delay and Timer time
restrictions, presented later. This step is necessary in order to guaran-
tee that a hot condition should be tested until evaluates to true, so it
can be executed. The cases defined above are exceptional situations
of a hot condition that produce a false value when the condition will
never be able to be evaluated to true;

8. assign the CPN variable that identifies the instance to the inscriptions
of the input and the output arcs of the transitions created in Steps 1
and 3.

Definition 3.6.2. (Function for mapping a cold condition) Let ϕi ∈ ci.ϕ be

a basic expression of an instance ii ∈ IC , which is synchronized with the

condition ci. The function MCCEXP : ci.ϕ 7→ N must be applied to an

expression of a cold condition in order to obtain a CPN model, where Ni ∈ N
is defined as follows:

• T = {tii, tii+1};

• P = {pii, pii+1, pii+2};

• A = {(pii, tii), (pii, tii+1), (tii, pii+1), (tii+1, pii+2)};

• C(pii) = C(pii+1) = MDTI(ii.O);

• E((pii, tii)) = E((tii, pii+1)) = E((tii+1, pii+2)) = MO(ii);

• G(tii) =“#ii.O.pi MDTI(ii.O) Oper(ϕi) RHS(ϕi)”;

• G(tii+1) =“#ii.O.pi MDTI(ii.O) NOper(ϕi) RHS(ϕi)”;

• LAB(tii) = Nm(L) ⊕ “ CD ID TRUE”;

82 CHAPTER 3. MAPPING LSC TO CPN

• LAB(tii+1) = Nm(L) ⊕ “ CD ID FALSE”,

where ii.O.pi is a property of the constrained instance, ii.O represents

the concrete object of the constrained instance, ID ∈ N+, Oper is a func-

tion that returns the relational operator of a basic expression, NOper is

a function that returns the opposite relational operator used in the basic

expression, and RHS is a function that returns the binding expression

of a basic expression.

Definition 3.6.3. (Function for mapping a hot condition) A function

MCHEXP : ci.ϕ 7→ N must be applied to an expression of a hot condition, in

order to obtain a CPN model, where Ni ∈ N is defined as follows:

• T = {tii, tii+1};

• P = {pii, pii+1};

• A = {(pii, tii), (pii, tii+1), (tii, pii+1), (tii+1, pii)};

• C(pii) = C(pii+1) = MDTI(ii.O);

• E((pii, tii)) = E((tii, pii+1)) = E((tii+1, pii)) = MO(ii);

• G(tii) =“#ii.O.pi MDTI(ii.O) Oper(ϕi) RHS(ϕi)”;

• G(tii+1) =“#ii.O.pi MDTI(ii.O) NOper(ϕi) RHS(ϕi)”;

• LAB(tii) = Nm(L) ⊕ “ CD ID TRUE”;

• LAB(tii+1) = Nm(L) ⊕ “ CD ID FALSE”,

where ID ∈ N+.

Figure 3.12 shows the CPN model that represents the expression
Light1=Green of the cold condition presented in Figure 2.10. First, the
steps to represent the synchronization point are applied. The transition

LSC1 CD 1 SYNC represents this synchronization point. Places P1 and P3

are, respectively, input and output for Light1 instance of WarnLight type,
and places P2 and P4 are, respectively, input and output for Console in-
stance. After mapping synchronization points, condition expressions must
be modeled. Each transition has a guard condition that controls which
transition should fire. One should observe that the guard conditions deny
each other, so just one transition can fire.

Other condition expressions can be formed by the reserved words TRUE,
SYNC or FALSE. These expressions have a defined value, so only synchro-
nization points need to be modeled, as the condition does not need to be

3.7. IF-THEN-ELSE CONSTRUCTION 83

Figure 3.12: CPN model that represents a cold condition that constrains an
object’s property

evaluated. Therefore the steps that should be taken to obtain the CPN
model are the same used to map the synchronization point of a condition.

Conditions expressions can also use variables. Those expressions ac-
complish comparison between variables or still between variable and a
value, which can be a constant value or an evaluation result of a function
call. As it was seen, functions are always modeled before the underlying
element in which they are used (i.e. inside a message call, inside an assign-
ment expression or as part of a condition expression). The steps adopted to
obtain the CPN model that represents these types of expressions are similar
to the steps considered to obtain the model that represents an expression
that constrains a property’s value of a certain object, in which the variable
usage should be mapped according to the steps presented in Section 3.3,

where symbolic messages are presented.

Figure 3.13 shows an LSC scenario with the condition T < 30, which
uses the variable T, and the corresponding CPN model. The place
ColdOven T represents the variable T in the expression T < 30. One should
observe that guard conditions reflect the constrains on ColdOven T variable.

3.7 If-then-else Construction

The if-then-else construction allows different scenarios to be executed de-
pending on a condition.

An if-then-else construction is formed by basic constructions (messages,

84 CHAPTER 3. MAPPING LSC TO CPN

Figure 3.13: Condition using a variable and its corresponding CPN model

assignments, conditions, subcharts) inside specific scenarios (then or else),
i.e., it does not involve any new construction, therefore the steps below
should be followed in order to obtain the equivalent CPN model:

1. model the synchronization point of the beginning of then subchart
(loc([SubT , Start])), according to rules presented in Section 3.2;

2. model the controlling condition, according to rules presented in Sec-
tion 3.6;

3. model the construction of then scenario, according to the rules pre-
sented for each construction. The last construction is the synchro-
nization point of the ending of then subchart (loc([SubT , End]));

4. if there is an else scenario, the synchronization point of the be-
ginning of this subchart (loc([SubE, Start])) must be modeled first.
After that, the constructions inside the scenario must be modeled,
and finally, the synchronization point of the ending of else subchart
(loc([SubE, End]));

5. the output places corresponding to the ending of each scenario
(loc([SubT , End]) and loc([SubE, End])) should be united.

3.8. LOOPS 85

Definition 3.7.1. (Function for mapping an if-then-else construction) Let

ITE be an if-then-else construction of chart L, ii, ii+1, ..., im ∈ IITE be in-

stances that participate in the scenario of ITE construction, lij, l
i
j+1, ..., l

i
n

be locations of instance ii, Nj, Nj+1, ..., Nn be the corresponding CPN mod-

els obtained for the locations lij, l
i
j+1, ..., l

i
n of instance ii, loc([SubT , Start]),

loc([SubT , End]), loc([SubE, Start]) and loc([SubE, End]) be the locations

that represent, respectively, the beginning of then subchart, the ending of then

subchart, the beginning of else subchart and the ending of else subchart. A

function MITE that maps an if-then-else construction, should:

• apply the mapping rules for each location lij, l
i
j+1, ..., l

i
n, where lij is the

first location to be mapped and lin is the last, according to the execution

order described in Section 3.3;

• apply the joining process described in Section 3.11;

• consider two CPN models Na and Nb, where Na is the obtained model

for the location loc([SubT , End]) and Nb is the obtained model for the

location loc([SubE, End]). Let px be an output place for the transition

created in the CPN model Na and py be an output place for the transi-

tion created in the CPN model Nb, so rename py to px by applying the

corresponding steps described in Section 3.11.

By applying the above steps, Figure 3.14 depicts the CPN model
of the if-then-else construction presented in Figure 2.11. The transi-
tion TP Sub 1 Start represents the synchronization point of the then sub-
chart, which must be modeled first. After that, the condition Prb-

Ctrl.Probing=True is modeled, and it decides which scenario should exe-
cute, the then subchart or the else one. After modeling all constructions
inside each scenario, transitions TP Sub 1 End and TP Sub 2 End are cre-

ated to represent the synchronization point of the ending of then and else

scenarios, respectively.

3.8 Loops

A loop construction allows the execution of a scenario several times.
A loop’s scenario may have several constructions, so in order to find a

CPN model that represents a loop construction, the mapping rules must be
followed for each construction inside the loop’s scenario, according to the
execution order. After mapping all constructions, the last obtained place
of the CPN model must be linked with the first obtained place of this CPN
model in order to represent a loop iteration, as presented next.

86 CHAPTER 3. MAPPING LSC TO CPN

Figure 3.14: CPN model of an if-then-else construction

In order to obtain the CPN model for a fixed loop, the following steps
should be taken:

1. create an INT variable to represent the loop’s index. The name of
this variable should be composed by the chart’s name, followed by
“ IND ID”, where ID uniquely identifies a subchart;

2. map the synchronization point of the beginning of the subchart
(loc([SubLOOP , Start]), as it was presented in the Section 3.2. The
transition created in this step must have the following segment code:

• output(variable) action(0), where variable is the variable created
in the previous step;

3. create an INT place, whose label is composed by the variable’s name,
created in Step 1;

4. assign the variable created in Step 1 to the arc inscription, which
comes from the transition created in the Step 2 to the place created
in the previous step;

3.8. LOOPS 87

5. model the LSC constructions presented inside loop’s scenario accord-
ing to their mapping rules presented earlier;

6. assign the following guard condition to transition which represents
the entry point (loc([SubLOOP , Start]) for each participating instance;

• [variable < max], where variable is the variable created in Step
1 and max is the number of iterations.

7. assign the following guard condition to the transition which repre-
sents the synchronization point at the ending of the loop’s scenario
(loc([SubLOOP , End]):

• [variable = max], where variable is the variable created in Step
1 and max is the number of iterations.

8. the transition created in the previous step is an input of the
place created in Step 3 and the place generated when mapping

the synchronization point at the beginning of the loop’s scenario
(loc([SubLOOP , Start]);

9. after modeling all constructions, create a transition, which returns to
the beginning of the loop’s scenario (a new iteration). The label of
this transition is formed by the chart’s name, followed by “ LOOP ID”,
where ID is equals to the subchart ID.

Definition 3.8.1. (Function for mapping a loop construction) Let Loop be a

loop construction of chart L, ii, ii+1, ..., im ∈ ILoop be instances that participate

in the scenario of Loop construction, lij, l
i
j+1, ..., l

i
n be locations of instance ii,

Nj, Nj+1, ..., Nn be the corresponding CPN models obtained for the locations

lij, l
i
j+1, ..., l

i
n of instance ii, vi be a CPN variable created to represent the loop’s

index, loc([SubLoop, Start]) and loc([SubLoop, End]) be the locations that rep-

resent, respectively, the beginning and ending of loop subchart. A function

MLOOP that maps a loop construction, should:

• ∀ii ∈ ILoop apply the mapping rules for each location lij, l
i
j+1, ..., l

i
n, where

lij is the first location to be mapped and lin is the last, according to the

execution order described in Section 3.3;

• LABV (vi) = Nm(L) ⊕ “ IND ID”;

• let pz be a place created to represent the index variable, so LABP (pz) =
Nm(L);

88 CHAPTER 3. MAPPING LSC TO CPN

• let Na be the CPN model obtained for the location loc([SubLOOP , Start])
and tx be the transition created when mapping this location, so

SC(tx) = output(vi) action(0) and Na.E(tx, pz) = vi, where SC is a

function that assigns a segment code to a transition and Na.E is the arc

function;

• let Nb be the CPN model obtained for the location loc([SubLOOP , Start])
and tf be the transition created when mapping this location, so

Nb.G(tf) =[vi < idx], where Nb.G is the function that assigns a guard

to the transition and idx ∈ N+;

• let Nc be the CPN model obtained for the location loc([SubLOOP , End])
and tg be the transition created when mapping this location, so

Nc.G(tg) =[vi = idx] and Nc.A = Nc.A ∪ {(tg, py), (tg, pz)}, where

Nc.G is the function that assigns a guard to the transition, Nc.A is

the set of arcs, py ∈ Na.P (set of places of Na) be the input place for

the transition created while mapping the location loc([SubLOOP , Start])
and idx ∈ N+;

• let Nd be a CPN model created to represent a new loop iteration and tz be

a transition of this model. Apply LABT (tz) = Nm(L) ⊕ “ LOOP ID”,

where ID is the ID for SubLOOP subchart. Nd.A = {(pm, tz), (tz, py)},

where pm ∈ Nc.P (set of places of Nc) be an output place of the transi-

tion created when mapping the location loc([SubLOOP , End]) and Nd.A
be the set of arcs of Nd;

• apply the joining process described in Section 3.11,

where ID ∈ N+ and LABV is a function that assigns a label for a CPN

variable.

As a loop construction is formed by basic constructions, the formalism
behind this construction is not presented. It can be easily mapped by apply-

ing the steps for each construction inside the scenario of the construction,
following the execution order presented earlier.

By applying the above steps, Figure 3.15 shows the CPN model ob-
tained for the fixed loop presented in Figure 2.13(a). When the transi-
tion LSC1 Sub 1 Start fires, the variable LSC1 IND 1(represents the index
of the loop) is initialized and a token with the initial value is deposited
in place LSC1 IND 1. This value is considered in the guard conditions
of transitions Light1 Color Red and LSC1 Sub 1 End, in order to decide if
the loop should be iterated. This value is increased by firing transition
LSC1 LOOP 1. This transition represents a loop iteration, where a token is

3.8. LOOPS 89

deposited in place P2, which is an input of the first event of the scenario,
the message Change(Red). The loop scenario is executed until variable
LSC1 IND 1 reaches the value 3, where transition LSC1 Sub 1 End fires,
leading the execution to the next location after the loop.

Figure 3.15: CPN model for a fixed loop

If a fixed loop uses a variable to determine the numbers of iterations,
the steps to be followed in order to obtain the CPN model are similar to
the steps applied to a fixed loop, which uses a constant to determine the
number of iterations, except:

• at guard conditions, max is the variable used to determine the number
of iterations;

• transitions are input and output of the place created to represent the
variable, as described in Section 3.3, when dealing with symbolic
messages.

The mapping process for a dynamic loop is the same applied to a fixed

loop, but the number of iterations is undefined.
In a case of an unbounded loop, it should:

• model all constructions presented in the loop’s scenario, according to
their mapping rules presented earlier;

• after modeling all constructions, create a transition, which represents
returning to the beginning of the loop’s scenario (a new iteration).
The label of this transition is formed by the chart’s name, followed by
“ LOOP ID”, where ID is equals to the subchart ID.

90 CHAPTER 3. MAPPING LSC TO CPN

As an example, Figure 3.16 shows the CPN model obtained for the
unbounded loop presented in Figure 2.13(c). The process is similar to a
fixed loop. In this case, a controlling condition, represented by transitions
LSC2 CD 1 TRUE and LSC2 CD 1 FALSE, decides if the loop should be it-
erated. Loop’s scenario is abandoned when transition LSC2 CD 1 FALSE

fires.

Figure 3.16: CPN model for an unbounded loop

3.9 Time Restrictions

LSC language allows to establish time restrictions for real-time systems.
In order to obtain the CPN model for a time restriction, the following

steps must be taken:

1. map the constructions (assignments and conditions), which are par-
ticipating in the time restriction, according to the rules presented ear-
lier (Section 3.5 and Section 3.6);

2. create a timed type instead of untimed one to represent the instance
(Section 3.1). This type allows to apply a time stamp for a token,
i.e., each token can have a time associated with it. This time stamp

indicates when the token is available;

3.9. TIME RESTRICTIONS 91

3. assign to the arc inscription that leaves the transition that represents
the assignment to the place that represents the affected variable in
the assignment, the expression IntInf.toInt(time()), where IntInf.toInt

is a CPN ML function for converting the time to an integer number
and time() returns the actual time (global time);

4. if there is a minimum delay, then after modeling the first condi-
tion, assign the following guard conditions [IntInf.toInt(time()) >
VarAsg+Min-Delay] and [IntInf.toInt(time()) <= VarAsg+Min-Delay]

to the transitions that represents a true and false value, respectively,
where IntInf.toInt(time()) returns an integer that represents the ac-
tual time, VarAsg is the variable that stores the time in the assignment
and Min-Delay is the minimum delay. Assign to the arc inscription
that leaves the transition that represents the false value, the expres-
sion InstVar @+1, where InstVar is the variable that represents the

instance;

5. if there is a maximum delay, then after modeling the second condi-
tion, assign the following guard conditions [IntInf.toInt(time()) <=
VarAsg+Max-Delay] and [IntInf.toInt(time()) > VarAsg+Max-Delay]

to the transitions that represents a true and false value, respectively,

where IntInf.toInt(time()) returns an integer that represents the ac-
tual time, VarAsg is the variable that stores the time in the assignment
construction and Max-Delay is the maximum delay.

As a time restriction is formed by assignments and conditions, the for-

malism behind that is the same presented when mapping assignments and
conditions, with the addition of the following formal definition.

Definition 3.9.1. (Function for mapping a time restriction construction) Let

ai ∈ AL be an assignment of chart L, ci, ci+1 ∈ CL be conditions of chart L,

Ici
⊆ IL be a set of instances that synchronizes with the condition ci, Ici+1

⊆ IL

be a set of instances that synchronizes with the condition ci+1, ii ∈ Ici
be

an instance that synchronizes with the condition ci and ii+1 ∈ Ici+1
be an

instance that synchronizes with the condition ci+1. The function MTS : AL ×
CL 7→ N maps a time restriction to a CPN model, where ai.T imed = True ∧
ci.T imed = True ∨ ci+1.T imed = True. Ni ∈ N is defined as follows:

• if exists a condition that establishes a minimal delay, then:

– G(tii) =“IntInf.toInt(time()) Oper MV (ai.V) +MinDelay(ci)”,
Oper can be > or >=;

92 CHAPTER 3. MAPPING LSC TO CPN

– G(tii+1) = “IntInf.toInt(time()) Oper MV (ai.V) +
MinDelay(ci)”, Oper can be < or <=;

– E((tii+1, pii)) =“MO(ii)@ + 1”;

• if exists a condition that establishes a maximal delay, then:

– G(tii+2) = “IntInf.toInt(time()) Oper MV (ai.V) +
MaxDelay(ci+1)”, Oper can be < or <=;

– G(tii+3) = “IntInf.toInt(time()) Oper MV (ai.V) +
MaxDelay(ci+1)”, Oper can be > or >=,

where MinDelay and MaxDelay are functions that return the minimal

delay and the maximal delay of the timed condition, respectively.

Figure 3.17 shows the CPN model for instance O2, considering the time
restriction imposed between events M1() and M2() presented in scenario of
Figure 2.14. Transitions VertDel CD 1 TRUE and VertDel CD 1 FALSE rep-
resent the first condition of the time restriction, which imposes the mini-
mum delay. In this case the transition VertDel CD 1 FALSE fires until the
guard condition assigned to transition VertDel CD 1 TRUE is not satisfied.
This represents the semantics of a hot condition that should be continu-
ally evaluated until returns true. Transitions VertDel CD 2 TRUE and Vert-

Del CD 2 FALSE represent the second condition of the time restriction. One
of the two transitions should fire, when the execution arrives at this point.

If the transition VertDel CD 2 TRUE fires, then the time restriction imposed
between the events was satisfied. On the other hand, if transition Vert-

Del CD 2 FALSE fires, then this indicates that the time restriction was not
respected, indicating a requirement violation.

3.10 Time Events

Reactive real-time systems are often required to react to the passage of
time, and not only to refer to it when constraining the timing of other
events of interest. In order to express such requirements, generally termed
time events, a special object instance representing the clock is available
(Clock Instance), and it can be added to the LSC scenarios. Within this in-
stance one can refer to the Tick event, which represents an actual clock, i.e.,
the passage of a single time unit. This event can be placed in a prechart to
trigger desired actions, or in the main chart, thus explicitly forcing delays.

When a Tick event occurs, it is fully unified when it is enabled in all
charts it is available, in other case these events are seen as different events,

3.11. JOINING LSC CONSTRUCTIONS 93

Figure 3.17: CPN model for a Vertical Delay time restriction

so these time events will take place at different time, in an appropriate

moment.
When obtaining the corresponding CPN model of a Tick event, it should

be seen as a simple LSC message with an internal object as sender, with the
following additional steps:

• the label of the obtained transition is formed by “TICK ID”, where ID

is a unique integer number;

• assign to the arc inscription that leaves the transition, the expres-
sion InstVar @+1, where InstVar is the variable that represents the
instance Clock. This step represents the passage of one time unit.

3.11 Joining LSC Constructions

In the previous sections, it was presented some steps on how to obtain a
CPN model which represents individual LSC constructions. After mapping

94 CHAPTER 3. MAPPING LSC TO CPN

these individual constructions, the obtained CPN models must be joined in
order to find a final CPN model that represent the LSC specification. So,
the following steps must be applied to map an LSC chart:

• obtain an individual model for each instance inside a chart, where the
constructions available in the instance line should be mapped from
top to bottom, following the corresponding rules that were presented.

Let IL be the set of instances of chart L, ii, ii+1, ..., im ∈ IL be instances
of chart L, lij, l

i
j+1, ..., l

i
n be locations of instance ii, where lij precedes

lij+1, and so on, therefore lij < L lij+1, ..., l
i
n−1 < L lin, as defined in the

execution order statement described in Section 3.3. For ii, ii+1, ..., im,
apply the mapping rules for each location lij, l

i
j+1, ..., l

i
n, where lij is

the first location to be mapped and lin is the last, according to the
execution order described in Section 3.3;

• the output place of a transition of a CPN model that represents an
LSC construction, must be the input place of the transition of the
CPN model that represents the next construction to be mapped.

Let Nj, Nj+1, ..., Nn be the corresponding CPN models obtained for the
locations lij, l

i
j+1, ..., l

i
n of instance ii, Nj.P be the set of places of Nj,

Nj.T be the set of transitions of Nj, Nj.A be the set of arcs, Nj.E be
an arc function that assigns inscriptions to arcs. pk ∈ Nj.P is a place
and tl ∈ Nj.T is a transition, where there is an arc (tl, pk) ∈ Nj.A
and Nj.E(tl, pk) is equals to MO(ii). pr ∈ Nj+1.P is a place and
ts ∈ Nj+1.T is a transition, where there is an arc (pr, ts) ∈ Nj+1.A and
Nj+1.E(pr, ts) is equals to MO(ii). Places pk and pr must be united ac-
cording to these conditions, by applying the label function to a place
(LABP), to rename pr to pk, therefore, Nj.A = Nj.A ∪ {(pr, ts)} and
Nj+1.A = Nj+1.A − {(pr, ts)}. Nj, Nj+1, ..., Nn models must be joined
according to these rules;

• after all individual models (instances inside of a chart) were found,
transitions of same label should be merged, as well as the places that
possess the same label. The inputs and outputs of these transitions
and places that should be merged, are joined in the final obtained
model (CPN model that represents the chart).

A system specification contains more than one chart, and some mes-
sages may be specified in more than one chart. In order to join the CPN
models that represent each individual chart, all transitions with same label
and all places with same labels must be merged, as described earlier.

3.12. COMPARING PETRI NET AND LSC SEMANTICS 95

3.12 Comparing Petri Net and LSC Semantics

This section considers a small example in which some of LSC constructions
are adopted, to compare the labeled transition system directly generated
from LSC specifications and the occurrence graph generated from the re-
spective CPN models. Therefore, this section shows that both models (LSC

and the respective CPN) lead to bisimilar [43] transition systems. It is im-
portant to stress, however, that these transition systems are not isomorphic,
since the transformation of LSC to CPN inserts transitions that do not corre-
spond to LSC visible events (messages), but are necessary for representing
the correct net’s structure.

The adopted approach consists of four phases, as depicted in Fig-
ure 3.18.

Figure 3.18: Validation phases

Initially, the adopted methodology considers the CPN model that rep-
resents an LSC chart, obtained by executing LSC2CPN engine in order to
obtain the corresponding state space (SSCPN) of a Coloured Petri Net. This
process (SSGCPN) can be automatically achieved in many available CPN
tools.

The LSC State Space Generation (SSGLSC) obtains a state space of an
LSC chart, in which, each state presents the current configuration of all

instances inside an LSC chart and the enabled events at this point.

In order to check if the methodology presented in this work generates
faithful models, the comparison process should verify whether the obtained
LSC State Space (SSLSC) and the obtained CPN State Space (SSCPN) are
equivalent or not.

Next, it is presented a toy example, in order to demonstrate how this
comparison process should be applied. Take a look at the LSC scenario
shown in Figure 3.19, in which it is presented a receiving calling scenario.
In this scenario, whenever Chan1 (Channel1) sends a calling request to
the Switch, then the Switch forwards this request to Chan2 (Channel2). If
Chan2 is not in order (ready), then it informs the Switch that the calling

96 CHAPTER 3. MAPPING LSC TO CPN

Figure 3.19: LSC scenario

can not be made, and the Switch tells Chan1 that the calling was canceled.
If Chan2 is in order but it is allocated, then the calling is denied and Chan1

is informed that Chan2 is busy, otherwise (not allocated) Chan2 is allocated
and the communication is established between Phone1 and Phone2.

When applying SSGLSC phase, an LSC state is represented by the cur-

rent value of all instances’ properties, variables values, and enabled events
at this point. A state changing takes place whenever firing one of these
enabled events. Figure 3.20 presents the reachability graph of the LSC sce-
nario presented in Figure 3.19, which it is obtained through an exhaustive
simulation in the Play-Engine tool.

By applying the corresponding mapping steps in the LSC scenario pre-
sented in Figure 3.19 as described in Chapter 3, Figure 3.21, Figure 3.22,
Figure 3.23, Figure 3.24 and Figure 3.25 depict the obtained CPN model
for Chan1, Phone1, Switch, Chan2 and Phone2, respectively. In order to
obtain the final CPN model, these individuals CPN model must be joined,
where transitions with same label must be merged, in which, input and
output places of one transition are joined with input and output places of

3.12. COMPARING PETRI NET AND LSC SEMANTICS 97

Figure 3.20: Reachability graph of the LSC scenario presented in Fig-
ure 3.19

98 CHAPTER 3. MAPPING LSC TO CPN

Figure 3.21: CPN model for Chan1 instance

Figure 3.22: CPN model for Phone1 instance

3.12. COMPARING PETRI NET AND LSC SEMANTICS 99

Figure 3.23: CPN model for Switch instance

the other transition. The same is valid to places with same label.

The CPN Tools is adopted for creating the CPN model, as well as, for
finding the corresponding reachability graph. The reachability graph of the
CPN model is shown in Figure 3.26. Each state is represented by places
which have at least one token.

The mapping process takes into account “visible” events (messages) and
“hidden” events (synchronization points, assignments, conditions), there-
fore the reachability graph of the CPN model presents “visible” states (states

that represent “visible” events) and “hidden” states (states that represent
“hidden” events). Figure 3.27 presents the reachability graph of the CPN
model highlighting the “hidden” states.

The reachability graph of the LSC scenario does not take into account
“hidden” events, because until nowadays there is no tool to generate the
reachability graph of a LSC scenario, so we built the reachability graph of

100 CHAPTER 3. MAPPING LSC TO CPN

Figure 3.24: CPN model for Chan2 instance

3.12. COMPARING PETRI NET AND LSC SEMANTICS 101

Figure 3.25: CPN model for Phone2 instance

the presented LSC scenario through simulation at Play-Engine tool. There-

fore, if we suppress the “hidden” states from the reachability graph of the
CPN model, it is obtain the reachability graph presented in Figure 3.28.
As we can see, the reachability graph of the CPN model presented in Fig-
ure 3.28 is bisimilar to the reachability graph of the LSC scenario presented
in Figure 3.20, therefore, the semantics of the LSC scenario presented in
Figure 3.19 and of the obtained CPN model are equivalent, i.e., each state
transition on the LSC reachability graph (represented by message invoca-
tion) has its equivalent state transition on the CPN reachability graph (rep-
resented by transition firing).

This simple example shows how CPN models can be compared to LSC
scenarios in order to check if they are equivalents. However, the adopted
method does not aim, at this point of our research, being complete or even
validating the mapping method. Nevertheless, this approach has been ap-
plied in many other case studies, in order to check if LSC and CPN auto-
matic generated labeled transition systems are equivalent or not.

102 CHAPTER 3. MAPPING LSC TO CPN

Figure 3.26: Reachability graph of the CPN model

3.12. COMPARING PETRI NET AND LSC SEMANTICS 103

Figure 3.27: “Hidden” states of reachability graph of the CPN model

Figure 3.28: Reachability graph of the CPN model without the “hidden”
states

104 CHAPTER 3. MAPPING LSC TO CPN

3.13 Concluding Remarks

In this chapter we presented the mapping process, describing how to obtain
an equivalent CPN model for each LSC construction presented in the previ-
ous chapter. The mapping process was explained in the following way: the

steps that must be followed are described, then it is presented the formal-
ism and the corresponding CPN model, and finally an example is shown.

Once the individual CPN models were obtained, we described the steps
that must be followed in order to obtain a final CPN, formed by joining
these individual models, in which transitions and places with same label
must be joined where their inputs and output are united.

At the end of the chapter we presented an approach to compare the LSC
and CPN semantics, which was applied in a specific example. This approach
can not be considered as a general validation process, however we applied
the described approach in few case studies to verify if the obtained CPN
model is equivalent to the mapped LSC specification.

Chapter 4

Case Studies

This chapter presents two case studies, in which the map-

ping process is applied and some interesting properties are veri-

fied through custom queries. Also it is made an analysis of the

obtained CPN models.

4.1 Pulse Oximeter

In order to show the practical usability of the proposed mapping process,
a pulse-oximeter [30] has been considered as a case study. This electronic
equipment is responsible for measuring the blood oxygen saturation using
a non-invasive method. This equipment is widely used in critical care units
(CCU).

The pulse-oximeter was described using the following scenarios: Excite-

ment, Cross-section and Management.

The Excitement scenario (see Figure 4.1) specifies that if a Cross-section

operation is taking place, then the channel is read from digital-analogic
conversor (DAConv), the data is processed by the processor (Proc) and it
is sent to Management module to present the information at the interface
(Display), otherwise the sign is adjusted.

The Cross-section scenario (see Figure 4.2) specifies that whenever the
sigh calibration takes place, then the processor should emit red and infrared
pulses interchanged.

The Management scenario (see Figure 4.3) starts the Cross-section pro-
cess and presents the obtained information on the interface (Display).

This work presents some results related to properties analysis and veri-
fication.

105

106 CHAPTER 4. CASE STUDIES

Figure 4.1: Excitement scenario

In order to obtain the CPN model that represents the scenarios pre-
sented in Figure 4.1, Figure 4.2 and Figure 4.3, we follow the steps pre-
sented next.

We obtain the individual model for each one of the instances in the
chart, then for each instance line, the elements should be mapped from
top to bottom, following the corresponding rules that were presented. The
transition that represents the beginning of a chart must be an input of each
place that represents a variable used in the LSC chart, where the formed
arc inscriptions initialize each place with one token. The output place of
a transition, that represents an LSC construction (message, condition, as-

signment, etc), must be the input place for the transition that represents
the next element to be mapped. After all individual models were found,
transitions with same label should be put upon, as well as the places that
possess the same label. The inputs and outputs of these transitions and
places that should be put upon, will be joined in the final model. Places
representing each refereed variable in the chart should be an input to the
transition that represents the chart body ending.

When LSC2CPN engine finishes translating the LSC scenarios, CPN
Tools [1] could be used to analyse and verify properties of the specified
system.

After a basic analysis of the obtained CPN model, it is observed that the
specified system has the following properties:

4.1. PULSE OXIMETER 107

Figure 4.2: Cross-section scenario

Deadlock Freedom The analysis of pulse-oximeter system indicates that
the system is not deadlock free, due to the presence of “good” dead-
locks, which is not bad because there are some pre-conditions that
should be satisfied in order to blood measure takes place by the pulse-
oximeter equipment. Therefore, the pulse-oximeter system executes
on expected conditions, as it was described at the LSC specification.
On the other hand, if the time stamp (time constraint) of the transi-
tion that represents “set redPulse()” message (Cross-section scenario)
is modified to be larger than 40 time units, then when analysing the
CPN model it is found a reachable deadlock state (“bad” deadlock),

since a time restriction is not respected, as it was specified (see Fig-
ure 4.2), the “set redPulse()” message can not take more than 40 time
units to execute, so in this case as it was expected, the system is not
deadlock free;

Liveness The CPN model of pulse-oximeter system is not live, because

108 CHAPTER 4. CASE STUDIES

Figure 4.3: Management scenario

there are situations, in which the system is lead to a “good” dead-
lock state. If these situations are unconsidered as well as a set of
transitions representing activities that are only executed during start-
up phase, the pulse-oximeter system can be considered a live one.
Through liveness property, it can be verified if the pulse-oximeter
equipment is prepared to measure the blood oxygen, once a pre-

condition have been satisfied, until the system is shut down;

Boudedness The pulse-oximeter system is a safe system, because for all
reachable markings the places have at most one token. So, none of
the possible sequence of events can lead the pulse-oximeter system to
an unpredictable state;

Reversible The system is not reversible to its initial state, but there are
home states. The pulse-oximeter system can not returns to its initial
state after starting, so the initial state can only be reached if the sys-
tem is shut down and restarted, however there are some markings
(states) that can be reached again by firing a sequence of transitions
(events);

4.1. PULSE OXIMETER 109

Bounded-Fairness Once the execution of pulse-oximeter is inside char
body scenarios, the firing sequence (sequence of events) is uncon-

ditionally fair. So, as it is expected, every time the pulse-oximeter
system enters inside char body scenarios, it will always execute the
same sequence of steps;

Conservativeness A Petri net covered by place invariants is conservative,
that is, the CPN model for pulse-oximeter system is not conserva-

tive, since places describing pre-conditions within precharts are not
covered by place invariants. However, if the precharts are unconsid-
ered, the CPN model is conservative, which is an interesting property
for embedded system design. Therefore, besides boundedness, which
depicted that analysed system does not generate an infinite number

of states, conservativeness shows that the respective specification also
does not consume resources without further liberating them.

Besides the basic analysis, some specific properties can be verified, as it
is shown next.

In the Excitement scenario (see Figure 4.1), the two underlying sub-
charts, with a guard condition (Proc.crossSection=True) at the top of the
first one, represent an if-then-else construction. The events in the scope of

the first subchart are executed if the guard condition is evaluated to a true
value. If this condition is evaluated to false, the events of the second sub-
charts are executed. If this condition changes its value when executing the
events in the first subchart, then occurs a requirement violation and this
subchart must be aborted. Therefore, it can be verified if it is possible that
some event of this first subchart can be executed when the user presses the
adjust button (see Figure 4.1). This property can be verified by using the
query language ASK-CTL [1]. The following formula checks this property:
FORALL UNTIL (TT, AND (AF(“Events”, AreEventsEnabled), NF(“Cross-
Section”, IsCrossSection))). AreEventsEnabled and IsCrossSection are CPN
ML [1] functions that check if any event of the first subchart is enabled and

if the device is in cross-section mode, respectively. Applying this formula, a
false value is returned, so it indicates that it is not possible to execute some
event of the first subchart (Management scenario), when the user presses
the adjust button. NF is a node function, where its arguments are a string
and a function which takes a state space node and returns a boolean. The
string is used when an ASK-CTL formula evaluates as false in the model
checker. In this case the model checker shows a diagnostic message ex-
plaining why the formula is false, using the string in the message. AF is the
arc function and is analogous to NF, only that it is a transition formula and
thus only makes sense to use as a transition sub-formula.

110 CHAPTER 4. CASE STUDIES

As described in [30], the excitement scenario has a priority over cross-
section scenario, so when executing the events in excitement scenario,
none of the events of cross-section scenario can be executed. This property
can be checked through the following formula: FORALL UNTIL (TT, AND(
AF(“Excitement”, AreExcitementEventsEnabled), AF(“Cross-section”, Are-
CrossSectionEventsEnabled))). This formula asks if there is a node in the
state space where some event of excitement scenario is enabled to fire at
the same time that some event of cross-section scenario can be executed.
Applying this formula, a true value is returned, hence there is a require-
ment violation in this specification, since the specification was built in an

incorrect way and this is verified when evaluating this formula.

State space queries [1] can be used as another approach to prop-
erties verification. The state space query SearchNodes(EntireGraph,

CanSendRedPulse, NoLimit, fn n => n,[],op::) verifies if a red pulse event
(see Figure 4.1) can be sent before setting the calibration to on (see Fig-
ure 4.2). CanSendRedPulse is a CPN ML function that checks if the transi-
tion that represents the event “set redPulse()” is enabled to fire when the
calibration is off (before firing the transition that represents the event “set
calibration(True)”). When applying this state space query in the obtained
CPN model, it returns nothing, so it is guaranteed that the red pulse is
always sent after setting the calibration to on.

4.2 ConnectOK

ConnectOK is a portable and mobile data terminal with an internal
GSM/GPRS communication module, which can be considered for several
tasks, such as reading water, energy and gas consumption. This device

is composed by a terminal for reading consumption data and a server to
process received data, and and is divided in four management modules:

Configuration Module defines some parameters for the terminal data ap-
plication;

Communication Module interacts with a server using a proprietary com-
munication protocol;

Battery Manager controls the battery consumption;

Interface Module interacts with the user.

This case study applies to Battery Manager module.

4.2. CONNECTOK 111

The battery management module was specified and its LSC scenarios
are presented from Figure 4.4 to Figure 4.10. Next a brief description is
presented detailing what each of these scenarios performs.

Scenario 1 Whenever the menu options is presented (Interface Module), if
more than ten time unit have been passed without an user interaction,
then the micro-controller sounds a beep and shuts down the terminal;

Figure 4.4: Battery Manager Scenario 1

Scenario 2 If the user presses F2 key, then the micro-controller verifies the
battery level and its status is presented in the screen for three time
units and then the content menu is presented (Interface Module);

Scenario 3 If the user presses F3 key, the micro-controller must shut down
the terminal;

Scenario 4 F4 key activates battery loader process. If the loader is not con-
nected, then the terminal must shut down, otherwise battery status is
presented while charging;

Scenario 5 This scenario specifies that whenever the user pushes a key dif-
ferent from a function key (F2,F3,F4), the battery manager modules
executes the following procedure. First, the micro-controller checks
the battery level, and if it has the minimal level to execute the task
or if the loader is connected, then it proceeds. Otherwise, the screen
presenting “Turning off...” is shown and the terminal is shut down;

112 CHAPTER 4. CASE STUDIES

Figure 4.5: Battery Manager Scenario 2

Figure 4.6: Battery Manager Scenario 3

Scenario 6 If someone connects the battery loader, then the micro-
controller is activated and the loader starts charging the battery;

Scenario 7 Whenever the battery loader is instructed to charge the battery,
then the micro-controller continuously checks the battery level until
the battery is full, when the battery loader should be turned off.

The procedure described in Section 3.11 should be adopted in order to
obtain the CPN model that represents the scenarios presented from Fig-
ure 4.4 to Figure 4.10.

After translating the LSC scenarios described previously by applying the
LSC2CPN engine, the designer can analyse and verify properties taking into
account the obtained CPN model.

After analysing the obtained CPN model, it is observed that the specified
system has the following properties:

4.2. CONNECTOK 113

Figure 4.7: Battery Manager Scenario 4

Deadlock Freedom The analysis of ConnectOK system indicates that the
system is not deadlock free due to the presence of “good” deadlocks,
which is not bad because there are some pre-conditions that should
be satisfied. Therefore, the ConnectOK system executes on expected
conditions;

Liveness The CPN model of ConnectOK system is not live, because there
are situations, in which the system is lead to a “good” deadlock state
or the system executes its tasks and finalize;

Boudedness The boudedness property indicates if the system has pre-
dictable states. The ConnectOk system is a safe system, because for

all reachable markings the places have at most one token. So, none
of the possible sequence of events can lead the ConnectOk system to
an unpredictable state;

Reversible The system is not reversible and there is no home state, once it
is started. The system receives a request from the environment and
then executes its tasks and finishes;

Bounded-Fairness The ConnectOk is not B-fair, but it is unconditionally

fair. It is not B-fair since inside chart body scenarios the number of
times that a condition is evaluated as true is not bounded, compar-
ing to the number of times that a condition is evaluated as false, i.e.
the scenario presented in Figure 4.10. And it is unconditionally fair

because all firing sequences are finite, since the system executes its
tasks and terminates;

114 CHAPTER 4. CASE STUDIES

Figure 4.8: Battery Manager Scenario 5

Conservativeness The CPN model for ConnectOk system is not conserva-

tive, since places describing pre-conditions within precharts are not
covered by place invariants. However, if the precharts are unconsid-
ered, the CPN model is conservative, which is an interesting property
for embedded system design. Therefore, besides boundedness, which
depicted that analysed system does not generate an infinite number
of states, conservativeness shows that the respective specification also
does not consume resources without further liberating them.

After the analysis phase, some system’s properties can be verified by
constructing queries using the ASKCTL model checking language, as ap-
plied in the previous case study. Next, it is presented some interesting
requirements of ConnectOK system and it is explained how these properties
can be verified using model checking formulas.

One important requirement says that the loader must stop battery load-
ing when the battery reaches its maximum charging level (level 5). In
order to check this requirement, it must be verified if it is possible to reach
a state, in which the BatLevel property of MC (Micro-controller) has value
5 and the boolean property loading of Loader has a true value. This prop-
erty can be checked through the following formula: FORALL UNTIL (TT,

4.2. CONNECTOK 115

Figure 4.9: Battery Manager Scenario 6

AND(NF(“BatteryFull”, IsBatteryFull), NF(“Loading”, IsLoading))), where
IsBatteryFull and IsLoading are functions created using the CPN ML func-
tional language. NF is a node function, where its arguments are a string
and a function which takes a state space node and returns a boolean. The
string is used when an ASK-CTL formula evaluates as false in the model

checker. In this case the model checker will print a diagnostic message
explaining why the formula is false, using the string in the message. The
function IsBatteryFull checks if the BatLevel property of MC has a value 5
(indicates a full battery). If a node satisfies this function, then when apply-
ing NF(“BatteryFull”, IsBatteryFull), it returns true, otherwise returns false.
The function IsLoading checks if the loading property of Loader has a True

value. If a node satisfies this function, then when applying NF(“Loading”,
IsLoading), it returns true, otherwise returns false. The formula, described
above, searches all state space for a node, in which NF(“BatteryFull”, Is-
BatteryFull) and NF(“Loading”, IsLoading) return true. By applying this
formula in the obtained CPN model, it returns a false value. Therefore it

is guaranteed, according to what was specified in the LSC scenarios, that
when the battery reaches its maximum charging level, then the loader stops
charging the battery. This requirement can be visualized in the scenario of
Figure 4.10. Observe the subchart with “*” at the top left corner, which
represents an unbound loop construction. In this scenario, the battery level
is repeatedly checked until reaching level 5 (the condition MC.BatLevel<5

evaluates as false), when this scenario is abandoned and the next action
takes place (set loading(false)), which disables the loader charging. It is
important to point out that different formulas can be made with the same
purpose.

116 CHAPTER 4. CASE STUDIES

Figure 4.10: Battery Manager Scenario 7

Another important requirement states that the options menu can not
be presented if the battery level is lower than the minimum level (level 1)

to execute this function (showConMenu()). When mapping the presented
LSC specification, the obtained CPN model of showConMenu() message has
one transition and two places (obtained by applying the rules presented
earlier). In order to check this requirement, it must be verified if it is
possible to reach a state, in which the transition of the CPN model that
represents the event showConMenu() is enabled to fire while there is a
place with a token of the MC type, in which the value of BatLevel prop-
erty of MC is lower than 1 (minimum level). The following formula checks
this property: FORALL UNTIL (TT, AND(AF(“ShowConMenu”, Show-
ConMenuEnabled), NF(“BelowMinimumLevel”, isBelowMinimumLevel))),
where ShowConMenuEnabled and isBelowMinimumLevel are CPN ML func-

tions. AF is the arc function and is analogous to NF, only that it is a transi-
tion formula and thus only makes sense to use as a transition sub-formula.
The function ShowConMenuEnabled verifies if the transition that represents
the event showConMenu() is enabled. If a node satisfies this function,
then when applying AF(“ShowConMenu”, ShowConMenuEnabled), it re-
turns true, otherwise it returns false. The function isBelowMinimumLevel

checks if the BatLevel property of MC has a value lower than 1. If a node
satisfies this function, then when applying NF(“BelowMinimumLevel”, is-
BelowMinimumLevel), it returns true, otherwise it returns false. When the
formula FORALL UNTIL (TT, AND(AF(“ShowConMenu”, ShowConMenu-

4.3. CONCLUDING REMARKS 117

Enabled), NF(“BelowMinimumLevel”, isBelowMinimumLevel))) is applied
to the obtained CPN model, a false value is returned, so this requirement
was correctly specified in the system’s specification, as can be viewed in
the scenario of Figure 4.8. In this scenario, there is an if-then-else (see Sec-
tion 3.7) construction, in which, if the controlling condition, at the top of
the first subchart evaluates as true, then, if the loader is not connected,
the device is shut down. On the other hand, if this condition evaluates as
false (there is not a minimum battery level to execute the function), so the
options menu can be presented (showConMenu() is executed).

4.3 Concluding Remarks

In this chapter we applied the mapping process presented in Chapter 3 in
two case studies: Pulse Oximeter and ConnectOK.

The Pulse Oximeter is an equipment used inside Critical Care Units for
measuring the blood oxygen saturation of patients.

The ConnectOK is a mobile device used to reading water, energy and
gas consumption.

We applied the mapping process in these two case studies in order to
analyse and verify some interesting properties of that systems. First, we
obtained the CPN model and then open this model in CPN Tools to anal-
yse and verify some properties. At the analysis phase we investigate some
common properties, such as liveness, boudedness, repetitiveness, fairness
and conservativeness. After analysing this properties, we constructed some
specific queries to verify some properties. These queries are built based

on model checking language (CPN-ML) and State Space Queries. These
queries analyse the state space to verify if a condition is satisfied.

118 CHAPTER 4. CASE STUDIES

Chapter 5

Conclusion

This chapter brings a summary of the presented work and men-

tions some future works.

Nowadays, embedded systems are present in almost any human inter-
acting environment and activities. The crescent adoption of embedded-
system-controlled machines is direct related to the decreasing costs of such
systems.

Due to the cost and the complexity of embedded systems, containing
multiple hardware and software components, sophisticated communication
structure, the variety of possible solutions, performance, energy consump-
tion constraints, correctness and robustness, it is essential high-level system
design tools and methods, where functional and architectural description
validation and verification might be carried out. Improving system reliabil-
ity can be carried out by simulation or through formal analysis/verification
that is quite attractive because they spare exhausting simulations.

Over the last years, scenario based mechanisms have been adopted as
an interesting alternative for specifying system’s requirements. A more re-

cent way to specify requirements, which is popular in the realm of object-
oriented systems, is the adoption of Message Sequence Charts (MSCs).
However, MSCs have some drawbacks, since it can not specify what must
occur for all system executions, as well as it is unable of specifying anti-
scenarios.

The LSC language reduces some shortcomings inherent to MSC based
models, such as allowing the possibility of specifying liveness and anti-
scenarios. LSC allows modelers distinguishing between possible and neces-
sary behavior both globally (existential and universal charts), on the level
of an entire chart, and locally, when specifying events, conditions, and
progress over time within a chart. The Play-Engine is a powerful tool, in

119

120 CHAPTER 5. CONCLUSION

which LSC scenarios can be described and simulated. However, it does not
allow an analysis and verification of system’s properties.

Petri Net (PN) is, nowadays, a general tool for specifying a family of for-
mal specification models suit for representing synchronization, concurrency
or resource sharing. Therefore, PN could be used as a possible approach to
analysis and verification of system’s properties.

This work presented how to mapping the Live Sequence Chart (LSC)
language into an equivalent Coloured Petri Net (CPN) model [33, 34], in
which the obtained CPN model could be analysed and verified. As LSC
language has data-types and adopts high-level concepts such as method in-

vocation, Coloured Petri Nets have been adopted as a suit Petri net variant
since it supports complex data-types and a programming language (CPN-
ML) that improves value’s handling. Therefore, the proposition of a CPN
model for LSC allows verification and analysis of systems described in LSC,
hence, contributing for increasing designers’ confidence on the system de-
velopment process and reducing risks that may lead to project failure.

Throughout Chapter 3, the steps that must be applied in order to obtain
the corresponding CPN model (for each individual construction) have been
described. At the end of Chapter 3, we compared LSC and CPN seman-
tics by considering an example, which contains some of the presented LSC

constructions. This comparison method does not aim, at this point of our
research, being complete or even validating the mapping method.

After describing the steps to obtain a corresponding CPN model for
an LSC chart, we applied the proposed methodology in two case stud-
ies, presented in Chapter 4. In these case studies, the CPN models were
obtained through LSC2CPN engine, which automates the LSC translation.
After translating the LSC specifications, the obtained CPN models are anal-
ysed, in which some interesting properties are discussed. Besides analysis,
some specific properties were verified using ASKCTL formulas as a model
checking language and using state space queries.

This work brings an important contribution since it describes how to

mapping Live Sequence Chart into Coloured Petri Nets for properties anal-
ysis and verification of specifications based on LSC language, which may
be useful in the early stages of an embedded system project, reducing risks
that may lead to a project failure. However, there are some enhancements
that should be considered.

The proposed methodology does not map the whole set of LSC con-
structions, classes, symbolic instances and forbidden elements are not dis-
cussed. Classes and symbolic instances permit to specify more complicated
and more powerful scenarios. Through forbidden elements it is possible to
specify a more direct and flexible means for anti-scenarios.

121

Another drawback takes respect to the comparison process for LSC and
CPN semantics, presented in Chapter 3, that should be applied for more
examples, however, the presented example contains a representative set of
the LSC constructions explored in this work.

The verification process adopted in the case studies can be improved
by supplying an interface, in which the user could construct the queries
without the need to know the model checking language syntactic. The user
could define some parameters, then submits the verification request and
waits for the result, that could be presented as more detailed and explained
message.

In order to validate the correctness of the proposed methodology, a
more general validation process should be considered. A process algebra
semantics for the LSC language may help in the establishment of this vali-
dation process.

Additional work is necessary on the LSC2CPN engine for improving the
automation of the mapping process. Actually, the engine supplies the CPN
model as a CPN Tool [1] format. So the compatibility could be improved
to supply the CPN model as a more general format in order to permit that
the CPN model can be treated in different tools.

Embedded software has become much harder to design due to the di-

versity of requirements and high complexity. In such systems, correctness
and timeliness verification is an issue to be concerned. If we ally to this
mapping process, the capability to synthesize code to automatically gener-
ates a “safe” program source code [35], the risks of an embedded project
could be reduced.

Nowadays, time constraints can not be attached to individual LSC
events. Once an enhanced version of LSC language with support of time
constraints for events, the presented methodology could be improved to
deal with these time constraints and provide a way to execute a perfor-
mance evaluation of an embedded system described using this enhanced
LSC language.

122 CHAPTER 5. CONCLUSION

Appendix A

Support Engine

This appendix presents the LSC2CPN support engine, which is applied to
automatize the process of CPN model generation from LSC inscriptions.

The goal of this support engine is not carry through analysis and veri-
fication of properties of the specified system. This engine applies the pre-
sented mapping methodology, in which, a CPN model is obtained for each
LSC construction. Later, this individuals CPN models are joined in order to
provide a final CPN model, which can be analysed and verified with the aid
of a tool that offers such support, in this case the CPN Tools [1].

The LSC2CPN engine was built using JAVA [3] technology together with

JDOM [4], which is an additional library that allows manipulate XML [2]
files in an easy way. The input to this mapping engine is a XML file gener-
ated by Play-Engine, which contains the whole system specification, mod-
eled through LSC scenarios. After processing this input file, the LSC2CPN
engine applies the mapping process and generates a XML file as an output,
which contains the final CPN model that can be loaded into a specific tool
(CPN Tools) in order to execute properties’ analysis and verifying of the
modeled system.

The LSC2CPN operation flow can be summarized as follows:

1. Load the XML file provided by Play-Engine;

2. Create the corresponding CPN structure to represent LSC types and
classes defined by the user;

3. Create CPN variables to represent each instance inside each LSC chart

available in the specification;

4. Obtain the individual CPN model for each LSC construction inside a
LSC chart;

123

124 APPENDIX A. SUPPORT ENGINE

5. Join the CPN models obtained in the previous step, in order to find a
CPN model that represents a LSC chart;

6. Join all CPN models that represents an LSC chart;

7. Generate a XML file with the final CPN model that represents the LSC
specification passed as an input.

This support engine assists the process of properties’ analysis and veri-
fication of the modeled system, but does not automate the whole process
since each system has its particularities, becoming essential the availability
of a professional who knows CPN in order to realize the custom verification
of the modeled system.

Appendix B

Basic Theory

In this appendix it is presented the basic concepts on logic, theory of sets
and functions. Many of the definitions presented here can be found in
[47, 50].

B.1 Logic

A sentence (or proposition) is an expression which is either true or false.
The sentence “2 + 2 = 4” is true, while the sentence “Π is rational” is
false. It is, however, not the task of logic to decide whether any particular
sentence is true or false. In fact, there are many sentences whose truth
or falsity nobody has yet managed to establish; for example, the famous
Goldbach conjecture that “every even number greater than 2 is a sum of
two primes”.

Since there are expressions which are sentences under our definition,
we proceed to discuss ways of connecting sentences to form new sentences.

Let p and q denote sentences.

Definition. (Conjunctions) We say that the sentence p ∧ q (p and q) is
true if the two sentences p, q are both true, and is false otherwise.

Definition. (Disjunction) We say that the sentence p ∨ q (p or q) is true

if at least one of two sentences p, q is true, and is false otherwise.

Remark. To prove that a sentence p∨ q is true, we may assume that the
sentence p is false and use this to deduce that the sentence q is true in this

case. For if the sentence p is true, our argument is already complete, never
mind the truth or falsity of the sentence q.

Definition. (Negation) We say that the sentence p (not p) is true if the

sentence p is false, and is false if the sentence p is true.

Definition. (Conditional) We say that the sentence p → q (if p, then q)

125

126 APPENDIX B. BASIC THEORY

is true if the sentence p is false or if the sentence q is true or both, and is
false otherwise.

Remark. It is convenient to realize that the sentence p → q is false pre-
cisely when the sentence p is true and the sentence q is false. To understand
this, note that if we draw a false conclusion from a true assumption, then
our argument must be faulty. On the other hand, if our assumption is false

or if our conclusion is true, then our argument may still be acceptable.

Definition. (Double Conditional) We say that the sentence p ↔ q (p if
and only if q) is true if the two sentences p, q are both true or both false,
and is false otherwise.

B.2 Functions

Let A and B be sets. A function (or mapping) f from A to B assigns to
each x ∈ A an element f(x) in B. We write f : A → B : x 7→ f(x) or simply

f : A → B. A is called the domain of f , and B is called the co-domain of
f . The element f(x) is called the image of x under f . Furthermore, the set
f(B) = {y ∈ B : y = f(x) for some x ∈ A} is called the range or image of
f .

Two functions f : A → .B and g : A → .B are said to be equal, denoted
by f = g, if f(x) = g(x) for every x ∈ A.

It is sometimes convenient to express a function by its graph G. This is
defined by

G = (x, f(x)) : x ∈ A = (x, y) : x ∈ Aandy = f(x) ∈ B.

Definition. We say that a function f : A → B is one-to-one if x1 = x2
whenever f(x1) = f(x2).

Definition. We say that a function f : A → B is onto if for every y ∈ B,
there exists x ∈ A such that f(x) = y.

Remarks. If a function f : A → B is one-to-one and onto, then an
inverse function exists. To see this, take any y ∈ B. Since the function
f : A → B is onto, it follows that there exists x ∈ A such that f(x) = y.
Suppose now that z ∈ A satisfies f(z) = y. Then since the function f :
A → B is one-to-one, it follows that we must have z = x. In other words,
there is precisely one x ∈ A such that f(x) = y. We can therefore define an
inverse function f−1 : B → A by writing f−1(y) = x, where x ∈ A is the
unique solution of f(x) = y.

Remarks. Consider a function f : A → B. Then f is onto if and only
if for every y ∈ B, there is at least one x ∈ A such that f(x) = y. On the

B.3. SETS 127

other hand, f is one-to-one if and only if for every y ∈ B, there is at most
one x ∈ A such that f(x) = y.

Suppose that A, B and C are sets and that f : A → B and g : B → C
are functions. We define the composition function g ◦ f : A → C by writing
(g ◦ f)(x) = g(f(x)) for every x ∈ A.

Associative law. Suppose that A, B, C and D are sets, and that f : A →
B, g : B → C and h : C → D are functions. Then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

B.3 Sets

A set is usually described in one of the two following ways:

• By enumeration, e.g. 1, 2, 3 denotes the set consisting of the numbers

1, 2, 3 and nothing else;

• By a defining property (sentential function) p(x). Here it is important
to define a universe U to which all the x have to belong. We then
write P = {x : x ∈ U and p(x)istrue} or, simply, P = {x : p(x)}.

Suppose that the sentential functions p(x) and q(x) are related to sets P ,
Q with respect to a given universe, i.e. P = {x : p(x)} and Q = {x : q(x)}.
It is defined:

• The intersection P ∩ Q = {x : p(x) ∧ q(x)};

• The union P ∪ Q = {x : p(x) ∨ q(x)};

• The complement P = {x : p(x)};

• The difference P/Q = {x : p(x) ∧ q(x)}.

The above are also sets. It is not difficult to see that:

• P ∩ Q = {x : x ∈ P and x ∈ Q};

• P ∪ Q = {x : x ∈ P or x ∈ Q};

• P = {x : x /∈ P};

• P/Q = {x : x ∈ P and x /∈ Q}.

128 APPENDIX B. BASIC THEORY

The set P is a subset of set Q, denoted by P ⊆ Q or by Q ⊇ P , if every
element of P is an element of Q. In other words, if we have P = {x : p(x)}
and Q = {x : q(x)} with respect to some universe U , then we have P ⊆ Q
if and only if the sentence p(x) → q(x) is true for all x ∈ U .

Two sets P and Q are equal, denoted by P = Q, if they contain the same
elements, i.e. if each is a subset of the other, i.e. if P ⊆ Q and Q ⊆ P .

Furthermore, P is a proper subset of Q, denoted by P ⊂ Q or by Q ⊃ P ,
if P ⊆ Q and P 6= Q.

The following results on set functions can be deduced from their ana-
logues in logic.

Distributive Law. If P , Q, R are sets, then:

(a) P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R);

(b) P ∪ (Q ∩ R) = (P ∪ Q) ∩ (P ∪ R).

De Morgan Law. If P ,Q are sets, then with respect to a universe U :

(a) (P ∩ Q) = P ∪ Q;

(b) (P ∪ Q) = P ∩ Q.

In general, consider a sentential function of the form p(x), where the
variable x lies in some clearly stated set. It can be consider the following
two sentences:

• ∀x, p(x) (for all x, p(x) is true);

• ∃x, p(x) (for some x, p(x) is true).

Definition. The symbols ∀ (for all) and ∃ (for some) are called the
universal quantifier and the existential quantifier respectively.

Note that the variable x is a “dummy variable”. There is no difference

between writing ∀x, p(x) or writing ∀y, p(y).

Appendix C

Glossary

FIFO – First in, first out. An asset-management and valuation method in
which the assets produced or acquired first are sold, used or disposed of
first.

Java – A programming language introduced by Sun Microsystems. Java
is a multi-platform, platform-independent, object oriented programming
language. Java programs are not compiled, but rather interpreted as run.

GSM – Global System for Mobile communications, the most widely used
digital mobile phone system and the de facto wireless telephone standard
in Europe. Originally defined as a pan-European open standard for a
digital cellular telephone network to support voice, data, text messaging
and cross-border roaming. GSM is now one of the world’s main 2G digital

wireless standards.

GPRS – A packet switching technology for GSM networks. It’s an advanced

data transmission mode that does not require a continuous connection to
the Internet, as with a standard home modem. Instead, GPRS uses the
network only when there is data to be sent, which is more efficient.

ITU – International Telecommunication Union, an intergovernmental
organization through which public and private organizations develop
telecommunications. The ITU was founded in 1865 and became a United
Nations agency in 1947. It is responsible for adopting international
treaties, regulations and standards governing telecommunications. The
standardization functions were formerly performed by a group within the
ITU called CCITT, but after a 1992 reorganization the CCITT no longer
exists as a separate entity.

129

130 APPENDIX C. GLOSSARY

Bibliography

[1] CPN Tools. http://wiki.daimi.au.dk/cpntools/ cpntools.wiki.

[2] Extensible Markup Language. http://www.xml.org.

[3] Java Technology. http://java.sun.com.

[4] JDOM API. http://www.jdom.org.

[5] Products Web Page. http://www.ilogix.com/fs prod.htm.

[6] Rational RealTime tool. http://www.rational.com.

[7] G. Gullekson B. Selic and P. Ward. Real-Time Object-Oriented Modeling.
John Wiley & Sons, New York, 1994.

[8] Luciano Baresi and Mauro Pezzè. Improving UML with Petri Nets, vol-
ume 44. 2001.

[9] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification

Language LOTOS, volume 14, pp. 25-59. Computer Network and
ISDN Systems, 1987.

[10] Y. Bontemps and P. Heymans. Turning High-Level Live Sequence Charts

into Automata. 2002.

[11] G. Booch. Object-Oriented Analysis and Design, with Applications.
Benjamin-Cummings, San Mateo, California, 1994.

[12] A. Bunker and K. Slind. Property Generation for Live Sequence Charts.
Technical report, University of Utah, 2003.

[13] A. Burns and A. Willings. Real-Time Systems and Programming Lan-

guages. Addison-Wesley, 1997.

[14] CCITT. CCITT Recommendation Z.120: Message Sequence Chart (MSC).
Geneva, 1992.

131

132 BIBLIOGRAPHY

[15] P. Chen. The Entity-Relationship Model: Toward a Unified View of Data,
volume 1. 1976.

[16] S. Cook and J. Daniels. Designing Object Systems: Object-Oriented

Modeling with Syntropy. Prentice Hall, Upper Saddle River, Nova Jer-

sey, 1994.

[17] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence

Charts. Kluwer Academic, 2001.

[18] J. Rumbaugh G. Booch and I. Jacobson. The Unified Modeling Lan-

guage User Guide. Addison Wesley, 1999.

[19] HJ Genrich and K. Lautenbach. System modeling with high level Petri

Nets, volume 13. 1981.

[20] A. Pnueli Y. Lu H. Kugler, D. Harel and Y. Bontemps. Temporal Logic

for Scenario-Based Specifications. Lectures Notes in Computer Science.
Springer-Verlag, 2005.

[21] D. Harel. Biting the Silver Bullet: Toward a Brighter Future for System

Development. 1992.

[22] D. Harel. Statecharts: A Visual Formalism for Complex Systems, vol-
ume 8. The Weizmann Institute of Science, Israel, 1984.

[23] D. Harel and E. Gery. Executable Object Modeling with Statecharts.
1997.

[24] D. Harel and R. Marelly. Come, Lets Play: Scenario-Based Programming

Using LSCs and Play-Engine. Springer-Verlag, 2003.

[25] C. A. R. Hoare. Communicating Sequential Processes, volume 21. 1978.

[26] J. Campos J. Merseguer and E. Mena. Performance Evaluation for the

Design of Agent-based Systems: A Petri Net Approach. 1998.

[27] I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven

Approach. ACM Press/Addison-Wesley, 1992.

[28] K. Jensen. An Introduction to the Practical Use of Coloured Petri Nets,
volume 1492. Springer-Verlag, 1993.

[29] K. Jensen. An Introduction to the Theoretical Aspects of Coloured Petri

Nets, volume 803. Springer-Verlag, June 1993.

BIBLIOGRAPHY 133

[30] M. N. Oliveira Junior. Desenvolvimento de Um Protótipo para a Me-

dida Não Invasiva da Saturação Arterial de Oxigênio em Humanos –

Ox́ımetro de Pulso. MSc Thesis, UFPE, August, 1998.

[31] J. Klose and H. Wittke. An Automata Based Interpretation of Live

Sequence Chart. In Proceedings of International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’01), 2001.

[32] O. Kluge. Compositional Semantics for Message Sequence Charts based

on Petri Nets. Elektrotechnik und Informatik, September, 2002.

[33] M. Oliveira R. Barreto L. Amorim, P. Maciel and E. Tavares. A Method-

ology for Mapping Live Sequence Chart to Coloured Petri Net. IEEE,
2005.

[34] M. Oliveira R. Barreto L. Amorim, P. Maciel and E. Tavares. Mapping

Live Sequence Chart to Coloured Petri Nets for Analysis and Verification

of Embedded Systems. ACM, 2006.

[35] P. Maciel E. Tavares M. Oliveira A. Bessa L. Amorim, R. Barreto and
R. Lima. A Methodology for Software Synthesis of Embedded Real-Time

Systems Based on TPN and LSC. Springer-Verlag, December 2005.

[36] D. Lyonnard. Automatic Generation of Application-Specific Architec-

tures for Heterogeneous Multiprocessor System-on-Chip. New Orleans,
2001.

[37] G. De Micheli and L. Benini. Networks-on-Chip: A New Paradigm for

Systems-on-Chip Design. Paris, 2002.

[38] R. Milner. Calculus Communicating Systems. Springer-Verlag, 1980.

[39] T. Murata. Petri Nets: Properties, Analysis and Applications, volume
77(4). IEEE, April 1989.

[40] OMG. Documentation of the Unified Modeling Language.
http://www.omg.org.

[41] R. Lins P. Maciel and P. Cunha. Introdução às Redes de Petri e Aplicações.
X Escola de Computação Campinas-SP, 1996.

[42] B. Selic P. Ward and G. Gullekson. Real-Time Object-Oriented Modeling.
John Wiley and Sons, 1994.

134 BIBLIOGRAPHY

[43] D. Park. Concurrency and Automata on Infinite Sequences, volume 104.
Springer-Verlag, March 1981.

[44] L. Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

[45] J. Peterson. Petri Net Theory and The Modeling of Systems. Englewood
Cliffs, Pretice-Hall, 1981.

[46] C. Petri. Fundamentals of a Theory of Asynchronous Information Flow.
1962.

[47] Iain Phillips. Discrete Mathematics and Algorithm Analysis. Lecture
Notes for Computer Science.

[48] W. Reisig. Petri Nets, An Introduction. Springer-Verlag, 1985.

[49] W. Reisig and G. Rozenberg. Lectures on Petri Nets I: Advances in Petri

Nets, Lecture Notes in Computer Science 1491. Springer-Verlag, 1998.

[50] K. H. Rosen. Discrete Mathematics and its Applications. Prentice Hall,
second edition, 1999.

[51] J. Rumbaugh. Object-Oriented Modeling and Design. Prentice Hall,
Upper Saddle River, Nova Jersey, 1991.

[52] J. Sun and J. Dong. Model Checking Live Sequence Charts. Proceedings
of 10th IEEE International Conference on Engineering of Complex
Computer Systems, 2005.

[53] R. Paul C. Fan W. T. Tsai, L. Yu and X. Liu. Rapid Scenario-Based

Simulation and Model Checking for Embedded System. Proceedings of
International Conference on SEA, 2003.

[54] ISO/IEC JTC1/SC21 WG7. Enhancements to LOTOS. September,
2001.

[55] P. Heymans Y. Bontemps and Pierre-Yves Schobbens. From Live Se-

quence Charts to State Machines and Back: A Guided Tour, volume 31.
December, 2005.

[56] R. Zurawski and M. Zhou. Petri Nets and Industrial Applications: A

Tutorial, volume 41. 1994.

Figure C.1: Aprovação

