

VoD Service in a Private Cloud Environment: Performance Monitoring and Modeling through Stochastic Petri Nets

Jamilson Ramalho Dantas

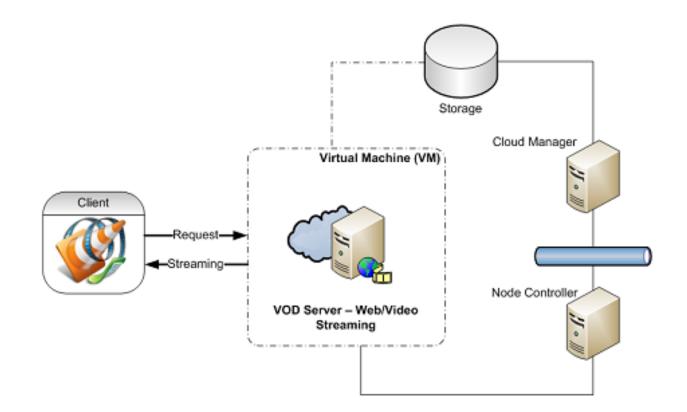
jrd@cin.ufpe.br

Orientador: Prof. Paulo Maciel

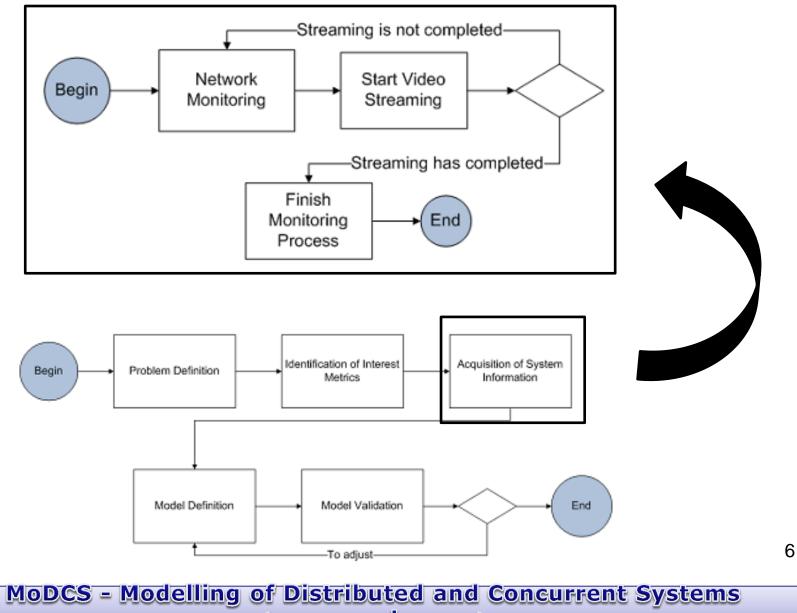
- Cloud computing platforms provides storage capacity, processing power and other computational resources in a flexible way.
- Current video streaming services offer a large variety of multimedia content in many formats

3

- A Fact
 - Netflix was pointed out as the single largest source of Internet traffic in the United States, consuming 29.7% of peak downstream traffic [1].
- In this context video file format and the streaming is a factor which might affect the quality of service (QoS), due to large network traffic and overloaded servers.


[1] Adhikari, V.K., Guo, Y., Hao, F., Varvello, M., Hilt, V., Steiner, M., Zhang, Z.L.: Unreeling netflix: Understanding and improving multi-cdn movie delivery. In: INFOCOM, 2012 Proceedings IEEE, pp. 1620–1628. IEEE (2012)

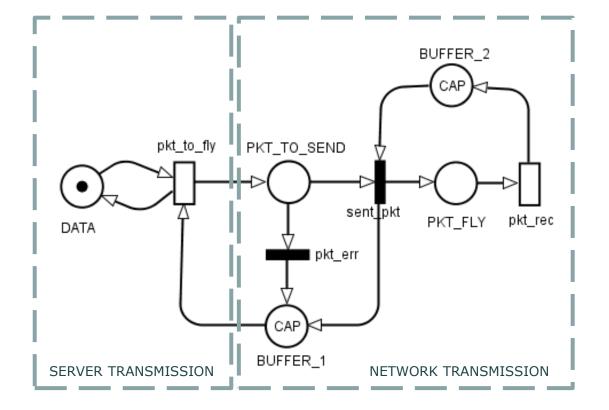
- Investigate the Quality of Service (QoS) perceived by end users that might be affected by network congestion.
 - videos in MPG, MP4, AVI and FLV formats.
- To Provide
 - a SPN model for quantify the packet loss ratio, packets received by end users and throughput for each kind of video in a cloud-based VOD environment.



System Description and evaluation methodology

System Description and Evaluation Methodology

<www.modes.org>



Acquisition of System Information

- Four video types were employed: MP4, MPG, AVI and FLV formats. Each video has a duration of five minutes, and the experiment was executed thirty times for each video.
- Metrics
 - Packets received by client
 - Packets sent by the server
 - Packets lost
 - Throughput

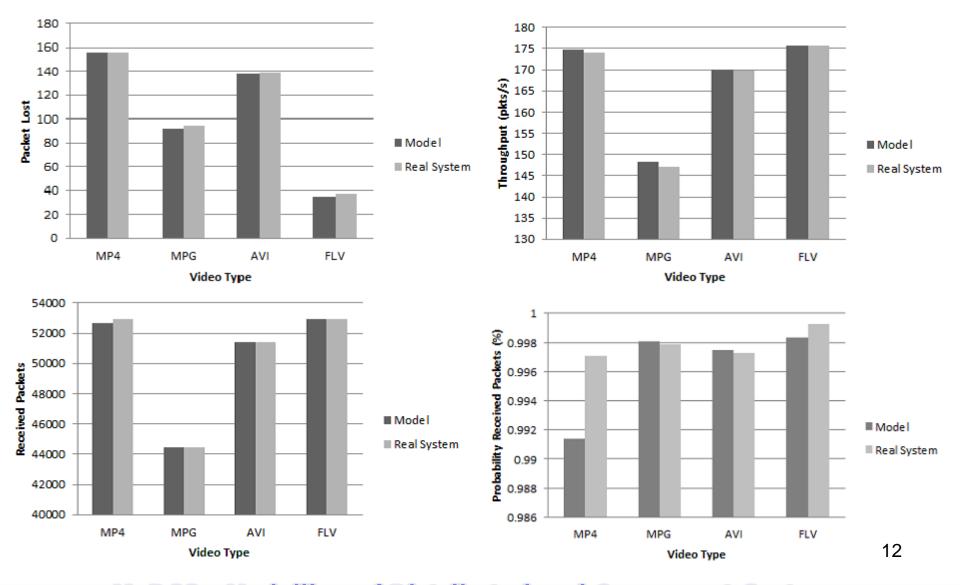
Performance Model

• Information assigned to Immediate Transitions

Transition	Weight		Priority	guard Function
pkt_err	MP4	0.0029	1	—
	MPG	0.0021		—
	AVI	0.0027	1	—
	FLV	0.0007	1	_
sent_pkt	MP4	0.9971	1	—
	MPG	0.9979	1	—
	AVI	0.9973	1	—
	FLV	0.9993	1	—

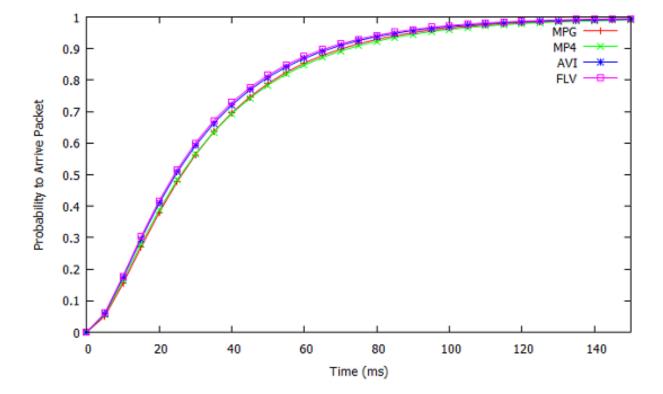
Definition Delays for Timed Transitions \bullet Transition Delay (ms)MP4 5.691MPG 6.802pkt_to_fly AVI 5.860FLV 5.727MP4 5.565MPG6.752pkt_rec 5.751AVI FLV 5.619

Metrics	Equation
Packets sent (PS)	$TPS * (T_{ns} - T_{is})$
Packets received (PR)	$TPC * (T_{nc} - T_{ic})$
Packets lost (PL)	PS - PR
Throughput (TPC)	E{#PKT_FLY}*(¹ / _{pkt_rec})
Throughput (TPS)	$E{\#DATA}*(\frac{1}{pkt_to_fly})$


Results

• Performance Model Validation

	Video Type	Model (α)	Real System	Interval (bootstrap)
Packet Loss	MP4	155.66	156.27	$92.93 < \alpha < 229.80$
	MPG	92.49	94.60	$63.63 < \alpha < 124.27$
	AVI	138.20	139.27	$105.13 < \alpha < 174.10$
	FLV	35.32	37.70	$17.67 < \alpha < 63.40$
Packets Received	MP4	52635.76	52938.73	$52613.67 < \alpha < 53000.83$
	MPG	44461.10	44452.40	$44420.33 < \alpha < 44481.67$
	AVI	51437.29	51427.73	$51392.70 < \alpha < 51461.60$
	FLV	52894.98	52946.30	$52818.53 < \alpha < 52966.07$
Throughput	MP4	174.78	174.04	$173.94 < \alpha < 174.90$
	MPG	148.23	147.81	$147.44 < \alpha < 148.30$
	AVI	169.93	169.86	$169.85 < \alpha < 170.09$
	FLV	175.99	175.70	$175.68 < \alpha < 176.31$



Results

- Performance model validation to evaluate some metrics of a video streaming service over UDP protocol in a cloud computing environment.
- As a future work, we intend to analyze other scenarios.

Thanks!

Jamilson Dantas jrd@cin.ufpe.br

MoDCS - Modelling of Distributed and Concurrent Systems

15