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1 Overview

This manual describes the Mercury tool: a software for supporting performance, dependability, and energy flow
modeling in an easy and powerful way. The tool provides graphical user interfaces for creating and evaluating
stochastic Petri nets (SPNs), continuous-time Markov chains (CTMCs), discrete-time Markov chains (DTMCs),
reliability block diagrams (RBDs), fault trees (FTs), and energy flow models (EFMs).

Mercury has been developed by MoDCS (Modeling of Distributed and Concurrent Systems) research group at
Informatics Center (CIn) of the Federal University of Pernambuco (UFPE) in Brazil since 2009. Here we describe
a comprehensive overview of the features as well as the steps to create, edit and evaluate the models supported

by the tool. The following is an overview of Mercury’s features:
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Figure 1: Mercury Tool - Features

Mercury has been developed in the Java language, which offers platform independence. The graphical
interface allows modeling of systems using one or more views — RBD, FT, EFM, SPN, CTMC, or DTMC — while
auxiliary modules (e.g., random variate generator and moment matching) are also available. In this way, users
can choose the view best suited to their needs.

In addition, Mercury provides a feature that allows you to import models created in other programs that use
the ”. TN” standard format (the one used in tools like TimeNet [1]). In addition, there is also an option to export
models created with Mercury to a ”. TN” file that conforms to this standard. All projects developed with Mercury

are saved in a ”.xml” file, which contains all information about the created models.



1.1 How to Install the Tool

The first step to installing the latest version of Mercury is to access the URLhttps://www.modcs.org/?page_
1d=2392. There is a license agreement that must be signed and sent to the Mercury developers before the user is
granted access to the download page.

Mercury is available on the MoDCS site in many flavors. There is the Mercury version with the Java runtime
environment (JRE) already configured and there is the version without the JRE. In the first case, the user simply
extracts the files into a folder and runs Mercury. In the version without the JRE, the user has to install and
configure the JRE on their machine. It is important to note that Mercury is not compatible with newer versions
of Java. From version 9 onwards, Java began to adopt a modular architecture called Java Platform Modular
System (JPMS) [ﬂ JPMS radically changed the way systems are developed in Java, and many classes that were
available in earlier versions no longer exist. Because of this, applications that have not yet been ported to this
new architecture will not work properly on Java 9+ versions, which is the case with Mercury. The recommended
version for running Mercury is JRE 1.8.

The Mercury installer contains executable files, a folder with third-party libraries, and a folder with example
models. If the user selects the version with the JRE, there is also a folder with the JRE. Mercury’s memory
footprint is approximately 60 MB, but may increase depending on the size of the models and the type of analysis

performed by the tool. When you start Mercury, the initialization screen shown in Figure[2]is displayed.

Mercury Tool::

MoDCS Research Group
www.modcs.org

Initializing... wait a moment

MoDCS

0740-540 - Recife - Brazil tesearch Group

Figure 2: Initialization Screen

Ihttps:/ /www.oracle.com/br/corporate/features/ understanding-java-9-modules.html
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1.1.1 Linux System Requirements

This subsection describes the minimum Linux system configuration required to run Mercury. Make sure that
the system meets these minimum requirements: 1) Java Runtime Environment (JRE) or Java Development Kit
(JDK) version 1.8; and 2) OpenJFX package. The OpenJFX package is required to run the Fault Tree module. On
Ubuntu, the administrator can use the following command to install OpenJFX: sudo apt-get install openjfx. The

Fault Tree module is not available if the last condition is not met.



1.2 Graphical User Interface (GUI)

Mercury offers six different views: (i) RBD, (ii) FT, (iii) EFM, (iv) SPN, (v) CTMC, and (vi) DTMC. In this section,
we briefly describe each of these views. Each formalism has its own section and more details about each view

can be found in the respective section.

1.2.1 RBD View

The Reliability Block Diagram (RBD) is a success-oriented modeling approach and allows the creation of a visual
representation of a system that shows how components contribute to the failure or success of a system. The RBD
view (see Figure[3) provides features for performing reliability and availability analysis for large and complex
systems using blocks. The types of block configurations supported by the tool are series, parallel, and k-out-of-n.
It also provides solution by closed-form equations, so results are usually obtained faster than by simulation
or numerical solutions of other models. In addition, users can add labels and run experiments for a specific
component. When you create a project, the default RBD model is created with an empty block. In the RBD
view, the default RBD model has an empty block named b1. The color of this block is gray, indicating that its
properties have not yet been defined. For more information about the support for RBDs provided by Mercury,

see Section3]
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Figure 3: RBD View



1.2.2 FT View

Fault Trees (FTs) and RBDs differ in their purpose. FT is a top-down logical diagram that allows you to create a
visual representation of a system that shows the logical relationships between the associated events and causes
that lead to a system’s failure. When you create a project, a default FT model is created with an empty top event
(see FigureEl). In the FT view, the default model presents a FAILURE top event. This event is called "undefined"

because no event leads to it. See Section[d|for more information about Mercury’s support for FTs.

¥ “Mercury Toel 5.2
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Figure 4: FT View

As we mentioned earlier, you need to install the JavaFX package to make the Fault Tree module avail-
able on Linux-based distributions. You can download it from the following URLhttps://www.oracle.com/
technetwork/pt/java/javafx/downloads/index.html|or install it from a Linux terminal. For Microsoft

Windows systems, no additional packages need to be installed.


https://www.oracle.com/technetwork/pt/java/javafx/downloads/index.html
https://www.oracle.com/technetwork/pt/java/javafx/downloads/index.html

1.2.3 EFM View

The Energy Flow Model (EFM) view provides functionality to calculate sustainability and cost estimates for data
center power and cooling infrastructures, taking into account the energy constraints of individual devices. EFM
models represent the flow of energy between system components in terms of their respective efficiency and the
maximum energy each component can deliver (for electrical devices) or the maximum cooling capacity (for
cooling devices). Figure[5|represents an example of an EFM model. See Section[7|for more information about

the support Mercury provides for EFMs.
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Figure 5: EFM View



1.2.4 SPN View

With respect to stochastic Petri nets, Mercury allows evaluations to be performed by simulation or numerical
analysis (i.e., numerical solution of the underlying Markov chains). Both types of evaluations allow the com-
putation of transient and stationary metrics. Time-dependent metrics are obtained by performing transient
evaluations, while stationary metrics are obtained by performing stationary evaluations. Figure[6]shows the SPN

view with an SPN model as an example. See Section[2|for more information about Mercury’s support for SPNs.
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Figure 6: SPN View



1.2.5 CTMC View

The CTMC view provides features for drawing and evaluating continuous-time Markov chains (see Figure[7).
Numerical solutions of CTMCs can be performed by stationary or transient analyzes. There are two methods
for computing stationary metrics: GTH (Grassmann-Taksar-Heyman) and Gauss-Seidel. Transient metrics are
calculated by default using the "Uniformization” method (also known as Jensen method), but the user can also
use the ”4th-order Runge Kutta” method. Sensitivity analysis is also available in the CTMC view. The rate of each
state transition can be defined using polynomial expressions related to user-defined variables (referred to as
parameters/definitions on Mercury). Parameter names may contain Greek letters. In addition to states and
transitions, users can also define reward rates associated with states. In such a case, CTMCs become Markov
reward models. For models with absorbing states, Mercury also allows users to calculate the probability of
absorption and the mean time to absorption. The user can create custom metrics by formulating expressions
that can contain state probabilities. Parameters and metrics can be easily viewed and modified in the CTMC

editor. For more information on the support Mercury provides for CTMCs, see Section|[5]

i.%?‘ “*Mercury Tool 5.2
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Figure 7: CTMC View



1.2.6 DTMC View

The DTMC view provides features for drawing and evaluating discrete-time Markov chains (see Figure [8).
Numerical solutions of DTMCs can be performed by stationary or transient analyzes. There are two methods for
computing stationary metrics: GTH (Grassmann-Taksar-Heyman) and Gauss-Seidel. The parameter names may
contain Greek letters. For models with absorbing states, Mercury also allows the calculation of the absorption
probability and the mean time to absorption. The user can create custom metrics by formulating expressions
that refer to state probabilities. Parameters and metrics can be easily viewed and modified in the DTMC editor.

For more information about the support Mercury provides for DTMCs, see Section@

3 Mercury Taol 5.2 — O *
Eile View Evaluate | Tools Script Preferences Help

E=m

Project ' RBI DTMIC B / = SPN View CTMC ] w ~ Results

min/max values) Crrl+aAr-S

F 3
=
BN

53 54

Metric0: 0.5833333292
A0S

Figure 8: DTMC View



1.3 Main Menu

Mercury’s main menu is shown in Figure[9] As we can see, Mercury has seven main menu items. Some menu
items in each main menu item have keyboard shortcuts associated with them. To illustrate this, Figure[I0]shows

the options available in the File menu.

File View Evaluate Tools Script  Preferences  Help

Figure 9: Main Menu

New
Open
Open Recent
Corl-5

Ctrl+Shift-5

Import TH File  Ci-l
“ Export TN File Ctd-E

Corl-G

Figure 10: Menu File

Next, we describe the options available in the File menu.

¢ New. Create a project. When you create a project, all modeling views are made available and initialized
empty, except for the RBD and FT views, which each start with a default component with no probability

assigned. Shortcut: Ctrl + N

Open. Open a project. Mercury only allows you to open files in the Mercury project file format with the
"xml” extension. However, Mercury allows importing models created in other engines that use the ”. TN”

standard format. Select the option "Import TN File” to import files in this format. Shortcut: Ctrl+ O

¢ Open Recent. Here you can see a list of the twenty-five latest projects.

Save. Save the latest project changes to the current file or to a new file for a new project. When you save a
project for the first time, a window appears where you can select a location and enter a name for the file to

be created. Shortcut: Ctrl + S

¢ Save As. Save the current project to a new file by specifying a new location and name for the file. Shortcut:

Ctrl + Shift+ S

10



¢ Import TN File. Import files in the “.TN” standard. Shortcut: Ctrl + I

¢ Export TN File. Export the project to a file in the . TN” standard. Shortcut: Ctrl + E

¢ Close. Close to tool. Shortcut: Ctrl + Q

Let us now describe the View menu (see Figure[TT). In this menu the user can show/hide the views provided
by the tool: RBD, FT, EFM, SPN, CTMC, and DTMC. Figures and show the main window with the six views

visible and hidden respectively.

EBD Model
ET Model

EFM Model
SPN Model

CTMC Model
DTMC Medel

Figure 11: Menu View

‘%? Mercury Tool 5.2

|1 RED Model
=) bl

2 Labels BEGIN &—— —= END

b1

Figure 12: Mercury with the Six Views Visible
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¥ Mercury Tool 5.2 — [} e

Script  Preferences  Help

B SAAKABR=E 43

Results

Figure 13: Mercury with the Six Views Hidden

Let us now describe the Evaluate menu (see Figure[T4). This menu contains a menu group for each formalism
supported by the tool. A menu group is only active when the corresponding model view is active in the main
window. The menu items available in each menu group for each formalism are described in the following

sections.

Evaluate

DTMC Evaluation

Figure 14: Menu Evaluate

Next, we describe the options available in the Tools menu (see Figure[15).

Tools
EMA Tool
E RVG Ctrl-R
Moment Matching Ctri+Shift-L
TTR/F Calc Ctrl-M

ﬂ Evaluate External RBDs Ctri+Al-E

B8 Generate Random Numbers Ctrl+Shift-G

Figure 15: Menu Tools

EMA Tool. An Expectation-Maximization Auto-fitting (EMA) algorithm is a fundamental technique for parame-

12



ter estimation in statistical models when handling clustered data. The EMA tool implements an algorithm
that provides a robust approach to parameter estimation in complex models. It is suitable for scenarios
where data points have unknown probabilities of belonging to different clusters and these clusters follow
known distributions with unknown parameters. The main goal of the EMA tool is to iteratively estimate
the parameters for each cluster such that they maximize the likelihood of the observed data. This itera-
tive process starts with the initial parameter values, computes the posterior probabilities, optimizes the
parameters, and repeats until convergence, i.e., until the change in the incomplete log-likelihood is less
than a predefined threshold. The EMA tool supports two types of evaluations: simple and random search.
In simple evaluation, the user specifies the punctual values to be considered for the number of clusters
and number of phases parameters (see Figure[17). In random search evaluation, the algorithm tries to
find the number of clusters and phases that provide the best convergence considering the minimum and
maximum acceptable values for each parameter (see Figure[18). The plot shows how the model fits the
actual data (see Figure[19). This allows users to assess how well the model describes the behavior of the
data. The tool can also extract expressions from the fitting (see Figure[20). The EMA tool has applications

in clustering, density estimation, and probabilistic modeling. See Section|C|for more information.

—J]
Expectation Maximization Auto-fitting Tool

Initializing... wait a moment

L ¥ 1 Academic

MoDCS rch Group
www.modcs.org

Cln - Centro de Informatica UFPE
Cidade Universitaria - 50740-540 - Recife - Brazil

Figure 16: The Expectation Maximization Auto-fitting Tool

RVG stands for Random Variate Generator. A module to support the generation of random numbers, providing
a large number of probability distributions. Statistical summaries considering the generated numbers are
also provided, such as standard deviation, variance, mean, skewness, and kurtosis (see Figure. Results
can be exported for supporting analyzes using other software. RVG is used by the SPN simulator, which

supports the evaluation of models with non-exponential times.

Moment Matching [2]. Supports estimates of which exponential-based probability distribution best fits the
mean (first moment) and standard deviation (second moment) of an empirical distribution (see Figure.

By supporting numerical evaluations of metrics for models that have non-exponential times associated

13



|£| Expectation Maximization Auto-fitting (EMA) Tool - 1.0

File Help

File:
C\Marco\release’\ EMA_1.0rc2\dfd. bt Input Parameters x s Simple Evaluation...

Pararr
Times: Result * Errors

Epsilon:

Max. iterations: =
MNumber of clusters: =
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Lower percentile: =

:

Upper percentile:

default OK | | Cancel

Figure 17: EMA - Simple Evaluation

| & Expectation Maximization Auto-fitting (EMA) Tool - 1.0

File Help Input Parameters

File:

Marcohrelease\EMA_1.0rc2\dfd. et . Simple Evaluation...

Epsilon:
Result * Errors

iterations:
Number of runs:
Min. clusters:

Max. clusters:

Lower percentile:

Upper percentile:

Copy default OK | | Cancel

Figure 18: EMA - Random Search

with them.

MTTR/F Calculator. Enables calculation of MTTR (mean time to repair) and MTTF (mean time to failure) using

the availability and reliability curves as input parameters. Reliability is a time-dependent metric that

indicates the probability of something working under certain conditions over a given period of time.

System reliability R(#) can be defined as follows [3]:

R(H = exp[j/l(t)dt]
0

where A(#) corresponds to failure rate over time ¢. However, if A(#) is constant, reliability can be evaluated

14
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Figure 19: An EMA Fitting Result
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pressions | | Plot result
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Figure 20: Expressions from an EMA Evaluation

as,

R(H)=e M,

For instance, by supposing the system failure rate is 0.5[1~'], then reliability curve should be the following

(see Figure 15):

MTTF and MTTR can be calculated by using the following expressions [3]:

(o 9)
MTTF = | R(t)dt
0

MTTF

MTTR= ———F—F—
availability

-MTTF

15



¥ Random Variate Generator (RVG) - [m] b3
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Figure 21: RVG Module
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Figure 22: Moment Matching

Figure[24]shows the MTTR/F Calculator window where users should specify Availability and a CSV file
without headers and with two columns to specify the evaluation time and reliability value. Using the File

button we can refer to a file containing time and reliability values.

After specifying the parameters, the user should calculate the results by pressing the Calculate button.
Figure [25| shows an example of a result obtained by calculating MTTR and MTTF values. For a more

detailed example, see the following videohttps://youtu.be/Hmu5DX3CJICg.

Evaluate External RBDs. Module that allows us to calculate availability metrics for external RBD files created

according to a specific format.

Generate Random Numbers. This module allows us to generate random numbers that follow a certain proba-
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Figure 23: Reliability Over Time
*F MTTR/F Calculator >
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Figure 24: MTTR/F Calculator

Result it

MTTR = 0.
MTTF = 100.

Figure 25: MTTR/F Calculator Result

bility distribution. It supports a large number of probability distributions. First, the user must enter the

size of the sample and select the probability distribution that will guide the generation of the numbers.

After that, you need to specify the value for each parameter of the selected distribution. Before you start

generating numbers, you need to select the location where the file with the generated sample will be

saved.

Export Model to Mathematica/Sage. This feature exports SPN/CTMC models to Wolfram Mathematica lan-

guage/SageMath format (see Figure[26). When exporting to Mathematica, Mercury creates the nb file to

be opened in Mathematica.

Let us now describe the menu “Script” (Figure[27). In this menu, the user can generate the representation
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Export model to Mathematica/5age =

Output Format:

® Mathemnatica 9/10 output format]

StateDiagrams.m package output format

Generate linear system

Generate linear systern (Sage Math)

Figure 26: Export model to Mathematica/Sage

of the active model in the scripting language format or create a script from scratch. Clicking the "Generate
script” menu converts the active model into a script so that it can be evaluated and modified in the script editor.
Figure[28]shows the script editor with a script representation of an SPN model. Mercury also provides scripts as
examples. To open them, simply click on the menu item representing the script and it will open in the script

editor. See Chapter[8|for more information about the Mercury scripting language and its grammar.

SPM with erlang distribution

Sensitivity analysis - Design of experiments
Sensitivity analysis - Percentage difference
Hierarchical model

Performability model

Energy flow model + availability model

For loop example
DRBD + reward rate

RED with variable number of blocks

Figure 27: Menu Script
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inputs [P2],
37 outputs = [P2],

38 delay = ( type = "Normal", parameters = [ Average = 48
35 1;

40

41 timedTransition TE4(

42 inputs = [P4],

43 outputs = [P2],

44 inhibitors = [PB],

45 delay = 8.1

46 1;

47

48 metric A = staticnarySimulation( expression = "P{(#P2:8)0R(
45

51 main {
52 A = solve( Model,A )
3 println(a);

1
Output

0.99992910701231073

Figure 28: Script Editor

1.4 Main Toolbar

The main toolbar provides access to some of the most commonly used features in Mercury, such as creating
or saving a project. It appears at the top of the main window, just below the menu bar. Figure shows the

command buttons on this toolbar, each represented by an icon. The following items describe each of the buttons.

1 2 3 4 5 6 7T 8 3% 1N

Figure 29: Main Toolbar

1. New. Create a project. Shortcut: Ctrl + N

2. Open. Open a project. Shortcut: Ctrl+ O

3. Save. Save project changes to the current file or to a new one in case of a new project. Shortcut: Ctrl + S
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10.

11.

1.5

. Save As. Save the project to a new file. Shortcut: Ctrl + Shift+ S

. RBD Evaluation. Perform a myriad of evaluations using the RBD model. It is enabled only when the RBD

view is active.

. RBD Bounds Evaluation. Perform bounds evaluations for the RBD model. This feature is enabled only

when the RBD view is active.

. RBD Experiment. Perform experiments with the RBD model. It is enabled only when the RBD view is

active. Shortcut: Ctrl + F11.

. RBD Importance Measures. Calculates the importance for each component in the RBD model. It is

enabled only when the RBD view is active. Shortcut: Ctrl + F4

. Structural and Logic Functions. Obtain the structural and logical functions of the current RBD model. It

is enabled only when the RBD view is active. The structural function is a function related to the states
of the RBD blocks. The system and its components can be in a working or failed state. The system state
is a binary random variable determined by considering the states of its components. If the states of
the components are known, then the state of the system is also known. The state of a component can
be changed by accessing the properties of the block. When the state of a component is "failed”, the
component is indicated by an explosion icon on the block. Figure[30|shows as an example the logical

function of a system without failed blocks.

SPN Stationary Simulation. Start the SPN stationary simulator. It is enabled only when the SPN View is

active.

SPN Transient Simulation. Start the SPN transient simulator. It is enabled only when the SPN View is

active.

Drawing Area

Mercury supports six formalisms and provides a modeling view for each of them — RBD, FT, EFM, SPN, CTMC,

and DTMC. It also provides another view to display the results produced by the simulators. Click on the View tab

in the main window to activate the respective visualization. Views can be made visible and invisible. To do this,

the view must be checked or unchecked on the View menu.

The drawing area is an empty area where you can add components for a formalism. To add a component,

you usually have to click on a button that represents the component in the toolbar. After that, you must click on

the desired location within the canvas to insert the selected component there — except for RBDs and Fault Trees.

Figure[31]shows the drawing area of the SPN view.
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“F Structural and Logic Functions (REDY) -

Get Structural Function || | Get Logic Function

Structural Function | Logic Function
Failed Blocks:
(bl) v ((b2)~(b3))

The System is: Working!

Figure 30: Logic Function of a RBD model

w ' €» FTView ' €» EFM View | ©* 5PN View * e» CTMC View ' €» DTMC View ' Results

o | fAd@d ¢ Slel K]

Graphic View

Figure 31: SPN Drawing Area

On the left side of the main window, there is a tab for each formalism, as we can see in Figure When
you access these tabs, all the components that make up the current model are displayed. You can access a
component’s properties by double-clicking on it. In this example, the SPN tab is active. Each time a component
is inserted into the drawing area or one of its properties is updated, the panel on the left is also updated.

The editor provides smoother handling of components on the canvas, allowing users to move and position

elements effortlessly. It provides visual assistance through vertical and horizontal alignment lines when adding,
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Project ' RBD " FT ' EFM | |SPN|" CTMC ' DTMC
5PN Model

- Places

o A Definitions

Figure 32: Left-Side Panel

resizing, or moving components on the canvas, ensuring precise alignment (Figure[33). In addition, users can
fine-tune component positioning with the keyboard arrow keys for precise control over element placement.
Mercury also allows the user to press the CTRL + G keys to activate and deactivate grid mode. When active, this
mode draws several lines on the canvas to help align components, as shown in Figure[34} These features give the

user complete control over layout and positioning, improving the presentation of the model.

<> EFM View | ¢> SPN View

> CTMC View ' «» DTMC View ' Results

<> RBD View
SPM1 T+

@ ([MIBO &%

<> FT View

O

PO

Graphic View

30/213Mb

Figure 33: Editor Showing Alignment Lines

Mercury supports the creation of projects that allow the creation of multiple models of the same formalism
in a single file. A new model is created by clicking the ”+” button under the tab of the selected formalism, as
shown in Figure[35] A new tab will then be created (see Figure[36). The user also has the option to rename,
remove or duplicate the model. These options are available from the popup menu that appears when the model
tab is right-clicked (see Figure[37). If the user chooses the "Rename” or "Duplicate” option, the new name of the

model can be entered in the dialog (see Figure[38).
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«> RBD View e FTView > EFM View | ©> 5PN View “e» CTMC View * «» DTMC View ‘ Results

SPNT &

e (11 B0

Figure 34: Grid lines

«» RBD View ' #» FTView ' #» EFM View | €» 5PN View

SPN1 +

e 1180

Figure 35: Adding a New Tab

«» RBD View ' ¢» FTView ' ¢» EFM View | ¢* 5PN View ' «

SPM1/ 5PN 2 "+

® |1 1800

Figure 36: SPN with Two Models

¢» RBD View ' ¢» FTView ' ¢» EFM View | ¢» 5PN View ' «

SPM1/)SPT"T
Rename

{  Remove E m

Duplicate

Figure 37: Popup Menu for Tabs

Rename pod

g(; Please enter the new name

0K

Figure 38: Renaming a Model
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Mercury now supports drag-and-drop rearrangement of model tabs. This allows you to customize the layout
of your workspace by simply clicking on a tab and moving it to the desired location (see Figure[39). By allowing
tabs to be rearranged at will, the feature improves control over the workspace so that it is better tailored to the
user’s specific needs and improves the overall user experience. This feature is especially valuable for projects
where users frequently work with multiple models and need a flexible way to keep everything well organized

and easily accessible.

SPMN1 SPM2 SPMN3 SPM4 SPMNS5 SPMNE SPMT

i

SPN2 'SPN3 "SPN4 'SPNS5 ‘SPNG ‘SPNT '+

(b) After

Figure 39: Tab Reordering with Drag and Drop
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2 SPN Modeling and Evaluation

Mercury is a complete tool for modeling SPNs. In the SPN view, users can create models by adding components
such as places and transitions. Figure[40]shows a model with two transitions — one timed and one immediate

—, and two places. Below we describe the process of modeling SPNs with Mercury.

«» RBD View > FTView = ¢» EFM View [ ©» 5PN View = ¢» CTMC View ' ¢» DTMC View ' Results

SPM1T "+

Figure 40: SPN Model

Figure[d1]shows the SPN toolbar. Some buttons on the SPN toolbar are used to model SPNs. This toolbar is

visible when the SPN view is active. In the following we describe each button.

SO B N

Figure 41: SPN Toolbar

1. Selection.

. Turns on the selection mode. This mode allows you to select components on the drawing area.
- "R When this mode is enabled, you can select more than one component in the drawing area by
holding down the SHIFT key while clicking on the components. Another way to select a group
of components is to create a selection area. A selection area is created by holding down the left

mouse button while moving the mouse. All components that are in this area will be selected.

2. Place.

Adds places to the model.
Users should click on the “Place" button and then click on the desired location into the drawing
area.

By default, new places do not have tokens.
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3. Immediate Transition.

Inserts immediate transitions into the model.
Users should click on the “Immediate Transition" button and then click on the desired location

into the drawing area.

4. Exponential Transition.

Adds exponential transitions to the model.

Click the "Exponential Transition” button and then click the desired location in the drawing area.

5. Non-Exponential Transition.

Adds non-exponential transitions to the model.

Users should click on the "Non-Exponential Transition" button and then click on

6. Definition.

A

7. Metric.

M

Adds definitions to the model. Click the "Definition" button, and then click the desired location
in the drawing area. A definition is a variable that stores a numeric value. It may be associated
with some properties of other SPN components. In this case, Mercury takes into account the
current value of the definition for the property being referenced. References are made by entering
the name of the definition as the value of the property or within an expression. Definitions can
be associated with markings for places, priorities and guard expressions for transitions, distri-
bution parameters for exponential transitions, weights for immediate transitions, multiplicity
expressions for arcs, and expressions for metrics. More than one property can refer to the same
definition. Definitions are useful to support experiments. In this case, by changing the value of a

definition, you can evaluate the effect of that change on a metric.

Adds metrics to the model. Click the "Metric" button and then click the desired location in the
drawing area. Basically, a metric is an expression used to evaluate a property of the model. A
metric can be useful for evaluating whether a certain state has been reached or how much time it

took to perform a certain activity.
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8. Show/Hide Arcs Labels.

1
—

Hides/shows the labels above the arcs. This type of label indicates the multiplicity of the arc. The
multiplicity of arcs indicates how many tokens are consumed or generated at certain places. In
the case of inhibitor arcs, it indicates how many tokens a place must have for a transition not to

activate.

9. Turn Connection Mode On/Off.

+

Turns connection mode on/off.
When the connection mode is on, it is possible to connect places with transitions and vice versa,

using arcs.

10. Turn Default/Inhibitor Arc Mode On/Off.

N

11. Undo.

)

12. Redo.

(™

This button allows you to select the type of arc to be used to connect transitions and places. You
can choose between two types of arcs: standard and Inhibitor arcs. Inhibitor arcs may only be
used to connect places with transitions. When you create a new project, the standard arc is active

by default.

Undo recent changes from the model.
All recent changes are stored and can be rolled back, one after another.

Shortcut: Ctrl+Z

Redo recent changes undone to the model.

Shortcut: Ctrl+Y

13. Remove.

(¥

Removes selected components from the model. If you select a group of components, all com-
ponents will be removed by clicking this button. You can also delete components by pressing
DEL or right-clicking the selected component and choosing "Remove”. If you remove a place or a

transition, its arcs will also be removed.
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14. Default Scale.

‘ﬁ Apply standard scale to the drawing area.
N N

15. Scale Up.

+ﬁi Each click scales the drawing image up by 107% percent (zoom in).

Nty

16. Scale Down.

_‘ﬁ Each click scales the drawing image down by 10% percent (zoom out).

AY

17. Token Game.

m Token Game is a feature that allows us to evaluate graphically the behavior of an SPN model. By
turning the Token Game on, transitions enabled for the current marking will be highlighted, and
the user can double-click on one of them in order to fire it. By firing, a new marking is reached,

and, depending on that, new transitions may become enabled and others become disabled. By

continuing this firings process, it is possible to check whether the model behaves as expected.

18. Export to PDE

This feature allows users to export their models to PDF files.

Now let us look at the interaction within the drawing area. When you right-click on an SPN component, a

popup menu appears. All components have a popup menu associated with them that contains at least two

items:

* Remove. Removes the selected component from the model.

* Properties. Displays the "Properties” dialog box, where the user can change the properties of the selected

component.

Figure[42]shows the pop-up menu for transitions.

This menu displays three menu items. Rotation is an action available only for transitions.
* Rotation. Rotates the selected transition. Transitions can be positioned horizontally or vertically. Figure[43]
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Remove Remove

Rotation Fotation

Properties Properties
Figure 42: Popup Menu of Transitions

shows an immediate transition in horizontal position. All arcs of the transition are readjusted when it is

rotated.

TIO

Figure 43: An Immediate Transition Positioned Horizontally

Let us now describe the properties of timed transitions. To view them, you should right-click on the respective
transition, as shown in Figure[42} and then click on the "Properties” item. Another option is to double-click
on the timed transition. A third way is to double-click on the transition’s representation on the left side of the
window. All roads lead to Rome. It is important to emphasize that this last option is available for all components
of the model. Figure[44]shows the properties of a timed transition.

Next, we describe each one.

¢ Name. Name for the transition. It is used to identify the component in the model. Mercury accepts only
alphanumeric characters and underscores. Also, the name must start with an alpha character. If this rule
is not followed, an error occurs. Also, it is not possible to assign a name that is already used by another

component of the same type.

¢ Priority. Firing priority assigned to the transition. The higher the priority, the higher the priority in firing.

It is important to emphasize that immediate transitions always have priority over timed transitions.

¢ Guard Expression. A Boolean expression that allows a transition to be activated and fired. Apart from the
fact that the current marking allows it, a transition is activated and can be fired only if the guard expression

assigned to it evaluates to true.

The current version of Mercury does not support floating-point literal in the guard expression. Figure[45]
shows an example of how this occurs. To overcome this limitation, it is necessary to insert a definition/-
variable with the floating point value. In our example, we have defined a double definition named X. Once
created, the definition can be referenced in a guard expression, as shown in Figure[46] We are working on

solving this issue and will release a new version once this issue is solved.
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[l Timed Transition *

Properties
Marme:
Pricrity:
Guard Expression:

Server Type:

Description:

Probability Distribution:  [Exponential

Distribution Parameter(s)

Mean delay:

OK | | Cancel

Figure 44: Properties of Timed Transitions

¢ Server Type. The firing semantic assigned to the timed transition. The user can choose one of the two
available options. These options are single server semantic (SSS) and infinite server semantic (ISS). In SSS,
a transition only becomes enabled and can fire only once every instant. In ISS, the number of tokens in
the input places of a transition defines the enabling degree for that transition. The enabling degree defines

the degree of parallelism of the transition.

¢ Description. Each component of the model can be assigned a description. It contains additional informa-
tion about the component or about the real component/subsystem/action represented by the component.
The description aims to improve the understanding about the model being created. It has no semantic

value in evaluating the model. It is just plain text attached to a component.

¢ Probability Distribution. Mercury supports a large number of probability distributions. If all timed
transitions are exponential, the model can be evaluated by numerical analysis or simulation. On the
other hand, if there is at least one non-exponential timed transition, the model can only be evaluated by
simulations. Depending on the selected distribution, fields appear for the parameters of this distribution,

in which the user can enter the values. Only non-negative real values may be entered for each parameter.
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|:| Timed Transition
Properties
MName:
Priority:
Guard Expression: (#PO+2P3)/#P2==05

Server Type:  [Single Server

An error occurred while evaluating the guard expression.
Use parenthesis for establish the relationship between components,
Ex.: Do not use thi =1 0R #P1 = 2}. Use this ((#P0=1)OR[#P1=2)).

ou need to y the name of identifier(s).

Probabilit;

Distribution. . w. e e

Figure 45: Error when Using Floating-Point Literal in Guard Expressions

Mercury supports the following probability distributions:

— Beta

— Binomial

— Burr

— Cauchy

— Chi-squared

— Deterministic

— Discrete Uniform
- Erlang

- Exponential

— F Fisher-Snedecor
- Frechet

- Gamma

— Generalized Extreme Value
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D #:0.5 - DOUBLE

TED
[ Timed Transition >

Properties
Mame:
Priority:
Guard Expression: (EP0+2P3)/EP2<=X

Server Type:  |Single Server

Description:

Probability Distribution:  |Exponential

Distribution Parameter(s)

Mean del ay

OK || Cancel

Figure 46: Solution to Refer Floating Values in Guard Expressions

- Generalized Pareto
— Geometric

— Hypergeometric

— Logistic

— Log-logistic

- Log-normal

- Nakagami

— Normal

— Pareto

— Pearson Type 6

— Poisson
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Rayleigh

Student’s t-distribution

Triangular

Uniform

— Weibull

Some probability distributions require only one parameter called "Delay” which corresponds to the delay
in triggering the transition. In addition to the delay, other parameters may be required depending on
the distribution chosen. For example, the exponential distribution requires only the mean delay. The
Erlang distribution, on the other hand, requires two parameters: mean delay and shape. The normal
distribution requires two parameters: mean and standard deviation. Each probability distribution has its

own parameters that must be entered by the user before performing any evaluations.
Now, we describe the properties of immediate transitions (see Figure[47).

I 'mmediate Transition X

Properties

Marne:
Priority:
Weight:

Guard Expression:

Description:

Figure 47: Properties of Immediate Transitions

Following we describe each one. For the sake of conciseness, we will describe only those properties that we

have not yet described.

¢ Name. Name for the immediate transition. It is used to identify the transition in the model.
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e Priority. See page 25.

¢ Weight. Weight of the transition.

¢ Guard Expression. See page 25.

¢ Description. See page 26.

Now, let us see the properties of places (see Figure[48).

¢ Name. Name for the place. It is used to identify the component in the model.

¢ Marking. The number of tokens assigned to the place. Only non-negative integer values may be entered.
It is possible to append an integer definition to the marking property once the definition has been created.

To do this, the user only needs to enter the name of the definition in this field.

¢ Description: See page 26.

{:_} Place pod

Properties

Mame:

Marking:

Description:

Figure 48: Properties of Places

Figure[49]shows the pop-up menu of arcs.
This menu contains four menu items. “Insert break” and “Adjust the line style to...” are items specifics for

arcs.

¢ Insert Break. Inserts a break point at the clicked location. If you click on the break point and keep the
mouse button pressed, you can move this point to the desired position. This way you can change the

shape of the arc.

¢ Adjust the line style to rectangular/curved line. Mercury supports two line styles for arcs: rectangular
and curved. The curved line style is the default style. To switch to the rectangular style, simply click the
appropriate menu item for the selected arc. Figure[50|shows an SPN with a rectangular arc and Figure[51]|

shows an SPN with a curved arc.
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O
Remowve

P4
Insert Break
Adjust the line style to rectangular line
Properties
Figure 49: Menu of Arcs
P2 TE1
Figure 50: SPN with a Rectangular Arc
p2 TE1

Figure 51: SPN with a Curved Arc

Figure[52|shows the properties of arcs. As we can see, arcs only have one property:

e Multiplicity: Multiplicity of the arc, that is, the weight for that arc. It represents the number of tokens
required if the arc is an output arc of a place, or it represents the number of tokens generated in a place if

the arc is an input arc to that place.

In some dialog boxes we see a button with an ellipsis as its description. This button is always next to a text
box, as highlighted in Figure[53]

Clicking this button opens the Expression Editor (see Figure[54).

The expression editor is a text editor that allows you to easily create expressions to define guard expressions
and metrics. It is a simple editor that highlights parentheses, brackets, and braces and some keywords. The
editor has a button to reduce the font of the text and another one to enlarge it. This makes it easy to define even

large and complex expressions.
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| £ Arc Properties *

Arc Properties

vutipicy: (N

QK Cancel

Figure 52: Properties of Arcs

[ Timed Transition >

Properties
Mame:
Priority:
Guard Expres

Server Type:

Description:

Figure 53: Accessing the Expression Editor

| £ Expression Editor w

. (#P5>0) AND|(#P2>3)|

QK | | Cancel

Figure 54: Expression Editor
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Now let us take a look at the properties of the "Definition” component. We have already described this
component on page 21. When you access the properties of a definition, the dialog box shown in Figure 55]is

displayed. Below we describe each property of this component.
¥ Definition x
Properties
MName:

Value:

Type ™ Int Double

Description:

QK | | Cancel

Figure 55: Properties of Definitions

¢ Name. Name for the definition. It is used to identify the definition in the model.
¢ Value. Value represented by the definition.

* Type. A variable can store two types of numeric values: Integer and Double. When you set the properties
of a definition, you must select the appropriate type for the value entered. If you select the INT type and

enter a Double value, an error occurs.

¢ Description. See page 26.
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An important point to note is that definitions are variables that store numeric values, as we mentioned earlier
in this section. A definition cannot reference another definition, but it can be referenced by other components of
other types. When you update the properties of a definition, a confirmation dialog appears if it is referenced by
other components. If the definition is referenced and the values entered in the fields are valid, the corresponding
properties will be updated accordingly. Figure[56/shows what happens when the user tries to update a referenced

definition.

Update of References to Definition b

Do you really want to update references to the definition?
A All references to this definiton will be updated.

Mumber of references found: 8

REFEREMCES TO THE DEFIMNITION MSA

B S S

= Transiticn TE2: reference located in the guard expressicon.

= Transition TI: reference located in the guard expression.

» Place P1: reference located in the marking.

» Input arc of the transition TEQ: reference located in the multiplicity expression.

» Qutput arc of the transiticn TE1: reference located in the multiplicty expression,
» Inhibitor arc of the transition TE2: reference located in the multiplicty expressicn.
» Metric REWITEM1: reference located in the expression,

» Metric REWITEMZ: reference located in the expression,

Figure 56: Confirmation to Update the References to a Definition

As we can see, all found references to the definition are displayed. The user must confirm to update the
definition and all properties of other components that reference it. If you cancel the operation, the definition
will not be updated. This behavior is intended to prevent the model from becoming corrupted. If you reference
a definition that does not exist or store an invalid value for the property, no evaluations can be performed.

Figure[57]shows the update log that is displayed after the update operation finishes successfully.
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|£:] Log - Update of References to Definition >

###########################################1

UPDATIMG REFEREMCES TO THE DEFIMITION: N5A2

B B R R S

= UPDATING GUARD EXPRESSION FOR THE TRAMSITION TE2
Guard expression for this transition has been successfully updated.

= UPDATING GUARD EXPRESSION FOR THE TRAMSITION TIO
Guard expression for this transition has been successfully updated.

= UPDATING MARKIMNG FOR THE PLACE P1
Marking for this place has been successfully updated.

= UPDATING MULTIPLICITY EXPRESSION FOR THE INPUT ARC OF THE TRAMSITION TEC
Multiplicity expression for this arc has been successfully updated.

= UPDATING MULTIPLICITY EXPRESSION FOR THE CQUTPUT ARC OF THE TRAMSITION TE1
Multiplicity expression for this arc has been successfully updated.

= UPDATING MULTIPLICITY EXPRESSION FOR THE INHIBITOR ARC OF THE TRAMSITION TE2
Multiplicity expression for this arc has been successfully updated.

= UPDATIMNG EXPRESSION FOR THE METRIC REWITEM1
Expression for this metric has been successfully updated.

= UPDATIMNG EXPRESSIOM FOR THE METRIC REWITEMZ
Expression for this metric has been successfully updated.

Close

Figure 57: Updating References to a Definition

In this dialog the user can see if all references have been updated successfully. If errors occur during this
process, they are displayed in the log. An example of an error occurring is when a definition of INT has been
defined with a positive integer value and is referenced by the marking property of a place. If you change the type
of the definition to DOUBLE or enter a negative value, the new value of the definition will not be included in the
marking property. As is known, it is not possible to define a negative integer value as a marking, so the new value
will not be accepted. In such cases, the properties that are referenced are set to their default values, as we can

see in Figure[58}
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|£ Log - Update of References to Definition et

UPDATING REFEREMCES TO THE DEFINITION: M5A

« UPDATING MARKIMNG FOR THE PLACE P1

Marking must be a non-negative integer and it makes a reference to a definition with a negative integer,
Marking for this place has been set to the default value.

« UPDATING MULTIPLICITY EXPRESSION FOR THE INHIBITOR ARC OF THE TRANSITION TE2

An error cccurred while evaluating the multiplicity expression.
Multiplicity expression for this transition has been rermoved.

Please check the old expression and makes adjustments as needed.
After that, the expression can be assigned for the arc again.
Expression removed: NSA

Figure 58: References Updating with Errors

When removing a definition, the same confirmation dialog is displayed as we can see in Figure[59} When the

user confirms the removal, all properties referencing the definition are set to their default values (see Figure[60).

Rermowval of References to Definition oo

Do you really want to remove the definition?
A All references to this definiton will be removed.
WARNING: CHANGES CANNOT BE UNDONE!

Yes Mo

Mumber of references found: 1

REFEREMCES TO THE DEFIMITION M54

» Transition TEQ: reference located in the probability distribution.
Parameter "Mean delay" makes a reference to the definition.

Figure 59: Confirmation to Remove a Definition
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|Information ot

g; References have been successfully remowved.

Figure 60: Invalid References are Removed

Now let us take alook at the properties of the component "Metric”. We have already described this component
on page 21. When you access the properties of a metric, the dialog box shown in Figure[61]opens. Below we

describe each property of the metric.
& Metric *
Properties

Mame:

Expression:

Value:

Description:

0K | | Cancel

Figure 61: Properties of Metrics

¢ Name. Name for the metric. It is used to identify the metric in the model.

¢ Expression. Expression evaluated by performing analyzes or simulations. The expression can be used,
for example, to obtain the state of the model at a given time or the time to perform an activity. In the

appendices you can find the syntax for creating simple and complex expressions.
¢ Value. Stores the value of the metric obtained from the last analysis or simulation.
¢ Description. See page 26.

Mercury has a feature that enhances both the usability of the tool and the readability of the models. Once an

SPN component is inserted, you can read its properties on the drawing area by placing the mouse pointer over
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it. A tooltip will then appear showing all the properties of the component. As we can see in Figure[62} all the

properties of a transition appear in the tooltip. Mercury provides this feature for all components of all supported

formalisms.

Figure 62: Tooltip for a Transition

Mercury provides for evaluations of SPN models, analyzes and simulators. Steady-state and transient metrics
can be evaluated for both. These features can be found in the "Evaluate” menu under the ”SPN Evaluation” option.
They can also be accessed by clicking on the command buttons on the main toolbar (see Figure[63] and[64).

Next, we will introduce the simulators and then the analyzes.

Evaluate

. Stationary Simulation  Cwl-Fs
¢ Transient Simulation  Cirl-F&

Stationary Analysis Ctrl-F7
 Transient Analysis Ctri-F&

Structural Analy Ctri-F10

Figure 63: SPN Menu

Figure 64: Accessing the SPN Simulators



2.1 SPN Simulation

Models with non-exponential transitions can only be evaluated by simulations. Mercury provides two types
of simulators. The stationary simulator provides steady-state metrics and the transient simulator provides
time-dependent metrics. We will introduce the stationary simulator below and describe the transient simulator

in the next section.

2.1.1 Stationary Simulation

Figure[65]shows the input parameters for the stationary simulator. These parameters are detailed below.

Stationary Simulation >
Confidence Level %

Max. Relative Erro

Min. # of Firing for each Transition

Min. Warm-up Time

Batch Size

Min. Simulation Time (sec)

Max. Simulation Time (sec)

Experiment

Figure 65: Stationary Simulator

¢ Confidence Level. The confidence interval for obtaining the metrics.
¢ Max. Relative Error %. Defines the maximum relative error in order to stop the simulation.

¢ Min. firing for each Transition. Sets the minimum number of firings for each transition. This is another
condition to stop the simulation. If you enter a value greater than 0, the simulation will not stop until the
number of firings for each transition is equal to or greater than the defined value and the error criteria has
been reached or the maximum elapsed time has been reached, if defined. If you enter the value "0" for

this input parameter, the simulator will not consider this stopping condition.

¢ Min. Warm-up Time. Defines the minimum warm-up period. The warm-up phase is the period when the
model is not in steady state and no metrics are collected during this period. There are some methods to

support evaluation of when the model enters steady state, but Mercury requires the user to define the
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period of the transient phase. We plan to implement some estimation methods in future versions to detect
the end of the transition phase. Since we are evaluating stochastic models, it is expected that the warm-up
period is not a deterministic value when a series of simulations are performed. Therefore, the user defines
a minimum warm-up time. Once the global simulation time is equal to or greater than the user-defined

warm-up time, the simulation starts generating batches, collecting metrics, and calculating statistics.
Batch Size. Defines the number of samples that will compose each batch in the simulation.

Min. Simulation Time (sec). This time corresponds to physical time and must be expressed in seconds.
This time can help us perform simulations in cases where the model may have rare events. Rare events
occur when the difference between the delays assigned to the transitions is huge. Rare events may be the
reason why there is no variation in the simulation error. Therefore, the simulator cannot proceed with the
simulation by estimating the required number of batches to achieve the desired relative error. Entering a
minimum simulation time prevents the simulator from stopping the simulation if the initial number of
batches has no variation in the error. If you enter a value greater than 0, the simulation will stop if the
global time is greater than this time and the simulation error is less than or equal to the relative error, or
if other stop conditions are met. If there is no change in error until the minimum time is reached, the

simulation will stop. If you set the value 0 for this parameter, this stop criterion will not be considered.

Max. Simulation Time (sec). It is used to define the maximum time of a simulation. This time corresponds
to the physical time and must be specified in seconds. If one of the stopping conditions is not met before
this time is reached (minimum simulation time, maximum relative error and number of firings for each
transition), then the simulation will stop when this time is reached. If you assign the value 0 to this

parameter, this stopping criterion will not be taken into account.

Experiment. Experiment allows us to run a series of simulations by changing the value of a particular
parameter in each simulation. The change of parameters can be linear or logarithmic. The value of the
parameter is changed considering a step size and a minimum and maximum value. At the end of an
experiment, Mercury presents a graph showing the impact of each value change on the selected metric. In

this graph the user can see the average value and confidence intervals for each point.

Figure[66|shows the stationary simulator in action.

The information displayed in this window is self-describing. The stationary simulator has two tabs. The

" Batches and Errors” tab displays the logs of the processed batches and the relative error of the simulation up to

that point (see Figure[67). The " Transitions Firings” tab shows the number of firings for each fired transition, as

well as the percentage of firings relative to the other fired transitions (see Figure[78).

The simulation finishes when one of the following is reached: maximum relative error, minimum simulation

time when there is no variation in the error, maximum simulation time, or the minimum number of firings for

each transition and the error has also been reached, whichever comes first. At the top of the window there is
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S Stationary Simulation *

Simulation Progress:

MNumber of transitions

oes it have reached the m,

Batches and Errors Transitions Firings

Batch: 129 Error %: 8.804509063256237
Batch: 130 Error %: 8.770580193070293
Batch: 131 Error %: 8.73704056661038
Batch: 132 Error %: 8.703882797784892
Batch: 133 Error %: 8.6710996952412
Batch: 134 Error %: 2.638624255813601
Batch: 135 Error %: 8.606629658238704
Batch: 138 Error % 8.374920257125442
Error %: 8.34357657716761
Error %: 8.312565307587487
Error %: 2.481889296799709
Error %: 8.451542347285165
Error %: 8.42151921066519
Error %: 8.301813582066892
Batch: 143 Error %:_8.362420100070908

Stop Simulation

Figure 66: Stationary Simulator

Batches and Errors * Transitions Firings

Error % 1.640667359372358
Batch: 3716 Error %% 1.6404467873119666
Batch: 3717 Error %5 1.64022610435040%6
Batch: 3718 Error % 1.6400055104277727
Batch: 3719 Error %% 1.6397250054341971
Batch: 3720 Error %% 1.6395645894593325
Batch: 3721 Error %5 1.6393442622950322
Batch: 3722 Error % 1.639124023930107
Batch: 3723 Error %% 1.6389033743053237
Batch: 3724 Error %% 1.6386838133611554
Batch: 3725 Error % 1.6384633410320281
Batch: 3726 Error % 1.638243957276635
Batch: 3727 Error %% 1.6380241620174076
Error % 1.637804455201046

Figure 67: Batches and Errors

Batches and Errors | Transitions Firings

[TED = 7735 (0.2500%)
TET = 7735 (0.2500%)
TE4 = 7735 (0.2500%)
o = 7735 (0.2500%)

Figure 68: Transitions Firings

a progress bar that shows the progress of the simulation. This simulation progress is subject to adjustments

depending on the simulation, as the previously estimated number of batches to reach the relative error can be
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re-estimated, changing the overall progress of the simulation. In addition, the user can pause, resume, and stop

the simulation at any time (see Figure[79).

Stop Simulation

Figure 69: Buttons on the Stationary Simulator

When a simulation is complete, the user can export the result as plain text or as a spreadsheet (MS Excel)

(see Figure[70). Considering the result of a simulation, a variety of statistics are calculated.

Export Simulation Data (MS Excel) | | Export Simulation Data (Plain Text)

Figure 70: Export Buttons

Some statistics generated by the simulator are:

¢ Sample Size

e Mean

e Midrange

¢ Minimum

¢ 1st Quartile

¢ 2nd Quartile

¢ 3rd Quartile

e Maximum

¢ IQR (interquartile range)

* Range

* RMS (root mean square)

e Variance

¢ Standard Deviation

¢ Mean Absolute Deviation

e Coeff. Of Variation

e Sum

¢ Sum of Squares
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¢ Skewness

e Kurtosis

Standard Error

¢ Relative Error

At the end of the simulation, the result is displayed on the "Result" tab of the main window. Figure
shows the example model we used in the simulator. Listing[2]shows an example of the output generated by the

simulator. In this example, only one metric was evaluated.

TEOD

A: 0.9999333664497002

Figure 71: SPN Model for Stationary Simulation
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Listing 1: Stationary Simulation Result

STATIONARY SIMUILATION RESULT

Confidence Level %: 95.0

Max. Relative Error %: 1.0

Min. Firing for each Transition: 0
Max. Simulation Time: 0

Min. Warm—up Period: 50

Warm-up Period: 5135.85

Global Time: 453749665.85

Batch Size: 30

Batches: 10000

Transitions Firings: 300001
Fired Transitions: 4

Non-Fired Transitions: 2

Fired Transitions

TEO = 75001 (0.2500%)
TE1 = 75000 (0.2500%)
TE4 = 75000 (0.2500%)
TIO = 75000 (0.2500%)

Non-Fired Transitions
TE2

TE3

Descriptive Statistics

Metric : A, P{(#P0>0)OR(#P2>0)}

Result: 0.9999833664497092

Nines: 4.7790150443977675

Confidence Interval: [0.9999833628996808,0.9999833699997376]
Standard Error: 1.811053049610908E-9

Error %: 1.0
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Sample Size, n: 10000

Midrange: 0.9999817534036552

Minimum: 0.9999784761307453

1st Quartile: 0.9999833204467997

2nd Quartile: 0.9999833471453827

3rd Quartile: 0.9999833889670042

Maximum: 0.9999850306765653

IQR: 6.852020451031393E-8

Range: 6.5545458199922635E-6

RMS: 0.9999833664497279

Variance, sA2: 3.2799131485049696E-14
Standard Deviation, s: 1.811053049610908E-7
Mean Absolute Deviation: 6.560655693113038E-8
Coeff. Of Variation: 1.8110831743539695E-7
Sum: 9999.833664497091

Sum Sq: 9999.667331761308

Skewness: -11.6910502101944

Kurtosis: 233.18498785918288

Now we will show you how to perform experiments in the stationary simulator. Figure[72|shows the dialog

box that appears when you confirm the simulation input parameters and enable the “Experiment” option.

Options

Parameten -

k

Type: ™ Linear (! Logarithmic

Metric:  |A

Figure 72: Executing an experiment in the Stationary Simulation

In this window, the user must select the parameter to be changed, its minimum and maximum values,
whether the value should be changed linearly or logarithmically, and the step size if the value is changed linearly.
If the change is logarithmic, it is considered as a base-10 logarithmic function. Also, the user must select the
metric to be evaluated. At the end of the simulation, a graph is created that takes into account the value of the

metric for each change in the parameter value. As can be seen in Figure[73} the mean value and its confidence
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interval are plotted for each point. When you move the mouse pointer over the point representing the mean, the
values of the confidence intervals are displayed as a tooltip. Figure[74]shows the result of a stationary simulation

experiment with a base-10 logarithmic variable.

1?‘ Experiment Result *

Experiment Result

Experiment Qutput: A
T T T

0.95000

0.80000

0.85000

0.80000 -|x=2.0. y=0.7828862385253526 [0.7785328118445765, 0.7872396652061286]

0.75000 [

0.70000

0.65000

0.80000

0.55000

0.50000

Toggle ¥-As ew | | Show Labels Exportto XML | | Close

Figure 73: Output of a Stationary Simulation Experiment for an SPN Model - Variable k Linearly Changed

% Experiment Result hat

Experiment Result

Experiment Qutput: A
T —T T T T TTT

1.00000 -

0.95000

0.80000

0.65000

0.80000

0.75000

0.70000

0.65000

Show Labels Exportto XML | | Close

Figure 74: Output of a Stationary Simulation Experiment for an SPN Model - Logarithmic Variable
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2.1.2 Transient Simulation

Models with non-exponential transitions can only be evaluated by simulations. Transient simulations can be
used when the user is interested in evaluating metrics at a particular point in time. A transient simulation
consists of a series of replications and each replication consists of a series of runs. Each run runs from time 0
until time t), specified by the user in the "time” parameter, is reached. When the current set of runs is finished,
the value of each sampling point of the current replication is calculated. The replication represents the mean
values of the points in its set of runs.

The transient simulator can be accessed from the menu Evaluate -> SPN Evaluation -> Transient Simulation.

Figure[75|shows the input parameters for the transient simulator. Each parameter is described below.

Transient Simulaticn >
Transient Simulation| " MTTA Analysis
Resolution Method DES + Linear Regression 1
Confidence Level

Maximum Relative Error 5

o0

Time

# Sampling Points

# Replications

# Runs (for each replication)
Minimurn # Firing for each Transition
Minimurmn Simulation Time (sec)
Maximum Simulation time (sec)
Experiment

Select the location where the results will be saved.
undefined

Reset to Default Run Cancel

Figure 75: Input Parameters for the Transient Simulator
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¢ Resolution Method. Mercury supports two methods of calculating the values of the points in the transient

simulation.

"DES + Linear Regression 1” calculates the value of each point at the end of each run by linear interpolation
between two known points. When the number of runs of a replication has been performed, the values of
each point in the current set of runs are collected and its average value is assigned to the same point in the

current replication.

"DES + Linear Regression 2” calculates the value of each sampling point of the current replication when
the set of runs has been performed. Unlike the first method, this method calculates the value of each point
of the current replication considering its entire set of runs. This method applies linear regression between
several known points. For each sampling point, this method considers two sets of events. The first one
comprises the set of the last events that occurred before the evaluated point. The second set consists of
the first events that occurred at the evaluated point or after it. In each run, the events that occurred before
the evaluated point and the events that occurred at the evaluated point or after are collected. For each
set of points, the mean value of the metric and the mean time of occurrence of the events are calculated.

Then the value of the metric for the current sampling point is estimated.
¢ Confidence Level. The confidence interval for obtaining the metrics.
¢ Max. Relative Error %. Defines the maximum relative error in order to stop the simulation.

* Time. Sets the evaluation time (t'). Each run starts with time 0 until time t’ is reached. This time can be
divided into different intermediate points and each metric is evaluated for each point. The intermediate

points are defined by the number of sampling points.

¢ Sampling Points. Specifies the number of sampling points that will be evaluated during the simulation.
The time interval from time 0 to time t’ is divided into intermediate points considering this number of
sampling points. If the user chooses to evaluate only one sampling point, only the value of the metric at

time t’ will be considered.

¢ Replications. Sets the initial number of replications of the simulation. If the initial number of replications
is reached and the simulation error has not yet been reached, then the simulator estimates a new number
of replications to reach the desired error, taking into account the current state of the simulation. The
simulator re-estimates the number of expected replications to reach the simulation error whenever the

number from the last estimation is reached and the error is not yet reached.

¢ Runs. Specifies the number of runs for each replication. As we mentioned earlier, each replication consists
of a series of runs. Each run starts at time 0 until time t’ is reached. When the number of runs for the
current replication is reached, the values for time t’ and any intermediate times are calculated and assigned

to the current replication. A new replication is then initiated unless the stop criteria are met.
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¢ Min. firing for each Transition. Sets the minimum number of firings for each transition. This is another
condition to stop the simulation. If you enter a value greater than 0, the simulation will not stop until the
number of firings for each transition is equal to or greater than the defined value and the error criterion
has been reached or the maximum elapsed time has been reached, if defined. If you enter the value "0" for

this input parameter, the simulator will not consider this stopping condition.

¢ Minimum Simulation Time (sec). This stopping criteria defines the minimum elapsed time of a simulation.
This time corresponds to the physical time and must be specified in seconds. This criterion can help us
run simulations when the model may have rare events. Rare events occur when the difference between
the delays associated with the transitions is huge. Rare events may be the reason why there is no variation
in the simulation error. Therefore, the simulator cannot proceed with the simulation by estimating the
necessary number of replications in order to reach the desired relative error, since the relative error has
not changed since the beginning (it is 0). Entering a minimum time avoids stopping the simulation in
this case. If the minimum time is reached and there has been no change in error, the simulation will stop.
Otherwise, the simulation continues until the error or another stop criterion is reached. If you enter the

value ”0” for this input parameter, the simulator will not consider this stopping condition.

¢ Maximum Simulation Time (sec). This stopping criteria defines the maximum elapsed time of a simu-
lation. This time corresponds to the physical time and must be specified in seconds. If the stop criteria
(minimum simulation time, maximum relative error, and number of firings for each transition) are not
met before this time is reached, the simulation will stop when this time is reached. If you set the value "0"

for this input parameter, the simulator will not consider this stopping criterion.

¢ Experiment. Experiment allows us to run a series of simulations by changing the value of a particular
parameter in each simulation. The change of parameters can be linear or logarithmic. The value of the
parameter is changed considering a step size and a minimum and maximum value. At the end of an
experiment, Mercury presents a graph showing the impact of each value change on the selected metric. In

this graph, the user can see the average value and confidence intervals for each point.

¢ Location. Before you start the simulation, you must specify the location where you want to save the

results.

Figure[76|shows the transient simulator in action.

The information displayed in this window is self-describing. The transient simulator has two tabs. The
" Replications and Errors” tab displays the logs of replications processed and the relative error up to that point
(see Figure[77). The " Transitions Firings” tab shows the number of firings for each fired transition, as well as the
percentage of firings relative to other fired transitions (see Figure[78).

The simulation finishes when one of the following is reached: maximum relative error, minimum simulation

time when there is no variation in the error, maximum simulation time, or the minimum number of firings for
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¥ Transient Simulation X

Current Replicatio

Simulated time: Number of transit

pling points:

Global time:
_ Mumber of transitions that have reached the min. num
Current run:
MNumber of
Current replication: et
Number
Estimated replic

Replication: 1962 Error: 2.257613204928635
Replication: 1963 Error: 2.2570430882309447
Replication: 1964 Error: 2.2564684120326213
Replication: 1963 Error: 2.253834173974708
Replication: 1966 Error: 2.2533203740992234
Replication: 1967 Error: 2.25474701184918
Replication: 1968 Error: 2.2541740266683807
Replication: 1963 Error: 2.2536015980024167
Replication: 1970 Error: 2.2530295432966644
Replication: 1971 Error: 2.252457927938287

Pause | | Stop Simulation

Figure 76: Transient Simulator

Transitions Firings

Replication: 1962 Error 2.257618204928655
Replication: 1963 Error 2.2570430888300447
Replication: 1964 Error 2.2564684120326213
Replication: 1965 Error 2.253804173974708
Replication: 1966  Error 2.2533203740992234

Replication: 1967  Error 2.25474701184918
Replication: 1968  Error 2.25417402866685807
Replication: 1969  Error 2.2536015980024167
Replication: 1970 Error 2.2530295432066644
Replication: 1971 Error 2.252457927993287

Figure 77: Replications and Errors

each transition and the error has also been reached, whichever comes first. At the top of the window there is
a progress bar that shows the progress of the simulation. This simulation progress is subject to adjustments
depending on the simulation, as the previously estimated number of replications to reach the relative error may
be re-estimated, changing the overall progress of the simulation. In addition, the user can pause, resume, and
stop the simulation at any time (see Figure[79).

A large number of statistics is computed by considering the result of a simulation. Some statistics generated

by the simulator are:

e Sample Size
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Replications and Errors | Transitions Firings|

117151 (0.4738%)
60223 (0.2436%)
0 (0.0000%)
69879 (0.2826%)
0 (0.0000%)

Figure 78: Transitions Firings

Stop Simulation

Figure 79: Buttons on the Transient Simulator

Mean

Midrange

Minimum

1st Quartile

2nd Quartile

3rd Quartile

Maximum

IQR (interquartile range)

Range

RMS (root mean square)

Variance

Standard Deviation

Mean Absolute Deviation

Coeff. Of Variation

Sum

Sum of Squares
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¢ Skewness
e Kurtosis
¢ Standard Error

¢ Relative Error

At the end of a simulation, the result is displayed on the "Result" tab of the main window. Listing[2]shows an

example of output generated by the transient simulator. In this example, only one metric was evaluated.

Listing 2: Transient Simulation Result

H#HBHHHHRHHHARHHHHRHHH AR AR A

TRANSIENT SIMUILATION RESULT

HHHBHHHHHAAHRRR A AHRR R

Results have been successfully saved in the following directory:

G:\ Modelos\

Input Parameters

Resolution Method: DES + LINEAR REGRESSION 1
Confidence Level %: 90.0

Max. Relative Error %: 10.0

Simulated Time: 100.0

Number of Sampling Points: 5

Number of Replications: 30

Number of Runs: 20

Min. Firing for each Transition: 0

Min. Simulation Time(sec): 0

Max. Simulation Time(sec): O

Result

Replications: 100 (the simulation has been finished on

this replication)

Transitions firings: 11219
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Fired transitions: 3

Non-fired transitions: 2

Transitions Firings Log

TEO = 5338 (0.4758%)
TE1 = 2714 (0.2419%)
TE2 = 0 (0.0000%)
TIO = 3167 (0.2823%)
TI1 = 0 (0.0000%)

Descriptive Statistics

Metric: MRT, ((E{#P0})+(E{#P3}))/((1/Arrival)* (1-(P{#P1=0})))
Simulated Time: 100.0

Result: 47.525

Nines: NaN

Confidence Interval: [45.39652245547025,49.65347754452975]
Standard Error: 1.2819133229968283

Error %: 10.0

Sample Size, n: 100

Midrange: 53.75

Minimum: 25.0

1st Quartile: 38.75

2nd Quartile: 45.0

3rd Quartile: 56.25

Maximum: 82.5

IQR: 17.5

Range: 57.5

RMS: 49.20683387498123

Variance, sA2: 164.33017676767705
Standard Deviation, s: 12.819133229968282

Mean Absolute Deviation: 10.179999999999996
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Coeff. Of Variation: 0.26973452351327265
Sum: 4752.5

Sum Sq: 242131.25

Skewness: 0.5220765348073639

Kurtosis: -0.0317526461636799
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2.1.3 MTTA Simulation

Mercury provides a type of evaluation in the transient simulator that evaluates the behavior of absorbing models

and generates a large number of results from them. Figure[80]shows an example of an absorbing model.

PO TEO P1 TE1 p2

Figure 80: Absorbing SPN Model

Mean time to absorption (MTTA) simulation is accessed by following the menu depicted in Figure[81}

Evaluate

Stationary Sirmulation

» Stationary Analysis Ctrl-F7

¢ Transient Analysis Ctrl-F&

Structural Analysis Ctri-F10

y Sensitivity Analysis (min/max values) Cui+Al-5

Figure 81: Accessing the Transient Simulator

By accessing this menu, a window with two tabs is displayed (see Figure[82). The first tab contains the input
parameters for the default transient simulator (see previous section). The second tab ("MTTA Analysis") contains

the input parameters for the MTTA simulation, which are described below:

* Confidence Level %. Confidence interval for generating the statistics.

¢ Number of Samples. Number of samples that the simulator will collect. After the samples are collected,

statistics are generated from them.

¢ Relative Error %. Maximum relative error to be considered. The MTTA simulation stops only when the

relative error of the simulation is equal to or smaller than the relative error defined by the user.
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Transient Simulation hod

Transient Simulation

Confidence Level S

Murmnber of Samples:

%! Numnber of Samples

Relative Error

Cancel

Figure 82: MTTA Analysis Dialog

At the end, a window displays the results of the transient simulation for the absorbing model being evaluated.
The “Summary" tab provides statistics about the simulation. As we can see in Figure 83} a large number of
statistics are calculated. Listing[3]shows the output of an MTTA simulation in detail.

‘f Transient Simulation - MTTA Analysis x

PDF ' CDF
TRANSIENT SIMULATION RESULT

Sample Size, n: 1000

Mean: 61863.599855982065

Nines: MaN

Confidence Interval (95.0%): [61310.605210763424,62416.59430120071]
Standard Error: 281.8034826026818
Relative Error (%): 3.162277660168379
Midrange: 66370.30885868458

Minimum: 37794.47142699976

1st Quartile: 53520,35342493853

2nd Quartile: 61357.24789040277

3rd Quartile: 67805.55171304397
Maximurn: 94946.14629036942

IOR: 12285.198288105443

Range: 57151.67486336966

RMS: 62501.51019571655

Variance, s*2: 7.9413202807E7

Standard Deviation, = 8911.408573521092
Mean Absolute Deviation: 7127.0523778263905
Coeff. Of Variation: 0.14404930515183384
Sum: 6.1863599855982065E7

Sum 5q: 3.9064387767432607E12
Skewness: 0.20633434070873952

Kurtosis: -0.07520528277738636

Export Simulation Data Close

Figure 83: MTTA Result - Summary
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Listing 3: MTTA Result

MITA TRANSIENT SIMULATION RESULT

Sample Size, n: 1000

Mean: 61863.599855982065

Nines: NaN

Confidence Interval (95.0%): [61310.605210763424,62416.59450120071]
Standard Error: 281.8034826026818
Relative Error (%): 3.162277660168379
Midrange: 66370.30885868458

Minimum: 37794.47142699976

1st Quartile: 55520.35342493853

2nd Quartile: 61357.24789040277

3rd Quartile: 67805.55171304397
Maximum: 94946.14629036942

IQR: 12285.198288105443

Range: 57151.67486336966

RMS: 62501.51019571655

Variance, s/A2: 7.9413202807E7

Standard Deviation, s: 8911.408575921092
Mean Absolute Deviation: 7127.0523778263905
Coeff. Of Variation: 0.14404930519185394
Sum: 6.1863599855982065E7

Sum Sq: 3.9064387767452607E12

Skewness: 0.20633434070873952

Kurtosis: -0.07520528277738636

The “PDF” tab displays the probability density function of the generated data (see Figure[84). The cumulative
distribution function of this data is displayed on the "CDF" tab (see Figure[85). By placing the cursor on any blue
point of the plotted curve, the tool will display the x-axis and y-axis values as a tooltip (see Figure[86). The user

also has the option to export the result to a MS Excel spreadsheet (an .xIs file).
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? Transient Simulation - MTTA Analysis

Summary

Probability Density Function
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~@— Mean Time to Absorption
I T
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Figure 84: MTTA Result - PDF

Export Simulation Data

? Transient Simulation - MTTA Analysis

Summary ' PDF
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Figure 85: MTTA Result - CDF

.

(57,631.63028020706, 0.323) |

Figure 86: X and Y Axis Values
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2.2 SPN Analysis

Stationary Analysis and Transient Analysis both compute results by generating the underlying CTMC related
to the state space of the SPN model being evaluated. Stationary analysis computes steady-state probabilities,
useful for evaluating the long-term average behavior of modeled systems. Transient analysis, on the other hand,
computes time-dependent probabilities, useful for evaluating the behavior of modeled systems at a particular
point in time.

As of Mercury version 5.2, the tool provides two methods for storing the CTMC states underlying the SPN
models evaluated during the state space generation process for the application of analytical solutions. The first
method (“memory”) is the traditional method, where the state space of the model is stored only at RAM. In the
second method (‘disk”), the CTMC states are stored on disk during state space generation, making it possible
to generate large CTMCs on computers where the amount of RAM is limited. Both methods are available for

stationary and transient analysis.

2.2.1 Stationary Analysis

Figure [87|shows the “Stationary Analysis” window, which has a combo box for selecting one of two solution
methods available: Direct - GTH (Grassmann-Taksar-Heyman) and Iterative - Gauss-Seidel.

When solving a model through GTH, the user can change the maximum error used in the algorithm. The
default value for the maximum error is 0.0000001 (10~7). Clicking the "Run” button will trigger the solution

algorithm and once it is finished, the results will be displayed in the text area at the bottom of the window (see

Listing[4).

Listing 4: Stationary Analysis for an SPN

Tue Feb 11 07:01:25 BRT 2020
Performing stationary analysis...
Generating CIMC. ..

CIMC generated ... (1s)

Executing GIH numerical method...
Done! (elapsed time: 1s)
S0=0.9903691816162996

$1=0.009630818383700439

When solving the model by Gauss-Seidel, the user can change not only the maximum error but also the
maximum number of iterations. The default value for such a parameter is “-1”, which means that the algorithm
will not stop until the convergence of the results is reached, taking into account the error entered in the input

dialog (see Figure[88).
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% Stationary Analysis >

Method:
Direct - GTH
[terative - GALISS-SEIDEL
Experiment Save CTMC Matrix CTMC Size:

Options

Error: 0.0000001 lterations (]

Analysis
Current Iteration: Current Error:

Results:

Figure 87: Stationary Analysis Window

Metrics are updated as soon as the analysis is complete, regardless of the method chosen. Their values are
updated in the drawing area, as shown in Figure[89] where a metric called “Availability” has been defined.

SPN models can also be solved for a range of values of the user-defined parameters. To do this, check the
“Experiment” box in the “Stationary Analysis” window and then click the “Run” button. A new dialog box will
appear where the user can specify the input parameters for the experiment to be run (see Figure@.

Below, we describe each of them.

¢ Parameter. Parameter (definition) that will have its value changed.

¢ Minimum Value. Initial value to be assigned to the selected parameter.
¢ Maximum Value. Final value to be assigned to the selected parameter.

¢ Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is
logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.
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% Stationary Analysis >

Method:
& memory

Experiment Save CTMC Matrix CTMC Size:

Options

Error: 0.0000001 lterations (Max):

Analysis
Current Iteration: Current Error:

Results:

Figure 88: Stationary Analysis Window - Gauss-Seidel Method

¢ Interval (step size). This is the step size for changing the value of the parameter. The parameter starts
with the minimum value and its value is increased considering the step size. At each change, the selected

metric is evaluated. The experiment ends when the maximum value for the parameter is reached.

¢ Metric. Metric to be evaluated.

At the end of the experiment, the results are displayed and a graph is plotted, as we can see in Fig-

ures[@Iland[92)

65



Project ' RBD ' FT ' EFM | SPMN ° CTMC ' DTMC > RBD View ' ¢» FTView ' ¢» EFM View | » 5PN View

e 11 BAa0

SPM Model SPMT 4+
Elo Places

----- l Immediate Transiticns
[—}---]yl‘. Metrics
LM Awailability: 0.8181818181818182
- A Definitions
A MTTF: 1000 - INTEGER
oo A MTTR: 20 - INTEGER

TET
Availability: 0.8181818181818182
MTTF: 1000 - INTEGER

MTTR: 20 - INTEGER

Figure 89: An SPN Model
Options for Experiment >

Options

Parameter: -

Type: ™! Linear Lagarithmic

Metric: | Availability

QK Cancel

Figure 90: An SPN Experiment

2.2.2 Transient Analysis

Figure[93]shows the window “Transient Analysis” , which has a combo box for selecting one of the two solution
methods available: Uniformization (also known as Jensen’s method) and Runge-Kutta (4th order).

When solving a model, the user can define:
¢ Time for which the analysis will be carried out (default: 100).
¢ Precision of results (default:1077),

By selecting the Uniformization method, note that the time required for obtaining results is proportional to

the time entered by the user for the analysis because Uniformization is an iterative algorithm.
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% Progress d

Experiment Progress:

Experiment 1 has been successfully completed.
Experiment 2 has been successfully completed.
Experiment 3 has been successfully completed.
Experiment 4 has been successfully completed.
Experiment 3 has been successfully completed.

Awailability
0.8928571501556702
0.5433562304891744
0.9615384615384616
0.9708737885651977
0.976562498603016

Results have been written into the file: EASPN_CTMC_Mew_Alg-5StationaryExperiment.tat

Figure 91: Results from an SPN Experiment

By clicking on button “Run”, the solution algorithm is triggered. As soon as it finishes, results are presented
in the text area at the bottom of the window, also they are written in a plain text file having the filename of the
project appended with the “-TransientAnalysis.txt” suffix.

This window also allows the user to choose between a Point or Curve analysis. Point analysis is the default,
and it shows results only for the specific point in time. Curve analysis writes in a plain text file all measures
values computed in intermediate steps from time equals zero until the specified time.

Mean time to absorption (MTTA) is a metric that can be computed for absorbing SPNs by checking “Mean

Time to Absorption (failure)”. MTTA is presented after the state probabilities in the “Results” text area.
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% Experiment Result *
Experiment Result

Experiment Output
0.98000 T T

T
0.87000
0.96000
0.95000

(200, 0.84340)

0.94000

Availability

0.93000

0.92000

0.91000

0.90000

0.89000

=& Availability

Toggle ¥-Axis View || | Show Labels Save XML | | Close

Figure 92: Graph from an SPN Experiment

2.3 SPN Structural Analysis

Mercury provides a feature to analyze SPNs without generating the reachability graph, but by considering
the structure of the model. The “Structural Analysis” allows to prove some properties of a SPN model using
invariants and traps techniques. It is accessible from the menu Evaluate -> SPN Evaluation -> Structural
Analysis (see Figure[94).

When the structural analysis is complete, the “Structural Analysis” window is displayed with various tabs,
each containing information about the structural properties of the SPN: Matrix O (output matrix), Matrix I
(input matrix), Matrix C (incidence matrix), Matrix H (inhibitor matrix), Classification, Invariant Analysis,
and Siphons/Traps. In the same window, you can export the result to a plain text file by clicking the “Save to file"

button.
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% Transient Analysis X
Method: Uniformization
® Memory ) Disk
Save CTMC Matrix Mean Time to Absorption (failure) CTMC Size:

Options

Time:

Precision: 0000001

Output: %, Point Curve

Analysis
Current Time: M. of iterations for a step: _

Results:

Figure 93: Transient Analysis Window

Evaluate

Stationary Simulation

Transient Simulation

Stationary Analysi

r Transient Analy

Sensitivity Analysis (min/max values)

Figure 94: Structural Analysis Function
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3 Structural Analysis x

Matrix O * Matrix | Matrix C * Matrix H /| Class Invariant Analy Siphons/Traps

SPM CLASSIFICATION

State Machine -
Marked Graph -
F oice Me
Extended Free (
Simple Met

Save to File

Figure 95: Structural Analysis Window

2.4 Token Game

Token Game allows us to simulate the behavior of SPN models. In other words, users can debug the model. In
this way, errors in the construction phase of the model can be easily detected and improvements can be made to

fix them. Figure[96/shows the model we took as an example.

O e A A
i A2 10 0 g §on o

LIPSD_RUPSD_F SDTransformer3_R SDTransformer. . opranctoimers R S ransiomen:IPSZR URoh
UPSO_OFF VU VU

UPS7_OFF
SDTransformer3_OFF SODTransformers_OFF

1]
Circ reake}xoiN T rminationg_&\l
l F\LL_ON\ ! IEI Izl Izl

Terminationd_F. Terminationd_F

CircuitBreakers_R

aLL... ALL_F CircuitBreakerd_F

ALL_OFF
Termination?_OFF
CircuitBreakerd_CFF

Figure 96: SPN Model

Considering the guard expression defined below, there is a transition called ALL_F that represents the
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behavior of a system. In other words, when it fires, the mode of that system changes from operational to faulty.

The guard expression associated with this transition (ALL_F) is represented as follows.

(#Termination9_ON =0)OR#CircuitBreaker8_ON =0)
OR ((#UPSO_ON =0)OR#SDTransformer3_ON =0))

AND (#UPS7_ON =0)OR#SDTransformer6_ON = 0))))

Considering our SPN model and using Token Game, users can simulate device failures as well as the corre-
sponding consequences on the availability of a system. To turn Token Game on or off, the user must click on the
“Token Game” button highlighted in Figure[97} Also, we can see in this figure that any component can fail by

triggering an enabled transition (the ones highlighted in green).

©>» RBD View ' ¢» FTView > EFM View | ©» 5PN View = «» CTMC View ' €» DTMC View ' Results

SPN1 +

® | N 0 M O0e m B

Rewlteml: P {#ALL_ON=1}
ON SOy

Elﬁ@mlﬂ [ ] [

UPSO_R ¥ o UPS0_F| SDTransformer3 R (SDTransformer. .. | oprpansformers R |50 Transformer.. UPS7_R: ups7_F
o b/ KQ/

UPS7_OFF

SDTransformer3_OFF SDTransformers_OFF

OV OV
T gL

2 Temminations_R

ALL. ..KUJ!LL_F c“"""ﬂred“’rﬂ.‘—“ CircultBreakers_F

ALL_OFF

Terminationd_F

Terminakiond_OFF
CircuitBreakers OFF

Figure 97: Turning Token Game On

If we assume that the transition “Termination9_ F” was fired (see Figure, this means that the termination
failed. So we see that only one transition is ready to be triggered (ALL_F), which means that the system has

switched to failure mode as expected.
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Rewlteml: P {#all_On=1}
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UPSD_F  sDTransformer3_R sDTransformer ... SDTransformers_R SDTransformer., UPS7_R Ups?_F
UPS0_CFF E{

UPS7_OFF

SDTransformer3_OFF sDTransformers_OFF

o
Circ reakeéﬁN T rmination_&\l
ALL_ON | E Izl
! E Terminationd_R

CircuitBreakerd_R

CircuitBreakers_F

ALL_OFF
CircuitBreakerd_OFF

Figure 98: Example of a Token Game
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2.5 Sensitivity Analysis

Mercury allows us to perform a sensitivity analysis for SPNs and calculate partial derivative sensitivity indices for
them. This analysis is accessible from the Evaluate -> SPN Evaluation -> Sensitivity Analysis (min/max values)
menu. Figure|99|shows the “Sensitivity Analysis” window.

Users must choose between two methods of sensitivity analysis: “Design of Experiments” and “Sensitivity
Indices”. The former uses the standard method of analysis of variance to determine the effect of each factor on
the results. The latter uses the technique of percentage difference, thus requires a minimum and a maximum
value for each parameter to calculate the corresponding percentage variation on the selected metric.

Mercury is able to calculate the sensitivity to an SPN measure with respect to any SPN delay parameter.

The results of the sensitivity analysis are presented in three possible output formats: “None”, “JFreeChart”,
and “R”. Users must select one of these outputs, as shown in Figure The default option is “None”, which

outputs the results to the text area at the bottom of the window.
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% Sensitivity Analysis *

Technique:  |Sensitivity Indes

Input parameters

Pararmeter Minimum Maximum
alpha
beta
lambda

Click on the table and press CTRL + C to copy the data and CTRL + V to paste the data.

Metric: Throughput

Output charts: Mone

Results

Parameter Sensitivity index

mu 0.007931274614723074
alpha 0.007931274614723074
lambda -0.00795127457115009
beta -0.007951274562435492
rep 0.400182555745377104

Perform sensitivity analysis Close

Figure 99: Sensitivity Analysis for an SPN Model

Output charts:

Maone
IFreeChart
R

Figure 100: Output Options for Sensitivity Analysis
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3 RBD Modeling and Evaluation

Reliability Block Diagram (RBD) is a success-oriented modeling approach to support dependability assessments.
By evaluating RBDs, users can see how the failure or success of individual components contributes to overall
reliability and availability. When you create a project, the default RBD model contains only one empty block.
When you access the RBD view, you can see that this default model contains a light gray block named b1 (see
Figure[I0I). This color indicates that the properties of this block have not yet been defined. RBD is evaluated

from left to right.

«» RBD View ' €» FTView ' €» EFM View ' ¢» SPN View ' €» CTMC Vig

RED 1~ +

BEGIN E=—— —= END

b1

Figure 101: Default RBD Model

Unlike the other formalisms, the RBD view does not have a toolbar that allows the user to select components
and make changes to the model. All operations to change the model are performed by selecting menu items
with the mouse. For example, the user must right-click on the first block to create another block. As you can
see in Figure[102} there are some options in the popup menu. You make changes to the model by selecting the
appropriate action in the respective menu item. Among the available options you can find the basic operations:

insert, edit and remove blocks.

BEGIN &—

Insert label
Insert block

Remove

Apply Reduction

Properties

Export to PDF

Figure 102: Popup Menu for RBD Blocks

To insert a block, the “Insert block” menu must be selected. Depending on how the new block is to be

connected to the other blocks, you must select the “Series” or “Parallel” menu. For each of these blocks there are
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two types of blocks that can be created: “Simple Block” and “k-out-of-n Block” (see Figure[103).

Inzert label

Simple Block

Parallel k-out-of-n Block

Remove

Apply Reduction

Properties

Export to PDF
Figure 103: Inserting an RBD Block

When you select the type of block to insert, a window appears where you can specify the properties of the
new block(s). Figure[I04]shows the dialog that appears when inserting a simple block, and Figure[105|shows
the dialog that appears when inserting a k-out-of-n block. As you can see, the only difference between the two
dialogs is that two new fields (K and N) are displayed when the “k-out-of-n Block” option is selected. In addition
to the properties of the block, you must also specify how many blocks should be inserted. In this case all new

blocks will have the same properties.
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4| Insert new Block >
£

Murnber of Blocks: _ =

Description:

DISTRIBUTION PARAMETERS State:  |Default
Parameters

Failure Distribution:  |Exponential

® Time Rate

Repair Distribution:  |Exponential

& Time Rate

Insert

Figure 104: Inserting a Simple Block
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| £ Insert new Block >

Mumber of Blocks:

. -

DISTRIBUTION PARAMETERS - State:  |Default -
Parameters

Failure Distribution:  |Exponential

" Time Rate

Repair Distribution:  |Exponential

% Time Rate

Insert

Figure 105: Inserting a K-out-of-N Block

4

Once a block is created, you can edit its properties by right-clicking on it and selecting the “Properties’
menu. Another option is to double-click on the block. A third option is to double-click on the component view
in the upper left panel under the “RBD Model” icon (see Figure[106). Figure [107]shows the properties of an
already created simple block. The moment a block is inserted, the “Block Name” field is not displayed to the user
because the name for that block is automatically set by Mercury (see Figure[I04). Once the block is created, you

can change its name by accessing its properties.
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Project /| RBD 'FT "EFM ' SPN ' CTMC ' DTMC
RBD Model
() b

Figure 106: Top-Left RBD panel

%| Update Block Parameters by
p

Block Mame:

- -

DISTRIBUTION PARAMETERS - State: |Default 7

Parameters

Failure Distribution:  |Exponential

® Time Rate

Repair Distribution:  |Exponential

® Time Rate

Update

Figure 107: Properties of Simple Blocks
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Next, let us get an overview of block properties.

¢ Number of Blocks. The moment a block is created, the number of blocks to be created is queried. If you

enter a value greater than 1, all blocks will be assigned the same parameter values.

¢ Block Name. Name for the block. At the time a block is created, Mercury determines its name. Once

created, the name can be changed by the user by accessing the block’s properties.

¢ Description. A description is additional information about the block or the component/subsystem it
represents. It is intended to improve understanding of the model and has no semantic value in evaluating

the model. It is just plain text attached to the block.

¢ Parameters Type. Blocks accept three types of parameters: DISTRIBUTION PARAMETERS, AVAILABILITY,
and RELIABILITY. At any given time, only one of them can be selected. The default type is DISTRIBUTION
PARAMETERS. If the parameter type is DISTRIBUTION PARAMETERS, the user can enter the appropriate
values for the failure and repair parameters (see Figures[104} and[107). If the type is AVAILABILITY
or RELIABILITY, the user can enter the appropriate value considering the selected type, as we can see
in Figure In the context of the last figure, the user must enter the availability of the component

represented by the block.

o State. State of the block. Two states are available: DEFAULT or FAILED. The default state is DEFAULT,

which means that the block is working properly.

¢ Failure Parameters. Mercury supports a large number of probability distributions. Fields appear repre-
senting the parameters of the selected distribution so that the user can enter their values. Each failure

parameter may be assigned a label. Using the "..." button we can select an already declared label.

* Repair Parameters. Fields appear for the parameters of the selected distribution, where the user can enter
the appropriate values. Each repair parameter can be provided with a label. Using the button "..." we can

select an already declared label.

¢ Price. Cost in terms of the component represented by the block. The cost of blocks is considered by
evaluating the model using the “Component Importance and Total Cost of Acquisition" method. See

Section for more information on this type of evaluation.

¢ Kand N. Two fields appear when k-out-of-n blocks are edited. A KooN block represents a set of N identical
components in a single block. All components in this set have the same failure and repair parameters. This
type of block allows the user to specify the minimum number of components (K) that must be functioning
in order for failure not to occur. Figure[109shows how a KooN block is represented. As we can see, the

values of the K and N parameters are shown next to the block name in the diagram.
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Z| Update Block Parameters e
p

Description:

NAILABILITY State:  |[Default

Parameter

Update

Figure 108: Defining the Availability of a Block

b3 3/5

Figure 109: An Exponential KooN block

Figure[110]shows an RBD with two blocks in series and Figure[I11]shows an RBD with two blocks in parallel.
The color of the block changes by assigning all required parameters. Evaluations can only be performed if all

required parameters of all blocks are entered.
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b1 b2

Figure 110: Two Blocks in Series

b1
BEGIN E— = END

b2

Figure 111: Two Blocks in Parallel

Mercury has a feature to improve the readability of models. Once the parameters of a block have been
assigned, you can read them on the diagram by moving the mouse pointer over the block. A tooltip will then
appear showing all the properties of that block. As we can see in Figure[I12} all properties are displayed in the

tooltip. All types of components of all formalisms supported by Mercury provide this feature.

b1

Figure 112: Tooltip for a Block

Finally, let us look at the types of blocks and how they are represented graphically. Figure[T13]shows the
six types of RBD blocks. Figures[I13]a and[I13]b show blocks that have no parameters associated with them.
Figures c andd show exponential blocks, but in c) the state of the block is defined as “Default”, while
in d) it is defined as “Failed”. Figures e and f show non-exponential blocks, but in e) the state of the
block is defined as “Default”, while in f) it is defined as “Failed”. As we can see, blocks without failure/repair
parameters are represented by a light gray block. Exponential blocks are represented by a dark gray block. Finally,

non-exponential blocks are represented by a blue block.
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Figure 113: Types of RBD Blocks

3.1 RBD Reduction

To reduce the complexity of RBD models, a feature is available that supports a reduction process aimed at
reducing the number of blocks. This function can be used until the model consists of only one block. However,
the original parameters of the blocks can be lost and only the metrics and properties of the original model are
preserved.

Figure[I14]shows a model before applying a reduction step, in which there are four blocks. This feature is
applied by right-clicking on the block and selecting “Apply Reduction” (see Figure[I15). Figure[I16shows the
model after the reduction has been applied. It can be seen that the number of blocks has been reduced to three

(b2 and b3 have been reduced to only one block, ssb6).

b1
b2 b3

b4

Figure 114: RBD Before a Reduction Step
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b1
BEGIN E—

Insert label

Insert block

Remove
Apply Reduction

Properties

Export to PDF

Figure 115: Applying Reduction to an RBD Model

BEGIN &=—

s5hb

b4

Figure 116: RBD After a Reduction Step

When one or more blocks to be reduced are connected in series, the original characteristics of the model are
preserved. However, when applying reductions in blocks connected in parallel, if the TIME or RATE parameter
have been edited, it is only possible to retain the characteristics at one point in time. Therefore, when applying a
reduction in a block connected in parallel, new options are displayed, as shown in Figure[T17} In this case, the
user must select the metric to be evaluated. When reliability is selected, the time for reliability estimation is

requested, as shown in Figure Figure[119|shows the model after the blocks in parallel have been reduced.
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Irreversible Operation

This operation changes the block parameters.
Choose the metric of interest:

RELIABILITY

BEGIN &=—

b4

Figure 117: RBD Before the Blocks Connected in Parallel are Reduced

Enter the time for reliability computation:

Cancel

BEGIN &=—

b4

Figure 118: Entering the Time for Reliability Computation

sph7

sshi

Figure 119: RBD After the Blocks Connected in Parallel Has Been Reduced
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3.2 RBD Evaluation
Mercury offers a large number of evaluations for RBDs:
¢ Evaluation (SFM and SDP methods);
¢ Bounds Evaluation;
¢ Importance Measures;
e Experiment;
¢ Get Functions;
e Sensitivity Analysis; and
» Sensitivity Analysis (min/max values).

These evaluations are available from the Evaluate -> RBD Evaluation menu, as shown in Figure In the

next subsections, we present each evaluation.

Evaluate

. Evaluation
ounds Evaluation

Importance Measures

5 Experiment

Get Functions

sensitivity Analysis

Figure 120: RBD Evaluation Menu
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3.2.1 Evaluation

Evaluation can be used to perform a large number of dependability analyzes (see Figure[121). It can be accessed

from the Evaluate -> RBD Evaluation -> Evaluation menu.
Evaluation *

Resolution Method

SFM - Method based on Structure Function

Choose Metrics
v| Mean Time to Failure | Mean Time to Repair v | Uptime

v| Steady-State Availability W[ Instantaneous Availability  v| Downtime

v| Reliability v| Unreliability Time unit: hours

Evaluation Time _

Analyze in multiple time points

Murnber of sampling points _

Run Cancel

Figure 121: Evaluation

As you can see, you can evaluate eight metrics: mean time to failure, mean time to repair, steady-state
availability, instantaneous availability, reliability, unreliability, uptime and downtime. You can also select the
unit of time to be included in the calculation of uptime and downtime: seconds, minutes, hours, and days.
If time-dependent metrics are selected — reliability, unreliability or instantaneous availability —-, the time
parameter is required. There is also an option to analyze time-dependent metrics by considering multiple points
in time. The metric is calculated for each point.

Mercury provides two methods for computing dependability measures. You can choose between SFM
(structural function method) and SDP (sum of disjoint products), as shown in Figure SFM computes
measures considering the structural function of the model. The Boolean algebra-based SDP method, on the
other hand, computes measures considering minimal cuts and paths.

Resolution Method

SF - Method based on Structure Funchion

5FM - Method based on Structure Function
5DP - Method based on Sum of Disjoint Products

Figure 122: Resolution Methods

87



After selecting the options and entering the evaluation time and number of sampling points, if required,
the user must click on the “Run” button. Once this is done, a window with the results will appear, as shown in
Figure The results are divided into two groups. These are “Steady-state Results” for steady-state metrics and

“Instantaneous Results” for time-dependent metrics. Listing[5|shows results obtained by evaluating an RBD.

| £ Result x

Textual Result

Steady-state Results # s

: 1831.0
MTTR: 0.171701112877460495
Povailability: 0.9999072473327167
Mumber of 9's: 4.032673592551354
Uptime: 8764,999717484678 hours
Downtime: 0.813052515323 hours

R ]

Instantaneous Results
Reliability (9's) Unreliability Inst. availability
1.0000 oo 0.0000 1.0000

0.691633321371 0.510032556016 0.308366678620 0.999907247333
0.356396882296 0.191381860784 0.643603117704 0.999907247333
0.168143701199 0.07%95169057 0.831856292801 0.999907247333
0.07668184036 0.034648622737 0.92331815%64 0.999907247333
0.034477454386 0.015237580692 0.965522545614 0.999907247333
0.015406534721 0.006743050955 0,984593465279% 0.999907247333
0.00686593439 0.002992121067 0.99313406561 0.999907247333
0.003056148227 0.001329300617 0.996943851773 0.999907247333
0.001359622975 0.000590878533 0.9986p40377025 0.999907247333

Plot Reliability Plot Intantaneocus Availability Export to XML | | Close

Figure 123: Results from Dependability Evaluations

Listing 5: Dependability Results for an RBD Model

MTTF: 1851.0

MTTR: 0.17170111287746095
Availability: 0.9999072473327167
Number of 9’s: 4.032673592551354
Uptime: 8764.999717484678 hours

Downtime: 0.813052515323 hours

xxkxkxxkxkxx  nstantaneous Results ks sk %% %%
Time Reliability (9's) Unreliability

0.0000 1.0000 infinity 0.0000
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Figure[124]shows the “Reliability Chart” dialog box, which is displayed by clicking the “Plot Reliability” button.
Figure shows the “Instantaneous Availability Chart” dialog, which is displayed when you click the “Plot
Instantaneous Availability” button. These buttons are only visible if the corresponding dependability metrics are

selected in the input dialog. The number of points on the plotted lines is determined by the number of points

entered by the user.
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a%%?‘ Reliability Chart (right click to save the graph) d
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Figure 124: Reliability Chart

90



=§!,?= Instantanecus Availability Chart (right click to save the graph) *
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Figure 125: Instantaneous Availability Chart

RBD models can only be solved by simulation when non-exponential probability distributions are associated
with the model. In this case, Mercury shows the message "Non-exponential distributions detected” at the
bottom of the “Evaluation” window (see Figure[126). Mercury calculates metrics from non-exponential models
considering confidence intervals. The non-exponential blocks are converted into SPNs and these blocks are

solved through simulations.

91



Evaluation - Simulation >

Resolution Method
SFM - Method based on Structure Function

SFM - Method based on Structure Function
) S0P - Methed based on Sum of Disjoint Products

v| Uptime
v| Steady-State Availability v| Downtime

v| Reliability v| Unreliability Timeunit  |hours

Evaluation Time _

Analyze in multiple time points

Murmber of sampling points _

MNon-exponential distributions detected. Run | | Cancel

Figure 126: RBD Analysis by Simulation

When you click the “Run” button, some parameters must be entered to support the simulation. The
parameters required depend on the metrics you choose. If you select only steady-state metrics, Mercury displays
the window shown in Figure[127] On the other hand, if you select only time-dependent metrics, Mercury displays
the window shown in Figure[128] If you select both transient and steady-state metrics, both tabs appear in the
same window, as shown in Figure[I29] In this case, when clicking the Run button in the dialog box shown in
Figure[129} Mercury considers the parameters in both tabs. If no changes are made to the parameters, Mercury
considers the default parameter values. The results are displayed once the parameters have been defined
and the simulation is complete. Results are presented with confidence intervals, as shown in Figure[I30] It is
important to emphasize that the following metrics cannot be solved by running a simulation: MTTE MTTR, and

instantaneous availability. For more information about simulations, see Section[2.1}
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Simulation Parameters *

Mon-exponential distributions detected.

Please, provide the parameters for the simulation.

Stationary Sirulation

Confidence Lewv

Max. Relative Error %

Min. # of Firing for each Transition

Min. Warm-up Time

Batch Size

Min. Simulation Time (sec)

Max. Simulation Time (sec)

Cancel

Figure 127: Simulation for Steady-State Metrics
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Simulation Parameters *

Mon-exponential distributions detected.

Please, provide the parameters for the simulation.

Transient Simulation

Resolution Method DES + Linear Regression 1

Confidence Level 5%

Maximum Relative Erro

]
]

[ =t Lt =t [r=]

Time

# Sampling Points

# Replications

# Runs (for each replication)
Minimum # Firing for each Transition
Minimum Simulation Time (sec)

Maximum Simulation time (sec)

Cancel

L
m

Figure 128: Simulation for Time-Dependent Metrics
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Simulation Pararmeters >

Mon-exponential distributions detected.

Please, provide the pararneters for the simulation.

Stationary Simulation| Transient Simulation

Confidence Level %

Max. Relative Error 5%

Min. # of Firing for each Transition

Min. Warm-up Time

Batch Size

Min. Simulation Time (sec)

Max. Simulation Time (sec)

Cancel

Figure 129: Simulation for Steady-State and Time-Dependent Metrics
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|£| Result X
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Steady-state Results *es
Availability: 0.999909066011855 [0.9999020152876078, 0.9999101167361023]
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Plot Reliability Export to XML

Figure 130: Result from a Non-Exponential RBD Model Evaluation with Confidence Intervals
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3.2.2 RBD Experiment

Mercury allows us to evaluate the impact of varying some parameters on the model. Now we will show you
how to use the experiment feature. The first step is to define one or more labels. Labels are variables that store
numerical values and can be associated with the failure/repair parameters of blocks. The value of a label is
changed taking into account a step size and at each change the selected metric is evaluated. A label is inserted by
right-clicking on an RBD block and selecting “Insert label” as shown in Figure[131] Another way is to right-click
on the label area in the left pane and choose “Insert label.”. Once this is done, the “Label Properties” window is

displayed (see Figure|132). There the user can set the properties of the label.

BEGIMN

Insert block

Remove
Apply Reduction
Properties

Export to PDF

Figure 131: Inserting a Label into the RBD Model

| £ Label Properties e
Properties

Mame:

Value:

Description:

Figure 132: Properties of an RBD label
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Once alabel is inserted, it is available in the left window on the RBD tab. Now it can be linked to one or more

block parameters (see Figure[133).

Project | RED " FT ' EFM ' SPN ' CTMC

RED Model
EH Series

A Labels

Insert label

Remowve

Properties

Figure 133: Left-Side RBD Panel

When you right-click on a label, a popup menu with three menu items appears (see Figure[133). We describe

each of these items below.
* Insert label. Displays the “Label Properties” window where the user can insert a label.
¢ Remove label. Remove the selected label.

* Properties. Displays the “Label Properties” window where the user can change the properties of the label.

After defining a label, it is necessary to attach this label to the failure/repair parameter of the block under
evaluation. Figure demonstrates how to attach a label to a block parameter. It is also possible to attach a

label to the price parameter of a component in the RBD model, as shown in Figure

98



%| Update Block Parameters e
p

Block Marme;

:rcnpt“ln -

DISTRIBUTION PARAMETERS - State:  |Default =

Parameters

Failure Distribution:  |Exponential

= Time Rate

Repair Distribution:  |Exponential

& Time Rate

Update

Figure 134: Attaching a Label to a Block Parameter (Failure Distribution - Mean value)

Update

Figure 135: Attaching a Label to the Price Parameter of a Block

Experiment of RBDs can be accessed from the menu Evaluate -> RBD Evaluation -> Experiment. Figure

shows the “Experiment” window. To run experiments, the user must enter values for all required fields.

We describe each of these options below.
¢ Parameter. The label whose value will be changed at each iteration of the experiment.
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Experiment >

Parameter: A: 1234.0

Metricc  |Reliability

-

-

Minimum Value; Maximum Value;
Type: ® Linear Logarithmic

Interval (step size):

Evaluation Time;

Run Experiment Cancel

Figure 136: RBD Experiment

Metric. The metric to be evaluated.

Minimum Value. Initial value for the selected label.
¢ Maximum Value. Final value for the selected label.

* Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is
logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.

Interval. Step size that will be taken into account when changing the value of the label. The label starts
with the minimum value and its value is incremented considering this interval. At each change, the

selected metric is evaluated. The experiment is finished when the maximum value for the label is reached.

Evaluation Time. Evaluation time considered in the calculation of time-dependent metrics. For time-
dependent metrics — reliability, unreliability, instantaneous availability — it is necessary to enter the time

parameter.

After defining the input parameters, the user must click on the “Run Experiment” button to start the
experiment. If the model to be evaluated contains non-exponential blocks, the user must also enter the
simulation parameters, as shown in Figure Once the experiment is finished, the “Experiment Result” dialog

is displayed (see Figure[138).
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Simulation Pararmeters >

Meon-exponential distributions detected.

Please, provide the pararneters for the simulation.

Transient Simulation

Resolution Method DES + Linear Regression 1

Confidence Level %

[

Maximum Relative Error %

Time

# Sampling Points

# Replications

# Runs (for each replication)

[=]

Minirnum # Firing for each Transition

Minimum Simulation Time (sec)

Maximum Simulation time (sec)

Cancel

Figure 137: RBD Experiment - Simulation Parameters
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% Experiment Result *

Result Chart (Right Click to Save Graph)

Experiment Qutput: Reliability, t = 7000.0
T T

0.50000

0.40000

0.20000

0.10000

0.00000

=& Reliabilty

Toggle Y-Axis View Show Labels Export to XML Close

Figure 138: Experiment Result Dialog

Assume that variable “A” is a base-10 logarithmic variable, ranging from 1 to 4, as shown in Figure Then

Mercury calculates the metric and displays the result on a logarithmic scale, as shown in Figure
Experiment et
Parameter:  [A: 12340

Metric:  [Reliability

Minimum Yalue: Maximum Value

Type: Linear ® Logarithmic

Evaluation Time:

Run Experiment Cancel

Figure 139: RBD Experiment - Logarithmic Variable
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* Experiment Result >

Result Chart (Right Click to Save Graph)

Experiment Qutput: Reliability, t = 1000.0
T T
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Reliability

0.60000

0.50000

~®— Reliabilty

Toggle ¥-Axis View | | Show Labels Export to XML Close

Figure 140: Experiment Result Dialog - Logarithmic Scale

3.2.3 Bounds for Dependability Analysis

Bounds for Dependability Analysis is used to estimate dependability metrics by calculating reliability, availability,
or downtime. It is necessary to estimate the bounds (upper and lower limits) for the calculation of this analysis,
where users get results quickly. This analysis should be performed when the model is huge. This analysis is
divided into two parts: (i) the calculation of the limits and (ii) the use of the sum of disjoint points to determine
the successive values and the number of iterations required.

Users can access this analysis by going to the Evaluate -> RBD Evaluation -> Bounds Evaluation menu.
Figure[141]shows the “Bounds for Dependability Analysis” window. As shown in Figure[142} four metrics can be
evaluated: Steady-State Availability, Instantaneous Availability, Reliability, and Downtime. The “time” parameter
is required if you select “Instantaneous Availability” metric. Once you have selected a metric and entered the
time, if applicable, you must click the “Get Start Values” button to start the evaluation.

First, the upper and lower values are calculated. The first path and the first cut are used to determine the
upper and lower values of the selected metric. The paths refer to the lower bounds, where a minimal set of
components is chosen to ensure the operational mode of the system. The cuts refer to the upper bounds where
a minimal set of components is chosen to ensure the system in failure mode. After getting the upper and lower
values, you can set the number of steps for the upper and lower values and click the "Run” button (see Figure[143).
Then you can see the result as shown in Figure[144] The user can plot a chart and export the result to a MS Excel

file.
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Bounds for Dependability Analysis of RED *

Steady State Availability Get Start Values

Upper:

Lower:

Figure 141: Bounds for Dependability Analysis

Steady State

Steady State Availability
Instantaneous Availability
Reliability

Downtime

Figure 142: Metrics for Bounds Evaluation

Bounds for Dependability Analysis of RED >

Steady State Availability

Upper: 0.99036918132304174

Lower: 0.07544854734062448

Figure 143: Bounds for Steady-State Availability

The method of determining successive values and the number of iterations is defined by the number of
paths and cuts in the model. If you increase the number of iterations, the value found will be closer to the exact

value. Once the calculation of the last path or cut is complete, the exact value of the metric can be found.
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Bounds for Dependability Analysis of RED >

Steady State Availability

Upper 0. 813504174 : Max: 3

Lower:  0.07544854734062448 | Max: 2

Availability

Upper Bounds

-Step1 = (0
- Step 2

- Step 3 [.972111540134
Lower Bounds

- Step 1 = 0.07544854734
-Step 2 = 0.972111540134

Plot Chart | | Export

Figure 144: Bounds for Steady-State Availability - Steps Result

3.2.4 Component Importance and Total Cost of Acquisition

“Component Importance” is a metric that indicates the impact of a particular component on the system. Consid-
ering the importance scores, the most important component (i.e., the component with the highest importance)
should be improved to increase the reliability or availability of the system. This evaluation can be used, for
example, to support maintenance activities.

You can use importance measures to determine the relative importance of each component with respect
to the reliability or availability of the overall system. You can access this evaluation by selecting “Importance
Measures” from the Evaluate -> RBD Evaluation menu. Then you need to select a metric in the “Component
Importance Measures” window and then click the “Evaluate” button (see Figure[145). If the “Cost” parameter
has been set for the blocks, it is also possible to evaluate the relationship between metrics and investment costs.

The parameter “Time” is needed for the evaluation of the reliability metrics.
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¥ Com ponent Importance Measures of RED .

Parameters

Include Financial Cost Evaluate

Component Mame Importance Measure Importance Mormalized

Figure 145: Component Importance Measures

As shown in Figure[[46} you can choose between a few types of measures. The types are: “Availability Impor-
tance", “Reliability Importance (Birnbaum)", “Criticality Reliability Importance" and “Criticality Availability
Importance." The “Criticality Importances” measures are obtained by considering the system in failure “(f)” or
in operation.

ilability Importance

Availability Importance
Reliability Importance (Birnbaum)

liability [mportance

ilability Importance

Figure 146: Metrics for Component Importance Measures

The results of such assessments are shown in Figure The results show the importance score for each

component and a graphical view as a ranked list highlighting the most important components in the analysis.
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k- Compenent Importance Measures of RED

Parameters

Reliability Importance (Birnbaum) -

Include Financial Cost | Time:

Component Mame Importance Measure Importance Normalized

Reliability Importance (Birnbaum)

0.5183824959167227 1.0

0.3295678565303177 0.6357619303643907
0.31255648179649226 0.6029456709254009
0.2742112341203928 0.5289747170869835 -
0.2742112341203928 0.5289747170869835 E e
0.2607393420819951 0.5029863935141093 oW
0.260570241051428 0.5026601845238389 g :
0.25%96702367953495 0.5009240065796224 EL i
0.01747705741255659 0.03371459790334498 £ E
0.01747705741255659 0.03371459790334498 i HI:

Figure 147: Result from Reliability Importance (Birnbaum) Evaluation

3.2.5 Structural and Logical Functions

Mercury generates structural and logical functions of RBD models. Both functions represent the system and refer
to the states of the individual components. Also, it is possible to evaluate the impact on the system operation
considering the faulty components. The system and its components must be in one of the following states:
working (default) or failed. The state of the system is a binary random variable determined by the states of its
components. If the state of each component is known, then the state of the system is also known. The state can
be toggled by accessing the block’s properties (see Figure[148). If the state of a block is failed, the component is

represented by a fire icon above the block, as mentioned earlier in this manual.

Figure 148: State of a RBD block

Let us now demonstrate how to obtain these functions using Mercury. Figure shows an RBD model with

blocks in series and parallel. As we can see, there is one failed block (block b5) in this model.
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b2 b3

b5

Figure 149: RBD Model for Structural and Logic Function Computation

Structural and logic functions can be accessed from the Evaluate -> RBD Evaluation -> Get Functions menu.
Figures and show the structural and logic functions, respectively, of the RBD model shown above. In
addition to the expressions, the tool shows the blocks marked as faulty (non-functional) and the current state of

the system. In our example, the faulty block (b5) has no effect on the operating state of the system.

a%’# Structural and Logic Functicns of RED x

(Get Structural Function || | Get Logic Function

Structural Function * Logic Function

Failed Blocks:

(1- (1- (bl) *(b6)) * (1-b4) * (1-b5))*(b2) b3
*(b3)

The System iz Working!

Figure 150: Structural Function
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m‘-,,!?ﬁ Structural and Logic Functions of RED >

Get Structural Function | | Get Logic Function

Structural Function | Logic Function
Failed Blocks:

(((bl)*(b6)) v (bd) v (b53))"(b2)"(b3) b5

The System is: Working!

Figure 151: Logic Function

3.2.6 Sensitivity Analysis

Mercury calculates partial derivative sensitivity indices from RBDs through sensitivity analysis. These indices
indicate the impact of each input parameter on the availability of the model. Mercury provides two types of
sensitivity analysis for RBD models. The first type of sensitivity analysis considers the current values of the
model’s parameters and can be accessed from the Evaluate -> RBD Evaluation -> Sensitivity Analysis menu. The
second type of analysis considers min/max values for each parameter and supports the "Design of Experiments”
(DoE) method in addition to the "Sensitivity Indices” method. This second type of sensitivity analysis is shown
in Section[2.5]and can be accessed from the menu Evaluate -> RBD Evaluation -> Sensitivity Analysis (min/max
values). Figure shows the ”Sensitivity Analysis” window to perform sensitivity analysis considering the
current parameter values, displaying the partial derivative of the structural equation for each parameter and the
sensitivity indices. It should be noted that both types of sensitivity analysis are only available when all event

nodes of the model are exponential.
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Sensitivity analysis of RED >

Type of sensitivity index

® Scaled Unscaled
Type of ranking

= Crdered Unordered
Parameters under analysis

Component's availability ™' Compeonent's MTTF and MTTR

Partial derivative of Availability with respect to

MTTFB1: MTTFR2*(MTTRET+MTTFRT) A (- 1)*(MTTREZ+MTTFRZ)* (- 1)-MTTFe 1*MTTFB2* (M
-2 (MTTRB2+ MTTFL2)*(-1)

MTTRBET: -MTTFR1*MTTFR2* (MTTRE1+MTTFRT) " (-2)*(MTTRb2+ MTTFRZ) " (-1)

MTTFbZ: MTTFR1*(MTTRET+MTTFRT) A (- 1)*(MTTREZ+MTTFRZ)* (- 1)-MTTFe 1*MTTFR2* (M
-1 (MTTRB2+MTTFR2)*(-2)

MTTRBZ: -MTTFR1*MTTFR2* (MTTRE1+MTTFRT) (- 1)*(MTTRb2+ MTTFB2) " (-2)

Parameter Sensitivity value
MTTRE1 -0.000630818619582666
MTTRBL2 -0.000630818619582666
MTTFR1 0.009630818619582326

Close

Figure 152: Sensitivity Analysis from an RBD Model
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4 FT Modeling and Evaluation

Fault trees (FTs) and RBDs differ in their purpose. FT is a top-down logical diagram that allows you to create a
visual representation of a system that shows the logical relationships between the associated events and causes
that can lead to failure of the assessed system. When you create a project, the default model FT contains only a
top-level event “FAILURE” referred to as “undefined," as shown in Figure[153] This means that no failure event

leads to this top event. So from this point on, the user can define the model using components.

e» RBD View | ©» FTView ' e» EFM View ' €» SPN View ' €» CTMC View ' €» DTMC View ' Results

FT1 '+

FAILURE

undafinad

Figure 153: Default Fault Tree Model

With the Mercury tool, we can use two types of nodes: basic events and gates (logic ports). Basic events are
represented as leaf nodes, as shown in Figure On the other hand, each supported gate has its own graphical
representation. As we can see in Figure Mercury supports three types of gates: AND, OR, and K-out-of-N

(KooN).

El

Figure 154: Basic Event

(0] o [OR)on oo

Figure 155: Gates

The events leading to the top-event FAILURE must be directly linked to a GATE, making it possible to
evaluate the probability of an event happening based on the probability obtained by joining basic events and

child gates.
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Unlike the other formalisms, the FT view does not provide a toolbar that allows the user to select components
and make changes to the model. All operations to change the model are performed by selecting menu items with
the mouse. For example, the user must right-click on the top event to create gates and event nodes. Changes
to the model are made by selecting the appropriate action on the respective menu item. Among the available
options, the user will find the basic operations: insert, edit (properties) and remove.

To create the first gate or single fault event, the user must right-click on the FAILURE event. In this popup
menu there are only two menu items: “Add Gate” and “Add Single Event”. The “Add Single Event” menu adds
only a single fault event to the fault tree, as shown in Figure[156} Figure[I57]shows how to add a gate to the top

event. From there, you can choose between three different types of gates: AND, OR, and KooN.

FAILURE

El

Figure 156: Fault Tree with a Single Event

FAILURE

undafinsd

[Ty

Add single event Or

Export to PDF Kool

Figure 157: Adding the First Gate into the FT Model

Once you have selected the type of gate, the "Add Gate” dialog box appears (see Figure[I58). The fields in this

dialog box are described below.

¢ ID. ID for the gate to be inserted into the model. The ID is generated by Mercury, so users do not have the

option to change it later. Each node in the FT graph has a ID, which uniquely identifies it.
¢ Gate Type. Type of the gate to be inserted. You can change the gate type by clicking the dropdown button.

e KValue. When you insert a KooN gate, this field is activated. A KooN gate represents a set of identical
components (N) in a single node. All components in this set have the same failure and repair parameters.
For this type of gate, the user should specify the minimum number of components (K) that must fail for
the group of components to fail. Figure[159|shows how a KooN gate is represented. As we can see, the

values of the parameters K and N are shown next to the gate ID in the diagram. In the current version of
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Add Gate it

Add Gate
IO

Gate Type:
K Value:
(M)umber of Events:

Event Mame:

Description:

0K | | Cancel

Figure 158: Add Gate Dialog

Mercury, it is not possible to add child gates to a KooN gate. The KooN gate can only have one basic child

event representing the set of components. We intend to overcome this limitation as soon as possible.

Kooljyys 35

Figure 159: KooN Gate

¢ (N)umber of Events. When you add a gate, you must specify the number of basic events to be added
as child nodes in the gate. Each gate must have at least two nodes. Once inserted, a basic event can be

replaced by a gate. Thus, it is possible to define a FT model with a large number of levels and components.

* Event Name. Name of the component/event. It is displayed in the rectangular area above the node. The

name can be changed at any time.
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¢ Description. A description is additional information about the node or the component or subsystem it

represents. It is intended to improve understanding of the model and has no semantic value in evaluating

the model. It is simple text attached to the node.

After you enter the required fields and confirm by clicking the OK button, Mercury inserts the nodes and
updates the FT diagram. Figure[160|shows a AND gate with two basic events.

FAILURE

|"’"”D| AND1

El E2

Figure 160: AND Gate with Two Basic Events

Double-clicking on a gate opens the “Gate Properties” dialog (see Figure|161).

Gate Properties

Type  AND
ID:  andl

Event Mame:

Subsystem A

This event represents a failure ocn the
subsystermn A.

Description:

QK Cancel

Figure 161: Gate Properties Dialog

If you change the name and description, the model will be updated accordingly. Figure[162]shows the
updated model.
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FAILURE

Subsystem A

AND AND1L

E1l E2

Figure 162: Description Updated

FAILURE

Subsvstern A

g

| Add events ...

Add single event

Change to OR. gate

Copy

Clear
Properties ...

El

Export to PDF

Figure 163: Gate Menu

Another way to edit the properties of a gate is to right-click on it and select “Properties...” from the menu
that appears. As we can see in Figure there are some options available in this menu.

Below we describe the options available in this popup menu.

¢ Add events. When you select it, a dialog appears (see Figure|164) where you must enter the number of

events to be inserted into the selected gate. Then you have to set the properties (failure/repair parameters)

for each new basic event.
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Add Events -

Add Events

(Mlumber of Events: _

QK | | Cancel

Figure 164: Add Events Dialog

* Add single event. Insert an empty event into the gate. In our example (see Figure|162), after choosing “Add

single event” from the gate popup menu AND, a basic event is inserted into this gate, as highlighted in

Figure[T65}

FAILURE

Subsvstern A

AND AND1

El E2

Figure 165: AND Gate with a New Event

¢ Change to {OR, GATE} gate. Change the type of the selected gate. If a port logic OR is selected, the only
available option is to change it to a AND gate. The opposite is true for a AND gate. For example, if you look

at our model, selecting this option will change the AND gate (see Figure[165) to a OR gate (see Figure[166).
* Copy. Copy the selected gate and all its child components to the clipboard.

¢ Clear. Empty the model. This option is only available when there is only one failure event in the model or

if the gate selected is the top level gate.

¢ Properties. By selecting this option, the user can change the properties of the selected gate. Figure
shows the “Gate Properties” window for AND and OR gates. For a KooN gate, in addition to “Event Name"

and “Description”, you can also change the K and N parameters, as we can see in Figure
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Figure 166: Changing the Type of the Gate

KooM Gate Properties >
1D
K Value:
(M)umber of Events:

Event Mame:

Description:

Figure 167: Properties of a KooN Gate

By right-clicking over a non-top gate, a slightly different popup menu is displayed, as we can see by looking
at Figure[168]

Below we describe the options that we have not yet presented and that are available to non-upper gates.

¢ Change to a blank event. Replace the gate and all its child nodes with an empty event.

¢ Cut. Cut the selected gate to clipboard.

¢ Paste. Replace the selected gate with nodes in the clipboard. This option is enabled only if components

were copied to the clipboard.
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Figure 168: Popup Menu for Non-Top Level Gates

* Delete. Remove the selected gate and all its child nodes.

When you right-click on a basic event, a popup menu appears, as we can see in Figure Below, we

describe each menu item.

¢ Change to a blank event. Replace the selected node with an empty basic event.

¢ Insert label. Insert a label into the model. Labels are variables that store numerical values and can be

associated with the failure/repair parameters of events.

¢ Add gate. Replace the selected basic event with a gate. After selecting the type of gate to replace the basic

event from the submenu, the “Add Gate” dialog box appears (see Figure[158).
* Copy. Copy the selected event to clipboard.

¢ Cut. Cut the selected event to clipboard. This is only possible if the parent gate has at least three direct

child nodes. Selecting this option will cause an error if there are only two direct nodes at the gate, as shown

in Figure[T70}
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Figure 169: Popup Menu for Basic Events

Paste. Replace the selected node with components from the clipboard. This function is enabled only if a

component has been copied to the clipboard.

Delete. Remove the selected node from the model. It is important to emphasize that each gate requires at
least two direct nodes. Therefore, an error occurs if you try to remove a node when the model has only two

nodes, as we can see in Figure[171]
Properties. Display the dialog box for changing the properties of basic events (see Figure[172).

Export to PDE Export the FT model to a PDF file.
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It is not possible to cut the selected node to the clipboard
when its parent node has only two direct children.

Figure 170: An Error Occurred While Trying to Cut a Node to Clipboard
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Error -

It is not possible to remowve the selected node.

Figure 171: An Error Occurred While Trying to Delete a Basic Event

Let us next give an overview of the properties of basic events.

¢ Parameters Type. The basic events accept three types of parameters: DISTRIBUTION PARAMETERS,
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£| Event E1 - Properties w
E p

Event Mame:

o -

DISTRIBUTION PARAMETERS *| Stater |Default

Parameters

Failure Distribution:  |Exponential

& Time Rate

Repair Distribution:  |Exponential

= Time Rate

Ok

Figure 172: Properties Dialog for Basic Events

AVAILABILITY, and RELIABILITY. At any given time, only one of them can be selected. The default type
is DISTRIBUTION PARAMETERS. If the parameter type is DISTRIBUTION PARAMETERS, the user can
enter the appropriate values for the failure and repair parameters (see Figure[I72). On the other hand, if
the type is AVAILABILITY or RELIABILITY, the user can enter the corresponding value considering the
selected type, as shown in Figure[I73] In the context of the last figure, the user must enter the availability

of the component represented by the basic event.

State. State of the basic event. Two states are available: DEFAULT or FAILED. The default state is DEFAULT,
which means that the component is working properly. On the other hand, if the state is FAILED, it means

that the component has failed.
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Event Mame:
Description:

WAILABILITY State:  |Default

Parameter

QK Cancel

Figure 173: Defining the Availability for a Basic Event

¢ Failure Parameters. Mercury supports a large number of probability distributions. Depending on the
distribution selected, fields appear representing the parameters of the selected distribution so that the
user can enter their values. Each failure parameter can be assigned a label. Using the "..." button we can

select an already declared label.

* Repair Parameters. Fields appear for the parameters of the selected distribution, where the user can enter
the appropriate values. Each repair parameter can be provided with a label. Using the button "..." we can

select an already declared label.

¢ Price. Cost related to the component represented by the basic event. The cost of the events is considered
in the evaluation of the model by "Component Importance and Total Cost of Acquisition" method. See

Section[4.1.4]for more information on this type of evaluation.
Finally, let us look at the types of basic events and how they are represented graphically. Figure shows
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the six types of basic events. Figures[174}a and[I74]b show events that have no parameters associated with them.
Figures c andd show exponential events, but in c) the state of the event is defined as “Default”, while
in d) it is defined as “Failed”. Figurese andf show non-exponential events, but in e) the state of the
event is defined as “Default”, while in f) it is defined as “Failed”. As we can see, events without failure/repair
parameters are represented by a light gray circle. Exponential events are represented by a dark gray circle. And

non-exponential events are represented by a blue circle.

O © & © 0 ©

Emply node Emply nade Exponential node Exgonential node Mon-expanential node  Non-exponential node
State: DEFALILT Slale: FAILED State: DEFALLT State: FAILED Slale: DEFALULT Slate: FAILED
a) 3] ch d) &) Iy

Figure 174: Types of Basic Events

When the required parameters of all basic events associated with a father gate are entered, the color for that

gate changes to yellow, as shown in Figure

FAILURE

Figure 175: FT Model with All Event Parameter Values Defined

Mercury has a feature to improve the readability of models. Once the parameters of a node have been
assigned, you can read them in the drawing area by positioning the mouse pointer over the node. A tooltip will
then appear showing all the properties of that node. As we can see in Figure[I76} all properties are displayed in

the tooltip. All types of components of all formalisms supported by Mercury provide this feature.
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Figure 176: Tooltip for a FT Node

4.1 FT Evaluation
Mercury offers a large number of evaluations for FTs:
¢ Exact Evaluation;
¢ Bounds Evaluation;
¢ Importance Measures;
¢ Experiment;
¢ Get Functions;
¢ Sensitivity Analysis;
¢ Sensitivity Analysis (min/max values); and

e Export to RBD model.

These evaluations are available from the Evaluate -> FT Evaluation menu, as shown in Figure[177] We present

these evaluations in the next subsections.
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Export to RED model...

Figure 177: FT Evaluation Menu

4.1.1 Evaluation

A large number of dependability analyzes can be performed from the “Evaluation” menu. It can be accessed in
the Evaluate -> FT Evaluation menu. Figure[I78|shows the window for performing dependability evaluations. As
we can see, we can evaluate eight metrics: mean time to failure, mean time to repair, steady-state availability,
instantaneous availability, reliability, unreliability, uptime and downtime. Users can also select the unit of time
to be considered when calculating uptime and downtime: seconds, minutes, hours, and days. If time-dependent
metrics are selected — reliability, unreliability or instantaneous availability —-, the time parameter is required.
In addition, there is an option to analyze time-dependent metrics considering multiple points in time. The time
interval goes from 0 to the evaluation time. The metric is calculated for each point.

Mercury provides two methods for calculating dependability metrics. We can choose between SFM (struc-
tural function method) and SDP (sum of disjoint products), as shown in Figure SFM calculates measures
considering the structural function of the model. The SDP method, on the other hand, which is based on
Boolean algebra, calculates measures considering minimal cuts and minimal paths. After selecting the options
and entering the evaluation time and the number of sampling points, the user must click on the “Run” button.

Let us now demonstrate how you can use the Mercury tool to perform evaluations on FTs. We have considered
amodel consisting of four events, each of which contributes to the overall failure of the evaluated system (see
Figure[180). As we can see, the system fails when the events el1 or e10 occur, or both events occur in the AND
gate — e8 and e9. The node e10 represents a k-out-of-n component. For event e10 to occur, at least 3 of the 5
components must fail.

We performed an evaluation by considering 600 hours, "days” as the time unit, and six sampling points
(see Figure[I81). At the end of the evaluation, a window with the results appears, as shown in Figure[182] The
results are divided into two groups. These are ”Steady-state Results” for steady-state metrics and "Instantaneous

Results” for time-dependent metrics. Listing[6|shows an example of a result obtained by evaluating the FT model

presented in Figure
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Evaluation >

Resolution Method

SFM - Method based on Structure Function

Choose Metrics
v| Mean Time to Failure v| Mean Time to Repair v| Uptime

v| Steady-State Availability W[ Instantaneous Availability | Downtime

v| Reliability v| Unreliability Timeunit  |hours

Evaluation Time _

Analyze in multiple time points

Murmber of sampling points _

Run Cancel

Figure 178: Evaluation for FTs

Resolution Method

SFM - Method based on Structure Function

SFM - Method based on Structure Function
SDP - Method based on Sum of Disjeint Products

Figure 179: Resolution Methods

Listing 6: Dependability Result

xxxxxxxxxxrx Steady—state Results — ssxssssssxnx
MITEF: 135.34895649773728
MTTR: 0.9892888019620744
Availability: 0.9927438643515808
Number of 9’s: 2.1392946070381917
Uptime: 362.591952059529 days

Downtime: 2.650246940471 days

wxxkxxkxrxxr Instantaneous Results s s sk x

Time Reliability (9’s) Unreliability Inst. availability
0.0000 1.0000 infinity 0.0000 1.0000

100.0000 0.495397815436 0.297050873632 0.504602184564 0.992743864352

200.0000 0.237326036791 0.117661079661 0.762673963209 0.992743864352
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Figure 180: FT Model for Dependability Evaluation

Resolution Method

SFM - Method based on Structure Function

Choose Metrics
¥ | Mean Time to Failure ¥| Mean Time to Repair | Uptime

| Steady-State Availability | Instantanecus Availability v | Downtime

v| Reliability | Unreliability Time unit: days

Evaluation Time

v| Analyze in multiple time points

Mumber of sampling points _

Run | | Cancel

Figure 181: FT Analysis

300.0000 0.106254851578 0.048786302695 0.893745148422 0.992743864352
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Textual Result

Steady-state Results
135.34895649773728
0.5852282019620744
0.5927438643515808
2.1392846070381917

MNumber of 9's:
Uptime:
Downtirne:

F AR AR

Plot Reliability

362.591952059529 days
p.650246040471 days

Instantaneous Results

Reliability
1.0000
0.495397815436
0.237326036791
0106254851578
0.044378236066
0.017523713692
0.006639134329

Plot Intantanecu

FHE AR AR

(9's)

=]
0.297050873632
0117661079661
0.048736302695
0.019713967913
0.007677925455
0.002892953306

Unreliability
0.0000
0.504602184564
0.762673963209
0.893745148422
0.955621763934
0.582476281302
0.993360865471

0.99274384
0.99274384
0.99274384
0.99274384
0.99274384
0.99274384

Export to XML | | Close

Figure 182: Dependability Result

400.0000 0.044378236066 0.019713967913 0.955621763934 0.992743864352
500.0000 0.017523718698 0.007677925455 0.982476281302 0.992743864352

600.0000 0.006639134529 0.002892953506 0.993360865471 0.992743864352

Figure[183|shows the “Reliability Chart” dialog, which is displayed by clicking the “Plot Reliability” button.
This button is only visible when reliability is selected in the input dialog. The number of points on the plotted
lines is determined by the number of points entered by the user.

Resolutions of models by simulation are required when non-exponential probability distributions are
associated with an event. Figure[I84]shows a model with a non-exponential node (node e11). Non-exponential
nodes are converted to SPNs and the model is solved by simulation. When Mercury detects this situation, it

displays the message "Non-exponential distributions detected" at the bottom of the Evaluation dialog (see

Figure|185).
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Figure 183: Reliability Chart

When you click the “Run” button, some parameters must be entered to support the simulation. The
parameters required depend on the metrics you choose. If you select only steady-state metrics, Mercury displays
the window shown in Figure[186] On the other hand, if you select one or more time-dependent metrics, Mercury
displays the window shown in Figure[187} If you select both transient and steady-state metrics, both tabs appear
in the same window, as shown in Figure[188] In this case, when clicking the Run button in the dialog box
shown in Figure[188] Mercury considers the parameters in both tabs. If no changes are made to the parameters,
Mercury considers the default parameter values. The results are displayed once the parameters have been
defined and the simulation is complete. Results are presented with confidence intervals, as shown in Figure[T89]
It is important to emphasize that the following metrics cannot be solved by running a simulation: MTTE MTTR,

and instantaneous availability. For more information about simulations, see Section
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Figure 184: FT with a Non-Exponential Node

Evaluation - Simulation i

Resolution Method
5FM - Method based on Structure Function
SFM - Method based on Structure Function
) S0P - Method based on Sum of Disjoint Products
| Uptime

v | Steady-State Availability v | Downtime

¥| Reliability | Unreliability Timeunit  |hours

Evaluation Time _

Analyze in multiple time points

Murmber of sampling points _

MNon-exponential distributions detected. Run | | Cancel

Figure 185: FT Evaluation by Simulation
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Simulation Parameters *

Mon-exponential distributions detected.

Please, provide the parameters for the simulation.

Stationary Sirulation

Confidence Lewv

Max. Relative Error %

Min. # of Firing for each Transition

Min. Warm-up Time

Batch Size

Min. Simulation Time (sec)

Max. Simulation Time (sec)

Cancel

Figure 186: Simulation for Steady-State Metrics

4.1.2 FT Experiment

Mercury allows us to evaluate the impact of varying some parameters on the model. Now we will show you
how to use the experiment feature. The first step is to define one or more labels. Labels are variables that store
numerical values and can be associated with the failure/repair parameters of nodes. The value of a label is
changed taking into account a step size and at each change the selected metric is evaluated. A label is inserted
by right-clicking on an event and selecting “Insert label” as shown in Figure[TI90] Another way is to right-click on
the label area in the left pane and choose “Insert label”, as depicted in Figure[I91} Once this is done, the “Label

Properties” window is displayed (see Figure[192). There the user can set the properties of the label.
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Simulation Parameters *

Mon-exponential distributions detected.

Please, provide the parameters for the simulation.

Transient Simulation

Resolution Method DES + Linear Regression 1
Confidence Level %

Mazximum Relative Error %

Time

# Sampling Points

# Replications

# Runs (for each replication)
Minimum # Firing for each Transition

Minimum Simulation Time (sec)

333

Maximum Simulation time (sec)

Cancel

L
m

Figure 187: Simulation for Time-Dependent Metrics

Once a label is inserted, it is available in the left window on the FT tab. Now it can be associated with one or
more event parameters. When you right-click on a label, a popup menu appears with three menu items (see

Figure|191). We describe each of these items below.

¢ Insert label. Displays the “Label Properties” window where the user can insert a label.
* Remove label. Remove the selected label.

* Properties. Displays the “Label Properties” window where the user can change the properties of the label.

After defining a label, it is necessary to attach this label to the failure/repair parameter of the component
under evaluation. Figure demonstrates how to attach a label to an event parameter. It is also possible to

attach a label to the price parameter of a component in the FT model, as shown in Figure
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Simulation Pararmeters >

Mon-exponential distributions detected.

Please, provide the pararneters for the simulation.

Stationary Simulation| Transient Simulation

Confidence Level %

Max. Relative Error 5%

Min. # of Firing for each Transition

Min. Warm-up Time

Batch Size

Min. Simulation Time (sec)

Max. Simulation Time (sec)

Cancel

Figure 188: Simulation for Steady-State and Time-Dependent Metrics

“Experiment” can be accessed from the menu Evaluate -> FT Evaluation -> Experiment. Figure shows
the “Experiment” window. To run experiments, the user must enter values for all required fields. We describe

each of these options below.

¢ Parameter. The label whose value will be changed at each iteration of the experiment.
¢ Metric. The metric to be evaluated.

e Minimum Value. Initial value for the selected label.

¢ Maximum Value. Final value for the selected label.

¢ Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is
logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.
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|£| Result X

Textual Result

Steady-state Results *es
Availability: 0.999909066011855 [0.9999020152876078, 0.9999101167361023]
Mumber of @'s:  4.04127376138843
Uptime: 8765.015639683492 hours [8765.006449233468, 8765.024870137317]
Downtime: 0.797110314508 hours [0.787899862484, 0.806320766533]

Instantanecus Results

Reliability Cl(Reliability) 9's) Unreliability Cl{Unreliability)

1.000000000000 ca 0.000000000000

0.967374064159 [0.964874485314, 0.970873643005]  1.493144212314 0.032123935841 [0.029126356095, 0.035125514686]
0.890813916237 [0.88293845508¢8, 0.898689377385]  0.961832710806 0.109186083763 [0.101310622615, 0.117061344912]
0.796965236242 [0.786751244508, 0.807179227976]  0.692429505508 0.203034763758 [0.192820772024, 0.213248755491]

0.696040492570 [0,683937063022, 0.708143922118]  0.517184267940 0.303959507430 [0.291856077882, 0.316062936978]
0.399761289732 [0.586342106318, 0.613180473146]  0.397680909506 0.400238710268 [0.386819526854, 0.413657893682]

Plot Reliability Export to XML

Figure 189: Result from a Non-Exponential FT Model Evaluation with Confidence Intervals

Change to a blank event

Delete

Properties ...

Export to PDF

Figure 190: Inserting a Label into the FT Model

¢ Interval. Step size that will be taken into account when changing the value of the label. The label starts
with the minimum value and its value is incremented considering this interval. At each change, the

selected metric is evaluated. The experiment is finished when the maximum value for the label is reached.

¢ Evaluation Time. Evaluation time considered in the calculation of time-dependent metrics. For time-
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Figure 191: Left-Side FT Pane

|£: Label Properties

Properties

Mames: A

Value: 1

Description:

dependent metrics — reliability, unreliability, instantaneous availability — it is necessary to enter the time

parameter.

After defining the input parameters, the user must click on the “Run Experiment” button to start the

experiment. If the model to be evaluated contains non-exponential events, the user must also enter the

Ok

Figure 192: Inserting a Label in the FT Model
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Event Marme:
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DISTRIEUTIOM PARAMETERS 7 State: |Default

Parameters

Failure Distribution:  |Exponential

% Time Rate

Repair Distribution:  |Exponential

8 Time Rate

Price (8):

Figure 193: Attaching a Label to an Event Parameter

Update

Figure 194: Attaching a Label to the Price Parameter of an Event

simulation parameters, as shown in Figure Once the experiment is finished, the “Experiment Result” dialog

is displayed (see Figure[197).
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Pararmeter: v 1234.0

Metric:  [Reliability

Minimum Yalue: _ Maximum Value;

Type: ™ Linear Legarithmic

Interval (step size):

Evaluation Time:

Run Experiment

Figure 195: FT Experiment

Simulation Parameters >

Mon-exponential distributions detected.

Please, provide the parameters for the simulation.
Transient Simulation
Resolution Method DES + Linear Regression 1

Confidence Level %

[=]

Maximum Relative Error %

Time

# Sampling Points

# Replications

# Runs (for each replication)

[=]

Minirnum # Firing for each Transition

Minimum Simulation Time (sec)

Maximum Simulation time (sec)

Cancel

Figure 196: FT Experiment - Simulation Parameters
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Figure 197: Experiment Result Dialog

4.1.3 Bounds for Dependability Analisys

“Bounds for Dependability Analysis” is used to estimate dependability metrics by calculating reliability, avail-
ability, or downtime. It is necessary to estimate the bounds (upper and lower limits) for the calculation of this
analysis, where users get results quickly. This analysis should be performed when the model is huge. This
analysis is divided into two parts: (i) the calculation of the limits and (ii) the use of the sum of disjoint points to
determine the successive values and the number of iterations required.

Users can access this analysis by going to the Evaluate -> FT Evaluation -> Bounds Evaluation menu.
Figure[198|shows the “Bounds for Dependability Analysis” window. As shown in Figure[T199] four metrics can be
evaluated: Steady-State Availability, Instantaneous Availability, Reliability, and Downtime. The “time” parameter
is required if you select “Instantaneous Availability” metric. Once you have selected a metric and entered the

time, if applicable, you must click the “Get Start Values” button to start the evaluation.
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Bounds for Dependability Analysis of Fault Tree

Steady State Availability

Figure 198: Bounds for Dependability Analysis

Steady State Availability

Steady State Availability

Instantaneous Availability
Reliability
Downtime

Figure 199: Metrics for Bounds Evaluation

Get Start Values

Let us now demonstrate how to perform bounds evaluation using Mercury. We have considered a model

consisting of five events, each of which contributes to the overall system failure (see Figure[200). As we can see,

the system fails when the events el, €3, and at least one of the following events occur: e4, €5, or 6. We evaluated

the bounds for this model by considering the time parameter equal to 8760h (see Figure[201).
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Figure 200: FT Model for Bounds Evaluation
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Bounds for Dependability Analysis of Fault Tree >

Metric:  [Reliability

Time:

Upper:

Lower:

Figure 201: Bounds for Reliability

First, the upper and lower values are calculated. The first path and the first cut are used to determine the
upper and lower values of the selected metric. The paths refer to the lower bounds, where a minimal set of
components is chosen to ensure the operational mode of the system. The cuts refer to the upper bounds where
a minimal set of components is chosen to ensure the system in failure mode. After determining the upper and
lower values, we set the number of steps for the upper and lower values to three. Thus, we obtained the result
shown in Figure[202] We have highlighted the values for the upper and lower bounds for the last step — step 3.
As we can see, they are the same. If you click on the “Plot Chart” button, you can see how the lower and upper

bounds for three steps converge to the exact value (see Figure[203).
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Bounds for Dependability Analysis of Fault Tree >

Metric:  [Reliability
Time:  EE

Upper:  0.70702954251
Lower 826041554068

Availability

- Step 2

- Step 3

Lower Bounds
- Step 1 = 0.000826041554
- Step 2 = 0458056146221
- Step 3 = 0.511108707464

Plot Chart | | Export

Figure 202: Bounds for Reliability - Result

The method of determining successive values and the number of iterations is defined by the number of paths
and cuts in the model. If you increase the number of iterations, the value found will be closer to the exact value.
Once the calculation of the last path or cut is complete, the exact value of the metric can be found. The exact
value will be the value found in the last step. We have performed the exact evaluation to obtain the reliability at
8760h. Figure[204]shows that reliability at 8760h is equal to the values obtained in the bounds evaluation for the

maximum number of steps (see Figure [202).
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Figure 203: Plotting Bounds Result
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Figure 204: Reliability at 8760h

4.1.4 Component Importance and Total Cost of Acquisition

“Component Importance” is a metric that indicates the impact of a particular component on the system. Consid-
ering the importance scores, the most important component (i.e., the component with the highest importance)
should be improved to increase the reliability or availability of the system. This evaluation can be used, for
example, to support maintenance activities.

You can use importance measures to determine the relative importance of each component with respect

to the reliability or availability of the overall system. You can access this evaluation by selecting “Importance
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Measures” from the Evaluate -> FT Evaluation menu. Then you need to select a metric in the “Component
Importance Measures” window and then click the “Evaluate” button (see Figure[205). If the “Cost” parameter
has been set for the nodes, it is also possible to evaluate the relationship between metrics and investment costs.

The parameter “Time” is needed for the evaluation of the reliability metrics.

k- Compenent Importance Measures of Fault Tree .

Parameters
ilability Importance

Include Financial Cost Evaluate

Component Mame Importance Measure Importance Mormalized

Figure 205: Component Importance Measures

As shown in Figure[206} you can choose between a few types of measures. The types are: “Availability Impor-
tance", “Reliability Importance (Birnbaum)", “Criticality Reliability Importance" and “Criticality Availability
Importance." The “Criticality Importances” measures are obtained by considering the system in failure “(f)” or
in operation.

lability Importance
Availability Importance
Reliability Importance (Birnbaum)

Criticality Reliability Importance
railability lmportance

liability Importance (f)

wailability Importance (f)

Figure 206: Metrics for Component Importance Measures

Below we show you how to perform “Component Importance” evaluations. We performed this evaluation

considering the "Reliability Importance (Birnbaum)” metric for the model shown in Figure

As we can see in Figure the evaluated system has two sensors and each is connected to the single gate of

the model. For the system to fail, at least one sensor must fail. “Sensor A” has an MTTF of 17520h and an MTTR
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Figure 207: FT Model for Component Importance Evaluation

of 72h. “Sensor B” has an MTTF of 6000h and an MTTR of 24h. All times are exponentially distributed. When
we perform the “Component Importance” evaluation considering the time parameter of 8760h, we obtain the

results shown in Figure

¥ Component lmportance Measures of Fault Tree >

Parameters

Reliability Importance (Birnbaum) -

Include Financial Cost | Time:

Component Name Importance Measure Importance Mormalized REII ah|||t'f Impﬂrtanﬂﬂ
el |0.7677637252702412 [1.0

2 |0.3934693402873666 |0.5124875366426974 {Elrnhaum]
Value

=

b

:
2
£
§

Figure 208: Reliability Importance Results
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The results show the importance value for each component and a graphical representation in the form of a
ranking that highlights the most important components. As we can see, the component “Sensor A” (el) is the
most important for the system reliability. If you replace “Sensor B” (e2) with another one with the same MTTR

but an MTTF of 12000h, the result changes as shown in Figure

¥ Component lImportance Measures of Fault Tree *

Parameters

Reliability Importance (Birnbaum) -

Include Financial Cost | Time:

Component Name Importance Measure Importance Mormalized REII ah|||t'f Impmt ance
el |0.51280910099097975 [1.0

e [0.3934603402873666 _ |0.7504508878599954 (Birnbaum)
Value

e

i

;
2
E
d

Figure 209: Reliability Importance when Replacing a Component

We can see that the importance of “Sensor A” (el) has decreased. However, considering a time interval of

8760h, “Sensor A” is still more important for overall reliability when compared to “Sensor B”.
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4.1.5 Structural and Logical Functions

Mercury generates structural and logical functions of FT models. Both functions represent the system and refer
to the states of the individual components. Also, it is possible to evaluate the impact on the system operation
considering the faulty components. The system and its components must be in one of the following states:
working (default) or failed. The state of the system is a binary random variable determined by the states of its
components. If the state of each component is known, then the state of the system is also known. The state can
be toggled by accessing the event's properties (see Figure[210). If the state of an event is failed, the component is

represented by a fire icon above the node, as mentioned earlier in this manual.

Figure 210: State of an Event

Let us now demonstrate how to obtain these functions using Mercury. Figure shows a model with a AND
gate and a OR gate. As we can see, there is a failed node in this model (event e3), and this node is a child of the

OR gate.

FAILURE

AND AND1

@ OR1

El

E3 Ea ES

Figure 211: FT Model
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Structural and logical functions can be accessed through the Evaluate -> FT Evaluation -> Get Functions
menu. Figures and[213|show the structural and logical functions, respectively, of the FT model shown above.
In addition to the expressions, the tool displays the event nodes marked as faulty (non-functional) and the

current state of the system. In our example, the faulty node (e3) has no effect on the state of the system.

% Structural and Logic Functions of Fault Tree x

Get Structural Function || | Get Logic Function

Structural Function * Logic Function

Failed Modez:
((el) *{1-({1-e3)*(1-ed)*(1-e5))) &3

The System is: Working!

Figure 212: Structural Function

o

% Structural and Logic Functions of Fault Tree >
Get Structural Function | | Get Logic Function

Structural Function | Logic Function
Failed Nodes:

(el)*((e3) v (ed) v (e5)) e3

The System is: [Working!

Figure 213: Logic Function

On the other hand, we can see that changing the state of event node el to failed (see Figure[214) also changes

the state of the system to failed (see Figure[215).
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Figure 214: FT Model
*¥ Structural and Logic Functions of Fault Tree et

Get Structural Function | | Get Logic Function

Structural Function | Legic Function
Failed Modes:

(el)~((e3) v (ed) v (e5)) el
e3

The System is: |Failed!

Figure 215: Logic Function and System State as Failed
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4.1.6 Sensitivity Analysis

Mercury calculates partial derivative sensitivity indices from FTs through sensitivity analysis. These indices
indicate the impact of each input parameter on the availability of the model. Mercury provides two types of
sensitivity analysis for FT models. The first type of sensitivity analysis considers the current values of the model’s
parameters and can be accessed from the Evaluate -> FT Evaluation -> Sensitivity Analysis menu. The second
type of analysis considers min/max values for each parameter and supports the “Design of Experiments” (DoE)
method in addition to the “Sensitivity Indices” method. This second type of sensitivity analysis is shown in
Section[2.5)and can be accessed from the menu Evaluate -> FT Evaluation -> Sensitivity Analysis (min/max
values). Figure shows the “Sensitivity Analysis” window to perform sensitivity analysis considering the
current parameter values, displaying the partial derivative of the structural equation for each parameter and the
sensitivity indices. It should be noted that both types of sensitivity analysis are only available when all event

nodes of the model are exponential.
Sensitivity analysis of Fault Tree >

Type of sensitivity index
% Scaled Unscaled
Type of ranking
® Ordered Unordered
Parameters under analysis
® Component's availability Component's MTTF and MTTR
Structural function: ((e1)*(1-(1-e3)*(1-e41*(1-e3]])
Partial derivative of Availability with respect to
s-(-e3+ 1) (-ed+ 177 (-e3+ 1)+ 1
s el (-ed+ 1) (-e5+1)

s el (-e3+ 1) (-e3+1)
c el (-e3+ 1) (-ed+1)

Parameter Sensitivity ualuel
0.9904059247438637
1724504410462 737E-6
6.988969939735458E-7
1.30261981095168753E-7

Figure 216: Sensitivity Analysis of Fault Tree
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4.1.7 Export to RBD model

Users can convert FTs to RBDs. This is done via the menu Evaluate -> FT Evaluation -> Export to RBD model.
The conversion process must be confirmed as shown in Figure[217] After that, the user must select the directory

and enter the name of the file to be created.

Confirmation =

? Do you really want to convert the Fault Tree model to RBD?

No

Figure 217: Converting FT to RBD

Figure shows an RBD converted from the FT shown in Figure

FAILURE

|AND| ANDL

R o

El

E3 E4

Figure 218: FT Model
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el

BEGIN &=— — END

Figure 219: RBD Generated from a FT Model
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5 CTMC Modeling and Evaluation

The first step to start modeling CTMC models on Mercury is to insert states into the graph. In the CTMC view,

the user must click on the “State” button available in the toolbar (see Figure[220), and then click on the desired

location in the drawing area to create a state there.

Figure 220: Adding a CTMC State

After adding states, the transitions between them are drawn by clicking on the center of the source state,
only after the cursor turns into a hand symbol, and then drawing the line up to the target state, as shown in

Figure After that, a directed arc is created between the two states, as shown in Figure

O

O O O

52 53

Figure 221: Adding a Transition Between States

O 0O

51 52 53

Figure 222: A Transition Between States
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You can set the rate of each transition by double-clicking or right-clicking on the respective arc and selecting

“Properties”. Figure shows the window where the transition rate can be defined.

(£ Arc X

Figure 223: Defining a Rate for a State Transition

Mercury also allows us to assign reward rates to states. To do this, double-click or right-click on the selected
state and select “Properties”. Figure shows the “State” window where a reward rate can be assigned to a state.
The default reward rate for each state is zero. You can enter any real value or an expression with user-defined

parameters in this window. Also the name of the state can be changed.

| L] State >
Properties
MName:

Reward:

Description:

Figure 224: Properties of a State

After all states and transitions have been properly defined (see Figure|225), stationary and transient analyzes

can be performed.
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MTTFR1: 131000  /MTIFRZ
MTTFR2: 131000
MTTFL1: 11988

MTTRER1: 12
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MTTRELT: 12

upu

Figure 225: A CTMC Model

Users can export the infinitesimal generator matrix (transition rate matrix) of the model to a text file by

clicking on the matrix icon in the toolbar, as shown in Figure[226}

Figure 226: Exporting the Transition Rate Matrix

Mercury has a feature to improve the usability of the tool. Once a CTMC component is inserted, you can
read its properties on the drawing area by positioning the mouse pointer over it. A tooltip will then appear

showing all the properties of the component. As you can see in Figure[227} a tooltip with the properties of a state

O

S0

is displayed.

Figure 227: Tooltip for a CTMC State
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5.1 Input Parameters/Definitions

Transition rates can be defined using expressions containing both numbers and user-defined parameters. The

“Definition” button on the toolbar is represented by a A symbol and creates a symbolic parameter (see Figurg228).

MATR

Figure 228: Adding a CTMC Definition

After clicking on this button, the user must click on any point in the drawing area to place the definition
there. This way a new parameter named ParamO will be created (or Param1, and so on, if other parameters have
already been created). By double-clicking the parameter or selecting “Properties” from the definition’s popup
menu, you can access its properties.

The name of the parameter can be defined by a combination of alphanumeric characters. Identifiers on
Mercury must start with at least one alpha character. Special characters (e.g., a hyphen or an ampersand) are
not allowed, except for underscores. If names with Greek letters are used, Mercury will convert them to the
corresponding symbol of the lowercase Greek alphabet (see Figures[229]and[230). The value assigned to the

parameter can be a numeric expression. Symbols or parameter names are not allowed in the value field.

-8 - -4 M Definition ot
i oo 1/8760 ¢
----F----u

Properties

il
-

WValue: 1/8760

Description:

Figure 229: Modifying a CTMC Parameter
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Figure 230: Parameters Named by Using Greek Letters

5.2 Metrics

Using the “Metric” button, we can define metrics to extract some characteristic of the model (see Figure[231).

Figure 231: Adding a CTMC Metric

Once a metric is inserted, users can change its name and description and define the expression used to
calculate its value. The syntax for metric expressions is based on state probabilities (P{state name}), rewards
(R{state name}), and base-10 logarithmic function (LOG{expression}). Expressions for probabilities, rewards,
and logarithmic values for any states can be combined (i.e., added, subtracted, etc.). Using the example shown
in Figure[232} the metric AvB3 indicates the availability of the system (state “Up”) represented by the two-state
model. In this case, availability is calculated using the expression P{Up} — that is the probability of remaining
in the state Up. Once the model has been evaluated using stationary or transient analysis, the metrics in the
drawing area are updated accordingly (see Figure[233). Figure[234]shows an example of calculating the base-10
logarithm of the stationary probability of a given state. As we can see, by the expression LOG{1 — P{Down}}

we obtain the base 10 logarithm of the probability that the system is in the “Up” (operating) state, which gives
—7.232216190958877 x 104,
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1/mittfb3

mttfh3: 6000

o O
!.____I..--——p Up Down
1 AvB3: P{Up} #

1/mttrb3

& Metric e

Properties

Expression: P{Upl}

e _

Figure 232: Defining Name and Expression for a Metric

mttfh3: 6000 1/mitfh3
mttrb3: 10
L
AvB3: 0.9983361065 Down
T/ mttrb3

Figure 233: A CTMC Metric Solved

The reward rate can be determined using the metric expression R{}, and the mean time to absorption — if
there is at least one absorbing state — can be calculated by defining a metric using the expression MTTA.

Metric expressions are still visible in the “Metrics” group on the left side of the CTMC tab (see Figure[235).
This panel shows all the components that make up the CTMC model: states, parameters, metrics, and transitions.
State transitions are represented in this panel by the source and target states, followed by the expression or value

associated with that transition.
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M Vetric X
Properties

Expression: LOG{1-P{Down}}

LEITEI - 7.232216190958877E-4

| £ Expression Editor %

At ] A

. LOG{1-P{Down}}

OK | | Cancel

Figure 234: Using the LOG Function Expression

Project "RBD 'FT 'EFM ' SPN DTMC

CTMC Model

=} States

Q DU

.CJ. Juy

O uun

() UDU
=-Definitions

""" MTTF_R1: 131000
""" MTTF_R2: 131000
----- MTTF_L1: 11982
----- MTTRR1: 12

----- MTTRLT: 12

[=H-Metrics

----- Metric1: PIUDU}

----- Metricl: PIULUL+PIUUD+PIDULL
----- Aoailability: PIUUUY

=t Transitions

----- DUU=UU: 1/MTTRR1
----- UUL—DULL 1/MTTF_R1
----- UUU=UuD: 1/MTTF_L1
----- UUU—=uUouw: 1/MTTF_R2
----- UUD—-UUU: 1/MTTRLI
----- UDU—=UUL: 1/MTTRR2

Figure 235: CTMC Panel on the Left Side of the Main Window
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5.3 CTMC Evaluation

Mercury makes it possible to perform a large number of evaluations on CTMCs. The tool provides four function-
alities for CTMC evaluations: “Stationary Analysis”, “Transient Analysis”, “Sensitivity Analysis”, and “Sensitivity
Analysis (min/max values).” These evaluations are available from the Evaluate -> CTMC Evaluation menu (see

Figure|236). In the next subsections, we will introduce each of them.

Evaluate

Stationary Analysi Ctri-F&

Ctrl-Fo

Ctrl-F10

Ctrl+ Alt-5

Figure 236: CTMC Evaluation Menu

5.3.1 CTMC Stationary Analysis

Stationary analysis calculates steady-state probabilities useful for evaluating the long-term average behavior
of modeled systems. Figure shows the “Stationary Analysis” window, which contains a combo box for
selecting one of two supported solution methods: Direct - GTH (Grassmann-Taksar-Heyman) and Iterative -
Gauss-Seidel.

When solving CTMCs through GTH, it is possible to change the maximum error used in the algorithm. The
default value for the maximum error is 0.0000001 (10~ 7). When you click the “Run” button, the solution algorithm
is triggered. Once it is finished, the results are displayed in the text area at the bottom of the window (see Listing][7)

and written to a plain text file, with the project file name appended with the suffix “-StationaryAnalysis.txt”.
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i‘%?ﬁ Staticnary Analysis

Method: Direct - GTH

Experiment Save CTMC Matrix

Options

Analysis
[terations:  from:

Results:

Figure 237: Stationary Analysis Window

Listing 7: Stationary Analysis for a CTMC

Mon Aug 14 13:09:56 BRT 2020

Performing stationary analysis...

Done! (elapsed time: 1s )

Matrix Q has been written into the file:
C:\ Users\Thiago \Chapter CTMC_Modell-MatrixQ . txt
HEHHHBHAHHHHHBHAHBH AR R AR RS
DUU=9.149470622218616E-5
UUU=0.9988171936427845
UUD=9.998170168890783E-4
UDU=9.149463410419709E-5

——————— Metrics ——————

Availability=0.9988171936427845
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Results have been written into the file:

C:\ Users\Thiago\Chapter_ CTMC_Modell-StationaryAnalysis. txt

When solving CTMCs through Gauss-Seidel, it is possible to change not only the maximum error but also the
maximum number of iterations. The default value for such a parameter is “-1”, which means that the algorithm

will not stop until the convergence of the results is reached taking into account the entered error (see Figure[238).
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% Stationary Analysis >

Method: [terative - GALISS-SEIDEL

Experiment Save CTMC Matrix

Options

Errorr  [HEEEEEN [terations (M

Analysis
Current lteration: Current Error:

Results:

Figure 238: Stationary Analysis Window - Gauss-Seidel Method

Metrics are updated in the drawing area once the analysis is complete (see Figure where the metric is

located on the left side of the model: “Availability”).
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MTTF_R1: 131000 UL
MTTF_R2: 131000
MTTF_L1: 11988

1/MTTF_L1

MTTRER1: 12
MTTRRZ: 12
MTTELT: 12

Availability: 0.0697621264

upu

Figure 239: CTMC Metrics Updated

CTMC models can also be solved for a range of values of a user-defined parameter. To do this, check the
“Experiment” option and click the “Run” button in the “Stationary Analysis” window. A new window will appear

where the user can specify the input parameters for the experiment (see Figure[240).

Options for Experiment
Options

Parameter:

Minimum Yalue: _ Maximum Value:

Type: ™ Linear Logarithmic

Metric: wailability

Figure 240: CTMC Experiment

Below, we describe each field on this window.

e Parameter. Parameter to have its value changed.

e Minimum Value. Initial value to be assigned to the selected parameter.
¢ Maximum Value. Final value to be assigned to the selected parameter.
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¢ Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is
logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.

¢ Interval. This is the step size for changing the value of the parameter. The parameter starts with the
minimum value and its value is increased considering the entered interval. At each change, the selected

metric is evaluated. The experiment is finished when the maximum value for the parameter is reached.

e Metric. Metric to be evaluated.

At the end of the experiment, the results are displayed and a graph is plotted, as we can see in the Fig-

ures[241] and[242]

% Progress >

Experiment Progress:

Experiment 1 has been successfully completed.
Experiment 2 has been successfully completed.
Experiment 3 has been successfully completed.
Experiment 4 has been successfully completed.
Experiment 5 has been successfully completed.
Experiment 6 has been successfully completed.
Experiment 7 has been successfully completed.
Experiment 8 has been successfully completed.
Experiment 9 has been successfully completed.
Experiment 10 has been successfully completed.

Availability

0.5
0.3333333333333333
0.24999992382412894
0.2
0.1666666687362724
0.14285713555861487
0.1250000048394435
[P ARRRARRRRRRRRRRE!
0.1000000067055224%
0.09090909214059183

Results have been written into the file: ENVSPM_CTMC_MNew_Alg-StationaryExperiment. bt

Figure 241: Results from a CTMC Experiment

Another option in the ”Stationary Analysis”window allows us to save the CTMC matrix to a file. It will be

written to a plain text file, appending the name of the project file with the suffix ”-MatrixQ.txt”.
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a‘%? Experiment Result X

Experiment Result

Experiment Output
T T

0.50000

0.45000

0.40000

0.35000

0.30000

Availability

0.25000
(0.4, 0.20000)
0.20000

0.15000

0.10000

Show Labels Save XML | | Close

Figure 242: Graph from a CTMC Experiment
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5.3.2 CTMC Transient Analysis

Transient analysis computes time-dependent probabilities useful for evaluating the behavior of modeled systems
at a given time. Figure shows the “Transient Analysis” window, which contains an input field for selecting
one of the two available solution methods: Uniformization (also known as Jensen method) and Runge-Kutta

(4th order).

When solving transient metrics of CTMCs, the user can define:
¢ Time for which the analysis will be carried out (default: 100).
¢ Precision of results (default:1077).

¢ Initial state probabilities (default: 1 for the initial state, 0 for the other states). These probabilities are

defined by clicking the “Set Initial State Probability” button (see Figure[244).

a‘%?s Transient Analysis w0

Method: i izati Run

Uniformization
5ave C Runge-Kutta(4th order) ure] Absorption Probability

Options

Time:

Precision: . Set Initial State Probability
Output: ® Point Curve

Analysis

Current Time: M. of iterations for a step: _

Results:

Figure 243: Transient Analysis Window
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| £ Initial State Probability e

Probabilities

Initial Probability

Cancel

Figure 244: Initial State Probability Window

When selecting the Uniformization method, keep in mind that the time needed to obtain results is propor-
tional to the time entered for the analysis, since Uniformization is an iterative algorithm.

When you click the “Run” button, the solution algorithm is started. Once it is completed, the results will be
displayed in the text area at the bottom of the “Transient Analysis” window. Also, they will be written to a simple
text file appending the project filename with the suffix “-TransientAnalysis.txt”.

In this window we can also choose between Point or Curve analysis. The Point analysis is the default and
shows the state probabilities only for the given time. The Curve analysis writes all state probabilities calculated
from time equal to zero to the specified time into a text file.

Mean time to absorption (MTTA) is a metric that can be calculated by checking “Mean Time to Absorption (
failure)”. MTTA is displayed after the state probabilities in the “Results” text area. For MTTA calculation, the user
can also define a metric with the expression MTTA. “Absorption Probability” for each state is another metric

available in the transient analysis.
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5.3.3 Sensitivity Analysis

Mercury calculates partial derivative sensitivity indices from CTMCs through sensitivity analysis. These indices
indicate what effect each input parameter has on a metric. Mercury provides two types of sensitivity analysis
for CTMC models. The first type of sensitivity analysis considers the current values of the model’s parameters
and can be accessed from the Evaluate -> CTMC Evaluation -> Sensitivity Analysis menu. The second type of
analysis considers min/max values for each parameter and supports the "Design of Experiments” (DoE) method
in addition to the "Sensitivity Indices” method. This second type of sensitivity analysis is shown in Section[2.5|
and can be accessed from the menu Evaluate -> CTMC Evaluation -> Sensitivity Analysis (min/max values).
Next we demonstrate a sensitivity analysis considering the current parameter values. Figure shows a CTMC

representing the availability of a network with two routers and one link.

1/MTTFR1 Uy 1/MTTFL1

/MTTRR 1/MTTRL1

MTTER1: 131000  V/MTIFRZ 1/MTTRR2

MTTFRZ: 131000
MTTFELT: 11988

MTTRR1: 12 U

. - —-——- He — — — — — o
MTTRRZ: 12 i Availability: PlUUU} ¥
MTTRL1: 12 e "

Figure 245: CTMC Model Representing a Computer Network

This model was proposed in [4] and has six parameters that affect system availability. These parameters are
the mean time to failure (MTTF) and mean time to repair (MTTR) of each component: router 1 (R1), router 2
(R2), and link (L1). Their sensitivity ranking was calculated using Mercury, as shown in Figure[246]

The “Sensitivity Analysis” window for the current parameter values has four options:

¢ Type of sensitivity index can be scaled or unscaled. If the user chooses scaled indices, each partial
derivative is multiplied by the ratio between the respective parameter value and the metric value. This
removes the influence of the parameter units and provides the sensitivity in a non-dimensional view.
Unscaled indices are the raw results of the partial derivatives. For more details on scaled and unscaled

indices, see [4] and [5].

¢ Type of ranking might be ordered or unordered. Typically, ordered rankings are preferred to quickly

identify the most important parameters as well as those that have little impact on the chosen metric.
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¢ Measure of interest can be any user-defined CTMC measure, for which the user is interested in assessing
sensitivity to input parameters. Please note that no sensitivity analysis can be performed if no measure

has been defined. All measures can be evaluated at once.

¢ Parameter of interest can be any parameter in the model. The user can choose to see the sensitivity of the

selected measure with respect to only one parameter or to all parameters.

Sensitivity analysis of CTMC X

Type of sensitivity index Type of ranking

® Scaled Unscaled ® Ordered Unordered
Measure of interest Parameter of interest
Availability - All pararneters b

Sensitivity of Availability with respect to:
PTTFLT: 9.992817011E-4

MTTRLT: -3.99216936E-4

MTTRR1: -9.1404742E-5

MTTRRZ: -9.1404742E-5

MTTFR1: 9.1494705E-5

MTTFR2: 9.1494705E-5|

Run Close

Figure 246: Results of Sensitivity Analysis for a CTMC
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6 DTMC Modeling and Evaluation

The first step to start modeling DTMC models on Mercury is to insert states into the graph. In the DTMC view,

the user must click on the “State” button available in the toolbar (see Figure[247), and then click on the desired

location in the drawing area to create states there.

K @ B 95™F 00 ==

Figure 247: Adding a DTMC State

Transitions between them are drawn by clicking on the center of the source state after the cursor turns into a
hand symbol, and then dragging the line to the target state, as shown in Figure[248] After that, a directed arc is

created between the two states, as shown in Figure

O

O O O

52 53

Figure 248: Adding a Transition Between States

O 0O

51 52 53

Figure 249: A Transition Between States
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It is possible to define the probability of remaining in the current state once it has been reached by using

self-loops. A self-loop for a state is defined by right-clicking on the state and selecting “Self-Loop”, as shown in

Figure

Figure 250: Defining a Self-Loop to a State

Then a self-loop arc is drawn for the state, as we can see in Figure The left pane on the DTMC tab is

updated accordingly.

1.0 1.0

O

50 51
Figure 251: State with a Self-Loop Transition
The user can define the probability for each transition by double-clicking or right-clicking on the corre-

sponding arc and selecting “Properties”. Figure shows the window where a transition probability can be

defined.

(£ Arc x

QK Cancel

Figure 252: State Transition Probability

Figure[253|shows a DTMC model for which some parameters and a metric are defined. If you define all the

states and transitions correctly, you can perform stationary and transient analyzes.
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‘#f **Mercury Tool 5.1 - Chapter_DTMC_Modelosxml X

File View Evaluste Script  Preferences  Help
EmmS 5§ = %%

Project 'RBD 'FT 'EFM 'SPN ' CTMC DTMC v ' e>» FTView ' ¢» EFM View ' ¢» SPM View CTM p | €3 DTMC View
I~ DTMC Madel
[ States
509 elO YM§ €0

()51 \
()52
[=h-Parameters
[ failt: 0.073
[ fail2: 0.05
[ fail3: 0.25
[ fail: 0.9
[ fails: 0.8
[ fail6: 0.5
[ recoverl: 0.25
D recover2: 0.025
D recover3: 0.13
- Metrics
" MetricD: P{SD}+P{S1}
“MetricT: P{SO}
[=F-Transitions

S0—50: faild
--50—57: faill
- 50—52: recover2

fail1: 0.075
fail2: 0.05
fail3: 0.25
fail4: 0.9
fail5: 0.8
failé: 0.5

recover1: 0.25
recover2: 0.025
recover3: 0.15

Metricl: 0.624...

Metric0: 0.0625

Figure 253: Example of DTMC Model

Users can export the probability matrix of a model to a text file by clicking the button represented by a matrix

icon in the toolbar, as shown in Figure

Figure 254: Exporting the DTMC Probability Matrix

It is worth noting that when modeling DTMCs, the sum of probabilities for all output arcs must equal one for
each state. Otherwise, it is not possible to perform evaluations on the model. Figure[255|shows an error that

occurs when this condition is not met.

Error pod

The surn of the state transition probabilities must be equal to 1.0 for this state:

32 = 0.7

Figure 255: Transition Probabilities Error

Mercury has a feature to improve the usability of the tool itself. Once a DTMC component is inserted, you
can read its properties on the drawing area by placing the mouse pointer over it. A tooltip will then appear
showing all the properties of the component. As you can see in Figure[256} all properties of a state are displayed

in the tooltip.
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S0

Figure 256: Tooltip for a DTMC State

6.1 Input Parameters

Transition probabilities can be defined using expressions containing both numbers and user-defined parameters.

The “Definition” button on the toolbar is represented by a A symbol and creates a symbolic parameter (see

Figure257).

Figure 257: Adding a DTMC Definition

When we click this button, we must click on any point in the drawing area to put the definition there. This
way a new parameter named ParamO will be created (or Param1, and so on, if other parameters have already
been created). By double-clicking the parameter or selecting “Properties” from the definition’s popup menu, we
can access its properties.

The name of the parameter can be defined by a combination of alphanumeric characters. Identifiers on
Mercury must begin with at least one alpha character. Special characters (e.g. a hyphen or an ampersand)
are not allowed, except underscores. If names with Greek letters are used, Mercury will convert them to the
corresponding symbol of the lowercase Greek alphabet (see Figures[258/and[259). The value assigned to the

parameter can be a numerical expression. Symbols or parameter names are not allowed in the value field.
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Figure 258: Modifying a DTMC Parameter
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Figure 259: Parameters Named Using Greek Letters

6.2 Metrics

Using the “Metrics” button, we can define metrics to evaluate some characteristics of the model (see Figure [260).

MATR

Figure 260: Adding a DTMC Metric

Once you have inserted a metric, you can change its name and description and define the expression used to
calculate its value. The syntax for metric expressions is based on state probabilities (P{state name}), rewards
(R{state name}), and base-10 logarithmic function (LOG{expression}). Expressions for probabilities, rewards,
and logarithmic values for any states can be combined (i.e., added, subtracted, etc.). Using the example shown

in Figure the metric Prob indicates the probability that the system remains in the states “S0”, “S1”, and “S2”,

which is “1”.
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Faild :
- faill fails

fail1: 0.075
fail2: 0.05
fail3: 0.25
faild: 0.9
fails: 0.8
failé: 0.5

recovers

recoverl: 0.25
recovers: 0.025
recover3: 0.15

¥ Metric *
Properties

Mame:

Expression: 1500+ P{ST11+P{S2)

Value:

Description:

QK | | Cancel

Figure 261: Defining Name and Expression for a Metric

Prob is calculated by the expression "P{ SO }+P{S1}+P{S2}” — it represents the probability of remaining in
the states “SO”, “S1” and “S2”. Once the model has been evaluated using stationary or transient analysis, the

metrics in the drawing area are updated accordingly (see Figure[262).

Metric expressions are still visible in the “Metrics” group in the left panel on the DTMC tab (see Figure[263).
This panel shows all the components that make up the DTMC model: states, parameters, metrics, and transitions.
State transitions are represented by the source and target states, followed by the expression or value associated

with that transition.
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Faild :
= faill fails

fail1: 0.075
fail2: 0.05
fail3: 0.25
fail4: 0.9
fail5: 0.8
failé: 0.5

recovers

recoverl: 0.25
recovers: 0.025
recover3: 0.15

o
“hetricO: 1.0¢

B---E---u

Figure 262: A Metric Solved

6.3 DTMC Evaluation

Mercury makes it possible to perform a large number of evaluations on DTMCs. The tool provides two types of
evaluations for DTMCs: “Stationary Analysis” and “Transient Analysis”. These evaluations are available from the

Evaluate -> DTMC Evaluation menu (see Figure[264). In the next subsections we will introduce each evaluation.

6.3.1 DTMC Stationary Analysis

Stationary Analysis computes steady-state probabilities useful for evaluating the long-term average behavior
of modeled systems. Figure shows the “Stationary Analysis” window, which contains a combo box for
selecting one of two supported solution methods: Direct - GTH (Grassmann-Taksar-Heyman) and Iterative -
Gauss-Seidel.

When solving DTMCs through GTH, it is possible to change the maximum error used in the algorithm. The
default value for the maximum error is 0.0000001 (10~ 7). When you click the “Run” button, the solution algorithm
is triggered. Once it is finished, the results are displayed in the text area at the bottom of the window (see Listing[8)

and written to a plain text file, appending the project file name with the suffix “-StationaryAnalysis.txt”.
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Project RED FT ' EFM " 5PN CTMC
DTMC Model
[i}--S!‘.ates
B 81
E-Parameters
[ faill: 0.075
[ fail2: 0.05
[ failz 025
[] faild: 0.9
[ fails: 0.8
[ failé: 0.5
D recoverl: 0.23
D recoverd: 0.025
D recoverd: 0.13
[=H-Metrics
Metricl: P{S0}+P{51}
Metric1s P{SO}
=H-Transitions
S0—50: faild
S0—51: faill
S0—52: recover2
51-=51: fails
51—=50 recovers
S1-52: fail2
5252 faile
52—51: recover]
5250 fail3

Figure 263: DTMC Panel on the Left Side of the Main Window

Evaluate

3% Stationary Analisys

2% Transient Anali 5y's

Figure 264: DTMC Evaluation Menu

Listing 8: Stationary Analysis of a DTMC
Tue Feb 05 07:01:25 BRT 2020
Performing stationary analysis...

Done! (elapsed time: 0)
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% Stationary Analysis >

Method: Direct - GTH Run

Experiment Sojourn Times Recurrence Time Save DTMC Matrix

Options

Analysis
lterations:  from:

Results:

Figure 265: Stationary Analysis Window

HEHHHBHHHRHHH R AR R AR
S0=0.625

S$1=0.3125

$2=0.0625

——————— Metrics ——————

Metric0=1.0

Results have been written into the file:

C:\ Users\Thiago \Chapter_ DTMC_Modelos-StationaryAnalysis. txt

When solving DTMCs by Gauss-Seidel, it is possible to change not only the maximum error but also the
maximum number of iterations. The default value for such a parameter is “-1”, which means that the algorithm
will not stop until the convergence of the results is reached taking into account the entered error (see Figure[266).

Metrics are updated in the drawing area once the analysis is complete.

DTMC models can also be solved for a range of values of a user-defined parameter. To do this, check the
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% Stationary Analysis >

Method: Iterative - GALISS-SEIDEL Run

Experiment Sojourn Times Recurrence Time Save DTMC Matrix

Options

Error: [terations (Max):

Analysis
Current Iteration: Current Error:

Results:

Figure 266: Stationary Analysis Window - Gauss-Seidel Method
“Experiment” option and click the “Run” button. A new window will appear where the user can specify the input
parameters for the experiment (see Figure|267).
Options for Experiment *

Options
Parameter: Param0
Minimum Yalue: _ Maximum Value;

Type: ™ Linear Logarithmic

Metric: Metrich

Figure 267: DTMC Experiment
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Below, we describe each field on this window.

e Parameter. Parameter to have its value changed.
¢ Minimum Value. Initial value to be assigned to the selected parameter.
¢ Maximum Value. Final value to be assigned to the selected parameter.

¢ Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is
logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.

¢ Interval. This is the step size for changing the value of the parameter. The parameter starts with the
minimum value and its value is increased considering the entered interval. At each change, the selected

metric is evaluated. The experiment is finished when the maximum value for the parameter is reached.

¢ Metric. Metric to be evaluated.

At the end of an experiment, a graph is generated and the results are displayed, as we can see in the

Figures[268|and[269]

% Experiment Result x

Experiment Result

Experiment Output
T T

0.70000

0.50000

0.30000

0.20000

0.10000

0.00000

Show Labels Save XML | | Close

Figure 268: Graph from a DTMC Experiment
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% Progress *

Experiment Progress:

Experiment 1 has been successfully completed.
Experiment 2 has been successfully completed.
Experiment 3 has been successfully completed.
Experiment 4 has been successfully completed.
Experiment 5 has been successfully completed.
Experiment & has been successfully completed.
Experiment 7 has been successfully completed.
Experiment 8 has been successfully completed.
Experiment 9 has been successfully completed.
Experirment 10 has been successfully completed.

Metric
0.7499909944120646
0.7272727272T27273
0.6999999833106999
0.6666666666666666
0.6249999906367744
0.5714285714285714
0.5

04

0.25

Results have been written into the file: EVSPN_CTMC_Mew_Alg-StationaryExperiment bt

Figure 269: Results from a DTMC Experiment

Mercury can also calculate the following metrics when selected.

* Sojourn times. Time spent in each state. Listing[9]shows sojourn times computed for each state of our

DTMC (see Listing[9).

* Recurrence time. Time required to return to each state. After reaching one state and moving to another,
how long does it take to return to the previous state? It is determined by this metric. Listing[I0]shows the

recurrence times calculated for each state of our DTMC (see Listing[10).
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Listing 9: DTMC Stationary Result - Sojourn Times

Mon Aug 15 10:13:01 BRT 2020
Performing stationary analysis...
Done! (elapsed time: 0s)
HUHHHRHHHARHHHHRHHH AR AR HBH AR
S0=0.6586375715496784
S$1=0.280391409717778
$2=0.0609710187325436

Hold time: S0=11.494252873563209
Hold time: S1=5.000000000000001
Hold time: S2=2.0

——————— Metrics —————

Metric0=1.0

Results have been written into the file:

C:\ Users\Thiago\Chapter DTMC_Modelos-StationaryAnalysis. txt

Listing 10: DTMC Stationary Result - Recurrence Time

Mon Aug 15 10:14:50 BRT 2020
Performing stationary analysis...
Done! (elapsed time: 0)
HHHAHBHAHHHAHRHAHRHAHR AR R A
S0=0.625

S1=0.3125

$2=0.0625

Recurrence time: S0=1.6

Recurrence time: S1=3.1999999999999993
Recurrence time: S2=15.999999999999996
——————— Metrics ———————

Metric0=1.0

Results have been written into the file:

C:\ Users\Thiago\Chapter DTMC_Modelos-StationaryAnalysis. txt
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6.3.2 DTMC Transient Analysis

Transient analysis computes time-dependent probabilities useful for evaluating the behavior of modeled systems

at a given time. Figure shows the window “Transient Analysis”.

"-F Transient Analysis

Save DTMC Matrix Mean Time to Absorption (failure) Absorption Probability

Set Initial State Probability

Output: ®! Point Curve

Analysis

Current Time: _ M. of iterations for a step: _

Results:

Figure 270: Transient Analysis Window
When solving transient metrics of DTMCs, the user can define:
¢ Steps for which the analysis should be performed (default: 100).
¢ Error (default:10™7) to be taken into account when calculating the results.

¢ Initial state probabilities (default value: 1 for the first inserted state, 0 for the remaining states). These

probabilities are defined by clicking the “Set initial state probability” button (see Figure[271).
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[£] Initial State Probability b4

Probabilities

Initial Probability

Ok | | Cancel

Figure 271: Initial State Probability Dialog

The internal step size affects the accuracy of the results and also the time needed to calculate the metrics.
When you click the “Run” button, the solution algorithm is triggered. Once it is finished, the results are displayed
in the text area at the bottom of the “Transient Analysis” window and written to a plain text file containing the
project filename with the suffix “-TransientAnalysis.txt”.

The “Transient Analysis” window also allows the user to choose between Point or Curve for the analysis.
Point is the default option and displays probabilities for states only for the specific time point. Curve writes all
state probabilities calculated from time equal to zero to the specified value to a simple text file.

The mean time to absorption (MTTA) can be calculated by checking “Mean Time to Absorption (failure)”.
MTTA is displayed after the state probabilities in the “Results” section. For MTTA calculation, the user can
also define a metric by using the keyword MTTA as an expression. The absorption probability for each state is
another available metric. Listing[I1]shows MTTA and absorption probability using an absorbing DTMC as an

example.

Listing 11: DTMC Transient Result - MTTA and Absorption Probability

Mon Aug 15 11:22:58 BRT 2020

Performing transient analysis...

Results have been written into the file:

C:\ Users\Thiago \Chapter_ DTMC_Modelos2-TransientAnalysis . txt
Matrix P has been written into the file:

C:\ Users\Thiago\Chapter DTMC_Modelos2-MatrixP . txt

Done! (elapsed time: 1s )

HUHHHRHHHARHHHHRH AR AR AR AR H AR

§$3=7.888609052210118E-31

S4=1.0
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Metric0=7.888609052210118E-31

Absorption probability to state S4: 1.0

Mean Time to Absorption (MITA): 2.0

6.3.3 Sensitivity Analysis

Mercury calculates partial derivative sensitivity indices from DTMCs through sensitivity analysis. These indices
indicate what effect each input parameter has on a metric. Mercury provides for DTMC models a sensitivity
analysis considering min/max values for each parameter and this analysis supports the "Design of Experiments”
(DoE) method in addition to the "Sensitivity Indices” method. This sensitivity analysis is shown in Section[2.5]

and can be accessed from the menu Evaluate -> DTMC Evaluation -> Sensitivity Analysis (min/max values).
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7 EFM Modeling and Evaluation

Energy Flow Model (EFM) is proposed to estimate the sustainability impact and cost of data center architectures
without overstepping the energy constraints of each device. This is accomplished with algorithms that traverse
the EFM and compute the cost, estimate the environmental impact, and verify the energy flow. The EFM
evaluation functionality is responsible for estimating the sustainability impacts of a system (e.g., model) in terms
of its lifetime exergy (available energy) consumption. This functionality also computes the total cost that is
composed by initial cost and operational cost. The initial cost represents the budged needed to obtain the
system components in order to build the system. The operational cost is the cost to maintain the system in the
operational mode.

Figure[272|depicts an EFM model representing a system composed of four components and it demonstrates

how the energy flow occurs between them.

% “*Mercury Tool 5.1

File View Metrics ools  Scri Preferences  Help

Emma &

Project ' RBD ' FT EFM " SPN ' CTMC ' DTMC > RBD View ' ¢» FTView | €» EFMView = €» SPN View ' €» CTMC View ' €» DTMC View ' Results

Components

[ SourcePoint L3 * n n ﬁ . Q Q

D '

[ ups_skva

D SDTransformer
[ subpanel

b 0 PowerStrip

9_——»_, Sub Power
SourcePoint] - SDT > Pal"lel e Strlp -_-.o

TargetPoint1

UPS_SkVAZ SDTran-sform erl  Subpanell PowerStripT

Graphic View

Figure 272: EFM Example

Now we will introduce the EFM toolbar and its available resources. This toolbar is visible when the EFM view

is selected. Figure shows the buttons present on it and their descriptions are detailed below.

Figure 273: EFM Toolbar
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1. Default Cursor. Activates the selection mode. This mode makes it possible to select model components in

the drawing area.

2. Insert Component to Canvas. Add datacenter components to the canvas. The first step to use this
functionality is to select the EFM component on the left side panel (see Figure[274). After the selection,
the user needs to click on this button and, after that, she needs to click in the drawing area on the location

desired to put the new component.

Project ' RBD ' FT| EFM

Components

SPM - CTMC

SourcePoint
TargetPoint
UP5_250kVA
ACSource
SDTransformer
ATS

PowerStrip

Figure 274: EFM Left-Side Panel

3. Add a New Component to the EFM Project. Add new data center components to the project. By clicking
on it a dialog appears allowing the modeler to add a component to the project. In order to accomplish this,
the user should select the component in this new dialog and confirm the selection by clicking on the “Add”
button (see Figure[275). The new component will be available on the left side as shown by Figure[274] It is
important to highlight that this function only adds components to the EFM project. The new component
is not inserted into the drawing area at this moment. So, in order to do that, it is necessary to click on the

“Insert Component to Canvas” button (2), after selecting the desired component on the left side panel.

Add a Component

Add

Cancel

Figure 275: Inserting an EFM Component to the Project
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4. Undo. Undo the last changes in the drawing area.

5. Redo. Redo the last changes in the drawing area.

6. Delete. Remove the selected components from the drawing area.

7. Standard Scale. Apply the standard scale to the drawing area.

8. Scale Up Image. Each click scales up the drawing image by 10% percent (zoom in).

9. Scale Down Image. Each click scales down the drawing image by 107% percent (zoom out).

Now, we will describe how to perform evaluations on an EFM project by using the Mercury tool. The first step
in order to perform the sustainability evaluation is to create an EFM model. To add power or cooling components
in the model, users should click on the start icon (“Add New Component to the Project” button). Once clicked
on that button, a window appears in which it is possible to select the component to be added to the EFM project
(see Figure[275). The list of components on the left side panel is updated after the addition of a component. The
next step is to add the selected component on the left side panel to the drawing area as depicted in Figure[276]
The user needs to click on the power plug icon on the toolbar (“Add Component to Canvas” button), after that
she must click into the drawing area. These last steps need to be performed for each component that composes

the evaluated system.

Eile  View Metrics Evaluate Tools Script  Preferences Help

BB RS SHSERETE S5

F'rl:l_iECt RBD ' FT/ EFM " SPN ' CTMC ' DTMC ¢» RBD View = ¢» FT View | ©» EFM View  ¢»
| Cu:ump-:unents

""" [ SourcePoint K " n

----- [ TargetPoint
----- [ uPs_skva

Figure 276: Inserting a Component into the Drawing Area

Once all components are inserted into the drawing area, the user can connect them including SourcePoints

and TargetPoint as shown by Figure
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Figure 277: EFM Example

By right-clicking on a component and left-clicking on the “Properties” menu that appears provides a way to

edit its properties as shown by Figure

" EFM Parameters

B
{oubpanell?

Max. Power (KW):

Efficiency

Retail Price:

Ernbedded Energy (GJ):

Cancel

Figure 278: Component Properties

Additionally, it is important to stress that users have to set the demanded power on the TargetPoint (for
power system) or on the SourcePoint (for cooling system). This is done by with a right-click on the Source or
Target points and selecting the option “Properties”. After that, a dialog appears and the demanded power may be

entered (see Figure[279).
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EFM Parameters

Figure 279: SourcePoint and TargetPoint Property

Once the EFM model is completed, evaluations can be conducted in order to extract some metrics. Eval-
uations are performed by selecting the desired option on the “EFM Evaluation” menu group available in the
“Evaluate” menu on the main menu, as depicted by Figure[280} Five EFM evaluations are available. It is possible

to evaluate cost, exergy, energy flow, the last ones combined, and flow optimization.

Evaluate

Cost Evaluation

Exergy Evaluation

Energy Flow Evaluation

Flow Cptimization

Figure 280: EFM Evaluation Menu

Once selected the combined option, the EFM evaluation of cost, exergy, and energy flow is selected. To
conduct those evaluations, users have to provide the EFM parameters depicted in Figure The parameters

that the user may provide are availability, period to be considered (in hours), and electricity cost (per kWh).
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EFM Parameters Evaluation

Availability:

Periad (h):

Electricity Cost (per kWh)

Cancel [teractions

Figure 281: EFM Parameters Evaluation

Finally, the result is presented as demonstrated by Figure

|£:| EFM Evaluation Results w

EFM Results

Energy Flow

Embedded Exergy: 4.068432
Operational Exergy: 83.08783093241549
Total Exergy: 87.15631293241549

Acquisition Cost: 3592.5
Operational Cost: 7351.97234543535
Total Cost: 10944.47836182

Availability: 0.9999

MNumber of 9= 3.999999999999778
Downtime (h): 8.760000000000009
Input Power (kw): 7.63733699999995
Systern Efficiency: 0.6546784774276719

Select a Metric Plot Graph

Figure 282: EFM Results
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In this example, the result indicates that the energy flow evaluation returns true meaning that the power
constraints present on each device were respected. However, in case this result is false, the Mercury tool shows
the component in which the constraint was crossed (see Figure[283). In this window of results, the user has also

an option to export the results to a spreadsheet (e.g., a file .xls), or plot a selected metric.

| £| EFM Evaluation Results 4

EFM Results
Energy Flow

Energy Flow Success is false

1st Cormnponent with energy flow issue detected is PowerStrip]
Maximum Energy Capacity: 2.0

Energy Flowing: 5.644933672029354

Embedded Exergy: 4.068432
Operational Exergy: 83.0878809324154%
Total Exergy: 87.15631283241549

Acquisition Cost: 3592.5
Operational Cost: 7331.97234543535
Total Cost: 10944,47336182

Awailability: 0.9999

Mumber of 9= 3.999999999999778
Downtime (h): & 760000000000009
Input Power (kw): 7.63733699999995
Systemn Efficiency: 0.6546784774276719

Close Export Select a Metric *| | Plot Graph

Figure 283: EFM Results with the Energy Flow Evaluation False

7.1 Power Load Distribution Algorithm - PLDA

A Power Load Distribution Algorithm (PLDA) is proposed to minimize the electrical energy consumption of the
EFM models [6]. The PLDA is based on the Ford-Fulkerson algorithm, which computes the maximum possible
flow in a flow network [7]. The network is represented by a graph, where the transport capacity of the devices is
defined in the edges. The algorithm begins by traversing the graph, searching for the best flows between two
specific points in the graph. If a particular path lacks the capacity to support all of the flow demanded, then the
residual flow is redirected to other paths. The Priority First Search (PFS) is the adopted method for selecting the
path between the nodes [8,9]. The PFS chooses the path according to the highest electrical capacities of nodes

in the graph [10]. Figure[284]shows how to call the PLDA function.
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Evaluate

Cost Evaluation

Exergy Evaluation
Energy Flow Evaluation
Combined Evaluation

PLDA-D

Figure 284: PLDA Optimization Function

Figure[285]depicts the results of the PLDA algorithm, with the minimum energy consumed, PUE, and DCiE
highlighted.

[£| EFM Evaluation Results x

Optimized Flow Evaluation

Mame: ACSourceld
Flow: 0.0

Mame: 57532

Flow: 866.8833011260513
Mame: 57535

Flow: 842, 2644577457078

Close Export lect a Metric Plot Graph

Figure 285: PLDA Optimization Results
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7.1.1 Example of PLDA execution

Figure illustrates the EFM model of a specified architecture. In the example, all the edge weights are set to

the default value, one. The power flow is computed by traversing the graph from the target to the source node.

C=750 C =900
C =700 C=800 £=95.3% E =98.5% C=700
: . E=99.9% E=99.9%
E=953% 4 C=1500 C=1500 13
1 \/ E=99.5% E=99.9%
3 ]c= 1500 11 —= 12
E=99.9%
5 /\ - 14
Cc=700
Cc=700 5 E=90%
_ C=800
E =90% C =750 E=95%
E=95% E=90%

Figure 286: EFM Model

Figure[287]depicts the EFM model after the execution of the PLDA. It should be noted that the weights on the

edges have changed, optimizing the power flow through a best weights distribution.

C=750

E=953% =900
E=98.5% C =700
0.8

E=99.9%

T E=999% 7 :
E=95.3% 4 | ) C=1500 C=1500 13
1 &6/’ \ 0.81\ E=99.5% E=99.9% 61

3 ]c= 1500 = 11— 12

C=2800

C=700

E =99.99 0.19
/’ 99.9% 5 ot 14 039
2704 C-700
C =700 5 5 E=90%
_ C=800
E=90% E = 959 C=750 E=95%
- ° E=90%

Figure 287: EFM Model After PLDA Execution

Table[I]presents a summary of the results obtained by the PLDA. Column "Improvement" depicts the im-
provement. The system efficiency is improved by over 4.2%; consequently, the associated cost and sustainability
figures are improved by 4.2% and 20.4%, respectively. Availability results were also computed with RBD/SPN

models, but are not included here.
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Table 1: Summary Results Before and After PLDA Execution

Metric Before After Improvement (%)
Availability (%) 0.99999226 0.99999226 0
Number of 9 s 5.111 5.111 0
Downtime (hs) 0.0677 0.0677 0

Input Power (kW) 1,312.63  1,259.64 4.2
System Efficiency (%) 76.18 79.38 4.2
Operational Cost (USD) 1,264,849 1,213,784 4.2
Operational Exergy (GJ) 9,859.32 8,188.11 20.4

7.2 Power Load Distribution Algorithm in Depth search (PLDA-D)

A Power Load Distribution Algorithm - Depth (PLDA-D) is proposed to minimize the electrical energy consump-
tion of the EFM models [6]. It is an evolution of the PLDA algorithm (see Section, applies for the same
problem but with a big difference in the technique of graph search. In the PLDA-D the model EFM is searched
in-depth, choosing always the best path in a depth search to distribute the weights of the edges. The PLDA-D is
based in the Bellman [11] and Ford and Fulkerson [7] flow algorithm, but with many adaptations. The PLDA-D
is divided into three phases: initialize, kernel, and the search for the best path. Figure[288|demonstrates how to
call the PLDA-D function. Figure[289]depicts the results generated by applying the PLDA-D algorithm, with the

minimum energy consumed, PUE, and DCiE highlighted.

Evaluate

Cost Evaluation

Exergy Evaluation

Energy Flow Evaluation

Combined Evaluation

PLDA

Figure 288: PLDA-D Optimization Function
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| £ EFM Evaluation Results e

EFM Results

Optimized Flow Evaluation

Marme: ACSourceld
Flow: 952.6190122264298
Marne; 51533

Flow: 866.8833011260513
Marme; 5T535

Flow: 0.0

Close Export Select a Metric Plot Graph

Figure 289: Results for Applying the PLDA-D Optimization

7.2.1 Example of PLDA-D Execution

Figure[290|illustrates the step-by-step of the PLDAD execution, highlighting some variables, edges, and weights.
Lets consider the model represent by Figure [290}a with three electrical components A, B, C, each one with
efficiency 80, 90 and 95 % respectively. This means that if a component has efficiency of 90%, 10% of the energy
that passes through it is lost. The other symbols of the model are S for the node Source, with can be represented
by an electrical utility and T, for the node Tar get, with can be represented by a computer room.

In the example, the demand (Dem) and efficiency (Ef) values are known. The value of the Target node
Acc is set to one. The others accumulated costs (Acc) are set to zero and the edge weights are set to the default
value one, respectively, as depicted in Figure[290]a, a perfect representation of an EFM model. The phase one
of the PLDAD algorithm is represented by the Figure[290]b when all the variables are initialized in all vertices.
Actual cost (ActCost) to infinite, child to null (Child) and accumulated cost to zero (Acc).

Phase two starts in the Figure[290]c following to the Figure[290]h. At this stage, the best path is selected
according to the efficiency of each component, through a scan in-depth and respecting the limits of capacity of
each equipment. In Figure[290]c the values of the ActualCost and AccumulatedCost are computed and the
best child is chosen, according to the lower value of the variable ActCost. This value is used to select the best
child for a given node.

A very important step in this phase is represented by Figure[290]g. After the calculations of the variables

Acc and ActCost, it was verified that the ActCost for the current path (3.39) was less than the ActCost of the
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Figure 290: Exemple PLDAD Execution

previous path (3.68) to get to the Source node. Thus, the Source node has a change in the values of its variables

and the best Child now is the node B and not more node A. In other words, it is less costly to get to the source

node for B by A, so B represents a better path than A.

Figure h represents the end of phase three. For this example, the best path from note Target to Source is:

Target,C, B, Source. In Figure[290}i the flow is distributed, according to the weights of the edges. With these

values, the EFM computes the minimum possible value for the input power, reducing all the values associated

with data center power consumption.
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8 Mercury Scripting Language
8.1 Introduction

The Mercury scripting language was developed to allow more flexibility in evaluating models. To run Mercury
scripts, we can use a command line interface (CLI) or access the ”Script Editor” available within the Mercury
GUI. The advantage of using this language in conjunction with the CLI tool is the ability to automate project
workflow, evaluate models, extract metrics, and generate reports and graphs automatically. In addition, the

language offers other advantages that are not supported when modeling via the graphical interface.

e Improved support for hierarchical modeling; each model can call another model and use its results as

internal parameters.

* Improved support for symbolic evaluations and experiments. The parameters of a model can be defined
as variables left open. We can change these variables and re-evaluate the model to measure the impact of

these parameters on specific metrics.

¢ Support for Petri net transitions with a phase-type delay. This family of distributions can be used to

approximate any distribution that is not an exponential distribution.

¢ Support for hierarchical transitions in SPN models. This type of transition can be used to reduce model
complexity or to express a recurring structure in the model that can be more easily reused. Some tools [1]

[12] support hierarchical SPN models only for colored Petri nets.

8.2 Script Structure

We define the script syntax using BNF notation as follows:

Listing 12: Grammar for Mercury Scripts

<script> ::= <models> <main_block>
<models> ::= <model> <models> | <model>
<model> ::= <SPN_model> | <CTMC model> | <DTMC model> | <RBD_model> | <EFM_model>

A script consists of a model declaration section containing one or more models of the following types: CTMC
(continuous-time Markov chain), RBD (reliability block diagram), or SPN (stochastic Petri net). Support for the
FT and EFM formalisms will be included in the next release. At the end of the model section is the main block,

which has the following syntax:
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Listing 13: Grammar for the Main Block

<main_block> ::= <main_block> "{"
<main_statements>

lv}n

<main_statements> ::= <statement> ";" <main_statements> |
<statement> ";"
<statement> ::= <print_statement> |

<attribution_statement> |

<for_statement>

In the main block we can change variables, solve models and print the obtained results. We change variables
to define parameters for a model and collect metric results using the function solve. The "for” command has
been added to allow us to run experiments. With this command we can change a variable based on a list of
values.

In Figure[291]we show a CTMC model, and in Listing[14]we present the corresponding Mercury script. First,
we define a CTMC model named CTMCModel and declare its states, transitions, and metrics. The transition
rates are defined as a function of the parameters lambda and mu. In the main block, we define values for these
parameters and evaluate the "m1” metric of the CTMC model. The result is stored in the variable named aval.

Finally, we print the content of this variable using the command println.

50 51 52 53

Figure 291: CTMC Model Example

Listing 14: CTMC Model

CIMC CIMCModel{
state SO;
state S1;
state S2;

state S3;

transition SO —> S1( rate = lambda);
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transition S1 —> SO( rate = mu);

transition S1 -> S2( rate

lambda) ;
transition S2 —-> S1( rate = mu);

transition S2 -> S3( rate

lambda) ;

transition S3 -> S2( rate = mu);

metric ml = stationaryProbability( st = SO );

main {

lambda = 0.00001;

mu = 0.01;

aval = solve( model = CTMCModel, metric = ml );

println (aval);

8.2.1 Reserved Words

In Table[2]we list the reserved words of the language.

state  transition rate markov up

RBD  block hierarchy series parallel
top model MTTF MTTR main
print println for in out
metric solve value SPN SubNet
place timedTransition immediateTransition substitutionTransition tokens
subnet inputs outputs delay inhibitors
weight priority enablingFunction serverType

Table 2: Reserved Words

These words cannot be used as identifiers (of models, variables, functions), metrics, user-defined functions,
or as keys in a dictionary structure. For example, for the stationary probability of CTMC metrics, we use the key
"st" to indicate the state for which we want to evaluate the probability. We cannot use the word "state" because
this is a reserved word used to specify states in a CTMC model.

In the following sections, we describe the syntax for each supported formalism: CTMCs, RBDs, and SPNs.
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8.3 Continuous Time Markov Chain

In Listing[15|we describe the syntax for declaring CTMC models. A CTMC model contains definitions of states —
with the reserved word state—, transitions — with the reserved word transition—, and metrics. For availability
models, a state may also receive an annotation up after the identifier. This annotation defines states in which
the system is considered operational.

Listing 15: Grammar for CTMC Models

<CTMC_block> ::= "CIMC" "{"

<ctmc_statements>

H}"
<ctmc_statements> ::= <ctmc_statement> ";" <ctmc_statements> |
<ctmc_statement> ";"
<ctmc_statement> ::= <state_statement> |
<transition_statement> |
<metric> ;
<state_statement> ::= "state" <identifier> |
"state" <identifier> "up"
<transition_statement> ::= "transition" <identifier> "->" <identifier>
"(" "rate" "=" <numeric_exp> ")"
<metric> ::= "metric" <identifier> = <metric._ name> "(" <metric_parameters> ")" |

<metric_name>

The supported metrics for CTMC models are: i) availability; ii) reward rate for states; iii) steady-state

probability; and iv) transient probability.
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8.3.1 Availability

The availability metric does not require any parameters. This metric returns the sum of all stationary probabilities
for states annotated with the keyword up. In the following script, we show an availability model for a redundant
private cloud manager.

Listing 16: Availability Metric for a CTMC Model

markov RedundantGC{
state fu up;
state fw;
state ff;
state uf up;

state uw up;

transition fw —-> fu(rate = sa_s2);
transition fu -> ff(rate = lambda_s2);
transition ff —> uf(rate = mu_sl);
transition uf -> uw(rate = mu_s2);
transition uw —> fw(rate = lambda_sl);

transition fw —> uw(rate=mu_sl);
transition uw —> uf(rate=lambdai_s2);

transition uf —> ff(rate=lambda_sl1);

transition fw —> ff(rate=lambdai_s2);

transition fu —> uw(rate=mu_sl);

metric aval = availability;

8.3.2 Reward Metric

This metric calculates the sum of rates associated with each state. The parameters defined for this metric are a
list of pairs: < state_name >=< value >. The metric calculates the sum of the products of each rate and the
stationary probability associated with the state. The states that do not receive a rate are implicitly associated
with a zero rate. Below we list an example of a model with a reward metric. We recommend that the reader check

that the metrics m1 and m3 give the same result.
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Listing 17: Reward Metric for a CTMC Model

markov Teste {

state sl up;
state s2 up;
state s3;

transition sl —> s2 (rate lambda) ;

transition s2 —> s3 (rate lambda) ;

transition s3 —-> s2 (rate = mu);

transition s2 —> sl (rate = mu);

metric ml = availability;

metric m2 = reward ( s1 = 1/5, s2 = 1/4, s3 = 1/3 );

metric m3 = reward ( s1 = 1, s2 =1 );

8.3.3 Stationary and Transient Probabilities

The most common metrics used in CTMCs are stationary and transient probabilities associated with states.
The stationary probability of a state S corresponds to the fraction of time the model remains in that state. The
transition probability of a state S within a time T, corresponds to the probability to be in this state S, after T time
units from the initial time (t = 0).

In Mercury language, we use the metric stationaryProbability( st = S) to obtain the stationary probability
associated with a state S. For the transition probability, we also need to specify the time T and the initial
probability for each state. This corresponds to the probability that the model is in that state at time T = 0. In the
script syntax, the states that are not specified in the list of initial probabilities are given an initial probability of 0.
It is important to emphasize that the sum of all initial probabilities must equal 1, otherwise an exception will be
thrown.

In the following, we will show how to obtain the metrics for stationary and transient probabilities using a
CTMC model as an example.

Listing 18: Stationary and Transient Metrics for a CTMC Model

markov Test3 {
state s0;
state sl;
state s2;

state s3;
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state s4;

transition s0 —> s2 (rate = a);
transition s2 —> sl (rate = b);
transition sl —-> s4 (rate = a);

transition s2 —> s3 (rate = b);

transition s3 -> s4 (rate = c);

transition s4 —-> s0 (rate = c);

metric ml = reward( sO = 1, sl = 2 );

metric m2 = stationaryProbability ( st = s2 );

metric t0 = transientProbability (
time = 100,
st = s0,

initialProbabilities = ( sO = 0.5, s3 = 0.5 )

8.4 Reliability Block Diagram

An RBD model consists of:

* Exponential blocks representing components with an associated parameter for mean time to failure and

mean time to repair;
» Hierarchical blocks evaluated by calling other external models;
¢ Series/parallel arrangements of other blocks;
¢ Declaration of top-level block; and
¢ RBD metrics.

Listing[19]shows the grammar for RBD models.
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Listing 19: RBD Grammar

<RBD_model> ::= "RBD" "{" <rbd-statements> "}"

<rbd-statements> ::= <rbd_statement> ";" <rbd_statements>|

n,n

<rbd_statement> ";

<rbd_statement> ::= <block_statement>
| <series_block_statement>
| <parallel _block_statement>
| <top_block_statement>

| <rbd_metrics>

<block_statement> ::= <exp_block statement> |

<hierarchy_block_statement>

<exp_block_statement> ::= "block" <identifier >
"(" "MITF" "=" <numeric_exp> ","
"MTITR" "=" <numeric_exp> ")"
<hierarchy_block_statement> ::= hierarchy <identifier> "("
"availability" "=" <numeric_expression> ") ";"

hierarchy <identifier> "("

"reliability" ":H <numeric_expressi0n> ll) ";U
<series_block> ::= "series" <identifier> "(" <identifire_list> ")" ";"
<parallel_block> ::= "parallel" <identifier> "(" <identifire_list> ")"
<top_block> ::= "top" <identifier> ";"

We have four metrics available for RBD models:

e availability;

e mean time to failure MTTF);

* mean time to repair (MTTR); and,
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e reliability.

The first three metrics do not require parameters: Steady-State Availability, MTTE and MTTR. The reliability
and instantaneous availability metrics, on the other hand, require an time parameter. Considering the model

shown in Figure we created its script definition as shown in Listing[20]
HW 50 KVM NC

Figure 292: RBD Representing a Cloud Node [13]

Listing 20: RBD Script

t = 100;

RBD Model{

block HW( MITF = 4000.0, MITR = 72.0);

block SO( MITF = 2500.0, MITR = 12.0);
block KVWM( MITF = 4000.0, MITR = 24.0);
block NC( MITF = 4000.0, MTIR = 24.0);

series sO0(HW, SO, KVWM, NC );

top sO;

metric av = availability;

metric rel = reliability ( time = t );

metric mttf = mttf;

metric mttr = mttr;

main {
av = solve (Model, av);

rel = solve (Model, rel);

mttf = solve (Model, mttf);

mttr = solve (Model, mttr);

n

println (" Availability: av );

n

println (" Reliability: rel );
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println ("Mean time to failure: " .. mttf );

n

println ("Mean time to repair: mttr );

8.5 Stochastic Petri Nets

In the Mercury scripting language, a Petri net is described in terms of places and transitions. Places can
be defined with an (optional) initial marking. There are three types of transitions: immediate, timed, and
substitution. ”"Substitution” transitions allow us to create modular and reusable Petri nets. This functionality
is only available in the scripting language. Another exclusive feature of the scripting language is support for
phase-type distributions. In this section, we will show a simple SPN as an example that contains only exponential
and immediate transitions.

Listing[21] shows the grammar in the notation BNF for describing SPN models in the Mercury language.
Basically, we have three distinct statements: place statements, transition statements, and metric statements.
The arcs connecting transitions and places are defined as parameters within the transitions: inputs, outputs,
and inhibitors. Timed transitions have delay and server type as parameters. If the "server type” parameter is
omitted, it defaults to "SingleServer”. Immediate transitions have as parameters (optional): weight, priority and
an enabling function. Metrics are defined in the form of a string representing a reward metric, which is also used
in the graphical interface.

Listing 21: Grammar for SPN Models
<SPN-Model> ::= "SPN" "{"

<spn_statements>

"}Yl
<spn_statements> ::= <spn_statement> ";" <spn_statements> |
<spn_statement> ";"
<spn_statemnt> ::= <place_statement> |
<transition_statement> |
<metric_statement>
<place_statement> ::= "place" <identifier> |
"place" <identifier> "(" <numeric_exp> ")"
<transition_statement> ::= <timed_transition> |

<immediate_transition>

<substitution_transition >
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<timed_transition> ::= "timedTransition" <identifier> "{"

[ "inputs" "=" "(" <arc_list> ")" "," ]

[ "outputs" "=" "(" <arc_list> ")" "," ]

[ "inhibitor" "=" "(" <arc_list> ")" "," ]
[ "serverType" "=" { "SingleServer" |

"InfiniteServer" } "," ]

[ "delay" "=" <delay_exp> "," ]
o
<immediate_transiton> ::= "immediateTransition" <identifier> "{"
[ "inputs" "=" "(" <arc_list> ")" "," ]
[ "outputs" "=" "(" <arc_list> ")" "," ]
[ "inhibitor" "=" "(" <arc_list> ")" "," ]
[ "weight" "=" <numeric_exp> "," ]
[ "priority" "=" <numei_exp> "," ]
o

To illustrate the syntax for modeling SPNs with the Mercury scripting language, we have proposed a model

O

buffer

for an M/M/1/K queue based on the [14]. This model is shown in Figure

generated

generate cervice

loss

free

Figure 293: SPN Model Representing an M/M/1/k Queue([14]

The generate transition generates tokens corresponding to service requests. Each generated token is
stored in the generated place and then a selection is made. The token can be queued for processing by the
server if there is a free slot in the queue (tokens in the "free” place). Otherwise, the token is discarded, which
is represented by triggering the immediate "loss” transition. The "free” place controls the triggering of this

transition by an inhibitor arc. The tokens waiting in the queue are placed in the "buffer”. The transition "service”
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represents the processing of the requests. Since this is an M/M/1/K queue, we have only one server that can
handle all requests. Therefore, the server semantics assigned to the transition "service” is SINGLE SERVER.

Listing[22] shows the script for running the stationary analysis of the SPN model described earlier. The
parameter method of the function stationaryAnalysis can only have the values "direct” or "iterative”. "Direct”
corresponds to the Direct - GTH (Grassmann-Taksar-Heyman) method. "Iterative” corresponds to the Gauss-
Seidel method.

Listing 22: Script for Stationary Analysis
k = 10;
mu = 2;

lambda = 1;

SPN Model{
place buffer;
place free( tokens= 10 );

place generated;

immediateTransition enter (
inputs = [generated, free],

outputs = [buffer]

immediateTransition loss (
inputs = [generated],

inhibitors = [free]

timedTransition generate (
outputs = [generated],
delay = lambda

);

timedTransition service (
inputs = [buffer],
outputs = [free],

delay = mu
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metric ml = stationaryAnalysis( method = "direct",

expression = "P{#buffer>0}" );

main {

setIntegerParameters ("k", "mu", "lambda");

ml = solve( Model,ml );

println (ml);

Listing[23|shows the script for running the stationary simulation for this model. Below we describe each

parameter of thefunction stationarySimulation.

* confidenceLevel. The confidence interval for determining the metrics.

¢ maxRelativeError. Defines the maximum relative error, which is one of the stop conditions of the

simulation.

* minFiringTransitions. Defines the minimum number of firings for each transition in the model. This
number of firings is another condition for stopping the simulation. If you enter a value of 0, the simulator
does not consider the number of firings to stop the simulation. If you enter a value greater than 0, the

simulation will stop when the number of firings for each transition is equal to the specified value.

¢ warmup. Sets the minimum warm-up period. The warm-up phase is the period when the model is not in
steady state and the metrics are not collected during this period. There are a few methods to estimate
whether the model has entered a steady state phase, but Mercury requires the user to set a value for the
warm-up phase. Since we are evaluating stochastic models, it is expected that the warm-up time will not
be an accurate value for every simulation run. Therefore, the user defines a minimum warm-up time.
Once the global simulation time is equal to or greater than the user-defined warm-up time, the simulation

begins collecting metrics, generating batches, and calculating statistics.
¢ batchsize. Sets the number of samples that will constitute each batch in the simulation.

¢ maxTimeMilliseconds. It is used to define the maximum simulation time. This time corresponds to
the physical time and must be specified in seconds. If it is set to 0, the simulator will not consider this
parameter. If one of the stop conditions is not met before this maximum time is reached (maximum

relative error or number of firings for each transition), the simulation will stop when this time is reached.
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Listing 23: Script for Stationary Simulation

k = 10;
mu = 2;
lambda = 1;
SPN Model {

place buffer;
place free( tokens= 10 );

place generated;

immediateTransition enter (
inputs = [generated, free],

outputs = [buffer]

immediateTransition loss (
inputs = [generated],

inhibitors = [free]

timedTransition generate (
outputs = [generated],

delay = lambda

timedTransition service (
inputs = [buffer],
outputs = [free],

delay = mu

metric ml = stationarySimulation ( parameters = ( warmup=0,
confidenceLevel=90,
maxRelativeError=0.05,
minFiringTransitions = 0,

maxTimeMilliseconds=0,
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batchSize=30

), expression = "P{#buffer>0}" );

main {

}

setIntegerParameters ("k", "mu", "lambda");

ml = solve( Model,ml );

println (ml);

Listing[24]shows how to run a transient simulation using the scripting language. Below we describe each

parameter of the function transientSimulation.

¢ time. The evaluation time.

¢ expression. The expression to be evaluated.

Listing 24: transientSimulation Function

metric [name] = transientSimulation( time=[time], expression = "[exp]" );
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A Syntax of CTMC Measures, Parameters, State Names, and State Rewards

Output measures for CTMC models created in the GUI must be defined according to the following notation:
"P{””}” = probability of being in the declared state;
"R{””}” = reward rate of being in the declared state;
"R{}” = steady-state reward of the system; and
"LOG{””}” = base-10 logarithmic function.

The formal syntax for output measures, names of states and parameters, and transition rates is defined as

follows:
Listing 25: Syntax of Components for CTMC Models

<output_measure> ::= <output_value>

| ‘=’ <output_measure>

| “‘C’’ <output_measure>‘‘)’"’

| <output_measure> <num_op> <output_measure>
<output_value> ::= <probability_measure>

| <reward_measure>

| <real_constant>

| <integer_value>
<probability_measure> ::= ‘‘P{’’<state_name>‘‘}"’
<reward_measure> ::= ‘‘R{’’ {<state_name>} ‘‘}’’
<logarithmic_measure> ::= ‘‘LOG{’’<expression>‘‘}"’
<state_name> ::= {<identifier >}+
<parameter_name> ::= {<identifier >}+
<transition_rate> ::= <expression>
<reward_rate> ::= <expression>
<expression> ::= <real_value>

¢ ’

-’’ <expression>
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’

| ““(’’ <expression>"‘‘)’

| <expression> <num op> <expression>

<num op> ::= ‘‘+’ = DR Y A
<real_value> ::= <parameter_name>
|<real_constant>
|<integer_constant>
<real_constant> ::= {<digit>}+‘‘.""{<digit>}+
<integer_constant> ::= {<digit>}+
<identifier> ::= {letter | digit}+
<letter> ::= ‘‘A’’\textendash‘‘Z’’ | ‘‘a’’\textendash‘‘z’
<digit> ::= ‘‘0’’\textendash‘‘9’’

The basic symbols have the following meanings:
“symbol”: terminal symbol

< symbol > : non-terminal symbol

symboll | symbol2 : symbol 1 or symbol2

{symbol}+ one or more occurrences of symbol

symboll-symbol2 : range of values between symboll and symbol2
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B Syntax of SPN Metrics, Guard Expressions, and Arc Multiplicity Depen-
dent on Marking.

In this section, we present the specification in terms of SPN metrics, guard expressions, and arc multiplicity
dependent on marking. We present a formal syntax description using the Backus-Naur form (BNF).

Three different expressions can be used in the Mercury tool (see Listing[26). SPN expressions are represented
as “Metrics”, “GuardExpressions”, and “MarkingDependentMultiplicites”. “Metrics” are used to represent the
evaluated metrics and can be a probability, an expectation, or a base-10 logarithmic function taking the value of
a given expression as input. “GuardExpressions” are used to represent logical expressions to enable/disable the
firing of transitions. “MarkingDependentMultiplicites” are numeric expressions that are evaluated as a function
of the current marking to a particular arc multiplicity.

Listing 26: Syntax of Components for SPN Models

’

<Metric> ::= ““P{’’<logic_condition >}’

’

| ‘‘E{’’ <marking function>"‘‘}’

)

| ‘‘LOG{’’ <expression>"‘‘}’

<MarkingDependentMultiplicity> ::= <if else_exp>
<GuardExpression> ::= <logic_expression>
<if_exp> ::= {‘‘IF(’’<logic_condition>‘‘):(’’ <expr>‘‘)’"’}
<if_list> ::= <if_exp> | <if_list> <if exp>
<if_else_exp> ::= <if_list> +‘‘ELSE(’’'<expr>"‘‘)’’
| <expr>

<expr> ::= <real value>

|-’ <expr>

’

|“(”<eXpI‘>“)’

’

| ("’ <expr>‘‘)’"’ <num op>‘‘(’’<expr>‘‘)’

<real_value> ::= <identifier>

| <real_const>

| <int_value>
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<real_const> ::= {<digit>}+‘‘.""{<digit>}+

<logic_condition> ::= <comp>

)

| ““(’’<logic_condition>‘‘)’

’

“‘NOTI(’’<logic_condition> ‘)’
| ““(’’<logic_condition>‘‘)’’AND‘ ‘(’’ <logic_condition>"‘‘)"’

’

| ““C’’<logic_condition>‘‘)"’OR*‘(’’ <logic_condition>"‘*)’

<comp> ::= <mark_function><comp_op><mark_function>
<C0mp_0p> ::: ((/:I? | 1(:!1 ((<Y) ((>,I ((<:!? (l>:)7
<mark_function> ::= ‘‘(’’<mark_function>‘‘)’’ <num_op>‘‘(’’<mark_function> ‘)"’

)

| “C’’ <mark_function> ‘)’

| <int_value>

<num op> = ‘‘+’’ - B B
<int_value> ::= <int_const>
|<identifier >
| <mark>
<int_const> ::= {<digit>}+
<identifier> ::= {<letter >|<digit>}+
<letter> ::= ‘‘A’’\textendash‘‘Z’’ | ‘‘a’’\textendash‘‘z’’
<digit> ::= ‘‘0’’\textendash‘‘9’’
<mark> ::= ‘‘#’’<identifier>

B.1 GENERAL COMMENTS ABOUT SPN SYNTAX

In this syntax, all elements of a given expression are separated by parentheses. For example, suppose we want
to evaluate the probability that there are more than two tokens in place P1 and zero tokens in place P2. The

corresponding expression is:
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P{#P1>2)AND#P2 = 0)}//CORRECT SYNTAX

IMPORTANT. Spaces within expressions are not allowed. Therefore, the following expression is not allowed.

P{#P1>2AND#P2 = 0}//WRONG SYNTAX

In general, guard expressions consist of various comparisons composed of ANDs, ORs, and NOTs. For

example, let us look at the following expression:

#P1=1)AND#P2 = 2)//CORRECT SYNTAX

This expression can be used as an activation function to trigger a transition only if the place P1 has one token
and P2 has two tokens. Again, spaces are not allowed within the expressions and all subexpressions must be

joined by parentheses.

#P1=1AND#P2 =2//WRONG SYNTAX

Regarding "if-else” expressions. The language supports if-else expressions to represent MarkingDependent-
Multiplicity. This component is used to represent the number of tokens in places. When used in the language,
these expressions can change the place marking based on other place markings. For example, suppose a model
with two places P1 and P2 and the marking of P1 is one if P2 has no tokens and zero if P2 has tokens. In this case

the marking of P1 should be

IF#P2=0):(1)ELSE(0)

It is also possible to have nested if-else expressions. To explain this, we extend the previous example and
assume that the model has 4 places (P1, ..., P4) and the marking of P1 is one if P2 has no tokens, zero if P3 has
one token, two if P4 has no tokens, and three otherwise. The corresponding expression should be defined as

follows:

IF#P2=0):(1)IF#P3=1):(0)IF#P4=0):(2)ELSE(3)

This expression is similar to the nested if, elseif, ..., else expressions in standard programming languages

such as C or Java.
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C EMA Tool.

The Expectation-Maximization (EM) algorithm is an iterative technique that allows estimation of parameters in

statistical models with incomplete or hidden data. In the context of the EM algorithm:

* Expectation (E-step): The conditional probability of the hidden data is estimated based on the current

parameters.
e Maximization (M-step): The parameters are updated to maximize the expected value of the log-likelihood.

Each point in the set has a certain probability of belonging to a certain cluster. However, these probabilities
are initially unknown. Moreover, we face another challenge: the parameters that define the distribution of each
cluster are also unknown. Amidst these uncertainties, we introduce the Erlang-r distribution, a relevant choice
where the value of "r" represents the number of phases of the distribution. Given this complexity, we could
compute the maximum log likelihood, which is ideally the probability of the data. However, due to the hidden or
unknown nature of clusters, computing this likelihood directly becomes complicated. As a solution, we work
with the expectation of the incomplete log likelihood, which is maximized to find appropriate estimates of the
unknown parameters.

Key formulas:

* Probability of point X; belonging to cluster Z;:

Z; ~ Categorical (71, 72,...,7y,)

X; ~ Dist (y;)

¢ Erlang-r distribution:

¢ Maximum log-likelihood expectation:

2

DM~

Q(6,6°) =

1

Aj k[ logP(X;1Z; = k,0) +log ]

I
—

k=1

¢ Posterior probability:

P(X;|Zi = k,6°) 7y

_ _ 0y _ i|4i

Ai,k—P(Zi_k|Xi’6 )_ZK P(X'lZ'—k’ 90)7[
=1 i|4i— R, k'
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¢ Maximization:

For m:

N
— Lizi A
Yoo, (Agi+ Agz+...+ Agp)

T

- For 6:

rZﬁ\ilAi,k
8] =N v .
Yo XiAij

The EMA algorithm consists of the following steps:

1. Initialize the parameters;

2. Derive the log likelihood expectation;

3. Calculate posterior probabilities;

4. Using posterior probabilities, find and update the optimal parameters; and
5. Repeat steps 2 to 4 until convergence.

To perform an evaluation using the EMA tool through Mercury:

1. Open the EMA tool from the Tools menu.

Tools | Script

B RVG

enerate Random Number:

Aodel to Mathemati

2. Load the dataset by clicking the Load button.
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4| Expectation Maximization Auto-fitting (EMA) Tool - 1.0 - [m| *
g
File Help

File:

Y ¢

Times: Result * Errors

Mo file loaded

There are now three actions available:

| £ Expectation Maximization Auto-fitting (EMA) Tool - 1.0 - m} x
File Help
File:

C:\Marco'\release\EMA_1.0rc2\ dfd.tt Simple Evaluatio

Result * Errors

Statist

60 itemns 1t

3. Statistics. Selecting this option will display a summary of the statistics for the dataset, as follows:
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|£:| Statistical Summary %

Summ.

STATISTICS

Sample Size, n: &0

Mean: 1546.5

Nines: Nal

Confidence Interval (95.0%): [1194.4507763411248,1898.5492236588152]
Standard Error: 175.93705137121555
Relative Error (%): 12.509%944457353054
Midrange: 2765.0

Minimum: 49.0

lst Cuartile: €06.0

2nd Quartile: 980.0

3rd Quartile: 2453.5

Maximum: 5481.0

IQR: 1847.5

Range: 5432.0

BM5: 2053.7621951734228

Variance, s°2: 18537230.7627118644
Standard Deviation, s: 1362.8025398331132

4. Simple Evaluation. A menu for the fitting will be displayed. The parameters are:

Input Parameters x

Parameters|

Epsilon:

Max. iterations:
MNumber of clusters:

Ph

er percentile:

Upper percentile:

default

* Epsilon: Stopping criterion of the EM algorithm.
e Max. iterations: Maximum number of iterations (will be used if Epsilon is not reached).
* Number of clusters: Number of clusters to be used in the fitting process.

¢ Phases: Number of distribution phases in each Cluster.

5. Random Search. The process of determining the number of phases in the fitting is not always trivial. To
assist this process, we have implemented an algorithm that randomly searches for the number of clusters
and phases based on the Bayesian Information Criterion (BIC). BIC is a criterion for model selection from
a finite set of models. Lower values for BIC are generally preferred. The parameters for the random search

are:
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Input Parameters x

Parameters

Epsilon:

Max. iterations:
MNumber of runs:
Min. clusters:
Max. clusters:
Min. phases:
Max. phases:
Lower percentile:

Upper percentile:

default

Epsilon: Stopping criterion of the EM algorithm.
Max. iterations: Maximum number of iterations (will be used if Epsilon is not reached).

Number of runs: Number of runs in which the algorithm determines random values for the parame-

ters.

Min. cluster: Minimum number of clusters used in the fitting process.
Max. clusters: Maximum number of clusters used in the fitting process.
Min. phases: Minimum number of distribution phases in each cluster.

Max. phases: Maximum number of distribution phases in each cluster.

223



	Overview
	How to Install the Tool
	Linux System Requirements

	Graphical User Interface (GUI)
	RBD View
	FT View
	EFM View
	SPN View
	CTMC View
	DTMC View

	Main Menu
	Main Toolbar
	Drawing Area

	SPN Modeling and Evaluation
	SPN Simulation
	Stationary Simulation
	Transient Simulation
	MTTA Simulation

	SPN Analysis
	Stationary Analysis
	Transient Analysis

	SPN Structural Analysis
	Token Game
	Sensitivity Analysis

	RBD Modeling and Evaluation
	RBD Reduction
	RBD Evaluation
	Evaluation
	RBD Experiment
	Bounds for Dependability Analysis
	Component Importance and Total Cost of Acquisition
	Structural and Logical Functions
	Sensitivity Analysis


	FT Modeling and Evaluation
	FT Evaluation
	Evaluation
	FT Experiment
	Bounds for Dependability Analisys
	Component Importance and Total Cost of Acquisition
	Structural and Logical Functions
	Sensitivity Analysis
	Export to RBD model


	CTMC Modeling and Evaluation
	Input Parameters/Definitions
	Metrics
	CTMC Evaluation
	CTMC Stationary Analysis
	CTMC Transient Analysis
	Sensitivity Analysis


	DTMC Modeling and Evaluation
	Input Parameters
	Metrics
	DTMC Evaluation
	DTMC Stationary Analysis
	DTMC Transient Analysis
	Sensitivity Analysis


	EFM Modeling and Evaluation
	Power Load Distribution Algorithm - PLDA
	Example of PLDA execution

	Power Load Distribution Algorithm in Depth search (PLDA-D)
	Example of PLDA-D Execution


	Mercury Scripting Language
	Introduction
	Script Structure
	Reserved Words

	Continuous Time Markov Chain
	Availability
	Reward Metric
	Stationary and Transient Probabilities

	Reliability Block Diagram
	Stochastic Petri Nets

	Syntax of CTMC Measures, Parameters, State Names, and State Rewards
	Syntax of SPN Metrics, Guard Expressions, and Arc Multiplicity Dependent on Marking.
	GENERAL COMMENTS ABOUT SPN SYNTAX

	EMA Tool.

