
The Mercury Scripting Language
Cookbook

Danilo Oliveira

Abstract This document presents a series of modeling problems, and shows
how the Mercury Scripting Language (MSL) makes easy to solve them. Our
objective is to show the strong points of the language in different pratical
contexts.

1 Introduction

MSL (Mercury Scripting language) is a language provided by the Mercury
tool [1] 1 for creating and evaluating models. The scripts can be executed
by command line interface (CLI), via graphical interface, or inside a Java
program (as we will show later in this document). The main objective of
the scripting language is to allow the use of Mercury evaluation engine with
greater flexibility than the GUI provides. The scripting language enables, for
example, using shell scripts to automate an evaluation workflow. The script-
ing language offers an additional advantage that is the increased support to
hierarchical evaluation [2] [3]. Input parameters of any model can be defined
as function of an output metric defined by another model, independent of
the modeling formalism. The Mercury scripting language currently supports
SPN (Stochastic Petri Net), RBD (Reliability Block Diagram), EFM (Energy
Flow Model) and CTMC (Continuous Time Markov Chain) models.

We structured this material as a “cookbook ”, that provides a series of
“recipes”. Each recipe contains a practical example that emphasizes some
capability of the language:

Danilo Oliveira
Centro de Informática, UFPE, e-mail: dmo4@cin.ufpe.br

1 Available at: http://www.modcs.org/?page_id=1630

1

2 Danilo Oliveira

• Recipe #1 - Hierarchical modelling + composite metrics — In
this example we show how to structure a set of models hierarchically, and
how to declare a metric that is function of another metric;

• Recipe #2 - Experiments and sensitivity analysis — In this exam-
ple we show how to perform quick experiments with the for loop, and how
to perform sensitivity analysis with the percentage difference, and design
of experiments techniques;

• Recipe #3 - Reliability block diagram with variable number of
blocks — This example shows how to define a RBD model that does not
have a fixed number of blocks, and how to change this model;

• Recipe #4 - Energy Flow model + availability model — This
example shows how to link an energy flow model with a dependability
model in order to compute certain metrics. This linkage turns possible
to see how the dependability parameters impacts the energy flow model
metrics;

• Recipe #5 - Using phase type distributions in a Stochastic Petri
Net Model — In this example we see how to use a phase-type distribu-
tion (e.g.: hypoexponential, hyperexponential, Erlang) as delay on a SPN
model;

• Recipe #6 - Sensitivity analysis on a performability model —
In this example we illustrates how to compose a performability model by
composing a dependability and a performance model. Then, we show how
to measure the impact of the dependability parameters on performance
metrics;

• Recipe #7 - Executing a script inside a Java program — In this
example we show how to run scripts from a Java program, and obtaining
references to model and metrics programatically.

2 Recipes

2.1 Recipe #1 - Hierarchical modelling + composite
metrics

In this recipe, we use as example the hierarchical model for the non-
redundant cloud architecture presented in [4]. Figure 1 show the top level
RBD model for the system. It is composed by a frontend server, a node
server, a storage volume, and the video streaming service that runs on the VM
deployed in the node. Except the storage volume components, all blocks are
evaluated by another submodels. The frontend and the node servers are mod-
eled by RBDs displayed on figures 2 and 3, respectively. The video streaming
service is modeled by the CTMC presented in Figure 4.

The Mercury Scripting Language Cookbook 3

Fig. 1

Fig. 2

Fig. 3

Fig. 4

The script for evaluating the system’s availability is presented on Listing 1.
On the preamble off the script, we set all the parameters for all models. After
the preamble, we start declaring the models. Since the script is evaluated
once, and there is no forward declarations, we must declare the submodels
before the top level model. If a model A use the result of a metric defined by
a model B as one of its parameters, the model B must be declared before the
model A.

The models NRFrontend, and Node are simple RBDs composed by a set
of blocks with exponential MTTF and MTTF. Each exponential block is
declared using the “block” keyword followed by the MTTF and MTTR pa-
rameters enclosed by parenthesis. The value of a model parameter can be any
numeric expression containing: parenthesis, arithmetic operators (*, +, /, -
), number literals, variables, and functions. The availability metric is declared

4 Danilo Oliveira

using the “metric” keword, followed by the metric identifer, and the metric
type. In this case, we use the “availability” metric, that takes no parameters.

The model NRService is represented by a CTMC with five states, and in
only one state (the “Up” state) the system is available. For CTMC availabil-
ity models, there is three ways to compute the availability. The first is to
annotate the “up states” with the “up” keyword, and use the “availability”
metric. Alternatively, we can use CTMC expressions following the syntax de-
scribed in the Mercury manual, by using the “ctmcExpression” metrics, that
takes as parameter a string containing the expression. The “up” annotation
and the “availability” metric is a shorthand for availability models, while the
“ctmcMetric” is a more general way to compute CTMC metrics.

On the top level model, we create a RBD with a series arrangement of
blocks. But, instead of using simple exponential blocks, we use hierarchical
blocks, by using the “hierarchy” keyword. For availability models, we must
define the “availability” parameter for each hierarchical block. We can use
any numeric expression for this parameter. Using the “solve” function allow
us to solve a metric defined by another model and, in this way, composing
models hierarchically. The NRArchitecture model represents the top level
model depicted in Figure 1. It defines three metrics. The metric named “av”
computes the steady state availability for the RBD. The metrics named “uav”
and “downtime” represents composite metrics, i.e., metrics that are defined
as function of another metrics. A composite metric is declared by using a
numeric expression enclosed by parentheses.

Finally, we create the “main” block, that is the section of the script where
we can set parameters, evaluate models, and print the computed results using
the “print” and “println” functions. These functions accepts any numeric or
string expression as argument, and outputs its values in the console. Using the
“..” operator we can concatenate string with numeric values and presenting a
more readable output.

1 lambda_ap = 1/788.4;
mu_ap = 1;

3 lambda_vlc = 1/336;
mu_vlc = 1;

5 lambda_vm = 1/2880;
mu_vm = 1;

7 mu_in = 1/0.019166;

9 mttf_hw = 8760;
mttr_hw = 100/60;

11 mttf_os = 2895;
mttr_os = 1;

13 mttf_kvm = 2990;
mttr_kvm = 1;

15 mttf_nc = 788.4;
mttr_nc = 1;

17 mttf_clc = 788.4;
mttr_clc = 1;

19 mttf_cc = 2788.4;

The Mercury Scripting Language Cookbook 5

mttr_cc = 1;
21 mttf_walrus = 2788.4;

mttr_walrus = 1;
23

mttf_volume = 100000;
25 mttr_volume = 1;

27 RBD NRFrontend{
block hw(MTTF = mttf_hw , MTTR = mttr_hw);

29 block os(MTTF = mttf_os , MTTR = mttr_os);
block cc(MTTF = mttf_cc , MTTR = mttr_cc);

31 block clc(MTTF = mttf_clc , MTTR = mttr_clc);
block walrus(MTTF = mttf_walrus , MTTR = mttr_walrus);

33

series s1(hw, os, clc , cc , walrus);
35

top s1;
37

metric av = availability;
39 }

41 RBD Node{
block hw(MTTF = mttf_hw , MTTR = mttr_hw);

43 block os(MTTF = mttf_os , MTTR = mttr_os);
block kvm(MTTF = mttf_kvm , MTTR = mttr_kvm);

45 block nc(MTTF = mttf_nc , MTTR = mttr_nc);

47 series s1(hw, os, kvm , nc);

49 top s1;

51 metric av = availability;
}

53

CTMC NRService{
55

state fap;
57 state Up up;

state fapvlc;
59 state fvlc;

state fall;
61

transition fap -> Up(rate = mu_ap);
63 transition fap -> fapvlc(rate = lambda_vlc);

transition fap -> fall(rate = lambda_vm);
65 transition Up -> fap(rate = lambda_ap);

transition Up -> fvlc(rate = lambda_vlc);
67 transition Up -> fall(rate = lambda_vm);

transition fapvlc -> fap(rate = mu_vlc);
69 transition fapvlc -> fvlc(rate = mu_ap);

transition fapvlc -> fall(rate = lambda_vm);
71 transition fvlc -> Up(rate = mu_vlc);

transition fvlc -> fapvlc(rate = lambda_ap);
73 transition fvlc -> fall(rate = lambda_vm);

6 Danilo Oliveira

transition fall -> Up(rate = mu_in);
75

metric av = availability;
77 metric av2 = ctmcExpression(expression = "P{Up}");

}
79

RBD NRArchitecture{
81 hierarchy frontend(

availability=solve(NRFrontend , av)
83);

85 hierarchy node(
availability=solve(Node , av)

87);

89 block volume(MTTF = mttf_volume , MTTR = mttr_volume);

91 hierarchy service(
availability=solve(NRService , av)

93);

95 series s1(frontend , node , volume , service);

97 top s1;

99 metric av = availability;
metric uav(1 - av);

101 metric downtime(uav * 365 * 24);
}

103

main{
105 a = solve(NRArchitecture , av);

println("Availability: " .. a);
107

u = solve(NRArchitecture , uav);
109 println("Unavailability: " .. u);

111 d = solve(NRArchitecture , downtime);
println("Annual downtime: " .. d);

113 }

Listing 1 Script for a cloud video streaming service model

2.2 Recipe #2 - Experiments and sensitivity analysis

In this recipe, we will use the model defined in the previous recipe. One of
the greatest strengths of the scripting language is the ease to change a model
parameter and observe how the metrics reacts by this change. By modifying
the contents of a variable that is used as a model parameter (using the assign
operator “=”), and re-solving the metric of interest using the “solve” function,

The Mercury Scripting Language Cookbook 7

we will get a new result that corresponds to the updated model. The relying
on this feature, the scripting language provides a convenient way to perform
experiments, i.e., outputting the result of a metric by changing a parameter
over a list, and provide powerful functions to perform sensitive analysis.

2.2.1 Performing experiments using the “for” loop

To observe how a metrics reacts by changing a parameter over a list of
values, we use the “for” loop available in the scripting language. Listing 2
shows an example. In this example, we change the “mttf_hw” parameter
over the list enclosed by square brackets. For each iteration, we solve the “av”
metric of the NRArchitecture model. Then, we print the parameter value,
followed by a comma, and the metric result. By outputting the result this
way, we can create a comma separated value (CSV) file that will be used by
producing a chart by another tool (e.g. R, gnuplot, Excel, etc.)

In Figure 5 we show how to run the script in the command line interface.
We run the Mercury program by typing “java -jar mercury.jar” on the ter-
minal. Without any command line arguments, the graphical interface will be
displayed. To evaluate the script, we must pass the “-cli” argument, followed
by the file name of the script. Any “print” or “println” output will be sent to
the console. To save the results in a file, we can use the redirect operator “>”
of the shell.

1 main{
for mttf_hw in [730, 1460, 2190, 2920, 3650, 4380, 5110, 5840,

6570, 7300, 8030, 8760]{
3 a = solve(NRArchitecture , av);

println(mttf_hw .. ", " .. a);
5 }

}

Listing 2 Performing an experiment with the for loop

2.2.2 Sensitivity analysis

The language has two predefined functions for sensitivity analysis: percent-
age difference, and design of experiments. The technique of sensitivity analy-
sis by means of percentage difference consists in changing one parameter over
a list of values, while holding the other parameters fixed, and calculating the
percentage difference in the output metric considered. We perform this step
for each parameter into our list, and sort them from the highest difference to
the lowest. The formula for obtaining the percentage difference is [5]:

SI =
Dmax −Dmin

Dmax

8 Danilo Oliveira

Fig. 5

, where SI is the sensitivity index for the selected parameter, Dmax is the
maximum value of the output metric, and Dmin is the minimum value.

The Listing 3 shows the usage of the percentageDifference function. This
function has three mandatory parameters: i)model_, which defines the model
that will be used in the analysis; ii) metric_, which defines the metric from
the model that will be used; iii) parameters, which represents the list of
parameters that will be used in the analysis, and its respective values. Each
parameter is set with a list of values enclosed by square brackets. Optionally,
the user can define only two values: a minimum and a maximum value, and
set the samplingPoints parameters, that specifies the number of intermediate
points that will be generated for each list. The function prints in the console
the list of parameters and respective sensitivity indexes, ranked from least to
most influential parameter. Figure 6 shows the output for the script displayed
on Listing 3.

main{
2 av = solve(NRArchitecture , av);

println(av);
4

percentageDifference(
6 model_ = "NRArchitecture",

metric_ = "av",
8 samplingPoints = 5,

10 parameters = (
lambda_ap = [1/2000 , 1/788.4] ,

12 mu_ap = [1/5, 1],
lambda_vlc = [1/500, 1/336],

14 mu_vlc = [1/5, 1],
lambda_vm = [1/4000 , 1/2880],

The Mercury Scripting Language Cookbook 9

16 mu_vm = [1, 5],
mu_in = [1/0.019166 , 1/0.1],

18 mttf_hw = [8760, 10000],
mttr_hw = [100/60 , 400/60],

20 mttf_os = [2895, 4000],
mttr_os = [1, 5],

22 mttf_kvm = [2990],
mttr_kvm = [1, 5],

24 mttf_nc = [788.4, 2000],
mttr_nc = [1, 5],

26 mttf_clc = [788.4, 2000],
mttr_clc = [1, 5],

28 mttf_cc = [2788.4 , 4000],
mttr_cc = [1, 5],

30 mttf_walrus = [2788.4 , 4000],
mttr_walrus = [1, 5],

32 mttf_volume = [100000],
mttr_volume = [1, 5]

34),

36 output = (
type = "swing",

38 yLabel = "Steady -state availability",
baselineValue = av

40)
);

42 }

Listing 3 Performing sensitivity analysis with the percentage difference technique

Fig. 6 Output of the percentageDifference function

10 Danilo Oliveira

The output optional parameter is used to produce charts for each parame-
ter. This parameter has three sub-parameters: i) type, which defines the type
of chart that will be produced; ii) yLabel, which defines the label of the y axis
in a chart; iii) baselineValue, for displaying a horizontal line in the chart for
comparing each point with a baseline value. Currently, the only chart type
available is “swing”, that displays all charts inside a GUI window. In the next
release, we plan to include support for generating R and Gnuplot scripts for
producing charts. Figure 7 displays the generated charts for the script shown
above.

Fig. 7 Charts generated automatically by the percentageDifference function

The Design of Experiments (DOE) technique consists in taking a list of
parameters and, for each parameter (called factor), a list of values (called
levels), and performing a series of experiments with the possible combinations
of factor and values. There are various possible designs for an experiment. One
possible alternative is to run the experiment for all combination of levels using
all factors. This is called a full factorial design. A drawback of this alternative
is that, even for a small list of parameters, the number of experiments to be
performed could be very large. One solution is to use only two levels - this
is called a two-level factorial design. Even using only two levels, the number
of experiments can be very large, if we have many parameters, and grows
exponentially for each added parameter. To overcome this issue, we may
perform a fractional factorial design, that uses only a subset of a factorial
design. The Mercury tool allow us to perform two-level, full, and fractional
designs, and compute the effects of each factor as described in [6].

Listing 4 shows the usage of the designOfExperiment function. It takes the
same three mandatory parameters than the percentageDifference function: i)

The Mercury Scripting Language Cookbook 11

model_, metric_, and iii) parameters. There is no samplingPoints parameter,
and each parameter receives a list with only two values: a min, and a max
value.

main{
2 designOfExperiment(

model_ = "NRArchitecture",
4 metric_ = "av",

parameters = (
6 lambda_ap = [1/2000 , 1/788.4] ,

mu_ap = [1/5, 1],
8 lambda_vlc = [1/500, 1/336],

mu_vlc = [1/5, 1],
10 lambda_vm = [1/4000 , 1/2880],

mu_vm = [1, 5],
12 mu_in = [1/0.019166 , 1/0.1],

mttf_hw = [8760, 10000],
14 mttr_hw = [100/60 , 400/60],

mttf_os = [2895, 4000],
16 mttr_os = [1, 5],

mttf_kvm = [2990],
18 mttr_kvm = [1, 5],

mttf_nc = [788.4, 2000],
20 mttr_nc = [1, 5],

mttf_clc = [788.4, 2000],
22 mttr_clc = [1, 5],

mttf_cc = [2788.4 , 4000],
24 mttr_cc = [1, 5],

mttf_walrus = [2788.4 , 4000],
26 mttr_walrus = [1, 5],

mttf_volume = [100000],
28 mttr_volume = [1, 5]

)
30);

}

Listing 4 Performing sensitivity analysis with the design of experiments technique

2.3 Recipe #3 - Reliability block diagram with variable
number of blocks

The MSL language provides a construct to define a RBD model with a
variable number of blocks into a series or parallel arrangement. It may be
useful to answer questions like “How much the system’s availability will be
improved if we add one more redundant block? ”. In this recipe, we will use the
model of an Eucalyptus private cloud with a variable number of worker nodes.
Figure 8 shows the top level model. The cloud is composed by a frontend node
running the management services of the cloud, and by a set of worker nodes.

12 Danilo Oliveira

The models for the frontend and node were shown on previous section, in
figures 2 and 3.

Lines 53 to 59 of Listing 2.3 shows an example of this construct. Using this
construct, we can define a series/parallel arrangement with a variable number
of similar blocks. After the block id (“nodes”), we pass the parameters of the
grouping inside parentheses. The “times” parameter defines the number of
blocks of the series/parallel arrangement. This value must have an initial
value. If it uses a variable, the variable value must be previously inside the
model (using the set keyword), or in the script preamble. For specifying the
block that will be repeated, he have two notations. We can set the “mttf ”
and “mttr ” parameters 2, or we can set the “hierarchyBlock ” parameter, for
hierarchical blocks. Figure 9 shows the output of the script of Listing 2.3.

Fig. 8

1 mttf_hw = 8760;
mttr_hw = 100/60;

3 mttf_os = 2895;
mttr_os = 1;

5 mttf_kvm = 2990;
mttr_kvm = 1;

7 mttf_nc = 788.4;
mttr_nc = 1;

9 mttf_clc = 788.4;

2 Notice that the parameters are in lowercase. This is due the fact that we now are using
the dictionary syntax, therefore we can not use the MTTF and MTTR reserved words as
keys

The Mercury Scripting Language Cookbook 13

mttr_clc = 1;
11 mttf_cc = 2788.4;

mttr_cc = 1;
13 mttf_walrus = 2788.4;

mttr_walrus = 1;
15

mttf_volume = 100000;
17 mttr_volume = 1;

19 n_nodes = 1;

21 RBD NRFrontend{
block hw(MTTF = mttf_hw , MTTR = mttr_hw);

23 block os(MTTF = mttf_os , MTTR = mttr_os);
block cc(MTTF = mttf_cc , MTTR = mttr_cc);

25 block clc(MTTF = mttf_clc , MTTR = mttr_clc);
block walrus(MTTF = mttf_walrus , MTTR = mttr_walrus);

27

series s1(hw, os, clc , cc , walrus);
29

top s1;
31

metric rel = reliability(time = t);
33 }

35 RBD Node{
block hw(MTTF = mttf_hw , MTTR = mttr_hw);

37 block os(MTTF = mttf_os , MTTR = mttr_os);
block kvm(MTTF = mttf_kvm , MTTR = mttr_kvm);

39 block nc(MTTF = mttf_nc , MTTR = mttr_nc);

41 series s1(hw, os, kvm , nc);

43 top s1;

45 metric rel = reliability(time = t);
}

47

RBD CloudModel{
49 hierarchy frontend(

reliability=solve(NRFrontend , rel)
51);

53 parallel nodes(
times = n_nodes ,

55 hierarchyBlock = (
reliability= solve(model = Node , metric = rel)

57)
);

59

series s1(frontend , nodes);
61

top s1;
63

14 Danilo Oliveira

metric rel = reliability(time = t);
65 }

67 main{
t = 100;

69

for n_nodes in [1, 2, 3, 4, 5, 6, 7, 8] {
71 r = solve_rm(CloudModel , rel);

println("Number of worker nodes: " .. n_nodes .. ",
reliability: " .. r);

73 }
}

Fig. 9 Output of the script of Listing 2.3

2.4 Recipe #4 - Energy Flow model + availability model

The Energy Flow Model [7] formalism is used to represent the energy flow
between the system components considering the respective efficiency and the
maximum energy that each component can provide (considering electrical
devices) or extract (assuming cooling devices). The system under evaluation
can be correctly arranged, in the sense that the required components are
properly connected, but they may not be able to meet system demand for
electrical energy or thermal load.

Some metrics of an EFM model takes an availability parameter, that must
inform the steady state availability of the datacenter being evaluated. This
value must be computed by a separated availability model of the datacenter.
Thanks to the hierarchical modeling capabilities of the scripting language, it
is possible to link the EFM model and the availability model. This feature
turns possible to see how the availability model parameters impact the EFM
metric.

The Mercury Scripting Language Cookbook 15

In this recipe, we will use as example the EFM model represented in Figure
10. Figure 11 shows the corresponding availability model. Listing 5 shows a
script that implements these two models. In the line 48 of the script we
declare a “operationalExergy” metric, that takes two parameters: time and
availability. The availability parameter is obtained by the RBD model named
AvailModel, using the solve function.

Fig. 10 EFM model

Fig. 11 Availability model of the EFM of Figure 10

RBD AvailModel{
2 block crac(MTTF = mttf_crac , MTTR = mttr_crac);

block chiller(MTTF = mttf_chiller , MTTR = mttr_chiller);
4 block c_tower(MTTF = mttf_ctower , MTTR = mttr_ctower);

6 series s1 (crac , chiller , c_tower);

8 top s1;

10 metric aval = availability;
}

12

14 EFM EFM1{
component source(

16 type = "Source",
parameters = (

18 demandedEnergy = 10
)

20);

22 component target(
type = "Target",

24 parameters = (

16 Danilo Oliveira

demandedEnergy = 10
26)

);
28 component crac(

type = "CRAC",
30 parameters = (

efficiency = e,
32 retailPrice = r

)
34);

component chiller(
36 type = "Chiller"

);
38 component tower(

type = "C_Tower"
40);

42 arc source -> crac;
arc crac -> chiller;

44 arc chiller -> tower;
arc tower -> target;

46

48 metric m = operationalExergy(time = 1000, availability =
solve(AvailModel , aval));

}
50

52 main {
mttf_crac = 1000;

54 mttr_crac = 1;
mttf_chiller = 6000;

56 mttr_chiller = 10;
mttf_ctower = 10000;

58 mttr_ctower = 20;

60 m = solve(EFM1 , m);
println("Operational exergy: " .. m);

62 }

Listing 5 Script for a EFM model

2.5 Recipe #5 - Using phase type distributions in a
Stochastic Petri Net Model

When modelling a certain system of the real world using Stochastic Petri
Nets, there are two options for evaluating the metrics: stationary/transient
analysis and simulation. Stationary/transient analysis provides more accu-
rate results, but the drawback is that the delay associated with the transi-

The Mercury Scripting Language Cookbook 17

tions must be exponentially distributed. If an user collects real world data to
parametrize his/her model, and the histogram indicates that the data is not
even close to an exponential distribution, the assumption of an exponentially
distributed delay makes the model deviates from the real system.

Consider, for instance, that the service time from the SPN from Figure 12
is measured from the real system, and the user obtained the data depicted
in the histogram of Figure 13. As we can observe, the histogram curve is
different from a exponential distribution. If the user assumes an exponential
service time from these data, he/she can obtain different results from the real
system.

generated

loss

generate enter queue service

free

K

Fig. 12 Stochastic Petri Net model for a M/M/1/k queue [8]

Value

Fr
e
q
u
e
n
cy

Fig. 13 Histogram plot from collected data

A existent solution to overcome this problem is to use phase-type distri-
butions [9]. A phase-type distribution can be expressed as a composition of
exponential distributions. A important characteristic of this class of prob-
ability distributions is that they can be used to approximate an empirical
distribution [10].

A tradeoff found in using phase-type distributions to approximate the
time of firing of transitions is that the model can become more complex and
difficult to understand. To simplify the use of this class of distributions in SPN

18 Danilo Oliveira

models, the MSL language defines a special syntax for expressing another
distribution types than the exponential distribution. When the evaluation
engine for the scripting language detects a phase-type distribution delay, it
generates the structure for the phase-type transition as a subnet, and inserts
this subnet on the actual Petri net by using the hierarchical transitions of
the engine. As consequence, the model will be simpler than if the structure
of the phase-type transition was mixed with the Petri net structure. In the
graphical representation on the Mercury interface, exponential transitions
are displayed with a white background, and non-exponential transitions are
displayed with a shadowed background.

Figure 14 a) shows the SPN model with a transition with delay following an
Erlang distribution. This transition is represented with a shaded background.
Without this feature, our model should be depicted as in Figure 14 b), with
the inclusion of additional places, arcs and transitions (displayed inside the
dotted box) the shaded transition of the previous model.

generated

loss

generate enter queue service

free

K

(a)

generated

loss

generate enter queue

free

T1 P2 delay P3 T2

K K

(b)

Fig. 14 Stochastic Petri Net model with a Erlang transition

In the Listing 6, we show the code for the SPN model of Figure 14 a).
The service transition is configured with a phase-type delay determined by
a Erlang distribution. Instead of giving a numeric value for defining a simple
timed transition, we have to pass the distribution type and its parameters. In
this example, we use the “Erlang” string value to specify a Erlang distribution.
This distribution have two parameters: shape - the number of phases, and
meanDelay - the exponential delay of one phase.
k = 5;

2 arrivalTime = 1.5;
serviceTime = 0.1;

The Mercury Scripting Language Cookbook 19

4 phases = 6;

6 SPN Model{

8 place buffer(tokens = k);
place generated;

10 place queue;

12

immediateTransition drop(
14 inputs = [generated],

inhibitors = [buffer]
16);

18 immediateTransition enter(
inputs = [generated , buffer],

20 outputs = [queue]
);

22

timedTransition generate(
24 outputs = [generated],

delay = arrivalTime
26);

28 timedTransition service(
inputs = [queue],

30 outputs = [buffer],
delay = (

32 type="Erlang",
parameters = (

34 meanDelay=serviceTime ,
shape=phases

36)
)

38);

40 // The expected number of tokens in the "queue" place
metric equeue = stationaryAnalysis(expression = "E{#queue}");

42

}
44

main {
46 e = solve(Model , equeue);

println(e);
48 }

Listing 6 Timed transition with phase-type delay

20 Danilo Oliveira

2.6 Recipe #6 - Sensitivity analysis on a performability
model

In some performability studies, we are interested on finding how much the
performance of a system is affected due the presence of failures. Thanks to the
powerful solve function, we can link a dependability to a performance model,
and measure how changing the dependability model parameters impacts the
performance measures. Figure 15 shows an example of performability model.
The performance model is a SPN model that represents a M/M/1/K queue.
We put a place of server_up/server_down places that indicates the opera-
tional status of the server. If the server is down, the server is not able to pro-
cess a request, as indicated by the inhibitor arc. The delay of the fail/repair
transitions is computed by a separated RBD model. This RBD model is
composed by three blocks: hardware, operating system and application. The
MTTF and MTTR metrics of this model are used as delay for the fail/repair
transitions on the SPN model.

generated

loss

generate enter queue service

bu er

server_down

server_up

repair fail

OSHW APP

K

Fig. 15 Performability model

The script is exhibited on Listing 7. We create a RBD model named De-
pendModel, that declares two metrics: the MTTF and the MTTR. The value
of those metrics are used as input for the performance model, as shown in lines
62 and 66. On the SPN model, we declares two metrics: m1, that computes
the stationary probability of all markings that turns the service transition
enabled; tp, a composite metric that computes the throughput of the service
transition. Finally, on the main block, we variate the mttf_hw parameter
over a list, and show how the throughput of the server is affected by this
variation.
arrivalTime = 1.5;

2 serviceTime = 1.2;

The Mercury Scripting Language Cookbook 21

k= 5;
4

mttf_hw = 1000;
6 mttr_hw = 4;

mttf_os = 700;
8 mttr_os = 1;

mttf_app = 500;
10 mttr_app = 0.1;

12 RBD DependModel{
block HW(MTTF = mttf_hw , MTTR = mttr_hw);

14 block OS(MTTF = mttf_os , MTTR = mttr_os);
block APP(MTTF = mttf_app , MTTR = mttr_app);

16

series s1(HW, OS , APP);
18

top s1;
20

metric mttf_ = mttf;
22 metric mttr_ = mttr;

}
24

SPN Model{
26

place buffer(tokens = k);
28 place generated;

place queue;
30

place server_up(tokens = 1);
32 place server_down;

34

immediateTransition drop(
36 inputs = [generated],

inhibitors = [buffer]
38);

40 immediateTransition enter(
inputs = [generated , buffer],

42 outputs = [queue]
);

44

timedTransition generate(
46 outputs = [generated],

delay = arrivalTime
48);

50 timedTransition service(
inhibitors = [server_down],

52 inputs = [queue],
outputs = [buffer],

54 delay = serviceTime
);

56

22 Danilo Oliveira

timedTransition fail(
58 inputs = [server_up],

outputs = [server_down],
60 delay = solve(DependModel , mttf_)

);
62

timedTransition repair(
64 inputs = [server_down],

outputs = [server_up],
66 delay = solve(DependModel , mttr_)

);
68

metric m1 = stationaryAnalysis(expression = "P{(#queue >0) AND(#
server_up =1)}");

70 metric tp(m1 / serviceTime);

72 }

74 main {
for mttf_hw in [1000, 1200, 1300, 1400, 1500] {

76 tp = solve(Model , tp);
println(tp);

78 }
}

Listing 7 Script for a performability model

2.7 Recipe #7 - Executing a script inside a Java
program

Suppose that a programmer wants to create a specific tool that will be
used to model cloud infrastructures. With this tool, an user will be able to
create clusters, specify frontend and worker nodes, and compose them into a
cloud infrastructure. By using the provided high level cloud model, the user
will be able to extract performance and dependability metrics of a cloud. This
can be achieved by converting the high level model into a SPN/RBD/CTMC
model, and solving its metrics. To achieve this goal, the programmer must
be able to create SPN/RBD/CTMC models, and solving it inside his/her
program.

The Mercury tool exports the same API used by the scripting evaluation
runtime. By using the Mercury executable archive (.jar) as a library inside
an external Java program, it is possible to:

• Run scripts, i.e., parsing the script, loading the models in the runtime,
and running the main block;

• Evaluate scripts, i.e., parsing the script, loading the models in the runtime,
but not running the main block;

The Mercury Scripting Language Cookbook 23

• Obtaining reference to models and metrics;
• Modifying parameters;
• Solving metrics.

The scripts can be created “on the fly” and stored into a String variable,
or they can be stored in the disk. The Listing 8 shows a Java program that
performs the above mentioned steps. To compile this class, we must to create
a Java project using any IDE (Eclipse, Netbeans), and add the Mercury as
a library in the dependencies. We supply a single .jar file that contains the
Mercury API and also the Mercury dependencies into a single package, as
shown in Figure 16.

Fig. 16 Netbeans project with the Mercury API as library

In the Listing 8, we evaluate a script located in the file named “efm_model.mry”,
that must be in the same path of the program, or inside the root of the Net-
beans/Eclipse project folder. The Script class has two constructors:

• public Script(java.io.File file);
• public Script(String script);

The first constructor is used to evaluate a script located inside a file, and
the second is used to evaluate a script that is stored into a java.lang.String
object. For evaluating this script, we call the “evaluateScript” method of the
runtime object. This method sets the variables defined in the preamble (if
this section exists), loads all models in the runtime, but does not execute the
main block. If we want to run the main block after loading the models, we
call the “runScript” method.

1 package org.modcs.example;

3 import java.io.File;
import org.modcs.tools.parser.model.ExecutionRuntime;

5 import org.modcs.tools.parser.model.Model;
import org.modcs.tools.parser.model.Script;

7 import org.modcs.tools.parser.model.metrics.Metric;

9

24 Danilo Oliveira

public class EFMExample {
11 public static void main(String [] args) {

13 // creating the scripting evaluatin runtime
ExecutionRuntime runtime = new ExecutionRuntime ();

15

// creating an evaluating the script , without
17 // running the main block

Script scrpt = new Script(new File("emf_model.mry"));
19 runtime.evaluateScript(scrpt);

21

// modifying some variables and changing the model
23 // parameters

runtime.getVariableTable ().setValue("mttf", 1000);
25 runtime.getVariableTable ().setValue("mttr", 1);

runtime.getVariableTable ().setValue("e", 0.8);
27 runtime.getVariableTable ().setValue("r", 5000);

29 // obtaining reference to a model by passing
//its identifier

31 Model model = runtime.getModel("EFM1");

33 // obtaining reference to a metric
Metric m = model.getMetric("m2");

35

// solving and printing the metric
37 double val = m.solve();

System.out.println("Metric value: " + val);
39

41 // performing a experiment
double [] mttfs = { 500, 1000, 1500, 2000, 2500 };

43

for(double mttf: mttfs){
45 runtime.getVariableTable ().setValue("mttf", mttf);

47 System.out.println(m.solve());
}

49 }
}

Listing 8 Executing a script inside a Java program

References

1. B. Silva, R. Matos, G. Callou, J. Figueiredo, D. Oliveira, J. Ferreira, J. Dantas, A. L.
Junior, V. Alves, and P. Maciel, “Mercury: An integrated environment for performance
and dependability evaluation of general systems,” Proceedings of Industrial Track at
45th Dependable Systems and Networks Conference (DSN), 2015.

The Mercury Scripting Language Cookbook 25

2. J. Dantas, R. Matos, J. Araujo, and P. Maciel, “Eucalyptus-based private clouds:
availability modeling and comparison to the cost of a public cloud,” Computing, pp.
1–20, 2015.

3. R. Matos, J. Araujo, D. Oliveira, P. Maciel, and K. Trivedi, “Sensitivity analysis of
a hierarchical model of mobile cloud computing,” Simulation Modelling Practice and
Theory, vol. 50, no. 0, pp. 151 – 164, 2015, special Issue on Resource Management in
Mobile Clouds.

4. R. M. De Melo, M. C. Bezerra, J. Dantas, R. Matos, I. J. De Melo Filho, and P. Ma-
ciel, “Redundant vod streaming service in a private cloud: Availability modeling and
sensitivity analysis,” Mathematical Problems in Engineering, vol. 2014, 2014.

5. F. Hoffman and R. Gardner, “Evaluation of uncertainties in environmental radiological
assessment models,” in Radiological Assessments: a Textbook on Environmental Dose
Assessment, J. Till and H. Meyer, Eds. Washington, DC: U.S. Nuclear Regulatory
Commission, 1983, Report No. NUREG/CR-3332.

6. R. Jain, The art of computer systems performance analysis. John Wiley & Sons,
2008.

7. G. Callou, P. Maciel, D. Tutsch, J. Ferreira, J. Araújo, and R. Souza, “Estimating
sustainability impact of high dependable data centers: A comparative study between
brazilian and us energy mixes,” Computing, vol. 95, no. 12, pp. 1137–1170, 2013.

8. R. German, “A concept for the modular description of stochastic petri nets (extended
abstract,” in Proc. 3rd Int. Workshop on Performability Modeling of Computer and
Communication Systems, 1996, pp. 20–24.

9. L. Breuer and D. Baum, “Phase-type distributions,” An Introduction to Queueing
Theory and Matrix-Analytic Methods, pp. 169–184, 2005.

10. H.-B. Mor, “Performance modeling and design of computer systems,” 2013.

