FIDEP - A Fault Injection Framework for Dependability Analysis on Cloud — Computing Systems —

Student: Vandi Alves - valn@cin.ufpe.br

Advisor: Prof. Dr. Paulo Maciel - prmm@cin.ufpe.br

Agenda

- Motivation
- Objective and Contributions
- Fault Injection
- Eucalyptus
- > Fidep
- Conclusion

Motivation

Cloud Computing

SLA versus Availability

To develop an unified fault injection framework (for dependability analysis)

- To be applied on Linux Based-Cloud Computing Systems (laaS Providers)
 - OpenStack, OpenNebula, CloudStack, AppScale, OpenShift, Nimbus, Eucalyptus, OpenQRM, oVirt, Cloud Foundry, ...

To develop an unified fault injection framework (for dependability analysis)

- To be applied on Linux Based-Cloud Computing Systems (laaS Providers)
 - OpenStack, OpenNebula, CloudStack, AppScale, OpenShift, Nimbus, Eucalyptus, OpenQRM, oVirt, Cloud Foundry, ...
- Capable of injecting, repairing and monitoring faults

To develop an unified fault injection framework (for dependability analysis)

- To be applied on Linux Based-Cloud Computing Systems (laaS Providers)
 - OpenStack, OpenNebula, CloudStack, AppScale, OpenShift, Nimbus, Eucalyptus, OpenQRM, oVirt, Cloud Foundry, ...
- Capable of injecting, repairing and monitoring faults
- To provide a scalable and easy to use framework to support dependability studies

Fault Injection

Fault Injection

Hardware Implemented techniques

Software Implemented techniques

Software Implemented Fault Injection

SWIFI techniques can be categorized into two types:

- Compile-time injection
- Runtime Injection

Cloud Computing Platforms

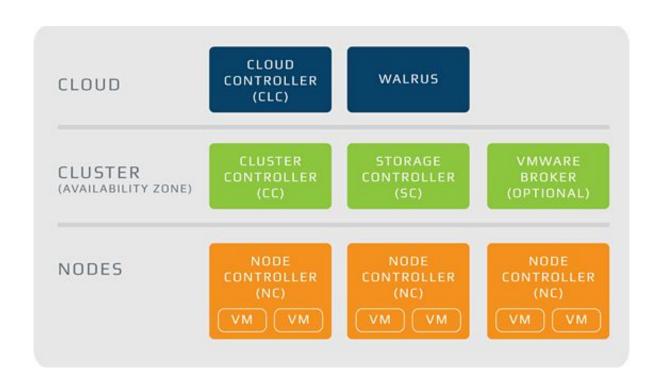
There are different platforms to *instantiate* the proposed framework.

OpenNebula.org cloudstack

Eucalyptus

APPLICATIONS

AWS-COMPATIBLE API



VIRTUALIZATION

PHYSICAL INFRASTRUCTURE

DATACENTER

Eucalyptus Components

Framework

FIDEP - A **F**ault **I**njection
Framework for **Dep**endability
Analysis on Cloud Computing
Systems

JAVA

- JAVA
- Design patterns (GoF)
 - Singleton; Observer; Abstract Factory

- JAVA
- Design patterns (GoF)
 - Singleton; Observer; Abstract Factory
- Random events generation FlexLoadGenerator

- JAVA
- Design patterns (GoF)
 - Singleton; Observer; Abstract Factory
- Random events generation FlexLoadGenerator
- SYSSTAT

Developers using FIDEP do **not** to worry with *Threads**

- Developers using FIDEP do **not** to worry with *Threads**
- Components { start(), stop(), isAlive() }

- Developers using FIDEP do **not** to worry with *Threads**
- Components { start(), stop(), isAlive() }
- Random Time generation (EXPONENTIAL, ERLANG, NORMAL, PARETO,

GEOMETRIC, LOGNORMAL, POISSON, TRIANGULAR, WEIBULL, UNIFORM)

FIDEP - A Fault Injection Framework for Dependability Analysis on Cloud — Computing Systems —

Student: Vandi Alves - valn@cin.ufpe.br

Advisor: Prof. Dr. Paulo Maciel - prmm@cin.ufpe.br